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27 Abstract

28 Offspring of diabetic mothers are susceptible to developing type 2 diabetes due to 

29 pancreatic islet dysfunction. However, the initiating molecular pathways leading to offspring 

30 pancreatic islet dysfunction are unknown. We hypothesized that maternal hyperglycemia alters 

31 offspring pancreatic islet transcriptome and negatively impacts offspring islet function. We 

32 employed an infusion model capable of inducing localized hyperglycemia in fetal rats residing in 

33 the left uterine horn, thus avoiding other factors involved in programming offspring pancreatic 

34 islet health. While maintaining euglycemia in maternal dams and right uterine horn control 

35 fetuses, hyperglycemic fetuses in the left uterine horn had higher serum insulin and pancreatic 

36 beta cell area.  Upon completing infusion from GD20 to 22, RNA-sequencing was performed on 

37 GD22 islets to identify the hyperglycemia-induced altered gene expression. Ingenuity pathway 

38 analysis of the altered transcriptome found that diabetes mellitus and inflammation/cell death 

39 pathways were enriched. Interestingly, the down-regulated genes modulate more diverse 

40 biological processes, which includes responses to stimuli and developmental processes. Next, 

41 we performed ex- and in-vivo studies to evaluate islet cell viability and insulin secretory function 

42 in weanling and adult offspring. Pancreatic islets of weanlings exposed to late gestation 

43 hyperglycemia had decreased cell viability in basal state and glucose-induced insulin secretion. 

44 Lastly, adult offspring exposed to in-utero hyperglycemia also exhibited glucose intolerance and 

45 insulin secretory dysfunction. Together, our results demonstrate that late gestational 

46 hyperglycemia alters the fetal pancreatic islet transcriptome and increases offspring 

47 susceptibility to developing pancreatic islet dysfunction.

48

49

50

51

52
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53 INTRODUCTION

54 Diabetes complicates 5.6-11.7% of all pregnancies (Hunt & Schuller 2007; DeSisto 

55 2014), with affected mothers and offspring vulnerable to adverse metabolic outcomes (Ratner et 

56 al. 2008; Fraser & Lawlor 2014; Tam et al. 2017; Das Gupta et al. 2018) . Offspring of diabetic 

57 mothers suffer a 4- to 8-fold increased risk of developing type 2 diabetes (Clausen et al. 2008) 

58 due to obesity (Raghavan et al. 2017), insulin resistance (Sauder et al. 2017), and pancreatic 

59 islet dysfunction (Gautier et al. 2001; Tam et al. 2017). In addition to increased adiposity, recent 

60 human studies have shown that by the age of seven, children born to diabetic mothers had 

61 impaired glucose tolerance and decreased beta cell compensation (Tam et al. 2017). Animal 

62 offspring exposed to a diabetic milieu in-utero also exhibited pancreatic islet dysfunction (Cerf et 

63 al. 2006; Han et al. 2007; Blondeau et al. 2011; Zambrano et al. 2016). While both human and 

64 animal studies confirmed that the altered in-utero environment during diabetic pregnancy 

65 permanently reprograms the metabolic health of offspring, the underlying mechanisms 

66 modulating offspring pancreatic islet function remain poorly understood.

67 During maternal diabetes (type 1, type 2, and gestational diabetes), maternal 

68 hyperglycemia occurs secondary to inadequate insulin secretion and/or underlying insulin 

69 resistance. Commonly used animal models simulating diabetic pregnancy, such as chemically-

70 induced maternal diabetes (insulin deficiency model) (Han et al. 2007; Blondeau et al. 2011) or 

71 maternal high fat diet model (maternal insulin resistance/obesity) (Cerf et al. 2006, 2009; 

72 Zambrano et al. 2016), expose developing fetuses to a multitude of maternal biochemical 

73 changes far beyond hyperglycemia during critical development periods (Xiang et al. 2007; Wang 

74 et al. 2010). Maternal hyperglycemia has been implicated as the primary contributing factor 

75 (Clausen et al. 2008; Tam et al. 2017; Martin & Sacks 2018) and has been shown to induce 

76 pancreatic islet dysfunction early during fetal life (Frost et al. 2012; Green et al. 2012). However, 

77 the exact means by which maternal hyperglycemia impacts offspring metabolic health is 

78 unknown due to 1) the absence of a rodent model capable of exposing the developing fetus to 
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79 an exclusively excessive glucose supply, and 2) a limited understanding in early transcriptome 

80 changes induced by maternal hyperglycemia. 

81 Both rodents and humans undergo continuous pancreatic beta cell mass expansion and 

82 functional maturation postnatally until young adulthood (Bonner-Weir et al. 2016). This process 

83 of postnatal pancreatic beta cell mass expansion and functional maturation is tightly regulated 

84 by transcription factors (eg. MafB, Ucn3) (Artner et al. 2007; van der Meulen & Huising 2014), 

85 miRNA (Jacovetti et al. 2015, 2017), and growth factors (insulin, INGAP) (Barbosa et al. 2006). 

86 Changes in any of these factors could affect the biological and mechanistic pathways involved 

87 with diabetes-induced pancreatic islet dysfunction in offspring. 

88 The aim of this study was to identify early transcriptome changes induced by maternal 

89 hyperglycemia on pancreatic islets of offspring, uncovering a primary mechanism of offspring 

90 pancreatic islet programming. We hypothesize that maternal hyperglycemia alters the offspring 

91 pancreatic islet transcriptome, consequently conferring increased offspring susceptibility to 

92 developing pancreatic islet dysfunction. To create the fetal hyperglycemic environment, we 

93 employed a model capable of inducing localized fetal hyperglycemia in rats (Yao et al. 2010; 

94 Gordon et al. 2015). While maintaining maternal euglycemia, this model targets glucose delivery 

95 to fetuses residing in the left uterine horn, allowing the use of fetuses in the right uterine horn as 

96 genetically similar controls as they remain normoglycemic (Yao et al. 2010; Gordon et al. 2015). 

97 Using an RNA-sequencing approach, we identified early transcriptome alterations induced by 

98 late gestation hyperglycemia in fetal islets. Subsequently, we selected regenerating islet-derived 

99 protein 3-gamma (Reg3g) for validation due to its highest fold change and reported protective 

100 role as compensatory factor during islet stress (Marselli 2010, Xia 2016). Based on the 

101 biological processes enriched and functions of differentially expressed genes, we performed 

102 additional ex- and in-vivo studies evaluating weanling and offspring pancreatic islet cell viability 

103 and insulin secretory function. Together, our results showed that offspring exposed to late 

104 gestational hyperglycemia acute developed pancreatic islet morphological changes with altered 
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105 islet transcriptomes that have critical functions on pancreatic islet health, and subsequently 

106 developed persistent pancreatic islet dysfunction as early as weaning. 

107

108 METHODS

109 Animals: All procedures conformed to the regulations of the Animal Welfare Act and the 

110 National Institutes of Health Guide for the Care and Use of Laboratory Animals, and were 

111 approved by the Indiana University School of Medicine Institutional Animal Care and Use 

112 Committee. Rodents were housed in a temperature controlled, 12-hour light-dark cycled animal 

113 care facility with free access to water and regular chow. 

