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Abstract 

This work introduces a new approach to targeting the dynamic response of thin-walled 

energy absorbing structures through the decomposition of the force-displacement (FD) 

response and the use of topometry (thickness) optimization. The proposed method divides 

the non-linear optimization problem into a series of analytical subproblems. In each 

iteration, an explicit dynamic analysis is carried out and the dynamic response of the 

structure is then used to define the subproblem. Numerical examples show that the 

algorithm can tailor the FD response of the structure to a target FD curve. Progressive 

collapse, which is a high-energy collapse mode and desired in design for crashworthy, is 

observed in the optimized thin-walled structures. The proposed algorithm is 

computationally efficient as uses a fewer explicit simulations to reach the target response. 

Keywords: Topometry Optimization; Force-Displacement Response; Crashworthiness 

Optimization; Design for Crashworthiness 

1. Introduction

Thin-walled structures are widely used in the automobile and aviation industries due 

to their lightweight, manufacturability, and impact energy absorbing capabilities (Baroutaji 

et al. 2017). When a car or a plane crashes, thin-walled structures can provide occupant 

safety by dissipating energy through their progressive collapse as observed in axially 

impacted tubes (rails and crashboxes) (Zeng and Duddeck 2017, Guler et al. 2010). A low-

energy collapse mode is global bending, which must be avoided (Jones 1997). Therefore, 

understanding this collapse mode also requires attention in design of thin-walled structures. 

Currently, finite element based-optimization methods, particularly topometry (thickness) 

optimization methods, are being developed to tailor the dynamic structure response under 

dynamic crushing loads.  

The concept of topometry optimization, coined by Leiva (2004), is a generalized 

sizing optimization approach in which the finite element model of the thin-walled structure 
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is used in conjunction with specialized optimization algorithms in order to find the optimal 

thickness of each finite element in the model. As noted by Duddeck et al. (2016), the 

majority of the topometry optimization algorithms can only handle linear or mildly-

nonlinear models under static loading conditions; only a handful of algorithms can handle 

fully nonlinear models under dynamic load. Two algorithms for nonlinear structures that 

are usually compared are the Equivalent Static Load (ESL) method (Kim and Park 2010, 

Park 2011, Park and Kang 2003, Shin et al. 2007) available in the commercial code 

GENESIS (VR&D, Colorado, USA) and the Hybrid Cellular Automaton (HCA) method 

(Patel 2007, Patel et al. 2009, Penninger et al. 2010, Penninger et al. 2013, Tovar et al. 

2006) available in the commercial code LS-TaSC (LSTC, California, USA). 

In the ESL method, equivalent static loads are defined in a linear model that generate 

the same response than the dynamic loads on nonlinear model. The optimization of the 

nonlinear, dynamic model is conducted by the recurrent optimization of equivalent linear 

static models. This approach has been used, for example, by Witowski et al. (2014) in the 

design of the inner hood panel of the car.  

The HCA method, introduced by Tovar (2004), is inspired by the biological process 

of bone remodeling. This algorithm utilizes a distributed control algorithm to uniformly 

distribute a field variable such as internal energy density across the structure. The HCA 

method has been used to improve crashworthiness indicators in thin-walled vehicle 

components. For example, Mozumder et al. (2012) developed the HCA method for the 

topometry optimization of sheet metal structures for impact energy dissipation. Bandi et al. 

(2015) made use of the HCA method for the topometry optimization of compliant thin-

walled tubular structures that progressively collapse under axial load. 

The methods such as ESL and HCA are relevant in the design of thin-walled structures 

for crashworthiness, particularly to increase impact energy absorption, however the other 

primary crashworthiness indicators such as peak crushing force, maximum deceleration, 

dynamic penetration, and crash load efficiency have not been considered and need to be 

addressed. Pedersen (2003) proposed a methodology for designing two-dimensional 

frames for a desired energy absorption history based on the ground structure method. The 

ground structure consists of rectangular 2D-beam elements with plastic hinges. A quasi-

static nonlinear finite element solution is obtained with an implicit backward Euler 

algorithm, and the analytical sensitivities are computed by the direct differentiation method. 

