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Abstract—This paper discusses our work on using software
engineering metrics (i.e., source code metrics) to classify an error
message generated by a Static Code Analysis (SCA) tool as
a true-positive, false-positive, or false-negative. Specifically, we
compare the performance of Support Vector Machine (SVM),
K-Nearest Neighbor (KNN), Random Forests, and Repeated
Incremental Pruning to Produce Error Reduction (RIPPER) over
eight datasets. The performance of the techniques is assessed by
computing the F-measure metric, which is defined as the weighted
harmonic mean of the precision and recall of the predicted model.
The overall results of the study show that the F-measure value of
the predicted model, which is generated using Random Forests
technique, ranges from 83% to 98%. Additionally, the Random
Forests technique outperforms the other techniques. Lastly, our
results indicate that the complexity and coupling metrics have the
most impact on whether a SCA tool with generate a false-positive
warning or not.

Index Terms—Static Code Analysis, Software Engineering
Metrics, Machine Learning, Support Vector Machine, K-Nearest
Neighbor, Random Forests, Feature Selection

I. INTRODUCTION

Static analysis examines program code without executing
it to find potential defects that might arise at runtime. Tools
based on static analysis are called Static Code Analysis (SCA)
tools [1]. SCA tools usually report a variety of potential
bugs that can be categorized into three main groups: true-
positives, false-positives, and false-negatives [2] [3]. Many of
the current SCA tools emit a large number of false-positive and
false-negative warnings [4]. This drawback leaves developers
reviewing a plethora of false-positive warnings manually to
check if any of them may represent a potential bug or a
security flaw. In the past, there have been several attempts to
classify and predict the false-positive warnings by applying
different Machine Learning (ML) techniques to the SCA
tools warnings. For example, Yuksel et al. [5] applied 34
ML techniques over datasets containing 10 different artifact
characteristics (i.e., Severity, Alert code, Life time, Developer
idea, File name, Module name, Open alerts, Total alerts, Total
alerts in module, Total alerts in file). Their results show they
were able to classify 90% of warnings correctly. Likewise,
Tripp et al. [6] proposed an interactive solution to address this
problem through allowing the users (e.g., software developers)
to classify a small subset of the SCA tool’s warnings into
either actionable or spurious warnings. They then used this
subset to train a statistical model that classified the remaining

warnings automatically. Such prior research efforts serve as
evidence that ML techniques can be used to classify the
output generated by SCA tools. None of the prior research,
however, uses software engineering metrics as the determining
factors for classifying the output generated by a SCA tool.
For example, little is known about how software engineering
metrics, like complexity and coupling, can be used to classify
a SCA tool output (i.e., warning message) as a false-positive,
true-positive, or false-negative. The aim of this research is
to, therefore, evaluate how software engineering metrics can
be used to classify the output of a SCA tool. Our proposed
approach first generates a number of datasets by computing
the values of different software engineering metrics using the
Understand tool (https://scitools.com/) from the source code
snippets. Second, we apply 4 different ML techniques to create
a classifier, or predictive model. Lastly, we apply the model to
unknown source code. Hence, the main contributions of this
paper are:

1) It shows how we use ML and data mining techniques
along with a collection of software engineering metrics
to predict if the source code will lead the SCA tool to
emit either true-positive, false-positive, or false-negative
warnings; and

2) It evaluates which of software engineering metrics are
highly correlated with the true-positive, false-positive,
and false-negative warnings generated by a SCA tool.

To evaluate our approach, we use 7 CWEs from the Juliet
test suite for C++ [7] and two different SCA tools. Our
experimental results show that the Random Forests technique
achieved 83%–98% F-measure, which is the weighted har-
monic mean of the precision and recall. Additionally, our
experimental results indicate that complexity degree and cou-
pling between the functions in a given source code impact a
SCA tool’s performance.