114

115 Localized Fetomaternal Hyperglycemia (Figure 1A): On gestation day (GD) 20, a vascular 

116 catheter draining into the left uterine artery was placed in timed pregnant CD Sprague Dawley 

117 rats (Charles River, Wilmington MA) to infuse glucose directly into the left uterine artery (Yao et 

118 al. 2010; Gordon et al. 2015). Maternal tail vein blood glucose levels were measured prior to 

119 anesthesia (n=13 GD 20 dams). Anesthesia was induced using isoflurane inhalation with 

120 oxygen. A 3 Fr Polyurethane Catheter (Norfolk Access, IL) was inserted and secured 1.75 cm 

121 retrograde into the femoral artery, thus placing the tip of the catheter several millimeters 

122 proximal to uterine artery divergence from the common iliac artery. The left inferior peritoneal 

123 space was explored and superfine microclips (GEM 1521, Synovis Micro Companies Alliance 

124 Inc, AL) were placed on the superior gluteal and hypogastric trunk arteries. The catheter was 

125 tunneled subcutaneously to exit at the mid-scapular space and connected to a single channel 

126 infusion swivel (Instech, PA), allowing rats to move freely. Following this procedure, glucose 

127 (D20W) was infused at 4 mg/min (20 μl/min) until GD22 (term). All pregnant dams received the 

128 same postoperative analgesia. Topical Bupivacaine was applied immediately after wound 

129 closure and subcutaneous buprenorphine SR (0.5 mg/kg) was given once preoperatively with 

130 Meloxicam (3 mg/kg) once daily until delivery. After measuring maternal tail vein glucose level 
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131 (n=13 GD22 dams), GD 22 pregnant dams were anesthetized for laparotomy. Left and right 

132 uterine vein blood was collected prior to fetal extraction for glucose measurement using an 

133 Alphatrak Glucometer (Zoetis, NJ) (n=15 GD22 dams). After delivery, pups exposed to 

134 hyperglycemic infusion (HG) and respective right uterine horn controls (Con) were either 

135 euthanized for sample collection and blood glucose measurement (n 22-26 fetus; 12-14 

136 neonates per group), or resuscitated and cross-fostered to healthy dams who delivered a day 

137 apart. Negative control experiment was performed using the same surgical approach but with 

138 dams were infused with normal saline (n=3 GD20 pregnant dams).

139

140 Islet Isolation: Fetal pups were euthanized immediately after delivery and the abdominal 

141 surface was sterilized with 70% ethanol. Laparotomy was performed and the fetal pancreas was 

142 separated from surrounding tissue starting from the spleen. One pancreas from each gender 

143 was pooled and cut into pieces smaller than 3 mm. Collagenase (Worthington, 1 ml of 2 mg/ml 

144 concentration per pancreas) was added and the tissue/collagenase mixture was incubated at 

145 37°C for 10-12 minutes with intermittent manual shaking. Subsequently, a 10 ml syringe 

146 attached to 20 G needle was used for aspiration-ejection to homogenize the tissue lysates. Next 

147 HBSS/BSA was added to deactivate collagenase. The lysate was centrifuged, supernatant was 

148 removed, and the digested pellet was resuspended with RPMI 1640 media. Lastly, islets were 

149 hand-picked and cultured in RPMI 1640 media with 5.5 mM glucose. For weanlings, islets were 

150 isolated per standard ductal inflation technique (Stull et al. 2012).

151

152 RNA sequencing: The mRNA sequencing was performed by the Center for Medical Genomics 

153 at the Indiana University School of Medicine. Fetal islets were isolated as described above. 

154 Three set of paired fetal islet samples collected from fetuses from three independent infusions 

155 were used for RNA sequencing. Total islet RNA was extracted using an RNeasy micro kit 

156 (Qiagen, Valencia, CA) following the manufacturer’s instructions. Purified total RNA was first 
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157 evaluated for its quantity and quality using the Agilent Bioanalyzer 2100. A RIN (RNA Integrity 

158 Number) of five or higher was required to pass the quality control. 65-150 ng of total RNA per 

159 sample were used for library preparation. cDNA library was generated and indexed individually. 

160 The cDNA library preparation included mRNA purification/enrichment, RNA fragmentation, 

161 cDNA synthesis, ligation of index adaptors, and amplification following the TruSeq Stranded 

162 mRNA Sample Preparation Guide (RS-122-9004DOC, Part# 15031047 Rev. E; Illumina, Inc.). 

163 Each resulting indexed library was quantified and its quality assessed by Qubit and Agilent 

164 Bioanalyzer, then pooled in equal molarity according to the Guide. Average size of library insert 

165 was about 150b. Five microliters of 2 nM pooled libraries per lane were then denatured, 

166 neutralized and applied to the cBot for flow cell deposition and cluster amplification, before 

167 loading on to HiSeq 4000 for 75b paired-end sequencing (Illumina, Inc.). A Phred quality score 

168 (Q score) was used to measure the quality of sequencing. More than 90% of the sequencing 

169 reads reached Q30 (99.9% base call accuracy). Median raw reads were 41 million per sample. 

170 The sequencing data were mapped to the rat genome (UCSC rn6) using a STAR RNA-seq 

171 aligner (Dobin et al. 2013) and read counts were summarized using featureCounts (subread) 

172 (Dobin et al. 2013; Liao et al. 2013) to get gene expression data. Seventy three percent of the 

173 reads were mapped to the gene area. The genes with no/low expression were removed and the 

174 expression data were normalized using the trimmed mean of M values (TMM) method. 

175 Differential expression analysis was performed using edgeR (Robinson et al. 2009; McCarthy et 

176 al. 2012), and the false discovery rate (FDR) was computed from p-values using the Benjamini-

177 Hochberg procedure (n= three paired replicates per group from three separate infusions). 

178 Sequencing data can be found at GEO (GSE118323).

179

180 Ingenuity Pathway Analysis (IPA) Package and GO Biological Process Enrichment: 

181 Differentially expressed genes (FDR<0.05 and FC>1.5) were analyzed using two pathway 

182 analyses. IPA Package was used to identify enriched pathways and disease processes 
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183 (adjusted p-value <0.05 after Bonferroni correction). Next, the GO biological processes enriched 

184 by up- and down-regulated genes were identified separately using the PANTHER 

185 overrepresentation test (database version: GO Ontology database Released 2018-05-21, 

186 Reference List: Rattus Norvegicus, Annotation Data Set: GO Biological Process complete, Test 

187 Type: Fisher’s Exact With FDR multiple test correction, FDR<0.05 as significant) (Mi et al. 2017) 

188 and visualized using REVIGO (Supek et al. 2011).

189

190 Quantitative RT-PCR (RT-qPCR): Additional sets of paired fetal islet samples collected as 

191 described above were used to validating RNA-sequencing findings (n= 5 paired replicates from 

192 five mothers, of those one was technical replicate from RNA-seq). For RT-qPCR, total RNA was 

193 purified and reverse transcribed at 37°C with 15 µg of random hexamers, 0.5 mM dNTPs, 5X 

194 first strand buffer, 0.01 mM dithiothreitol, and 200 U of M-MLV reverse transcriptase (Invitrogen) 

195 in a final reaction volume of 20 µl. RT-qPCR was performed using a SyBr Green-based 

196 methodology and primers that were synthesized commercially (Table 1). Briefly, 0.4 µl of 

197 forward primer (5 µM), 0.4 µL of reverse primer (5 µM), 5 µL of 2X SYBR Green PCR Master 

198 mix (applied Biosystems, NBY), and 4.2 µL of cDNA were mixed. Next, the reactions were 

199 amplified for 40 cycles using Applied Biosystems QuantStudio 3 Real-Time PCR system 

200 (Applied Biosystems CA). 

201

202 Immunohistochemistry/Immunofluorescence: Pancreas was removed from animals after 

203 euthanasia and fixed rapidly, embedded in paraffin, and sectioned into 5 µm thick slices, with 

204 one section of each group on the same slide to avoid slide-to-slide variation. Two to three 

205 sections per animal were analyzed for all immunohistochemistry/immunofluorescence studies. 