Unfortunately, ground structures are unable to capture the complexity of a continuous 3D 

shell. Mozumder at. el. (2010) proposed an HCA-based method for topometry optimization 

using a target force-displacement (FD) response as the design objective. In their research, 

the FD curve is discretized into several design points and the structure is divided into same 

number of sub-domains. The sub-domains deform and crush according to the requirements 

of the FD curve. This is done by adjusting the setpoint so that the error between the actual 

and target FD response is minimized. The method is likely effective, but the definition of 
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the sub-domains is rather heuristic and hence it cannot be systematically applied to an 

arbitrary design problem. This leads to develop topometry optimization methods for 

continuum structures and their corresponding dynamic responses. 

This paper introduces a sequential optimization method that takes elements of both 

ESL and HCA in order to tailor the FD response of a thin-walled structure subjected to an 

arbitrary crushing load. The proposed method divides the original optimization problem 

into a series of subproblems. In each iteration, an explicit dynamic analysis is first carried 

out and then the dynamic response of the structure is used to define the subproblem. During 

the iterative process, the thickness of all the elements in the model is updated through the 

solution of the subproblems. The optimal thickness distribution of the structure is obtained 

at convergence. An advantage with respect to the preliminary work presented by 

Mozumder at el. (2010) is that the proposed method does not require the heuristic definition 

of subdomains within the structure. The effectiveness of the proposed method is 

demonstrated with the design of squared thin-walled tubular structure subjected to different 

load case and different target FD responses. The examples show the effectiveness of the 

algorithm finding the element thickness distribution to make the structure’s FD curve 

gradually approach the target FD curve. The results show how the error between the real 

and target FD curves is minimized. In this way, by setting a proper target FD curve, the 

proposed method can improve several crashworthiness indicators including specific energy 

absorption, peak crushing force, maximum deceleration, dynamic penetration, and crash 

load efficiency. 

The paper is organized as follows: Sec. 2 states the design optimization problem; Sec. 

3 presents the proposed optimization method; Sec. 4 shows numerical examples; and Sec. 

5 summarizes the work and contributions, and discusses future developments. 

 

2. Optimization Problem Statement 

The optimization problem involves two force-displacement (FD) responses of the 

structure: the target response 𝐹∗(𝑑) and the actual response 𝐹(𝑑) (Figure 1). The error 

between the two FD responses corresponds to the objective function to be minimized. This 

is, 

min 𝐶 =
∫ [𝐹(𝑑) − 𝐹∗(𝑑)]2 d𝑑

𝑑𝑒

𝑑𝑠

𝑑𝑒−𝑑𝑠

 (1) 

where 𝑑𝑠  and
 

𝑑𝑒  represent the initial and final displacements considered in the 

simulation, respectively. 
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Figure 1: Force-displacement responses of a thin-walled structure subjected to crushing load:  

(A) target FD response, (B) actual FD response. 

 

Due to the discrete nature of the numerical analysis, the objective function (1) is 

transformed from a continuous integral form to a discrete summation form. To this end, a 

series of discrete (equidistant) displacement points 𝑑1, 𝑑2 … , 𝑑𝑚  are defined on the 

interval [𝑑𝑠, 𝑑𝑒] to discretize the FD curve into 𝑚 design points (Figure 2). Thus, the 

objective function (1) can be restated as 

min 𝐶(𝐝) =
1

𝑚
∑[𝐹(𝑑𝑗) − 𝐹∗(𝑑𝑗)]

2
𝑚

𝑗=1

 (2) 

where 𝐝 is the vector of displacement points 𝐝 = [𝑑1, 𝑑2 … , 𝑑𝑚]. 

 

Figure 2: Displacement points discretizing the FD target and actual curves.  

 

The thickness of each finite element is taken as the design variable 𝑡(𝑒) . The 

mathematical statement of the optimization problem is as follows: 
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find 𝐭 ∈ ℝ𝑁

min 𝐶(𝐝, 𝐭) =
1

𝑚
∑[𝐹(𝑑𝑗 , 𝐭) − 𝐹∗(𝑑𝑗)]

2
𝑚

𝑗=1

s. t. 𝑡𝑚𝑖𝑛 ≤ 𝑡(𝑒) ≤ 𝑡𝑚𝑎𝑥,   𝑒 = 1, … , 𝑁

 (3) 

where 𝐭  is the vector of element thickness values, 𝐭 = [𝑡(1), … , 𝑡(𝑁)] , 𝑒  is element 

number, 𝑁 is total number of elements, 𝑚 is the number of the displacement points, and 

𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 are lower and upper bounds, respectively. 

