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Brian A. Grice 

CELLULAR & MOLECULAR MECHANISMS THAT CONTRIBUTE TO THE 

EARLY DEVELOPMENT OF SKELETAL MUSCLE & SYSTEMIC INSULIN 

RESISTANCE 

Insulin resistance starts years before type 2 diabetes (T2D) diagnosis, even before 

recognition of prediabetes. Mice on a high fat diet have a similar early onset of insulin 

resistance, yet the mechanism remains unknown. Several studies have demonstrated that 

skeletal muscle insulin resistance resulting from obesity or high fat feeding does not stem 

from defects in proximal insulin signaling. Our lab discovered that excess plasma 

membrane cholesterol impairs insulin action. Excess cholesterol in the plasma membrane 

causes a loss of cortical actin filaments that are essential for glucose transporter GLUT4 

regulation by insulin. Our cell studies further revealed that increased hexosamine 

biosynthesis pathway (HBP) activity increases O-linked N-acetylglucosamine 

modification of the transcription factor Sp1, leading to transcription of HMG-CoA 

reductase (HMGR), the rate-limiting enzyme in cholesterol biosynthesis. Our central 

hypothesis is that cholesterol accumulation mediated by HBP activity is an early 

reversible mechanism of high-fat diet-induced insulin resistance. We performed a series 

of studies and found that early high-fat feeding-induced insulin resistance is associated 

with a buildup of cholesterol in skeletal muscle membranes (SMM). Akin to the 

antidiabetic effect of caloric restriction, we found that high-fat diet removal fully 

mitigated SMM cholesterol accumulation and insulin resistance. Furthermore, using the 

cholesterol-binding agent methyl-β-cyclodextrin (MβCD), studies established causality 

between excess SMM cholesterol and insulin resistance. To begin to assess the role of the 
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HBP/Sp1 in contributing to de novo cholesterol biosynthesis, SMM accumulation, and 

insulin resistance we treated high-fat fed mice with an Sp1 inhibitor, mithramycin. We 

found that mithramycin prevented SMM cholesterol accumulation and insulin resistance. 

This series of studies provide evidence that HBP/Sp1-mediated cholesterol accumulation 

in SMM is a causal, early and reversible mechanism of whole body insulin resistance. 

Jeffrey Elmendorf, Ph.D., Chair 
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Chapter 1. Introduction 

1.A. Epidemiology of type 2 diabetes and insulin resistance 

The global prevalence of diabetes mellitus is estimated to be 422 million resulting 

in 1.5 million early deaths a year1. The economic cost of diabetes for the United States 

was an estimated 327 billion dollars in 2017 a 26% increase from just 5 years prior2. 

Diabetes is concerning since it affects almost all parts of the body and causes serious 

health issues, including being the leading cause of retinopathy, kidney failure, and 

amputations in the United States. Moreover, diabetes augments the risk of heart attack, 

stroke, high blood pressure, high triglycerides, high cholesterol, and infections. 

Type 2 diabetes is the fastest growing disease and is the most prevalent form of 

diabetes mellitus worldwide1. Insulin resistance, the defining feature of type 2 diabetes, is 

the inability of insulin to effectively decrease blood glucose levels. Insulin resistance 

occurs many years prior to the onset of type 2 diabetes, and for a sizeable percentage 

(33.9%) of the adult population in the United States of America, insulin resistance can be 

clinically identified by the presence of impaired glucose regulation (IGR), or 

prediabetes3. This population is at an elevated risk for type 2 diabetes and other metabolic 

diseases. 

Clinically, insulin resistance can be identified by the presence of IGR defined as 

either impaired fasting glucose (IFG) or impaired glucose tolerance (IGT)4. About 40% 

of people with IGR display IFG, a marker of hepatic insulin resistance5. A similar 

percentage of IGR individuals display IGT resultant from skeletal muscle insulin 

resistance5. Incident cases of type 2 diabetes develop from skeletal muscle or hepatic 

insulin resistance alone, rarely both5. Only in people with combined IFG/IGT (~16%) is 

both hepatic and skeletal muscle resistance present4-9. 
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Blood glucose homeostasis is maintained predominately by the liver, skeletal 

muscle, and fat. Fasting blood glucose is maintained at a stable level by hepatic glucose 

production through glycogenolysis and gluconeogenesis. Hepatic insulin resistance is the 

inability of insulin to suppress hepatic glucose output resulting in elevated fasting 

glucose10. Once absorbed by the gut, glucose stimulates the secretion of insulin by 

pancreatic β-cells. Post-prandial insulin secretion inhibits hepatic glucose output and 

activates glucose disposal in skeletal muscle, and to a lesser extent adipose tissue. 

Skeletal muscle utilizes glycogen for energy during fasting while glucose disposal is 

minimal. Post-prandial insulin secretion, however, upregulates skeletal muscle glucose 

disposal and glycogen synthesis, eventually lowering blood glucose to basal levels by 

storing glucose as glycogen. Skeletal muscle insulin resistance is the inability of insulin 

to sufficiently stimulate glucose disposal resulting in elevated post-prandial blood 

glucose10, 11. 

Fat accounts for a small percentage of insulin-stimulated glucose disposal and 

therefore, similarly has diminished glucose disposal11. However, the major response of 

fat to insulin is the inhibition of lipolysis and the activation of lipogenesis for fuel 

storage. The effect of fat on blood glucose is mainly through the augmentation of hepatic 

gluconeogenesis which will be discussed later10, 11. 

Richard Bergman in the 1980s modeled the relationship between insulin 

resistance and insulin secretion adding to our understanding of IGR12. The modeling 

identified a log-linear relationship between insulin secretion (AIRG) and insulin 

sensitivity (SI)
12. Understanding this relationship determines what Bergman termed the 

disposition index (DI=AIRG x SI) and it first became apparent that hyperinsulinemia can 
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maintain normoglycemia in the presence of insulin resistance12, 13. It is estimated that a 

quarter of non-obese normoglycemic individuals have some form of insulin resistance14. 

The transition from insulin resistance to IGR and type 2 diabetes occurs after pancreatic β 

cells fail to secrete insulin at quantities sufficient to compensate for insulin resistance14. 

In 2001 the diabetes prevention program discovered that type 2 diabetes can be 

prevented in people with IGT. Prevention was successful with either a lifestyle 

intervention or metformin therapy, some individuals even reverted to normal glucose 

tolerance15, 16. The onset of IGT, however, may be too late for many people. As seen in 

prospective studies, insulin secretion begins to diminish for many at the onset of IGT as 

β-cell failure culminates17. Therefore, identifying the pathophysiology of skeletal muscle 

insulin resistance well before pancreatic β cells are damaged would be of tremendous 

value for the intervention of type 2 diabetes. 

1.B. Physiology of insulin resistance 

A decade following the discovery of insulin was the characterization of insulin 

resistance by Himsworth18. In 1959, Yalow and Berson, following their development of 

the radioimmunoassay, investigated the endogenous insulin levels in the blood of insulin-

resistant and insulin-sensitive populations19, 20. Their research led to the discovery that 

glucose-intolerant subjects had hyperinsulinemia and hyperglycemia20. Shen and 

colleagues helped further validate the presence of insulin resistance in 1970 by 

maintaining steady glucose concentrations in the presence of insulin, epinephrine and 

propranolol to inhibit insulin secretion and hepatic glucose production21. They found that 

higher steady state concentrations of glucose corresponded to impaired skeletal muscle 

glucose disposal. In 1979, DeFronzo, Andres and Tobin, developed the euglycemic 
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clamp which has since become the gold standard for identifying insulin resistance22. The 

clamp has also allowed scientists to distinguish between hepatic insulin resistance and 

skeletal muscle insulin resistance. The relationship mentioned in the previous section 

between IFG and IGT with hepatic and skeletal muscle insulin resistance, respectively, 

was understood using the clamp method4, 6, 7.  

Skeletal muscle is the site responsible for nearly 85% of whole body glucose 

disposal making it an important mediator of human glucose tolerance23. Clamp measured 

skeletal muscle insulin sensitivity begins to decline quickly in the setting of positive 

energy balance prior to any observed clinical indicators7, 13, 24, 25. Notably, individuals 

with normal glucose tolerance, but a low level of glucose disposal are at an elevated risk 

for IGT, regardless of insulin secretory function26. On the other hand, it has recently been 

observed that hyperinsulinemia is an independent mediator of insulin resistance 

irrespective of base-line insulin sensitivity27. The inability of insulin to fully stimulate the 

insulin responsive glucose transporter type 4 (GLUT4) translocation to the cell-surface 

membrane accounts for diminished glucose uptake28. Metabolism of glucose, glycogen, 

proteins, and fat are altered in skeletal muscle insulin resistance, yet these metabolic 

changes are modest and secondary to the defining characteristic of skeletal muscle insulin 

resistance, namely impaired GLUT4 regulation10, 11, 29.  

Insulin also regulates anabolic and catabolic functions in fat and the liver. As 

mentioned earlier the main node of insulin regulation in fat is lipogenesis and lipolysis. 

Lipolysis in fat is no longer attenuated by insulin and consequently non-esterified fatty 

acid (NEFA) levels increase in the blood10. Hepatic insulin resistance corresponds to an 

increased activation of glycogenolysis and gluconeogenesis. This increase is partly 
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mediated by insulin’s inability to allosterically regulate glycogen synthase, and the 

transcriptional regulation of gluconeogenic genes (Pck1 and G6pc)29. Proteolysis and 

hepatic lipolysis are upregulated providing fuel for gluconeogenesis, but these hepatic 

processes appear to be minor contributors to gluconeogenesis10. Instead, hepatic insulin 

resistance appears to be tightly coupled to the increased NEFA levels that arise from the 

insulin resistance of fat29, 30. Increasing the concentration of NEFAs in circulation is 

sufficient to induce hepatic glucose production during a clamp in insulin sensitive 

subjects10. The liver also has a pathway-specific resistance since lipogenesis remains 

functional, or even augmented. My dissertation is focused on skeletal muscle insulin 

resistance and I would therefore, like to direct the reader to the review articles by Czech, 

Hatting et al., and Petersen et al. as guides to better understand the physiology of fat and 

liver insulin resistance10, 29, 31. 

1.C. Regulation of GLUT4 translocation 

While insulin resistance was just beginning to be appreciated and the physiology 

was under study, Rachmiel Levine, in 1950, observed insulin’s ability to regulate glucose 

uptake in muscle32. The ensuing discovery of the membrane-bound insulin receptor, in 

1971, led investigators to probe insulin signal transduction33. Throughout the 1980s it 

became apparent that insulin was regulating glucose uptake in fat and skeletal muscle by 

relocation of a glucose transporter from the cytosol to the plasma membrane34-45. By 

1988, David James identified an insulin-regulated glucose transporter unique to striated 

muscle and fat, which we now know as GLUT437. A year later the gene encoding GLUT4 

was cloned and mapped36. Since then, scientists have identified many of the effectors in 

the insulin signal transduction pathway and the response elements regulating the 
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translocation of GLUT4 to the plasma membrane10, 45-48. The following section reviews 

the intricate pathway of insulin-regulated GLUT4 translocation (see Figure 1 for 

graphical depiction). Many of the signaling proteins in this pathway have multiple 

isoforms and phosphorylation sites, but I will only discuss those responsible for insulin-

regulated GLUT4 translocation. I will first discuss the proximal signal transduction and 

then review the mechanical processes executed by the proximal signal. Expanded 

information on the biochemistry of the insulin receptor and its signaling pathways can be 

found in the review articles by Haeusler, Hoffman, Jaldin-Fincat, Leto, Petersen, and 

Tokarz10, 45, 46, 48.           
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Figure 1. Insulin regulated GLUT4 translocation. The sequence of signaling steps is 

as follows: 1) Insulin binds the insulin receptor 2) insulin receptor auto-phosphorylates 3) 

insulin receptor phosphorylates IRS 4) IRS activates PI3K by docking to SH domain 5) 

PI3K converts PIP2 to PIP3 6) PIP3 activates PDK1 and mTORC2 by recruiting them to 

the plasma membrane through PH-domains 7) PDK1 and mTORC2 phosphorylate Akt2 

8) Akt2 phosphorylates AS160 releasing it from inhibitory binding Rabs. 9) Rabs recruit 

GSVs to docking stations and interact with fusion proteins resulting in GLUT4 

integration into the plasma membrane. Figure adapted from Jaldin-Fincat et al.46                                                                                                                             
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1.C.1. Proximal insulin signaling  

There are two insulin receptor isoforms A and B, the isoform most sensitive to 

insulin and expressed in large quantity on insulin responsive tissues is insulin receptor 

B10. This tyrosine kinase receptor undergoes autophosphorylation in response to insulin 

binding49. The insulin receptor produces a mitogenic signal through a mitogen-activated 

protein kinase and a metabolic signal through an insulin receptor substrate (IRS) of which 

there are six isoforms IRS1, IRS2, IRS3, IRS4, IRS5, and IRS648, 50. IRS1 amplifies the 

insulin signal by effector signal propagation and is necessary for GLUT4 translocation 

whereas IRS2 is involved in other cellular metabolic functions and, along with IRS1, 

regulates hepatic insulin signaling10. The importance of IRS3-6 are imperfectly 

understood. 