206 The pancreatic sections were deparaffinized and rehydrated through a series of graded ethanol 

207 solutions. Endogenous peroxidase activity blockade was performed and antigens were retrieved 

208 by microwaving slides with unmasking solution (Vector Laboratories, CA). To identify pancreatic 
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209 endocrine cell areas (Fetus: 5-6 pups/group from five mothers; adult offspring: 4 males/group 

210 from four mothers), sections were incubated with anti-insulin (Santa Cruz sc-9168, 1:500) or 

211 anti-glucagon antibodies (Santa Cruz sc-13091, 1:500) overnight. Digital images depicting 

212 whole pancreatic tissue sections were obtained using an Axio-Scan Z1 inverted microscope 

213 (Zeiss, Germany). The area of insulin- or glucagon-positive cells (calculated using Zen Pro) was 

214 divided by the total area of whole pancreatic sections to obtain the beta or alpha cell cross-

215 sectional area as a percentage of total pancreatic area. For adult offspring, beta cell mass is 

216 calculated by multiplying percent insulin positive area with total pancreatic mass. To assess 

217 relative Reg3g distribution in beta cells (GD22 fetus: 5 pups/group from five mothers), we 

218 quantified the ratio of Reg3g-stained volume to that of insulin. Pancreatic sections were 

219 incubated with anti-insulin antibody (Santa Cruz sc-9168, 1:500) and anti-Reg3g antibody 

220 (Antibodies Online, ABIN3023039, 1:200) overnight. Pancreatic histological samples were 

221 scanned bidirectionally with a Leica TCS SP8 laser-scanning confocal microscope system 

222 equipped with a 405 nm diode laser and 488 nm and 552 nm semiconductor lasers and an HC 

223 PL APO CS2 40X/1.30 oil objective lens through a 68.06 µm pinhole (1.0 Airy unit). Emission 

224 bandwidths were set to 415-480 nm for blue emission, 495-545 nm for green emission, and 

225 560-700 nm for red emission. Twelve-bit 1024x1024 voxel images were collected at a voxel 

226 volume of 0.212 µm x 0.212 µm x 0.502 µm with a line average setting of two using LAS X 

227 v3.1.5.16308 software. These settings were applied to all acquired images. All image 

228 processing was performed with Fiji version 1.51 (Schindelin et al. 2012). First, Reg3g and 

229 insulin images were thresholded with the Li algorithm in Fiji and a region of interest (ROI) was 

230 drawn around insulin-stained cells. All signal outside the ROI was removed and the insulin 

231 signal volume (µm3) contained within the ROI was quantified with the 3D object counting 

232 function in Fiji.  This ROI outline was transferred to the corresponding Reg3g image and all 

233 outside signal was removed. Subsequently, the signal volume (µm3) within the insulin-defined 

234 ROI that was stained positively for Reg3g was measured. Finally, the relative expression of 
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235 Reg3g in beta cells was determined by calculating the ratio of Reg3g signal volume to insulin 

236 volume.

237

238 Ex-vivo Islet Glucose Stimulated Insulin Secretion (GSIS): Isolated islets from weanlings 

239 (n=5 male weanlings/group from five mothers) were recovered in RPMI overnight prior to 

240 measuring insulin secretion under static glucose incubation (Komatsu et al. 1995; Mehta et al. 

241 2016). 20-25 size-matched weanling islets were incubated in Krebs-Ringer bicarbonate buffer 

242 (129 mM NaCl, 5 mM NaHCO3, 4.8 mM KCl, 1.2 mM KH2PO4, 2.5 mM CaCl2, 1.2 mM MgSO4, 

243 0.1% BSA, 10 mM Hepes, pH 7.4) containing 2.8 mM glucose for 1 hour at 37°C (pre-

244 incubation). Next, the incubation medium was removed by aspiration and 1 ml of fresh KRB 

245 buffer containing different concentrations of glucose was added (5.5 mM and 16.7 mM) to 

246 determine islet insulin secretory function at different glucose levels. At the end of incubations, 

247 the medium was aspirated and stored at -80°C until measurement. At the end of the static 

248 culture, total insulin of pancreatic islets was extracted using acid-ethanol extraction (1.5% HCl, 

249 75% EtOH, 0.1% Triton). Weanling ex-vivo islet GSIS media insulin concentration was 

250 measured using Stellux Chemi Rodent Insulin Elisa (ALPCO, NH). Results were analyzed and 

251 presented as a percentage of total insulin.

252

253 In-vivo metabolic evaluations of offspring: Metabolic phenotypes of weanlings and adult 

254 offspring were evaluated using intraperitoneal glucose tolerance testing (GTT) (weanling: total 

255 14-19 males/group from 9 mothers; 2 month old adult: 6-7 males/group from 5 mothers) and

256 intraperitoneal insulin tolerance testing (ITT) (n=4-6 male weanlings/group from 3 mothers). 

257 Animals were fasted for 6 hours prior to both tests. For GTT, 1 or 2 g/kg of glucose was injected 

258 intraperitoneally and blood was collected from animals via tail vein at 0, 10, 20, 30, 60, 90 and 

259 120-minute time points. Additional blood was collected at 10 and 30 minutes from adult offspring

260 for serum insulin measurement. For ITT, 0.75 U/kg of Humulin R (Eli Lilly, IN) was administered 
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261 and blood glucose was measured at 0, 15, 30, 45, and 60-minute time points. Animal blood 

262 glucose levels were measured with an Alphatrak Glucometer (Zoetis, NJ). Fetal serum insulin 

263 concentrations were measured using the Ultrasensitive Rat Insulin ELISA kit (#90060, Crystal 

264 Chem, Downers Grove, IL). Adult serum insulin levels were measured using Stellux Chemi 

265 Rodent Insulin Elisa (ALPCO, NH). 

266

267 Alamar blue cell viability assay: Isolated islets from weanlings (n=4 pups/group from 4 

268 mothers) were recovered in RPMI 1640 media containing 11 mM glucose for 24 hours prior to 

269 evaluation. Seven to eight size-matched islets were handpicked into 96 well with 100 μl of 

270 regular RPMI media. Sterile alamar blue was subsequently added in 1:10 dilution and then read 

271 hourly with a FlexStation 3 Multi-Mode microplate reader (Molecular Devices, San Jose, Ca) at 

272 an excitation wavelength of 535 nm and emission wavelength of 585 nm. Between reads, islets 

273 were incubated in a humidified, warm tissue culture chamber. The fluorescence value produced 

274 by Con/HG wells was obtained by subtracting the relative fluorescence unit (RFU) of the 

275 negative control well (media and Alamar blue, no islets) from the measured RFU in each well at 

276 different timepoints. 

277

278 Statistics: Each group of fetuses and male offspring originating from one biological mother was 

279 considered as n=1. In instances where more than one pups from the same mother were 

280 analyzed, the average of the acquired data would then be used as a single data (Vieleisis & Oh 

281 1983; Roest et al. 2004; Gordon et al. 2015). All results were represented as mean ± SEM, 

282 while fold changes of RT-qPCR results were represented as log2FC in comparison to RNA-seq 

283 results. For single time-point measurement, the difference between two groups was assessed 

284 using a paired two-tailed t-test. For repeated measures (glucose level during GTT, ITT, GSIS, 

285 Alamar blue cell viability assay), two-way ANOVA tests followed by Bonferroni multiple 
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286 comparison tests correction were performed to assess the difference between two groups. 

287 Results were defined as statistically different when p<0.05.

288

289 RESULTS

290 Localized Fetomaternal Hyperglycemia Induces Fetal Pancreatic Islet Perturbations. The 

291 localized fetomaternal hyperglycemia model allows for dosage and temporal control over 

292 glucose delivery to left uterine horn fetuses (Fig 1A). To determine the effects of late gestation 

293 hyperglycemia, glucose was infused from GD20 to GD22, with offspring evaluated at different 

294 timepoints (Fig 1B). On GD22, maternal blood glucose concentrations were unchanged with 

295 ongoing 4 mg/min glucose infusion (Fig 1C). To validate the specific targeting of glucose 

296 delivery, we measured both the maternal uterine vein and fetal blood glucose level. Indeed, 

297 blood glucose concentrations from the maternal left uterine vein were higher than those from the 

298 right (Fig 1C). Compared to internal control fetuses from the right uterine horn (Con), left uterine 

299 horn fetal rats (HG) also had higher blood glucose levels (Fig 1D). As with previously published 

300 report (Gain et al. 1981), blood glucose levels of control pups were higher 30 minutes after birth 

301 (Fig 1D). In contrast, this increase in glucose level was not apparent in HG pups (Fig 1D). In 

302 fact, when compared to control, newborn pups that received glucose infusion had lower blood 

303 glucose levels (Fig 1D). Not surprisingly, left uterine pups exposed to glucose infusion also had 

304 higher serum insulin levels (Fig 1E) and beta cell areas (Fig 1F).  The higher number of cells 

305 within insulin positive area in hyperglycemic pups (Supp Figure 1) indicating that the increase in 

306 beta cell area likely resulted from cellular hyperplasia. Taken together, fetal pups exposed to 

307 transient (48 hours) hyperglycemia developed both hyperinsulinemia and pancreatic beta cell 

308 hyperplasia. 