 

3. Optimization Procedure 

3.1 Framework of the algorithm 

In order to solve the problem defined in (3) using a traditional gradient-based 

optimization algorithm, the sensitivity of 𝐶(𝐝, 𝐭)  with respect to the thickness of each 

element 𝑡(𝑒) should be approximated. Unfortunately, there is no closed-form, analytical 

expression that considers all the nonlinearities of the finite element model, i.e., large 

displacement, inelasticity, and contact. Furthermore, a numerical approximation through 

finite differences methods is impractical due to the computational cost of the simulation 

and the large number of design variables. Therefore, the use of a gradient-based 

optimization algorithm is impractical and an alternate method is required.  

In this paper, a heuristic method is introduced. In this method, each iteration consists 

of one explicit dynamic analysis and the solution of a subproblem. The explicit dynamic 

analysis provides parameters to define the subproblem—i.e., nodal displacement and the 

element (internal and kinetic) energy rates as a function of time. In the subproblem, an 

approximation method is used to establish an analytical relationship between the objective 

function and the thickness of each shell element. Thus, the original optimization problem 

is transformed into a series of simpler subproblems (Sec. 3.4). The steps involved in this 

algorithm are the following: 

 

Step 1:  Prepare the initial finite element model. Define target force-displacement curve 

𝐹∗(𝑑) and partition into discrete displacements 𝑑𝑗, 𝑗 = 1, … , 𝑚. Define the thin-

walled structure initial (uniform) thickness distribution 𝐭(𝑘) ∈ ℝ𝑁 for 𝑘 = 0. 

Step 2: Perform explicit dynamics analysis and obtain the actual force-displacement curve 

𝐹(𝑑𝑗 , 𝐭(𝑘)).  Evaluate the objective function 𝐶(𝐝, 𝐭(𝑘)) =

1 𝑚⁄ ∑ [𝐹(𝑑𝑗 , 𝐭(𝑘)) − 𝐹∗(𝑑𝑗)]
2𝑚

𝑗=1 . Obtain the element derivatives of the kinetic 

energy and internal energy 𝑅𝐸𝐾
(𝑒)

(𝑑𝑗 , 𝐭(𝑘))   and 𝑅𝐸𝐼
(𝑒)

(𝑑𝑗 , 𝐭(𝑘))  (Sec. 3.3). 
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Step 3:  Update iteration 𝑘 ← 𝑘 + 1. Solve the optimization subproblem (14) (Sec. 3.4). 

Update the element thickness values (design variables) 𝐭(𝑘) = 𝐭(𝑘)
∗ .  

Step 4:  If the convergence condition (15) is satisfied (Sec. 3.5) then terminate;

 otherwise, go to Step 2. 

 

3.2 Derivation of the subproblem objective 

In order to derive the objective function of the subproblem, let us analyze the relation 

between the objective function in (3) and the kinetic and internal energy expressions in 

each element. When the displacement of the impactor increases from 𝑑 to 𝑑 + Δ𝑑, the 

corresponding increment of the work of the external force is given by 

Δ𝑊 = ∫ 𝐹(𝑑)d𝑑
𝑑+Δ𝑑

𝑑

 (4) 

This work increment is converted to the increment of structural total energy (kinetic energy 

and internal energy), 

 Δ𝑊 = ∆𝐸𝐾 + ∆𝐸𝐼 (5) 

When ∆𝑑 → 0，then Δ𝑊 ≈ 𝐹(𝑑)∆𝑑，which yields 

 𝐹(𝑑) = lim
∆𝑑→0

(
∆𝐸𝐾

∆𝑑
+

∆𝐸𝐼

∆𝑑
) = 𝑅𝐸𝐾(𝑑) + 𝑅𝐸𝐼(𝑑) (6) 

where 𝑅𝐸𝐾 and 𝑅𝐸𝐼 are the derivatives of the kinetic energy and internal energy with 

respect to the displacement 𝑑. Therefore, the external force 𝐹(𝑑) can be expressed by the 

sum of the element derivatives of the kinetic and internal energies as 

 𝐹(𝑑) = ∑[𝑅𝐸𝐾
(𝑒)(𝑑) + 𝑅𝐸𝐼

(𝑒)(𝑑)]

𝑁

𝑒=1

 (7) 

