
 

 

Robust Hybrid Central/Self-Organising Multi-Agent Systems 

in Intersections without Traffic Lights 
 

 

 

 

 

 

Von der Fakultät für Elektrotechnik und Informatik  

 

der Gottfried Wilhelm Leibniz Universität Hannover  

 

zur Erlangung des akademischen Grades 

 

Doktor-Ingenieur  

 

 

 

 

genehmigte Dissertation 

 

 

von M.Sc. Yaser Chaaban 

 

 

geboren am 22. Oktober 1974 in Aleppo/Syrien 

 

 

 

 

2014 

 

 

 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Referent:    Prof. Dr.-Ing. Christian Müller-Schloer  

1.  Korreferent:   Prof. Dr.-Ing. Bernardo Wagner 

2.  Korreferent:   Prof. Dr. rer. nat. Jörg Hähner 

Tag der Promotion:  08. 02.2013 



 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Dedication 

 
 
 
 
 
 
 
 

This dissertation is dedicated to my beloved:  

 

Ebtisam Shaban,  

Ebraheem Al.Zahran, 

Sohib Al.Zahran. 
 

 

 

 

 

 

Hannover 2014        Yaser Chaaban





  i 

Zusammenfassung 

Die Organic Computing Initiative hat das Ziel robuste, flexible und adaptive Systeme zu 

entwickeln. Zukünftige Systeme müssen sich nach situativen Bedürfnissen richten und 

entsprechend handeln. Dies ist aber nicht garantiert in komplexen Systemen, deren Umgebung 

sich dynamisch verändert. 

Der Schwerpunkt dieser Dissertation ist die Untersuchung der Robustheit von 

Koordinationsmechanismen für Multi-Agentensysteme im Kontext des Organic Computing. 

Als Einsatzszenario wird eine ampellose Kreuzung verwendet. Fahrzeuge werden dabei als 

Agenten modelliert. 

Eine interdisziplinäre Methodologie, genannt „Robust Multi-Agent System“ 

(RobustMAS), wurde hier entwickelt und hinsichtlich verschiedener Evaluationsszenarien und 

System Performance-Metriken ausgewertet. 

RobustMAS hat das Ziel, ein Multi-Agentensystem bei Störungen (Unfall, autonomes 

ungeplantes Verhalten) funktionsfähig auf einem gewünschten Leistungslevel zu halten. 

Dabei ergibt sich ein Zusammenwirken von dezentralen Mechanismen (autonome Fahrzeuge) 

mit zentralen Eingriffen. Dies stellt ein robustes hybrides zentral/selbst-organisierendes 

Multi-Agentensystem dar, in dem der Konflikt zwischen einem zentralen Planungs- und 

Koordinationsalgorithmus und der Autonomie der Agenten zu lösen ist. 

Die hybride Koordination erfolgt in drei Schritten: 

1. Störungsfreier Ablauf: Zentrale Trajektorienplanung ohne Abweichung der Agenten. 

2. Beobachtung der tatsächlichen Trajektorien durch eine Observerkomponente, 

Feststellung von Planabweichungen. 

3. Neuplanung und Korrektureingriff. 

Im Szenario der Arbeit, einer ampellosen Kreuzung, werden die Teilnehmer als autonome 

(semi-autonome) Agenten (Driver Agents) mit lokal begrenzten Fähigkeiten modelliert. Die 

Fahrzeuge versuchen so schnell wie möglich die ampellose Kreuzung zu überqueren.  

Ein Intersection Manager ist für die Koordinationsaufgaben zuständig. Er führt zunächst 

eine Wegplanung durch, um kollisionsfreie Trajektorien für die Fahrzeuge festzulegen 

(zentral). Diese Wegplanung wird den Fahrzeugen als Empfehlung vorgegeben. Zusätzlich 

erfolgt eine Beobachtung der Einhaltung dieser Trajektorien, weil die Fahrzeuge autonom 

sind (dezentral) und somit Abweichungen von der Planung grundsätzlich möglich sind. Von 

Interesse ist insbesondere, mit welchem minimalen zentralen Planungseingriff das System 

nach Störungen wieder zum Normalzustand zurückkehrt (Robustheit). Es sollen 

unterschiedliche Koordinations- und Neuplanungsmechanismen untersucht werden. Weiterhin 

soll untersucht werden, inwieweit solch ein System unter Echtzeitbedingungen funktionsfähig 

ist. 