The insulin receptor phosphorylates multiple tyrosine residues in IRS150. Once 

phosphorylated, IRS1 docks to the regulatory subunit, p85, of phosphatidylinositol 3 

kinase 3(PI3K) which phosphorylates phosphatidylinositol 4,5-bisphosphate (PIP2) 

generating phosphatidylinositol 3,4,5-bisphosphate (PIP3). The PIP3 signal transduction 

regulating GLUT4 translocation is PI3K-dependent and the nonspecific PI3K inhibitor 

wortmannin can effectively eliminate skeletal muscle glucose uptake10. Studies in 3T3-

L1 adipocytes, however, show that insulin can regulate GLUT4 translocation independent 

of PI3K, and there is emerging evidence that skeletal muscle also has a PI3K-independent 

pathway not discussed10. Once activated PIP3 transmits the signal to Akt2, RAC1, and 

Protein Kinase C (PKC) three divergent pathways each important for GLUT4 

translocation10, 46-48, 51. 
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1.C.2. GLUT4 translocation  

The first PIP3 responsive pathway identified was the transmission of the insulin 

signal from PIP3 to phosphoinositide-dependent protein kinase 1 (PDK1) and 

mTORC246. PDK1 and mTORC2 are kinases responsible for the phosphorylation of 

Akt2—the isoform of Akt responsible for regulating GLUT4 translocation—on a 

threonine residue and a serine residue, respectively10, 46. The PDK1 phosphorylation of 

the threonine site occurs first and is required for GLUT4 translocation10, 46, 52. The serine 

residue is phosphorylated second and is not necessary for GLUT4 translocation10, 46. 

Instead, it is responsible for regulating the Akt2-mediated transcriptional response10. 

Activation of Akt at the threonine residue results in the phosphorylation of an Akt 

substrate of 160 kD (AS160, aka TBC1D4) and another isoform TBC1D1, rendering 

these Akt targets inactive10. AS160 and TBC1D1 are Rab GTPase-activating protein 

(GAP)s that inhibit Rab8A and Rab13 in skeletal muscle and Rab10 in adipose tissue10, 45, 

46, 53. Liberation of these Rabs from the GAP proteins allow GLUT4 storage vesicle 

(GSV)s to traffic to the plasma membrane10, 45, 46, 53.  

The second pathway regulated by PIP3 is responsible for assembling the cortical 

actin that facilitates tethering, docking, and fusion of GSVs to the plasma membrane. 

PIP3 activates Rac1 which is responsible for inhibiting the actin disassembly protein 

Cofilin and activating the actin-branching protein Arp2/310, 45, 46, 53. Akt2 also mediates 

the stabilization of actin at the membrane once it is assembled. PIP2 also acts in a PI3K-

independent capacity by regulating filamentous actin (F-actin) at the plasma membrane. 

The motor proteins MyoVa and Mical-L2 interact with the actin transporting the GSV to 

the point of tethering10, 45, 46, 53.  
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The third point of PI3K signal regulation is located at the membrane and is 

facilitated by PKCζ and PKCλ. Once triggered by phosphorylation, these PKCs 

phosphorylate Munc18c releasing it from the inhibitory binding of the docking/fusion 

protein Syntaxin410, 45, 46, 53. At the convergence of the GSVs with the plasma membrane 

the pathways reconvene to complete translocation10, 45, 46, 53. Once situated, the Rabs, 

activated by GAP inhibition, can promote the tethering of vesicle membrane protein 

Vamp2 to the plasma membrane protein SNAP23 10, 45, 46, 53. PI3K signaling to 

phospholipase D1 (PLD1) results in phosphatidylcholine conversion to phosphatidic acid. 

This conversion induces a negative curvature in the plasma membrane, which is a 

“priming signal” for fusion45. 

There are many points susceptible to disruption along the pathway delineated. 

Knockout studies of proximal signaling proteins point to multiple sites that can cause 

insulin resistance in homozygous knockouts. Heterozygous knockout studies complicate 

this picture and question the causality of proximal signaling in insulin resistance. Knock-

in studies further muddy the waters by demonstrating redundancies in the pathway and 

presenting us with evidence of multiple ancillary pathways capable of bypassing 

signaling steps. Allosteric inhibition occurs at multiple locations along the proximal 

signaling pathway and can be induced by cellular and physiologic mediators of insulin 

resistance. Differential regulation of gene transcription accompanies insulin resistance 

and may also mediate the effect of diet-induced insulin resistance. GLUT4 translocation 

has been explored less in diet-induced insulin resistance studies, but evidence from 

proximal studies and translocation experiments suggest a key role for this process in diet-

induced insulin resistance. Our lab has provided a portfolio of evidence that the 
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mediation of diet-induced insulin resistance occurs by a disruption in the translocation 

processes at the plasma membrane. 

1.D. Cellular mechanisms of insulin resistance 

In 1963 Randle and colleagues theorized competition between glucose and fatty 

acids, or glucose-fatty acid cycle, regulates insulin action either at the cellular membrane 

or by regulating hexokinase—the enzyme responsible for converting glucose to glucose-

6-phosphate (G6P)—the first step in glycolysis54. The contention was that unregulated 

adipose lipolysis in insulin resistance saturates the skeletal muscle with NEFAs. The 

muscle oxidizes NEFAs converting them in a series of steps to malonyl-CoA. Randle 

postulated malonyl-CoA was responsible for inhibiting glucose uptake through 

hexokinase inhibition and switching to β-oxidation54. Another aspect is the inhibition of 

pyruvate dehydrogenase in turn elevating levels of pyruvate and lactate which ultimately 

are shuttled into hepatic gluconeogenesis54.  

The regulation of insulin stimulated glucose uptake has turned out to be more 

complicated and cannot be explained simply by the glucose-fatty acid cycle. In human 

studies, the worsening of IGT, a marker of skeletal muscle insulin resistance, can be 

unrelated to NEFA concentration in the blood. Furthermore, in some populations, NEFAs 

are inversely correlated with diabetes risk after adjusting for 2-hour plasma glucose55, 56. 

Supporting these findings are the epidemiologic trends I discussed early regarding IGR. 

In most cases of insulin resistance, increased hepatic glucose output and skeletal muscle 

insulin resistance are not present simultaneously. The Randle hypothesis necessitates the 

concordant presentation of elevated hepatic glucose output and skeletal muscle insulin 

resistance. More studies examining the Randle hypothesis have shown the central tenant, 
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fatty acids regulating metabolism, is indeed accurate57. The contention, however, that 

fatty acid regulation of glycolysis mediates diet-induced insulin resistance is insufficient 

in explaining insulin resistance10, 58. There is a lot of evidence that hepatic glucose output 

is partly mediated by NEFA levels in the blood, but skeletal muscle insulin resistance is 

unlikely a consequence of circulating NEFA levels. And, although it is well known that 

glycolytic metabolites allosterically regulate glycolytic; gluconeogenic; and glycogenic 

enzymes, altered allosteric regulation of these pathways is not a major contributor to 

impaired insulin-stimulated glucose uptake in skeletal muscle59 and does not account for 

total hepatic glucose output in insulin resistance10. 

Regulation of metabolic enzymes is mediated in part by insulin regulated 

transcription factors. Insulin signaling through Akt regulates two important transcription 

factors fork head family box O 1 (FOXO1) and sterol regulatory binding protein-1C 

(SREBP-1C)10, 29. Akt directly regulates FOXO1 and indirectly mediates SREBP-1C 

through the mTOR pathway. FOXO1 is responsible for increasing the expression of 

gluconeogenic proteins, mainly in the liver48. Normally inhibited by insulin, FOXO1 

becomes unregulated in insulin resistance and this deregulation coupled with elevated 

circulating NEFAs results in elevated hepatic glucose output10, 29, 48. SREBP-1C is 

required for upregulating fatty acid and cholesterol synthesis in the liver and skeletal 

muscle. The regulation of these two pathways demonstrates the concept of pathway 

selective insulin resistance. 

Pathway-selective resistance was first coined as a term to describe the conflicting 

presence of intact insulin receptor-regulated mitogenic activity and metabolic insulin 

resistance. Now, however, we have many examples of this phenomenon such as tow 
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conflicting features of hepatic and adipose insulin resistance, 1) FOXO1 upregulation of 

gluconeogenesis and fat lipolysis are not responsive to Akt regulation, 2) whereas 

SREBP-1c mediated de novo lipogenesis is upregulated by hyperinsulinemic activation of 

the Akt→mTOR pathway in insulin resistance. Pathway selective insulin resistance has 

not been identified in skeletal muscle, but this process may explain the presence of 

unregulated proteolysis and lipolysis in skeletal muscle and the contrary observation that 

only a small percentage of proximal signaling is required for insulin stimulated GLUT4 

translocation60, 61.  

Increased fatty acid synthesis, along with inflammation and mitochondrial 

dysfunction, endoplasmic reticulum (ER) stress, hyperleptinemia, hyperinsulinemia, and 

hyperglycemia are all physiologic mediators of insulin resistance. Many of these 

physiologic processes affect proximal insulin signaling by activation of allosteric 

regulators. Hyperglycemia and hyperinsulinemia also increase glucose flux through the 

hexosamine biosynthesis pathway (HBP)—another post-transcriptional regulator of 

signaling molecules and transcription factors. We and others believe the study of 

mechanisms arising early in the pathogenesis of insulin resistance will reduce 

confounding of multiple congruent mechanisms and will be important for revealing the 

causality of one or more contributing mechanisms10, 62.  

In this section I will provide an overview first of post-translational regulators of 

insulin signaling molecules, since these are redundant among many of the physiologic 

mediators of signaling (see Figure 2). I will then discuss the mechanism of distal 

regulation at the plasma membrane studied as part of my dissertation. Following the 

discussion of mechanisms, is a presentation of well-known physiologic mediators of 
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insulin resistance. I will then follow up with a temporal sequence of these mechanisms 

understood so far for diet-induced insulin resistance. Furthermore, I will discuss the 

evidence for causality attributed to these mechanisms. I will point to important studies 

that demonstrate the insufficiency of proximal insulin signaling defects as a mechanism 

for skeletal muscle diet-induced insulin resistance and direct the reader back to my 

dissertation subject of membrane cytoskeletal processes. 

It is important to note that insulin action in fat, skeletal muscle, and liver has 

many concordant steps in the insulin-signaling pathway and therefore distinctions will be 

made when mechanisms diverge and only relate to one or two of these tissues. This 

overlap is also important when investigating the physiology of insulin resistance because 

alterations of a common pathway step will likely affect insulin action in all the tissues 

similarly; whereas, alterations of divergent pathway steps will only affect insulin action 

in the corresponding tissue.   
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Figure 2. Proximal insulin signaling regulatory proteins. Regulation of insulin 

signaling pathway is through 5 classes of proteins, protein phosphatases (PTP1B, PP2A, 

PP2B, PHLPP), lipid phosphatases (SHIP1/2 and PTEN), inhibitory kinases (S6K, 

aPKCθ/ε, IKKβ, JNK), pseudosubstrates (Grb10, Grb13, Grb14 and SOCs), and protein 

degradation (clathrin-coated pits, lysosome recruitment, and SOCs activation of 

ubiquitin-mediated degradation). Most of the known physiologic mediators of insulin 

resistance mentioned below promote insulin resistance through one of these inhibitory 

pathways. Figure adapted from Boucher et al.63.  
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1.D.1. Post-translational regulation 

A well-known form of insulin resistance is caused by a rare mutation in the 

insulin receptor gene64. Individuals with this mutation, present with acanthosis nigricans 

and severe insulin resistance. This genetic form of insulin resistance is very rare, more 

common insulin receptor defects associated with insulin resistance are insulin receptor 

internalization, phosphatase activity, and activity-blocking pseudosubstrates48, 63. 

Hyperinsulinemic activation of the insulin receptor signals to clathrin-coated pits 

and lysosomes recruitment for receptor internalization, recycling, or degradation48. A 

phosphatase regulating the insulin receptor is protein tyrosine phosphatase 1B (PTP1B) 

which dephosphorylates tyrosine residues48, 63. Homozygous knockout studies of PTP1B 

improve the insulin sensitivity of mutant mice compared to their wild type counterparts48. 

Pseudosubtrates (Grb10, Grb13, Grb14 and SOCs) once activated, bind to the insulin 

receptor thereby inhibiting insulin-mediated receptor activation48, 63. SOCs also promotes 

insulin receptor internalization and ubiquitin-mediated degradation48.  

Inhibitory serine/threonine kinases regulate IRS activity by phosphorylating a 

variety of serine/threonine residues on the insulin receptor and IRS proteins48. Well-

known inhibitory kinases are atypical protein kinase C (aPKCθ in skeletal muscle; 

aPKCε in liver), ribosomal protein S6 kinase (S6K), IκB kinaseβ (IKKβ), c-jun N-

terminal kinase (JNK), and mTOR. Akt activates mTORC1 creating a negative feedback 

loop by activating S6K, whereas the other serine/threonine kinases (PKCs, IKKβ, JNK) 

are activated by intracellular and paracrine signals48, 63. 

PI3K is responsible for the cascading activation of PIP2→PIP3→ 

PDK1→Akt2/RAC1/PKCζ/ PKCλ and inhibition of PI3K leads to the direct inhibition of 
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this cascade10, 45, 65, 66. PI3K activity is mitigated by lipid phosphatases PTEN and SHIP2 

that reverse the action of PI3K converting PIP3→PIP2. PTEN is allosterically regulated 

by PI3K, such that PI3K activates PTEN leading to feedback inhibition10, 48, 63. Direct 

activation of PKCζ/ PKCλ with okadaic acid can bypass PI3K and stimulate GLUT4 

translocation by regulating the cycling of GLUT4 vesicles at the plasma membrane67. 

Regulation of Akt is mainly through the action of protein phosphatases (PP2A, 

PP2B, PHLPP). Activation of PP2A is modulated by the PP2A phosphatase activator 

(PTPA) and adenosine triphosphate (ATP)68. ATP binds to the catalytic site in PP2A and 

is required for serine/threonine phosphatase activity68. PP2B is regulated by calcium and 

calmodulin and PHLPP is regulated by magnesium69, 70. Along with Akt regulation, 

PP2A dephosphorylates proteins in mitogenic pathways and PHLPP regulates the 

activity, and protein concentration, of PKCs48, 70.  

1.D.2. Membrane and cytoskeletal regulation 

Unique among the common metabolic functions of insulin action is the 

mechanical steps required for transporting GSVs from the perinuclear region to the 

membrane for tethering, docking, and fusion. This process involves a complex 

coordination of motor proteins, actin remodeling/stabilization proteins, membrane fusion 

proteins, and the GTPases required to meet energy demands. Disruption in these 

processes can completely inhibit insulin-stimulated GLUT4 translocation.  

