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Using a monotone single-index model to stabilize
the propensity score in missing data problems
and causal inference
Jing Qin1, Tao Yu2, Pengfei Li3, Hao Liu4 and Baojiang Chen 5∗

The augmented inverse weighting method is one of the most popular methods for estimating the mean of the
response in causal inference and missing data problems. An important component of this method is the propensity
score. Popular parametric models for the propensity score include the logistic, probit, and complementary log-
log models. A common feature of these models is that the propensity score is a monotonic function of a linear
combination of the explanatory variables. To avoid the need to choose a model, we model the propensity score via
a semiparametric single-index model, in which the score is an unknown monotonic nondecreasing function of the
given single index. Under this new model, the augmented inverse weighting estimator of the mean of the response
is asymptotically linear, semiparametrically efficient, and more robust than existing estimators. Moreover, we have
made a surprising observation. The inverse probability weighting and augmented inverse weighting estimators
based on a correctly specified parametric model may have worse performance than their counterparts based on
a nonparametric model. A heuristic explanation of this phenomenon is provided. A real-data example is used to
illustrate the proposed methods. Copyright c⃝ 2017 John Wiley & Sons, Ltd.

Keywords: Causal inference; Empirical process; Inverse weighting; Missing data; Pool adjacent violation
algorithm; Single-index model.

1. Introduction

Causal inference and missing data problems have been extensively researched in recent decades in medical, social
and economical sciences (e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9]). Consider a medical experiment with n subjects where each
subject is assigned to either the treatment or the control group. Denote by Yi (Ti) the outcome variable for subject i,
if it was assigned to the treatment (control) group. At the end of the study, we observe Yi or Ti but not both. Let Xi

and ∆i be the corresponding baseline covariates and the treatment indicator respectively; ∆i = 1 if the ith patient is
assigned to the treatment group and therefore Yi is observed, and ∆i = 0 otherwise. In summary, the data are denoted
(Yi, Ti,∆i, Xi), i = 1, . . . , n.

We wish to estimate µ = E(Yi) and ν = E(Ti). In the aforementioned medical study, the meanings of these quantities
are clear. For example, µ is the population average of the response for the patients in the treatment group. This estimation
problem has applications in social science, medical research, economic studies, and other fields (e.g., [1], [2]). For
presentational convenience, we will focus on estimation methods for µ; those for ν can be similarly established. Therefore,
the observed data are (∆iYi,∆i, Xi), i = 1, . . . , n.

We now briefly review existing methods for the estimation of µ. An important quantity is the propensity score, defined
to be π(x) = P (∆ = 1|X = x), which is the probability that a subject will be assigned to the treatment group, given the
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observed covariate X = x. The importance of π(x) in the estimation of µ has been discussed by Rosenbaum and Rubin
[11]. In this article, we assume 0 < π(x) < 1 to avoid potential technical difficulties.

One popular estimator of µ is the inverse probability weighting estimator ([12]), defined to be

µ̂HT (π(·)) =
1

n

n∑
i=1

∆iYi
π(Xi)

. (1)

However, this estimator has a counterintuitive feature ([13]): if π(x) takes the parametric form π(x;β), with π(x;β) being a
known function up to an unknown parameter β, then µ̂HT (π(·; β̂)) could be a more efficient estimator than µ̂HT (π(·;β0)).
Here β̂ and β0 denote the maximum likelihood estimator and the true value of β, respectively.

The augmented inverse weighting estimator (AIWE; [14]) improves the performance of µ̂HT by augmenting a working
model ψ(·) of the response on the covariates; it does not have the above counterintuitive feature. The AIWE is given by

µ̂(π(·), ψ(·)) = 1

n

n∑
i=1

{
∆iYi
π(Xi)

− ∆i − π(Xi)

π(Xi)
ψ(Xi)

}
. (2)

A common choice of the working model is ψ(x) = E(Y |X = x). Clearly, the performance of µ̂(π(·), ψ(·)) relies heavily
on the choice of π(·) and ψ(·). Scharfstein, Rotnitzky, and Robins [15] noted that this estimator is doubly robust in that it
is consistent if one of the models for estimating π and ψ, but not both, is misspecified. Wooldridge [16] and Uysalc[17]
applied this method in treatment effects models. Sloczynski and Wooldridge [18] provided a unified framework for various
doubly robust estimators of the average treatment effect under unconfoundedness. However, Kang and Schafer [19]
demonstrated via numerical studies that this estimator can be severely biased if both models are misspecified. Therefore,
it is important to specify a flexible but correct model for at least one of π and ψ. Given the importance of the propensity
score, we propose a novel and flexible semiparametric model for π(x) and study the asymptotic properties of the AIWE
of µ.

Note that π(·) can be viewed as a regression model for the binary response data (∆i, Xi), i = 1, . . . , n, where the ∆i’s
are the response and the Xi’s are the covariates. A popular model for π(·) is the well-known logistic model:

log
π(x)

1− π(x)
= xTβ.

The probit and complementary log-log models are also widely used for binary response data. The common feature of these
parametric models is that π(x) is latently assumed to be a monotonic function of a linear combination of the explanatory
variables, i.e., xTβ. To avoid the need to choose a model, we model π(x) as a monotonic function of hT (x)β, with h(x)
being a user-specified function. In particular, we propose the following semiparametric single-index model:

π(x) = θ(hT (x)β), (3)

where both θ(·) and β are unknown, and θ(·) is a monotonic nondecreasing function. Since the form of θ(·) is not specified,
our model is more flexible than parametric models.

Under the setup (3), we consider the estimation of µ within the framework of the AIWE. We first propose to estimate
θ(·) and β by the maximum likelihood method. Compared with the nonparametric methods for estimating π(x) (e.g., [20],
[5]), our methods do not need tuning parameters. In our numerical studies, we observe that our methods are more accurate
in estimating the AIWEs than the nonparametric methods if the linear predictors in the propensity score is correctly
specified. Another limitation of the nonparametric methods is the curse of dimensionality: the estimates for π(x) may not
perform well when the dimension of x is relatively large; in contrast, our proposed methods do not suffer this problem.
Compared with the parametric methods (e.g., the logistic regression method) for estimating π(x), our methods are more
robust. We then consider the estimation of ψ in broad function classes via the weighted least square principle. We show
theoretically that with our proposed π estimator and the general ψ estimator based on broad function classes, the AIWE
is asymptotically linear and can achieve semiparametric efficiency. We observe that because of the non-smoothness of
our estimators for π(x), the existing asymptotic theory in the community is not directly applicable to our estimators; the
theoretical developments for the linear expansion and the efficiency are nontrivial. Furthermore, we present extensive
numerical studies to demonstrate that our estimator has better accuracy than existing estimators.

The organization of the paper is as follows. In Section 2, we present the methods for estimating π(·) under the setup
(3) with ψ based on broad function classes. In Section 3, we investigate the asymptotic properties of the AIWE based on
the proposed semiparametric model. Sections 4 and 5 present the simulation results and a real application, respectively.
Section 6 provides concluding remarks. For convenience of presentation, the technical details are given in the Appendix.