Paper organization. The remainder of this paper is orga-
nized as follows: Section II discusses the general approach
for this research; Section III explores different ML techniques.
Section IV illustrates the Case Study that we use to evaluate
the proposed approach. Section V presents our experimental
results and a discussion of the results; Section VI compares
our work to other related works, and Section VII provides
concluding remarks and lessons learned.
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II. RESEARCH METHODOLOGY

In order to classify the warnings created by SCA tools
based on the software engineering metrics (i.e., source code
metrics) new datasets have been created and a set of ML
techniques have been utilized in the proposed approach. Fig. 1
indicates the overview of our approach. As shown in this
figure, our approach includes two stages. In the first stage,
we generate a number of datasets by analyzing a given source
code in two different ways; first, we compute the software
engineering metrics such as volume, complexity, and object-
oriented metrics. Second, we extract the SCA tools’ warnings
by utilizing a framework called Static Code Analysis Tool
Evaluator (SCATE) [2]. In the second stage, we utilize four of
the common ML techniques. Our proposed approach, however,
is not limited to only the 4 ML techniques discussed in this
paper.
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Fig. 1. The overview of the proposed approach.

A. Dataset Generation Stage
In order to apply the ML techniques on a given source code,

we have to follow a set of important steps:
1) Extract SCA tools’ warnings. To extract the class val-

ues (i.e., true-positive, false-positive, and false-negative),
we use SCATE [2], which is an open-source framework
for evaluating the quality of a SCA tool based on
the number of true-positives, false-positives, and false-
negatives it generates. This framework was extended
to evaluate more open-source and commercial SCA
tools either by running them locally or remotely in the
SWAMP, which is an open-resource cloud environment
that allows the developers to test and assess the security
of their source code through a wide range of open-source
and commercial SCA tools [8]. The main reason for

using this framework in our research, is to run the SCA
tools against Juliet test suite for the C++ language to
highlight source code snippet that causes the SCA tool
to:

a) Uncover the target security flaws in either the bad
function or in the bad class implementation (aka
true-positive tag),

b) Report that there is a flaw while in reality there is
not one (aka false-positive tag), or

c) Report that there is no flaw while in reality there
is one (aka false-negative tag).

These tags will represent class variable value in the
generated dataset. Furthermore, the highlighted source
code snippets will be used as inputs to the next step.

2) Compute software engineering metrics. To extract
the most important attributes, or features, from a given
source code, we integrated SCATE with the Understand
tool (https://scitools.com/). Understand is a static analy-
sis tool focused on source code comprehension, metrics,
and standards testing. We use the Understand tool by
executing it against the highlighted source code snippet
from the Juliet test suite to compute different software
engineering metrics at the file and function-level. The
software engineering metrics (see Section IV-D) are
then integrated back into the SCA tool report managed
by SCATE. Our proposed approach, however, is not
limited to only using the Understand tool, but is generic
in nature.

The output of this stage is a numerical dataset, which corre-
sponds to the contents of a data matrix, where every column of
the matrix represents a particular software engineering metric.
The last column, however, represents a class value (i.e, true-
positive (which is represented by 1), false-positive (which is
represented by 2), and false-negative (which is represented by
3)). Likewise, each row in the matrix corresponds to a given
function in the source code. The dataset is, therefore, a multi-
class dataset. However, in some special cases, when the SCA
tool generates only two type of tags, or classes, the generated
dataset will be a binary dataset.

B. Learning Stage

The main goal of this stage is to build a classifier (i.e.,
statistical model) by applying a set of ML techniques to the
datasets generated in Stage 1 (see Section II-A). The classifier
is then used to predict a classification value for unknown
source files. Another important goal of this stage is to learn
which software engineering metrics are correlated with true-
positive, false-positive, and false-negative warnings generated
by a SCA tool. This stage includes three phases:

1) Preprocessing. The generated dataset contains a set of
data points representing a function that will cause the
SCA tool to generate a true-positive, false-positive, or
false-negative message. The data points are represented
by a collection of software engineering metrics that
measure a function’s complexity, coupling, function’s



cohesion, and other metrics. Unfortunately, a SCA tool
can generate more than one warnings (i.e., false-positive,
false-negative, and true-positive) for the same function.
This can result in contradicting data points in the gen-
erated datasets. To address this problem, we remove
the contradicting data points as Hernández et al. [9]
suggest. The preprocessing phase also consists of (1)
normalizing the values of the features/attributes, and
(2) feature selection using Correlation-based Feature
Selection (CFS) technique [10].

2) Model Learning. This phase involves constructing a
classifier by using the training dataset and by examining
four of the ML techniques: SVM [11], KNN [12],
Random Forests [13], and RIPPER [14].

