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Abstract

Conventional phase II clinical trials evaluate the treatment effects under the assumption 

of patient homogeneity. However, due to inter-patient heterogeneity, the effect of a treatment 

may differ remarkably among subgroups of patients. Besides patient’s individual character-

istics such as age, gender, and biomarker status, a substantial amount of this heterogeneity 

could be due to the spatial variation across geographic regions because of unmeasured or 

unknown spatially varying environmental and social exposures. In this article, we propose a 

hierarchical Bayesian design for two-arm randomized phase II clinical trials that accounts for 

the spatial variation as well as patient’s individual characteristics. We treat the treatment 

efficacy as an ordinal outcome and quantify the desirability of each possible category of the 

ordinal efficacy using a utility function. A cumulative probit mixed model is used to relate 

efficacy to patient-specific covariates and geographic region spatial effects. Spatial depen-

dence between regions is induced through the conditional autoregressive priors on the spatial 

effects. A two-stage design is proposed to adaptively assign patients to desirable treatments 

and make treatment recommendations at the end of the trial according to each patient’s

Statistical Methods in Medical Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

____________________________________________________

This is the author's manuscript of the article published in final edited form as: 
Guo, B., & Zang, Y. (2018). A Bayesian adaptive phase II clinical trial design accounting for spatial variation. Statistical 
Methods in Medical Research, 0962280218797149. https://doi.org/10.1177/0962280218797149

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IUPUIScholarWorks

https://core.ac.uk/display/250297528?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1177/0962280218797149


For Peer Review

spatial information and individual covariates. Simulation studies show that our proposed

design has good operating characteristics and significantly outperforms an alternative phase

II trial design that ignores the spatial variation.

KEY WORDS: personalized medicine; spatial variation; conditionally autoregressive;

Bayesian adaptive design, phase II trial; Markov random field.
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1 Introduction

Increased understanding of the mechanistic heterogeneity of cancer has brought us to the

era of precision medicine in clinical oncology. Under the paradigm of precision medicine,

the effect of a treatment may differ significantly between patients due to inter-patient het-

erogeneity. Specifically, some drugs may benefit only 2% of the patients and there are even

drugs that are harmful to certain ethnic groups [1]. Therefore, the conventional clinical

trials that assume patient homogeneity are inappropriate to evaluate the individual level

treatment effect. Indeed, to overcome the “one-size-fits-all” approach and to acknowledge

patient heterogeneity, in January 2015, a new 215-million national Precision Medicine Ini-

tiative was launched [2]. Precision medicine provides an unbeatable opportunity for disease

treatment and prevention that take into account each person’s individual variability in genes,

environment, and lifestyle.

Spatial variation is an important cause of patient heterogeneity in addition to clinical

factors and biomarkers. Specifically, patients living in nearby areas are often exposed to

similar physical and social environments such as air pollution, sunlight exposure, climatic

factors [3], and neighborhood conditions [4, 5], so they tend to have similar spatial effects.

On the other hand, patients living in areas that are far apart can be exposed to very different

environments, so the spatial variation may be substantial. Spatial pattern has been observed

in survival rate and incidence of various diseases such as cancer. For example, mortality rate

and incidence of lung cancer are known to be associated with various environmental risk

factors and vary across geographic regions [3, 6, 7, 8]. Henderson, Shimakura, and Gorst [9]

demonstrated that there is good evidence that spatial dependence exists in survival rates

of acute myeloid leukemia patients in northwest England. In a study of prevalence and

morbidity of childhood asthma, Li and Ryan [10] showed that accounting for the spatial

correlation improved the model. Therefore, it is reasonable to believe that the treatment

effects may also vary substantially due to spatial variation, which is in turn determined by

the living pattern of the patients. In fact, a reanalysis of the data from a clinical trial for the

3

Page 4 of 40

https://mc.manuscriptcentral.com/smmr

Statistical Methods in Medical Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

killed oral cholera vaccine did reveal that the spatial variation of the force of infection and

vaccine coverage significantly affected the vaccine effectiveness [11]. Consequently, a clinical

trial evaluating the personalized treatment effect should integrate the spatial variation into

consideration, in addition to patient’s individual covariates. Moreover, as the spatial effects

are correlated between regions with the degree of correlation determined by the distance

between regions, novel statistical methods are required to capture this spatial correlation.

Traditional phase II trials aim to examine the potential efficacy of a new treatment based

on the assumption of patient homogeneity [12, 13, 14, 15, 16, 17]. However, in the presence of

patient heterogeneity, this approach may draw incorrect conclusions. To account for patient

heterogeneity, several phase II clinical trial designs have been proposed that take covariates

such as patient prognostic covariates and disease subtypes into consideration. For example,

Ibrahim, Ryan, and Chen [18] proposed to incorporate historical control information to adjust

for covariate effects in trend tests for binary data. Thall, Sung, and Estey [19] described a

statistical design that accommodates patient prognostic covariates as well as historical data

in multicourse clinical trials. Thall et al. [20] presented a hierarchical Bayesian design for

phase II clinical trials for diseases with multiple subtypes. Wathen et al. [21] proposed a

design for single-arm phase II clinical trials that accounts for patient heterogeneity according

to multiple prognostic subgroups. However, to the best of our knowledge, no phase II trial

design has been developed to account for the spatial variation across geographic regions.

Our study was motivated by a phase II two-arm randomized clinical trial for Non-small

cell lung cancer (NSCLC) patients, which is being conducted at the Indiana University

Melvin and Bren Simon Cancer Center. A maximum of 100 patients will be enrolled and

randomized to receive either the standard radiation therapy or a PI3K inhibitor plus radi-

ation therapy. The outcome of interest is an ordinal variable indicating whether a patient

reports partial or complete remission (PR/CR), stable disease (SD), or progressive disease

(PD). The challenge of conducting this trial is that patients in the trial come from 12 dif-

ferent counties. Counties close to each other tend to share similar environments and living

4
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conditions while counties far apart could have quite distinct environments. Therefore, the

spatial variation should be considered for trial conduction and data analysis.

In this article, we propose a Bayesian adaptive phase II clinical trial design that ac-

commodates spatial variation and patient’s individual characteristics. The objective of the

proposed design is to determine whether the experimental treatment is superior compared

with a standard treatment for each patient according to his/her spatial information and other

individual covariates. To account for the spatial variation, we introduce spatially structured

random effects with a conditional autoregressive prior distribution so that the random ef-

fects corresponding to geographic regions that are close to each other tend to have similar

magnitude. These random effects can be interpreted as surrogates for unmeasured or un-

known region-level exposure variables such as air pollution, which typically exhibit spatial

pattern. In addition, rather than assuming a binary response outcome as in conventional

phase II trials, we use ordinal efficacy outcomes. This is advantageous because the efficacy

outcome is often scored as a multi-level ordinal variable such as PD, SD, PR, and CR in a

real phase II trial, and dichotomizing the multi-level efficacy outcome into a binary variable

looses information [22, 23]. This is especially true for molecularly targeted agents. The bi-

nary efficacy outcome in a traditional phase II trial typically defines CR/PR as a response,

and PD/SD as a nonresponse. That is sensible for conventional cytotoxic agents that work

by shrinking the tumor. However, due to a different functional mechanism, molecularly tar-

geted agents function by stabilizing the tumor rather than shrinking it. So for these agents,

SD is often regarded as a positive outcome because some targeted agents prolong survival

by achieving durable SD without notable tumor progression. So although SD is less favor-

able than CR/PR, it should be distinguished from PD. We use a utility function elicited

from physicians to quantify the desirability of the treatments assuming an ordinal efficacy

outcome. Based on the proposed Bayesian spatial model and utility function, we develop a

two-stage phase II clinical trial design with a personalized randomization scheme to guide

treatment assignment and selection.
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The remainder of this article is organized as follows. In section 2, we present the probabil-

ity model for the ordinal efficacy outcome and the prior distribution specification. Section 3

describes a two-stage design to assign patients to treatment arms based on utility and make

final recommendations. Section 4 examines the operating characteristics of the proposed

design through simulation studies, and concluding remarks are provided in Section 5.

2 Method

2.1 Probability models

Consider a two-arm phase II clinical trial comparing a new treatment with a standard treat-

ment. Let Y be the ordinal efficacy outcome with Y = 1, 2, · · · , K representing increasingly

desirable efficacy. Suppose the study area is subdivided into J geographic regions, which

could be residential districts, clinical sites, cities, counties, states, etc, that are spatially ar-

ranged and potentially subject to spatial correlation. Let X = (X1, · · · , Xq)
′ denote a vector

of q patient-specific covariates such as age, gender, and biomarker status. Suppose at an

interim decision time, nj patients have been enrolled in geographic region j (j = 1, · · · , J).

