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Abstract

In this document we summarize our research efforts related to computational interpretation of two

basic immune mechanisms: co-stimulation and priming. This interpretation was done in the scope

of misbehavior detection for ad hoc wireless networks. When formulating co-stimulation and prim-

ing as a computational approach we abstracted away from the molecular nature of these mecha-

nisms. Instead we concentrated on their logic structure. Needless to say, despite applying such a

simplified view, the path to a useful computational interpretation was not straightforward. This fact

underscores the conceptual character of our research.

Our computational interpretation of co-stimulation allows any detection system to introduce

two desirable properties: energy efficiency and false positives control. Additionally, it introduces

the option to exchange energy efficiency for misbehavior detection rate, while keeping the false

positives rate unchanged. Priming enables to check whether network operational conditions are

within the limits prescribed by priming thresholds. Since priming is based on co-stimulation, it

inherits the same properties.

We provide a summary of the challenges related to the design of co-stimulation and priming

based architectures. We argue that co-stimulation and priming are rather general paradigms with

possible applications in other areas than misbehavior detection. Additionally, we summarize our

results related to the efficiency of negative selection in misbehavior detection scenarios. We outline

the key features of AIS-Lib, a library for performance evaluation of immune inspired detection sys-

tems. Finally, we summarize our results achieved by applying a locality sensitive hashing technique

to intrusion detection.



Zusammenfassung

In diesem Dokument fassen wir unsere Forschungsergebnisse zum Thema Fehlverhaltenerkennung

für drahtlose ad-hoc Netze zusammen, welche sich auf zwei grundlegende Mechanismen des biolo-

gischen Immunsystems (Co-stimulation und Priming) beziehen. In diesem Zusammenhang wurde

eine ausführliche Analyse und Interpretation der beiden Mechanismen durchgeführt, um sie erfolg-

reich im Bereich der Fehlverhaltenerkennung einzusetzen. Bei der Formulierung geeigneter In-

terpretationen der molekularen Grundlagen (zur Umsetzung in ein technisches System) haben wir

uns auf die logische Struktur der beiden Mechanismen konzentriert. Trotz der Verwendung einer

auf diese Weise vereinfachten Ansicht, war der Weg zu einer nützlichen Umsetzung nicht direkt.

Dieser Sachverhalt unterstreicht den Konzeptcharakter unserer Forschung.

Unsere Umsetzung von Co-stimulation und Priming ermöglicht jedem Fehlverhaltenerkennung-

system zwei wichtige Eigenschaften einzuführen: Steuerung der Energieeffizienz und Minimierung

der Anzahl von Falschmeldungen. Zusätzlich bietet sich die Möglichkeit, Energieeffizienz gegen

Fehlverhaltenaufklärungsrate auszutauschen, dabei bleibt aber die Anzahl von Falschmeldungen

konstant. Priming ermöglicht zu überprüfen, ob die Betriebsbedingungen eines ad-hoc Netzwerkes

innerhalb eines eingegrenzten Bereiches bleiben. Diese Begrenzungen werden durch ”priming”-

Schwellen (Schwellwerte) definiert. Da Priming auf Co-stimulation basiert, besitzt es die gleichen

grundlegenden Eigenschaften wie Co-stimulation.

Wir geben eine Zusammenfassung unserer Forschungsergebnisse, welche sich mit den Proble-

men und Herausforderungen bezgl. Architekturen die Co-stimulation and Priming verwenden, be-

fassen. Zusätzlich fassen wir unsere Forschungsergebnisse zusammen, die sich auf die Leistungs-

fähigkeit der negativen Selektion in Bereich der Fehlverhaltenerkennungszenarien beziehen. Wir

geben weiterhin einen Überblick über AIS-Lib, einer Bibliothek zur Leistungsbewertung von immun-

inspirierten Fehlverhaltenerkennungsystemen. Schließlich fassen wir unsere Forschungsergebnisse

zusammen, die sich auf Umsetzung von einem ”locality preserving” Hashingverfahren zur Erken-

nung von Einbrüchen in ein Netzwerk (intrusion detection) beziehen.
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1 Introduction

The Biological immune system (BIS) protects its host against extraneous agents that could cause

harm. The BIS can be found in living organisms ranging from plants to vertebrates. Even though

the BIS complexity in these various life forms can be very different, the common goal is to sustain

survival in often unforeseeable conditions. The BIS can be succinctly described as a protection

system that is based both on prior experience possibly accumulated over an evolutionary time span

and short-term adaptation that occurs during the lifetime of the host. Whereas for example plants

only rely on the former type of protection, innate immunity, more complex life forms additionally

employ the latter type, adaptive immunity. It is however important to note that the existence of

adaptive immunity, its internal mechanisms and interplay with innate immunity is also a result of

evolutionary priming.

Due to the efficiency in protecting its host, the BIS has become an inspiration for designing

protection systems. Besides this area, it has become an inspiration in areas such as machine learning,

optimization, scheduling etc. Artificial Immune Systems (AISs), the technical counterpart of the

BIS, have become an independent research direction within the field of computational intelligence.

Computer and network security is an area which gained an increased interest, mainly due to the

omnipresence of the Internet. It is the role of secure protocols to guarantee data integrity and user

authentication. Unfortunately, flaws in secure protocols are continuously being found and exploited

as the Internet experience shows [45]. The history of security of home and small mobile computing

platforms points out that such attacks can disrupt or even completely interrupt the normal operations

of networks [43]. There are several thousand families of viruses and worms recorded. Some of these

families consist of several thousands or even tens of thousand viruses that were created by virus kits,

a specialized software aimed at automated virus creation.

Ad hoc wireless networks do not rely on any centralized or fixed infrastructure. Instead each

participating wireless device acts as a router for forwarding data packets. The advantage of such an

architecture is the ease of deployment. This advantage is however at the cost of a more complex

maintenance. Additionally, in many scenarios it is expected that the participating wireless devices

will be resource restricted due to their reliance on battery power. This further implicates energy

aware hardware with a lesser computational throughput.

The above limitations establish the basic motivation for designing autonomous detection and

response systems that aim at offering an additional line of defense to the employed secure protocols.

Such systems should provide several layers of functionality including the following [16]:

(i) distributed energy efficient self-learning and self-tuning with the aspiration to minimize the

need for human intervention and maintenance,

(ii) active response with focus on attenuation and possibly elimination of negative effects of mis-

behavior on the network.

In the following we will introduce the basic concepts of an energy efficient misbehavior detec-

tion system for ad hoc wireless networks. This approach is inspired by the role of co-stimulation

and priming in the BIS. We will also discuss the role of features necessary for misbehavior detec-

tion. A feature in our context is understood to be a performance measure that allows for an efficient

reasoning about whether a node misbehaves or works normally.
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Document Organization

The rest of this document is organized as follows. In Section 2 we give a short overview of the

BIS. We introduce co-stimulation and priming, and describe their role in the BIS. We also explain

how the innate and adaptive immune systems cooperate when detecting a pathogen. In Section 3 we

review the related work that used co-stimulation as a means for improving misbehavior detection

performance. Additionally, we review the state-of-the-art in the area of misbehavior detection. In

Section 4 we discuss our computational interpretation of co-stimulation and priming. In Section 5

we provide details on our co-stimulation algorithm and in Section 6 on our priming algorithm. In

Section 7 we give an overview of our experimental methodology and give insights on the perfor-

mance of co-stimulation and priming. In Section 8 we summarize our results. In Section 9 we give

concluding remarks. We also argue that co-stimulation and priming are rather general paradigms

with possible applications in other areas than misbehavior detection. Finally, Section 10 provides a

list of enclosed documents.