2 www.sim.org Copyright c⃝ 2017 John Wiley & Sons, Ltd. Statist. Med. 2017, 00 1–16
Prepared using simauth.cls



Qin et al.

Statistics
in Medicine

2. Estimation Methods for π(·) and ψ(·)

In this section, we discuss estimation methods for π(·) and ψ(·). We first consider the estimation of π(·) by the maximum
likelihood method. We then discuss the estimation of ψ in broad function classes with the weighted least square principle.

2.1. Estimation Methods for π

Recall that the estimation of π(·) can be established by appropriately modeling the binary response data (∆i, Xi), i =
1, . . . , n. Specifically, we consider the maximum likelihood method. The log-likelihood based on (∆i, Xi), i = 1, . . . , n is
given by

ℓ(π(·)) =
n∑
i=1

[
∆i log{π(Xi)}+ (1−∆i) log{1− π(Xi)}

]
, (4)

and the maximum likelihood estimator of π(·) is defined to be

π̂ = argmaxπ∈Fℓ(π(·)), (5)

where F is a prespecified function class for π. Clearly, F plays a central role in determining the asymptotic performance
of π̂(·).

Under the semiparametric single-index model (3) for π(·), the log-likelihood function becomes

ℓ(θ, β) =

n∑
i=1

[
∆i log{θ(hT (Xi)β)}+ (1−∆i) log{1− θ(hT (Xi)β)}

]
. (6)

Without loss of generality, we assume hereafter that θ(·) is monotonically increasing. Furthermore, we assume β1 = 1 so
that the model is identifiable, although in principle other assumptions can be made for identifiability. Then the maximum
likelihood estimators for θ(·) and β are defined as

(θ̂, β̂) = argmaxθ∈Θ,β∈Λℓ(θ, β), (7)

where Θ = {θ(·) : 0 ≤ θ(x) ≤ 1 is monotone in x ∈ R} and Λ = {1} × Λ−1 are the parameter spaces for θ(·) and β,
respectively.

A numerical algorithm for the optimization problem (7) can be established using a similar strategy to that of Cosslett
[21]; see also Chen et al. [22] and the references therein. Specifically, we implement the following two-stage algorithm to
compute θ̂(·) and β̂.

Stage 1. For a given β, profile θ(·) to obtain the profile likelihood of β through the following steps:

(a) Let (v1(β), . . . , vn(β)) be a vector composed of {hT (Xi)β : i = 1, . . . , n}, and sort the entries from smallest
to largest:

v(1)(β) ≤ . . . ≤ v(n)(β).

The corresponding ∆i’s are denoted ∆1(β), . . . ,∆n(β). Substitute v(i)(β) and the corresponding ∆i(β) into
(6) to obtain

ℓ(θ, β) =

n∑
i=1

[
∆i(β) log{θ(v(i)(β))}+ {1−∆i(β)} log{1− θ(v(i)(β))}

]
.

(b) For any β and the ℓ(θ, β) given in (a), let

θ̂β = argmaxθ∈Θℓ(θ, β). (8)

Following Dykstra, Kochar, and Robertson [23], solve the maximum problem using the well-known pool-
adjacent-violation-algorithm (PAVA; [24]).

(c) Find the profile log-likelihood via

ℓ(θ̂β , β) =

n∑
i=1

[
∆i log{θ̂β(hT (Xi)β)}+ (1−∆i) log{1− θ̂β(h

T (Xi)β)}
]
. (9)
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Stage 2. Maximize (9) with respect to β to obtain β̂. This step can be implemented using software such as the R
function optim() ([25]) with the given initial value of β. Then θ̂(·) = θ̂

β̂
(·).

Consequently, we can estimate π(x) by π̂(x) = θ̂(hT (x)β̂). The following theorem establishes the convergence rate of
π̂(x) to its true value π0(x) = θ0(h

T (x)β0), where θ0(·) is monotonically increasing and is the true value of θ(·), and β0
is the true value of β.

Theorem 1 Let P be a probability measure. Assuming Conditions 1–3 in the Appendix, we have

∥π̂ − π0∥2,P = Op(n
−1/3),

where ∥ · ∥2,P denotes the L2 norm under the probability measure P, specifically, for any measurable function f ,

∥f∥2,P =

(∫
f2dP

)1/2

.

The proposed algorithm performs well when the dimension of β is small or moderate. However, it becomes
computationally expensive when this dimension is relatively large. The reason is twofold. First, it involves a two-stage
iteration. Second, the profile likelihood given in (8) is not smooth in the neighborhood of β̂. On the other hand, in our
theoretical development and numerical studies, we observe that the estimate of µ is robust to the estimate of β if it is not
too far from β̂. Intuitively, this is because µ̂(π(·), ψ(·)) is a smooth function of π̂(·). In practice, when the dimension of β
is relatively large, one could implement the following much faster algorithm instead of the two-stage algorithm above.

Step 1. Given the binary response data (∆i, Xi), i = 1, . . . , n, obtain β̂ by fitting a parametric model, say a logistic
regression model.

Step 2. Similarly to Stage 1(b), estimate θ using the classical PAVA algorithm and the data (∆i, h
T (Xi)β̂), i = 1, . . . , n.

The extensive numerical studies in Section 4 show that the inverse probability weighting estimator µ̂HT (π(·)) with π̂(·)
from our method leads to more robust µ estimates than that based on π̂(·) from the parametric methods, even though
the assumed parametric model is correct. We now give an intuitive explanation of this observation. Consider the case
where ∆i = 1 but the corresponding π0(Xi) is very close to 0. This may occur occasionally ([26]); in our simulation, with
n = 1000 observations and 1000 replications, this is likely to occur at least once. In this scenario the parametric estimate
of π(·), denoted π(·; β̂), is likely also close to 0, because it is a consistent estimator of π0(·). In our simulation, π0(·) and
π(·; β̂) can be as small as 9× 10−7. Since π(·) appears in the denominator in the estimator µ̂HT (π(·))—see (1)—these
observations may significantly affect the accuracy of µ̂HT (π(·; β̂)). With our proposed π̂(·) estimate, however, µ̂HT (π̂(·))
is much more robust. This is because when ∆i = 1, the corresponding θ̂(hT (Xi)β̂) from the PAVA algorithm is greater
than 1/n. Therefore, the accuracy of µ̂HT (π̂(·)) is much less affected by any individual observation.

2.2. Estimation Methods for ψ

Estimation methods for ψ(·) have been widely discussed (e.g., [27], [14], [15]). In this paper, we generally consider the
weighted least square objective function given by

Q(ψ) =

n∑
i=1

w(∆i, Xi){Yi − ψ(Xi)}2,

where w(∆i, Xi) is the user-specified weight function. Assume that ψ is estimated by

ψ̂ = argminψ∈ΨQ(ψ), (10)

where Ψ denotes the class of functions for the “guessed” working model.
Cao, Tsiatis, and Davidian [27] suggest the following parametric model for ψ(·) and form for w(·, ·):

(1) ψ(x) = h(x; γ), with h a known function and γ the unknown Euclidean parameter. Therefore, Ψ = {ψ : ψ(x) =
h(x; γ), γ ∈ Rk}, where k is the dimension of γ.