The data from patient i (i = 1, · · · , nj) in region j take the form (Yij,Xij, Zij), where Zij

denotes the treatment indicator with Zij = 1 or 0 if he/she receives the experimental or the

control arm, respectively. We model Yij using the cumulative probit mixed regression model.

For k = 1, · · · , K − 1,

Φ−1
(

Pr(Yij ≤ k|Xij, Zij, θj)
)

= γk − β0 − β1Zij − β2Xij − β3ZijXij − θj (1)

where −∞ = γ0 < γ1 < · · · < γK−1 < γK = ∞ are boundaries, β0 is an intercept,

β1 is the treatment main effect, β2 = (β2,1, · · · , β2,q) is the vector of covariate main effects,

β3 = (β3,1, · · · , β3,q) is the vector of interaction effects between the treatment and covariates,

and θj is the region-specific random effect for region j, which will be discussed in detail

6
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later. To ensure that the parameters are identifiable, we impose one restriction γ1 = 0.

The cumulative probit model has a latent variable formulation. Specifically, there exists an

unobserved latent variable

Y ∗

ij ∼ N(β0 + β1Zij + β2Xij + β3ZijXij + θj, 1) (2)

for patient i in region j such that Yij = k if γk−1 < Y ∗

ij ≤ γk. This latent variable approach

facilitates the Bayesian inference under standard priors [24].

2.2 Prior specification

The region-specific random effects θ′js can be interpreted as surrogates for unmeasured or

unknown region-level covariates such as air pollution, neighborhood conditions, and social

environments, which typically exhibit spatial pattern. If some of these region-level covariates

could be measured, they should certainly be included in the regression model. However,

these covariates are typically difficult or even impossible to measure [10]. Since neighboring

regions tend to share similar environmental and social factors, it is reasonable to believe that

random effects θ′js corresponding to regions that are close to each other tend to have similar

magnitude. Our approach aims to assign a prior distribution to θ = (θ1, · · · , θJ) to achieve

this spatial correlation.

We define two regions as neighbors if they share a common boundary. Different regions

can have different numbers of neighbors. Consider the example illustrated in Figure 1 where

there are 12 geographic regions. Region 1 has two neighbors, regions 2 and 5; region 2 has

three neighbors, regions 1, 3, and 6; and region 6 has four neighbors, regions 2, 5, 7, and 10.

We model the spatial correlation among regions by assigning θ a Gaussian Markov random

field prior distribution. We adopt the most popular intrinsic conditional autoregressive

7
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(CAR) models [25] with joint prior distribution of θ given by:

p(θ|σ) ∝ exp
{

−
1

2σ

∑

j∼j′

(θj − θj′)
2

}

(3)

where j ∼ j′ denotes that region j and region j′ are neighbors. The hyperparameter σ > 0

controls the degree of smoothness. Small values of σ induce smoother realizations of the

spatial effect. This prior is often denoted as θ ∼ CAR(σ). Under this prior, the distribution

of each element θj for region j given all the other elements {θj∗ , j
∗ 6= j} depends only on its

neighbors. To see this, the conditional distribution of θj given all the other spatial effects

follows a normal distribution

θj|{σ, θj∗ , j
∗ 6= j} ∼ N

( 1

κj

∑

j∼j′

θj′ ,
σ

κj

)

(4)

where κj is the number of neighbors of region j. Since the conditional mean of θj is the

average of the effects of its neighbors, neighboring θ′js will tend to have similar values. Also

the conditional variance σ
κj

is inversely proportional to the number of neighbors, which allows

greater variability at regions with fewer neighbors and less variability at regions with more

neighbors. This is appropriate for spatially correlated random effects because if a region has

more neighbors, then there is more information about the value of its random effect from its

neighbors. This CAR prior is improper because adding an arbitrary constant to each θj will

not change the joint density (3). To address this issue, we add the constraint
∑J

j=1
θj = 0

to guarantee identifiability and propriety of the prior distribution [26, 27, 5].

Now let’s turn to the prior specification of the other parameters. We assign a conjugate

Inverse Gamma prior to the hyperparameter σ. Since there may be little information about

the spatial correlations between regions before we observe any data, we use a vague Inverse

Gamma distribution σ ∼ Inv-Gamma(0.01, 0.01). To assign priors to the regression coeffi-

cients β = (β0, β1,β2,β3), we follow a principle similar to that of Gelman et al. [28]. The

basic idea is that a typical change in a covariate is unlikely to lead to a dramatic change

8
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in the probability of the response variable. Under our probit model, a change of 2.5 on the

probit scale moves a probability of efficacy in one category from 0.1 to 0.89. It is typically

reasonable to assume that the effect of a covariate is unlikely to be more dramatic than

that. This is particularly true for clinical trials where the target efficacy probability is rarely

outside that range. We first standardize each covariate. Binary covariates are scaled to have

a mean of 0 and to differ by 1 in the two categories, and other covariates are scaled to have

a mean of 0 and a standard deviation of 0.5. Each element of β is assigned an independent

normal prior distribution N(0, 1.252). Under this prior, a change in a covariate from one

standard deviation below the mean to one standard deviation above the mean will result in

a change mostly within the range of (0, 2.5) on the probit scale. Finally, each element of the

boundaries γ = {γk, k = 2, · · · , K − 1} has the interpretation of the increment in intercept

when adding additional categories in the cumulative probability in the probit model. Hence,

based on the same consideration as for β, we assign each γk a uniform prior distribution

U(0,2.65) so that a priori, there is a 95% probability that γk is between 0 and 2.5. In addi-

tion, we restrict the joint prior distribution of γ on the subspace γ2 < · · · < γK−1. For more

details, please refer to Guo and Yuan [23].

2.3 Likelihood and Posterior

Letting Θ = (β,γ, σ,θ,Y ∗) denote all unobservables, where Y ∗ = {Y ∗

ij , i = 1, · · · , nj, j =

1, · · · , J} denote the set of all latent variables, and D =
{

(Yij,Xij, Zij), i = 1, · · · , nj, j =

1, · · · , J
}

denote the data from the nj patients in region j, for j = 1, · · · , J , when an interim

decision is to be made, the likelihood for Θ is given by

L(Θ;D) =
J
∏

j=1

nj
∏

i=1

[

{

K
∑

k=1

1(Yij = k)1(γk−1 < Y ∗

ij ≤ γk)
}

× φ(Y ∗

ij ; β0 + β1Zij + β2Xij + β3ZijXij + θj, 1)

]

(5)
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where 1(A) is the indicator function that equals 1 if event A is true and 0 otherwise, and

φ( ;µ, σ2) is the density of the normal distribution with mean µ and variance σ2. The joint

posterior distribution of Θ is

p(Θ|D) ∝ L(Θ;D)p(θ|σ)p(β)p(γ)p(σ) (6)

We use the Gibbs sampler [29] to draw posterior inference.

3 Decision Criteria

Conventional phase II trials with binary efficacy outcomes base decision rules on response

rates, e.g., the probability of tumor response. For an ordinal efficacy outcome with three

or more categories, one practical approach is to dichotomize efficacy into a binary variable

(e.g., response if CR or PR and nonresponse if PD or SD) and then use conventional decision

rules. However, this approach suffers from several drawbacks mentioned earlier such as loss

of information and ignorance of the mechanisms of the treatment, e.g., SD, although not as

desirable as CR/PR, is often regarded as a favorable outcome as many treatments prolong

survival without much tumor shrinkage. To get a more informative and meaningful summary

of the ordinal outcome, we propose to make decisions based on a utility function elicited

from physicians that characterizes the importance/desirability of each category of efficacy.

To illustrate the utility function, we assume the efficacy outcome is categorized as a 3-level

ordinal variable, with Y = 1, 2, 3 representing PD, SD, and PR/CR, respectively. We elicit

from physicians three utility values ω1, ω2, ω3 representing the desirability of the 3 categories

Y = 1, 2, 3, respectively. The three utilities must satisfy 0 = ω1 < ω2 < ω3. One example is

the following

For patients in region j with covariates X, we define the true utility for treatment arm

10
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Y=1 Y=2 Y=3
ω 0 50 100

Z as

Utrue(Z,X, j) =
3

∑

k=1

ωkPr(Y = k|Z,X, j) (7)

The experimental arm is considered superior to the control arm for patients in region j with

covariates X if the true utility increases by a certain percentage δ, that is,

∆(X, j) =
Utrue(Z = 1,X, j)− Utrue(Z = 0,X, j)

Utrue(Z = 0,X, j)
> δ, (8)

where δ is the minimum meaningful increment in utility and is pre-specified by the physicians.

Note that ∆(X, j) depends on covariates X and region j, so whether the experimental agent

is promising depends on a patient’s individual covariates and spatial information.