309

310 RNA-seq identified differentially expressed genes known to mediate inflammation and 

311 pancreatic islet function. To identify the earliest pathway and biological processes altered by 
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312 hyperglycemia exposure, we performed RNA-sequencing to examine whole islets transcriptome 

313 changes in GD22 fetal islets immediately after completing 48 hours of glucose infusion. 

314 Compared to controls, HG fetal islets had 87 differentially expressed genes (DEGs) (69 up- and 

315 18 down-regulated) (Supp Table 1). The result of Ingenuity Pathway Analysis revealed 22 

316 enriched pathways, the majority of which were related to inflammation (Supp Table 2). IPA also 

317 identified diabetes mellitus as a relevant disease process (24 DEGs) and also predicted the 

318 activation of cell death (41 DEGs) (Fig 2A). Next, the biological processes enriched by up- and 

319 down-regulated genes were identified using the PANTHER classification system (Mi et al. 2017) 

320 and visualized using REVIGO (Supek et al. 2011). As shown in the semantic similarity-based 

321 scatterplots, the up- and down-regulated genes were involved in different biological processes 

322 (Fig 2B). While the up-regulated DEGs were heavily enriched in inflammatory and immune 

323 system related biological processes, the down-regulated genes were involved in more diverse 

324 biological processes (Fig 2B). In addition to inflammation, the down-regulated genes were also 

325 enriched in processes involving cellular responses to stimuli and developmental processes 

326 (table in Fig 2B). To further understand the specific biological implications of these broad terms, 

327 we performed a literature review and identified a significant number of down-regulated genes 

328 (Ctgf, Clu, Cftr, Fgfr3, Gabrp, Mmp7, Reg3b, Reg3g) that are involved in early pancreatic islet 

329 development (proliferation, new islet formation) (Crawford et al. 2009; Koivula et al. 2016), adult 

330 pancreatic islet function, neogenesis, and anti-apoptotic effects during stress (Table 2). Further 

331 RT-qPCR validation confirmed both Reg3g and Reg3b, along with two additional down-

332 regulated genes (Gabrp and Mmp7), were consistently decreased in GD22 islets exposed to in-

333 utero hyperglycemia (Fig 3A). Furthermore, HG pups revealed a decrease in the percentage of 

334 area positive for REG3G staining within insulin-positive cells (Fig 3B), indicating that HG beta 

335 cells had diminished REG3G protein expression. Collectively, RNA-sequencing results revealed 

336 that fetal hyperglycemia induces the islet transcriptome associated with diabetes mellitus and 

Page 13 of 48 Accepted Manuscript published as JOE-18-0493.R1. Accepted for publication: 30-Nov-2018

Copyright © 2018 Society for EndocrinologyDownloaded from Bioscientifica.com at 12/04/2018 01:30:26PM by kkua@iu.edu
via Indiania University

https://paperpile.com/c/4LlMJ3/7T6Zi
https://paperpile.com/c/4LlMJ3/qeGsO
https://paperpile.com/c/4LlMJ3/7WtE8+pDidG


14

337 activated islet inflammation/cell death pathways. Interestingly, the down-regulated genes are 

338 involved in various biological processes that modulate pancreatic islet health.

339

340 Pancreatic islet dysfunction occurs in weanlings exposed to hyperglycemia in-utero. 

341 Given that late gestational hyperglycemia rapidly alters fetal pancreatic islet phenotypes and 

342 transcriptome, it was thus of interest to determine whether offspring were vulnerable to 

343 developing pancreatic islet dysfunction. Particularly, we aimed to determine if late gestation 

344 hyperglycemia exposure altered offspring pancreatic islet viability and function as predicted by 

345 transcriptome analysis. At weaning (P21), HG pups developed impaired glucose tolerance as 

346 evidenced by higher glucose levels at 10 min during IPGTT and higher incremental AUC (iAUC) 

347 (Fig 4A-D). Using the same surgical approach, we performed a separate negative control 

348 experiment by infusing normal saline to left uterine horn fetal pups. We observed no difference 

349 in IPGTT of saline-infused offspring from the left uterine horn when compared to their internal 

350 controls from the right uterine horn (Supp Figure 2). Next, we evaluated weanling pancreatic 

351 islet cell viability using the Alamar blue cell viability assay (Muthyala et al. 2017) and insulin 

352 secretory function via ex-vivo static GSIS. Under basal conditions, pancreatic islets extracted 

353 from HG weanlings had lower cell viability suggesting an increased susceptibility to cell death 

354 (Fig 4E). Additionally, HG weanling islets had decreased insulin secretion at both 5.6 mM and 

355 16.7 mM stimulatory phases (Fig 4F). In the absence of overt insulin resistance during insulin 

356 tolerance testing (Fig 4I), these findings assert that offspring exposed to late gestation 

357 hyperglycemia developed glucose intolerance secondary to pancreatic islet dysfunction as 

358 observed by decreased cell viability and static glucose-stimulated insulin release.

359

360 Adult offspring exposed to HG had decreased beta cell mass and insulin secretory 

361 dysfunction without altered growth or increased inflammatory mediators. We sought to 

362 determine if pancreatic islet changes at weaning would impact adult offspring. As beta cell mass 
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363 and function increase drastically after weaning (Bonner-Weir et al. 2016), we hypothesized that 

364 increased susceptibility to cell death and decreased glucose responsiveness in weanling islets 

365 would impact both pancreatic beta cell mass and insulin secretory function in HG adults. Indeed, 

366 HG adult offspring remained glucose intolerant with an increased glucose tolerance curve 

367 divergence (Fig 5A, B). Despite a higher serum glucose level, HG adults had diminished in-vivo 

368 insulin release 10 minutes after glucose injection (Fig 5C). Additionally, HG adults also had 

369 lower pancreatic beta cell mass (Fig 5D-F). To determine if altered growth or increased 

370 adiposity contributed to glucose intolerance, we measured offspring weight and adiposity at 

371 weaning and at two months old. There were no differences between offspring who received in-

372 utero hyperglycemic infusion and their respective controls (Fig 5G, H). Since the inflammatory 

373 pathways were overrepresented, we also measured five inflammasomes in fetal, neonatal and 

374 two month old offspring, in which three were IPA-predicted (IFNG, TNF-alpha, IL1B) and two 

375 were associated with the up-regulated DEGs (CXCL10, IL-17). However, the levels of these 

376 inflammatory mediators in the serum both during early life and at two months old were 

377 unchanged (Supp Figure 3). These findings indicated that pancreatic islet dysfunction was not 

378 mediated by altered growth, increased adiposity, or systemic inflammation.

379

380 DISCUSSION

381 Independent of genetic risk, offspring born from diabetic pregnancies experience a 

382 greater risk of insulin resistance, pancreatic islet dysfunction, and type 2 diabetes (Ratner et al. 

383 2008; Fraser & Lawlor 2014; Tam et al. 2017; Das Gupta et al. 2018). Such risk of transmission 

384 is thought to result from maternal hyperglycemia (Kubo et al. 2014; Tam et al. 2017; Kawasaki 

385 et al. 2018); however, no direct evidence exists elucidating the exact role of maternal 

386 hyperglycemia in programming offspring metabolic health. Our fetomaternal hyperglycemia 

387 model, capable of inducing localized maternal and fetal hyperglycemia, addresses this 

388 knowledge gap. Using this model, where late gestation fetal pups were exposed to mild-
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389 moderate hyperglycemia (<350mg/dL) (Aerts & van Assche 1977; Blondeau et al. 2011; White 

390 et al. 2015), we first showed that hyperglycemic rodent offspring acutely developed a pancreatic 

391 islet phenotype similar to that of an infant of a diabetic mother(Helwig 1940; Cardell 1953) and 

392 identified DEGs that modulate pancreatic islet inflammation, cell viability, and function. Along 

393 with transcriptome changes, metabolic testing during weaning showed that offspring exposed to 

394 hyperglycemia in-utero developed glucose intolerance due to increased pancreatic islet 

395 susceptibility to cell death and decreased glucose-induced insulin secretion. Finally, consistent 

396 with the altered fetal islet transcriptome and findings in weanlings, adult offspring exposed to 

397 late gestation hyperglycemia showed decreased beta cell mass and insulin secretory function.