2 The Biological Immune System

The Biological immune system (BIS) of vertebrates is a remarkable defense system, able to

quickly recognize the presence of foreign microorganisms and thereafter eliminate these pathogens.

Pathogens are common microorganisms such as viruses, bacteria, fungi or parasites. When con-

fronted with a pathogen, the BIS often relies on a coordinated response from both of its two vital

parts:

• the innate system: the innate immune system is able to recognize the presence of a pathogen

or tissue injury, and is able to signal this to the adaptive immune system.

• the adaptive system: the adaptive immune system can develop during the lifetime of its host

a specific set of immune responses and provide immunological memory. An immunological

memory serves as a basis for a stronger immune response, should a pathogen re-exposure

happen.

2.1 Co-stimulation and Priming

The form and amplitude of immune responses is pathogen dependent. Often, an immune response

within the BIS is based on a feedback mechanism between the innate and adaptive immune systems.

Such a feedback can result in a feedback loop, in which the innate immune systems further stimu-

lates the adaptive immune system, and vice versa [21]. For example, a pathogen gets eliminated, if

it was recognized by the adaptive immune system as a pathogen, and at the same time, the innate

immune system signals that this pathogen causes some damage to the human organism. Under this

specific immune reaction, only damage inflicting or infectious cells get eliminated by the BIS.

This demonstrates that a two-way communication, hereafter referred to as co-stimulation, be-

tween the innate and adaptive immune systems is common. Immunologists such as Frauwirth and

Thompson describe co-stimulation as the involvement of ”reciprocal and sequential signals be-

tween cells” in order to fully activate a lymphocyte [21]. The role of lymphocytes is to recognize

a specific pathogen, to trigger a corresponding immune reaction and in some forms they are also

capable of pathogen elimination.

Priming in the BIS describes the effects of a first encounter of an immune cell with a pathogen.

More specifically, immunologists define priming as the activation and clonal expansion of certain
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immune cells into effector cells that are then capable of inducing a full immune response against a

specific pathogen.

Communication capabilities within the BIS received an increased interest from the Artificial

immune systems (AIS) community and evolved into an independent research direction. Several

different types of danger, safe and amplifying signals were proposed within the Danger theory due

to Aickelin et al. [1].

2.2 Selection Principles

T-cells and B-cells are lymphocytes providing pattern matching capabilities necessary for pathogen

detection. Before being released into the body they are subject to a selection process. The goal of

this selection process is to produce T-cells and B-cells with a high degree of diversity [35].

T-cells mature in the thymus in two stages called (i) positive selection and (ii) negative selection.

(i) Immature T-cells in the thymus get first tested on self cell reactivity. T-cells that do not react

with self cells at all are subject to removal.

(ii) T-cells that survived the first step are tested on whether they can react with self cells too

strongly. If this is true, the result is again removal.

Remaining T-cells are released into the body. Such T-cells are mature but remain naive until

their activation. In order these two stages to be achievable, the thymus is protected by a blood-

thymic barrier that is able to keep this organ pathogen-free. As a result, mature T-cells are reactive

with cells that could not be present in the thymus, i.e. with non-self cells. They are also weakly

self reactive but they are unable to get activated by a self cell. Unfortunately, the repertoire of self

cells in the thymus does not have to be complete. Additionally, not all self cells are expressed in the

thymus at adequate levels to allow for negative selection. This can lead to reactivity with self cells,

i.e. to autoimmune reactions (false positives). In order to suppress autoimmune reactions, the BIS

applies several mechanisms that allow for peripheral immunoregulation [40].

Creating of new B-cells with an improved pathogen recognition ability is done through cloning.

Cloning of B-cells allows for some “error”. This error is believed to be inversely proportional to the

matching ability of a given B-cell. The weaker is the ability, the greater is the error allowance. The

process of B-cell cloning with an error allowance is called somatic hypermutation. The purpose of

somatic hypermutation is to diversify the matching ability of B-cells.

Both T-cells and B-cells that were not able to recognize any pathogen get removed. This happens

to most B-cells and T-cells and can be understood as an instance of positive selection (only the fittest

stay). Unlike B-cells, T-cells can only recognize pathogen fragments expressed by another type of

cells called Antigen presenting cells (APC). Both T-cells and B-cells can mature into memory B-

cells and T-cells. In contrast to normal T-cells and B-cells, memory cells live much longer, thus

allowing the host to keep its immunological memory over a long period.

2.3 Discussion

Our goal is to benefit from the different capabilities of the innate and adaptive immune system. We

build on the large body of evidence that indicates that innate and adaptive immune systems tightly

cooperate when detecting a pathogen; see e.g. [28, 38]. Liu and Janeway [34] state that pathogen

recognition mechanisms that combine T-cell receptor binding and APC based co-stimulation are the

most efficient inducers of clonal activity of certain T-cells; see Fig. 1. Medzhitov and Janeway fur-

ther comment [38]: “This whole mechanism ensures that a T-cell will normally receive both signals
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Figure 1: Pathogen recognition: co-stimulation and pathogen presentation are present during lym-

phocyte activation as well as any subsequent pathogen recognition.

necessary for activation only if the peptide recognized by the T-cell receptor is derived from the

pathogen that initially induced the co-stimulation activity”. This statement provides an interesting

clue on the design of misbehavior detection systems. It suggests that when decreased detection

performance is exchanged for increased adaptivity, it is necessary to ensure that any behavior, being

currently classified by the adaptive detection system, is identical with the behavior used to train this

adaptive system. Regarding misbehavior detection systems, such a strategy could be capable of de-

creasing the probability that a behavior, having an anomalous or random character, gets incorrectly

classified as a known misbehavior type. For this reason, when designing our misbehavior detection

system, an efficient implementation of this strategy was one of our key ambitions.

The adaptive immune system benefits from its capability to produce immune cells with clonally

distributed receptors. This random approach has two basic drawbacks: i) it cannot avoid creating

immune cells that recognize self cells and ii) it cannot avoid creating immune cells that do not

recognize any other cell: self or non-self. Therefore this process is combined with negative and/or

positive selection in order to remove such immune cells. When deciding whether a cell is self or non-

self, the BIS takes advantage of the capability of the innate immune system to recognize pathogen-

associated molecular patterns (PAMPs) [38]. PAMPs are invariant molecular structures associated

with each pathogen. This feature of the innate immune system has developed over evolutionary

time. A successful pathogen could try to avoid being recognized either by changing its PAMP or

simply by avoiding such evolutionarily selected receptors. Changing PAMP, even though feasible,

requires a genetic recombination of the pathogen. Such a recombination could result in a cell that

partially or completely lost its pathogenicity. It is indeed the case that some pathogens managed to

avoid being detected by the slowly evolving receptors of the innate immune system. The Nature’s

answer to this problem seems to be a specialized class of APCs called dendritic cells [4]. Dendritic

cells are especially helpful in recognizing the danger connected with pathogens with high mutation

rates, e.g. viruses.

When translating the mechanisms of the BIS into a computational approach we decided to focus

on the information flow among the various agents of the innate and adaptive immune system. We

abstracted away from the particularities of the various selection and learning mechanisms discussed

above. We assumed that they can be substituted by general purpose machine learning algorithms

such as decision trees, support vector machines etc. We were inspired by the co-stimulation process

that is required to activate a lymphocyte. We understood co-stimulation as an interplay between

the adaptive and innate immune system when detecting a pathogen. When interpreting priming, we
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assumed that the innate immune system can provide strong clues on the pathogenicity of a non-self

cell.