During the trial, given the interim data Dn collected from n patients, let

Un(Z,X, j) =
3

∑

k=1

ωkPr(Y = k|Z,X, j,Dn) (9)

denote the posterior estimate of the utility of treatment Z for patients with covariates X in

region j, and let

∆n(X, j) =
Un(Z = 1,X, j)− Un(Z = 0,X, j)

Un(Z = 0,X, j)
(10)

denote the posterior estimate of the corresponding percentage of increase in utility. Our

decision criteria will be based on ∆n(X, j).

For a phase II trial that accounts for spatial variation and patient heterogeneity, decision

making is difficult at the beginning of the trial, because estimates of the efficacy probabilities

based on a small number of patients are highly unstable in the presence of patient hetero-

geneity and spatial effects. To alleviate this issue, we propose a two-stage design. Let the

maximum sample size be N . In Stage I, we enroll N1 patients and measure their covariates

11
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and residential regions. Patients in Stage I are equally randomized to the control and the

experimental arms. The purpose of this stage is to collect preliminary data to facilitate the

model fitting in stage II. In stage II, we continue to enroll the remaining N2 = N − N1

patients. Since whether the experimental treatment is promising for a patient depends on

his/her unique individual covariates and residential region, we treat patients one by one in

stage II and continuously update the posterior utilities to determine the treatment assign-

ment for each patient. Specifically, assuming that n − 1 patients have been enrolled in the

trial, we assign a treatment to the nth patient with covariates X in region j as follows.

1. If Pr
(

∆n−1(X, j) > δ
)

> c1, we assign this patient to the experimental arm.

2. If Pr
(

∆n−1(X, j) > δ
)

< c2, we assign this patient to the control arm.

3. Otherwise, we use adaptive randomization to assign this patient to the experimental

or the control arm with probabilities Pr
(

∆n−1(X, j) > δ
)

and Pr
(

∆n−1(X, j) ≤ δ
)

,

respectively.

4. We repeat steps 1-3 until we reach the maximum sample size of N2.

In the design algorithm, 0 ≤ c1, c2 ≤ 1 are probability cutoffs with c1 typically large (e.g.,

0.9) and c2 typically small (e.g., 0.1). These cutoffs will be tuned through simulation studies

to achieve good design operating characteristics. Indeed, c1 and c2 can be viewed as coun-

terparts of the early-stopping boundaries for superiority and futility, respectively, which are

frequently used in conventional Bayesian adaptive designs. If Pr
(

∆n−1(X, j) > δ
)

> c1, then

there is sufficient evidence that the experimental arm is superior to the control arm for the

nth patient with covariates X in region j, so he/she should be assigned to the experimental

arm. The interpretation of c2 is similar. However, unlike the conventional clinical trials that

typically implement early-stopping rules by assuming patient homogeneity, the proposed de-

sign considers patient heterogeneity so the treatment assignment and decision rules are both

tailored to each patient’s individual profile X and residential region j and therefore cannot
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be generalized to the whole patient population. As a result, the proposed design should, in

general, never early stop the trial for futility or superiority because each patient is unique.

After stage II is completed, for each combination of covariates X and region j, we claim

the experimental treatment is promising if

Pr
(

∆N(X, j) > δ
)

> c (11)

and claim the experimental arm is not promising otherwise, where c is a probability cutoff

to be tuned through simulation.

4 Simulation

4.1 Simulation setting

We conducted simulation studies to assess the operating characteristics of the proposed de-

sign. The maximum sample size was N = 100, with stage I sample size N1 = 30 and

stage II sample size N2 = 70. Let the covariate X be a binary biomarker with 50% pos-

itive marker prevalence. The efficacy outcome Y was taken to be a 3-level ordinal vari-

able. To mimic our motivating trial, we assumed 12 geographic regions representing dis-

tricts/counties/cities/states located as in Figure 1. We used the utility table provided in

Section 3, i.e., ω1 = 0, ω2 = 50, and ω3 = 100. The minimum meaningful improvement of

the utility was taken to be δ = 30% so that the experimental agent was deemed promis-

ing relative to the standard treatment if the increase in utility exceeded 30%. We took

the probability cutoffs c1 = 0.9, c2 = 0.1, and c = 0.5, which yielded desirable operating

characteristics.

We constructed 8 scenarios to evaluate the performance of the proposed design. The

true regression parameters for the 8 scenarios are provided in Table S1 in the Supplementary

Materials. For each scenario, we considered two values of σ in the CAR model for θ, and
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two situations in terms of the relative population of the 12 regions. σ was set to 2 or 10 to

induce different degrees of spatial variations among the regions. In the first setting of relative

population, we assumed all 12 regions had the same populations so the relative population

was 1 : 1 : · · · : 1. In the second setting, we assumed the relative population of the 12

regions was 1 : 2 : · · · : 11 : 12 to evaluate the performance of the proposed design with

unequal populations of the regions. The probability of sampling a patient from a particular

region was proportional to its relative population. Spatially structured random vectors θ

were generated from the CAR model following the technique described in Norton and Niu [5].

Conditional on the regional random effects θ, the efficacy outcomes were generated within

each region under the probit model (1).

Under our simulation setting, there are 24 combinations of biomarker status and region.

As θ′js were randomly generated in each simulated trial, the true recommended treatment for

a given combination of biomarker status and region could be different in different simulated

trials even under the same scenario. To get a ballpark idea of the magnitude of the efficacy

probabilities in each scenario, we present in Table 1 the true efficacy probabilities and true

utility for each biomarker subgroup under each treatment when there is no spatial effect, that

is, θj = 0 for j = 1, · · · , 12. Since the random effects θ′js always have mean 0, these efficacy

probabilities represent the “average state” of a scenario across the 12 geographic regions.

With all θ′js being 0, there is no spatial variation, so patients with the same biomarker

status in the same treatment arm have the same efficacy probabilities and therefore the

same utility. As shown by Table 1, the 8 scenarios were chosen to cover different cases of

the “average” treatment effects across the 12 regions. In scenarios 1 and 2, the experimental

treatment is “on average” not promising for marker negative group, and promising for marker

positive group. In scenarios 3 and 4, the experimental treatment is “on average” promising

for marker negative group, and not promising for marker positive group. In scenarios 5 and

6, the experimental treatment is “on average” not promising for both marker groups; and

in scenarios 7 and 8, the experimental treatment is “on average” promising for both marker
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groups. Note that the experimental arm was considered superior to the control arm if the

utility of that arm was at least 30% higher than that of the control arm.

To demonstrate the importance of accounting for the spatial variation in phase II trials,

we compared our proposed design to a nonspatial design that incorporated the biomarker

but ignored the spatial variation across the regions. That is, we used the same probit model

(1), but with the spatial effects θ′js dropped. To make a fair comparison, we used the same

utility table and 2-stage strategy for both designs.

4.2 Simulation results

Under each scenario, we simulated 500 trials for each combination of σ and relative popula-

tion of the J regions. As mentioned earlier, in each simulated trial under any given scenario,

each of the 24 combinations of region and biomarker has its own recommended treatment

due to the spatial random effects. Therefore, we report the simulation results in two ways.

Table 2 shows the mean percent of correct selection (PCS) of the true recommended treat-

ment across the 24 combinations of biomarker and region under each scenario, and Figure 2

shows the PCS of the true recommended treatment for each of the 24 combinations under

each scenario. The complete results of the PCS for the 8 scenarios are provided in Tables

S2 and S3 in the Supplementary Materials. The PCS measures the group ethics of the trial

as it provides the performance of the designs to recommend treatments for future patients

after the trial is completed. Table 3 shows the percentage of correct treatment assignment

(PCTA) for the N2 patients in stage II with adaptive randomization. This provides a mea-

sure of the individual ethics of the trial as it evaluates the performance of the designs to

assign appropriate treatments to the patients enrolled in the trial.