(2) w(δ, x) = δ{1−π̂(x)}
π̂2(x) , where π̂ is obtained from (5).

In our simulation study and our analysis of the real-data example, we follow the above suggestions.
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3. Asymptotic Behavior of the Augmented Inverse Weighting Estimator

With the estimators π̂ and ψ̂ given in the last section, the AIWE of µ is given by

µ̂(π̂(·), ψ̂(·)) =
1

n

{
n∑
i=1

∆iYi
π̂(Xi)

− ∆i − π̂(Xi)

π̂(Xi)
ψ̂(Xi)

}
= Pnϕ(v;µ0, π̂(·), ψ̂(·)) + µ0, (11)

where v = (δ, y, xT )T ,

ϕ(v;µ, π(·), ψ(·)) = δy

π(x)
− δ − π(x)

π(x)
ψ(x)− µ,

and Pn is an empirical measure such that Png(v) =
∫
g(v)dPn for any function g(v). For simplicity, we denote this

estimator as µ̂ when the context is clear.
We first explore the asymptotic behavior of µ̂ when π̂ and ψ̂ are assumed to be estimated from (5) and (10) respectively.

The asymptotic behavior of π̂ and ψ̂ are significantly affected by the complexity of the function classes F and Ψ. The
following entropy conditions, which combine the main parts of Conditions A and B in the Appendix, play key roles in the
proof of Theorem 2.

Entropy Conditions: There exist 0 < α1, α2 < 2 such that for every ϵ > 0

H2,B(ϵ,F , FX) < A1ϵ
−α1 and H2,B(ϵ,Ψ, FX) < A2ϵ

−α2 ,

where FX denotes the cumulative distribution function of the covariates X , and A1 and A2 are universal constants.

Here H2,B(ϵ,F , FX) is the ϵ-entropy with bracketing of F , which is commonly adopted in empirical process texts. We
give a quick review of H2,B(ϵ,F , FX) in the Appendix.

Theorem 2 Let ψ0(x) be the true value of ψ(x). Assuming Conditions A–C in the Appendix, we have

√
n(µ̂− µ0)−

√
nPnϕ(v;µ0, π0, ψ0) +

√
nP
[{

π0(x)

π̂(x)
− 1

}{
ψ̂(x)− ψ0(x)

}]
= Op

(
∥π̂ − π0∥1−α1/2

2,P

)
+Op

(
∥ψ̂ − ψ0∥1−max{α1,α2}/2

2,P

)
+ op(1), (12)

where Pg(v) =
∫
g(v)dP for any function g(v).

Corollary 1 Assuming Conditions A–C in the Appendix, we have

(P1) if

√
nP
[{

π0(x)

π̂(x)
− 1

}{
ψ̂(x)− ψ0(x)

}]
= Op(1),

then µ̂− µ0 = Op(n
−1/2);

(P2) if ∥π̂ − π0∥2,P = op(1), ∥ψ̂ − ψ0∥2,P = op(1), and

√
nP
[{

π0(x)

π̂(x)
− 1

}{
ψ̂(x)− ψ0(x)

}]
= op(1),

then
√
n(µ̂− µ0) =

√
nPnϕ(v;µ0, π0, ψ0) + op(1), and µ̂ achieves the semiparametric information bound.

Remark 1 In the development of Theorem 2 and Corollary 1, we do not require that π0 ∈ F and ψ0 ∈ Ψ. That is, Models
(5) and (10) need not be the true models of π and ψ.

Remark 2 Calculations for entropies of function classes are available in empirical process texts. Based on these, the
entropy condition H2,B ≤ Aϵ−α for some universal constant A and 0 < α < 2 accommodates many “good” function
classes. For example, for most parametric models, the corresponding function classes satisfy this condition with α > 0;
the class of bounded monotone functions satisfies this condition with α = 1; the function class with every element g
satisfying g : [0, 1] → [0, 1] such that

∫ 1

0
{g(m)(x)}2dx ≤ 1 satisfies this condition with α = 1/m. See Section 2.2 of van

de Geer [28], Sections 2.6 and 2.7 of van der Vaart and Wellner [29], Chapter 9 of Kosorok [30], and the references
therein for more classes of functions that satisfy this entropy condition.
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Theorem 3 Let π̂(x) = θ̂(hT (x)β̂), where (θ̂, β̂) are obtained from (7). Assume Conditions 1–3, and B–E in the Appendix.
We have

√
n(µ̂− µ0)−

√
nPnϕ(v;µ0, π0, ψ0) = op(1).

Remark 3 From this theorem, we observe that in our method the estimator µ̂ is semiparametrically efficient under mild
regularity conditions. The main regularity conditions are (1) π0(x) is monotone, and (2) ψ0(x) belongs to a function class
that satisfies a mild entropy condition, say Condition B1. Furthermore, if the parametric model and the single-index model
(3) for π(x) are both correctly specified, our method and the AIWE based on the correctly specified parametric model have
the same efficiency. This is true even when we obtain the estimate of π(x) via the second algorithm in Section 2.1, where
we first obtain the estimate β̂ by fitting a parametric model and then estimate θ(·) using the PAVA based on the data
(∆i, h(Xi)

T β̂), i = 1, . . . , n. That is, compared with the AIWE based on the correctly specified parametric model, our
method does not lose any efficiency provided the single-index model is correctly specified. If this condition is not satisfied,
our estimator is root-n consistent given the even more mild condition required by (P1) of Corollary 1. In particular, our µ̂
maintains the double robustness property as desired and is more robust than the AIWE based on the parametric model.

4. Simulation Studies

In this section we conduct simulation studies to explore the performance of the proposed estimators. We consider the
following eight estimators:

1) The inverse probability weighting estimator (1) with π(x) estimated by the logistic regression model reviewed in
Section 2.1; we call this method HT-par.

2) The inverse probability weighting estimator with π(·) estimated by the semiparametric method proposed in Section
2.1, i.e., π(x) = θ(hT (x)β). Here we use the second algorithm in Section 2.1 to estimate π(·). We call this method
HT-pava.

3) The Hájek inverse probability weighting estimator ([31]), with π(x) estimated as in HT-pava; we call this method
HAJ-pava. In particular,

µ̂HAJ-pava =

∑n
i=1 ∆iYi/π̂(Xi)∑n
i=1 ∆i/π̂(Xi)

.

4) The estimator µ̂PROJ proposed in Cao, Tsiatis, and Davidian [27]; we call this method Cao-proj.
5) The AIWE with π(x) estimated by the using the generalized additive model [10] and ψ(x) estimated by the method

presented in Section 2.2; we call this method NP-AIWE. Specifically, we consider the following nonparametric
model for estimating the propensity score:

logit {P (∆ = 1|x1, . . . , xp)} =

p∑
j=1

hj(xj),

where hj(·), j = 1, . . . , p are nonparametric functions; the natural cubic-spline is applied to estimate them.
6) The propensity score matching method ([11]) using different number of cutpoints J ; we call this method PSM-J . In

this study, we use J = 5, 10, and 20.
7) The AIWE with π(x) estimated by the first algorithm in Section 2.1 and ψ(x) estimated by the method presented in

Section 2.2; we call this method New-pava1.
8) The AIWE with π(x) estimated by the second algorithm in Section 2.1 and ψ(x) estimated by the method presented

in Section 2.2; we call this method New-pava2.