Our decision to apply standard machine learning algorithms, instead of their immune inspired

counterparts, allowed us to concentrate on the control flow of our co-stimulation and priming ap-

proaches. The key question that we aimed at answering was whether co-stimulation and priming

can be translated into computational approaches that inherit some of the key characteristics of the

BIS: detection efficiency and ability to suppress false positives (autoimmune reactions).

3 The State-of-the-art

In this section we review the few prior approaches that took advantages of co-stimulation. Addition-

ally, we review several other approaches that deal with detecting mainstream types of misbehavior

such as data packet dropping or wormholes.

3.1 Co-stimulation Approaches

In one of the first BIS inspired works, Hofmeyr and Forrest [24] described an AIS able to detect

anomalies in a wired TCP/IP network. Anomaly detection was based on the negative selection

algorithm [20]. After this mechanism detected an anomaly, a message was sent to a human operator.

He was given 24 hours to confirm a detected attack. This means, two qualitatively different sorts

of classification were used: negative selection and human expertise. The second approach is only

applied, if a co-stimulation in the form of a message is received.

Sarafijanović and Le Boudec [41, 33] introduced an AIS for misbehavior detection in mobile

ad hoc wireless networks. A local mechanism applied by each node in the network required a

co-stimulation in order to classify a neighbor as misbehaving. The origin of co-stimulation was a

TCP connection source that perceived data losses. The information about a perceived data loss was

forwarded along the connection. The authors observed that their form of co-stimulation reduces the

false positives rate. The disadvantage of their approach is its tight coupling with a transport layer

protocol (TCP), thus negatively influencing energy consumption.

3.2 Other Misbehavior Detection Approaches

Even though our focus stays on co-stimulation and its suitability for misbehavior detection, we

would also like to offer insight into related approaches not taking advantage of this technique.

Marti et al. in [37] introduced two techniques for data dropping detection in ad hoc networks:

watchdog and pathrater. A watchdog allows for collecting traffic information about neighboring

nodes using promiscuous radio mode. Based on this information, a pathrater can assess route re-

liability, thus maximizing the chance that data packets get correctly delivered. Due to the energy

consumption connected with operation in promiscuous node, the watchdog technique is not suitable

for energy constrained ad hoc networks, even though, it offers high data packet dropping detection

rates [17].

Hu et al. [25, 26] introduced two approaches using packet leashes for wormhole detection in

mobile wireless networks. A wormhole is an out-of-band connection between two devices which

allows an attacker to manipulate the network topology and thus the routing of packets. A leash either

consists of an authenticated timing or location based information. A metric calculating whether a

packet has traveled further than allowed (or physically possible) is applied to the leashes. While

the first approach requires a tightly time synchronized network, the other one requires GPS (Global
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Positioning System) based geographical information. The disadvantage of the former approach is

the increased message and authentication complexity, the disadvantage of the latter approach is the

increased energy consumption connected with GPS device operation.

Huang and Lee [27] introduced a cooperative approach for intrusion detection in ad hoc net-

works. It takes advantage of a comprehensive set of 141 data traffic features. The sampling rate for

the feature computation was 5 seconds. It applies a decision tree for the classification of traffic sam-

ples based on these features. It thus requires a learning period in which the classifier gets trained.

To improve the energy efficiency of their approach, a cooperative approach is considered. Under

this approach a clique of nodes elects a cluster head. This cluster head does network monitoring

on behalf of other clique members until a new cluster head is elected. The disadvantage of such an

approach is the necessity to overhear the data traffic in promiscuous mode and to reelect new cluster

heads so that the monitoring load gets evenly distributed among the clique members.

Bhuse et al. [8] proposed an approach for data packet dropping detection that does not rely on

promiscuous mode. In their approach each connection destination node sends to the source con-

nection node a statistic about received data packets. This is done over an alternative route that is

computed by the routing protocol. The received statistic is then compared with a similar statistic

computed by the source node. Based on this, the source node can decide whether all nodes on the

connection cooperate in data packet forwarding. This approach does not allow to detect the individ-

ual misbehaving node. The energy consumption overhead of this approach when the DSR protocol

is used for alternative route discovery is 0.6-2.6% for paths of length 3 to 13 hops. The ability of

this approach to find an alternative route decreases as the number of data dropping nodes increases

as well as with the connection length. For example, when 10% nodes are dropping data packets the

reported success rate is about 75% and 25% for route lengths of 3 and 13 hops, respectively.

Gonzales et al. [23] proposed an approach for data dropping detection in ad hoc networks. Their

approach is based on the principle of flow conservation. Under this approach, it is assumed that the

number of data packets, that a node receives, equals the number of data packets that it forwards

excluding the cases when the given node is also the destination node. The success of their approach

relies on data traffic overhearing in promiscuous mode. The focus of their experimental evaluation

was to determine the ratio of data packets that a node is allowed to drop without being detected.

This ratio is measured relative to the maximum number of data packets that a node is allowed (or

expected) to drop. Their experimental evaluation shows that this ratio is about 10-15%.

Krishnamurthy et al. [32] introduced a machine learning misbehavior detection approach for

wireless sensor networks. They considered several misbehavior types: continuous signal jamming,

signal jamming applied only if there is other radio transmission detected, data packet redirecting and

data packet dropping. The latter misbehavior type required data traffic observation in promiscuous

mode. Classification was done using a linear discriminant analysis and/or a fixed-width clustering

with different distance measures. They tested their approach on a sensor network based on Crossbow

MicaZ motes and TinyOS. The memory footprint of their approach was 31,342 bytes and 3,500

bytes of flash memory and data memory, respectively. The reported detection accuracy for data

packet dropping was nearly 100% with linear discriminant analysis applied.

3.3 Further Comments

Hofmeyr and Forrest [24] described the first immune inspired architecture for intrusion detection

in wired networks. Their work has a strong methodological character. Their interpretation of co-

stimulation relies on a human operator to decide whether a detected anomaly is the consequence of

an intrusion.
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The approach of Sarafijanović and Le Boudec [41, 33] avoids the necessity to invoke a human

response after a possible misbehavior in mobile ad hoc network was detected. As mentioned above,

this was done by coupling negative selection with a transport layer protocol. The main methodolog-

ical drawback of their approach is that they combined two immune inspired mechanisms, negative

selection and co-stimulation, without having first understood the efficiency of each approach in iso-

lation. As a consequence, the performance of their approach did not afford for a clear interpretation.

The related insights on the efficiency of negative selection were published only recently by Elberfeld

and Textor [18].

Even though, co-stimulation was cited as a possible approach for gaining control over false

positives in intrusion/misbehavior detection [24, 41, 33], this mechanism received only very limited

attention. For this reason, the process of translating co-stimulation into a computational approach

required from our side a substantial amount of conceptual effort.

With respect to the above reviewed work, we followed two objectives. We aimed at benefiting

from the capability of co-stimulation to suppress false positives. At the same time, due to energy

efficiency concerns, we also aimed at minimizing any overhearing in promiscuous mode. When

evaluating the energy efficiency of our approach, we compare against watchdog based misbehavior

detection. Watchdog based misbehavior detection offers solid detection performance in scenarios

where the ambition is to identify a specific node executing data dropping, data delaying or a similar

misbehavior type [17]. Such a solid detection performance makes it straightforward to understand

the trade-off between detection performance and energy efficiency, i.e. to understand whether any

decrease in detection performance was matched by an increase in energy efficiency.