398

399  There are a number of investigations that performed targeted molecular studies on 

400 offspring exposed to different diabetic pregnancy models. These studies identified that 

401 pancreatic islets collected from young offspring exposed to diabetic milieu in-utero had altered 

402 IGF2/insulin receptor signaling (Ding et al. 2012; Bringhenti et al. 2016), altered glucose 

403 metabolism (Han et al. 2007; Cerf et al. 2009), and/or increased oxidative stress/inflammation 

404 (Wang et al. 2014; Yokomizo et al. 2014). While the hyperglycemic islet transcriptome predicted 

405 heightened inflammation, the DEGs and pathway analysis did not show changes in genes 

406 related to IGF2/insulin receptor signaling or enzymes regulating pancreatic islet glucose 

407 metabolism. This discrepancy could be due to multiple reasons, the first being the difference in 

408 our model and timepoint examination of offspring islets. Our model addressed the direct effects 

409 of hyperglycemia during late gestation, as opposed to other models that exposed the fetus to 

410 more complex metabolic perturbations throughout pregnancy and subsequently addressing the 

411 molecular pathways altered in offspring later in life. Additionally, all of the aforementioned 

412 studies, except for Ding et al. (2012), examined the effects of maternal diabetes/overnutrition in 

413 young adult offspring. 

414
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415 Overall, the transcriptome analysis and literature review on individual DEGs predicted 

416 three major processes that regulate offspring pancreatic islet health: increased inflammation, 

417 susceptibility to cell death, and decreased pancreatic islet insulin secretion. Particularly, the up-

418 regulated genes were heavily enriched in inflammatory pathways and an activated cell death 

419 process. Since there was absence of systemic inflammation, we reasoned that increased 

420 inflammation is not the primary mechanism inducing offspring pancreatic islet dysfunction. 

421 Rather, we hypothesized that the observed increased in inflammatory-related transcriptome in 

422 offspring exposed to late gestation hyperglycemia is stimulated by the increased in pancreatic 

423 islet susceptibility to cell death. The down-regulated genes are closely related to pancreatic islet 

424 cells (Supp Table 3) and appear to have more diverse biological roles ranging from modulating 

425 pancreatic islet development, inflammatory response, anti-apoptotic effects, and 

426 normal/compensatory beta cell insulin secretion (table 2). The cystic fibrosis transmembrane 

427 conductance regulator (Cftr) has been increasingly recognized for its importance in cystic 

428 fibrosis-related diabetes (CFRD): the pathogenesis of which involves altered early life 

429 pancreatic islet morphogenesis (Rotti et al. 2018) and beta cell loss and intra-islet inflammation 

430 (Hart et al. 2018). Connective tissue growth factor (Ctgf) and fibroblast growth factor receptor 3 

431 (Fgfr3) are another two down-regulated genes that can affect early postnatal pancreatic islet 

432 development both morphologically and functionally. Both of these genes are expressed only in 

433 late embryonic beta cell development and emerging islets (Arnaud-Dabernat et al. 2007; 

434 Crawford et al. 2009). Particularly, Ctgf inactivation during embryogenesis caused decreased 

435 insulin positive cells (Crawford et al. 2009), while Ctgf haplo-insufficiency mice had decreased 

436 beta cell proliferation during pregnancy (Pasek et al. 2017).

437

438 Interestingly, the two most down-regulated genes, Reg3g and Reg3b, were from the 

439 common Regenerating Islet-Derived Protein (REG protein) family. Based on DNA sequence and 

440 protein structure similarities, these two REG proteins are classified under Type 3 REG (Abe et 
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441 al. 2000), which is expressed in pancreatic tissue (Parikh et al. 2012) and suggested to pattern 

442 embryonic endocrine cells (Hamblet et al. 2008). REG gene expression levels correlate with 

443 insulin secretory function (Madrid et al. 2013) and treatment using INGAP, one of the subtypes 

444 of REG protein, enhances neonatal islet insulin secretion (Barbosa et al. 2006; Madrid et al. 

445 2009). More importantly, REG protein expression is up-regulated in diabetic human islets 

446 (Marselli et al. 2010; Planas et al. 2010), with animal models supporting their role as a 

447 compensatory factor during islet stress (Siddique & Awan 2016; Xia et al. 2016). In regard to the 

448 downstream signaling pathway, ex-vivo (keratinocytes) (Barbosa et al. 2008; Lai et al. 2012; Wu 

449 et al. 2016) and in-vivo (Xia et al. 2016) studies have indicated that REG3G/REG3A protein 

450 binds to Extl3, which subsequently activates AKT and/or STAT3 downstream signaling. While 

451 we have not performed further protein evaluation in our model, IPA indicated the involvement of 

452 STAT3 pathway (-log p-value = 3.28) with STAT3 predicted as an inhibited upstream regulator 

453 with the lowest Z-score (Exp FC:-1.214, Z-score = -3.65, -log p-value = 16.8, -log adjusted p-

454 value = 14.0). Considering these reported roles of REG protein, our findings indicate that 

455 decreased Reg3g and/or Reg3b in pups exposed to hyperglycemia in-utero would negatively 

456 impact postnatal pancreatic islet formation and/or functional maturation leading to decreased 

457 offspring islet cell viability and function. Therefore, future studies are warranted to determine the 

458 implication of decreased Type 3 REG during early postnatal pancreatic islet development (Lai et 

459 al. 2012; Wu et al. 2016).

460

461 Both pancreatic beta cell mass and glucose responsiveness increase most significantly 

462 after weaning (Jacovetti et al. 2015; Bonner-Weir et al. 2016); changes in islet susceptibility to 

463 cell death and decrease in function could determine pancreatic islet mass and function in 

464 adulthood. Therefore, it is not surprising that the findings describing increased susceptibility to 

465 cell death and the insulin secretory defect during weaning negatively impacted HG offspring 

466 pancreatic beta cell mass and insulin secretory defect. This finding is consistent with both 
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467 human epidemiological data (Tam et al. 2017) and an animal model mimicking diabetic 

468 pregnancy with mild-to-moderate maternal hyperglycemia (<350mg/dL) (Aerts & van Assche 

469 1977; Blondeau et al. 2011; White et al. 2015). Most importantly, we showed that late gestation 

470 hyperglycemia, even for a short duration (<10% of pregnancy), exhibited long-lasting negative 

471 impacts on offspring pancreatic islet function. These findings stress not only the critical role of 

472 maternal hyperglycemia, but also the importance of examining the metabolic outcome of 

473 offspring early in life for both human and animal studies.  

474

475 Conclusion

476 In conclusion, late gestation hyperglycemia perturbs fetal pancreatic islet morphology 

477 and diminishes insulin secretory function in young offspring. Transcriptome analysis indicated 

478 that GD22 islets exposed to in-utero hyperglycemia displayed heightened inflammatory 

479 responses, increased susceptibility to cell death and decreased pancreatic islet insulin secretory 

480 function. This finding guided our study to identify pancreatic islet dysfunction in weanlings, 

481 which predisposed adult offspring to decreased beta cell mass and insulin secretion. Our 

482 transcriptome analysis provides a paradigm for elucidating the programming mechanism 

483 resulting from excessive glucose exposure. Future studies validating the targets in modulating 

484 postnatal pancreatic islet neogenesis and function are warranted.
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Figure Legends

Figure 1. (A) Schematic representing localized fetomaternal hyperglycemia model. (B) 

Experimental timeline. Fetal pups were exposed to hyperglycemia from GD20 to 22, 

delivered via Cesarean section and cross-fostered to healthy dams. The cross-fostered pups 

were evaluated at weaning and at adulthood. (C) Maternal blood glucose was unchanged 

before (GD20) and during infusion (GD22) (left panel, n=13 mothers). During infusion, the 

glucose level in blood returning from the left uterine vein was higher than that of the right 

uterine vein (right panel, n=15 mothers). (D) The glucose levels of fetuses residing in left 

uterine horn (HG) were higher than those of their respective controls (Con) during glucose 

infusion while the placenta was intact (n=22-26 fetus from 12 mothers), but lower 30 minutes 

after birth (right panel, 12-14 pups from seven mothers). (E) Insulin levels of HG pups were 

higher as well (n=5 pups/group from five mothers). (F) Pancreatic beta- and alpha-cell area 

in the HG fetal pups (n = 5-6 pups/group from five mothers).