The proposed spatial design significantly outperformed the nonspatial design in terms

of both PCS and PCTA according to our simulation results. As shown in Table 2, the

proposed spatial design yielded consistently higher mean PCS than the nonspatial design

across all the simulation settings. In particular, since a larger value of σ induces larger
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spatial variations, the advantage of our proposed spatial design was more pronounced under

σ = 10 than under σ = 2. For instance, in scenario 1 with equal populations, the spatial

design yielded 7.3% higher mean PCS than the nonspatial design when σ = 2 (73.1% vs

65.8%), and 21.3% higher mean PCS when σ = 10 (77.8% vs 56.5%). Figure 2 depicts

the PCS stratified by the region and biomarker subgroup. As shown by Figure 2, when

σ = 10, our proposed spatial design yielded consistently higher PCS than the nonspatial

design across the 24 combinations of region and biomarker status. For example, in scenario

1, with σ = 10 and equal populations, the proposed spatial model yielded 1% − 15.8% and

27.4%−39% higher PCS than the nonspatial model across the 12 regions for marker negative

and positive groups, respectively. In scenario 8, with σ = 10 and unequal populations, the

proposed design resulted in 20.6%− 34.8% and 20.8%− 29.6% higher PCS across all regions

under marker negative and positive groups, respectively. When σ = 2, the proposed design

also gave higher PCS for almost all the combinations of region and marker group. For

example, in scenarios 6, 7, and 8, PCS were consistently higher under the proposed design

than under the nonspatial design for all combinations of region and biomarker status. In

other scenarios, the proposed design yielded higher PCS for the majority of the 12 regions

for each marker group. For example, in scenario 1, when the 12 regions had the same

populations, the proposed design resulted in higher PCS for 11 out of the 12 regions for both

marker groups, and slightly lower PCS for only one region, i.e., 62.4% vs 64.8% for region 1

under marker negative group and 79% vs 79.2% for region 6 under marker positive group.

Table 3 reports the PCTA under the two designs. Again, the proposed spatial design

yielded higher PCTA than the nonspatial design under all settings in all scenarios. For ex-

ample, in scenario 1, the proposed design resulted in 6.1% and 16.5% higher PCTA when

σ = 2 and 10, respectively, under equal populations; and 5.1% and 16% higher PCTA, under

unequal populations. To sum up, both the higher PCS and PCTA under the proposed design

clearly demonstrate the importance of accounting for the spatial variation across geographic

regions and the benefit of adopting the proposed spatial design.
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4.3 Sensitivity Analyses

We carried out sensitivity analyses to examine the robustness of our proposed spatial design

to the prior distributions and the utility function. To simplify our presentation, only cases

with equal populations were studied. In our original simulation studies, we used vague priors

for all parameters. In the sensitivity studies, we let the prior distributions be even more non-

informative. Specifically, we let the prior distribution of each element of β be N(0, 52) so

the prior standard deviation was twice of the original standard deviation. And we assigned

γ2 a Unif(0, 5) prior distribution so the prior range was much wider than the original range.

Under these new prior distributions, the results (see Tables 4 and 5 and Figure 3) are very

similar to the original results reported in Figure 2 and Tables 2 and 3, suggesting that the

proposed design is robust to the choice of the prior distributions.

To evaluate the sensitivity of the proposed design to the choice of the utility function, we

considered the following 2 alternative utility functions: the first (second) new utility gives

higher (lower) desirability scores to the outcome Y = 2. As shown in Figure 3 and Tables 4

and 5, the results under the two alternative utilities are generally similar to those reported

in Figure 2 and Tables 2 and 3. The complete table of PCS is given in the Supplementary

Materials (Table S4).

Utility 1 Utility 2
Y=1 Y=2 Y=3 Y=1 Y=2 Y=3

ω 0 60 100 0 30 100

5 Discussion

We have described a Bayesian adaptive phase II clinical trial design which accounts for

the spatial variation as well as patient heterogeneity. Our design uses the cumulative pro-
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bit regression to model the ordinal efficacy outcome and assigns an intrinsic conditional

autoregressive prior distribution to the region-specific random effects to achieve spatial de-

pendence. We propose a two-stage design to assign patients to desirable treatments based

on their spatial information and individual covariates and make the personalized treatment

recommendation for future patients after the trial is completed. Simulation results show that

our proposed design has desirable operating characteristics and outperforms an alternative

design that ignores the spatial variation.

Our spatial design can be extended to phase I dose-finding designs, multi-arm phase II

designs, and large-scale phase III confirmatory trials. In particular, we anticipate a sub-

stantial benefit of accounting for the spatial variation in phase III trials because the spatial

effect is generally expected to be more significant in a large-scale phase III trial involving

multicenter, or even multinational collaboration. Further research in this area is warranted.

In our simulation studies, we included a limited number of individual covariates in our

proposed spatial design. It is conceptually easy to incorporate more covariates, however,

due to the typical small or moderate sample sizes of phase II trials, we do not recommend

to include too many covariates in the model. For a moderate number of covariates, some

dimension reduction or model selection technique could be used in conjunction with our

method (e.g., see Guo and Yuan [23]).

Like many existing Bayesian adaptive clinical trial designs (e.g., [30, 31, 32]), our proposed

design is based on adaptive randomization (AR). Compared with equal randomization (ER)

that randomizes patients equally between treatments, AR uses the accumulating data to

adapt the randomization probabilities so that on average more patients in the trial will

receive the more effective treatment. Therefore, AR enhances the individual ethics of the

trial and it is more desirable for patients enrolled in the trial. However, as a trade-off, AR

sacrifices a little bit of power to detect a treatment effect. In addition, AR slightly increases

the chance of a sample size imbalance in the wrong direction. To alleviate this problem, we

equip the proposed design with a “burn-in” ER stage before applying AR, as suggested by
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Thall, Fox, and Wathen [33] and Zang and Lee [34]. Extension of the proposed design is

warranted.
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Table 1: True efficacy probabilities and utilities for the two biomarker subgroups (X =
0/1 for marker negative/positive group) under the two treatments (Z = 0/1 for con-
trol/experimental arm) when there is no spatial effect for the 8 scenarios. The last column
“∆” in each scenario shows the percentage of increase in utility for the experimental arm
relative to the standard arm for each marker group. If ∆ > 0.3, the experimental arm is
considered superior to the control. The bolded lines in each scenario represent the true
recommended treatments for the two marker groups.
Z X Pr(Y = 1) Pr(Y = 2) Pr(Y = 3) Utility ∆ Pr(Y = 1) Pr(Y = 2) Pr(Y = 3) Utility ∆

scenario 1 scenario 5
0 0 0.48 0.41 0.11 31.3 0.38 0.38 0.24 43.0

1 0 0.42 0.44 0.14 35.7 0.14 0.31 0.38 0.31 50.0 0.16
0 1 0.29 0.48 0.23 46.8 0.21 0.37 0.42 60.4

1 1 0.07 0.35 0.58 75.6 0.62 0.13 0.32 0.56 71.7 0.19
scenario 2 scenario 6

0 0 0.34 0.38 0.27 46.5 0.44 0.45 0.11 33.3

1 0 0.27 0.38 0.34 53.5 0.15 0.34 0.50 0.16 40.7 0.22
0 1 0.62 0.29 0.10 23.9 0.13 0.47 0.40 63.8

1 1 0.42 0.37 0.21 39.6 0.65 0.07 0.39 0.54 73.7 0.15
scenario 3 scenario 7

0 0 0.31 0.58 0.12 40.3 0.69 0.21 0.10 20.3
1 0 0.07 0.51 0.42 67.7 0.68 0.54 0.28 0.18 32.2 0.59
0 1 0.16 0.60 0.24 54.2 0.52 0.28 0.20 33.9
1 1 0.10 0.56 0.34 62.4 0.15 0.27 0.31 0.42 57.3 0.69

scenario 4 scenario 8
0 0 0.50 0.34 0.16 32.9 0.46 0.33 0.21 37.6
1 0 0.31 0.38 0.31 50.0 0.52 0.21 0.33 0.46 62.4 0.66
0 1 0.66 0.26 0.08 21.3 0.76 0.19 0.05 14.8
1 1 0.60 0.30 0.11 25.3 0.19 0.60 0.28 0.13 26.3 0.77

Table 2: Mean percent of correct selection (PCS) of the true recommended treatment across
the 24 combinations of region and biomarker status under the proposed spatial design and
the nonspatial design.

Equal Populations Unequal Populations
σ = 2 σ = 10 σ = 2 σ = 10

Scenario Spatial Nonspatial Spatial Nonspatial Spatial Nonspatial Spatial Nonspatial

1 0.731 0.658 0.778 0.565 0.708 0.636 0.764 0.554
2 0.709 0.628 0.744 0.545 0.688 0.629 0.723 0.536
3 0.782 0.711 0.818 0.569 0.772 0.701 0.806 0.566
4 0.670 0.572 0.707 0.518 0.625 0.547 0.708 0.529
5 0.724 0.613 0.745 0.577 0.709 0.621 0.745 0.568
6 0.717 0.630 0.749 0.572 0.711 0.622 0.725 0.566
7 0.698 0.614 0.750 0.500 0.719 0.592 0.743 0.493
8 0.746 0.634 0.768 0.496 0.739 0.581 0.765 0.499

24

Page 25 of 40

https://mc.manuscriptcentral.com/smmr

Statistical Methods in Medical Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Table 3: Percent of correct treatment assignment (PCTA) for patients in the second stage
of the trial under the proposed spatial design and the nonspatial design.