3) Prediction. The generated classifiers (from the model
Learning phase) are used to predict whether a function in
unknown source code will cause a SCA tool to generate
a true-positive, false-positive, or false-negative message
based on the value of software engineering metrics for
the corresponding function.

III. MACHINE LEARNING TECHNIQUES

In this section, we briefly discuss the ML techniques used
in our study.

A. Feature Selection
In our work, feature selection is important because it filters

redundant and the inefficient software engineering metrics.
We use the Correlation-based Feature Selection (CFS) tech-
nique [10] to identify the most significant software engineering
metrics. The CFS technique searches all the combinations
of the software engineering metrics to find the best com-
bination of the metrics [10]. The CFS technique evalu-
ates the correlation between the software engineering metrics
and the class. The selected software engineering metrics are
highly correlated with the class and less correlated amongst
themselves. To do that, the CFS technique uses the Pearson
coefficient [15], where a high value, or correlation, indicates
the best combination of software engineering metrics.

B. Synthetic Minority Over-sampling Technique (SMOTE)
SCA tools generate a large number of false-positive and

false-negative warnings, which results in generating datasets
that have a disproportionate ratio of true-positive, false-
positive, and false-negative warnings, or classes. This problem
is known as unbalanced data [16]. To solve this problem
and enhance the classifier’s ability, we used the SMOTE
technique [17] to balance both the training and testing dataset.
The SMOTE technique balances the binary dataset (in our
case: CWE252-Tool2 and CWE457-Tool2 see Section V-A)
by adjusting the class distribution of a dataset. We apply
the SMOTE on our multi-class datasets by following the
strategy, proposed by Fernandez et al. [18], in two steps.
First, we use the binarization schemes, such as one versus
one (OVO), to transform the multi-class dataset into a set of
binary datasets. Second, we apply the SMOTE approach on

each binary dataset to solve the imbalance problem. However,
using the oversampling technique, such as SMOTE, to balance
the datasets may cause overfitting problem. To overcome this
problem, we use the cross-validation technique [19].

C. Classification Techniques
We selected four kinds of classification techniques for our

study: instance-based learning, ensemble learning, rule-based
learning, and statistical learning. The techniques are used
as benchmarking algorithms to learn and predict the SCA
tools warning for a given source code based on its corre-
sponding software engineering metrics. We also selected ML
techniques that have successfully been used in the software
defect detection field [20] [21]. We used the Weka Machine
Learning workbench (https://www.cs.waikato.ac.nz/ml/weka/)
to train and test the selected ML techniques. Table I presents
the summary of the 4 ML techniques we used in the study.

TABLE I
DESCRIPTION OF MACHINE LEARNING TECHNIQUES USED IN STUDY

Machine Learn-
ing Technique

Description

K-Nearest
Neighbor (KNN)

It is an instance-based learning algorithm that gen-
eralizes the training data when the time comes to
predict a new data point rather than when the training
dataset is processed [12].

Support Vector
Machine (SVM)

It is developed from statistical learning to build a su-
pervised learning model from either binary datasets
or multi-class datasets. In this study, for the multi-
class datasets, we use OVO and binary SVM tech-
nique to predict the SCA tool warning [11].

Random Forests
(RF)

It is an ensemble learning method that constructs a
series of unpruned classification trees from bootstrap
functions and software engineering metrics of the
training dataset. The predicted SCA tool warning
is determined using the majority vote as a decision
rule [13].

Repeated
Incremental
Pruning to
Produce Error
Reduction
(RIPPER)

It is a rule induction algorithm that generates the
initial set of rules for the minority class using incre-
mentally reduced error. These rules must cover all
the functions of that class. Afterward, the algorithm
fills up to the next class and repeats the same steps
until all the classes have been covered [14].

IV. CASE STUDY FOR TESTING PURPOSES

We use the following case study to evaluate the effectiveness
of the proposed approach.

A. Selected SCA Tools
We used an open source and a commercial tool for evalu-

ating our work. Since most source code in the Juliet test suite
is written in C/C++ and Java, we selected tools that supported
at least one of these two languages. The selected SCA tools
are listed below 1:

1) Tool1. An open-source SCA tool that uses Lexical
analysis to find the flaws in C++ source code. Lexical
analysis matches the tokenized source code with a list
of checkers, and reports if it finds a suspicious pattern.