Therefore, the objective function of the subproblem can be expressed as: 

min 𝐶(𝑘)(𝐝, 𝐭) =
1

𝑚
∑ {∑[𝑅𝐸𝐾

(𝑒)
(𝑑𝑗 , 𝐭) + 𝑅𝐸𝐼

(𝑒)
(𝑑𝑗 , 𝐭)]

𝑁

𝑒=1

− 𝐹∗(𝑑𝑗)}

2𝑚

𝑗=1

 (8) 

Analytical forms of 𝑅𝐸𝐾
(𝑒)

 and 𝑅𝐸𝐼
(𝑒)

 as a function of the element thickness 𝑡(𝑘)
(𝑒)

 can 

be derived in order to minimize (8). This procedure is discussed in the next section. 

 

3.3 Analytical forms of energy derivatives  

The derivative of the element kinetic energy is proportional to the change in the 

element thickness. Then, the following analytical form can be proposed: 

 𝑅𝐸𝐾
(𝑒)

(𝑑𝑗 , 𝑡(𝑘)
(𝒆)

) ≈ 𝑅𝐸𝐾(𝑘−1)
(𝑒)

(
𝑡(𝑘)

(𝑒)

𝑡
(𝑘−1)

(𝑒)
) (9) 
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where 𝑅𝐸𝐾(𝑘−1)
(𝑒)

= 𝑅𝐸𝐾
(𝑒)

(𝑑𝑗 , 𝐭(𝑘−1)), which remains constant in iteration 𝑘, and 𝐭(𝑘−1) =

[𝑡(𝑘−1)
(1)

, … , 𝑡(𝑘−1)
(𝑁)

] is the optimal thickness obtained by the subproblem of iteration 𝑘 − 1, 

which also remains constant in iteration 𝑘. The relation between the element’s internal 

energy and its thickness is somewhat more involved. When the structure is subjected to a 

crushing load, it undergoes large plastic deformation. In that case, the plastic strain is much 

larger than the elastic strain, so the latter can be neglected (Lu and Yu 2003). Effectively, 

the material Young’s modulus can be taken as infinite, so that the structure exhibits rigid 

behavior before yielding. In this work, a rigid, perfectly plastic material model is used. 

In thin-walled structures, the rigid, perfectly plastic material model results in their 

plastic deformation being concentrated at discrete, plastic hinge-lines (Figure 3). Along the 

plastic hinge-lines, the magnitude of the bending moment per unit length must be equal to 

the fully plastic bending moment per unit length defined as 𝑀𝑜 = 𝜎𝑠𝑡2/4, where 𝜎𝑠 is 

the stress along the plastic hinge-line and 𝑡 is the thickness. 

 

 

Figure 3: Stress profile across the plastic hinge-line using the rigid, perfectly plastic material model. 

 

For a given relative rotation 𝜃 along plastic hinge-line of length 𝐿, the total energy 

dissipation can be calculated by 

 𝐸𝐼 = 𝑀𝑜𝜃𝐿 =
𝜎𝑠𝜃𝐿

4
𝑡2 (10) 

Then, one can observe that the derivative of the element internal energy is approximately 

a quadratic function with respect to its thickness. This is, 

 𝑅𝐸𝐼
(𝑒)

(𝑑𝑗 , 𝑡(𝑘)
(𝑒)

) = 𝑎 (𝑡(𝑘)
(𝑒)

)
2

 (11) 

where the coefficient 𝑎 can be obtained from the relation 
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 𝑅𝐸𝐼(𝑘−1)
(𝑒)

= 𝑎 (𝑡(𝑘−1)
(𝑒)

)
2

 (12) 

where 𝑅𝐸𝐼(𝑘−1)
(𝑒)

= 𝑅𝐸𝐼
(𝑒)

(𝑑𝑗 , 𝐭(𝑘−1)), which remains constant in iteration 𝑘. Finally, one can 

state that 

 𝑅𝐸𝐼
(𝑒)

(𝑑𝑗 , 𝑡(𝑘)
(𝒆)

) ≈ 𝑅𝐸𝐼(𝑘−1)
(𝑒)

(
𝑡(𝑘)

(𝑒)

𝑡
(𝑘−1)

(𝑒)
)

2

 (13) 

 

3.4 Subproblem statement 

The subproblem can be defined from the analytical relationship between the 

optimization objective and the energy of elements (Sec. 3.2) and the analytical relationship 

between design variables and the energy of elements (Sec. 3.3). From equations (8), (9), 

and (13), the subproblem can be derived and stated as: 