Für die Wegplanung werden gängige Wegesuchalgorithmen untersucht. Von Interesse 

dabei ist insbesondere der A*-Algorithmus. Dabei wird die Wegplanung als 

Ressourcenbelegungsproblem (Resource Allocation Conflict) betrachtet, wobei sich mehrere 

Agenten in einer gemeinsamen Umgebung bewegen und  Kollisionen vermeiden müssen. 
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Die Implementierung soll unter Berücksichtigung virtueller Hindernisse durchgeführt 

werden. Virtuelle Hindernisse modellieren Sperrflächen (verbotene Belegungen von 

Ressourcen), welche z.B. infolge von Reservierungen, Unfällen oder anderen Blockierungen 

entstehen können. Außerdem können virtuelle Hindernisse zur Verkehrsbeeinflussung genutzt 

werden. 

Es wurden unterschiedliche Typen von Planabweichungen der Fahrzeuge untersucht. Der 

Controller wird vom Observer über die festgestellten Abweichungen informiert, so dass er 

rechtzeitig eingreifen kann. Der Controller wählt die beste Korrekturaktion aus, die der 

aktuellen Situation entspricht, damit die Zielperformance des Systems erhalten bleibt. 

Die Evaluation des Konzeptes wurde anhand der grundlegenden Metriken Durchsatz, 

Wartezeiten und Reaktionszeiten durchgeführt. Zusätzlich wurde eine Metrik zur 

quantitativen Bestimmung der Robustheit entwickelt. Die benötigten Experimente wurden auf 

Basis einer MAS-Simulation (Repast-Framework) durchgeführt. 

Die Evaluation der neuen Methodik "Robust Multi-Agent System" (RobustMAS) hat den 

Vorteil der Anwendung dieser Methodik bei der Entwicklung robuster hybrider 

zentraler/selbst-organisierender technischer Systeme demonstriert. Dabei haben analytische 

Untersuchungen gezeigt, dass RobustMAS ein hohes Maß an Robustheit bietet. RobustMAS 

stellt sicher, dass eine akzeptable Verringerung der Performance des Systems gewährleistet 

ist, solange die Störungsstärke im System nicht eine gewisse Grenze übersteigt (Robustheit). 

Schlagwörter:  Organic Computing, Robustheit, hybride Koordination. 
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Abstract 

The Organic Computing initiative aims to build robust, flexible and adaptive technical 

systems. Future systems shall behave appropriately according to situational needs. But this is 

not guaranteed in novel systems, which are complex and act in dynamically changing 

environments.  

The focus of this thesis is to investigate the robustness of coordination mechanisms for 

multi-agent systems in the context of Organic Computing. As an application scenario, a traffic 

intersection without traffic lights is used.  Vehicles are modelled as agents.  

 An interdisciplinary methodology called “Robust Multi-Agent System” (RobustMAS), 

has been developed and evaluated regarding different evaluation scenarios and system 

performance metrics. 

The new developed methodology (RobustMAS) has the goal of keeping a multi-agent 

system running at a desired performance level when disturbances (accidents, unplanned 

autonomous behaviour) occur.  The result is an interaction between decentralised mechanisms 

(autonomous vehicles) and centralised interventions. This represents a robust hybrid 

central/self-organising multi-agent system, in which the conflict between a central planning 

and coordination algorithm on one hand and the autonomy of the agents on the other has to be 

solved.  

The hybrid coordination takes place in three steps:  

1. A course of action with no disturbance: central planning of the trajectories without 

deviation of the agents. 

2. Observation of actual trajectories by an Observer component, identifying deviations 

from plan.  

3. Replanning and corrective intervention. 

In the scenario of this work, an intersection without traffic lights, the participants are 

modelled as autonomous (semi-autonomous) agents (Driver Agents) with limited local 

capabilities.  The vehicles are trying as quickly as possible to cross the intersection.  

 An intersection manager is responsible for coordinating tasks.  It performs first a path 

planning to determine collision-free trajectories for the vehicles (central).  This path planning 

is given to vehicles as a recommendation.  In addition, an observation of compliance with 

these trajectories is done, since the vehicles are autonomous (decentralised) and thus 

deviations from the plan in principle are possible.  Of particular interest is the ability of the 

system, with minimal central planning intervention, to return after disturbances to the normal 

state. Here, different coordination and replanning mechanisms as well as the capability of the 

system to operate under real time conditions have to be investigated. 

For the path planning, common path search algorithms are investigated. Particularly 

interesting here is the A*- algorithm. The path planning is considered as a resource allocation 

problem (Resource Allocation Conflict), where several agents move in a shared environment 

and have to avoid collisions. The implementation should be carried out under consideration of 

virtual obstacles. Virtual obstacles model blocked surfaces, restricted areas (prohibited 

allocations of resources), which may arise as a result of reservations, accidents or other 

obstructions. In addition, virtual obstacles can be used for traffic control. 
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 Different types of deviations of the vehicles from the plan have been investigated. The 

controller is informed by the Observer about the detected deviations from the plan, so that it 

can intervene in time. The controller selects the best corrective action that corresponds to the 

current situation so that the target performance of the system is maintained. 