1For privacy reasons, we do not disclose the names of the SCA tools.



Ignoring the data flow of the source code causes the
Tool1 to not able to detect the vulnerabilities, which are
caused by the invalidated external input.

2) Tool2. A commercial SCA tool that analyzes both the
source code and binaries. To find the flaws in C++ and
Java source code, Tool2 builds an abstract model from
the source code and then the symbolic execution engine
explores the source code to test every execution path and
the variables to find the flaws.

We selected an open-source SCA tool because it is freely
available and can be used as a base case in order to compare it
with a commercial SCA tool. On the other hand, we selected
a commercial SCA tool because the commercial tools are
usually considered to be more trustworthy than the open-
source tools [22].

B. Test Cases (Source Code)
We run each SCA tool against the Juliet test suite for

C++ to generate the true-positive, false-positive, and false-
negative warnings. The test suite was created by the Na-
tional Security Agency’s (NSA) Center for Assured Software
(CAS) to evaluate the SCA tools ability. The NIST Juliet
suite contains 61,387 test cases covers 118 CWEs (Common
Weakness Enumeration), which aim to create a catalog of
software weaknesses and vulnerabilities [7].

C. Weaknesses
In this study, we focus on the following CWEs as they have

a bigger dataset for SCA tools’ warnings when compared to
the other weaknesses (see Section V-A) [23]:

1) CWE-252: Unchecked Return Value. This weakness
happens when the software does not check the return
value from the function. This weakness may lead to
prevent the software from detecting unexpected states
and conditions.

2) CWE-369: Divide by Zero. There are two reasons for
this weakness; first one is when an unexpected value is
provided to the product. The second reason is, if an error
occurs that is not properly detected.

3) CWE-415: Double Free. This weakness happens when
the product calls free() twice on the same memory
address. This weakness may lead to modification of
unexpected memory locations.

4) CWE-457: Use of Uninitialized Variable. This weak-
ness happens when the source code uses a variable that
has not been initialized. This weakness may lead to
unpredictable or unintended results.

5) CWE-426: Untrusted Search Path. This weakness
happens when the software looks out for critical re-
sources using an externally-supplied search path that can
point to resources that are not under the application’s
direct control.

6) CWE-762: Mismatched Memory Management Rou-
tines. This weakness happens when the application
attempts to return a memory resource to the system, but
it calls a release function.

7) CWE-476: NULL Pointer Dereference. This weakness
happens when the application dereferences a pointer that
it expects to be valid, but it is NULL. This weakness
may lead to crash or exit.

void bad() {
int ∗ptr = NULL;
/∗ FLAW: Dereferencing of the null pointer ’ ptr ’ ∗/
if (∗ptr == 17)
cout << (”ptr = 17”) << endl;
return 0;
}

Listing 1. CWE-476 Example [24].

Listing 1 shows that the analyzer has to identify the frag-
ment of code that uses a null pointer. In the if condition,
there is a logical error that leads to dereferencing of the
null pointer. The error may be introduced into the code
during code refactoring or through a misprint [24].

SCA tools may be able to correctly detect these CWEs,
and might also report a set of false-positive and false-negative
warnings, which reduces the usability of the SCA tools. Like-
wise, going through all the false-positive warnings manually,
in order to check if the SCA tool correctly detects a real
weakness in the source code, will consume a lot of developer
time. Moreover, the proposed approach is not restricted to a
specific number or type of CWEs.

D. Selected Software Engineering Metrics
As indicated earlier, we compute the source code metrics

using the Understand tool at the function-level. We do this
because we are interested in predicting the behavior of a SCA
tool based on how the given function was written not how the
whole file was written. For this reason, twenty-one software
engineering metrics, which are supported by the Understand
tool, are selected to generate the datasets. Table II shows
a brief description for these metrics. However, our proposed
approach is not restricted to the selected CWEs or SCA tools.
Furthermore, we believe that the proposed approach can work
for multiple SCA tools and for different weakness types.

V. RESULTS AND DISCUSSIONS

This section evaluates the effectiveness of the selected ML
techniques. This section also analyzes their performance using
the F-measure.