Equal Populations Unequal Populations
σ = 2 σ = 10 σ = 2 σ = 10

Scenario Spatial Nonspatial Spatial Nonspatial Spatial Nonspatial Spatial Nonspatial

1 0.646 0.585 0.702 0.537 0.635 0.584 0.700 0.540
2 0.639 0.576 0.673 0.527 0.632 0.580 0.671 0.532
3 0.691 0.629 0.738 0.549 0.691 0.624 0.737 0.557
4 0.598 0.545 0.654 0.508 0.580 0.533 0.648 0.527
5 0.658 0.584 0.706 0.551 0.669 0.588 0.703 0.558
6 0.653 0.585 0.697 0.548 0.668 0.593 0.692 0.545
7 0.631 0.566 0.678 0.503 0.632 0.568 0.664 0.493
8 0.641 0.571 0.683 0.499 0.634 0.555 0.673 0.506

Table 4: Mean percent of correct selection (PCS) of the true recommended treatment across
the 24 combinations of the region and biomarker status under the original simulation setting,
alternative prior distributions, and two new utility functions.

Original results New Priors New utility 1 New utility 2
Scenario σ = 2 σ = 10 σ = 2 σ = 10 σ = 2 σ = 10 σ = 2 σ = 10

1 0.731 0.778 0.734 0.777 0.703 0.770 0.732 0.775
2 0.709 0.744 0.713 0.720 0.709 0.738 0.683 0.720
3 0.782 0.818 0.815 0.798 0.802 0.818 0.772 0.800
4 0.670 0.707 0.623 0.702 0.639 0.716 0.638 0.710
5 0.724 0.745 0.695 0.738 0.734 0.749 0.669 0.721
6 0.717 0.749 0.671 0.727 0.742 0.757 0.655 0.711
7 0.698 0.750 0.711 0.751 0.713 0.758 0.754 0.728
8 0.746 0.768 0.709 0.748 0.765 0.779 0.750 0.788
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Table 5: Percent of correct treatment assignment (PCTA) for patients in the second stage of
the trial under the original simulation setting, alternative prior distributions, and two new
utility functions.

Original results New Priors New utility 1 New utility 2
Scenario σ = 2 σ = 10 σ = 2 σ = 10 σ = 2 σ = 10 σ = 2 σ = 10

1 0.646 0.702 0.651 0.702 0.627 0.699 0.643 0.684
2 0.639 0.673 0.638 0.670 0.638 0.692 0.615 0.645
3 0.691 0.738 0.695 0.721 0.705 0.733 0.677 0.717
4 0.598 0.654 0.588 0.656 0.594 0.658 0.581 0.642
5 0.658 0.706 0.637 0.696 0.675 0.713 0.617 0.686
6 0.653 0.697 0.622 0.684 0.680 0.708 0.605 0.678
7 0.631 0.678 0.637 0.658 0.643 0.684 0.659 0.652
8 0.641 0.683 0.645 0.668 0.651 0.683 0.629 0.689
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Figure 1: An example of 12 spatially arranged geographic regions.
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For Peer Review
Figure 2: Percent of correct selection (PCS) of the true recommended treatment for each
of the 24 combinations of region and biomarker status for the 8 scenarios. The eight rows
represent the 8 scenarios. In each row, the 4 plots from left to right represent equal popu-
lations (EP) and σ = 2, EP and σ = 10, unequal populations (UEP) with σ = 2, and UEP
with σ = 10, respectively. In each plot, the red (green) solid line represents the PCS for the
marker negative group under the proposed spatial model (nonspatial model); the red (green)
broken line represents the PCS for the marker positive group under the proposed spatial
model (nonspatial model).
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Figure 2 continued.
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Figure 3: Sensitivity analyses: percent of correct selection of the true recommended treat-
ment under alternative prior distributions and utility functions. Each row represents a
scenario. In each row, the 4 plots from left to right represent results from the original
setting, alternative prior distribution, and the two new utility functions. In each row, the
red (green) solid line represents marker negative (positive) group under σ = 2, and the red
(green) broken line represents marker negative (positive) group under σ = 10.
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Figure 3 continued.
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Table S1: True model parameters for the 8 scenarios.

scenario β0 β1 β2 β3 γ
1 0.1 0.2 0.5 0.8 1.3
2 0.4 0.2 -0.7 0.3 1.0
3 0.5 1.0 0.5 -0.7 1.7
4 0.0 0.5 -0.4 -0.4 1.0
5 0.3 0.2 0.5 0.2 1.0
6 0.2 0.3 1.0 0.1 1.4
7 -0.5 0.4 0.5 0.3 0.8
8 0.1 0.7 -0.8 -0.3 0.9
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Table S2: Percent of correct selection of the true recommended treatment for the 8 scenarios
with equal relative population.

σ = 2 σ = 10
X = 0 X = 0 X = 1 X = 1 X = 0 X = 0 X = 1 X = 1

Region (Spatial) (Nonspatial) (Spatial) (NonSpatial) (Spatial) (Nonspatial) (Spatial) (NonSpatial)
Scenario 1

1 0.624 0.648 0.828 0.650 0.702 0.576 0.876 0.488
2 0.644 0.590 0.784 0.736 0.686 0.606 0.862 0.476
3 0.618 0.598 0.804 0.648 0.668 0.632 0.890 0.500
4 0.670 0.634 0.828 0.626 0.716 0.568 0.874 0.556
5 0.648 0.616 0.810 0.744 0.716 0.620 0.852 0.488
6 0.662 0.606 0.790 0.792 0.692 0.598 0.812 0.498
7 0.628 0.618 0.816 0.744 0.642 0.636 0.818 0.540
8 0.668 0.608 0.812 0.740 0.710 0.618 0.842 0.538
9 0.636 0.626 0.808 0.606 0.718 0.628 0.878 0.514
10 0.664 0.600 0.814 0.766 0.718 0.632 0.858 0.518
11 0.680 0.594 0.806 0.756 0.704 0.624 0.838 0.564
12 0.682 0.504 0.820 0.744 0.732 0.574 0.878 0.562

Scenario 2
1 0.770 0.664 0.662 0.562 0.730 0.588 0.754 0.432
2 0.728 0.706 0.670 0.570 0.720 0.614 0.744 0.482
3 0.726 0.642 0.670 0.618 0.712 0.594 0.768 0.420
4 0.798 0.644 0.734 0.596 0.752 0.568 0.778 0.462
5 0.718 0.660 0.670 0.584 0.702 0.570 0.754 0.486
6 0.748 0.698 0.654 0.588 0.692 0.600 0.748 0.490
7 0.754 0.700 0.636 0.594 0.730 0.620 0.746 0.502
8 0.726 0.680 0.684 0.606 0.730 0.628 0.736 0.534
9 0.744 0.672 0.720 0.526 0.742 0.556 0.794 0.528
10 0.734 0.688 0.680 0.544 0.740 0.604 0.768 0.492
11 0.718 0.682 0.646 0.598 0.750 0.640 0.768 0.532
12 0.742 0.662 0.684 0.582 0.722 0.648 0.780 0.498

Scenario 3
1 0.838 0.762 0.786 0.658 0.890 0.526 0.798 0.564
2 0.842 0.778 0.760 0.704 0.876 0.516 0.760 0.640
3 0.838 0.754 0.690 0.702 0.848 0.538 0.760 0.604
4 0.854 0.688 0.688 0.658 0.902 0.510 0.770 0.570
5 0.830 0.748 0.714 0.680 0.848 0.556 0.804 0.588
6 0.834 0.788 0.702 0.716 0.846 0.546 0.756 0.642
7 0.816 0.772 0.722 0.726 0.832 0.542 0.752 0.662
8 0.834 0.716 0.724 0.690 0.862 0.556 0.804 0.614
9 0.862 0.698 0.762 0.620 0.854 0.528 0.800 0.552
10 0.832 0.744 0.736 0.702 0.854 0.526 0.742 0.590
11 0.830 0.722 0.696 0.694 0.836 0.584 0.756 0.630
12 0.834 0.674 0.748 0.680 0.876 0.518 0.808 0.558

Scenario 4
1 0.768 0.580 0.656 0.584 0.752 0.512 0.680 0.506
2 0.738 0.510 0.640 0.574 0.716 0.492 0.660 0.526
3 0.684 0.588 0.630 0.576 0.764 0.472 0.644 0.516
4 0.682 0.572 0.604 0.520 0.760 0.472 0.682 0.492
5 0.748 0.550 0.646 0.588 0.760 0.498 0.652 0.528
6 0.692 0.548 0.580 0.584 0.720 0.480 0.664 0.540
7 0.716 0.552 0.578 0.576 0.704 0.494 0.638 0.566
8 0.700 0.582 0.594 0.580 0.738 0.448 0.682 0.602
9 0.748 0.570 0.658 0.592 0.760 0.516 0.680 0.586
10 0.720 0.568 0.578 0.604 0.742 0.496 0.660 0.568
11 0.710 0.576 0.624 0.594 0.742 0.510 0.726 0.600
12 0.748 0.584 0.628 0.580 0.770 0.456 0.664 0.558
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Table S2 continued.