Figure 2. (A) Heatmap showing differentially expressed genes regulating diseases and 

biofunction predicted by IPA (n=3 fetal islet samples/group from three mothers; each islet 

samples prepared from pool of one pancreas from each gender). Left panel: 24 genes that 

enriched diabetes mellitus disease process (adjusted p-value = 2.43X106). Right panel: Cell 

death process was upregulated by 41 genes (adjusted p-value = 2.38X104). (B) Up- and 

down-regulated DEGs were analyzed separately using PANTHER and enriched GO BP was 

further summarized using REVIGO with the following parameters - database: whole UniProt; 

semantic similarity measure: Resnik; similarity allowed: Small (0.5). Note that up-regulated 

genes enriched immune and inflammatory processes (red circles) and down-regulated 

genes enriched different biological processes (blue circles). There were two commonly 

enriched GO BP (G4- response to stimulus, purple circle in C1 - immune responses/humoral 

immune response). The table on right shows the summarized list of GO biological processes 

(BP) and number/percentage of genes annotated to the GO BP.
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Figure 3. Validation of RNA-seq results. (A) Graph correlating four down-regulated 

differentially expressed genes (from left-right: Reg3g: n=4 fetal islet samples/group, Reg3b: 

n=4 fetal islet samples/group, Mmp7: n=3 fetal islet samples/group, Gabrp: n=5 fetal islet 

samples /group) (one was technical replicate from RNA-seq experiment was included in 

Reg3g, Reg3b and Gabrp). (B) Graph showing consistent decrease in area positive for 

Reg3g in pancreatic beta cell area (Ins+) (*paired t-test p<0.05, each symbol represents an 

average data point obtained from three to five islets per sections, total of two sections per 

fetus, n=5 GD22 fetuses/group from five mothers). Internal pairs were connected with solid 

line. Image panel on right showing representative immunofluorescence images obtained 

from pancreatic tissue of Con and HG pups’ pancreatic sections on the same slide. 

Figure 4. HG weanlings developed glucose intolerance and pancreatic islet insulin secretory 

defect. (A) 1 g/kg intraperitoneal glucose tolerance testing showing increased blood glucose 

level at 10 timepoint, and (B) higher incremental glucose area under the curve (iAUC) 

(*p<0.05, n=7-10 male weanlings from six mothers, internal pairs were connected with 

dashed lines). (C) 2 g/kg intraperitoneal glucose tolerance testing yielded the same result 

where HG pups continued to have a higher glucose level at 10 min and (D) a higher 

incremental glucose AUC (*p<0.05, n=7-9 male weanlings/group from four mothers, internal 

pairs were connected with dashed lines). (E) Alamar blue cell viability assay showing the cell 

viability of HG islets was decreased (*p<0.05, 7-8 islets per replicate, n=4 pups/group from 

four mothers). (F) Ex-vivo static GSIS showing decreased HG islets insulin secretion at 5.6 

mM glucose and 16.7 mM glucose phase. (*p<0.05, 20-25 islets/group collected from n=5 

weanlings/group from five mothers). (G) Insulin tolerance testing of weanling males (n = 4-6 

HG male/group from three mothers).

Figure 5. (A) 1 g/kg intraperitoneal glucose tolerance testing on two month old adult male 

offspring showing higher blood glucose level at 10 min timepoint and (B) higher incremental 

glucose iAUC (n=6-7 male/group, five mothers). (C) Serum insulin at 0, 10 and 30 min 
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timepoints during GTT showing decreased 10 min serum insulin level in HG male adult (n=4 

males/group, four mothers, * p<0.05 when statistic was performed on fold change of insulin 

from baseline). (D) Graph showing consistent trend (p=0.06) of decrease in beta cell area 

across adult pancreatic sections, with a (E) decreased in pancreatic weight and ultimately 

decreased in (F) beta cell mass (n=4 males/group from four mothers). (G) Offspring weight 

from birth until adulthood (birth n=64-71 pups from 14 mothers; 7d/o n=7-14 pups from three 

mothers; 14d/o n=12-13 pups from three mothers; 21d/o n=17-19 males from six mothers; 

2mo n=6-7 males from five mothers). (H) Fat to lean ratio of weanling (n=3-5 males/group 

from three mothers) and two month old adult showing no difference between Con and HG 

offspring (n=9-10 males from seven mothers).

Supplemental Figure Legends

Supplemental Figure 1: GD22 fetal pancreatic sections (n=3 pups/group from 3 mothers of 

independent infusions) were stained with the aforementioned anti-insulin Ab and DAPI, and 

the number of nuclei (DAPI) were counted and normalized to 1000 μm2 insulin-positive area.

Supplemental Figure 2: 3 GD20 pregnant dams underwent the exact same surgery with 

saline infused into left uterine artery (SAL). Male pups were cross-fostered and GTT was 

performed on postnatal day 21 as described in the methods section. The glucose levels 

between 2 groups are analyzed using the same statistical approach as described in 

manuscript (two-way ANOVA tests followed by Bonferroni multiple comparison tests)

Supplemental Figure 3: Measurement of serum (A) Interferon-gamma, (B) Tnf-alpha, (C) ll-

1B, (D) IL-17, and (E) Cxcl10 showing no difference between 2 groups. Each symbol 

represents one replicate with solid line connecting paired group (n=3-5/group, from three to 

five mothers). Serum was collected from fetal, neonatal, and adult offspring of Con and HG, 

then measured using Milliplex Rat Cytokine/Chemokine Magnet-ic Bead Panel - Immunology 
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Multiplex Assay (RECYTMAG-65K, Millipore Sigma, MA) by Indiana University Multiplex 

Analysis Core. This assay is designed to simultaneously quantify selected rat cyto-kines. 

The kit contains spectrally distinct antibody-immobilized beads, cytokine standard cocktail, 

streptavidin-phycoerythrin, assay buffer, wash buffer, serum matrix, and microtitre filter plate. 

Following the manufacturer's recommendation, 25 ul of samples were diluted (1 :2) and 

processed, then analyzed using Bio-Plex 200 System with High Throughput Fluidics (HTF) 

Multiplex Assay Array System (Bio-Rad Laboratories, Hercules, CA)> All the samples were 

run in duplicate. The detection limits for the measured cytokines are as follow: IFN-Gamma 

6.2 pg/ml, TNF-Alpha 1.9 pg/ml, IL-1 B 2.8 pg/ml, IL-17 2.3 pg/ml, Cxcl10 1.4 pg/ml).
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Table 1: Primer sequences of target genes

Gene 
(Accession Number) Sequence (5'-3') Company
Reg3g Fwd TGTGCCCACTTCACGTATCA IDT
(NM_173097.1) Rev GGATCATGGAGCCCAATCCA

Reg3b Fwd GGAAACAGCTACCAATATACC Sigma
(NM_053289.1) Rev CTCCATCTTAGAAATCCAGAAG

Gabrp Fwd AGATGGCAGTCAAAGATAGG Sigma
(NM_031029.1) Rev GTTTAAAGCTGGAGATGGAG

Mmp7 Fwd ACAGACTTGCCTCGGTTCTT IDT
(NM_012864.2) Rev GTCTCCGTGATCTCCCCTTG

Actb Fwd AGGTCATCACTATTGGCAACGA Eurofins
(NM_031144.3) Rev CACTTCATGATGGATTGAATGTAGTT
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Table 2: Downregulated genes with known functions of pancreatic islets 

