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Abstract—Monocular simultaneous localization and mapping
(SLAM) is an important technique that enables very inexpensive
environment mapping and pose estimation in small systems such
as smart phones and unmanned aerial vehicles. However, the
information generated by monocular SLAM is in an arbitrary
and unobservable scale, leading to drift and making it difficult
to use with other sources of odometry for control or navigation.
To correct this, the odometry needs to be aligned with metric
scale odometry from another device, or else scale must be
recovered from known features in the environment. Typically
known environmental features are not available, and for systems
such as cellphones or unmanned aerial vehicles (UAV), which
may experience sustained, small scale, irregular motion, an
IMU is often the only practical option. Because accelerometers
measure acceleration and gravity, an inertial measurement unit
(IMU) must filter out gravity and track orientation with complex
algorithms in order to provide a linear acceleration measurement
that can be used to recover SLAM scale. This paper will explore
an alternative method, which detects and removes gravity from
the accelerometer measurement by using the unscaled direction
of acceleration derived from the SLAM odometry.

I. INTRODUCTION

Monocular simultaneous localization and mapping (SLAM)
algorithms are capable of inexpensively generating highly
accurate maps of their environment and telemetry for agents
within that environment. Smartphones and drones are just two
important examples of emerging platforms on which develop-
ers and researchers will be able to leverage improvements to
monocular SLAM methods. Unfortunately, monocular SLAM
is incapable of observing scale. Monocular SLAM can be far
more useful if its arbitrary internal scale can be related to
objective units of measure, such as meters. Given sufficiently
accurate odometry from corroborating sensors, this is easily
achieved; a scaling constant can be determined by dividing
odometry measurements generated by the monocular SLAM
algorithm by corroborating sensor measurements of known
metric scale. However, if extremely accurate redundant teleme-
try is available, than the telemetry obtained from monocular
SLAM is unnecessary. The goal, therefore, is to robustly
find a scale factor with small, inexpensive sensors in order
to take advantage of the relatively inexpensive and compact
implementations of monocular SLAM.

Even where monocular SLAM is capable of accurate, self-
consistent mapping and pose estimation, accurately orienting

the result with earth’s gravity vector is challenging, particu-
larly without an known initialization state. In order to do this,
it is necessary to use other sensors to align the SLAM map
and pose to the real world. In many cases, only noisy, low
cost inertial sensors are available for this task. Inertial sensors
can not directly measure linear motion or absolute orientation,
because the accelerometer measures the superposition of the
gravity vector and the vector of linear acceleration. Commonly,
this is dealt with by averaging the accelerometer over some
timeframe during which the net linear acceleration is assumed
to be approximately zero. In this paper, a method will be
proposed that couples the gravity vector detection for both
the internal sensors and the SLAM coordinate frame the scale
estimation, which provides a potentially better estimate of
both quantities. This will allow for metric scale navigation
and sensor fusion in autonomous aircraft, and improved image
stability for smartphone augmented reality apps.

II. PREVIOUS WORK

There are two basic approaches that are used to determine
scale. One approach is to use known features or landmarks in
the environment to establish scale. A printed grid of known
size can be used to infer scale as well as orientation and
relative position with a single camera. This implementation
is common in marker based augmented reality systems such
as ARToolkit [1]. Marker based augmented reality isn’t really
SLAM, but markers can be used in conjunction with SLAM
to provide scale. Unfortunately, most real world applications
do not involve environments that contain known markers to
detect scale. As image recognition improves, it will become
possible to infer scale from a wider set of objects found
in the environment, rather than relying on artificial markers,
and some efforts have been made to do this [2]. However,
these techniques are still limited to environments which have
features of approximately known size.

The other approach is to compare the pose trajectory in-
dicated by other sensors with the pose trajectory indicated
by the monocular SLAM system. For example, in a large
scale outdoor environment, the path of travel indicated by
a GPS system can be aligned with the path indicated by
the monocular SLAM system. This approach is effective for
systems undergoing large scale motion outdoors, but other
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sensors must be used for smaller scale or indoor motion.
Usually an inertial measurement unit (IMU) is most con-
venient, due to its small size and low cost. Typically short
positional estimates are taken from the IMU and compared to
positional changes indicated by the monocular SLAM system
using some data fitting optimization technique [3] [4]. The
IMU processes accelerometer and gyroscope data over time to
estimate the gravity vector and then infer positional changes.
We will propose an approach that uses raw accelerometer
data directly in conjunction with monocular SLAM odometery
to simultaneously estimate gravity and scale with minimized
requirements for a priori information.