The main discerning factor between our approach and the approaches reviewed above is that

our approach develops a conceptual framework for misbehavior detection in ad hoc wireless net-

works. The reviewed approaches concentrate on achieving an acceptable misbehavior detection

performance, whereas we attempt to provide a means that offers the possibility to influence the

detection rate, the false positives rate and the energy efficiency in a controlled manner.

4 Co-stimulation and Priming: A Computational Interpretation

Before discussing the different approaches which take advantage of co-stimulation and priming,

we define and discuss co-stimulation and priming in a more general way, so that a computational

interpretation with focus on network security is straightforward [11, 12, 15].

Definition Co-stimulation is an auxiliary signal indicating that a misbehavior causes damage to the

system.

Definition Priming is a process for specifying the alertness levels of a system with respect to a

misbehavior class.

Notice that co-stimulation, with respect to the above definition, implies that at least two de-

tection mechanisms are applied when detecting misbehavior. Clearly, co-stimulation can be im-

plemented in several ways. Our approach aims not only at improving the misbehavior detection

precision by using two distinct detection mechanisms, but also by requiring that these two detection

mechanisms have very different energy efficiency. In our case, the less energy efficient type of clas-

sification is only used upon receiving a co-stimulatory signal from a more energy efficient type of

classification.

The co-stimulation based misbehavior classification approach, that we next discuss, resembles

the “cascading classifiers” of Kaynak and Alpaydin introduced in [30]. Their approach is based on
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Figure 2: Misbehavior detection architecture.

a sequential application of several classifiers such that ”at the next stage, using a costlier classifier,

we build a more complex rule to cover those uncovered patterns of the previous stage”. Our BIS

inspired approach can be seen as an instance of cascading classification. It is however not the

complexity of classification rules that is increased at each step but the energy cost connected with

observing additional states and events necessary for a more precise reasoning about misbehavior.

Cascading classifiers were empirically studied by Gama and Brazdil in [22]. They combined

several types of classifiers: Bayes classifier, C4.5 and linear discriminant function. Their focal point

was to investigate whether cascading classification could offer some classification performance im-

provement over classification using a single classifier. They tested this approach on several standard

datasets from the UCI Repository [3]. Their results showed that cascading classifiers offer some

improvement in classification precision, however, this improvement was not significant enough to

initiate additional follow-up research. Their results also did not point out that cascading classifiers

could offer some advantage in distributed environments such as ad hoc networks.

When translating priming into a computational approach, we decided to couple several basic

quality of service indicators, such as the number of data packets dropped or delayed, with a mech-

anism allowing for an efficient detection of their critical levels. Such critical levels can be set by

the human operator with the intent to monitor the network. Reaching or even surpassing such crit-

ical levels can be interpreted as being undesired, i.e. as misbehavior. Since continuous monitoring

of a node by its neighbors can be considered energy inefficient, we decided to take advantage of

co-stimulation, most notably of its ability to suppress false positives. This property allowed us to

design a simple energy efficient detection mechanism that relies on co-stimulation for false positives

control.

When interpreting co-stimulation and priming, our central goal was to mimic the capability of

two-way communication within the BIS. When implementing such a two-way communication, the

strategy discussed in Section 2.3 provided helpful clues. Since our computational interpretation is
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based on two distinct detection mechanisms, we tended towards mapping one detection mechanism

to the adaptive immune system and the other one to the innate immune system. We considered the

detection mechanism that relies on continuous monitoring in promiscuous mode to be more similar

to the innate immune system. The other detection mechanism was, due to its greater flexibility

conveyed by the underlying machine learning algorithms, assigned to represent the adaptive immune

system. In retrospection, we still consider such a mapping useful, since it helped to develop a

conceptual picture of our misbehavior detection architecture.

Co-stimulation and priming are key mechanisms of our misbehavior detection architecture

shown in Fig. 2. The purpose of the misbehavior detection module is to provide an initial sepa-

ration of data traffic samples stemming from either normal behavior or misbehavior. This module

can consist of several detection algorithm, for example, supervised or unsupervised machine learn-

ing algorithms. The false positives control module is only applied, if a suspicious data traffic sample

was detected. A classification error feedback allows for a computation of optimized alertness levels,

these in turn allow for a more efficient separation of data traffic samples.

5 Energy Efficient Co-stimulation Approach

Our first goal was to introduce the capability of co-stimulation into our misbehavior detection ar-

chitecture [17]. Since the purpose of the misbehavior detection module and the false positives rate

control module is different, it was necessary to identify several feature sets, each offering a different

perspective on a node’s behavior.

Our co-stimulation approach is based on the local connection-oriented traffic measurement

model depicted in Fig. 3. Let si+1 be a misbehaving node and let si and si+2 be its neighbors.

These nodes are lying on a data connection from ss to sd. Let us further assume that each node

can measure local traffic using two distinct feature sets f0 and f1. Let us denote their numerical

instances as f̂0 and f̂1.

After the node si+2 computes f̂1, this feature set instance is proliferated in the upstream con-

nection direction (towards connection source ss). The node si then compares its own f̂1 sample

with the sample received from si+2. Based on this, a behavior classification with respect to the mis-

behaving node si+1 is done. If si classifies si+1 as misbehaving, it will additionally use the feature

set f0 for classification. If misbehavior is detected again, si+1 is finally classified as misbehaving.

To simplify the notation let us define: F1 = fsi
1 ∪ f

si+2

1 . Similarly, assuming that f̂0 and f̂1 are

represented as vectors, we define F̂1 = f̂si
1 ◦ f̂

si+2

1 , where ◦ is the operator of vector concatenation.

With respect to this notation, our approach to co-stimulation can be succinctly expressed as:

F1
co−stimulation // f0 (1)

The next task in implementing co-stimulation was to populate the feature sets F1 and f0 with

suitable features. When choosing the features, we aimed at the following objectives: i) the relation-
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ship between the feature sets F1 and f0 should be well defined, ii) computation of F1 should be

energy more efficient than computation of f0 and iii) classification based on f0 should offer higher

precision than classification precision based on F1.

To simplify the search for suitable features, we decided that the feature set f0 would be dom-

inated by watchdog features, i.e. features computed in promiscuous mode. Since watchdog based

features benefit from explicit overhearing of each data packet, the classification precision that they

convey is very high. Since promiscuous mode prevents the wireless interface from entering idle

state, operation in promiscuous mode can be considered energy inefficient. According to [19],

power consumption in idle and receive states is about 12-20 higher than in sleep mode.

Including watchdog features, we identified 24 candidate features. These features were divided

into three groups with respect to their energy requirements and protocol assumptions. A wrapper

approach [31] was used to identify features with a statistically significant contribution to the de-

tection of the three considered misbehavior types. More specifically, each of the 24 features was

tested whether it significantly decreases the classification error with respect to these misbehavior

types. The feature that decreased the classification error the most was chosen for the final feature

set. The process was then repeated with the remaining features until there was no other feature that

could significantly decrease the classification error. This was coupled with cross-validation in order

to obtain a robust estimate of the classification error in each round.

The output from the above procedure were three feature sets, each with a different degree of

energy efficiency. Since the statistical significance of each feature within a feature set was known,

it allowed us to understand how these three feature sets are related. Given this knowledge, we

decided to concentrate only on the least and most energy efficient feature set that formed f0 and

f1, respectively. The wrapper based approach showed that in addition to watchdog features, the

f0 feature set must also include several topology related features in order to facilitate detection of

wormholes.