 

find 𝐭(𝑘) ∈ ℝ𝑁

min 𝐶(𝑘)(𝐝, 𝐭(𝑘)) =
1

𝑚
∑ {∑ [𝑅𝐸𝐾(𝑘−1)

(𝑒)
(

𝑡(𝑘)
(𝑒)

𝑡
(𝑘−1)

(𝑒)
) + 𝑅𝐸𝐼(𝑘−1)

(𝑒)
(

𝑡(𝑘)
(𝑒)

𝑡
(𝑘−1)

(𝑒)
)

2

]

𝑁

𝑒=1

− 𝐹∗(𝑑𝑗)}

2
𝑚

𝑗=1

s. t. |𝑡(𝑘)
(𝑒)

− 𝑡(𝑘−1)
(𝑒)

| ≤ 𝜀,   𝑒 = 1, … , 𝑁

 

(14) 

where the parameter 𝜀 is the move limit. The solution of subproblem (14) allows to update 

of the thickness 𝐭(𝑘)
∗  . The iterative process continues until a convergence criterion is 

satisfied (Sec. 3.5). In some cases, it is advantageous to use a symmetry condition to obtain 

symmetric structures. When such a condition is used, symmetric elements are grouped and 

assigned their average thickness value. 

 

3.5 Convergence criterion 

The convergence condition is satisfied when  

 min{𝐶𝑘−𝑁𝑐+1, 𝐶𝑘−𝑁𝑐+2, … , 𝐶𝑘} > 𝐶𝑘−𝑁𝑐
 (15) 

where 𝑁𝑐 is an integer called convergence number, and 𝑘 > 𝑁𝑐 is the iteration number. 

This means that if the objective function does not decrease in more than 𝑁𝑐 iterations, the 

optimization process is terminated. Due to the numerical noise in explicit dynamic analysis, 

a typical value of the convergence number is around 𝑁𝑐 = 10. 
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3.6 Flowchart of the proposed algorithm 

The proposed algorithm is summarized in the flowchart below (Figure 4). Several 

numerical examples show the effectiveness of this algorithm to match a target FD curve.  

 

 

Figure 4: Flowchart of the proposed algorithm. 

 

4. Numerical Examples 

In the following examples, thin-walled tubes with different load conditions and target 

FD curves are optimized. The explicit nonlinear finite element code LS-DYNA is used to 

perform explicit dynamic analysis (Hallquist 2006). The FE model of the tubes is 

comprised of fully integrated shell elements (ELFORM=16) with four in-plane integration 

points, which makes them free of hourglass deformation (Hallquist 2006). Five integration 

points are used throughout the thickness in order to capture the local element bending 

accurately. A linear elastic, piecewise linear plastic material (MAT24) is utilized. The 

material properties correspond to the ones of steel (Table 1). Fracture is not considered. 

  

End

Input initial 
thickness 𝐭 𝑘

Prepare finite element model. 

Define target FD curve 𝐹∗(𝑑𝑗). 

Initialize iteration 𝑘 = 0

Perform explicit 

dynamic finite element 

analysis

Output actual FD curve 𝐹 𝑑𝑗 , 𝐭 𝑘 , 

objective 𝐶𝑘, and energy 

derivatives 

𝑅𝐸𝐾
𝑒

𝑑𝑗, 𝐭 𝑘 , 𝑅𝐸𝐼
𝑒

𝑑𝑗, 𝐭 𝑘

Solve optimization 

subproblem

Output updated thickness 

𝐭 𝑘 = 𝐭 𝑘
∗

Start

𝑘 > 𝑁𝑐

min 𝐶𝑘−𝑁𝑐+1 ,… , 𝐶𝑘 > 𝐶𝑘−𝑁𝑐

Update iteration 

𝑘 ← 𝑘 + 1

Yes No

No

Yes
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Table 1: Material properties of the thin-walled tubular structure. 