A. Experiment Setup
In all the experiments, we have adopted a 10-fold cross-

validation as a validation method to address the overfitting
problem and to obtain a realistic insight about the prediction of
the model. In 10-fold cross-validation, the dataset is randomly
divided into 10 folds—each one containing the 10% of the
data points of the dataset. This means that nine folds were
used for training and one fold was used for testing. This
procedure is repeated ten times and the final performance value
for each ML model is averaged [19]. Table III summarizes
the properties of the generated datasets that we used in our
experiments. This table shows the number of data points, the



TABLE II
DESCRIPTION OF SOFTWARE ENGINEERING METRICS [25].

Software Engi-
neering Metric

Description

CountInput It computes the FanIn for a given function.
CountOutput It computes the FanOut for a given function.
Knots It reflects the structural complexity of a given source

code by measuring the overlapping jumps
CountLineCode It reflects the total number of lines that contain

source code only in a given function
Count Line Code
Exe

It reflects the total number of lines containing exe-
cutable source code in a given function.

CountPath It reflects the total number of unique paths in a given
function.

Essential It reflects the structural complexity of a given source
code after replacing all the control-flow structure
with a single statement.

Cyclomatic It reflects the structural complexity of the given
source code based on the control-flow structures in
a given source .

Cyclomatic Strict It reflects the structural complexity of a given source
code based on the control-flow structures with the
logical conjunction and logical AND in the condi-
tional expression.

Cyclomatic Mod-
ified

It reflects the structural complexity of a given source
code based on the control-flow structures and by
counting each decision in a multi-decision structure.

MaxNesting It reflects the maximum nesting level of the control-
flows such as for, while, and if.

Min Knots It reflects the minimum knots after structured pro-
gramming constructs have been removed.

Max Knots It reflects the maximum knots after structured pro-
gramming constructs have been removed.

Comment to
Code Ratio

It computes the ratio of the number of comment lines
to the number of code lines.

Blank Lines of
Code (+ Inactive)

It reflects the number of blank lines, including in
inactive regions.

Blank Lines of
Code (BLOC)

It reflects the number of blank lines, excluding in
inactive regions.

Declarative Lines
of Code

It reflects the number of lines containing declarative
source code. Likewise, this metric counts a line that
is declarative and executable.

Lines with Com-
ments (CLOC)

It reflects the number of lines containing a comment.
It can overlap with other code counting metrics.

Inactive Lines It reflects the number of lines that are inactive from
the view of the preprocessor.

Preprocessor
Lines

It reflects the number of preprocessor lines.

CountDeclFunction It reflects the number of functions in the file.

number of features, and the number of classes for each dataset.
A majority of the datasets used in this study have either two
classes (i.e., true-positive and false-positive) or three classes
(i.e., true-positive, false-positive, and false-negative).

B. Performance Evaluation Metric
We have carefully selected a suitable performance measure

that examines the strength and the predictive ability of the
developed models. SCA tools generate a large number of
false-positive and false-negative warnings and the generated
datasets have a disproportionate ratio of the true-positive,
false-positive, and false-negative classes. This problem is
known as unbalanced data. In such a case, when we create a
classification model, we will get a high accuracy metric value
(such as 90%). But, this accuracy value is only reflecting the

TABLE III
SUMMARY DESCRIPTION OF THE DATA SETS.

Data set #DataPoints #Features #Classes
CWE369-Tool1 1836 22 3
CWE476-Tool1 805 22 3
CWE762-Tool1 7277 22 3
CWE252-Tool2 1263 22 2
CWE369-Tool2 11186 22 3
CWE415-Tool2 10388 22 3
CWE426-Tool2 1064 22 3
CWE457-Tool2 9165 22 2

underlying class distribution. This problem is called accuracy
paradox. For this reason, it is better to avoid using accuracy
as the metric to assess the performance of the predictive
models [26]. The precision and recall are commonly used as a
performance measure in an unbalanced dataset problem [27].
However, there is a trade-off between the precision and recall.
Thus it is, therefore, better to use the F-measure, which selects
the best model based on the balance between the precision and
recall, as a performance measure for our comparative needs.