5.1 Definitions

We evaluate misbehavior classification performance in terms of detection rate and false positives

(FP) rate. We assume that a classifier K(f) computed by a learning algorithm is used in the classi-

fication process, where f ∈ {f0,F1} is the feature set used to reason about the behavior of a node.

The classifier K(f) is then used to classify the objects Ω = {o1, ..., op}, where p is the number of

these objects. The two measures are then computed as follows:

det. rateΩcj (K(f)) =
ccj

ncj

× 100.0% FP rateΩcj (K(f)) =
FPcj

FPcj + ccj
× 100.0% (2)

where cj is the j-th class. ncj is the number of objects labeled with the class cj ; note that

ncj > 0 in all our experiments. ccj is the number of objects that were correctly classified by the

learning algorithm as belonging to the class cj . FPcj is the number of objects incorrectly predicted

as belonging to cj .

The overall misclassification rate is evaluated by means of the classification error:

ǫΩ(K(f)) =

∑
cj
FPcj

∑
cj
ncj

× 100.0% (3)

Since the focus of our work is on the features being used in the classification process, rather than

on the type of learning algorithm, we simplify the notation by using det. rateΩcj (f), FP rateΩcj (f)

and ǫΩ(f) instead of FP rateΩcj (K(f)), FP rateΩcj (K(f)) and ǫΩ(K(f)), respectively. We also

omit the superscript Ω, whenever there is a single set of objects to be classified.
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5.2 Properties of the f0 and F1 Feature Sets

Our experimental results [17] show that with respect to the classification error ǫ and the energy cost

ξ, the properties of F1 and f0 can be summarized as follows:

1. For win. size → 0, it holds:

lim
win. size→0

ǫ(F1) ≈ ǫ(f0) (4)

This characterizes the relationship between watchdog and F1 based misbehavior detection. It

points out that instead of observing each data packet’s delivery in promiscuous mode by the

node si, it can be equally well done in a cooperative way by si and si+2, if win. size → 0.

2. For win. size ≫ 0, it holds:

ǫ(F1) > ǫ(f0) (5)

ξ(F1) < ξ(f0) (6)

The measure of energy cost ξ includes feature computation costs as well as all induced com-

munication costs. The communication costs for f0 are related to overhearing in promiscuous

mode. The communication costs for F1 are related to the necessity to transmit f̂
si+2

1 over two

hops to si.

The first inequality reflects the fact that overhearing each data packet in promiscuous mode

gives a better base for classification than a classification based on features computed by two

distinct nodes and aggregated over a time window. The other inequality reflects the fact that

operation in promiscuous mode is inherently energy inefficient.

The features in the sets f0 and F1 can be computed without much computational overhead. Our

misbehavior detection results could have been better if a more complex Fourier or wavelets analysis

of the packet stream had been done. As the results by Barford et al. point out [5], this could lead to

good anomaly detection rates.

5.3 Co-stimulation and its Misbehavior Detection Efficiency

Let Ω be the set of all vectors subject to misbehavior classification. The vectors in Ω represent

the behavior of monitored nodes (or in general, any other type of objects). In our case, a vector

vsim ∈ Ω has two components: vsim = F̂si
1 ◦ f̂si

0 , where m identifies the time window in which F̂si
1

was computed. Dependent upon the evaluation of F̂si
1 , the computation of f̂si

0 is started in the time

period following the time window m. F1 and f0 based classification of vsim is done using the F̂si
1

component and the f̂si
0 component, respectively.

Let ΩF1
⊆ Ω be the subset of vectors that were marked as representing suspicious behavior,

after the F1 based classification was done. Let us first assume that ǫΩ(f0) = 0, where ǫΩ(f0) is the

classification error of f0 based classification applied to the vector set Ω. If f0 based classification is

applied to ΩF1
, it clearly holds:

ǫΩF1 (f0) = 0 (7)

This implies, for the final FP rate and a given misbehavior class cj , after co-stimulation is

applied, it holds:

FP rateΩcj (F1 → f0) = 0 (8)
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In other words, the conditional application of f0 based classification removes all misclassified

vectors. Furthermore, the final detection rate for the given class is determined by the detection rate

after the F1 based classification:

det. rateΩcj (F1 → f0) = det. rateΩcj (F1) (9)

Since to achieve ǫΩ(f0) = 0 may not be possible, Eqs. 8 and 9 translate for ǫΩ(f0) 6= 0 to:

FP rateΩcj (F1 → f0) = FP rateΩcj (f0) (10)

det. rateΩcj (F1 → f0) ≤ det. rateΩcj (F1) (11)

This means, the final FP rate is only depending on the efficiency of f0 based classification.

Eq. 10 is based on the assumption that when classifying Ω and ΩF1
using f0 based classification,

the following holds:

FP rate
ΩF1
cj (f0) = FP rateΩcj (f0) (12)

To what extent such an assumption is reasonable, was one of the goals of our experimental

analysis. Notice that co-stimulation, being a classification approach where f0 based classification is

applied conditionally, can result in two groups of vectors: i) vectors subject only to F1 based clas-

sification and ii) vectors subject to both F1 and f0 based classification. This asymmetric situation

provides the basis for energy efficient misbehavior detection.

When detecting misbehavior, f0 based detection will only get used, if (i) F1 based classification

detects a true positive or (ii) F1 based classification outputs a false positive. Since it is reasonable to

assume that any ad hoc network will work reliably, most of the time, our focus stays on the energy

cost analysis for misbehavior free ad hoc networks. With respect to the above said, the overall

energy cost of co-stimulation ξ in a misbehavior free ad hoc network can be modeled as:

ξ = ξ(F1) + g(FP rateΩcj (F1))× ξ(f0) (13)

where g(.) is the rate at which f0 based classification is mistakenly applied in a misbehavior

free ad hoc network. ξ(f0) is dominated by the cost of overhearing in promiscuous mode. The

options for decreasing this cost are limited and therefore it can be considered fixed. When applying

F1 based classification that allows for a trade-off between its classification precision and ξ(F1), and

it holds that ξ(f0) ≫ ξ(F1), then the effects of such a trade-off are further amplified. Increasing the

precision of F1 based classification can thus lead to a substantial decrease of co-stimulation cost ξ,

and vice versa. Additionally, if we assume that Eq. 12 holds, then this trade-off translates for a given

misbehavior class cj into a trade-off between detection rate and energy efficiency, while keeping the

FP rate unchanged.

6 Towards Priming against Misbehavior

Co-stimulation, as presented in the previous sections, requires that two distinct F1 and f0 based

classifiers get computed. This implies that two sets of F̂1 and f̂0 feature vectors, labeled with

the classes under consideration, must be available for training. Next, we discuss how this can be

avoided.

In this section, we delve into the mechanisms of error propagation [11, 12]. Error propagation

is the opposite of co-stimulation, i.e. in a short form it can be expressed as:
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F1 f0
error propagationoo (14)

Eq. 4 states that for win. size → 0, the F1 and f0 based classification approaches offer the same

classification accuracy. This implies, if ǫΩ(f0) = 0, for the F̂1 and f̂0 feature vectors stemming

from the same time window, the classification outcome will be (nearly) the same. This motivates

the following strategy: compute F̂1 and f̂0 feature vectors, classify the f̂0 feature vector according

to a predefined threshold, and then, label the F̂1 feature vector with the same label as the f̂0 based

vector. This allows us to build a labeled F̂1 based feature vector set necessary for the computation

of an F1 based classifier.