We consider three examples.
Example 1. We first consider the artificial example created by Kang and Schafer [19]. In this scenario, for each

i (i = 1, ..., n), Zi = (Zi1, Zi2, Zi3, Zi4)
T is generated as standard multivariate normal random variables, and the elements

of Xi = (Xi1, Xi2, Xi3, Xi4)
T are defined as Xi1 = exp(Zi1/2), Xi2 = Zi2/{1 + exp(Zi1)}+ 10, Xi3 = (Zi1Zi3/25 +

0.6)3, and Xi4 = (Zi2 + Zi4 + 20)2, so that Zi may be expressed in terms of Xi . For each i,

Yi = 210 + 27.4Zi1 + 13.7Zi2 + 13.7Zi3 + 13.7Zi4 + ϵi,

where ϵi is independent standard normal, and ∆i is generated as a Bernoulli random variable with the true propensity
score being

logit{πi(Z)} = −Zi1 + 0.5Zi2 − 0.25Zi3 − 0.1Zi4,
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Table 1. Comparison of the bias, RMSE, and MAE for the estimates of µ in Example 1. Here “P-C” (or “P-I”) indicates
that the model for π(·) is correctly (or incorrectly) specified; “W-C” (or “W-I”) indicates that the model for ψ(·) is correctly

(or incorrectly) specified.

P-I, W-I P-I, W-C P-C, W-I P-C, W-C
Method Bias RMSE MAE Bias RMSE MAE Bias RMSE MAE Bias RMSE MAE

n = 200
HT-par 22.28 77.58 9.36 18.46 92.82 9.24 74.83 3735.34 9.38 -0.46 12.73 6.71
HT-pava 11.13 11.61 11.06 -11.18 11.64 11.14 -15.38 15.80 15.29 -10.11 10.66 10.16
HAJ-pava -2.31 4.18 2.95 -2.38 4.23 3.00 -2.28 4.18 3.01 -0.84 3.55 2.37
Cao-proj -0.45 3.37 2.21 -0.04 2.56 1.75 -0.00 2.56 1.74 -0.02 2.54 1.72
NP-AIWE -0.83 3.31 2.21 -0.15 2.55 1.74 -0.55 3.23 2.22 -0.16 2.58 1.77
PSM-5 -4.99 5.94 5.04 -4.99 5.94 5.04 -3.08 4.37 3.32 -3.08 4.37 3.32
PSM-10 -4.49 5.65 4.60 -4.48 5.65 4.60 -2.52 4.15 2.90 -2.52 4.15 2.90
PSM-20 -4.46 5.66 4.47 -4.46 5.66 4.47 -2.50 4.25 2.99 -2.50 4.25 2.99
New-pava1 -0.38 3.29 2.22 -0.04 2.56 1.75 0.00 2.56 1.73 -0.02 2.53 1.71
New-pava2 -1.15 3.13 2.17 -0.04 2.56 1.75 0.00 2.56 1.75 -0.02 2.53 1.71

n = 1000
HT-par 48.63 643.67 13.63 54.93 530.75 13.87 36.72 177.45 13.93 0.04 4.85 2.86
HT-pava -13.25 13.33 13.30 -10.17 10.28 10.17 -13.29 13.38 13.28 -10.00 10.13 10.01
HAJ-pava -1.82 2.37 1.86 -1.83 2.38 1.91 -1.83 2.38 1.88 -0.20 1.51 1.00
Cao-proj -1.24 1.78 1.32 -0.01 1.15 0.78 -0.02 1.15 0.78 0.00 1.13 0.78
NP-AIWE -1.57 2.10 1.62 -0.01 1.14 0.77 -0.19 1.46 0.98 -0.02 1.13 0.76
PSM-5 -3.22 3.51 3.24 -3.22 3.51 3.24 -1.44 1.95 1.50 -1.44 1.95 1.50
PSM-10 -2.59 2.96 2.62 -2.59 2.96 2.62 -0.83 1.60 1.11 -0.83 1.60 1.11
PSM-20 -2.36 2.76 2.39 -2.36 2.76 2.39 -0.60 1.54 1.02 -0.60 1.54 1.02
New-pava1 -0.77 1.72 1.18 -0.01 1.15 0.77 -0.02 1.15 0.78 0.00 1.13 0.78
New-pava2 -1.50 1.96 1.51 -0.01 1.15 0.77 -0.02 1.15 0.78 0.00 1.13 0.78

where logit(t) = log{t/(1− t)} for t ∈ (0, 1). The true value of µ is µ0 = 210.
If we fit a linear regression model for Yi over Zi and a logistic regression model for ∆i over Zi, then the models for

ψ(·) and π(·) are correctly specified. However, if Zi is replaced by Xi in the above fitted models, then the models for ψ(·)
and π(·) are incorrectly specified. In total, we have four combinations of model specifications for ψ(·) and π(·). For each
combination, we calculate the bias, square root mean square error (RMSE), and median absolute error (MAE) of the ten
estimates of µ based on 5000 repetitions. We consider two sample sizes, 200 and 1000; the results are reported in Table 1.
We make the following observations:

• Clearly, Cao-proj, New-pava1, and New-pava2 have similar performance. They perform better than the other
estimators.

• NP-AIWE performs comparable or slightly worse than our methods.
• HT-pava has a much smaller RMSE than its counterpart HT-par. However, the MAEs are comparable for n = 200.
• Although HAJ-pava does not use the working regression model, its performance is close to that of Cao-proj and the

new estimators.

To illustrate the robustness of our methods, we give two further examples.
Example 2. The “working” propensity score function is given by the logistic regression logit{P (∆ = 1|x1, x2)} =

β0 + β1x1 + β2x2. The true propensity score is given by the following three models:

Model I:
logit{P (∆ = 1|x1, x2)} = 2x1 − x2.

In this case the propensity score is correctly specified.
Model II:

logit{P (∆ = 1|x1, x2)} = 2x1 − x2 + 2x21;

A quadratic term is missing in the propensity score.
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Table 2. Comparison of the bias, RMSE, and MAE for the estimates of µ in Example 2.