σ = 2 σ = 10
X = 0 X = 0 X = 1 X = 1 X = 0 X = 0 X = 1 X = 1

Region (Spatial) (Nonspatial) (Spatial) (NonSpatial) (Spatial) (Nonspatial) (Spatial) (NonSpatial)
Scenario 5

1 0.736 0.636 0.752 0.556 0.680 0.584 0.734 0.534
2 0.724 0.650 0.728 0.596 0.704 0.658 0.712 0.610
3 0.712 0.656 0.742 0.570 0.708 0.610 0.814 0.560
4 0.748 0.652 0.754 0.582 0.716 0.568 0.788 0.562
5 0.746 0.640 0.740 0.590 0.748 0.602 0.754 0.530
6 0.716 0.636 0.694 0.566 0.708 0.616 0.710 0.566
7 0.728 0.702 0.694 0.614 0.804 0.666 0.782 0.564
8 0.696 0.708 0.682 0.630 0.716 0.564 0.786 0.580
9 0.748 0.602 0.754 0.554 0.764 0.518 0.768 0.498
10 0.704 0.602 0.716 0.580 0.746 0.608 0.762 0.570
11 0.688 0.672 0.718 0.574 0.716 0.548 0.744 0.562
12 0.714 0.600 0.748 0.538 0.744 0.602 0.760 0.570

Scenario 6
1 0.670 0.556 0.764 0.696 0.702 0.512 0.778 0.582
2 0.604 0.554 0.792 0.704 0.714 0.550 0.798 0.664
3 0.624 0.524 0.778 0.706 0.726 0.504 0.862 0.618
4 0.676 0.596 0.764 0.698 0.750 0.524 0.796 0.566
5 0.676 0.584 0.758 0.710 0.698 0.568 0.782 0.608
6 0.620 0.548 0.816 0.718 0.670 0.502 0.774 0.624
7 0.606 0.576 0.798 0.746 0.730 0.596 0.766 0.648
8 0.616 0.552 0.778 0.716 0.722 0.540 0.812 0.618
9 0.654 0.568 0.786 0.676 0.670 0.588 0.798 0.568
10 0.648 0.550 0.808 0.696 0.722 0.570 0.776 0.610
11 0.686 0.550 0.816 0.684 0.672 0.488 0.720 0.586
12 0.680 0.522 0.788 0.682 0.734 0.544 0.794 0.546

Scenario 7
1 0.676 0.554 0.756 0.638 0.746 0.446 0.784 0.462
2 0.660 0.550 0.746 0.640 0.724 0.440 0.768 0.478
3 0.660 0.546 0.728 0.666 0.746 0.480 0.788 0.544
4 0.666 0.586 0.730 0.646 0.788 0.478 0.798 0.482
5 0.666 0.554 0.764 0.652 0.730 0.474 0.784 0.414
6 0.640 0.576 0.732 0.690 0.698 0.460 0.764 0.488
7 0.654 0.578 0.706 0.692 0.736 0.494 0.776 0.584
8 0.688 0.594 0.760 0.646 0.780 0.508 0.784 0.536
9 0.624 0.574 0.744 0.672 0.626 0.514 0.788 0.484
10 0.616 0.576 0.722 0.636 0.646 0.524 0.742 0.532
11 0.668 0.610 0.730 0.656 0.708 0.582 0.750 0.546
12 0.664 0.562 0.754 0.634 0.758 0.560 0.794 0.500

Scenario 8
1 0.788 0.642 0.756 0.620 0.834 0.488 0.762 0.516
2 0.746 0.620 0.738 0.654 0.812 0.540 0.736 0.484
3 0.762 0.594 0.744 0.658 0.782 0.488 0.740 0.474
4 0.760 0.624 0.716 0.618 0.826 0.528 0.768 0.512
5 0.802 0.652 0.728 0.666 0.762 0.530 0.738 0.528
6 0.756 0.636 0.736 0.660 0.742 0.524 0.698 0.488
7 0.730 0.620 0.736 0.654 0.740 0.450 0.708 0.390
8 0.756 0.606 0.734 0.636 0.780 0.496 0.736 0.450
9 0.746 0.628 0.704 0.634 0.820 0.506 0.758 0.512
10 0.762 0.628 0.710 0.644 0.830 0.524 0.724 0.528
11 0.764 0.632 0.732 0.624 0.810 0.512 0.732 0.444
12 0.768 0.636 0.726 0.618 0.826 0.530 0.758 0.468
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Table S3: Percent of correct selection of the true recommended treatment for the 8 scenarios
with unequal relative population.

σ = 2 σ = 10
Region X = 0 X = 0 X = 1 X = 1 X = 0 X = 0 X = 1 X = 1
Region (Spatial) (Nonspatial) (Spatial) (NonSpatial) (Spatial) (Nonspatial) (Spatial) (NonSpatial)

Scenario 1
1 0.602 0.598 0.734 0.582 0.682 0.550 0.774 0.460
2 0.590 0.592 0.734 0.614 0.712 0.528 0.770 0.474
3 0.626 0.598 0.770 0.684 0.702 0.542 0.808 0.482
4 0.654 0.580 0.772 0.632 0.684 0.584 0.848 0.460
5 0.624 0.618 0.792 0.626 0.712 0.594 0.836 0.518
6 0.570 0.622 0.824 0.704 0.692 0.594 0.824 0.518
7 0.616 0.610 0.844 0.692 0.688 0.632 0.826 0.518
8 0.630 0.626 0.820 0.648 0.696 0.624 0.848 0.502
9 0.642 0.610 0.830 0.684 0.710 0.586 0.870 0.548
10 0.606 0.606 0.818 0.712 0.674 0.630 0.860 0.570
11 0.626 0.618 0.762 0.716 0.696 0.656 0.846 0.584
12 0.690 0.620 0.816 0.662 0.724 0.610 0.852 0.522

Scenario 2
1 0.710 0.608 0.638 0.548 0.702 0.544 0.660 0.414
2 0.734 0.672 0.606 0.556 0.682 0.554 0.684 0.466
3 0.706 0.616 0.638 0.598 0.742 0.634 0.694 0.436
4 0.714 0.646 0.700 0.636 0.754 0.596 0.762 0.460
5 0.698 0.632 0.650 0.516 0.738 0.594 0.724 0.484
6 0.696 0.702 0.606 0.626 0.722 0.630 0.684 0.466
7 0.746 0.710 0.634 0.616 0.702 0.624 0.694 0.490
8 0.736 0.674 0.682 0.546 0.712 0.592 0.730 0.476
9 0.684 0.636 0.740 0.642 0.782 0.630 0.740 0.482
10 0.698 0.750 0.644 0.642 0.718 0.586 0.742 0.488
11 0.732 0.692 0.658 0.614 0.736 0.598 0.768 0.532
12 0.706 0.676 0.750 0.546 0.730 0.596 0.742 0.498

Scenario 3
1 0.754 0.652 0.730 0.650 0.740 0.472 0.742 0.596
2 0.794 0.740 0.708 0.660 0.786 0.506 0.790 0.596
3 0.796 0.768 0.726 0.662 0.796 0.500 0.750 0.550
4 0.806 0.658 0.738 0.678 0.856 0.476 0.788 0.564
5 0.788 0.740 0.728 0.694 0.842 0.484 0.776 0.620
6 0.812 0.748 0.736 0.688 0.844 0.476 0.766 0.670
7 0.844 0.748 0.718 0.692 0.818 0.512 0.752 0.666
8 0.826 0.728 0.734 0.666 0.910 0.564 0.748 0.632
9 0.824 0.692 0.732 0.654 0.864 0.514 0.788 0.578
10 0.832 0.734 0.736 0.672 0.884 0.538 0.792 0.674
11 0.846 0.752 0.748 0.702 0.870 0.528 0.752 0.672
12 0.820 0.746 0.758 0.690 0.888 0.578 0.806 0.624

Scenario 4
1 0.614 0.492 0.590 0.592 0.692 0.438 0.676 0.540
2 0.610 0.470 0.590 0.574 0.724 0.448 0.690 0.552
3 0.660 0.528 0.618 0.556 0.722 0.486 0.682 0.556
4 0.628 0.504 0.620 0.528 0.770 0.492 0.682 0.502
5 0.668 0.488 0.658 0.588 0.734 0.428 0.644 0.516
6 0.594 0.536 0.630 0.586 0.714 0.422 0.628 0.604
7 0.612 0.560 0.560 0.578 0.772 0.482 0.668 0.554
8 0.630 0.544 0.602 0.532 0.780 0.512 0.668 0.594
9 0.664 0.500 0.630 0.594 0.766 0.508 0.708 0.606
10 0.646 0.582 0.588 0.562 0.736 0.510 0.632 0.588
11 0.664 0.576 0.632 0.524 0.744 0.560 0.660 0.618
12 0.674 0.570 0.624 0.558 0.778 0.556 0.718 0.618
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Table S3 continued.