III. NOTATION

Monocular SLAM odometery reports the camera’s position
with each new camera frame in a fixed coordinate system
whose origin is usually referenced to the position and orienta-
tion of the first camera frame. An accelerometer, on the other
hand, is mounted rigidly to the camera, and it will measure a
three dimensional acceleration vector in the body coordinate
frame, which is rigidly attached to the camera. To work with
these measurements, we will need to rotate one of them into
a coordinate frame aligned with the other. If we use a known
rigid transformation to express an accelerometer reading in
a coordinate frame aligned with the SLAM coordinates, we
will say that it is in the SLAM coordinate frame, even though
technically it is only in a set of coordinate frames that share
a common orthonormal basis.

We will use superscripts to denote reference frames that
share a common alignment. To refer to a state variable
that is expressed in a coordinate system aligned with the
SLAM coordinate system, we will use the superscript ’s’ to
represent ’SLAM’. For example, the position vector is slam
aligned coordinates is ~ps. On the other hand, an accelerometer
measurement is taken in the body frame, so this measurement
can be represented by the vector ~ab, though it is important
to remember the transformation between a body frame and
a fixed frame changes with each new measurement, so not
all ”body” frames are aligned through time. At first, we will
assume that the physical separation between the camera and
the accelerometer is small enough to be ignored, so both
the camera and the accelerometer will share a single body
coordinate frame.

Finally, a subscript will generally refer to the instrument
that the particular value was derived from. For example, ~aba
refers to the acceleration measured by the accelerometer in the
body frame, whereas ~ass refers to the acceleration according
the SLAM odometery in the SLAM coordinate frame.

IV. DIGITAL FILTERING

The methods described here require the first and second
derivatives of discrete signals. Numerical differentiation is
difficult, because differentiation tends to strongly amplify any
high frequency noise in the signal. Strong filtering may be
needed to remove this noise, which can seriously degrade the

bandwidth of the signal, and require significant buffering. The
simplest method is to use a finite difference methods such as

f ′(n) ≈ (f(n)− f(n− 1))fs (1)

where fs is the sampling frequency. A second order finite
difference can be obtained with at least three samples,

f ′′(n) ≈ (f(n+ 1)− 2f(n) + f(n− 1))f2s (2)

This approach was insufficient for the signals described in
this paper, as they excessively amplified high frequency noise.
Fortunately, better options exist. A Savitksy-Golay [5] filter
produces adequate results in combination with a short FIR
filter. An IIR filter may be even more helpful if real time
operation is important.

V. DETERMINING THE LINEAR ACCELERATION

We will demonstrate a method for determining the linear
acceleration component of an accelerometer measurement by
comparing its direction to that of the linear acceleration
derived from monocular SLAM odometry. The result easily
leads to an estimate of the gravity vector and scale in a manner
similar to the inertial solution outlined in the previous section.
This solution is most robust under significant acceleration, and
is well suited to initialization. It is a natural complement to
traditional inertial measurement unit (IMU) gravity estimators
as it has an inverse symmetry with those method’s strengths
and weaknesses.

Consider the unit vector of the twice differentiated SLAM
odometery position vector. Recall that the superscript refers
to the coordinate frame of the vector, and a letter subscript
refers to the source of the vector, ie s for SLAM, or a for
accelerometer.

~ass(t) =
∂2

∂t2
~ps(t) (3)

~us =
~ass
‖~ass‖

(4)

Note that in practice, ~ps(t) is a discrete function rather than
continuous, so its second derivative must be determined with
a discrete approximation as discussed earlier.

Consider the ~us × ~asa plane in Figure 1, where ~asa the
accelerometer’s measurement vector transformed in the SLAM
frame. Assuming accurate values for ~us and ~asa, the vector
of scaled linear acceleration must lie somewhere along the
direction of ~us. If ~us and ~asa are both accurate and consistent,
we can assume the following will hold true, where ~ws is the
vector of scaled linear acceleration.

~ws = ~asa − ~gn (5)

This places that ~gn somewhere in the ~us×~asa plane. If we can
find ~gn, we can find ~ws, and from there get our scale. Happily,
we know ||~gn|| ≈ 9.81m/s2 at the earth’s surface. Intuitively,
it should be clear that if we trace a circle of radius 9.81m/s2

from the end of the ~asa vector, it will intersect a line extending
from ~us at one or two points. These points are candidates
for the linear acceleration vector ~ws. Because the scale value



Fig. 1. ~gn lies somewhere in the ~us × ~asa plane.

must be positive, ~us, any accelerometer measurement with
a magnitude of less 1g will give a unique solution for ~ws.
However, if ||~asa|| ≥ 1g, there are potentially two valid
candidates for ~ws and ~g.

Fig. 2. For a given SLAM acceleration unit vector, ~u, accelerometer
measurement vectors can potentialy end anywhere within 9.81m/s2 of the
positive half of the ~u line. Depending on where ~aa lies in that range, there
may be either one or two possible vectors for gravity. If ~aa ends inside the
dash-lined sphere, like ~a1 or on the boundary lines, like ~a3, there is only one
solution.