Our lab is one of the first groups to have identified these sites as novel locations 

capable of causing insulin resistance. The many studies published over the past 15 years 

have shown that disruption of cortical F-actin at the plasma membrane by excess 

membrane cholesterol impairs insulin stimulated GLUT4 translocation in skeletal 
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muscle71, 72. The PI3K-dependent effector PIP2 was also identified to be an important 

regulator of plasma membrane F-actin assembly 72, 73. PIP2 acts at the plasma membrane 

as a facilitator of GLUT4 translocation through stabilization of F-actin in a manner 

independent of PI3K73. PIP2 stabilizes F-actin at lipid rafts in the plasma membrane, a 

cholesterol dense region important for endosomal fusion to the plasma membrane74, 75. 

Palmitate decreases PIP2 and F-actin assembly through an unclear mechanism attributed 

to elevated plasma membrane cholesterol76. These cytoskeletal defects were associated 

with impaired GLUT4 regulation and diminished Akt phosphorylation77.  

A study by Habegger et al. tested the causality of cholesterol-dependent 

cytoskeletal dysfunction in insulin resistant L6 myotubes by normalization of plasma 

membrane cholesterol with methyl-β-cyclodextrin76. Normalization restored F-actin 

assembly, GLUT4 translocation, and glucose uptake in insulin-resistant cells. Phospho-

Akt2 levels, however, were still impaired indicating this cholesterol-induced 

cytoskeletal/membrane defect was independent of signaling77. Research that followed 

investigated the physiologic mediator of cholesterol accumulation and revealed a possible 

cause being increased HBP activity78. These studies were the first to indicate the presence 

of an insulin-signal-independent mediator of lipid-, insulin-, and glucose-induced insulin 

resistance.  
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1.D.3. Mediators of insulin resistance  

Insulin resistance is an obesity-associated disease that has boomed in 

communities following the introduction of a high-fat western-style diet79. Randle’s 

hypothesis prompted research in the effects of lipids on insulin resistance resulting in 

many discoveries linking the onset of insulin resistance to lipids. Lipid accumulation in 

insulin-responsive tissues has been shown to regulate multiple insulin-signaling 

molecules. Other well-known mediators of insulin resistance are believed to stem, in part, 

from lipid overload. 

Lipid dysregulation by adipose tissue has a profound effect on insulin sensitivity. 

Adipose tissue size and number is important for lipid storage and small more numerous 

adipocytes have higher fatty acid turnover and are associated with insulin resistance80. 

Supporting the importance of lipid regulation is the presence of insulin resistance as a 

core feature of many lipdystrophies58. Location of fat, visceral vs. subcutaneous, has also 

been shown to significantly increase the risk of diabetes81.  

Classically, lipids were thought be the major contributor to insulin resistance 

through their ability to regulate insulin signaling58. Lipid infusions are capable of rapidly 

inducing insulin resistance and impairing insulin signaling, observed by decreased IRS 

and Akt phosphorylation. Intracellular lipid accumulation is comprised of 

triacylglycerols, diacylglycerol (DAG)s, fatty acyl-CoAs and ceramides. Elevations of 

DAGs, fatty acyl-CoAs, and ceramides in insulin-sensitive cells inhibits insulin signaling 

by activating the allosteric regulators aPKCθ and aPKCε, JNK, and IKKβ10, 58, 80. 

However, intracellular lipid accumulation does not always induce insulin resistance. For 

example, in well-trained insulin-sensitive athletes, there is a buildup of intracellular lipids 
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in their skeletal muscle. This disconnect between lipid excess and insulin resistance is 

referred to as the athlete’s paradox10, 58. Isocaloric high-fat diets, moreover, do not cause 

insulin resistance, but rather, improve lipid metabolism and insulin sensitivity, and 

decrease fasting insulin, hepatic glucose output, and glucagon82. The regulation of 

signaling by fatty acids is thus not a clear-cut cause of insulin resistance. New 

consideration of available studies investigating intracellular lipid accumulation has 

introduced the prospect that impaired insulin signaling might be a consequence rather 

than a cause of insulin resistance11. 

Chronic inflammation is consistently shown to be a risk factor for insulin 

resistance and has been demonstrated experimentally to induce insulin resistance in 

humans and mice. Chronic inflammation manifests through macrophage infiltration in 

adipose tissue and in the liver—it is unclear if macrophages infiltrate skeletal muscle in a 

deleterious way10, 63, 80, 83. Inflammation is activated by macrophage release of cytokines 

TNFα, IL1β, IL-6, and C-reactive protein. Cytokines activate allosteric regulators JNK 

and IKKβ and the pseudosubstrates in the SOCs family10, 63, 80. Cytokines also reduce the 

gene expression of insulin signaling genes and induce a vicious cycle through activation 

of NF-κβ by IKKβ, inducing the transcription of more cytokines10, 80. Inhibition of 

cytokine activity and reversal of inflammation improves insulin sensitivity in diet-

induced insulin-resistant mice and is an important causal mechanism of insulin 

resistance80, 84. 

Mitochondrial dysfunction and ER stress are less clear mediators of insulin 

resistance. There is evidence that these two mediators of insulin resistance are initiated by 

insulin resistance, and afterward propagate the further deterioration of insulin sensitivity. 
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Mitochondrial dysfunction can affect insulin sensitivity in two pathways. Dysfunction is 

mediated by either fewer mitochondria or inefficient β-oxidation of fatty acids resulting 

in impaired ATP generation. The result is an accumulation of fatty acid acyl-CoAs and 

DAGs80. The other possible mechanism is the overproduction of reactive oxygen species 

(ROS) by mitochondria and peroxisomes80, 85.  Excessive ROS production allosterically 

inhibits insulin signaling by activating serine/threonine kinases important for regulating 

proximal signaling80. 

Some evidence suggests increased intracellular lipids produce ER sheer stress and 

disrupt cellular homeostasis, leading to protein misfolding and protein unfolding. ER 

stress activates an unfolded-protein response that ultimately activates JNK and IKKβ. 

Overexpression of chaperone proteins protects against diet-induced insulin resistance and 

knockout of chaperones facilitates insulin resistance80. These mechanisms appear to be 

most important in the liver, there is evidence for ER stress as a mechanism in adipose 

tissue and skeletal muscle but the importance of ER stress in these tissues remains 

unclear86. 

Hyperinsulinemia, hyperglycemia and hyperleptinemia, can independently induce 

insulin resistance in cells and humans27, 29, 76, 87, 88. Signaling intermediates are 

allosterically inhibited, and the insulin receptor endocytosed, in response to 

hyperinsulinemia. Hyperglycemia can inhibit insulin receptor affinity for insulin and 

affect transcriptional regulation. Hyperleptinemia inhibits IRS by transmitting a signal to 

a SOCs protein. Hyperinsulinemia, hyperglycemia and hyperlipidemia alone or in 

combination also increase glucose flux through the HBP increasing inhibitory O-linked 

glycosylation of signaling molecules63. Importantly, the increased flux through HBP will 
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also result in glycosylation of transcription factors important for mediating cholesterol 

accumulation in the plasma membrane78. 

1.D.4. Temporal pattern of diet-induced insulin resistance 

Animal studies examining the effects of high-fat diets on metabolism have not 

determined the mechanisms responsible for early, diet-induced insulin resistance29. 

Discovering how skeletal muscle insulin sensitivity is impaired early in the setting of 

high-fat-feeding is critical for our understanding of glucose intolerance and skeletal 

muscle insulin resistance, an early manifestation of type 2 diabetes development7, 13, 24, 89. 

It is appreciated that animals fed a high-fat diet undergo a series of metabolic and 

physiologic changes occurring as early as 24-hours after diet initiation90-93. For example, 

two days following a high-fat feeding challenge, skeletal muscle glucose uptake remains 

normal despite decreased glycolysis, increased glycogen synthesis, and increased 

intracellular glucose-6-phosphate94. 

Three days of high-fat-feeding cause mice and rats to present with glucose 

intolerance and insulin resistance because of defects in skeletal muscle and hepatic 

insulin action90, 91. Around this time blood glucose levels plateau through the influence of 

compensatory hyperinsulinemia95. Total GLUT4 protein content in skeletal muscle 

remains unchanged in the first 3-4 weeks96. In contrast, however, insulin-stimulated 

glucose transport of animals eating a high-fat diet for 3 weeks is nearly maximally 

impaired in skeletal and cardiac muscle, and adipose tissue91. 

Perhaps somewhat confounding our understanding are studies that use animals fed 

a high-fat diet for longer durations (8 to 16 weeks). It is known that insulin resistance 

precedes inflammation’s emergence in muscle, adipose, and hepatic tissue at 8 weeks84. 
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Glucose intolerance at 8 weeks can be partly resolved by reversing chronic inflammation, 

but prior to this there remains a period, between 3 days and 8 weeks, with no clear 

mechanism of skeletal muscle insulin resistance29, 84. 

Lipid deposition, mitochondrial dysfunction, and ER stress are present in adipose 

tissue and the liver at 1 week, 4 weeks, and 6 weeks in diet-induced insulin resistance, 

but these abnormalities are not established in skeletal muscle until 3-4 weeks into high-

fat feeding85, 97. Initial experiments conducted to investigate the mechanism for early (≤8 

weeks) diet-induced insulin resistance discovered insulin receptor binding and signaling 

defects92. However, follow-up studies in this area revealed these mechanisms are likely 

insufficient in explaining insulin resistance60, 92. For example, Grundleger et al. 

demonstrated a 35% decrease in insulin receptor binding during short-term high fat 

feeding, but subsequent glucose uptake studies determined only 10-33% of insulin 

receptor stimulation was necessary for maximal insulin stimulated glucose uptake10, 92. 

These studies demonstrate an excess of insulin receptors and defective insulin binding are 

not solely responsible for the glucose intolerance in diet-induced insulin-resistant mice11, 

92.  

Knockout studies of IRS1 demonstrate its necessity for insulin-stimulated GLUT4 

translocation, but impaired GLUT4 translocation from high-fat feeding is still not 

resolved when IRS1 is bypassed with platelet-derived growth factor receptor 

stimulation10, 11. Knock-in mutations of IRS1 rendering IRS1 resistant to inhibitory 

phosphorylation is unsuccessful in preventing diet-induced insulin resistance11. PI3K 

activity is reduced by 35% in the skeletal muscle after 3-weeks of high-fat feeding in 

rats93. This PI3K inhibition was not fully explanatory of diet-induced insulin resistance 
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however, after it was discovered that the administration of okadaic acid, a molecule that 

bypasses PI3K (also Rac1 and Akt2), to skeletal muscle ex vivo did not correct the 

insulin resistance63, 65, 93. This suggested a distal defective mechanism, perhaps located at 

the juncture of GLUT4 vesicle translocation and cytoskeletal stabilization. Despite 

reduced PI3K signaling, diet-induced insulin-resistant animals with resultant decreased 

Akt phosphorylation, unexpectedly do not display defective Akt-mediated AS160 

phosphorylation, relative to their control counterparts11.  

Studies investigating insulin-regulated GLUT4 translocation using inhibitory 

microRNAs in a dose-response manner found only 5-10% of the total Akt 

phosphorylation is necessary for insulin to elicit a full GLUT4-mediated glucose 

transport response in cultured L6 skeletal muscle myotubes60. Knockout studies of Akt or 

Rac1 alone are not sufficient to inhibit GLUT4 translocation. Only a homozygous 

double-knockout of both genes completely inhibits GLUT4 translocation46. It is 

important to note here that maximum diet-induced skeletal muscle insulin resistance 

(~50% of control) is associated with a near total (~92%) reduction in insulin stimulated 

GLUT4 translocation. This association suggests the mechanism for skeletal muscle 

insulin resistance should almost completely abolish insulin stimulated glucose uptake. 

The studies discussed in the previous paragraphs, therefore, provide compelling evidence 

that GLUT4 translocation is not solely dependent on Akt2 activation or actin filament 

rearrangements.  

Interestingly, diminished skeletal muscle glycolysis is seen very early in animals 

after high-fat feeding, yet does not appear to cause insulin resistance94. In fact, glucose 

uptake remains intact in skeletal muscle after 1 day of high-fat feeding despite a decrease 
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in glycolysis94. These findings are consistent with isotope research and other studies 

identifying GLUT4 translocation as the rate-limiting step in skeletal muscle glucose 

disposal10, 57, 59. The early discordant findings of decreased glycolysis and stable glucose 

uptake suggests glucose shunting may be occurring in skeletal muscle just 2 days after 

the initiation of a high-fat diet. This finding is compelling since glucose shunting through 

the HBP is a known cause of insulin resistance, and thus, could mediate the subsequent 

insulin resistance observed after 3 days of high-fat feeding94.  

1.D.5. Hexosamine biosynthesis pathway and insulin resistance 

Increased HBP activity has been identified to cause insulin resistance in cell 

systems, animal models, and human subjects98. Excess glucose shunted into this pathway 

supplies substrate for glutamine:fructose-6-phosphate amidotransferase (GFAT) 

converting glutamine and fructose-6-phosphate, or experimental provision of 

glucosamine, into glucosamine-6-phosphate (GlcN-6-P)98. This metabolite is then 

converted into UDP-N-acetylglucosamine (GlcNAc) and then transferred to 

serine/threonine residues on proteins by the enzyme O-GlcNAc Transferase (OGT)98. 

Targets of OGT include signaling proteins and transcription factors, the functionality of 

which is modified by glycosylation99. 