The application of such thresholds is hereafter referred to as priming. The general goal of

priming is to introduce a well-defined level of consistency, when detecting misbehavior in an ad

hoc network. With respect to the above said, we define misbehavior as a violation of the priming

thresholds P = {p1, p2, ..., pl}, where l is the number of priming thresholds. A priming threshold

can be for example the maximum allowed data packet loss at a node or the maximum allowed data

packet processing delay at a node. If any priming threshold is violated, the corresponding F̂1 and

f̂0 feature vectors will be labeled as representing misbehavior.

In order to achieve a good level of energy efficiency, it is desirable to apply win. size ≫ 0.

Since however a larger time window size introduces a loss in misbehavior detection precision, error

propagation must be followed by co-stimulation:

ǫ
F1

co−stimulation //
f0

error propagation
oo

22❡❡❡❡❡❡❡

P
kk❳❳❳❳❳❳

(15)

Co-stimulation is achieved by computing a fresh f̂0 feature vector and comparing it with P .

This approach is also schematically depicted in Fig. 5(a).

Error propagation and co-stimulation is executed within the same node; see Fig. 4. Notice that

some nodes in the example network, for the shown data flows, are unable to compute F̂1 since they

do not have any two-hop neighbor si+2. On the other hand, several nodes receive multiple f̂
si+2

1 ,

e.g. s1 from s3 and s5.

Let us now formulate the effects of these two phases in more detail. Let us assume that

win. size ≫ 0. For simplicity, let us also assume that ǫΩ(f0) = 0.

1. After the error propagation phase: it holds that ǫΩ(F1) > 0, i.e. the precision of F1 based

classification is for win. size ≫ 0 lower than the precision of f0 based classification. This is

a direct consequence of the property expressed in Eq. 5. ǫΩ(F1) > 0 implies that there exists

a class cj for which at least one of the following holds:

det. rateΩcj (F1) = a < 100%

FP rateΩcj (F1) = b > 0%

2. After the co-stimulation phase: co-stimulation applied after error propagation decreases the

FP rate of the class cj to zero, while keeping the detection rate unchanged:

det. rateΩcj (F1 → f0) = a

FP rateΩcj (F1 → f0) = 0%

This is a direct consequence of the properties expressed in Eqs. 8 and 9.
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Figure 4: A 10-node ad hoc network with priming. s1 is the only data flow source node. s3, s7 and

s10 are sink nodes for three distinct data flows.

Since to achieve ǫΩ(f0) = 0 may not be feasible, Eqs. 10 and 11 apply. This means that the

final FP rate for a class cj is determined by FP rate
ΩF1
cj (f0). Similarly, the final detection rate has

an upper bound equal to det. rateΩcj (F1). Notice that win. size also influences the time delay for

detecting a misbehavior, i.e. it should reflect the requirements prescribed for the given misbehavior

detection system.

6.1 Error Propagation Algorithm with Optimization

The error propagation algorithm can be extended with an optimization phase; see Fig. 5(b). With

respect to the classification outcome, the individual priming threshold values for each node can be

optimized, i.e. the classification error can be minimized. This can be done by a repeated application

of the error propagation and co-stimulation phases, while adjusting the priming thresholds for each

node, until a termination condition is met; see Fig. 5. This approach can be described as priming

with influences of e.g. noise being considered locally. More formally, new optimized priming

thresholds P∗ = {p∗1, p
∗
2, ..., p

∗
l } for each node si will be found, so that the final classification

error for each node si is minimized. The repeated application of the error propagation and co-
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(b) An approach extended with optimization.

Figure 5: Error propagation algorithm.

stimulation phases is inspired by the feedback loop between the innate and adaptive immune systems

as discussed in Section 2.

Our extended approach bears a certain similarity to the backpropagation algorithm for artificial

neural networks [2]. The backpropagation algorithm takes advantage of two steps, feed-forward

and error backpropagation. These two steps are repeated in order to minimize an error function.

A notable difference between our extended approach and the backpropagation algorithm is, co-

stimulation phase is designed to revert the FP rate to the levels before any error propagation was

done. Since the FP rate is expected to stay unchanged, the search for suitable values for priming

thresholds is less complex.

7 Co-stimulation and Priming: Experimental Results

A performance evaluation of co-stimulation and priming was done using the JiST/SWANS network

simulator [6]. JiST/SWANS was chosen over other alternative such as ns2 due to its better scala-

bility with the experiment size, both in terms of event processing speed and memory overhead [6].

JiST/SWANS is about two orders of magnitude faster than ns2 with Tcl.

JiST/SWANS does not offer any ready-to-use misbehavior implementation. We took advantage

of AIS-Lib, a library for performance evaluation of AIS based detection systems for ad hoc wireless

networks, introduced by Drozda et al. in [16]. AIS-Lib implements several types of misbehavior.

The experiments were based on a network with 1718 nodes. The number of connections were

50. The length of a connection was 7 hops. Each connection expired after 15-20 minutes and

was substituted with a new connection with randomly chosen source and destination nodes. Three

different types of misbehavior were considered: data packet dropping, data packet delaying and

wormholes. Wormholes are private (out-of-band) links between one or several pairs of nodes. They
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are added by an attacker in order to attract data traffic into them to gain control over packet routing

and other network operations.

The classification based on F1 or f0 was done using a decision tree classifier. The reason for

using a decision tree classifier are the results that we report in [7]. Therein we compared several

learning algorithms such as decision tree classifier, naive Bayes classifier, support vector machines,

neural networks and negative selection with respect to their applicability in misbehavior detection

scenarios. We concluded that for the considered scenarios, the classification results based on de-

cision tree classifier dominate the classification results obtained by the other learning algorithms.

Additionally, since decision tree classifier is less complex than the other considered classification

approaches, it is more suitable for ad hoc networks with limited (battery) resources.

When estimating the energy efficiency of the co-stimulation and priming approaches, we con-

sidered several wireless devices: TI CC2420, Wistron CM9 miniPCI card, Ubiquiti XR2 card and

Lucent 2Mbps IEEE802.11 wireless card. For the reasons stated in Sect. 3, we compared the en-

ergy consumption of our approaches with the energy consumption of misbehavior detection done in

promiscuous mode. The parameters used in our simulations are summarized in Figure 6.

The results for co-stimulation reported in [17] show, for a scenario with win. size = 500s and

with respect to the general misbehavior class mis (in bimodal normal-misbehavior classification),

the following:

FP rateΩmis(F1 → f0) = 1.67± 2.59% ∼= FP rateΩmis(f0) = 1.77± 0.66% (16)

det. rateΩmis(F1 → f0) = 78.89± 1.71% ∼= det. rateΩmis(F1) = 76.40± 2.53% (17)

The achieved FP rateΩmis(F1) was 15.09 ± 2.27%. Comparing the results for the F1 and

F1 → f0 based classification, it is clear that F1 → f0 offers a detection rate comparable to F1,

however, a much lower false positives rate.

An example of the detection performance and the energy efficiency is shown in Table 1, where

win. size is the time window size applied by F1 based classification, FP rate is the false posi-

tives rate achieved after F1 based classification is done, ξ is the total energy consumption of co-

stimulation, γ is the reduction in energy consumption achieved by co-stimulation compared to over-

hearing in promiscuous mode, det. rate is the detection of co-stimulation for a given misbehavior

class and FP rate is false postives rate achieved by co-stimulation for the same misbehavior class. It

can be seen that co-stimulation establishes a trade-off between detection rate and energy efficiency,

while keeping the false positives rate almost unchanged.

The results achieved applying priming are in many respects similar to those obtained by co-

stimulation. Again, a very good reduction in energy consumption could be achieved. The peak value

was 97.31%. Additionally to several misbehavior detection scenarios, we also evaluated the case

when priming is used to check whether network operational conditions are within limits prescribed

by the priming thresholds. We could achieve the final false positives rate equal to 0%.