Consider the one dimensional case in Figure 3. We cannot
fully determine the gravity vector with only the accelerometer
and SLAM odomtery, but it’s easy to see that the orientation
does not have to be known to any significant degree of
accuracy in discriminate between the two possibilities. In this
case, we can decide as long as we have some sensor, or a
priori guarantee that the system is either inverted or upright.
While it may be very difficult to track the gravity vector with
great accuracy using traditional methods, it is trivial to make

Fig. 3. The left and center diagrams represent the accelerometer reading in
two different orientations.

a general distinction between a possible upright or inverted
orientation.

This one dimensional perspective extended easily to two and
three dimensions, as we can see from the right hand scenario
in Figure 3. Because ~asa and ~us are no longer aligned, the
gravity vector candidates are no longer 180 degrees apart. As
the angle between the gravity vectors decreases, it become
progressively more difficult to distinguish between the two
candidates. Fortunately, the error incurred by picking the
wrong vector for ~gn progressively decreases as the difficulty
rises, until at a separation of zero degrees, the two choices are
equivalent. This corresponds to ~a3 in Figure 2.

A. Standard Computation of Linear Acceleration

(a) Both Solutions (b) Detail of Single Solution

Fig. 4. This illustrates the vectors which are used to solve for ~w, the scaled
acceleration. (b) illustrates the case where ~t is subtracted for the vector
projection.

We can now describe a general method to calculate both
candidates for metric linear acceleration, ~w, given ~u, ~aa,
and the fact that ||~gn|| ≈ 9.81m/s2. We will assume that
all measurements are expressed commonly aligned coordinate
frames. We have already defined ~u in equations 3 and 4. Next
we define ~v, the vector rejection of ~aa onto ~u,

~v := ~aa − (~aa · ~u)~u (6)



Using the Pythagorean Theorem we find ~t,

~t :=
(√
||~g|| − ||~v||

)
~u (7)

Finally we find the two candidates for ~w by subtracting and
adding ~t from the vector projection of ~aa onto ~u,

~w = (~aa · ~u)~u± ~t (8)

B. Dealing with Inconsistent Measurements

Thus far, we have been operating under the assumption
that acceleration measurements according to the accelerometer
~aa and according to SLAM odometry, ~a are error free and
consistent. In practice both measurements are susceptible to
noise, and can sometimes become inconsistent. In Figure 2,
the outside boundaries represent the region around a given ~u
where there exist allowable terminations of the ~aa vector. If
~aa falls outside those boundaries, there is no possible ~gn that
can resolve the two measurements, and no solution exits. If
we try to compute it anyway, we find that ||~v|| > || ~gn||, and
~t becomes an imaginary vector.

Fig. 5. When ~aa lies outside the boundary, ~g cannot reach any scalar multiple
of ~u, and no solution exists.

In practice, significant horizontal acceleration places the
end of the ~aa vector close to the boundary of allowable
values. When this happens, noise or offset in either the SLAM
odometery or the accelerometer can frequently cause a no-
solution condition. To get a solution, at least one of the
parameters must change.

As ~aa approaches the outer boundary of measurement
consistency, ~t approaches ~0. At the boundary, ~t = ~0, and
Equation 8 simplifies to the vector projection of ~aa onto ~u,

~w = (~aa · ~u)~u (9)

This is the shown by ~a3, in Figure 2 where ~w, ~v and ~aa make
a right triangle, and ~v = ~g. If ~aa extends into a disallowed
region, the situation is similar, except ~v is longer than ~g.
We can get one approximate solution by using Equation 9.

This approach essentially finds ~w with a larger value of ||~g||.
However, this is not the best option, since ||~g|| is the one
parameter that we know with the highest level of confidence.
A better plan is to adjust one of the values that we have less
confidence in. We can adjust either the direction or magnitude
of ~aa, or the direction of ~u. Since ~u is the least accurate
measurement, this is the best parameter to change.

(a) Use larger value for ~g (b) Change angle of ~us

Fig. 6. It’s easiest to just allow ~g to take on a larger value, but it’s probably
more accurate to change the angle of ~u and ~w.