Property Value 

Density 1800 kg/m3 

Young's modulus 207 GPa 

Poisson's ratio 0.29 

Yield strength  253 MPa 

Effective plastic strain Effective stress (MPa) 

0.000 253 

0.048 367 

0.108 420 

0.148 442 

0.208 468 

0.407 524 

0.607 561 

0.987 608 

 

Three target FD curves have been used in the examples, namely, straight line, straight 

line with slope, and power line (Figure 5). The straight line target is defined as 

 𝐹∗(𝑑) = 𝑓 (16a) 

where 𝑓 is the constant force. The straight line target with slope is defined as  

 𝐹∗(𝑑) = max {
𝑓

𝑑𝑡
𝑑, 𝑓} (16b) 

where 𝑑𝑡 is the displacement before the force plateau. Finally, the power line target is  

 𝐹∗(𝑑) =
𝑓

𝑑𝑡
𝑝 𝑑𝑝 (16c) 

where 𝑑𝑒 is the final displacement and 𝑝 is the power. 

 

Figure 5: Target FD curves considered in the numerical examples. 

 

The following sections show the results of the application of the proposed algorithm 
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in the design of a thin-walled square under axial and oblique impact. Similar applications 

can be observed in the design of vehicle rails and crashboxes. In these examples, the three 

types of target FD curves are considered: a straight line (axial impact), straight line with a 

slope (oblique impact), and power line (oblique impact). 

 

4.1 Straight-line FD target under axial impact 

Let us consider a thin-walled square tube of length 1.0 m and the side 0.1 m that is 

fully constrained at the back-end and subjected to an axial impact on the front-end (Figure 

6). The impacting rigid plate moves at a constant speed of 5 m/s along the longitudinal axis 

(𝑦-axis) of the tube, compressing the tube a distance of 0.7 m.  

 

 

 Figure 6: Model setup of the thin-walled square tube under axial impact. 

 

The target FD curve is set as a straight-line type with 𝑓 = 200 kN (Figure 5a). The 

number of the discrete equidistant displacement points is 𝑚 = 700. Symmetry conditions 

in directions 𝑥 and 𝑧 are added. All elements in the model are square shells with side 10 

mm. The thickness of shell elements is chosen as design variables, therefore, there are 4000 

thickness variables. The upper and lower bounds of the thickness variables is 6.0 mm and 

0.6 mm, respectively. The initial value of thickness variables is 3.3 mm; thus, the initial 

design is a tube with uniform thickness of 3.3 mm. The limit of the change of thickness in 

subproblem is 𝜀 = 0.1 mm and the convergence number is 𝑁𝑐 = 10. 

The iterative progress of the objective function is shown in Figure 7. The best design 
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is found at iteration 25. The optimization is terminated after 35 iterations. The minimum 

and maximum values of thickness variables with no. of iterations is shown in Figure 8.  

 

Figure 7: Objective function vs. number of iterations for the straight-line FD target under axial impact. 

 

 

Figure 8: Maximum and minimum thickness values vs. number of iterations for the straight-line FD target 

under axial impact. At convergence, the minimum and maximum thickness values are 1.85 mm and 4.63 

mm, respectively. 

 

The thickness variables of the best design are used to build the design tube, and the 

designed tube’s thickness distribution is shown in Figure 9. The designed tube has a trigger-

like, crush initiator mechanism corresponding to two thinner zones in the front end. This 

feature induces a local buckling at the front end of the tube and the buckling load is 
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relatively small. The deformation history of uniform thickness tube and designed tube are 

shown in Figure 10. During pure axial crushing of a thin-walled square tube, the 

progressive collapse is manifested with the sequential formation of folds from the front-

end to back-end of the tube. Comparing the overall deformation of tubes before and after 

optimization, one finds that a uniformity in the shape and size of each fold of the designed 

tube.  

 

 

Figure 9: Thickness distribution of the final designed tube for the straight-line FD target under axial 

impact. 
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Figure 10: Deformation of the initial uniform-thickness tube vs. the final designed tube for the straight-

line FD target under axial impact. 

 

The FD curve of uniform thickness tube and designed tube are shown in Figure 11. 

The initial peak crushing force of designed tube is lower than the one of the initial design. 

The FD curve of designed tube more stable and hovers near the target FD curve; therefore, 

the mean force and other crashworthiness parameters increase. The peak crushing force 

(PCF), mean force, crash load efficiency (CLE), and specific energy absorption (SEA) of 

the uniform thickness tube and designed tube are listed in Table 2. 
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Figure 11: Comparison of the FD responses of the initial and final designs for a straight-line FD target 

under axial impact. 

 

Table 2: Performance of the initial uniform-thickness tube and the final designed tube for a straight-line 

FD target under axial impact. 