In vitro studies in our lab have demonstrated that increased HBP activity causes 

cellular insulin resistance by increasing plasma membrane cholesterol. Molecular 

dissection of this revealed increased HBP activity, increased O-GlcNAc-modified levels 

of the transcription factor specificity protein 1 (Sp1)78. Hyperinsulinemia at physiologic 

levels (250-500pM) increased HBP-mediated O-GlcNAcylation of Sp1, which increased 

the affinity of Sp1 for the promoter region of HMGR78. Inhibiting the rate-limiting 
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enzyme in the HBP (GFAT) or specifically blocking Sp1 binding to DNA with 

mithramycin inhibited the hyperinsulinemic-induced cholesterol accumulation and 

prevented insulin resistance78. In vivo investigation by us and others has furthered these 

findings with evidence that insulin resistance in mice fed a Western-style high-fat diet 

can be reversed or improved by normalization of excess plasma membrane cholesterol100, 

101. However, it is not known whether high fat-feeding increases plasma membrane 

cholesterol through HBP-mediated upregulation of HMGR and if this is independent of 

inflammation. 

Transgenic mice overexpressing GFAT or OGT in skeletal muscle and adipose 

tissue have peripheral insulin resistance that is mediated by decreased insulin-stimulated 

GLUT4 translocation102-104. GFAT overexpression results in negligible (8.5%) insulin-

stimulated GLUT4 translocation, whereas control animals display a significantly greater 

insulin-stimulated response102. Strikingly similar is the observed lack of insulin-

stimulated GLUT4 content in skeletal muscle transverse tubule membrane fraction of rats 

fed a high-fat diet for 4 weeks105. Feeding GFAT animals a high-fat diet has no impact on 

glucose disposal suggesting the cause of skeletal muscle high-fat induced insulin 

resistance is mediated fully through HBP activation106. 

In humans, skeletal muscle membrane (SMM) cholesterol content is inversely 

correlated to insulin sensitivity77. Human skeletal muscle demonstrates HBP activity is 

elevated in T2D diabetic subjects and palmitate-induced insulin resistance increases 

UDP-GlcNAc concentrations in human myotubes107, 108. In accord with HBP flux 

modifying gene expression, recent studies in gene networks have found obesity alters 

cholesterol metabolism genes predisposing subjects to T2D109-111. The identified genes 
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are related to cholesterol uptake, synthesis, and efflux-producing a molecular profile 

expected to increase intracellular cholesterol110. Epigenetic studies have supported this 

research with evidence that obesity-driven epigenetic regulation of cholesterol genes 

increases the risk for T2D112. 

1.E. Cholesterol genes, insulin resistance, and type 2 diabetes 

This section is adapted from a review I published in the 2017113. The importance 

of cholesterol genes in insulin resistance was reviewed extensively in this review and the 

writing of the review served as an important guide for our future studies.  

Several human genetic studies suggest a relationship between increased cellular 

cholesterol levels and alterations in glycemia. Ding et al., quantified the transcriptome 

and epigenome in monocytes from 1,264 participants in the Multi-Ethnic Study of 

Atherosclerosis, and found that alterations in a network of coexpressed cholesterol 

metabolism genes were associated with T2D114. This network included 11 genes related 

to sterol influx (↑LDLR, ↓MYLIP), synthesis (↑SCD, FADS1, HMGCS1, FDFT1, SQLE, 

CYP51A1, SC4MOL), and efflux (↓ABCA1, ABCG1), producing a molecular profile 

expected to increase intracellular cholesterol. Recent examination of multi-tissue 

transcriptomes and epigenomes suggest that these cholesterol metabolism genes are 

similarly altered in human adipose tissue115-120. Moreover, obesity-driven modifications 

in the epigenome predicted T2D, independent of conventional risk factors such as BMI 

and glycemia116. Many of the methylation sites responsive to obesity were involved in 

lipid and lipoprotein metabolism. Identified in this analysis, and many others, was a 

strong relationship between the methylation of ABCG1 and T2D116. As expanded on 
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below, genetic mutations resulting in decreased circulatory levels of both low-density and 

high-density lipoproteins are significantly associated with T2D111. 

1.E.1. LDL metabolism  

Low-density lipoprotein (LDL) receptor (LDLR)s mediate the cellular uptake of 

LDL-cholesterol (LDL-C) from the circulation. Myosin regulatory light chain-interacting 

protein (MYLIP) promotes LDLR degradation. Thus, increased LDLR gene expression 

and/or decreased MYLIP gene expression would favor diabetogenic LDLR-mediated 

cholesterol delivery to skeletal muscle fibers and adipocytes. Consistent with this 

removal of LDL-C from the blood, lower circulating LDL-C levels have recently been 

found to be significantly associated with T2D susceptibility111. Interestingly, unlike 

ubiquitous MYLIP tissue expression, proprotein convertase subtilisin/kexin type 9 

(PCSK9), which also promotes LDLR degradation, is produced predominantly in the 

liver. Therefore, PCSK9 inhibitors, unlike the genetic loss of MYLIP, would not be 

expected to increase cholesterol levels in non-hepatic cells. Whether PCSK9 inhibitors, 

however, increase T2D risk is not yet fully known121. Contrariwise to increased LDLRs 

and decreased LDL-C associating with T2D, loss-of-function mutations in the LDLR, as 

seen in familial hypercholesterolemia, protects individuals from T2D risk122. In fact, the 

odds of developing T2D decreased linearly as the severity of familial 

hypercholesterolemia increased122, or, from another prospective, as cellular ability to 

uptake cholesterol decreased. 

1.E.2. HDL metabolism  

A significant association between genetically determined lower HDL-C and T2D 

has also been found111. Unlike the LDLs that deliver cholesterol to cells, HDLs remove 
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cholesterol from cells. HDLs originate from the liver, intestine, chylomicron (CM), and 

very-low-density lipoprotein (VLDL). The liver secretes lipid poor ApoA1 called nascent 

or precursor HDL. The intestine directly synthesizes these particles. Finally, lipoprotein 

lipase (LPL)-mediated lipolysis of CMs and VLDLs releases surface ApoA1 and 

phospholipids that also generate nascent HDLs. This is facilitated by phospholipid 

transfer protein (PLTP). These liver-, intestine-, CM-, and VLDL-derived nascent HDLs 

(designated pre-β1, pre-β2, and pre-β3) accept free cholesterol from cell membranes with 

excess cholesterol. This transfer of free cholesterol to HDLs is mediated by ABCA1, 

ABCG1, the class B, type 1 scavenger receptor (SR-B1), as well as other cell surface 

proteins. Following free cholesterol transfer to the surface of the nascent HDLs, it is 

esterified by lecithin:cholesterol acyltransferase (LCAT) and the formed cholesterol 

esters move away from the surface to a cholesterol ester-rich core forming a small, 

spherical, mature HDL particle (designated HDL3). Through this same LCAT-mediated 

process HDL3 accepts cellular free cholesterol, grows, and matures to a form designated 

as HDL2. Cholesterol ester transfer protein (CETP) facilitates the transfer of cholesterol 

esters from HDL2 to the lower density lipoproteins (VLDL, IDL, LDL) that transit to the 

liver for excretion. As the HDL2 particles becomes devoid of cholesterol esters, hepatic 

lipase hydrolyzes triglycerides and phospholipids that the HDL2 molecule accumulated 

and this reconverts HDL2 to HDL3. The regenerated HDL3 cycles back through this 

pathway of accepting free cholesterol and transitioning to HDL2 and then back to HDL3. 

Genetic mutations in many of these system components of HDL metabolism tend 

to increase a carrier’s risk for T2D. Perhaps these mutations negatively impact the 

efficiency of mitigating diabetogenic cholesterol accumulation in skeletal muscle fibers 
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and adipocytes. For example, Lara-Riegos et al. found T2D susceptibility in Mexican 

Mestizos was associated with a loss-of-function mutation in ABCA1123; however, genetic 

variation in ABCA1 was not found to predict T2D in other populations124. Interestingly, 

mutation in genes for ApoA1, CETP, SR-B1, and Niemann-Pick disease, type C1 (NPC1) 

tend to increase a carrier’s risk for T2D125-129. Loss-of-function mutations in ApoA1, 

CETP, and SR-B1 would negatively impact HDL functionality in accepting free 

cholesterol from cells with excess cholesterol. Similarly, a loss-of-function mutation in 

NPC1, a gene mutated in Niemann-Pick disease that disrupts intracellular cholesterol 

transport and accumulation in late endosomes and lysosomes, indirectly impedes 

ABCA1-mediated cholesterol efflux by sequestering this cholesterol transporter in the 

endosomal compartment130. Interestingly, we have found that HBP-mediated increases in 

cholesterol biosynthesis also results in endosomal membrane cholesterol accumulation 

and sequesters ABCA1 in that compartment away from the cell surface where it functions 

to transfer free cholesterol to ApoA1131. Mutations in chromosome 9q31 in people with 

Tangier disease lead to defective ABCA1 transporters and these patients have been 

reported to have impairments in insulin action and insulin secretion132. Peptides have 

been developed with ABCA1 agonist properties acting like ApoA1 by promoting cellular 

cholesterol efflux133. These peptides were studied in cell lines, diet-induced insulin-

resistant mice with or mice without the APOE knockout and had a remarkable anti-

diabetic effect. Peptide administration improved insulin-stimulated glucose uptake, 

insulin secretion and restored glucose and insulin tolerance to levels equal to what is seen 

in chow fed mice133.  



31 

It has been widely published that statin medications cause insulin resistance and 

increase the risk of type 2 diabetes. Cellular changes from HMGR inhibition appears to 

be mediated by increased transcription of SREBPs and two associated microRNAs (miR), 

miR-33a and miR-33b134, 135. In response to statins, SREBPs and miR-33a/b function as 

modulators of cellular cholesterol levels by increasing HMGR and LDLR, and decreasing 

ABCA1, ABCG1, NPC1, and AMPK, respectively134, 135. These metabolic changes are 

advantageous for reducing circulating blood cholesterol, although an exaggerated 

compensatory response in adipocytes, pancreatic β-cells, or skeletal muscle fibers could 

have deleterious consequences on glucose regulation. Circulating levels of these two 

miRNAs are associated with insulin resistance and type 2 diabetes in the elderly136.  

This cholesterol network is of interest for our understanding of membrane 

cholesterol accumulation. Unlike cells, in vivo cholesterol handling is dynamic with 

many pathways available to cells in need of shedding excess cholesterol. Insulin 

resistance in mice with skeletal muscle GLUT1 overexpression can only be identified ex 

vivo, whereas mice overexpressing GFAT do not have ex vivo measured insulin 

resistance137-139. Furthermore, GFAT overexpression in adipocytes is sufficient to cause 

skeletal muscle insulin resistance, but it has been reported that GFAT overexpression 

solely in skeletal muscle does not impair insulin-stimulated glucose uptake137, 140. The 

discrepancy between these studies may be a result of cholesterol transport. The effect of 

HBP on skeletal muscle cholesterol accumulation may be blunted in the absence of any 

adipose tissue pathology. The studies identifying GLUT1-mediated resistance only in 

vitro also suggest a protective effect from metabolically healthy fat. Teasing out the 

patterns of cholesterol genes in the fat and muscle of high-fat fed mice may start us on 
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the path of understanding the complex interplay between muscle and fat. Comparison of 

these tissues between high fat and GFAT transgenic mice may also help us determine 

which cholesterol genes are regulated by HBP and which genes if any are influenced by 

another mechanism. 

1.F. Hypothesis and aims 

While insulin resistance is admittedly associated with multiple cellular defects, 

evidence suggests muscle cholesterol accumulation may be an early etiological factor. 

The studies presented show a sequence in disease pathophysiology beginning with 

impaired glycolytic flux and an apparent shift of glucose to alternative pathways94. 

Shortly after this shift an undefined mechanism initiates skeletal muscle insulin 

resistance29, 94. I predict skeletal muscle cholesterol accumulation is a reversible 

mitigating factor in early skeletal muscle insulin resistance. Moreover, I expect high fat 

feeding increases glucose flux into the HBP thereby promoting HMGR expression by 

increasing the cellular level of O-GlcNac-Sp1. 

Studies in my dissertation will determine 1) Whether skeletal muscle cholesterol 

accumulation occurs early in the setting of high-fat feeding and if this accumulation 

impairs GLUT4 translocation; and 2) If high-fat feeding cholesterol accumulation occurs 

because of increased HBP regulation of transcription factors and the cholesterol genes 

they regulate78. 
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Chapter 2. Materials and methods 

2.A. Mice 

Male C57BL/6NJ (6N) mice were obtained at 6 weeks of age from Jackson 

Laboratory, Bar Harbor, ME. All mice were singly housed in conventional cages and 

maintained on a 12-h light/dark cycle. Body mass was recorded daily or weekly. The 

IUSM Institutional Animal Care and Use Committee approved all animal protocols.  

2.B. Mouse selection 

C57BL/6J (6J) mice are one of the most commonly used mouse model for high 

fat-diet experiments investigating insulin resistance and T2D research. These animals 

were selected for their ability to become obese and glucose intolerant under conditions of 

high fat feeding. One limitation with this model is the absence of the Nicotinamide 

Nucleotide Transhydrogenase (NNT)90. This gene is responsible for reducing NADPH in 

mitochondria. The absence of this gene leads to a lower concentration of the reduced 

form of glutathione and subsequent increase in ROS levels. A major effect of this 

mutation is a reduction in insulin secretion in response to a glucose load. The physiology 

of C57BL/6J mice is, in this manner, unlike humans. While humans have a biphasic 

response to glucose during an intravenous glucose tolerance test (IVGTT), 6J mice 

display no detectable insulin response to an IVGTT141. In response to an arginine bolus, 

6J mice insulin secretion is negligible, where as in humans a bolus of arginine would 

result in a robust insulin secretion response141.  

In comparison to 6J mice, the 6N mouse model has the NNT gene90. When 

subjected to an IVGTT 6N mice demonstrate a biphasic insulin response and a bolus of 

arginine will elicit a robust insulin secretory response141. 6N mice like 6J mice gain 
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weight and develop glucose intolerance when fed a high fat diet. The 6N mice, however, 

develop hyperinsulinemia 1 week after glucose intolerance is achieved. Hyperinsulinemia 

is a characteristic pathophysiologic feature of human insulin resistance seen up to 10 

years prior to the onset of T2D, is indistinguishable from the development of insulin 

resistance, and is a mediator of worsening insulin resistance27, 76, 78, 141. For these reasons, 

we consider the 6N mice to be a more representative model for preclinical study of 

insulin resistance. 