8 Summary of Results and Research Challenges

Even though, a large amount of our research effort went into establishing co-stimulation and priming

as computational approaches, we also delved into other research areas. Most notably, we investi-

gated the suitability of negative selection for misbehavior detection. In order to facilitate the com-

plex simulation based experiments executed when evaluating co-stimulation and priming in realistic

settings, we designed AIS-Lib, a library for performance evaluation of AIS based misbehavior ap-

proaches. Additionally, we investigated the suitability of a locality sensitive hashing scheme for

16



1. Classification algorithm: F1 based and f0 based classification was implemented as decision

tree. To decide whether a node within the decision tree should be further split (impurity measure),

we used the information gain measure [2]. We used the decision tree implementation from the

Rapidminer tool [39]. k-fold cross-validation with k = 20 was used to estimate classification

performance.

2. Network topology: Snapshot of movement modeled by random waypoint mobility model i.e. it

is a static network. There were 1,718 nodes. The area was a square of 2,900m×2,950m. The

transmission range of transceivers was 100 meters.

3. Misbehavior: data packet dropping, data packet delaying and wormholes. In data packet drop-

ping and data packet delaying scenarios, there were 20-30 nodes concurrently exercising misbe-

havior.

• Co-stimulation experiments: 30% data packets dropped, 30% data packets delayed 100ms,

20 wormholes. Data packet dropped or delayed were chosen uniformly at random.

• Priming experiments: 30% or 10% data packets dropped, 30% data packets delayed 100ms

or 20ms, 20 wormholes. Data packet dropped or delayed were chosen uniformly at random.

4. Time window size: 50, 100, 250 and 500 seconds.

5. Connections: 50 CBR (constant bit rate) connections. Each connection expires after 15-20 min-

utes and is then substituted with a new source-destination pair. The connection length is 7 hops.

6. Injection rate: 0.5 packet/second. Packet size: 68 bytes. MAC protocol: IEEE 802.11 DCF.

Routing protocol: AODV. Other parameters: Channel frequency: 2.4 GHz. Network proto-

col: IPv4. Connection type: UDP. Data rate: co-stimulation: 2Mbit/s; priming: 54Mbit/s and

250kbit/s.

7. The number of independent simulation runs for normal traffic and each misbehavior type: 20. The

simulation time was 4 hours.

8. Simulator used: JiST/SWANS; hardware used: 20× Linux (SuSE 10.0) PC with 2GB RAM and

Pentium 4 3GHz microprocessor.

9. Wireless devices considered when evaluating energy efficiency:

• co-stimulation: Lucent 2Mbps IEEE802.11 card.

• priming: TI CC2420, Wistron CM9, Ubiquiti XR2.

Figure 6: Parameters used in the experiments.

win. size FP rate [%] ξ γ Det.rate [%] FP rate [%]

[s] K(F1) [mJ] [%] K(F1) → K(f0) K(F1) → K(f0)

50 3.55 23.29 82.73 93.42 0.98

100 4.65 12.39 90.81 90.00 1.26

250 9.28 6.20 95.40 84.70 1.28

500 15.09 3.89 97.12 78.89 1.67

Table 1: Co-stimulation: energy consumption and misbehavior detection performance.
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intrusion detection. Next, we summarize the results related to these efforts. However before doing

so, we provide a short summary of results for the co-stimulation and priming approaches. We also

discuss several challenges [11, 12] related to these approaches:

1. Understanding watchdog based misbehavior detection: Since watchdog based misbehavior

detection (f0) is energy inefficient, it was mandatory to design a different type of misbehavior

detection (F1). The latter misbehavior detection approach is based on traffic measurements

by neighboring nodes. Our experimental results show that the properties of f0 and F1 based

classification can be expressed as in Eqs. 4, 5 and 6. This means, not only is computation of

F1 feature set more energy efficient, but for win. size → 0, it can substitute watchdog based

misbehavior detection. Additionally, the detection precision of F1 based misbehavior detec-

tion decreases as win. size increases. This is a key property since it allows us to substitute

watchdog based misbehavior detection with its F1 based counterpart.

2. Co-stimulation vs priming: Co-stimulation requires that two distinct classifiers get computed.

This necessitates that two sets of labeled feature vectors are available. Priming does not re-

quire any set of labeled feature vectors as input. Instead it relies on a set of priming thresholds

that define the limits for network operational conditions. The focus of priming is different

from the focus of co-stimulation. The goal of co-stimulation is to provide a means for energy

efficient misbehavior detection, whereas the goal of priming is to provide a means for energy

efficient detection of priming threshold violation. A violation of priming thresholds can either

be interpreted as misbehavior or simply as an event which requires logging and analysis.

3. Single detection system instance per node: We only apply a single instance of the detec-

tion mechanism per node. This is different from the approach used by Sarafijanović and

Le Boudec [41], where one instance was used to reason about the behavior of each neighbor.

Under our approach, F1 based classification detects that one of the neighbors is misbehaving.

The identity of the misbehaving node is later determined by f0, i.e. by watchdog features that

observe whether data packets get correctly forwarded by a specific node.

4. Independence of detection rate and FP rate: Co-stimulation allows that the final detection

rate and false positives rate are influenced by two distinct mechanisms: F1 and f0 based

classification. This fact is documented in Eqs. 10 and 11. This property allows for tuning the

detection system with respect to these two measures in isolation. We showed that in scenarios,

where the only goal is to detect whether a specific performance threshold was violated, it is

feasible to achieve ǫΩ(f0) = 0. For this reason, with respect to Eq. 8, it was possible to

decrease the final false positives rate to zero.

5. Energy efficiency: The costly f0 (watchdog) based classification is only applied if the energy

more efficient F1 classification detects a misbehavior. Under our experimental setup, the peak

energy consumption reduction was 92.7% compared to the energy cost of exclusive f0 based

classification. Co-stimulation allows us to choose a trade-off between detection performance

and energy efficiency. A higher level of energy efficiency can be achieved by increasing the

time window size. This results in a lower detection rate. Increasing energy efficiency has

however only a limited influence on the FP rate.

6. Source of co-stimulation: The co-stimulation approach due to Sarafijanović and

Le Boudec [41] benefits from the information about data packet delivery provided by TCP

(Transmission Control Protocol). If a data packet is not delivered, then the connection source
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does not receive the corresponding packet acknowledgment. This can be then used as a co-

stimulation for another form of data packet loss detection. The transport layer can thus serve

as a potent source of co-stimulation for any lower layer detection mechanisms. This is how-

ever not always possible, since e.g. sensor networks are expected to operate with a reduced

set of transport layer services. The reason for such a reduction is also the energy consump-

tion related to transport layer services. The goal to increase energy efficiency of misbehavior

detection was our motivation for investigating a distinctly different form of co-stimulation.

7. Co-stimulation avoiding watchdog (f0) features: Watchdog features can only be computed, if

omnidirectional antennas are being used. Using a directional antenna by si+1 could preclude

any packet overhearing by si. A similar effect can be observed, if si+1 is capable of dynamic

radio radius adjustment. As Eq. 4 suggests, watchdog features can be substituted by F1 based

features, if win. size → 0. This implies, a co-stimulation based on F1 with a small window

size could be a viable substitute for an f0 based co-stimulation. For example, an F1 based

classification with a 25-second time window could be used instead:

F1(500s)
co−stimulation // F1(25s) (18)

This sort of co-stimulation would require an adaptive approach for requesting an f̂
si+2

1 sample

based on a smaller time window size. It also limits the option of negative co-stimulation [12].