If ~u is rotated far enough towards ~aa, ||~v|| will be equal to
||~g||. This creates a new right triangle, where

|| ~w1|| =
(√
||~a||2 − ||~v1||2

)
(10)

To find ~w1, we will use Rodrigues’ rotation formula to rotate
~aa into the direction of ~w1, and then scale the rotated vector
to the known length of ~w1. It may seem strange that we
are rotating ~aa and not ~u or ~w0, since ~u is the parameter
that is getting changed. The triangle diagrams in Figure 6
are two dimensional, but they are oriented arbitrarily in three
dimensions. Using the known angle between ~aa and ~w1, we
can rotate ~aa through our 2D plane in 3D space to get a vector
in the vector space of ~w1. We obtain θ with

θ = atan

(
||~v1||
||~a||

)
(11)

The rotation is then

~l = acos(θ) + (k × ~aa)sin(θ) + k(k · a)(1− cos(θ)) (12)

where
~k =

~u× ~aa
||~u× ~aa||

(13)

Because the rotation is entirely on the plane, (k · a) = ~0, and
Equation 12 simplifies to

~l = acos(θ) + (k × ~asa)sin(θ) (14)



Finally, we get ~w1 by multiplying by the the ratio of the
magnitudes of ~w1 and ~aa,

~w1 = ~l

(
|| ~w1||
||~aa||

)
(15)

C. Filtering Result

Clearly this approach requires a strong acceleration signal in
order to produce a meaningful estimate or scale or the gravity
vector. Typically scaling methods use filtering and machine
learning techniques to refine the scale estimate over a period
of time. New techniques will need to be developed in order
to deal with the methods described in this paper. However,
we have implemented a basic variance weighted average filter
to improve the output signal. In order to roughly estimate the
variance of the output, we assumed Gaussian distributed inputs
and linearized all the equations around each sample. From
these linearized approximations, we compute a covariance
matrix for the output each step from the general form

Σs = Σad +BaΣαBa
T + CaΣωCa

T

+BaCov(α, ω)Ca
T + CaCov(ω, α)Ba

T (16)

VI. RESULTS

To test this method, we put together a simple device to
explore the accuracy of the scale and gravity vector estimates.
In order to test whether the scale factor produced is a realistic,
we configured the software to produce a real time scaled
graph of SLAM odometery position. We attached the camera
to a drawer pull mounted to a two by four wood beam. By
hand sliding the camera along this slide a known distance,
we were able to compare a baseline camera displacement to
the displacement indicated scaled SLAM odometery. The slide
allowed movement to be constrained to a particular direction
to make the displacement easier to visualize, and to allow
for controlled testing of various movement angles. We do not
compare these results with any other methods, because it is
a proof of concept for a novel technique that has no direct
comparison. Any comparison would need to be in the context
of some application, with a refined hardware implementation.

Equipment was not available to directly test the accuracy of
the gravity vector estimate, but the linear acceleration estimate
is a good indicator of gravity vector accuracy. By moving the
slide in a horizontal orientation, perpendicular to gravity, we
can test to see of the method correctly shows acceleration only
in the axis of movement.

VII. CONCLUSION

The results of these tests indicate that the proposed scal-
ing and gravity detection method is viable and promising.
However, they do require robust, high speed pose estimation
from the SLAM algorithm. The single largest limitation of
performance is likely the SLAM odometery data rate. One of
the most obvious applications for this method is hand held
devices, but the 40hz framerate of the camera used in our
implementation cannot quite capture enough high frequency

(a) Small Scale Environment

(b) Large Scale Environment

Fig. 7. Scaled horizontal position test. Shows x, y, and z displacement plus
scale. Actual displacement amplitude is about 0.4 meters.

(a) Small Scale Environment

(b) Large Scale Environment

Fig. 8. Scaled angled position test. Shows x, y, and z displacement plus
scale. Actual displacement is about .2 meter in the small scale and .4 meters
in the large scale test.

detail in hand held motion. It seems likely that a framerate
increase to even 60hz would make a big difference.

During testing we noticed that seemly small sources of
timing error can make a surprisingly large difference in the



Fig. 9. Linear acceleration test.

accuracy of the output. For example, at one point it was
discovered that a driver issue caused the timestamps on the
IMU and the camera to be offset by about 12 milliseconds,
which is only about half the period of the camera framerate.
However, this offset was enough to completely destabilize
the linear acceleration and scale estimates. During testing, the
precise amount of delay drifted around by a few milliseconds
and would cause issues unless re-calibrated. A number of
other issues in the test implementation could easily corrected
with a slightly higher budget. The mounting of the camera
in relationship to the IMU is very imprecise, which decreases
the accuracy of the VIMU. The IMU used had no calibration
software, and as a result only had a very crude manual
calibration. Correcting these issues, in addition to increasing
the camera frame rate, could all improve performance.

It is important to remember what this method needs to
accomplish. Right now, it constantly generates a new estimate
for the location of gravity with each new frame. The accuracy
of the gravity estimate in turn determines the accuracy of
the scale. This isn’t a realistic approach for a real world
system. This is more of a initialization, because it does
not require a-priori information, but as a-priori information
becomes available, it should be used. The obvious extension
of this approach would be to use the gyroscope and SLAM
odometery to fuse multiple gravity estimates over time with
a Kalman filter. This gravity estimate could then, in turn,
be combined with estimates from other methods. A system
implemented in this way could potentially offer a significant
advantage in accuracy and robustness compared to current
scaling schemes.
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