2.C. Diet  

Upon arrival to our facility, all mice had free access to water and standard 

laboratory chow for 1 week. Following this 1-week acclimation period, all mice received 

a low-fat (3.85 kCal/gram) diet containing 20% kcal from protein, 70% kcal from 

carbohydrates, and 10% kcal from fat (D01030107, Research Diets Inc., New Brunswick, 

NJ) for 1 week to adapt to the modified diet. This low fat, as well as the high-fat (4.73 

kCal/gram), diet represented modified forms of the standard low fat (D12450B) and high 

fat (D12451) diets from Research Diets Inc., with adaptations regarding type of fat (palm 

oil instead of lard) and carbohydrates, to better mimic the fatty acid (FA)/carbohydrate 

composition of the average human diet in Western societies 100, 142. Following this 2-week 

acclimation period, mice were either left on the low-fat diet or switched to the high fat 

diet containing 20% kcal from protein, 35% kcal from carbohydrates, and 45% kcal from 

fat (D01030108) for 1 week. This high fat diet mimics the percent of saturated to 

monounsaturated to polyunsaturated FAs (40:40:20). A subgroup of the 1-week high-fat-

fed animals were switched back to the low-fat diet for 1 week following the high fat diet 

challenge and a subgroup of low-fat-fed animals were low fat fed for 2 weeks. 
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2.D. Duration of diet 

6N mice will be acclimated to a palmitate based low fat diet (D01030107, 

Research Diets Inc.) for 1 week consisting of 70% kcal from carbohydrates, 10% kcal 

from fat, and 20% kcal from protein. After the acclimation period half of the mice will be 

maintained on the low-fat diet while the other group will be randomly selected and 

switched for 1 week to a high fat diet (D01030108) consisting of 35% kcal from 

carbohydrates, 45% kcal from fat, and 20% kcal from protein. All mice will acclimate to 

palmitate with low fat feeding for 1 week and then diet challenged. 

There is a considerable amount of disagreement in the literature concerning the 

predominance of hepatic vs. skeletal muscle insulin resistance after 1 week of feeding 

animals a high fat diet. These differences appear to be related to the methodology used 

for detecting insulin resistance94, 143, 144. Using the hyperinsulinemic-euglycemic clamp, 

the gold standard method for investigating insulin resistance, Kim et al. demonstrated that 

the identification of either hepatic or skeletal muscle insulin resistance depends on the 

dose of insulin used in the study94. Briefly, their study showed that rats subjected to a 

high fat diet for 1 week have hepatic insulin resistance when tested with submaximal (30 

pmol∙kg-1∙min-1 or 4.32 mU∙kg-1∙min-1) insulin during the hyperinsulinemic-euglycemic 

clamp, whereas maximal (300 pmol∙kg-1∙min-1 or 43.2 mU∙kg-1∙min-1) insulin stimulation 

identifies peripheral insulin resistance94. Clamp studies indicating a only hepatic insulin 

resistance at 1 week use insulin doses ≤4 mU∙kg-1∙min-1, whereas studies identifying 

muscle insulin resistance use insulin doses ≥8mU∙kg-1∙min-1 84, 94. The differences in these 

results is due to the dose required to achieve maximal insulin stimulated glucose uptake 

and maximum inhibition of endogenous glucose production143. Dose response curves in 
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mice have demonstrated >10 mU∙kg-1∙min-1 is needed to achieve maximal stimulation of 

skeletal muscle glucose uptake and maximal inhibition of endogenous glucose 

production143, 145. 

Ex-vivo studies investigating skeletal muscle insulin resistance at either 10 days 

or 7 days have found skeletal muscle resistance and no resistance, respectively. The ex 

vivo studies differ in four important ways, the respective use of animal model rat vs. 

mouse, the insulin concentration physiologic vs. supraphysiologic, the amount of time the 

animal was exposed to the diet, and most importantly the muscle fiber type; e.g., slow 

oxidative (e.g., soleus) vs. fast glycolytic (e.g., extensor digitorum longus). Slow 

oxidative muscle has the highest capacity for glycogen storage, has a vastly greater 

capacity for glucose uptake, has the greatest concentration of GLUT4, and is most 

sensitive to diet-induced changes in insulin sensitivity making soleus selection in ex vivo 

experimentation an important consideration to identify subtle changes in skeletal muscle 

insulin sensitivity90, 92, 105, 146. These studies agree with the skeletal muscle insulin 

resistance indicated by decreased pAKT levels and pGSK observed by Kelsey H. Fisher-

Wellman and colleagues comparing the role of high fat feeding on 6N and 6J mouse 

metabolism90.  

2.E. GFAT animals 

In collaboration with Dr. Donald McClain we recently rederived his transgenic 

mouse model that overexpresses fat/muscle GFAT and display defective insulin-

stimulated GLUT4 regulation and glucose disposal102, 103. In these mice, transgene 

expression in fat/muscle is targeted with the GLUT4 promoter. These transgenic mice 

overexpress GFAT at approximately two-fold higher levels. Considering that the HBP 
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accounts for ~2% of total cellular glucose flux147, increasing flux to ~4%, will still not 

reach a level that will affect glucose availability for oxidative or nonoxidative 

metabolism. Hebert et al. found that this increased flux through the HBP pathway led to 

weight-dependent hyperinsulinemia in random-fed mice and using the hyperinsulinemic–

euglycemic clamp technique confirmed that GFAT transgenic mice develop insulin 

resistance103. Of importance, a measured decrease in glucose uptake by GFAT Tg muscle 

was associated with a disruption in insulin-regulated GLUT4 translocation102, consistent 

with our model. 

2.F. Cholesterol shuttling experiments 

Methyl-β-cyclodextrin from (Sigma molecular weight = 1320) was made into a 

stock concentration of 5mM by dissolving 6.6 mg methyl-β-cyclodextrin /ml saline. 

Cholesterol removal studies were performed using a subcutaneous dose of 50mg/kg 

which has been found to be tolerable and efficacious101. High fat fed mice were injected 

with 5mM methyl-β-cyclodextrin twice a week once at 3 days following the 

administration of the high-fat diet and again at 6 days of high fat feeding. Mice 

physiologic studies were performed at day 7 of high fat feeding.  

Cholesterol addition was performed using 5 mM methyl-β-cyclodextrin laden 

with cholesterol at a 4:1 molar ratio of methyl-β-cyclodextrin:cholesterol. Mice were 

injected twice in the morning prior to animal testing. Two 50 mg/kg subcutaneous doses 

were administered an hour apart, once at the time of fasting and once an hour later. The 

4:1 molar ration has been shown to shuttle cholesterol into cellular membranes in vivo148. 

Experimental procedures were performed after the usual 6 hour fasting period. 
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Cholesterol laden methyl-β-cyclodextrin (4:1 molar ratio) was made as follows: 

Cholesterol from Avanti Polar Lipids (molecular weight = 386.66) was dissolved 5mg/ml 

in 20 ml of cholorform:methanol 1:1 mixture or 0.25mM cholesterol in 10 ml solution 

was made as stock cholesterol concentration. 1.933 ml of stock cholesterol was 

evaporated in a glass tube under a gentle stream of nitrogen gas so that the cholesterol 

film was all that remained in the tube. 10ml of 5mM methyl-β-cyclodextrin was added to 

the glass tube containing the cholesterol film. The 10ml methyl-β-

cyclodextrin:cholesterol solution was sonicated in a bath sonicator for 3-5 minutes at 37 

degrees Celsius at 65 kHz. The solution was incubated in a water bath at 37 degrees 

Celsius for 48 hours at 75 rounds per minute. Methyl-β-cyclodextrin:cholesterol solution 

was filtered through a 0.45µM syringe prior to subcutaneous injection. All cellular and 

physiologic testing was performed on subcutaneous injected saline controls.  

2.G. Sp1 inhibition 

Mice fed a high fat diet for one week were injected daily intraperitonially with a 

dose of 150 µg/kg mithramycin (Cayman Chemical, Ann Arbor, MI, USA). This dose has 

been shown to be tolerable and efficacious in a study of Alzheimer’s using 

APPswe/PS1dE9 mice149. Mice physiologic studies were performed at day 7 of high fat 

feeding.  Mithramycin 1g tubes were solubilized in 2 ml of saline. This mithramycin 

solution was filtered through a 0.45µM syringe prior to intraperitoneal injection. All 

cellular and physiologic testing was performed on treated mice and controls 

intraperitoneally injected with saline. 
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2.H. Glucose, insulin, and pyruvate tolerance tests  

For the intraperitoneal glucose, insulin, and pyruvate tolerance tests, mice that 

were fasted for 5-6 hours were administered glucose (2 g/kg mass i.p.), insulin (0.5 U/kg 

mass i.p.), or pyruvate (2 g/kg mass i.p.), respectively. Tail vein blood glucose was 

measured at times indicated with an AlphaTRAK blood glucose meter (Abbott 

Laboratories, Inc. Alameda, CA). Glucose-stimulated insulin secretion was also 

performed to identify the presence of hyperinsulinemia. At the 0- and 15-minute time 

points following the glucose injection for the glucose tolerance test, plasma was collected 

for insulin measurements. The 15-minute time point was selected to allow for data 

comparison with previous research 90. Insulin tolerance test glucose was analyzed for the 

first 30 minutes and pyruvate tolerance glucose was collected over a period of 90 

minutes.  

2.I. Liver analyses  

To determine hepatic glycogen, approximately 30 mg of mouse liver was digested 

in 0.5 ml of 1M KOH for at least 30 minutes at 70°C. 100 µl of the liver digest was then 

neutralized with 17 µl of 17.4 M acetic acid followed by incubation with 500 µl of 0.3 M 

acetate buffer containing 0.5% amyloglucosidase (Roche) for 2 hours at 37°C. 2 µl was 

added to 200 µl Trinder Glucose Oxidase reagent (Pointe Scientific) and incubated for 30 

minutes at room temperature. For triglyceride, approximately 0.3 g of mouse liver was 

added to 2 ml of ice-cold HES buffer (in mM: 250 sucrose, 20 HEPES, 2 EGTA and 3 

NaN3, pH 7.4) containing freshly added protease inhibitors (in μM: 200 PMSF, 1 

leupeptin and 1 pepstatin A) and subsequently homogenized. 10 µl of 20% NP40 was 

added to 200 µl of homogenate. This mixture was rotated for 10 minutes at 4°C followed 
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by boiling for 10 minutes. Samples were then centrifuged at 14,000 rpm for 10 minutes at 

room temperature. 5 µl of supernatant was then added to 200 µl of GPO reagent (Pointe 

Scientific) and incubated for 15 minutes at room temperature. Absorbances for both were 

then measured at 505nm. 

2.J. Actin analyses  

A thin slice of mixed hindlimb skeletal muscle was labeled, mounted in 

Vectashield, and analyzed via confocal microscopy (LSM 510 NLO; Zeiss, Thornwood, 

NY) as previously described 71. Following fixation in 2% paraformaldehyde/PBS for 2 h, 

tissues were washed with PBS and stored at 4 °C. A small section was excised from each 

tissue and incubated in 0.2% Triton X-100/0.05% Tween 20/PBS for 30 min at 25 °C. 

The sections were then rinsed three times in 0.05% Tween 20/PBS and blocked in 2% 

BSA/0.05% Tween 20/PBS (for actin) for 60 min at 25 °C. Sections were then incubated 

overnight at 4 °C in mouse IgM anti-human F-actin (Serotech Oxford, UK), antibodies 

diluted 1:50 in blocking buffer. Samples were then washed extensively in 0.05% Tween 

20/PBS. Sections were incubated for 45 min at 25 °C in 1:50 rhodamine-conjugated 

donkey anti-mouse IgM (for actin labeling), 1:50 fluorescein isothiocyanate-conjugated 

donkey anti-latrunculin B for 1 h. Muscles were then incubated in the presence or 

absence of 13.3 nM insulin and fixed in 2% paraformaldehyde/PBS for 2 h. Muscles were 

then processed and stained for: A cortical actin as described under Following secondary 

antibody incubation, samples were washed extensively with 0.05% Tween 20/PBS, 

rinsed with ddH2O, mounted to slides in Vectashield (Vector Laboratories, Inc., 

Burlingame, CA), and examined via confocal microscopy (Zeiss LSM 510 NLO 

Confocal Microscope). All images were taken in the same focal plane of the section and 
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under identical microscopic parameters. Images shown are representative of three to five 

fields from each sample.  Prior to imaging, all samples were de-identified to ensure an 

objective analysis. All images were taken in the same focal plane of the section and under 

identical microscopic parameters. Images shown are representative of 5-7 fields from 

each sample. 

2.K. Membrane preparation cholesterol analyses and protein concentrations 

Mixed hindlimb skeletal muscle triad enriched membrane was obtained as 

previously reported 101. We isolated triads consisting of T-tubule, sarcolemma, and 

sarcoplasmic reticulum using a procedure that has been shown to be as effective at 

procuring T-tubule enriched triads as pure as the sucrose density gradient method150. 

Skeletal muscle was homogenized in ice-cold HES buffer with a Polytron PT-10 

homogenizer 3 times in 10-second bursts. After homogenization the sample was 

centrifuged at 1380g for 30 minutes, after which the supernatant was filtered through 

cheese cloth and the pellet was resuspended and centrifuged again at 1380g for 30 

minutes. The supernatant from the second centrifugation was combined with the 

supernatant from the first spin and centrifuged at 17,000g for 30 minutes. The 

supernatant was discarded, and the pellet was homogenized in HES buffer and 

centrifuged at 1380g for 30 minutes. The supernatant was filtered through cheese cloth 

centrifuged at 17,000g for 30 minutes. The resulting pellet was then resuspended in HES 

homogenized and centrifuged at 17,000g for 30 minutes. The resulting pellet was then 

reconstituted in 0.2 ml of HES buffer and stored at -80 degrees Celsius for analysis101, 150. 