σ = 2 σ = 10
X = 0 X = 0 X = 1 X = 1 X = 0 X = 0 X = 1 X = 1

Region (Spatial) (Nonspatial) (Spatial) (NonSpatial) (Spatial) (Nonspatial) (Spatial) (NonSpatial)
Scenario 5

1 0.646 0.574 0.692 0.590 0.730 0.540 0.730 0.470
2 0.702 0.570 0.740 0.574 0.704 0.588 0.694 0.506
3 0.686 0.640 0.684 0.580 0.678 0.550 0.760 0.532
4 0.716 0.626 0.716 0.604 0.724 0.528 0.782 0.514
5 0.644 0.618 0.726 0.578 0.710 0.600 0.790 0.550
6 0.684 0.644 0.724 0.618 0.716 0.630 0.762 0.604
7 0.714 0.664 0.722 0.602 0.702 0.604 0.760 0.654
8 0.710 0.658 0.776 0.616 0.716 0.602 0.754 0.552
9 0.666 0.648 0.802 0.560 0.784 0.574 0.808 0.508
10 0.742 0.654 0.748 0.658 0.724 0.604 0.778 0.618
11 0.652 0.666 0.726 0.658 0.748 0.564 0.818 0.590
12 0.684 0.630 0.722 0.672 0.744 0.546 0.766 0.602

Scenario 6
1 0.572 0.518 0.728 0.628 0.692 0.492 0.722 0.552
2 0.638 0.544 0.778 0.678 0.662 0.570 0.710 0.620
3 0.572 0.542 0.790 0.682 0.644 0.568 0.742 0.566
4 0.668 0.532 0.774 0.648 0.730 0.526 0.746 0.534
5 0.662 0.562 0.772 0.686 0.712 0.506 0.774 0.590
6 0.628 0.592 0.774 0.734 0.690 0.568 0.802 0.588
7 0.622 0.566 0.814 0.718 0.724 0.574 0.750 0.676
8 0.688 0.558 0.798 0.686 0.696 0.572 0.778 0.632
9 0.674 0.554 0.802 0.688 0.738 0.492 0.748 0.572
10 0.648 0.596 0.768 0.696 0.746 0.506 0.790 0.604
11 0.608 0.550 0.784 0.692 0.662 0.566 0.724 0.588
12 0.680 0.550 0.832 0.720 0.692 0.564 0.714 0.568

Scenario 7
1 0.608 0.538 0.696 0.498 0.670 0.496 0.688 0.508
2 0.644 0.520 0.684 0.602 0.674 0.456 0.738 0.496
3 0.642 0.578 0.726 0.670 0.638 0.506 0.718 0.520
4 0.690 0.568 0.754 0.650 0.734 0.488 0.800 0.456
5 0.680 0.518 0.774 0.620 0.732 0.468 0.794 0.472
6 0.678 0.566 0.744 0.616 0.680 0.426 0.770 0.500
7 0.688 0.600 0.750 0.668 0.668 0.488 0.778 0.496
8 0.720 0.584 0.776 0.650 0.744 0.456 0.812 0.494
9 0.728 0.546 0.816 0.608 0.736 0.562 0.820 0.538
10 0.698 0.564 0.780 0.628 0.712 0.470 0.816 0.540
11 0.686 0.616 0.764 0.646 0.720 0.462 0.808 0.530
12 0.718 0.544 0.822 0.598 0.758 0.490 0.828 0.520

Scenario 8
1 0.708 0.596 0.708 0.508 0.748 0.464 0.700 0.470
2 0.708 0.602 0.692 0.528 0.778 0.490 0.742 0.446
3 0.764 0.590 0.772 0.530 0.758 0.512 0.724 0.504
4 0.760 0.602 0.740 0.592 0.822 0.496 0.730 0.522
5 0.748 0.602 0.738 0.554 0.804 0.498 0.740 0.478
6 0.748 0.616 0.762 0.508 0.788 0.440 0.748 0.466
7 0.728 0.638 0.718 0.564 0.730 0.524 0.692 0.472
8 0.704 0.630 0.714 0.592 0.810 0.540 0.756 0.524
9 0.794 0.630 0.764 0.504 0.826 0.512 0.756 0.504
10 0.772 0.648 0.746 0.562 0.810 0.554 0.694 0.490
11 0.754 0.608 0.728 0.562 0.828 0.512 0.752 0.478
12 0.796 0.602 0.678 0.566 0.840 0.566 0.784 0.524
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Table S4: Percent of correct selection of the true recommended treatment for the 8 scenarios
under alternative prior distributions and utility functions.

New prior New utility 1 New utility 2
σ = 2 σ = 10 σ = 2 σ = 10 σ = 2 σ = 10

X0 X1 X0 X1 X0 X1 X0 X1 X0 X1 X0 X1

scenario 1
1 0.692 0.788 0.720 0.900 0.682 0.810 0.776 0.888 0.646 0.830 0.734 0.896
2 0.672 0.798 0.682 0.850 0.624 0.776 0.778 0.814 0.612 0.844 0.674 0.868
3 0.660 0.782 0.666 0.844 0.640 0.734 0.690 0.826 0.628 0.812 0.652 0.860
4 0.690 0.770 0.702 0.904 0.636 0.760 0.594 0.880 0.646 0.856 0.652 0.832
5 0.628 0.838 0.688 0.856 0.628 0.768 0.720 0.824 0.596 0.848 0.694 0.880
6 0.656 0.788 0.688 0.842 0.622 0.744 0.724 0.850 0.598 0.848 0.670 0.808
7 0.644 0.820 0.704 0.826 0.612 0.748 0.582 0.872 0.600 0.852 0.724 0.864
8 0.698 0.818 0.676 0.864 0.640 0.756 0.726 0.832 0.602 0.832 0.722 0.870
9 0.650 0.832 0.684 0.876 0.660 0.818 0.704 0.888 0.652 0.854 0.706 0.912
10 0.692 0.792 0.698 0.846 0.604 0.770 0.698 0.830 0.636 0.838 0.692 0.842
11 0.644 0.790 0.720 0.856 0.616 0.754 0.652 0.834 0.624 0.836 0.650 0.858
12 0.652 0.810 0.680 0.870 0.652 0.822 0.662 0.824 0.628 0.848 0.666 0.880

scenario 2
1 0.746 0.740 0.758 0.748 0.724 0.718 0.760 0.826 0.680 0.706 0.754 0.762
2 0.732 0.682 0.720 0.704 0.732 0.700 0.696 0.774 0.644 0.696 0.686 0.722
3 0.714 0.658 0.736 0.738 0.704 0.650 0.706 0.750 0.680 0.706 0.714 0.730
4 0.764 0.642 0.724 0.710 0.738 0.682 0.744 0.774 0.706 0.738 0.750 0.742
5 0.712 0.734 0.722 0.682 0.744 0.704 0.736 0.780 0.676 0.750 0.688 0.736
6 0.720 0.724 0.714 0.658 0.714 0.642 0.668 0.682 0.618 0.708 0.684 0.684
7 0.716 0.690 0.704 0.702 0.750 0.652 0.710 0.716 0.624 0.666 0.674 0.728
8 0.736 0.688 0.752 0.726 0.710 0.680 0.690 0.728 0.668 0.690 0.636 0.752
9 0.692 0.728 0.682 0.698 0.744 0.712 0.818 0.700 0.654 0.696 0.740 0.728
10 0.722 0.688 0.708 0.740 0.732 0.674 0.818 0.674 0.646 0.680 0.750 0.726
11 0.752 0.698 0.728 0.718 0.750 0.676 0.790 0.722 0.678 0.714 0.690 0.724
12 0.724 0.698 0.750 0.746 0.748 0.724 0.710 0.750 0.676 0.698 0.714 0.762