Pancreatic Islet
Gene FC FDR Expression

Early
Development

Regeneration/
Anti-apoptotic

Inflammation Insulin 
Secretion

References

Reg3g -24.3 4.29E-08 Neonatal & 
adult 

Yes Yes Yes Yes

Reg3b -7.7 5.14E-03 Neonatal & 
adult 

Yes Yes Yes Yes

(Gagliardino et al. 2003; 
Petropavlovskaia et al. 2006; 
Assouline-Thomas et al. 2015; 
Barbosa et al. 2006; Madrid et al. 
2013; Gagliardino et al. 2003; 
Assouline-Thomas et al. 2015; 
Siddique and Awan 2016; Xia et al. 
2016)

Ctgf -1.8 1.34E-02 Embryonic & 
pregnancy

Yes Yes Unknown Yes (Crawford et al. 2009; Pasek et al. 
2017; Riley et al. 2015)

Fgfr3 -2.0 2.91E-02 Embryonic Yes Yes Unknown Unknown (Arnaud-Dabernat et al. 2007)

Clu -2.0 3.44E-03 Embryonic & 
neonatal

Unknown Yes Yes Unknown (Kaya-Dagistanli and Ozturk 2013)

Mmp7 -4.7 7.05E-03 Neonatal No Yes Unknown No (Nishihama et al. 2018; Perez et al. 
2005)

Gabrp -3.0 1.22E-03 Unknown Unknown Yes Unknown Yes (Wang et al. 2014; Prud'homme et 
al. 2014)

IL17rb -2.6 1.71E-02 Unknown Unknown Yes Yes Unknown (Yaochite et al. 2013)

Cftr -2.9 5.73E-03 Neonatal & 
adult

Yes Unknown Unknown Yes (Hart et al 2018; Rotti et al 2018)
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Figure 1. (A) Schematic representing localized fetomaternal hyperglycemia model. (B) Experimental 
timeline. Fetal pups were exposed to hyperglycemia from GD20 to 22, delivered via Cesarean section and 
cross-fostered to healthy dams. The cross-fostered pups were evaluated at weaning and at adulthood. (C) 

Maternal blood glucose was unchanged before (GD20) and during infusion (GD22) (left panel, n=13 
mothers). During infusion, the glucose level in blood returning from the left uterine vein was higher than 

that of the right uterine vein (right panel, n=15 mothers). (D) The glucose levels of fetuses residing in left 
uterine horn (HG) were higher than those of their respective controls (Con) during glucose infusion while the 
placenta was intact (n=22-26 fetus from 12 mothers), but lower 30 minutes after birth (right panel, 12-14 
pups from seven mothers). (E) Insulin levels of HG pups were higher as well (n=5 pups/group from five 
mothers). (F) Pancreatic beta- and alpha-cell area in the HG fetal pups (n = 5-6 pups/group from five 

mothers). 
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Figure 2. (A) Heatmap showing differentially expressed genes regulating diseases and biofunction predicted 
by IPA. Left panel: 24 genes that enriched diabetes mellitus disease process (adjusted p-value = 

2.43X10^6). Right panel: Cell death process was upregulated by 41 genes (adjusted p-value = 2.38X10^4). 
(B) Up- and down-regulated DEGs were analyzed separately using PANTHER and enriched GO BP was 
further summarized using REVIGO with the following parameters - database: whole UniProt; semantic 

similarity measure: Resnik; similarity allowed: Small (0.5). Note that up-regulated genes enriched immune 
and inflammatory processes (red circles) and down-regulated genes enriched different biological processes 
(blue circles). There were two commonly enriched GO BP (G4- response to stimulus, purple circle in C1 - 

immune responses/humoral immune response). The table on right shows the summarized list of GO 
biological processes (BP) and number/percentage of genes annotated to the GO BP. 

245x279mm (300 x 300 DPI) 
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Figure 3. Validation of RNA-seq results. (A) Graph correlating four down-regulated differentially expressed 
genes (from left-right: Reg3g, Reg3b, Mmp7, Gabrp) (n = 3-5 pups/group from three to five independent 

set of experiments, which one was technical replicate from RNA-seq experiment). (B) Graph showing 
consistent decrease in area positive for Reg3g in pancreatic beta cell area (Ins+) (*paired t-test p<0.05, 
each symbol represents an average data point obtained from three to five islets per sections, total of two 
sections per fetus, n=5 GD22 fetuses/group from five mothers). Internal pairs were connected with solid 
line. Image panel on right showing representative immunofluorescence images obtained from pancreatic 

tissue of Con and HG pups’ pancreatic sections on the same slide. 

93x34mm (300 x 300 DPI) 
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Figure 4. HG weanlings developed glucose intolerance and pancreatic islet insulin secretory defect. (A) 1 
g/kg intraperitoneal glucose tolerance testing showing increased blood glucose level at 10 timepoint, and (B) 

higher incremental glucose area under the curve (iAUC) (*p<0.05, n=7-10 male weanlings from six 
mothers, internal pairs were connected with dashed lines). (C) 2 g/kg intraperitoneal glucose tolerance 

testing yielded the same result where HG pups continued to have a higher glucose level at 10 min and (D) a 
higher incremental glucose AUC (*p<0.05, n=7-9 male weanlings/group from four mothers, internal pairs 

were connected with dashed lines). (E) Alamar blue cell viability assay showing the cell viability of HG islets 
was decreased (*p<0.05, 7-8 islets per replicate, n=4 pups/group from four mothers). (F) Ex-vivo static 

GSIS showing decreased HG islets insulin secretion at 5.6 mM glucose and 16.7 mM glucose phase. 
(*p<0.05, 20-25 islets/group collected from n=5 weanlings/group from five mothers). (G) Insulin tolerance 

testing of weanling males (n = 4-6 HG male/group from three mothers) 
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Figure 5. (A) 1 g/kg intraperitoneal glucose tolerance testing on two month old adult male offspring showing 
higher blood glucose level at 10 min timepoint and (B) higher incremental glucose iAUC (n=6-7 male/group, 

five mothers). (C) Serum insulin at 0, 10 and 30 min timepoints during GTT showing decreased 10 min 
serum insulin level in HG male adult. (n=4 males/group, four mothers, * p<0.05 when statistic was 
performed on fold change of insulin from baseline). (D) Graph showing consistent trend (p=0.06) of 

decrease in beta cell area across adult pancreatic sections, with a (E) decreased in pancreatic weight and 
ultimately decreased in (F) beta cell mass (n=4 males/group from four mothers). (G) Offspring weight from 
birth until adulthood (birth n=64-71 pups from 14 mothers; 7d/o n=7-14 pups from three mothers; 14d/o 
n=12-13 pups from three mothers; 21d/o n=17-19 males from six mothers; 2mo n=6-7 males from five 
mothers). (H) Fat to lean ratio of weanling (n=3-5 males/group from three mothers) and two month old 

adult showing no difference between Con and HG offspring (n=9-10 males from seven mothers). 
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Supp Table 1: List of Differentially expressed genes in HG GD22 islets

