
ABSTRACT1 

This paper intends to present the application of laminated grid structures as a new 

class of stiffeners for reinforcing body and chassis of transportation vehicles. A 

laminated grid plate is constituted from several grid plies with different orientations. 

Therefore, the grid layers with various fibers, patterns, and orientations can be used, 

resulting in laminates with enhanced stiffness and coupling effects. In this study, a 

hypothetical trunk floor is assumed as a sandwich panel with two skins and a composite 

laminated grid core, which is clamped along all edges. Three different grid structures 

are considered as the core to strengthen the trunk floor subjected to arbitrary lateral 

loads. Moreover, the first natural frequency of the plates are achieved. The Ritz method 

is employed to obtain the maximum deflection and free vibration frequencies of the 

trunk’s floor panel. The results indicate that employing the laminated grids considerably 

enhances the response of the panel in comparison with conventional grids. 

INTRODUCTION 

Due to low weight and high strength and stiffness, the grid or lattice stiffeners are 

widely employed in various engineering structures including marine, vehicles, and 

buildings. Increasing interest in composite materials and because of their low-cost 

automated manufacturing procedure, the composite materials are known as a good 

option for producing the grid structures.  

Up to now, most studies are focused on modeling, prediction of mechanical 

behavior, and fabrication of the grid structures. Gurdal et al. [1] evaluated the structural 

efficiency of geodesically stiffened shells with various stiffener arrangements under 

compression, torsion and combined loads. Similarly, in an optimization process, 

Oliveira et al. [2] presented a practical method of finding a minimum weight of grid 

plates subjected to a lateral load. Kidane et al. [3] used the smeared method to analysis 

buckling of the grid stiffened shell, and validated the results with experimental results. 

Ambur et al. [4] developed an optimal design strategy for grid structures with variable 
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curvatures for global and local buckling analysis. Moreover, Chen et al. [5] presented 

spline compound stripe method to analysis the free vibration of a stiffened plate. Their 

results were in good agreement with the experimental and numerical results. Ehsani and 

Rezaeepazhand [6] presented a new class of grid structures which are known as 

“laminated grid structures”. They investigated lamination effects on stiffness and 

mechanical behavior of grid structures. Ehsani et al. [7, 8] studied the influence of the 

stacking sequence and pattern composition on buckling load of laminated composite 

grid plates and also conducted studies on the buckling load and natural vibration of 

laminated orthogrid plates. Their results showed that, there are proper stacking 

sequences, which considerably improves the mechanical behaviors of the grid 

structures.  

Despite the many studies on different types of grid structures there have been rare 

investigations on the applications of laminated grid structures. Similar to a laminated 

composite, laminated grid is composed of different grid layers with different 

orientations, which can improve the stiffness and coupling effects of conventional grids 

[8]. Tailored stiffness of a structure is achieved by employing full anisotropic properties 

of a laminated grid compare to orthotropic properties with at most in plane anisotropic 

of a corresponding conventional grid [6]. In current study, the laminated grids are 

consisting of orthogrid layers in which the principal grid directions are not necessarily 

parallel to the plate axes. As an example, Figure 1 illustrates two types of orthogrid 

structures. Figure 1(a) shows a laminated orthogrid plate, which is, composed of three 

orthogrid layers, with (90º/0º/90º) stacking sequence. Figure 1(b) illustrates a 

conventional orthogrid plate with identical thickness to the laminated orthogrid.   

(a) (b) 

Figure 1. A Laminated orthogrid with (0º/90º/0º) configuration (a) a conventional Orthogrid plate 

with equal total thickness (b) 

In automotive industry, many parts are susceptible to bending, deformation and 

vibration such as floor pan, trunk floor, doors and truck’s container floor. Grid structures 

are one of the optimal and effective stiffeners, which are used to reinforce load-bearing 

components. Automotive companies always try to increase load bearing along with 

reduce vehicles’ weight. Consequently, using composite materials are rising in car 

industry to decrease the chassis weight. In the present work, the laminated grid 

structures are presented as a feasible alternative for conventional grid elements, which 

can tolerate more loads with identical weight. Here, a hypothetical trunk floor is 

assumed as a sandwich panel with two skins and a composite grid core, which is 



clamped along all edges. Figure 2 shows a schematic view of the hypothetical trunk 

floor with conventional grid stiffener.   