 
PCF 

(kN) 

Mean Force 

(kN) 
CLE 

SEA 

(kJ/kg) 

Initial uniform-

thickness tube 
343.32 159.96 67.99% 10.88 

Final designed 

tube 
249.36 190.80 76.52% 10.77 

 

 

4.2 Straight-line-with-a-slope FD target under oblique impact 

For the same thin-walled tube described in the previous example (Sec. 4.1), let us 

consider the impacting rigid plate positioned at an angle of 15°  around the 𝑧  axis, 

moving at a constant velocity of 5 m/s in the negative 𝑦 direction (Figure 12). In this 

example, the progressive collapse is induced using a straight-line-with-a-slope FD target 

of 𝑓 = 160 kN and 𝑑𝑡 = 0.07 m. The number of the discrete equidistant points is 𝑚 =

700. Symmetry constraints are included in the 𝑥 and 𝑧 directions. 
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Figure 12: Model setup of the thin-walled square tube under oblique impact. 

 

 

As before, the initial design is a tube of uniform thickness 3.3 mm. The upper and 

lower bounds are 6.0 mm and 0.6 mm, respectively. The move limit in the subproblem is 

ε = 0.1  mm and the convergence number is 𝑁𝑐 = 10 . The evolution of the objective 

function is shown in Figure 13. Oscillations are observed: the deformation mode in 

iterations 9,17, and 23 are all global bending. One possible cause is the constant function 

defining the target FD curve. the optimization is terminated after 25 iterations. The best 

design is found at iteration 15.  
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Figure 13: Objective function vs. number of iterations for the straight-line-with-a-slope FD target under 

oblique impact. 

 

The minimum and maximum thickness values with respect to the number of iterations 

is shown in Figure 14. The thickness distribution of the final designed tube is shown in 

Figure 15. In this case, in order to avoid the global bending, the algorithm tries to add 

material to the tube’s back-end thicker; however, this causes a high peak force outside of 

the target FD curve when the impactor moves to this thicker part. Then the algorithm makes 

it thinner again, which brings the global bending type deformation back again. The final 

design has a sufficiently thick back end and progressive collapse is observer. 

 

 

 

Figure 14: Minimum and maximum thickness values vs. number of iterations for the straight-line-with-a-

slope FD target under oblique impact. At convergence, the minimum and maximum thickness values are 

1.94 mm and 4.47 mm, respectively. 
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Figure 15: Thickness distribution of the final designed tube for the straight-line-with-a-slope FD target 

under oblique impact. 

 

Figure 16 shows the global bending of the initial uniform-thickness design and the 

resulting progressive collapse of the final designed tube. The FD curve of uniform 

thickness tube and designed tube are shown in Figure 17. For the initial design, a sudden 

force decrease is observed when global bending occurs, which reduces the energy 

absorbing capacity of the tube. The final designed tube depicts progressive collapse and 

maintains higher energy absorbing capacity. The peak force, mean force, CLE, and SEA of 

the uniform thickness tube and designed tube are listed in Table 3. 
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Figure 16: Deformation of the uniform thickness tube vs. the designed tube for the straight-line-with-a-

slope FD target under oblique impact. 

 

 

Figure 17: Comparison of the FD response of the initial and final designs for a straight-line-with-a-slope 

FD target under oblique impact. 
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Table 3: Performance of the initial uniform-thickness tube and the final designed tube for the straight-

line-with-a-slope FD target under oblique impact. 

 
PCF 

(kN) 

Mean Force 

(kN) 
CLE 

SEA 

(kJ/kg) 

Initial uniform-

thickness tube 
177.92 38.86 21.84% 2.64 

Final designed 

Tube 
227.32 154.16 67.82% 9.80 

 

While the numeric result shows a desirable performance, the designed lacks of 

robustness and a small variation of its thickness, particularly in the back-end, may trigger 

global bending. In order to avoid this problem, the force of the target curve should be an 

increasing function of displacement. Therefore, a power-line FD target can be used instead 

as shown in the next example. 