The evaluation of the concept has been carried out based on the basic metrics: throughput, 

waiting time and response times. Simultaneously, an appropriate metric for the quantitative 

determination of the robustness has been developed. The required experiments were carried 

out based on a MAS simulation (Repast framework). 

The evaluation of the new methodology “Robust Multi-Agent System” (RobustMAS) 

demonstrated the benefit of applying this methodology to build robust hybrid central/self-

organising technical systems. In this context, analytical considerations of the experiments 

showed that RobustMAS provides a high level of robustness. RobustMAS ensures an 

acceptable level of reduction of the system performance as long as the disturbance is not 

increased beyond a certain threshold (robustness). 

Keywords: Organic Computing, Robustness, hybrid coordination. 
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Chapter 1. Introduction 1 

1 Introduction 

Behavioural intelligence can be seen as a mixture of flexibility, robustness and 

adaptiveness of behaviour. This mixture is however the key idea of developing today’s 

technical systems, which use the Organic Computing (OC) concept. The Organic Computing 

initiative uses life-like properties such as self-organisation, self-optimisation and self-

configuration towards building these systems as flexible, robust, and adaptive systems.  

The ever increasing complexity of today’s technical systems embodies a real challenge for 

their designers. This complexity can be regarded as the major source of unexpected system 

failures. Organic Computing is concerned with this complexity. It deals with reasonable 

certainty that most requirements of current technical systems are able to be satisfied in 

analogy with organic systems in nature [9] [10]. Organic Computing equips technical systems 

with life-like properties to realise self-x properties such as self-organising, self-configuring, 

self-healing, self-protecting, and self-explaining. In such systems, many reasons could cause 

strong deviations in the system behaviour from the expected one. Consequently, the system's 

performance may deteriorate considerably putting the system into an inacceptable state. 

In this context, the design of the system architecture plays a main role in achieving a 

robust system so that its performance has to remain acceptable in the face of deviations or 

disturbances occurred in the system (intern) or in the environment (extern). That means, the 

development of robust systems needs to take into account that degradation of the system's 

performance in the presence of such disturbances should be limited in order to maintain a 

satisfying performance. Therefore, a robust system has the capability to act satisfactorily even 

when conditions change from those taken into account in the system design phase. 

Nevertheless, this capability has to be retained, because of the increasing complexity of novel 

systems where the environments change dynamically. As a result, fragile systems may fail 

unexpectedly even due to slightest disturbances. Thus, a robust system will continue working 

in spite of the presence of disturbances by counteracting them with corrective interventions. 

Considering the system design paradigm, it should be decided whether the system 

architecture will be centralised or decentralised. A centralised approach is the paradigm where 

the system is based on a central controller and the components of the system are not fully 

autonomous. On the other hand, a decentralised approach means that the system has a 

distributed (there is no central controller and all components of the system are autonomous) or 

a hierarchical architecture (the components of the system are semi-autonomous in which they 

are locally centralised) [4]. Based on this, distribution possibilities of the system architecture 

have important implications for system robustness. 

Although the decentralised approach would have some advantages over the centralised 

one, especially scalability, the hybrid approach containing both centralised and decentralised 

elements at the same time is applicable and even may be much better than the use of each one 

separately. The hybrid approach should be robust enough against disturbances, because 

robustness is an indispensable property of novel systems. Additionally, it represents the 

interaction between decentralised mechanisms and centralised interventions. In other words, 

the hybrid approach exhibits the central/self-organising traits simultaneously. This means that 

a conflict between a central controller (e.g., a coordination algorithm) and the autonomy of 

the system components must be solved in order to achieve the robustness of the system. 
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During the last years, the progress in communication and information technologies was 

significant. Consequently, a lot of investigations were done aiming to improve transport 

systems so that the area of “Intelligent Transportation Systems (ITS)” was developed. ITS 

have several applications in traffic and automotive engineering. According to ITS, numerous 

notions were distinguished such as, among others, intelligent vehicles, intelligent 

intersections, and autonomous vehicles. In this context, a traffic intersection without traffic 

lights was chosen as a main testbed to apply the hybrid approach, where autonomous agents 

are autonomous vehicles, and the controller of the intersection is the central unit. However, 

the basic idea of a hybrid approach is applicable for other systems as well. 