Model I Model II Model III
Method Bias RMSE MAE Bias RMSE MAE Bias RMSE MAE

n = 200
HT-par -0.05 1.85 0.52 0.00 0.24 0.14 0.00 0.21 0.13
HT-pava -0.63 0.75 0.65 -0.15 0.25 0.17 -0.11 0.23 0.16
HAJ-pava -0.21 0.32 0.26 -0.01 0.16 0.11 -0.00 0.16 0.11
Cao-proj -0.09 0.46 0.24 0.01 0.17 0.11 -0.00 0.16 0.11
NP-AIWE -0.29 0.41 0.30 0.06 0.17 0.11 0.05 0.17 0.11
PSM-5 -0.24 0.34 0.27 -0.11 0.19 0.14 -0.10 0.19 0.13
PSM-10 -0.24 0.34 0.25 -0.10 0.19 0.13 -0.09 0.18 0.13
PSM-20 -0.15 0.31 0.20 -0.01 0.16 0.11 -0.01 0.16 0.11
New-pava1 -0.14 0.30 0.19 0.00 0.16 0.10 -0.01 0.16 0.10
New-pava2 -0.14 0.30 0.20 -0.00 0.16 0.11 -0.01 0.16 0.10

n = 1000
HT-par 0.01 1.79 0.32 0.00 0.10 0.07 0.00 0.09 0.06
HT-pava -0.34 0.41 0.35 -0.05 0.10 0.07 -0.04 0.09 0.06
HAJ-pava -0.14 0.20 0.16 -0.00 0.08 0.05 -0.00 0.07 0.05
Cao-proj -0.04 0.15 0.09 0.00 0.07 0.05 -0.00 0.07 0.05
NP-AIWE -0.15 0.22 0.16 0.06 0.10 0.07 0.05 0.09 0.06
PSM-5 -0.18 0.21 0.18 -0.05 0.09 0.06 -0.04 0.08 0.06
PSM-10 -0.11 0.17 0.12 -0.03 0.08 0.05 -0.03 0.08 0.05
PSM-20 -0.11 0.17 0.12 -0.03 0.08 0.05 -0.03 0.08 0.05
New-pava1 -0.06 0.14 0.09 -0.00 0.07 0.04 -0.01 0.07 0.04
New-pava2 -0.06 0.14 0.09 -0.00 0.07 0.04 -0.00 0.07 0.04

Model III:
logit{P (∆ = 1|x1, x2)} = 2x1 − x2 − x1x2 + 2x21.

An interaction term and a quadratic term are missing.

The regression model for Y is given by
Y = 3 + x21 + x2 + ϵ,

where x1, x2, and ϵ are independent standard normal random variables. Hence, the true value of µ is µ0 = 4. The “working
model” is

ψ(x) = γ0 + γ1x1 + γ2x2.

For the proposed methods, the parameters are estimated by the weighted least square method described in Section 2.2.
We again consider two sample sizes: n = 200, 1000. Table 2 gives the bias, RMSE, and MAE of all the estimates of µ

for 5000 repetitions in Table 2. We make the following observations:

• For model I, where the propensity score is correctly specified, the proposed New-pava1, New-pava2 methods
perform better than the other methods.

• For models II and III, where the propensity score is misspecified, the proposed methods perform comparable or
slightly better than other methods.

Example 3. To evaluate the robustness of the proposed method to the misspecification of the link function in the
propensity score, we consider the following example. The setup is the same as in example 2, except that we posit the
following propensity models

Model I:
log[− log{1− P (∆ = 1|x1, x2)}] = 2x1 − x2;

Model II:
log[− log{1− P (∆ = 1|x1, x2)}] = 2x1 − x2 + 2x21;
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Table 3. Comparison of the bias, RMSE, and MAE for the estimates of µ in Example 3.

Model I Model II Model III
Method Bias RMSE MAE Bias RMSE MAE Bias RMSE MAE

n = 200
HT-par 1.70 21.45 0.62 0.21 0.61 0.18 0.09 0.37 0.14
HT-pava -0.65 0.76 0.67 -0.15 0.25 0.17 -0.10 0.21 0.14
HAJ-pava -0.22 0.33 0.26 -0.02 0.16 0.11 -0.01 0.16 0.10
Cao-proj -0.09 0.62 0.28 0.00 0.17 0.11 0.00 0.16 0.10
NP-AIWE -0.31 0.40 0.31 0.05 0.16 0.11 0.04 0.16 0.10
PSM-5 -0.26 0.35 0.27 -0.20 0.26 0.20 -0.20 0.26 0.20
PSM-10 -0.25 0.34 0.26 -0.18 0.25 0.18 -0.18 0.25 0.19
PSM-20 -0.26 0.34 0.26 -0.17 0.24 0.18 -0.18 0.25 0.18
New-pava1 -0.12 0.30 0.19 0.00 0.16 0.11 -0.01 0.16 0.10
New-pava2 -0.12 0.29 0.20 0.00 0.16 0.11 -0.01 0.15 0.10

n = 1000
HT-par 2.12 7.74 0.71 0.21 0.31 0.16 0.11 0.20 0.09
HT-pava -0.34 0.41 0.35 -0.05 0.10 0.07 -0.03 0.08 0.06
HAJ-pava -0.13 0.20 0.16 -0.01 0.07 0.05 -0.01 0.07 0.05
Cao-proj -0.02 0.19 0.12 0.00 0.07 0.05 0.00 0.07 0.05
NP-AIWE -0.15 0.21 0.15 0.05 0.09 0.06 0.04 0.08 0.05
PSM-5 -0.19 0.21 0.19 -0.14 0.16 0.14 -0.14 0.16 0.14
PSM-10 -0.11 0.17 0.12 -0.12 0.14 0.11 -0.13 0.15 0.13
PSM-20 -0.10 0.16 0.12 -0.11 0.13 0.10 -0.12 0.14 0.12
New-pava1 -0.05 0.14 0.09 0.00 0.07 0.05 0.00 0.07 0.05
New-pava2 -0.05 0.13 0.09 0.00 0.07 0.05 0.00 0.07 0.05

Model III:
log[− log{1− P (∆ = 1|x1, x2)}] = 2x1 − x2 − x1x2 + 2x21.

Table 3 gives the results for 5000 repetitions. Similar scenarios to Example 2 are observed; the details are omitted for
brevity.

5. Applications

In this section, we apply our methods to the AIDS Clinical Trials Group Study 175 (ACTG 175; [32]). ACTG 175 is a
randomized clinical trial comparing monotherapy (zidovudine or didanosine) with combination therapy (zidovudine and
didanosine, or zidovudine and zalcitabine) in adults infected with the type-I HIV virus with CD4 T cell counts between
200 and 500 per cubic millimeter. The study included 2139 HIV-positive subjects. These subjects were followed for
about 96 weeks, and the CD4 T cell counts were measured at week 20 and week 96. Some cell counts at week 96 were
missing because of subject dropout; the missing proportion is 37.3%. The baseline covariates and the week-20 counts were
always observed. The covariates include: age at baseline (in years), weight at baseline (in kg), hemophilia (0=no, 1=yes),
homosexual activity (0=no, 1=yes), history of intravenous drug use (0=no, 1=yes), Karnofsky score (on a scale of 0–100),
non-zidovudine antiretroviral therapy prior to initiation of study treatment (0=no, 1=yes), zidovudine use in the 30 days
prior to treatment initiation (0=no, 1=yes), zidovudine use prior to treatment initiation (0=no, 1=yes), number of days of
previously received antiretroviral therapy, race (0=white, 1=nonwhite), gender (0=female, 1=male), antiretroviral history
(0=naive, 1=experienced), antiretroviral history stratification (1=naive, 2=1 to 52 weeks of prior antiretroviral therapy,
3=more than 52 weeks), symptomatic indicator (0=asymptomatic, 1=symptomatic), treatment indicator (0=zidovudine
only, 1=other therapies), and indicator of whether or not patient was taken off treatment before 96 ± 5 weeks (0=no,
1=yes). The details can be found in https://cran.r-project.org/web/packages/speff2trial/speff2trial.pdf.