C. CFS Results Analysis
For our research, we are interested in building a classi-

fier model that can predict the SCA tool warnings for a
given function, but we also interested in finding which of
the software engineering metrics are highly correlated with
the true-positive, false-positive, and false-negative warnings.
Table IV shows the relevant software engineering metrics that
we identified in each dataset after applying CFS to it. The
most frequent selected software engineering metrics among
the eight datasets were: CountInput, Knots, CountOutput,
CountPath, Cyclomatic, and Essential.

TABLE IV
RELEVANT SOFTWARE ENGINEERING METRICS.

Dataset Software Engineering Metrics
CWE369-Tool1 CountInput, Knots, CountOutput, CountPath, Cyclo-

matic
CWE476-Tool1 CountInput, CountLineCode, CountDeclFunction
CWE762-Tool1 CountOutput, CountLineCode, CountPath, CountDe-

clFunction, MaxNesting, Cyclomatic
CWE252-Tool2 CountInput, Knots, Cyclomatic, CyclomaticStrict,

Essential
CWE369-Tool2 CountInput, Knots, CountOutput, CountDeclFunc-

tion, Essential
CWE415-Tool2 CountInput, Knots, CountOutput, Essential, Count-

Path, CountDeclFunction
CWE426-Tool2 CountInput, Knots, Cyclomatic, Essential, Count-

Path, CountDeclFunction
CWE457-Tool2 CountInput, Knots, Cyclomatic, MaxNesting

D. Evaluation Results
Table V presents the F-measures for the eight datasets and

four classification techniques after using CFS to select the
most important software engineering metrics. As shown in this
table, we can observe that the Random Forests technique is
better than the other ML techniques at predicting the functions



that force the SCA tools to emit either the true-positive,
false-positive, or false-negative warnings. For example, for
the CWE369-Tool1 dataset, the Random Forests can correctly
predict 94% of the given functions which warnings the SCA
tool will emit, while the RIPPER can correctly predict 92%
of these functions. Likewise, KNN and SVM predict correctly
87% and 70% what warnings the given function will force the
SCA tool to emit.

TABLE V
EXPERIMENTAL RESULTS BASED ON F-MEASURE METRIC.

Dataset SVM KNN Random
Forests

RIPPER

CWE369-Tool1 70 87 94 92
CWE476-Tool1 58 76 83 81
CWE762-Tool1 76 81 87 83
CWE252-Tool2 84 85 87 86
CWE369-Tool2 72 86 91 87
CWE415-Tool2 83 87 94 92
CWE426-Tool2 67 83 89 87
CWE457-Tool2 93 94 98 95

The results show that predicted models generated using
the Random Forests and RIPPER techniques have F-measure
greater than 80% corresponding to most of the datasets. On the
other hand, the predicted models that generated using SVM
technique have a low value of F-measure among the multi-
class datasets. However, SVM technique has a high F-measure
(i.e., larger than 80%) among the binary datasets.

The F-measures of the Random Forests models were be-
tween 83% - 98% in the eight datasets. The results show that
the Random Forests is better than the other ML techniques.
It also demonstrates that the Random Forests is the most
effective in SCA tool warnings prediction. One reason that
the Random Forests technique has better performance is that
the Random Forests technique works especially well on large
datasets [28] such as CWE415-Tool2. Another reason is that
the CFS selects the optimal subset of software engineering
metrics and passes them to Random Forests. This means Ran-
dom Forests uses the optimal subset of software engineering
metrics—giving it a better F-measure score in classifying the
SCA tool warnings.

The SVM technique was not able to do well in one dataset
of the Tool1 (CWE476-Tool1), where the F-measure value is
only 58%. This is because the SVM technique was not able to
make an accurate prediction of the SCA tool warnings on the
basis of only the volume (e.g., CountDeclFunction and Count-
LineCode) and object-oriented metrics (e.g., CountInput).

E. RIPPER Results Analysis
As shown in the experimental results, the RIPPER comes

in second place after the Random Forests in achieving high
predicting performance. In this section, we display an example
of the RIPPER rules learned from the CWE426-Tool2 dataset,
and how we try to interpret these rules. Fig. 2 shows sample
rules for the Tool2, which are as follows:

1) If the given source code (function) has a FanIn value
larger than or equal 2 (which means that the total number
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Fig. 2. CWE426-Tool2 Datase Sample of Rules.

of parameters and global variables that are used in the
function is greater than or equal to 2), and also the given
function has at least 2 unique paths, then Tool2 can find
the existing security flaw in the given function.