Figure 2. Schematic view of the hypothetical trunk floor with conventional orthogrid stiffener core 

To investigate the advantages of laminated grid structures over conventional grids 

in automotive applications three different symmetric angle ply grid structures are 

considered. Using laminated plate theory along with Ritz method, the deflection and 

first natural frequency of the grid core are calculated.  

PROBLEM DESCRIPTION 

Laminated Grid Configuration 

A laminated grid composed of several grid layers which the pattern, thickness and 

orientation of each layer can be varied [8]. In the current work, the laminated grids are 

composed of several composite orthogrid layers. Three cases of grid structures have 

been considered in this study. The several geometry parameters namely, a, d1, d2, t1, t2, 

are identical for conventional orthogrid and the orthogrid layers of the laminated grid 

plates (see Figure 3) and the thickness of the layers are defined to have identical 

thickness in all cases. The plates have square shape with side a, and symmetrical 

arrangement respect to mid-plane. The structures are considered to have clamped 

boundary condition along all edges. 

Figure 3. Geometries of conventional orthogrid 



 The first case is considered to be a sub-laminate grid structure with (±θº)5s configuration 

and twenty layers (see TABLE 1). The second case is a sub-laminate grid structure with 

(±θº)s configuration and four layers. The third one is a single layer orthogrid or 

conventional orthogrid. It is assumed that the grid layers are without any initial 

imperfection or defect and are perfectly bonded to each other. TABLE 1 presents the 

characteristics of the defined cases. 

In a laminated grid, each grid layer may have any arbitrary orientation (θ). Figure 4 

illustrates a special orthogrid and a general orthogrid plate, which is rotated θ degree 

with respect to X direction. 

Figure 4. A specially orthogrid (θ=0) (left). A general orthogrid that is rotated θ degree with respect to 

x direction (right). [8] 

The grid layers are made of carbon/epoxy material with the following properties: E1=48 

GPa, E2=15.3 GPa, G12=5.1 GPa, ν12=0.315, and density=2112 kg/m3 [9]; where E1, E2, 

and G12 are the longitudinal, transvers elastic and shear modules of the applied material, 

respectively. 

TABLE 1. THE CHARACTERISTICS OF THE CONSIDERED CASES 

Case # 
Type of grid 

structure 
Lay-up name 

Stacking 

sequence 

Number of 

layers (N) 

Total 

thickness 

Layers’ 

thickness (h) 

1 Laminated Orthogrid Sub-laminate (±θº)5s 20 H H/20 

2 Laminated Orthogrid Sub-laminate (±θº)s 4 H H/4 

3 
Conventional 

Orthogrid 
Orthogrid  (θº) 1 H H 

CONSTITUTIVE EQUATIONS 

Similar to laminated composites grid structures have directional properties. Therefore, 

to obtain mechanical behaviors of a grid structure the stiffness matrices of grid ply 

should be calculated. The extensional, coupling and bending stiffness matrices cab be 

achieved according to Equation 1 [10]. 



𝐴𝑖𝑗 , 𝐵𝑖𝑗 , 𝐷𝑖𝑗  =  𝑄 𝑖𝑗  𝑘
𝑧𝑘 − 𝑧𝑘−1 ,

1

2
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1

3
𝑧3
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𝑁
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𝑖, 𝑗 = 1, 2, 6  (1) 

Where, k is the layer number in the laminate, zk is distance of k layer from the middle 

surface, and N is the number of the grid layers. In this study, it is assumed the grid 

structure are symmetric; therefore, the coupling stiffness matrix [B] will be equal to 

zero.  

To achieve the stiffness matrices and consequently the deformation of grid structures 

the transformed reduced stiffness matrices, of each grid layer is applied according to the 

method which is presented by Nemeth [11]. Equation 2 presents the reduced stiffness 

matrix, [Q], of a conventional orthogrid layer. 
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Where d1, d2, t1, t2 and h are geometric parameters of the grid layer as illustrated in 

Figure 3. E1 and G12 are the longitudinal elastic and shear modulus of unidirectional 

composite materials of each layer. The transformed reduced stiffness matrix [Q̅] of the 

orthogrid layer is achieved by substituting [Q] from Equation 2 into Equation 3.  

       T
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1 (3) 

where, [T] is the transformation matrix [10] which is only depended on each grid layer 

orientation, θ. 

To examine the advantages of using laminated grid plates over conventional grid plates, 

the bending and vibrational behavior of the defined cases are compared. The Ritz 

method along with classical laminated plate theory are employed to obtain the 

maximum deflection and first natural frequency of the plates.  