We are interested in comparing the cell counts at week 96 for two groups: a) zidovudine only and b) other therapies.
Specifically, we are interested in testing H0 : δ = 0, where δ = µ− ν, µ is the mean CD4 T cell count at week 96 in the
zidovudine group, and ν is the mean CD4 T cell count at week 96 in the other group. We apply the six methods of Section
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Table 4. Estimation of the marginal means of the CD4 T cell counts at week 96 in two groups, the zidovudine-only group
and the other-therapy group, and estimation of the difference of the marginal means between these groups

Zidovudine only Other therapies Difference
Method Mean SE Mean SE Mean SE

HT-par 274.03 11.42 322.55 5.59 -48.52 12.60
HT-pava 287.62 10.28 338.23 6.70 -50.61 12.16
HAJ-pava 272.70 11.37 323.13 5.60 -50.43 12.61
Cao-proj 270.20 10.34 321.87 5.21 -51.67 11.42
NP-AIWE 270.50 10.12 322.81 5.29 -52.31 11.47
PSM-5 274.20 11.36 323.03 5.84 -48.83 12.76
PSM-10 272.60 11.65 321.56 5.84 -48.96 13.09
PSM-20 266.53 12.15 318.78 6.00 -52.26 13.62
New-pava1 269.98 10.11 322.76 5.22 -52.78 11.20
New-pava2 269.05 10.10 321.99 5.20 -52.94 11.19

4. The standard errors are obtained using 3000 bootstrap samples. The covariates listed above were included in the model
for the propensity score of the missing probability and the working regression model of the response. Table 4 reports the
estimates of the marginal means of the cell counts at week 96 in the two groups and the difference in the cell counts at
week 96 between the groups. Cao-proj, NP-AIWE, New-pava1, and New-pava2 yield similar estimates and standard errors
for the cell count differences, and the estimates differ from the estimates of the other methods. All the methods indicate
that the marginal mean of the cell counts at week 96 is lower in the zidovudine group.

6. Concluding remarks

In causal inference and the missing data problem, the response mean is important. The statistical, economic, and
epidemiological literature has many different estimation methods, such as the inverse probability weighting estimator
([12]) and the AIWE (Robins, Rotnitzky, and Zhao 1994). Other estimation methods such as propensity matching ([11])
are also available. For a comprehensive discussion of the related problems see the monograph by Imbens and Rubin [33].

It is well known that the propensity score π(x) and the “working regression model” ψ(x) play extremely important
roles in the mean estimation. In this paper we have provided a propensity score method that is almost nonparametric by
using the monotonic single-index model. In contrast to doubly robust methods, where both the propensity score and the
regression model have to be modeled as accurately as possible, our method requires us to model the regression model
ψ(x) = E(Y |X = x) carefully but leaves the propensity score almost nonparametric. It is encouraging that the inverse
probability weighting estimators and AIWEs based on the nonparametrically fitted single-index model perform better
than their counterparts based on the fitted correctly specified parametric model. To ease the computational burden in the
semiparametric maximum likelihood estimation of π(x) for high-dimensional covariatesX , we propose first obtaining the
estimate β̂ using a “working parametric propensity score model,” say the logistic regression model. We can then estimate
the link function θ(·) using the PAVA based on the data (∆i, h(Xi)

T β̂), i = 1, 2, ..., n. We can successfully stabilize the
propensity score when it is too close to zero. Examples 2 and 3 showed that our method is more robust than the methods
based on the fitted correctly specified parametric model. Further investigation of this method in regression parameter
estimation based on missing data would be worthwhile.
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Appendix: Proofs of Theorems

Technical Conditions

We need the following conditions in the proof of Theorem 1.

Condition 1: Λ−1 is a compact subspace of Rp−1.

Condition 2: There exists a constant C0 independent of u such that

P
∣∣I(βτ1h(x) ≤ u

)
− I
(
βτ2h(x) ≤ u

)∣∣ ≤ C0||β1 − β2||1,

where ∥ · ∥1 denotes the l1 norm.

Condition 3: θ0(·) ∈ Θ and infx θ0(v(x;β0)) > 0.

We need the following conditions in the proof of Theorem 2.

Condition A: The following technical conditions are for “π”:

A1: There exists 0 < α1 < 2 such that for every ϵ > 0,

H2,B(ϵ,F , FX) < A1ϵ
−α1 ,

where A1 is a universal constant.
A2: infπ∈F infx |π(x)| > 0.
A3: infx π0(x) > 0.

Condition B: The following technical conditions are for “ψ”:

B1: There exists 0 < α2 < 2 such that for every ϵ > 0,

H2,B(ϵ,Ψ, FX) < A2ϵ
−α2 ,

where A2 is a universal constant.
B2: supψ∈Ψ supx |ψ(x)| <∞.
B3: supx ψ0(x) <∞.

Condition C: We further assume that the support of fY (y) is bounded, where fY (y) denotes the marginal density of Y .

Condition D: ψ0 ∈ Ψ, infx w(1, x) > 0, and supδ,x w(δ, x) <∞.

Condition E: There exists a constant c > 0 such that infx θ(hT (x)β) > c > 0.

Preliminaries

The proofs of the theorems rely heavily on empirical process theory. We adopt the usual notation in the literature. In
particular, let “.” (“&”) denote smaller (greater) than, up to a universal constant. Recall that Pn and P are empirical and
probability measures, and for any function g(v) and independent and identically distributed observations V1, . . . ,Vn,

Pn(g(v)) =

∫
g(v)dPn =

1

n

n∑
i=1

g(Vi);

P(g(v)) =

∫
g(v)dP.

Furthermore, we denote by ∥g∥q,P the Lq normal of g under P. In particular, ∥g∥q,P =
{∫

gqdP
}1/q

.
We need the following definition of entropy for function classes, which plays a key role in modern empirical process

theory. It is adapted from Definition 2.2 in van de Geer [28].

Definition 1 For any ϵ > 0 and q > 0, let Nq,B(ϵ,G,P) be the smallest value of N for which there exists a set of pairs
of functions {(gLj , gUj )}Nj=1 such that (i) ∥gUj − gLj ∥q,P ≤ ϵ, where ∥gUj − gLj ∥q,P =

{∫
|gUj − gLj |qdP

}1/q
and (ii) for any

g ∈ G, there exists a j = j(g) such that
gLj ≤ g ≤ gUj .