2) If the given source code (function) has a FanIn value
larger than or equal 2 (which means that the total number
of parameters and global variables that are used in the
function is greater than or equal to 2), and also the given
function has a complexity larger than or equal to 1 and
less than or equal to 2 after all the control-flow structures
are replaced with a single statement, then Tool2 can find
the existing security flaw in the given function.

3) If the given source code (function) has a FanIn value
larger than or equal 2 (which means that the total number
of parameters and global variables that are used in the
function is greater than or equal to 2), and also the given
function complexity (Knots) equals zero, then Tool2 can
find the existing security flaw in the given function.

4) If the number of the function in the given source code
equals one and the given source code has a complexity
at least 1 after all the control-flow structures are replaced
with a single statement, then Tool2 cannot find the
existing security flaw in the given function.

5) If the number of the overlapping jumps (i.e., for the
corresponding source code, Knots equals to the number
of crossing of the lines that determine where every
jump in the flow of control occurs) in the given source
code(function) larger than zero, then Tool2 cannot find
the existing security flaw in the given function.

Lastly, if there exists a data point, or source code, that does
not meet the conditions of the previous rules, then the predic-
tive model assigns the majority class in the dataset, which is
a false-positive warning. In other words, the predictive model
assumes that the Tool2 will report that there is a security flaw
in the given source code, while in reality there is no one. From
the previous rules, we can conclude that Tool2 can find the
defect, or the flaw, in the given function that has a high degree
of FanIn. On the other hand, the ability of the Tool2 in finding
the defects in the given function will be reduced when the
source code has a high degree of complexity. In this situation,
we can infer that the value of the software engineering metrics
for the given function affects on the ability of the SCA tool
in finding the potential defects in the source code.

Fig. 3 shows sample rules for the Tool1, which are as
follows:

1) If the given source code (function) has a FanIn value
lower than or equal 2 (which means that the total number
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Fig. 3. CWE369-Tool1 Dataset Sample of Rules.

of parameters and global variables that are used in
function is less than or equal to 2), on the other hand, if
the given function has a FanOut value less than or equal
to 1. Likewise, if the given function has at most 3 unique
paths then the Tool1 can find the existing security flaw
in the given function.

2) If the number of crossing of the lines that determine
where every jump in the flow of control occurs in the
given function equal zero. Also, if the complexity of the
given function larger than or equal 5, then Tool1 can find
the existing security flaw in the given function.

3) If the given function has a FanOut value larger than or
equal 2, and the Knots metric value ranges from 1 to 6,
then Tool1 will generate a fake warning.

If there exists a data point, or function, that does not meet the
conditions of the previous rules the predictive model assigns
the majority class in the dataset, which is a false-negative
warning. In other words, the predictive model assumes that
the Tool1 will not report that there is a security flaw in the
given source code when in reality there is one. From the
previous rules, we can conclude that Tool1 can find the defect
in the given function if it has a low degree of coupling (FanIn
and FanOut). On the other hand, Tool1 will generate a false
warning when the given function has a high degree of FanOut.
In this situation, we can infer that the value of the software
engineering metrics for the given function affects the ability
of the SCA tool in finding the potential defects in the source
code. For example, Tool2 cannot highlight the potential defects
when the given source code has a high degree of Knots.

Due to a large number of decision trees that the Random
Forests technique builds for each dataset (i.e., for the first
dataset in Table III the Random Forests technique creates more
than 50 decision trees.), we cannot list and describe the results
for each developed model by the Random Forests technique.

F. Threats to Validity
For this work, the threats to validity are related to the soft-

ware engineering metrics computed by Understand. In most of
the software engineering tools, the metrics are computed either
at a file or at a function level. We have computed metrics at the
function level, which leads results in generating contradictory
data points in the datasets. Another threat to validity is the
generalization of the results of the proposed approach. We
have analyzed 7,508 test cases from the Juliet test suite for
C/C++, which may not truly represent real-world source code.
We will work to address these threats in our future work (see
Section VII).