 

4.3 Power-line FD target under oblique impact 

Here, the model and parameters are the same as in the previous examples (Secs. 4.1 

and 4.2). The oblique impact is the same described in Sec. 4.2, but a target power-line FD 

curve is used instead with parameters 𝑓 = 200 kN and 𝑝 = 0.4. The iterative progress 

of the objective function is shown in Figure 18. Compared with the designed tube in 

previous example (Sec. 4.2), the convergence is more monotonic and less oscillatory. The 

algorithm converges after 31 iterations. The collapse observed in the intermediate designs 

of the previous example did not appear in the deformation progress. The best design is 

found after 21 iterations. One can find there are no oscillations in the iteration history of 

the objective function. The minimum and maximum values of thickness variables with 

respect to the number of iterations are shown in Figure 19 and the thickness distribution of 

the final designed tube is shown in Figure 20.  
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Figure 18: Objective function vs. number of iterations for the power-line FD target under oblique impact. 

 

 

Figure 19: Minimum and maximum thickness values vs. number of iterations for the power-line FD target 

under oblique impact. At convergence, the minimum and maximum thickness values are 1.61 mm and 

4.53 mm, respectively. 
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Figure 20: Thickness distribution of final designed tube for the power-line FD target under oblique 

impact. 

 

The final designed tube depicts progressive collapse (Figure 21). The FD curves of 

initial and final designs are shown in Figure 22, showing the response close to the target 

for the final designed tube. The peak force, mean force, CLE and SEA of the designed tube 

are listed in Table 4. In comparison to the previous two examples (Tables 2 and 3), the CLE 

of power-line-target is lower; then, the designed tube using the power line-target FD curve 

is also lower. According to these examples, the proposed design algorithm is shown to be 

quite effective. 

 

 

Figure 21: Deformation of the initial uniform-thickness tube vs. the final designed tube for the power-line 

FD target under oblique impact. 
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Figure 22: Comparison of the FD curve of the initial and final designs for the power-line FD target under 

oblique impact. 

 

 

Table 4: Performance of the initial uniform-thickness tube and the final designed tube for the power-line 

FD target under oblique impact. 

 
PCF 

(kN) 

Mean Force 

(kN) 
CLE 

SEA 

(kJ/kg) 

Initial uniform-

thickness tube 
177.92 38.86 21.84% 2.64 

Final designed 

tube 
231.52 138.24 59.71% 9.38 

 

 

5. Conclusion 

This work introduces a new heuristic optimization algorithm for the design of thin-

walled structures for crashworthiness. The proposed algorithm solves the optimization 

problem of tracking a target FD curve by dividing such problem into a series of 

subproblems. At each iteration, an explicit dynamic analysis is performed and a 

subproblem is solved. By using the relationship between the impact force and structural 

energy (8), an analytical expression can be derived relating the design variable (thickness) 

and the derivatives of element energy with respect to the displacement of the impacting 

body (9 and 13). By solving the subproblem, the algorithm updates thickness distribution 
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to minimize the error between the structure’s FD response and the target FD curve. 

Three examples show that the algorithm has the ability to make the FD curve of the 

optimized structure close to the specified target FD curve on a thin-walled tube with square 

section. In these examples, the initial design is a thin-walled tube of uniform thickness. In 

the first example—straight-line FD target under axial impact—the deformation modes of 

the initial and the final designed tubes are progressive collapse; however, the folds of the 

designed tube are uniform and the FD curve is closer to the target.  

In the remaining two examples, oblique impact is considered with two different targets: 

straight-line-with-a-slope and power-line FD curves. Under oblique load, the initial tube 

design with uniform thickness deforms with global bending, losing its energy absorbing 

capacity; in contrast, the final designed tubes progressive collapse following the target FD 

curve. In all cases, performance indicators such as PCF, mean force, CLE, and SEA 

improve according to the FD target. Ongoing applications are carried out with thin-walled 

tube with different cross-section as well as pillars, rails, and other vehicle components. 

A key element of the algorithm is the appropriate way to construct the subproblems, 

which is solved here by using the structural response information in dynamic analysis. In 

the subproblem of this research, the energy of each element is only affected by its own 

thickness changes. This assumption makes the problem simpler and the algorithm 

computationally efficient. However, the energy of each element has a complex coupling 

relationship with the thickness of itself and of other elements. This means the structural 

response information is not fully utilized when constructing subproblems. In this way, the 

algorithm may lack the ability to explore new deformation modes of complex structures. 

In further research, how to use this information more sufficiently to build a subproblem 

will be the essential part of the study. The algorithm can also be extended to other models, 

such as using different objective functions (maximizing SEA) and different design 

variables (the shape optimization using the nodes' position as design variables). 
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