Triad cholesterol content was assayed using the Amplex Red Cholesterol Assay Kit 
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(Molecular Probes) 76. Protein concentrations for all samples were quantified using the 

Bio-Rad DC protein assay.  

2.L. RNA analyses 

 Mixed hindlimb muscle from mice were lysed using Qiagen QIAshredder and 

RNA was isolated using an RNeasy mini kin (Qiagen). Purified RNA was reverse 

transcribed using the High Capacity cDNA Reverse Transcription Kit (Applied 

Biosytems). Reactions were performed in a 96-well plat using the ABI Prism &00 

Sequence Detection System (Applied Biosystems). Each reaction contained the 

following: 12.5 µl of SYBR GREEN (Applied Biosystems), 200nM of each primer, 3 µl 

of cDNA, and RNase free water to a total volume of 25 µl. The PCR conditions used 

were 95°C for 15s, 60°C for 40s. Cycle threshold values were obtained and normalized to 

36B4. The ΔΔCT method was used to determine relative expression levels151. 

2.M. GLUT4 analyses  

GLUT4 translocation was assessed using mixed hindlimb skeletal muscle. Mixed 

hindlimb skeletal muscle was rapidly harvested from mice that were fasted for 14-18 

hours, 30 minutes following an intraperitoneal glucose (2 g/kg mass i.p.) injection. 

Skeletal muscle membrane cell surface pellets were obtained as described above 

(Membrane Preparation) and subjected to Western immunoblot analysis. Samples 

containing an equal amount of total protein were loaded onto a 10% acrylamide resolving 

gel. Protein concentration was determined using the DC Protein Assay Kit (Bio-Rad). 

Protein was transferred from the gel to a nitrocellulose membrane. Equal protein loading 

per lane was further verified using the Revert Total Protein Stain (Li-Cor) and used to 

normalize GLUT4 to total protein.  Anti-GLUT4 antibodies (Cell Signaling Technology) 
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were used to detect GLUT4 and quantification of the obtained image was performed to 

determine Triad GLUT4 per total protein content. 

2.N. Insulin signaling analyses  

GLUT4 translocation was assessed using mixed hindlimb skeletal muscle. Mixed 

hindlimb skeletal muscle was rapidly harvested from mice that were fasted for 14-18 

hours, 15 minutes following an intraperitoneal glucose (2 g/kg mass i.p.) injection. 

Skeletal muscle whole cell lysate was homogenized in an NP40, EDTA, hepes buffer 

with aprotinin, leupeptin, PMSF, pepstatin, sodium fluoride, sodium chloride, and sodium 

pyrophosphate. Samples containing an equal amount of total protein were loaded onto a 

10% acrylamide resolving gel. Protein concentrations were determined using the DC 

Protein Assay Kit (Bio-Rad). Protein was transferred from the gel to a nitrocellulose 

membrane. Equal protein loading per lane was further verified using the Revert Total 

Protein Stain (Li-Cor) and used to normalize pAkt to total protein. Anti-pAkt (Ser 474) 

antibodies (Cell Signaling Technology) were used to detect pAkt and quantification of 

the obtained image was performed to determine pAkt per total protein content. 

Membranes were stripped and re-probed for total Akt. Anti-Akt2 (Cell Signaling 

Technology) antibody was used to probe for total Akt2.   

2.O. Statistical analyses  

Values presented are means ±SEM. The significance of differences between 

means was evaluated by ANOVA. Where a difference was indicated by ANOVA, 

Sidak’s post-hoc test was conducted to compare differences between groups with high fat 

group only. Statistical comparisons of body mass, areas under or above the curve (AUC 

and AAC, respectively), liver glycogen and triglycerides content were performed by a 
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two-tailed Student’s t test when only two groups were analyzed. Area under or above the 

curve with respect to the increase was calculated for all GTT, ITT, and PTT measures 

using newtons method. GraphPad Prism 7 software was used for all analyses. P<0.05 was 

considered significant. 
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Chapter 3. Results 

3.A. Mice fed a high-fat diet for one-week display cholesterol-associated reversible 

metabolic derangements. 

Impaired metabolic responses have been demonstrated in 6N mice within 1 week 

of high fat feeding90. For our studies, 6N mice were fed either a 10% low-fat (LF) or 45% 

high-fat (HF) diet. We divided mice into multiple cohorts, so each variable measured was 

performed exactly following 1 week of the diet challenge. Figure 3A shows a slight but 

significant 1.17 g gain in body mass in mice fed a HF diet compared to the LF-fed mice 

when comparing all mice (n=41 per group). Using 6 mice per group we performed 

glucose-, insulin-, and pyruvate tolerance tests. One week of HF feeding significantly 

impaired glucose tolerance (Figure 3B inset). While this acute HF-feeding challenge did 

not impair insulin tolerance (Figure 3C, inset), we did observe a significant increase in 

glucose-stimulated insulin secretion during the glucose tolerance test (Figure 3D, 

compare bars 3 and 4) at the 15-min time point, consistent with the development of 

whole-body insulin resistance. In a separate cohort of mice, fasting serum insulin levels 

trended to be slightly increased following 1-week of HF feeding; yet this did not reach 

statistical significance (Figure 3D, compare bars 1 and 2). On the other hand, fasting 

glucose levels measured during the glucose and insulin tolerance test were significantly 

elevated (see Figures 3B [LF, 160.8±13.2 vs. HF, 211.3±4.03 mg/dL, p=0.0044] and 3C 

[LF, 154±5.7 vs. HF, 188.6±6.4 mg/dL, p=0.0038]). To assess whether hepatic insulin 

resistance contributed to this increase in fasting blood glucose we performed a pyruvate 

tolerance test. Again, mice used for this test also showed a similar increase (LF, 161±4.9 

vs. HF, 188.7±7.6 mg/dL, p=0.0122) in fasting blood glucose following 1 week of high-

fat feeding, yet these mice did not display pyruvate intolerance (Figure 3E). In addition to 
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assessing pyruvate-induced hepatic glucose output, we measured glycogen and 

triglyceride levels in livers from LF- and HF-fed mice, and the levels of each were 

unaffected by the HF-feeding challenge (see Figures 3F and G) further supporting the 

lack of a pronounced hepatic insulin resistance in these 1-week HF-fed mice. 

In addition to the study of the LF- and HF-fed groups, we wanted to determine the 

mechanism for the metabolic benefits of HF diet withdrawal. We reasoned that like seen 

in other animal and human studies, placing mice back on a LF-diet for 1 week following 

the 1-week HF feeding challenge should mitigate some or all the measured metabolic 

derangements. For this study we used LF-fed mice that remained on the diet for 2 weeks 

as a control (LF2). The mice that were HF-challenged for 1 week and then placed on a LF 

diet for an additional 1 week (denoted reversed fat, RF) still trended to be heavier (see 

Figure 4 [LF2, 23.47±0.34 vs. RF, 24.18±0.41 g, p=0.2004]), yet this difference was not 

statistically significant. Figures 4B-D show that glucose and insulin tolerance and 

glucose-stimulated insulin secretion in the RF group were not different from the LF2 

control. While the mice we used for the insulin tolerance test showed an elevation in 

fasting glucose (LF2, 161.4±3.84 vs. RF, 177.3±2.4 mg/dL, p=0.0052), this was not the 

case with the mice used for the glucose tolerance test (LF2, 175.2±4.7 vs. RF, 180.2±4.8 

mg/dL, p=0.4725).  

 To determine causality of HF mediated insulin resistance and the associated 

factors attributed to reversal of diet we treated HF-fed mice with the cholesterol-lowering 

agent methyl-β-cyclodextrin (CD). Body mass and metabolic testing was determined on 

saline treated LF-fed, saline-treated HF-fed and CD-treated HF-fed. 
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As shown in Figure 5A, body mass was not different between the groups. Again, 

with this cohort, 1 wk of HF feeding impaired glucose tolerance (Figure 5B, inset) as 

well as elevate fasting blood glucose (LF, 143.7±11.4 vs. HF, 194.4±7.7 mg/dL, 

p=0.0086). In the HF-fed mice treated with CD glucose tolerance and elevated blood 

glucose levels were completely normalized. In addition, the CD treatment strongly 

trended (p=0.07) to lower the elevated serum insulin in HF-fed mice 15 min following a 

glucose injection to a level that was not significantly different from the LF group (Fi. 

5C). We also determined caloric intake of each group during their diet challenge and 

treatments. As shown in Figure 5D, HF-feeding was associated with a higher caloric 

intake compared to the LF-fed and RF-fed animals (compare bars 1-3). Notably, we 

observed a slight, yet significant decrease in caloric intake in the RF group compared to 

the LF group. Importantly, HF-fed mice treated with CD were found to consume the 

same amount of calories as the HF saline group (Figure 5D, compare bars 2 and 4).  
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Figure 3. Glucose intolerance and insulin resistance develop within 1 week following 

a high-fat feeding challenge. (A) Body mass after 1 week of low-fat (LF) or high-fat 

(HF) feeding. (B) Blood glucose measured after an intraperitoneal injection of glucose 

(2g/kg) or (C) insulin (0.5 U/kg). (D) Serum insulin concentrations before (0-min) and 15 

minutes following an intraperitoneal injection of glucose (2g/kg). (E) Blood glucose 

measured after an intraperitoneal injection of pyruvate (2g/kg). (F) Liver glycogen 

content. (G) Liver triglyceride content. Open and closed circles denote LF-fed and HF-

fed animals, respectively. All data are mean ±S.E. for n=6 per group. *P<0.05 vs. LF 

control group.  



50 

 

Figure 4. Low-fat feeding mice that were high-fat fed for 1 week mitigates glucose 

intolerance and insulin resistance. (A) Body mass measured at the end of reversal 

period. (B) Blood glucose measured after an intraperitoneal injection of glucose (2g/kg) 

or (C) insulin (0.5 U/kg). (D) Serum insulin concentrations before (0-min) and 15 

minutes following an intraperitoneal injection of glucose (2g/kg). Boxes with pale 

outlines in (D) are replicated from Figure 1 and statistics are from an ANOVA comparing 

all groups. All data are mean ±S.E. Reversal Fat (RF) identifies mice fed a HF diet for 1-
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week and switch back to a low-fat for a week. LF2 denotes low fat controls that were on a 

low-fat diet for the same duration of time as the RF group. 
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Figure 5. Administration of nascent methyl-β-cyclodextrin to 1-week high-fat-fed 

mice mitigates glucose intolerance and insulin resistance. (A) Body mass for LF and 

HF saline controls and HF methyl-β-cyclodextrin (HF +CD) treated animals. (B) Blood 

glucose measured after an intraperitoneal injection of glucose (2g/kg) or (C) insulin (0.5 

U/kg). (D) Serum insulin concentrations before (0-min) and 15 minutes following an 

intraperitoneal injection of glucose (2g/kg). Statistics are from an ANOVA comparing all 

groups. All data are mean ±S.E.    
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3.B. Skeletal muscle membrane cholesterol accumulation and insulin resistance 

occur within 1 week of high-fat feeding. 

We found that mixed hindlimb skeletal muscle membrane from HF-fed mice had 

a 30-40% increase in cholesterol (Figures 6A and 6B, compare bars 1 and 2). This 

cholesterol elevation was completely normalized in muscle from the RF and HF +CD 

groups (Figures 6A and 6B, compare bar 3 to bars 1 and 2).  
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Figure 6. Skeletal muscle membrane cholesterol. (A) Skeletal muscle membrane 

cholesterol concentrations for LF, HF, and RF groups. (B) Skeletal muscle membrane 

cholesterol concentrations for LF saline, HF saline, and HF +CD group. Statistics are 

from an ANOVA comparing all groups (n=4-8). All data are mean ±S.E.    
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3.C. GLUT4 defects  

Consistent with a significant insulin-resistant skeletal muscle phenotype, we 

found that skeletal muscle membrane had nearly a complete loss of insulin stimulated 

GLUT4 translocation following a 30-minute intraperitoneal glucose challenge (Figure 7). 

This loss was dramatic considering the augmented glucose-stimulated insulin release 

measured in high-fat-fed animals (see Figure 3D). Diet reversal restored insulin 

stimulated GLUT4 translocation. Studies investigating CD animal GLUT4 translocation 

are ongoing. Note that we observed no changes in total skeletal muscle GLUT4 content 

following 1-week of the high fat-feeding challenge as seen by two separate analyses of 

GLUT4 in whole cell lysates (Figure 8 A-D).  
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Figure 7. GLUT4 translocation studies in LF, HF, and RF groups show a reversible 

impairment in glut 4 translocation of HF-fed mice. Quantification of membrane 

GLUT4 for HF, LF, and RF was performed 30 minutes following in vivo glucose 

stimulation. S = saline; G = Glucose.  

  



57 

 

A. Total GLUT4 
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Figure 8. Total cellular GLUT4 content. (A) Representative western blot of total 

cellular GLUT4 content. (B) Total protein bands from the western blot shown in (A). (C) 

Quantification of total cellular GLUT4 for HF, LF, RF, and HF + CD. (D) Higher 

powered examination of the relationship between HF feeding and total cellular GLUT4 

content. Statistics are from an ANOVA (C) or T-test (n=3-6) (D). All data are mean 

±S.E.  