VI. RELATED WORK

Barstad et al. [29] investigated if they can predict the quality
of the source code based on the static metrics’ value (e.g.,
McCabe Cyclomatic Complexity and Halsted metrics) using
ML techniques (e.g., Naive Bayes (NB), KNN, and decision
tree). In their work, the source code was classified as ”well
written” or ”badly written”. Based on their results, the NB out-
performs the other classifiers. Our work differs their work in
three main ways. First, our work investigates the relationship
between the SCA tools’ warnings and the software engineering
metrics. Second, we evaluate the proposed approach against
seven CWEs using two SCA tools, while Barstad et al. used
the SCA tools to compute the metrics value only. Lastly, they
apply ML techniques to predict the source code quality; while
in this work we predict how the SCA tool will behave on
the given source code. Yuksel et al. [5] proposed an approach
to reduce the number of the false-positive warnings that are
emitted by SCA tools by applying 34 ML techniques over
datasets containing 10 different artifact characteristics. They
conclude that the ML techniques can be a useful approach to
classify the SCA tools’ warnings because they achieved 87%
accuracy. Our work is similar to their work in that we want
to reduce the number of false-positive warnings. The main
difference between their work and our work, however, is that
we use the source code characteristic to predict the SCA tool
behavior (i.e., the SCA tool will generate true-positive, false-
positive, or false-negative warnings) on the source code. Koc et
al. [30] trained both a Bayesian classifier and a long short-term
memories (LSTM) neural network on bytecode instructions to
predicate the false positive warnings. In our work, we train
our models on the source code, not on bytecode instructions,
which are simplified and easier to analyze with ML techniques
as compared to the source code. On the other hand, we evaluate
which metrics are highly correlated with each type of warning
generated by the SCA tool, while in their work the authors
evaluated which source code structures force the SCA tools to
generate false positive warnings. Reynolds et al. [31] identified
and documented 14 of different kinds of false positive patterns,
by running three of SCA tools against C/C++ Juliet test suite.
Then the authors reduced the source code manually in order
to remove the unrelated instructions. In our work, we run
a number of ML techniques and infer which of software
engineering metrics are related to each type of SCA tools’
warnings. Lastly, Tripp et al. [6] tackled the problem of false-
positive warnings by combining the SCA tool user interaction
with ML techniques. For example, users classify some of SCA
tool warnings into either actionable or spurious. Based on the
user input the ML techniques predict the remaining SCA tool
warnings automatically. In our work, we do not consider user
interaction to classify the SCA tool warnings. We will consider
the user interactions in future work.

VII. CONCLUDING REMARKS

In this paper, we proposed a learning approach to explore
two main questions. First, which software engineering metrics
cause the SCA tool to report true-positive, false-positive,



and false-negative warnings? Second, can we use the ML
techniques to predict the type of the warning the SCA tool
will emit for the given source code based on the software
engineering metrics? To answer both questions, we generated
various datasets after using SCATE to highlight source code
that causes the SCA tools to emit either true-positive, false-
positive or false-negative warnings. We then integrated the
results generated by the Understand tool for the corresponding
source code. Lastly, a classification model was built from
the generated datasets by applying feature selection technique
and a variety of ML techniques (e.g., SVM, KNN, Random
Forests, and RIPPER). Based on our research effort, we
learned the following:

1) The overall results show that the performance of the
Random Forests technique is the best on average across
the other examined ML techniques. Its average F-
measure is 90.4%, while the performance of the RIPPER
technique is the second best one. Its average F-measure
is 87.7%.

2) The CountInput, Knots, CountOutput, CountPath, Cy-
clomatic, and Essential were considered as the most
important software engineering metrics over the eight
datasets to predict the behavior of SCA tools against a
given source code.

3) False-positive and false-negative warnings can be re-
duced if the developers rewrite their source code in a
way that reduces source code complexity, coupling, and
usage of global variables.

4) The ML techniques that achieve high performance can
be applied against new and different test cases that have
the same nature and structure.

For future research efforts, we will apply our approach
to source code from various open-source and commercial
software projects. Likewise, we are planning to compute the
software engineering metrics at the line level in order to
reduce the number of contradictory data points in the generated
datasets. Lastly, we plan to extend our approach by covering
more SCA tools and using other advanced ML techniques.
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