Negative co-stimulation is executed by si, if si+1 decides not to cooperate in forwarding

f̂
si+2

1 . Under such circumstances, si will switch, after a time-out, to the f0 feature set com-

putation. Unlike F1 feature set computation, f0 feature set computation can be applied by si
at any time, unimpeded by the willingness of its neighbors to cooperate.

We next discuss a few challenges related to co-stimulation or priming:

1. Convergence of the extended procedure with optimization: In Section 6.1 we discussed prim-

ing extended with an optimization phase. This optimization phase allows for finding the

optimal thresholds for P∗. It is currently unclear, which optimization approach would suit

best this purpose, i.e. delivering the best performance with respect to the optimization con-

vergence.

2. Minimizing the rate of undecided vectors: Undecided vectors are the vectors that were after

F1 based classification marked as representing a misbehavior, but this could not be con-

firmed by f0 based classification. An especially severe case happens, if F1 based classifica-

tion correctly classifies a vector as representing a misbehavior, but this classification result

will get incorrectly rejected by f0 based classification. One of the possibilities how the de-

crease the rate of undecided vectors is to present f0 based classification with vectors that

this classification approach can correctly classify with a high success rate. This implies that

ǫΩF1 (f0) ≪ ǫΩ(f0), i.e. the task to classify the vectors in ΩF1
is much less complex than the

task to classify the vectors in Ω. The challenge is to tune F1 based classification in such a

way that it outputs a vector set ΩF1
such that ǫΩF1 (f0) → 0.

At last, we discuss several results related to performance evaluation of misbehavior detection.

We also outline our preliminary on applying locality preserving hashing in intrusion detection.
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1. AIS-Lib: AIS-Lib, a library for performance evaluation of AIS based detection systems for ad

hoc wireless networks, was introduced by Drozda et al. in [16]. This library is based on the

Jist/SWANS network simulator [6]. It implements several misbehavior models such as data

packet dropping, data packet delaying or wormholes [26]. The implementation of this library

was an important step towards the feasibility of the simulation based performance evaluation

presented in [17, 12].

2. Applicability of negative selection for misbehavior detection: We investigated the suitability

of negative selection for misbehavior detection in ad hoc networks. We applied the computa-

tional approach to negative selection due to D’haeseleer et al. [10]. This approach considers

bit-vector representation of features. It randomly produces a set of detectors that are used to

detect anomalous behavior. Our results show that, under our experimental setup, less than 5%
detectors were used in detecting misbehavior [13, 14].

Additionally, we pointed out that simpler data traffic models such as the Constant bit rate

(CBR) model may pose a challenge to misbehavior detection systems due to their synchro-

nized nature, i.e. if data packets collide there is a high chance that data packet at a given node

will again collide. This introduces a certain amount of noise into the system, and therefore

constitutes a practical option in detection performance evaluation [42].

The work presented in [13, 14, 42] was our starting point in the area of misbehavior detection

research. Therein we formulated several key objectives related to the design of misbehavior

detection systems, most notably, energy efficiency and ability to rely on a single instance of

a learning algorithm. We also argued that it is necessary to expand our knowledge about

features suitable for misbehavior detection. An evaluation of existing misbehavior detection

approaches with respect to these objected led to the design of our co-stimulation and priming

inspired misbehavior detection architectures.

In [7] we compared negative selection with several standard machine learning algorithms

such as decision tree classifier, naive Bayes classifier, support vector machines and neural

networks. The performance evaluation was done using the same data sets as [13, 14]. Our

results show that these machine learning algorithm offer a better misbehavior detection per-

formance. With respect to this conclusion, we decided to focus on decision tree classifier

when classifying the data obtained in [17, 12].

3. Intrusion Detection in High Dimensional Space: Our goal was to investigate the suitability of

a locality sensitive hashing technique due to Datar et al. [9] for intrusion detection. This hash-

ing technique allows for finding the approximate solution to the k-nearest neighbors problem,

it can thus be used as a basis for a k-nearest neighbors classifier. In [36] we evaluate suitabil-

ity of this technique to intrusion detection. We use several standard benchmark files, most

notably the KDD’99 data files. These files were used in a competition that took place during

the KDD’99 conference. Our results are comparable with those of the KDD’99 winner. The

advantage of our approach is its applicability for classification when the number of features is

high, i.e. when learning algorithms such as decision tree classifier, support vector machines

or neural networks cannot cope with the feature vector dimensionality.

9 Conclusions

In this document we summarize our research efforts related to computational interpretation of two

basic immune mechanisms: co-stimulation and priming. This interpretation was done in the scope
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of misbehavior detection for ad hoc wireless networks. When formulating co-stimulation and prim-

ing as a computational approach we abstracted away from the molecular nature of these mecha-

nisms. Instead we concentrated on their logic structure. Needless to say, despite applying such a

simplified view, the path to a useful computational interpretation was not straightforward. This fact

underscores the conceptual character of our research.

Our computational interpretation of co-stimulation allows any detection system to introduce

two desirable properties: energy efficiency and false positives control. Additionally, it introduces

the option to exchange energy efficiency for misbehavior detection rate, while keeping the false pos-

itives rate unchanged. Priming builds on the capability of co-stimulation to suppress false positives.

Co-stimulation allows priming to learn several priming thresholds without paying attention to the

efficiency of this leaning process. The increased false positives rate is decreased by a subsequent

application of co-stimulation.

Even though, we concentrated on the applicability of co-stimulation and priming to misbehav-

ior detection in ad hoc networks, we believe these methods are of general interest. An important

characteristics of application scenarios, that could take advantage of these two methods, is the high

cost connected with the relocation of information, services or resources, and at the same time, the

feasibility to improve their control or allocation through one or several cost related parameters (such

as time window size).

An example where co-stimulation and priming could be applicable is information broadcasting.

When broadcasting information to users, the demand for any type of information can only be esti-

mated [44]. Since the users cannot send feedback directly to the broadcast source (e.g. satellite),

the feedback is sent intermittently using other paths for delivery (often a mix of wireless and wired

delivery paths). The feedback frequency can increase the accuracy, it is however connected with a

certain cost. It thus gives sense to track the demand with some prediction accuracy exchanged for

cost efficiency.

A limiting factor in translating the functionality of the BIS to technical systems remains our

narrow knowledge of the BIS. Immunology is a research area with a large number of experimen-

tal results published every year. These results are however often very specific to the life form in

investigation. As an example, we cite a recent result on priming of plant immunity [29].

The success of the BIS in protecting its host often benefits from the efficiency of underlying

chemical reactions at molecular level. Such an efficiency has often no obvious computational par-

allel. For example, the negative selection process required 15 years until an efficient computational

counterpart could be presented [18].

10 List of Enclosed Documents

The results discussed in the previous sections were originally presented in the documents that we

list below. We grouped these documents thematically into several groups. The first document is a

review of immune inspired computing with focus on ad hoc wireless networks. The other documents

present our results related to misbehavior detection in ad hoc wireless networks.

Introduction to Immune Inspired Computing with Focus on Ad Hoc Wireless Net-

works

Martin Drozda, Sven Schaust, Helena Szczerbicka. Immuno-Inspired Knowledge Management

for Ad Hoc Wireless Networks. In Smart Information and Knowledge Management, Ngoc Thanh

Nguyen and Edward Szczerbicki (Eds.), Studies in Computational Intelligence, vol. 260, pp. 1-26,
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