LF HF RF HF +CD 

LF HF RF HF +CD 
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3.D. Cortical filamentous actin 

Consistent with excess membrane cholesterol compromising cortical F-actin, 

Figure 9A shows two representative immunofluorescent images of cortical actin 

filaments in soleus muscle from the LF-, HF-, RF- and HF +CD groups. Qualitatively, a 

clear loss of cortical F-actin was seen in soleus muscle from the HF group compared to 

the other groups. For quantification, we scanned the sarcolemma cortical F-actin signal in 

muscles from three animals per group. Multiple scans were made for each muscle and the 

individual signal intensity per area are shown for each muscle in Figure 9B. We then 

averaged all the scans made for a single muscle and present as a single mouse point for 

each group (see Figure 9C). This analysis showed that muscles from the HF-fed group 

had a significant reduction in cortical F-actin compared to the other three groups (Figure 

9C).  We also did this complete analysis in gastrocnemius muscle and found the same 

association between LF-HF- and RF-fed mice (Figure 8D). We did not collect 

gastrocnemius muscle from the CD-treated HF-fed mice. 
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Figure 9. Skeletal muscle cortical F-actin defects manifest within 1 week of high-fat 

feeding. (A) Representative images of soleus muscle subjected to immunofluorescent 

labeling of cortical F-actin. (B) Data generated from skeletal muscle cortical F-actin 

digital image analysis. Each dot represents one scan per mouse and there are three mice 

per group (LF, HF, RF, or HF +MBCD). (C) Quantification and statistical analysis of 

soleus F-actin data (n=3). (D) Quantification and statistical analysis of gastrocnemius F-

actin data (n=3). Gastrocnemius data was only available for HF, LF and RF groups. 

Statistics are from an ANOVA comparing all groups. All data are mean ±S.E.   
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3.E. Cytokines and insulin signaling 

Inflammatory markers have not been observed after 1-week of high fat feeding. 

We proceeded to confirm this by measuring blood cytokines of diabetogenic 

inflammatory mediators, tumor necrosis factor alpha, and interleukin 6 which were 

undetectable in all measured samples. We then quantified gene expression of 

inflammatory markers tumor necrosis factor alpha and interleukin 6 in skeletal muscle 

(Figure 10 A and B), adipose tissue (Figure 10 C and D), and the liver (Figure 10 E and 

F) we observed no change in the gene expression in adipose tissue, liver, or skeletal 

muscle between LF control mice and 1-week HF-fed mice. Cytokine data was not 

collected for RF or CD groups since there was no difference between LF and HF fed 

animals.  

 Phospho-Akt2 is observably reduced in the skeletal muscle of mice fed a high-fat 

diet for 1 week. Studies identifying this derangement, however, use a standard dose of 

insulin for all mice and, yet, we have shown that glucose stimulated endogenous insulin 

secretion is significantly greater in high-fat fed animals (see Figures 3D, 4D, and 5D). 

Therefore, the in vivo response to a glucose bolus is unclear. Thus, we set out to 

determine whether insulin signaling impairments were still observed after an 

endogenous—rather than exogenous—insulin stimulation. Figure11 (A-C) shows 

quantified western blot data suggesting no impairment in insulin resistance is observed 

following the intraperitoneal injection of a glucose bolus.  This data compliments the 

cytokine data in suggesting proximal signaling defects may not be mediating early diet-

induced insulin resistance.
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Figure 10. mRNA expression of cytokine genes IL6 and TNFa. (A-B) skeletal muscle 

gene expression (C-D) gene expression in fat and (E-F) liver expression. T-test was 

performed to identify any differences between HF and LF groups. All data are mean 

±S.E.    
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Figure 11. Endogenous-insulin stimulated Akt phosphorylation 15 minutes after a 

20% (2g/kg) intraperitoneal glucose injection. (A) Representative western blot of total 

cellular pAkt2 content. (B) Total protein bands from the western blot shown in (A). (C) 

Quantification of total cellular pAkt2 for HF, LF, RF, and HF + CD (n=3). ANOVA was 

used for statistical analysis of group differences.  All data are mean ±S.E.    
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3.F. Overexpression of skeletal muscle and adipose tissue GFAT impairs glucose  

tolerance, causes insulin resistance and elevates skeletal muscle membrane 

cholesterol 

Previous work investigating the mechanism of insulin resistance in mice 

overexpressing muscle and adipose tissue GFAT found a significant reduction in GLUT4 

translocation. Studies investigating this GFAT mediated reduction in skeletal muscle 

GLUT4 translocation is not accompanied by insulin signaling changes. We sought to 

determine if elevated membrane cholesterol accounted for GFAT induced insulin 

resistance. In vitro data from our lab would suggest GFAT post-translation regulation of 

SP1 has downstream effects on cholesterol genes. There was no difference in weight 

between GFAT transgenic mice and wild type (Figure 12A). Figure 12 recapitulates B) 

GTT data as seen previously, C) ITT data demonstrates the presence of insulin resistance, 

and the D) insulin glucose index corroborates the presence of insulin resistance. Figure 

12E shows cholesterol data which suggests elevated skeletal muscle membrane 

cholesterol tends to be elevated in GFAT transgenic mice. Figure 12F shows an 

upregulated ABCA1 expression trend in transgenic animals suggesting differential 

cholesterol gene regulation.   
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Figure 12. Transgenic GFAT mice develop glucose intolerance, insulin resistance, 

and tend to have higher skeletal muscle membrane cholesterol. (A) Body mass (B) 

2g/kg intrperitoneal administered glucose tolerance test (C) 0.5U/kg intraperitoneal 

injected insulin tolerance test  (D) Insulin glucose index as a marker of insulin resistance. 

(E) Skeletal muscle membrane cholesterol. (F) mRNA expression of ABCA1 fold change 

relative to control. More colonies of GFAT mice are currently being bred to validate the 

mechanisms, elucidated in vitro, mediating the causal relationship between 

overexpression of GFAT and insulin resistance. T-test was performed to identify any 

differences between wild type and transgenic mouse groups (n=3-5). All data are mean 

±S.E.   
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3.G. SP1 inhibitor mithramycin prevents diet induced glucose intolerance and does 

not alter food intake or weight.  

Cell culture studies in our lab have previously shown a palmitate induced increase 

in o-linked glycosylation of the transcription factor Sp1. This post-translational 

modification promoted Sp1 binding to the promoter region of HMGR resulting in 

elevated cellular HMGR protein levels. Hyperinsulinemia, hyperlipidemia, and 

hyperglycemia all independently increase plasma membrane cholesterol in vitro through 

the HBP. Studies blocking HBP upregulating or inhibiting Sp1 binding to DNA prevent 

HBP facilitated plasma membrane cholesterol accumulation. We tested the association 

between Sp1 inhibition, insulin sensitivity and membrane cholesterol in vivo by injecting 

mice with mithramycin. Mithramycin prevented glucose intolerance (Figure 13A), insulin 

resistance (Figure 13B), and mitigates membrane cholesterol accumulation (Figure 13C). 

This does not appear to be a consequence of inhibited food intake as mice treated with 

Sp1 consumed the same amount of calories as their high fat counterparts (Figure 13D) 

and had no change in weight (Figure 13E). A second round of studies are ongoing with 

larger sample sizes to validate the caloric intake and weight trajectories findings.  
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Figure 13. Mithramycin injections did not affect weight or appetite and prevented 

glucose and insulin intolerance in 1-week high-fat-fed mice. (A) Weight trajectories 

over the seven-day study period. (B) Total caloric intake at days 2 and 7. (C) Glucose 

tolerance test (2g/kg intraperitoneal injection) (A-C) Closed circles are HF saline treated 

controls, open circles are LF saline treated controls, and green squares are HF animals 

injected with (mithramycin) HF +MTM experimental mice. (D) Glucose slope over the 

first 30-minutes of an intraperitoneal injected (0.5 U/kg) insulin tolerance test. (E) Insulin 

values at baseline (0-minutes) and 15-minutes following a (2g/kg) intraperitoneal 

injection of glucose. (F) Skeletal muscle membrane cholesterol from mixed hindlimbs 

excised from LF saline, HF saline, and HF +MTM experimental mice. ANOVA was used 

to test for differences between groups (n=3-6). All data are mean ±S.E.   
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3.H. Cholesterol laden methyl-β-cyclodextrin injections causes glucose intolerance 

and 1-week high fat diet increases HMGR expression.  

Strengthening the causal relationship between membrane cholesterol 

accumulation and glucose intolerance are experiments whereby shuttling cholesterol into 

cells can induce insulin resistance in GLUT4 translocation. This corresponds nicely with 

data we discovered showing the upregulation of Hmgr expression (Figure 14A) is 

upregulated in 1-week high-fat-fed mice suggesting de novo cholesterol synthesis is 

contributing to elevated membrane cholesterol in diet-induced insulin resistant mice. 

Future studies are underway with the aim of parsing out the differential regulation of 

cholesterol genes after 1-week of HF feeding. We will determine which cholesterol genes 

are important in the early regulation of skeletal muscle membrane cholesterol.  

To test the concept of membrane cholesterol accumulation in vivo, we used two 

doses of cholesterol laden methyl-β-cyclodextrin (8:1 molar ratio) to acutely induce 

glucose intolerance in chow fed (Figure 14B). We observed a 10% increase in the 

glucose are under the curve of mice injected with cholesterol laden methyl-β-cyclodextrin 

relative to their saline-control chow-fed counterparts. Further examination of acutely 

induced insulin resistance in chow fed mice is currently underway. We are optimizing the 

cholesterol-to-methyl-β-cyclodextrin molar ratio since 8:1 only facilitates a modest 

increase in membrane cholesterol in vivo. We think the more potent molar ratio of 4:1 

will induce a larger glucose intolerance. We will then determine whether the cholesterol 

addition impairs GLUT4 translocation and insulin signaling. 
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Figure 14. High-fat-feeding increases HMGR expression and exogenous cholesterol 

injections acutely impairs glucose tolerance in chow fed mice. (A) Fold change of 

HMGR expression over control in low-fat-fed and high-fat-fed mice. (B) Glucose 

tolerance test (2g/kg intraperitoneal injection) 5 hours after two injections of (0.3 ml) of 5 

mM methyl-β-cyclodextrin laden with cholesterol at an 8:1 (methyl-β-

cyclodextrin:cholesterol) molar ratio. T-test was used for statistical testing (N=4-6). All 

data are mean ±S.E.   
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Chapter 4. Discussion 

Skeletal muscle membrane cholesterol accumulation and F-actin cytoskeletal 

derangements in mice fed a high-fat diet for 1 week are causally associated with glucose 

intolerance and insulin resistance. This is the first mechanism of early insulin resistance 

ever identified that negatively affects GLUT4 regulation in the initial stages of Western-

style high-fat feeding challenge. The observed membrane/cytoskeletal derangements 

were restored to normal when the high-fat diet was removed or methyl-β-cyclodextrin 

was used to remove cholesterol from skeletal muscle membranes. 

Causality for excess membrane cholesterol impairing glucose tolerance was 

further supported by the acute diabetogenic effect of delivering exogenous cholesterol 

into chow fed mice. Analyses of tissue from these mice injected with cholesterol-laden 

methyl-β-cyclodextrin are currently underway, including GLUT4 translocation 

determination. The effect of cholesterol addition to membranes will be telling and should 

further clarify the relationship between membrane cholesterol and insulin signaling 

defects. 

Previous cell culture studies in the lab found excess membrane cholesterol was 

caused by HBP-mediated increase in the O-GlcNAc post-transcriptional modification to 

Sp1. Use of the Sp1 inhibitor mithramycin prevented diet-induced insulin resistance in 

high-fat fed mice and trended to reduce membrane cholesterol concentrations. Follow-up 

studies are underway to determine whether Sp1 inhibition improves GLUT4 translocation 

in high-fat fed mice. Findings presented show a glucose intolerance in GFAT transgenic 

mice, and skeletal muscle cholesterol appears to be elevated in skeletal muscle membrane 

of the GFAT mice. Future research will also importantly evaluate whether mithramycin is 

sufficient for preventing insulin resistance in GFAT transgenic mice. 
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 There are a lot of mediators of insulin resistance, but when broken down to their 

mechanisms of action, many negatively impact the same proteins along the proximal 

insulin-signaling pathway. These signaling pathway proteins are common in liver, 

muscle, and fat. Therefore, we would expect insulin resistance to occur simultaneously in 

all three tissues. This, however, is not the case in animals or humans. Cardiac and skeletal 

muscle, and adipose tissue glucose uptake approaches maximum impairment shortly 

following high fat feeding; whereas, suppression of hepatic glucose output by insulin 

takes many more weeks to be maximally defective resulting in increased hepatic glucose 

production91. 

In humans, tissue specific insulin sensitivity differences define many at risk for 

type 2 diabetes5-8. Mutations in AKT2 found in a Finish population with congenital fat, 

skeletal muscle, and hepatic insulin resistance is instructive when considering the 

distribution of IFG, IGT, and combined IFG/IGT in the general population. The carriers 

of the AKT2 mutation, present with hepatic and skeletal muscle insulin resistance152. This 

presentation suggests a mechanism of insulin resistance in the insulin-signaling cascade 

(Insulin Receptor→Akt2) would manifest in a patient with combined IFG/IGT152. 

Although defective insulin signaling to Akt does not represent a major node of insulin 

resistance in skeletal muscle, this may not be the case for the liver; i.e., impairment in 

Akt signaling in the liver may be a critical aspect of hepatic insulin resistance. It is 

recognized that IRS1 inhibition causes both hepatic and skeletal muscle insulin 

resistance, but it is possible that IRS1 inhibition in humans can be compensated for 

through hepatic expression of IRS2 resulting in isolated IGT. There is little evidence in 

humans supporting a role for IRS1 mutations since humans with mutations have a mild or 
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no insulin resistance and little to no increased risk for type 2 diabetes153. Moreover, 

people with IRS1 mutations can also have elevated fasting glucose 154, 155and, while IRS1 

is generally considered the GLUT4 regulating isoform, people with IRS2 mutations have 

both a hepatic and skeletal muscle insulin resistance association with body fat 

longitudinally156. Therefore, it is just as plausible that insulin resistance in isolated IGT 

lies somewhere distal to Akt2. Complimenting this research is the literature I cited in the 

introduction, where bypassing IRS, PI3K and Akt demonstrated the continued presence 

of insulin resistance. 