Nq,B(ϵ,G,P) is called the ϵ-bracketing number of G, and Hq,B(ϵ,G,P) = logNq,B(ϵ,G,P) is called the ϵ-entropy with
bracketing of G.
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Proof of Theorem 1

The proof of this theorem follows the same lines as part (a) of Theorem 1 in Chen et al. [22]; we omit it for brevity.

Proof of Theorem 2

To facilitate our proof, we need the following lemma, which is a direct application of Lemma 5.13 in van de Geer [28].

Lemma 1 Assume
sup
g∈G

|g − g0|∞ ≤ 1, H2,B(ϵ,G,P) ≤ Aϵ−α, (13)

for every ϵ > 0 and some 0 < α < 2 and some constant A. Then, for some constant c and n0 depending on α and A, we
have for all T ≥ c and n ≥ n0,

P

(
sup

g∈G,∥g−g0∥2,P≤n−1/(2+α)

∣∣∣Pn(g − g0)− P(g − g0)
∣∣∣ ≥ Tn−2/(2+α)

)
≤ c exp

{
−Tn

α/(2+α)

c2

}
(14)

and

P

(
sup

g∈G,∥g−g0∥2,P>n−1/(2+α)

√
n |Pn(g − g0)− P(g − g0)|

∥g − g0∥1−α/22,P

≥ T

)
≤ c exp

(
− T

c2

)
. (15)

We now prove Theorem 2. By (11) in the main text and straightforward manipulations, we immediately have
√
n(µ̂n − µ0)−

√
nPnϕ(v, µ0, β0, π0(·), ψ0(·))

=
1√
n

n∑
i=1

[{
1

π̂(Xi)
− 1

π0(Xi)

}
∆i{Yi − ψ0(Xi)} −

{
∆i

π̂(Xi)
− 1

}{
ψ̂(Xi)− ψ0(Xi)

}]
=
√
nPnĝ1(v)−

√
nPnĝ2(v), (16)

where ĝ1(v) =
{

1
π̂(x) −

1
π0(x)

}
δ{y − ψ0(x)}, ĝ2(v) =

{
δ

π̂(x) − 1
}{

ψ̂(x)− ψ0(x)
}

, and ĝ1 ∈ G1, ĝ2 ∈ G2 with

G1 =

{
g1(v) =

{
1

π(x)
− 1

π0(x)

}
δ{y − ψ0(x)} : π ∈ F

}
G2 =

{
g2(v) =

{
δ

π(x)
− 1

}
{ψ(x)− ψ0(x)} : π ∈ F ;ψ ∈ Ψ

}
.

Using Conditions A–C, we can easily verify that

sup
g1∈G1

|g1|∞ . 1, H2,B(ϵ,G1,P) . ϵ−α1 ; (17)

sup
g2∈G2

|g2|∞ . 1, H2,B(ϵ,G2,P) . ϵ−max{α1,α2}. (18)

With Lemma 1, (17) implies that

P

(
sup

g1∈G1,∥g1∥2,P≤n−1/(2+α1)

∣∣∣Png1 − Pg1
∣∣∣ ≥ Tn−2/(2+α1)

)
≤ c exp

{
−Tn

α1/(2+α1)

c2

}

P

(
sup

g1∈G1,∥g1∥2,P>n−1/(2+α1)

√
n |Png1 − Pg1|
∥g1∥1−α1/2

2,P

≥ T

)
≤ c exp

(
− T

c2

)
.

As a consequence, we have

√
n|Pnĝ1 − Pĝ1| = Op

(
n
− 2−α1

2(2+α1)

)
∨Op

(
∥ĝ1∥1−α1/2

2,P

)
.

Here a ∨ b = max(a, b). With (18) and Lemma 1, we similarly have

√
n|Pnĝ2 − Pĝ2| = Op

(
n
− 2−max{α1,α2}

2(2+max{α1,α2})

)
∨Op

(
∥ĝ2∥1−max{α1,α2}/2

2,P

)
.
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Noting that α1 < 2 and α2 < 2, and Pĝ1 = 0, we immediately have

√
n|Pnĝ1| = Op

(
∥ĝ1∥1−α1/2

2,P

)
+ op(1),

√
n|Pnĝ2 − Pĝ2| = Op

(
∥ĝ2∥1−max{α1,α2}/2

2,P

)
+ op(1),

which, together with (16), Conditions A–C, and the fact that

Pĝ2 = P
[{

π0(x)

π̂(x)
− 1

}{
ψ̂(x)− ψ0(x)

}]
,

leads to (12) in the main text. This completes the proof of Theorem 2.

Proof of Corollary 1

By Theorem 2, (P1) immediately follows. Furthermore, by Theorem 2 and the conditions in (P2), we have
√
n(µ̂− µ0) =

√
nPnϕ(v;µ0, π0, ψ0) + op(1). (19)

Therefore, it remains to show that µ̂ achieves the information bound. By (19), ϕ(·;µ0, π0(·), ψ0(·)) is the influence function.
Referring to the established theory for the semiparametric efficiency bound—e.g., Chapter 3 of Bickel et al. [34], Newey
[35], Chapters 3 and 18 of Kosorok [30], and the references therein—we need to show only the following two parts:

(i) µ̂ is a regular estimator of µ0.
Let Pη be a submodel indexed by η such that P0 is the true model. Further, let µη = Eη(Y ), πη(x) = Eη(∆|X = x),
and ψη(x) = Eη(Y |X = x), where Eη indicates that the expectation is taken under Pη. By Theorem 2.2 in Newey
[35], arguing that µ̂ is a regular estimator of µ0 is equivalent to showing that

∂µη
∂η

∣∣∣∣
η=0

= E0{ϕ(V ;µ0, π0, ψ0)S0(V )}, (20)

where

S0(v) =
∂ log fη(y, δ, x)

∂η

∣∣∣∣
η=0

,

fη(y, δ, x) is the joint density of (Y,∆, X) under Pη, and E0 indicates that the expectation is taken under the true
distribution f0(y, δ, x).

(ii) There exists a submodel Pη∗ with f∗η (y, δ, x) being the joint density of (Y,∆, X) under Pη∗ such that P0 is the true
model and

ϕ(v;µ0, π0, ψ0) =
∂ log f∗η (y, δ, x)

∂η∗

∣∣∣∣
η∗=0

.

We show Parts (i) and (ii) separately. To show Part (i), we need to verify (20). On the one hand,

µη = Eη(Y ) = Eη{ψη(X)},

which leads to

∂µη
∂η

∣∣∣∣
η=0

= E0

{
∂ψη(X)

∂η

∣∣∣∣
η=0

}
+ E0 {ψ0(X)S0(V )} . (21)

On the other hand,

E{ϕ(V ;µ0, π0, ψ0)S0(V )} =
∂Eη {ϕ(V ;µ0, π0, ψ0)}

∂η

∣∣∣∣
η=0

.

