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Space-time diagram of an atomic
Mach-Zehnder interferometer
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HITec building with support structure and SAS tank. Area 
of interest marks section for VLBAI experiments. Ground- 
water levels are annual averages and extreme values.
Status at the time of second campaign in 2019 is shown.

Model of attraction (±5% variation) and measurements (−dg/dh).

2017 2019

Gravimeters ZLS B-114, CG3M-4492
ZLS B-64, CG3M-4492,

CG6-0171

Main axis support scaffold aluminum tower

Points (total/VLBAI) 18 / 7 27 / 16

Connections 147 454

Mean σ g network 28 nm/s² 9 nm/s²

σ gravity differences 12…54 nm/s² 5…15 nm/s²

rms(δg) nm/s²
VLBAI (aoi) 30

off-axis 33
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Motivation
The requirements on the accuracy of absolute gravimetric 
measurements are shifting towards the 10 nm/s² order of magnitude 
and beyond for applications in geodesy and geophysics. However: 

Light pulses can be used to manipulate atomic wavepackets and thus 
build atom interferometers (AI). The well-known Mach-Zehnder 
geometry can be used to probe the acceleration of free-falling atoms.

Gravity and Atom Interferometry

Upper atomic source (Rb, Yb)
Free fall 2T= 0.8 s

No superior 'gravity standard' available

Long term stability: key comparisons Degree of Equivalence (DoE)

Combinations of AG need to consider individual offsets

Offsets change due to maintenance, new operator, etc. 

Can stationary, large scale atom interferometers
 provide new a 'gravity standard'?

To first order, the interferometer phase shift is proportional to g, the 
pulse separation time T and the momentum transfer through the laser 
light ħkeff. A frequency chirp α compensates the Doppler shift due to 
the free fall.

Very Long Baseline 
Atom Interferometery

Fundamental physics, e.g. test the universality 
of free fall [5]: Eötvös ratio 7×10-13 

Modelling of HITec and environment
Determine gravity field prior to installation 

Provide a reference supported by measurements

Simulate effects of density, geometry, equipment 

Gravimetric control network

Lower atomic source (Rb, Yb)
Fountain: 2T = 2.8 s

Participants of AG comparisons EURAMET.M.G-K1 (2011), CCM.G-K2 (2013) and 
EURAMET.M.G-K2 (2015) [1,2,3] ; nocom: non-commercial developments, errorbars: 

rms of the expanded uncertainties of measurements to determine DoE.

Gravimetry: instability at 1 s <1 nm/s2 (drop)
and <70 pm/s2 (launch)

Model environmental effects, e.g. groundwater 

Inertial reference with seismic 
attenuation system (SAS)
Innoseis (Amsterdam)

Six degrees of freedom
sensing and actuation
320 mHz resonance frequency

Gradiometry: instability at 1 s <5×10-10 s-2

Gravimetric Measurements and Modelling[4]

Two campaigns on main- and parallel-axis

Heights by levelling and laser measurements

Least squares network adjustment

off-axis VLBAI main axis 

Simulation
max. Variation

(main/off) nm/s²
mean σ

Position (xy: ±3cm z: ±0.2cm) ±2.1 / ±3.9 0.6 / 1.2

Density (±5%) ±111 / ±109 24 / 23

(main/off) nm/s²

Monte Carlo simulation of parameters
Assumption of fixed density (concrete, soil, etc.):
variation of density by 5% for model elements

Final position of VLBAI uncertain on cm-level:
variation of ±3 cm (xy) and ±2 mm (z)

Comparison model and measurement
Measurements adjusted for constant offset and
gravity gradients (dg/dh) 

Difference δg=model−measurement (2019)

dg/dh=free air gradient+model of exterior

VLBAI support structure

VLBAI baseline [6]
10.5 m-long ultrahigh vacuum 
pipe, pressure <1×10-9 mbar

Next steps
Consider VLBAI baseline in model, measurements... 
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Detailed CAD for VLBAI (polyhedral body with 
triangulated surfaces)

(prism based method for attraction)

Capabilities

Residual field <4 nT, 
long. gradients <2.5 nT/m.
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