scenario 3
1 0.876 0.736 0.862 0.754 0.820 0.800 0.870 0.786 0.886 0.652 0.860 0.746
2 0.884 0.748 0.848 0.726 0.840 0.742 0.852 0.784 0.896 0.648 0.884 0.728
3 0.848 0.802 0.854 0.752 0.810 0.752 0.860 0.770 0.902 0.606 0.886 0.714
4 0.786 0.786 0.866 0.736 0.810 0.846 0.838 0.782 0.898 0.618 0.880 0.736
5 0.836 0.742 0.882 0.734 0.820 0.792 0.804 0.804 0.890 0.664 0.880 0.726
6 0.882 0.738 0.834 0.730 0.776 0.806 0.824 0.800 0.928 0.628 0.864 0.692
7 0.850 0.768 0.830 0.734 0.814 0.824 0.824 0.720 0.908 0.636 0.842 0.728
8 0.918 0.830 0.828 0.746 0.798 0.794 0.868 0.798 0.916 0.638 0.902 0.706
9 0.832 0.764 0.868 0.718 0.812 0.782 0.836 0.800 0.882 0.718 0.904 0.760
10 0.844 0.772 0.850 0.724 0.768 0.800 0.862 0.830 0.918 0.650 0.862 0.742
11 0.808 0.768 0.862 0.768 0.804 0.814 0.848 0.826 0.880 0.624 0.828 0.724
12 0.896 0.856 0.888 0.760 0.838 0.788 0.850 0.790 0.902 0.644 0.872 0.730

scenario 4
1 0.714 0.608 0.740 0.562 0.696 0.642 0.784 0.698 0.754 0.642 0.772 0.718
2 0.686 0.584 0.740 0.644 0.628 0.644 0.762 0.684 0.682 0.614 0.750 0.676
3 0.622 0.562 0.754 0.590 0.652 0.626 0.740 0.636 0.672 0.590 0.742 0.628
4 0.716 0.538 0.816 0.714 0.658 0.656 0.774 0.678 0.684 0.586 0.764 0.606
5 0.700 0.580 0.748 0.644 0.670 0.608 0.792 0.678 0.706 0.632 0.784 0.680
6 0.594 0.584 0.804 0.562 0.642 0.550 0.726 0.630 0.632 0.596 0.782 0.614
7 0.646 0.590 0.762 0.662 0.594 0.604 0.754 0.660 0.684 0.554 0.746 0.630
8 0.642 0.584 0.738 0.612 0.682 0.620 0.786 0.662 0.664 0.564 0.772 0.590
9 0.714 0.592 0.770 0.646 0.696 0.602 0.768 0.694 0.676 0.600 0.846 0.720
10 0.634 0.566 0.756 0.646 0.654 0.600 0.752 0.662 0.696 0.546 0.782 0.626
11 0.658 0.554 0.794 0.684 0.632 0.614 0.762 0.658 0.668 0.552 0.746 0.668
12 0.706 0.588 0.772 0.678 0.698 0.670 0.748 0.688 0.720 0.596 0.762 0.644
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Table S4 continued.

New prior New utility 1 New utility 2
σ = 2 σ = 10 σ = 2 σ = 10 σ = 2 σ = 10

X0 X1 X0 X1 X0 X1 X0 X1 X0 X1 X0 X1

scenario 5
1 0.684 0.696 0.756 0.714 0.696 0.774 0.744 0.762 0.696 0.742 0.674 0.716
2 0.650 0.710 0.784 0.746 0.732 0.784 0.752 0.770 0.620 0.678 0.722 0.742
3 0.648 0.688 0.676 0.774 0.724 0.736 0.764 0.780 0.650 0.672 0.716 0.746
4 0.712 0.684 0.736 0.748 0.702 0.796 0.738 0.772 0.658 0.704 0.722 0.776
5 0.700 0.728 0.744 0.756 0.728 0.742 0.720 0.800 0.660 0.684 0.712 0.680
6 0.638 0.712 0.700 0.766 0.724 0.778 0.740 0.800 0.622 0.656 0.654 0.718
7 0.654 0.716 0.700 0.730 0.726 0.760 0.672 0.780 0.588 0.622 0.698 0.770
8 0.668 0.712 0.688 0.768 0.666 0.740 0.740 0.712 0.650 0.684 0.732 0.748
9 0.720 0.774 0.692 0.728 0.706 0.750 0.708 0.754 0.718 0.736 0.682 0.724
10 0.658 0.702 0.662 0.754 0.732 0.692 0.776 0.754 0.648 0.708 0.700 0.760
11 0.678 0.750 0.744 0.760 0.714 0.768 0.718 0.748 0.652 0.684 0.722 0.740
12 0.686 0.718 0.750 0.830 0.712 0.732 0.736 0.726 0.642 0.674 0.706 0.742

scenario 6
1 0.636 0.768 0.702 0.776 0.668 0.776 0.748 0.780 0.634 0.720 0.772 0.760
2 0.602 0.626 0.700 0.778 0.648 0.794 0.690 0.782 0.640 0.708 0.620 0.852
3 0.682 0.650 0.718 0.736 0.702 0.792 0.674 0.774 0.596 0.670 0.758 0.820
4 0.670 0.720 0.748 0.788 0.694 0.838 0.732 0.820 0.638 0.734 0.594 0.734
5 0.608 0.700 0.696 0.732 0.638 0.814 0.674 0.776 0.592 0.692 0.602 0.668
6 0.588 0.736 0.658 0.752 0.644 0.826 0.706 0.762 0.630 0.726 0.716 0.834
7 0.612 0.732 0.668 0.752 0.620 0.812 0.714 0.778 0.594 0.642 0.688 0.702
8 0.602 0.710 0.650 0.746 0.716 0.834 0.738 0.790 0.572 0.754 0.760 0.700
9 0.568 0.742 0.706 0.794 0.700 0.800 0.726 0.792 0.550 0.768 0.624 0.664
10 0.590 0.708 0.678 0.786 0.716 0.770 0.750 0.850 0.538 0.724 0.670 0.652
11 0.658 0.736 0.682 0.728 0.662 0.872 0.730 0.816 0.572 0.728 0.694 0.648
12 0.652 0.806 0.708 0.764 0.672 0.808 0.752 0.824 0.578 0.724 0.708 0.824

scenario 7
1 0.656 0.766 0.740 0.810 0.714 0.716 0.696 0.848 0.704 0.832 0.680 0.756
2 0.660 0.720 0.730 0.840 0.638 0.758 0.714 0.820 0.712 0.802 0.686 0.748
3 0.660 0.732 0.722 0.832 0.678 0.776 0.690 0.784 0.736 0.780 0.730 0.718
4 0.716 0.786 0.722 0.828 0.690 0.656 0.738 0.814 0.728 0.784 0.700 0.730
5 0.614 0.750 0.698 0.822 0.692 0.732 0.730 0.774 0.722 0.790 0.726 0.818
6 0.674 0.748 0.712 0.812 0.700 0.708 0.690 0.750 0.688 0.802 0.682 0.742
7 0.686 0.776 0.684 0.780 0.740 0.738 0.676 0.814 0.704 0.758 0.670 0.718
8 0.690 0.806 0.712 0.776 0.732 0.764 0.732 0.822 0.708 0.784 0.688 0.774
9 0.646 0.742 0.722 0.770 0.652 0.714 0.702 0.832 0.736 0.786 0.682 0.780
10 0.634 0.734 0.722 0.746 0.706 0.714 0.692 0.800 0.730 0.786 0.708 0.738
11 0.670 0.744 0.690 0.724 0.680 0.680 0.698 0.816 0.698 0.804 0.682 0.756
12 0.666 0.776 0.662 0.770 0.746 0.792 0.730 0.820 0.720 0.808 0.742 0.810

scenario 8
1 0.678 0.716 0.824 0.712 0.722 0.770 0.806 0.732 0.786 0.670 0.844 0.758
2 0.776 0.680 0.796 0.700 0.782 0.768 0.798 0.724 0.782 0.724 0.838 0.766
3 0.684 0.674 0.790 0.688 0.768 0.730 0.780 0.726 0.838 0.698 0.824 0.770
4 0.734 0.726 0.828 0.684 0.806 0.772 0.858 0.750 0.780 0.696 0.810 0.754
5 0.734 0.726 0.856 0.692 0.750 0.734 0.820 0.746 0.772 0.706 0.830 0.774
6 0.760 0.718 0.788 0.694 0.776 0.754 0.776 0.732 0.778 0.736 0.790 0.750
7 0.702 0.712 0.774 0.654 0.804 0.804 0.816 0.744 0.764 0.734 0.798 0.744
8 0.692 0.710 0.770 0.692 0.802 0.752 0.820 0.746 0.740 0.720 0.810 0.788
9 0.726 0.680 0.862 0.734 0.760 0.790 0.834 0.762 0.768 0.760 0.816 0.782
10 0.722 0.716 0.778 0.660 0.732 0.742 0.840 0.746 0.806 0.738 0.812 0.734
11 0.708 0.680 0.812 0.654 0.766 0.714 0.804 0.726 0.810 0.758 0.764 0.736
12 0.670 0.690 0.840 0.670 0.784 0.768 0.838 0.776 0.736 0.688 0.838 0.782
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