It can be verified that

Eη {ϕ(V ;µ0, π0, ψ0)} = Eη

[
{πη(X)− π0(X)}{ψη(X)− ψ0(X)}

π0(X)
+ ψη(X)

]
− µ0.
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Note that {πη(X)− π0(X)}{ψη(X)− ψ0(X)} and its first derivative with respect to η are both equal to 0 at η = 0. Thus,

E{ϕ(V ;µ0, π0, ψ0)S0(V )} =
∂Eη {ϕ(V ;µ0, π0, ψ0)}

∂η

∣∣∣∣
η=0

= E0

{
∂ψη(X)

∂η

∣∣∣∣
η=0

}
+ E0 {ψ0(X)S0(V )} ,

which together with (21) implies (20). This proves Part (i).
We proceed to show Part (ii). Let fY |X;0(y|x) be the true conditional density of Y given X = x and fX;0(·) the true

marginal density of X . Consider

fη∗(y, δ, x) =

[
1 + η∗

δ{y − ψ0(x)}
π0(x)

+ η∗{ψ0(x)− µ0}
]
fY |X;0(y|x){π0(x)}δ{1− π0(x)}1−δfX;0(x).

It is easy to check that for sufficiently small η∗ this fη∗(y, δ, x) is a parametric submodel. The tangent of this submodel is
given by

∂ log fη∗(y, δ, x)

∂η∗

∣∣∣∣
η∗=0

=
δ{y − ψ0(x)}

π0(x)
+ ψ0(x)− µ0 = ϕ(v;µ0, π0, ψ0),

which completes our proof of Part (ii). Therefore, we have completed the proof of this Corollary.

Proof of Theorem 3

Since we do not assume Condition A in this theorem, we first verify that Condition A is satisfied given Conditions 1–3
and B–E; then we prove the theorem by verifying the conditions in (P2) of Corollary 1. In fact, Conditions A2 and A3 are
satisfied by reviewing Conditions 3 and E, so we need to verify only Condition A1. The following Lemma adapted from
Lemma 2 of Chen et al. [22] ensures that Condition A1 is satisfied with α1 = 1.

Lemma 2 Suppose Conditions 1 and 2 are satisfied. For any ϵ > 0 and integer q > 0 we have

Hq,B(ϵ,F , FX) . 1/ϵ,

where F = {θ(hT (x)β) : θ ∈ Θ;β ∈ Λ}.

Therefore, to prove this theorem, we need to verify only that

∥π̂ − π0∥2,P = op(1) (22)

∥ψ̂ − ψ0∥2,P = op(1) (23)
√
nP
[{

π0(x)

π̂(x)
− 1

}{
ψ̂(x)− ψ0(x)

}]
= op(1). (24)

Note that (22) immediately follows by Theorem 1. Furthermore, by Conditions B and E, we have∣∣∣∣√nP [{π0(x)π̂(x)
− 1

}{
ψ̂(x)− ψ0(x)

}]∣∣∣∣ . √
n∥π̂ − π0∥2,P∥ψ̂ − ψ0∥2,P,

which together with Theorem 1 implies that both (23) and (24) hold if we can show that

∥ψ̂ − ψ0∥2,P = oP (n
−1/6). (25)

We proceed in two steps. First, note that Conditions D and E imply that

∥ψ̂ − ψ0∥22,P . P
[
w(1, x)π0(x){ψ̂(x)− ψ0(x)}2

]
= P

[
w(δ, x){ψ̂(x)− ψ0(x)}2

]
. (26)

Second, by the definition of ψ̂, if ψ0 ∈ Ψ, we have Q(ψ̂) ≤ Q(ψ0). Hence,

P
[
w(δ, x){ψ̂(x)− ψ0(x)}2

]
≤ Q(ψ0)−Q(ψ̂) + P

[
w(δ, x){ψ̂(x)− ψ0(x)}2

]
= Pn

[
w(δ, x){y − ψ0(x)}2

]
− Pn

[
w(δ, x){y − ψ̂(x)}2

]
+P
[
w(δ, x){ψ̂(x)− ψ0(x)}2

]
= 2Pn

[
w(δ, x){ψ̂(x)− ψ0(x)}{y − ψ0(x)}

]
−(Pn − P)

[
w(δ, x){ψ̂(x)− ψ0(x)}2

]
= 2Pnĝ3 − (Pn − P)ĝ4, (27)
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where ĝ3(δ, y, x) = w(δ, x){ψ̂(x)− ψ0(x)}{y − ψ0(x)} ∈ G3, ĝ4(δ, x) = w(δ, x){ψ̂(x)− ψ0(x)}2 ∈ G4, with

G3 = {g3(v) = w(δ, x){ψ(x)− ψ0(x)}{y − ψ0(x)} : ψ ∈ Ψ} ,
G4 =

{
g4(v = w(δ, x){ψ(x)− ψ0(x)}2 : ψ ∈ Ψ

}
.

By Conditions A–D, we can easily verify that

sup
g3∈G3

|g3|∞ . 1, H2,B(ϵ,G3,P) . ϵ−α2 ;

sup
g4∈G4

|g4|∞ . 1, H2,B(ϵ,G4,P) . ϵ−α2 .

Therefore, Lemma 1 applies to both G3 and G4. That is,

P

(
sup

g3∈G3,∥g3∥2,P≤n−1/(2+α2)

∣∣∣Png3 − Pg3
∣∣∣ ≥ Tn−2/(2+α2)

)
≤ c exp

{
−Tn

α2/(2+α2)

c2

}

P

(
sup

g3∈G3,∥g3∥2,P>n−1/(2+α2)

√
n |Png3 − Pg3|
∥g3∥1−α2/2

2,P

≥ T

)
≤ c exp

(
− T

c2

)
and

P

(
sup

g4∈G4,∥g4∥2,P≤n−1/(2+α2)

∣∣∣Png4 − Pg4
∣∣∣ ≥ Tn−2/(2+α2)

)
≤ c exp

{
−Tn

α2/(2+α2)

c2

}

P

(
sup

g4∈G4,∥g4∥2,P>n−1/(2+α2)

√
n |Png4 − Pg4|
∥g4∥1−α2/2

2,P

≥ T

)
≤ c exp

(
− T

c2

)
.

These together with the fact that Pĝ3 = 0 lead to

|Pnĝ3| = Op(n
−2/(2+α2)) ∨

{
n−1/2 ·Op(∥ĝ3∥1−α2/2

2,P )
}

|(Pn − P)ĝ4| = Op(n
−2/(2+α2)) ∨

{
n−1/2 ·Op(∥ĝ4∥1−α2/2

2,P )
}
. (28)

Furthermore, by Conditions B–D we have

∥ĝ3∥2,P . ∥ψ̂ − ψ0∥2,P, ∥ĝ4∥2,P . ∥ψ̂ − ψ0∥2,P. (29)

Combining (27)–(29), we immediately have

P
[
w(δ, x){ψ̂(x)− ψ0(x)}2

]
. Op(n

−2/(2+α2)) ∨
{
n−1/2 ·Op(∥ψ̂ − ψ0∥1−α2/2

2,P )
}
,

which together with (26) and the condition that 0 < α2 < 2 in Condition B leads to

∥ψ̂ − ψ0∥2,P = OP (n
− 1

2+α2 ).

This implies that (25) is correct, and this completes our proof.
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