The total potential energy of the symmetric angle ply laminated grid plate subjected to 

lateral load can be expressed by the following equation [13]: 

U (4) 

Where, U is the strain energy of bending and can be obtained from Equation 5, and Ω 

is the potential of external forces. 
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For a lateral load p (per unit area) the potential of external force is given by 

 dxdypw

a a

 
0 0

(6) 

The following trigonometric function satisfies the geometric boundary conditions, 

w(x,y) =  WmnXm x Yn y 

N

n=1

M

m=1

(7) 

Where the Wmn are arbitrary unknown coefficients. The Xm(x), and Yn(y) are algebraic 

functions that satisfy the geometrical boundary conditions and for clamped boundary 

condition can be defined as follows [12]: 
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a
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Substituting w(x,y) from Equation 7 into Equations (5, 6) and minimizing total energy 

from Equation 4 with respect to the unknown Wmn coefficients, M×N linear and 

simultaneous equations will be produced: 

 
0



mnW

U
(9) 

Wmn are calculated by solving these simultaneous equations.  

The energy function of the vibration of a plate can be expressed as [13]: 

maxU T   (10) 

Where Tmax is the maximum kinetic energy of the plate, is given by Liew [13]. A 

minimization process of Equation 10 with respect to Wmn constants, yields to an 

eigenvalue equation in the following form: 

 2
0K M d  (11) 

Where M is consistent mass matrix and ω is the natural frequency.  

In this section, the analytical solution for calculating maximum deflection and natural 

frequencies of the clamped grid plates are expressed. In the next section, the extracted 

results are presented for defined cases. 



RESULTS AND DISCUSSIONS 

Figure 5 depicts the non-dimensional maximum deflection, W̅max, for orthogrid and two 

sub-laminate grid cases subjected to a uniform lateral load.  

Figure 5. Non-dimensional maximum deflection of defined plates subjected to a uniform lateral load 

The maximum non-dimensional deflection is defined as W̅max= (WmaxE1H) (pa4)⁄ ,

where H is the plates’ thickness, p is the applied load and a, is the side of the plate. The 

grid plates have equal weight and dimensions. To evaluate the effects of layer 

orientations, θ, on maximum deflection, the layer orientation has been varied from 0º to 

90º. As the figure illustrates, at θ=45º, all grid structures reach to their minimum 

deflection. The maximum deflection of sub-laminate grid plate with (±θ)s and (±θ)5s 

configurations are about 11% and 25% less than conventional orthogrid plate at θ=45º, 

respectively. As can be seen, utilizing a laminated grid, (±θ)5s, yields to significant 

reduction in maximum deflection in comparison to the orthogrid with identical 

geometry and weight. 

Figure 6 shows the non-dimensional first natural frequencies for two sub-laminated 

grids ((±θ)s and (±θ)5s) and conventional orthogrid plates for different layer orientations, 

θ. Where, ω̅= ( ωa2 π2⁄ ) √ρ D11⁄ , and ρ is the mass per unit area and D11 is the element of 

bending stiffness matrix of grid plates at θ=0º. 

Figure 6. Non-dimensional first natural frequency for different grid orientations, θ, sub-laminated 

grids  ((±θ)s and (±θ)5s) and orthogrid plates 
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According to Figure 6, similar to lateral deformation (see Figure 5), at θ=45º the sub-

laminate grids and orthogrid plate achieve their maximum natural frequencies. At θ=45º 

the frequency of the first case is 6.5% more than general orthogrid plate with identical 

orientation and is about 31% higher than corresponding specially orthogrid plate (θ=0). 

CONCLUSION 

In this study, the lateral deformation and first natural frequency of laminated and 

conventional orthogrid plates with similar weight and thickness are investigated. The 

results determine the considerable mechanical behavior advantages of laminated grids 

over conventional grids. Moreover, the results indicated that the grid orientation is the 

effective parameter in mechanical responses of the grid structures. In all cases at θ=45º, 

lateral deformation and first natural frequency obtain their best values. Furthermore, the 

mechanical responses are related to number of grid layers of laminated grids. Increasing 

the number of grid layers enhances the mechanical behaviors of the laminated grids. As 

result, employing a thoughtful selection of laminated grid structures can enhance the 

mechanical behavior of different automotive parts along with reducing the weight. 
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