The presentation of isolated skeletal muscle insulin resistance in a sizeable 

proportion of the population suggests a mechanism precluding the insulin signaling 

cascade exists that warrants investigation to understand skeletal muscle insulin resistance 

underlying IGT. Distal to Akt2, a mutation in AS160 has been discovered and, as 

expected, is associated with skeletal muscle insulin resistance. This mutation is a gain of 

function mutation that releases GSVs allowing them to translocate to the membrane. 

Nonetheless, this mutation that causes “unregulated” GLUT4 positioning in the plasma 

membrane likely elicits skeletal muscle glucose toxicity, perhaps HBP-mediated 

cholesterol accumulation. In line with this thought, the AS160 mutation and unregulated 

GLUT4 translocation is associated with post-prandial hyperglycemia and fasting 

hypoglycemia. Generally, however AS160 mutations are rare and there is no evidence for 

widespread AS160 downregulation in early insulin resistance157. Rather, as mentioned 

earlier, skeletal muscle insulin resistance is still present when AS160 is circumvented, 

and Akt2 downregulation does not necessarily result in AS160 downregulation, despite 
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impaired GLUT4 translocation. More so, Akt-independent pathways, bypassing AS160 

are sufficient in producing GLUT4 translocation to the membrane. 

Insulin-stimulated glucose disposal is maximally impaired prior to the onset of 

IGT158, yet, weight gain is still ongoing in persons developing IGT which suggests 

proximal insulin signaling is still intact, at least in adipocytes158. Populations with 

isolated IGT tend to be fatter and older than populations with IFG so it is possible that 

skeletal muscle insulin resistance is not a result of a defect in insulin signaling proteins, 

but rather the result of a normal physiologic response to high caloric intake137. As my 

dissertation research has shown, along with previous studies, skeletal muscle insulin 

resistance is a consequence of HBP overactivity78. Generally considered a nutrient 

sensor, HBP regulation of genes responsible for cholesterol handling may be a normal 

and necessary aspect of cholesterol metabolism meriting further investigation. 

Consequently, obesity-mediated cholesterol gene regulation may lead to skeletal muscle 

insulin resistance. Ding et al. demonstrated this very association between obesity 

regulation of cholesterol genes and type 2 diabetes risk110. The cholesterol efflux protein, 

ABCG1, is also often seen to be epigenetically modified in obesity and epigenetic 

modification to ABCG1 is frequently found as a risk factor for type 2 diabetes112, 117-120, 

159.  

The relationship between cholesterol transport into and out of muscle and fat will 

be important for understanding the mediation of cellular cholesterol accumulation and 

GLUT4 dysregulation. I mentioned earlier that data suggests increased skeletal muscle 

GFAT activity in isolation may be insufficient in producing skeletal muscle insulin 

resistance. Rather, both skeletal muscle and adipose tissue GFAT overexpression is 
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required for the onset of skeletal muscle insulin resistance. We identified the upregulation 

of HMGR in response to HBP activity78, but HMGR activity alone may not be sufficient 

in vivo to cause cellular cholesterol accumulation. In vivo, cellular cholesterol influx and 

efflux may be as important for regulating cholesterol levels as de novo synthesis. To 

study the relationship, it would be important to investigate the effect LDLR, VLDLR, 

ABCA1, and ABCG1 gene knockout has on metabolism in chow fed and high fat fed 

mice. It will be equally important to determine the effects of Sp1 regulation on HMGR. 

Does a skeletal muscle specific knockout of the Sp1-promoting region in HMGR protect 

against diet-induced insulin resistance? Does whole body knockout of this same region 

prevent against diet-induced insulin resistance? 

 The transience of cholesterol accumulation is another aspect that will be 

important to investigate. Hyperglycemia for a short period of time has been shown to 

induce skeletal muscle insulin resistance, but not through the HBP-meditated post-

translational regulation of proteins88. Another nutrient sensor implicated in insulin 

resistance is AMP-activated protein kinase (AMPK). Responsive to levels of adenosine 

monophosphate and ATP, AMPK allosterically regulates many anabolic and catabolic 

proteins. One such protein, is HMGR, which has an AMPK responsive site (Serine 872), 

that, once phosphorylated, deactivates HMGR activity160. Under hyperglycemic 

conditions, AMPK would be inactivated and HMGR would be functional, allowing for 

cellular cholesterol accumulation to commence. Knock-in mutation of the serine 872 

codon in skeletal muscle would be expected to cause unregulated HMGR activity and 

skeletal muscle insulin resistance. Furthermore, constitutive activation of AMPK should 

also prevent HMGR-mediated cholesterol accumulation and can be achieved through 
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either gene technology or using a drug such as AICAR. AICAR has been demonstrated to 

improve insulin resistance161 and in vitro studies of GLUT4 translocation demonstrate 

that this improvement can be mitigated by adding cholesterol-laden methyl-β-

cyclodextrin to culture media162, thereby increasing membrane cholesterol 

concentrations. 

 Aside from HMGR are proteins that regulate cholesterol transport—APOA1, 

ABCA1, ABCG1, and the LDLR—have all been identified as meditators of insulin 

resistance. Preliminary studies by our lab have shown that ABCA1 knockout in skeletal 

muscle can cause a mild glucose intolerance (see Figure 15). This phenotype, however, 

was mild and not what we expected. We identified possible upregulation of ABCG1 and 

fat regulation of cholesterol efflux as potential confounding factors in these ABCA1 

experiments. Mice with skeletal muscle specific double knockout of ABCA1 and ABCG1 

are currently in development, but the role of fat on skeletal muscle insulin sensitivity is 

still in need of investigation. 
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Figure 15. Body mass and glucose tolerance test for skeletal muscle specific ABCA1-

/- knockout mice.   
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Adipose tissue HBP overactivation is sufficient to cause a mild skeletal muscle 

insulin resistance in otherwise healthy animals137. Regulation of skeletal muscle insulin 

resistance by adipocytes is complex as there are many endocrine and paracrine signals 

produced by fat with the ability to prompt insulin resistance. Inflammatory markers, for 

example, are important signals synthesized in adipose tissue and capable of propagating 

insulin resistance. Inflammation onset, however, is after the onset of insulin resistance in 

diet-induced insulin resistance and adipose-specific HBP-mediated insulin resistance 

does not appear to be mediated by inflammation137. Overactivity of HBP in fat has been 

shown to decrease circulating adiponectin levels, a hormone that would be expected to 

inhibit HMGR activity by it stimulation of AMPK and may also regulate cholesterol 

efflux137, 163. Adiponectin concentrations, moreover, have been observed to decrease early 

in diet-induced insulin resistance91.  

Cholesterol efflux regulation by adiponectin has been observed in vitro and in 

vivo. Adiponectin decreases the rate of ApoA1 degradation in humans and increases 

ApoA1, ABCA1, and SR-BI concentrations in HepG2 cells164-166. The effect that 

adiponectin has on the cholesterol content of skeletal muscle is unknown. Metabolically 

healthy fat may counteract the deleterious effects of HBP upregulation in muscle, through 

the secretion of adiponectin and upregulation of cholesterol efflux. Conversely, decreased 

adiponectin secretion from metabolically unhealthy fat may result in an adiponectin loss 

of AMPK activity suppressing HMGR activity and a decreased cholesterol efflux 

capacity and thus result in an increased skeletal muscle membrane cholesterol. 

Interestingly, ApoA1 mimetics have recently been shown to improve insulin sensitivity 

and, hence, provide a strong basis for investigating cholesterol efflux as a mechanism by 
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which fat, through adiponectin signaling, can influence skeletal muscle insulin 

sensitivity133, 167. 

Mechanistically, research aimed at understanding the effect membrane cholesterol 

has on GLUT4 translocation should be parsed out further. Previous studies in our lab 

have identified a key role for PIP2 and actin regulation, but understanding the 

relationship between plasma membrane cholesterol domains, PIP2 concentrations, and 

actin assembly merits future investigation. Many of the steps involved in insulin-

stimulated GLUT4 translocation occur at the plasma membrane, and therefore a 

relationship between membrane derangements, aPKC defects, translocation proteins, 

calcium channels, calcium influx and PLD1 associated membrane priming events would 

be valuable in further delineating the mechanism by which excess membrane cholesterol 

impairs insulin stimulated GLUT4 translocation. 
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Chapter 5. Conclusion 

 These studies suggest elevated skeletal muscle membrane cholesterol occurs early 

in the etiology of diet-induced insulin resistance. Encouragingly, these data also show 

that membrane cholesterol is mediated by nutrient excess and is reversible. Moreover, 

reversal of diet or removal of cholesterol was sufficient to restore glucose tolerance in 

high-fat-fed animals. The addition of cholesterol was also sufficient for inducing glucose 

intolerance. Diet-induced insulin resistance was prevented in mice administered 

mithramycin suggesting a significant role for Sp1-mediated transcription in the 

development of glucose intolerance. These studies add to the sizeable evidence that diet-

induced insulin resistance in some part is mediated by a cytoskeletal and membrane 

mechanism distal to proximal insulin signaling.  
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Chapter 6. Appendix 

Pre-clinical scientists are required to quantify data using specialized measurement 

tools for a manuscript to be acceptable for publication. Quantification and statistical 

analysis of data may not be the best choice for interpreting finds—instead consider 

repeatability of experiments as a measure of significance—but regardless quantification 

is required. Lysates we use for data analysis are products of tissues with differing weights 

and pellets of assorted sizes. This results in sample concentration variance which needs to 

be accounted for in data analysis. We use total protein as a measure of cellular material 

for any given sample. Usually, data are standardized using a per-protein standard 

(measure/tot protein) this procedure is simple in its math and the per-protein denotation 

makes intuitive sense. This language though is deceptive. 

The use of ratios has been discussed thoroughly in epidemiologic literature among 

other fields168-170. These studies focus on the finding of spurious correlations when a 

variable is divided by another variable (i.e. exercise/weight). When this new ratio is used 

for correlation analysis with another variable (i.e. glucose) we discover a biased result, 

that is, this finding is mostly influenced by the correlation between weight and glucose, 

resulting in biased findings. 

The scenario provided above is not the scenario we are dealing with for 

standardization of molecular biology measures. In these experiments, we are using total 

protein as an indicator of cellular material in lysate, a random variable, and the division 

should not cause spurious associations. There is a different issue when the per-protein 

standard is used, error. For example, western blots are standardized to abundant proteins 

or preferably to total protein using a ratio171. Gilida et al. demonstrate the superiority of a 
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per-protein standard using total protein rather than abundant proteins (GDPH), and Kevin 

Janes confirmed these findings and expanded on the work. In his manuscript, he 

discusses the importance of a zero-intercept (removing background) from the western 

blot quantification171, 172. Unfortunately, a zero-intercept requirement is widely unknown 

and getting accurate measurements of background to achieve zero is statistically 

impossible, although an acceptable range near zero will produce satisfactory results172. 

The discussion by Kevin Janes and others has identified the flaws with the use of ratios 

but fall short of suggesting regression analysis172-175. 

Considering the potential for standardization to bias our results I decided to 

determine the appropriateness of regression-based analysis for statistical analysis of 

variables normally standardized using a per-protein technique. The number of samples-

to-variables in the regression analysis is a concern since a high proportion of samples-to-

variables can inflate significance, resulting in type 1 error, traditionally an acceptable 

proportion is 1:20176. Our goal, however, is to remove error incorporated into our data by 

the variance in sample concentration. For this purpose, we would like to calculate the 

residual of the variable (Y) to the predict measurement value (Observed value – predicted 

value) for the equation Y = B0 + B1X1+…+ e, where X1 is total protein and Y is our 

measurement of interest. Significance in this case is not of interest but rather the accuracy 

of parameters B0 and B1, which, according to Austin and Steyerberg, can be accurately 

calculated (within a 10% error rate) when there are as few as 2 samples per variable, with 

the caveat that this is rule applies to large datasets177.  The residuals from this model 

would be analyzed by a t-test to determine the group differences between experimental 

and control conditions. 
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I proceeded to run statistical simulations to test the sensitivity and specificity of 

various standardization methods with the aim to identify the most appropriate method for 

data analysis. Methods of data analysis used were per-protein standard, residual, and raw 

unaltered data. By varying the number of samples (n), intercept, diet effect size, protein 

effect size, and error distributions we could generate models predicting the sensitivity of 

a t-test based on these factors. 

The purpose for running this simulation was to establish the method that is most 

sensitive to experimental group differences. There was no difference in test specificity 

among the three methods. I did see an expected increase in sensitivity for all methods 

when n is increased, the effect size is large, or the error distribution is decreased. Figure 

A-16 is a representative graph generated from a simulation in which the intercept was 

varied while the other variables were held constant. Shown in the graph is the effect the 

intercept has on the sensitivity of a t-test to discriminant between treatment and control 

groups, each color represents a method of adjustment described above. Of note, is the 

exponential decrease in the sensitivity of the per-protein method as the intercept moves 

further away from zero. It is also important to note that the residual method was 

consistently sensitive regardless of deviation from intercept. The unadjusted data was 

most sensitive to data with a large experimental effect size and/or a small error 

distribution. Overall these simulation studies establish the per-protein standard to be an 

unreliable method for detecting small-to-medium effect sizes when the intercept varies 

from zero. In most studies, the intercept will be a random variable centered around zero. 

Future work will examine: 1) the probability of an intercept to fall within an acceptable 

range for detecting small effect sizes, 2) the concordance between parameters and their 
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estimates from linear regression in small sample sizes 3) the accuracy of a t-test in 

determining experimental effect size from residuals 4) the potential for GLM modeling of 

ANCOVA for adjusting data and 5) the best method for handling data with batch effects 

(ANCOVA or t-test of Residuals). The most important takeaway from this data is that the 

residual method is superior to the per-protein method and is the most reliable method for 

detecting differences between experimental groups. 
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Figure A-16. Sensitivity of data adjustment methods. B0 by Sensitivity, B1=0.3, Std 

Error=0.2, n=13, Effect Size=0.5 
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