Symbol Gene Name Fold Change FDR
Slc4a1 solute carrier family 4 (anion exchanger), member 1 25.07 9.43E-04
Ahsp alpha hemoglobin stabilizing protein 13.29 2.22E-03
Lgals5 lectin, galactose binding, soluble 5 9.76 3.09E-04
Alas2 5'-aminolevulinate synthase 2 9.68 1.06E-05
Cd52 CD52 molecule 7.37 1.71E-05
Klf1 Kruppel like factor 1 7.31 3.90E-02
Shisa3 shisa family member 3 7.00 1.58E-05
Ptprcap protein tyrosine phosphatase, receptor type, C-associated protein 6.34 7.43E-04
Nfe2 nuclear factor, erythroid 2 6.24 7.39E-05
RT1-Ba RT1 class II, locus Ba 6.17 8.82E-05
RT1-Da RT1 class II, locus Da 5.33 4.43E-03
Mx1 myxovirus (influenza virus) resistance 1 5.24 2.31E-08
Sptb spectrin, beta, erythrocytic 5.16 1.47E-02
Adgrg5 adhesion G protein-coupled receptor G5 5.14 3.94E-03
RT1-Db1 RT1 class II, locus Db1 4.59 3.11E-03
Hbb hemoglobin subunit beta 4.50 2.04E-06
Tifab TIFA inhibitor 4.32 1.39E-02
LOC100134871 beta globin minor gene 4.23 1.65E-03
Ifit3 interferon-induced protein with tetratricopeptide repeats 3 4.20 5.58E-03
Grap2 GRB2-related adaptor protein 2 4.13 2.91E-02
Irf7 interferon regulatory factor 7 3.88 2.97E-08
Napsa napsin A aspartic peptidase 3.79 4.48E-02
Scin scinderin 3.76 9.44E-03
Isg15 ISG15 ubiquitin-like modifier 3.70 3.44E-03
Rsad2 radical S-adenosyl methionine domain containing 2 3.60 2.91E-02
Traf3ip3 TRAF3 interacting protein 3 3.47 2.91E-02
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Symbol Gene Name Fold Change FDR
Oas1a 2'-5' oligoadenylate synthetase 1A 3.41 3.77E-04
Gbp4 guanylate binding protein 4 3.40 3.45E-02
Cst7 cystatin F 3.36 8.66E-03
Ccrl2 C-C motif chemokine receptor like 2 3.31 1.34E-02
Mx2 MX dynamin like GTPase 2 3.30 1.47E-02
Gbp5 guanylate binding protein 5 3.19 9.43E-04
Srgn serglycin 3.19 1.25E-03
Lgals9 galectin 9 3.11 2.50E-02
Gpr183 G protein-coupled receptor 183 3.06 8.66E-03
RT1-CE16 RT1 class I, locus CE16 3.04 6.23E-04
Spn sialophorin 3.02 3.40E-02
Slc9a2 solute carrier family 9 member A2 2.99 3.40E-02
Cmpk2 cytidine/uridine monophosphate kinase 2 2.86 2.34E-03
Tmcc2 transmembrane and coiled-coil domain family 2 2.86 2.83E-02
Tox2 TOX high mobility group box family member 2 2.83 4.91E-02
Tlx1 T-cell leukemia, homeobox 1 2.82 1.22E-03
Fam46c family with sequence similarity 46, member C 2.81 7.94E-04
Ifi27l2b interferon, alpha-inducible protein 27 like 2B 2.81 2.63E-07
Add2 adducin 2 2.79 2.83E-02
Tnfrsf11a TNF receptor superfamily member 11A 2.76 2.44E-02
Hba-a1 hemoglobin alpha, adult chain 1 2.71 4.98E-03
Ccl21 C-C motif chemokine ligand 21 2.69 2.73E-05
Itgal integrin subunit alpha L 2.62 2.91E-02
Cfp complement factor properdin 2.61 2.83E-02
Mcpt2 mast cell protease 2 2.60 2.89E-02
Oas1b 2-5 oligoadenylate synthetase 1B 2.58 2.77E-02
RT1-S3 RT1 class Ib, locus S3 2.49 2.54E-04
Il18bp interleukin 18 binding protein 2.45 3.27E-02
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Symbol Gene Name Fold Change FDR
Slamf9 SLAM family member 9 2.43 1.47E-02
Cxcl11 C-X-C motif chemokine ligand 11 2.43 3.85E-02
Coro1a coronin 1A 2.42 2.34E-03
Slc28a2 solute carrier family 28 member 2 2.42 3.80E-02
Cybb cytochrome b-245 beta chain 2.37 8.66E-03
Ifit2 interferon-induced protein with tetratricopeptide repeats 2 2.34 7.99E-03
Apol3 apolipoprotein L, 3 2.27 3.86E-03
Ifi47 interferon gamma inducible protein 47 2.11 1.86E-02
Gbp2 guanylate binding protein 2 2.11 3.04E-03
Il2rg interleukin 2 receptor subunit gamma 2.07 4.23E-02
Fbln5 fibulin 5 2.07 4.50E-02
Fmnl1 formin-like 1 2.06 4.39E-02
Bst2 bone marrow stromal cell antigen 2 2.02 1.47E-02
Cldn5 claudin 5 1.84 2.60E-02
Tmem176a transmembrane protein 176A 1.74 4.39E-02
Ctgf connective tissue growth factor -1.83 1.34E-02
Clu clusterin -2.01 3.44E-03
Fgfr3 fibroblast growth factor receptor 3 -2.01 2.91E-02
Sorbs2 sorbin and SH3 domain containing 2 -2.02 8.66E-03
Wnt7a wingless-type MMTV integration site family, member 7A -2.20 9.14E-03
Cdh6 cadherin 6 -2.28 2.77E-02
Ehf ets homologous factor -2.30 3.91E-02
Krt17 keratin 17 -2.31 3.96E-04
Dcdc2 doublecortin domain containing 2 -2.31 2.40E-02
Cfi complement factor I -2.57 3.67E-02
Il17rb interleukin 17 receptor B -2.63 1.71E-02
Cftr cystic fibrosis transmembrane conductance regulator -2.90 5.73E-03
Gabrp gamma-aminobutyric acid type A receptor pi subunit -2.95 1.22E-03
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Symbol Gene Name Fold Change FDR
Mybpc2 myosin binding protein C, fast-type -3.77 5.58E-03
Dmbt1 deleted in malignant brain tumors 1 -3.84 2.75E-03
Mmp7 matrix metallopeptidase 7 -4.71 7.05E-03
Reg3b regenerating family member 3 beta -7.72 5.14E-03
Reg3g regenerating family member 3 gamma -24.29 4.29E-08
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Supp Table 2: Pathways enriched by IPA

Ingenuity Canonical Pathways
-log

(p-value) zScore
Th1 Pathway 3.72E-02 1.341641
PKCθ Signaling in T Lymphocytes 7.42E-03 1.632993
iCOS-iCOSL Signaling in T Helper Cells 1.02E-04 1.889822
Neuroinflammation Signaling Pathway 5.63E-03 1.889822
Interferon Signaling 2.35E-03 2
Calcium-induced T Lymphocyte Apoptosis 2.63E-02 2
B Cell Development 5.50E-05 -
Antigen Presentation Pathway 7.25E-05 -
Autoimmune Thyroid Disease Signaling 2.40E-04 -
Graft-versus-Host Disease Signaling 2.40E-04 -
Crosstalk between Dendritic Cells and Natural Killer Cells 2.57E-04 -
IL-4 Signaling 2.57E-04 -
Th2 Pathway 3.89E-04 -
Th1 and Th2 Activation Pathway 1.55E-03 -
T Helper Cell Differentiation 1.95E-03 -
CD28 Signaling in T Helper Cells 2.57E-03 -
Allograft Rejection Signaling 4.08E-03 -
Altered T Cell and B Cell Signaling in Rheumatoid Arthritis 5.38E-03 -
OX40 Signaling Pathway 5.76E-03 -
Type I Diabetes Mellitus Signaling 1.48E-02 -
Nur77 Signaling in T Lymphocytes 1.70E-02 -
Leukocyte Extravasation Signaling 3.47E-02 -
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Supp Table 3: EnrichR Analysis of downregulated genes

Term (Human Tissue from BioGPS) P-value
Adjusted
P-value

Combined 
Score

Pancreatic Islet 0.000173 0.003636 12.17
colon 0.022137 0.090228 6.74

Cardiac Myocytes 0.024595 0.090228 6.69
Trachea 0.001884 0.01978 6.10

Bronchial Epithelial Cells 0.025779 0.090228 5.49
Smooth Muscle 0.041504 0.124512 4.25

Term (Mouse Tissue from BioGPS) P-value
Adjusted
P-value

Combined 
Score

pancreas 0.020739 0.165911 8.42
intestine_small 0.007904 0.165911 7.72

thymocyte_SP_CD4+ 0.014095 0.165911 7.57
cornea 0.055549 0.333291 4.98
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