1.1 Objectives of the thesis 

This thesis aims to investigate the creation of a robust hybrid central/self-organising 

multi-agent system using the Organic Computing (OC) concept. The hybrid architecture has 

to solve the conflict between a central unit (an observer and a controller) and decentral 

autonomous agents. Thus, the coordination problem for hybrid (central and decentral) multi-

agent systems should effectively be solved. It has to demonstrate that such architectures will 

be able to play a positive role in building robust multi-agent systems in presence of 

disturbances. 

1. The first challenge towards the realisation of this vision is to develop a system 

architecture that exhibits a hybrid form (a combination of central and self-organising). 

This architecture should have mechanisms for planning, but only as recommendation, 

and control decisions. These recommendations are a key element in both the 

minimisation of the individual travel times of agents across the environment and 

consequently in avoiding congestions. Accordingly, the autonomous agents may 

follow this plan or may violate it. Therefore, such hybrid architectures permit that 

agents behave autonomously. 

2. The second challenge is to support the multi-agent system with mechanisms to keep 

the system at a desired performance level when disturbances and deviations from plan 

occur (robustness). Furthermore, a new method is necessary to measure the robustness 

of such hybrid multi-agent systems. 

3. The third challenge is to solve the resource sharing problem (resource allocation 

problem) for the special case of a traffic system. This problem appears wherever 

multiple agents act in a common shared environment. As a result, such solutions allow 

agents to move reliably avoiding collisions in their environment. 

4. Additionally, this thesis deals with the traffic problem as a special problem domain. A 

traffic intersection without traffic lights was chosen as application scenario, which is a 

suitable field for applying the hybrid central/self-organising approach. An intersection 

controller has to be developed that is equipped with the capabilities to observe the 

system and to intervene if necessary. In this scenario, vehicles will be driven by 

agents.  

1.2 Background 

The research in this thesis was conducted in the context of: (1) Organic Computing (OC) 

considering (2) robustness as an essential property of OC systems. Therefore, this section will 
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discuss briefly these research fields. A more detailed discussion will be given in the state-of-

art section 3.  

1.2.1 Robustness 

As mentioned above, the Organic Computing Initiative aims to build flexible, adaptive, 

and robust systems. Thus, it investigates robustness of distributed self-organising systems. 

This robustness demonstrates a crucial property of OC systems. As a result, robust systems 

have the capability to continue working in spite of disturbances so that their major tasks can 

be carried out. 

Robustness of a system can be defined in very diverse ways according to the context. 

Effective control mechanisms for modern systems are desired in order to attain such systems 

with a better performance and higher robustness. It is very familiar that robustness will be 

considered with respect to disturbances. The disturbances affect the robustness of the system 

and may lead to the suspension of the system in the worst case or may constrain, at least, the 

functionality of the system (the system works but with a reduced degree of robustness). 

Therefore, variations of the disturbance size are needed in order to study the degree of the 

system robustness. The disturbance size affects the length of the recovery phase which is 

required by the system to work robustly again. Briefly, if a system is provided with self-

healing properties, this system will be robust against failures or disturbances which may 

occur. 

Because environments of complex systems may change dynamically, self-organising 

systems should be provided with some degrees of autonomy so that they can adapt their 

behaviour to new environmental situations. This autonomy as well as disturbances and other 

reasons may cause an unwanted emergent behaviour [146] or the whole system may fail 

unexpectedly. Therefore, the system should be observed (e.g., by an observer) and controlled 

(e.g., by a controller) so that this emergent behaviour or the complete system failure can be 

prevented. Consequently, the system performance remains effective and will not deteriorate 

significantly or at least the system will not fail completely.  

The main point here is that using a fully centralised approach to design systems is not 

sufficiently robust, because this design form has a single point of failure. On the contrary, a 

decentralised approach exhibits more robustness than a centralised approach in many 

situations; however it often requires overhead costs (e.g., a high overhead in terms of 

communication). In accordance to this, a hybrid approach including both centralised and 

decentralised elements will provide a certain degree of robustness, which is one of the main 

issues of this thesis. 

It is noteworthy that the definition of system robustness varies according to the context in 

which the system is used. Therefore, manifold meanings of system robustness were 

introduced in literature. Additionally, various formal measures and metrics were presented to 

achieve the system robustness. For more details see section 3.3.4 (Metrics for robustness) in 

this thesis. 

1.2.2 Organic Computing 

The Organic Computing initiative introduces an OC system as follows [152]: An OC 

system is "a technical system which adapts dynamically to the current conditions of its 
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environment. It is self-organizing, self-optimizing, self-configuring, self-healing, self-

protecting, self-describing, self-explaining and context-aware”. Therefore, the goal of this 

initiative is to develop systems that are robust, flexible and adaptive at the same time utilising 

the advantage of the organic computing properties. In other words, OC has the objective to 

use principles that are detected in natural systems. The technical usage of these principles is 

expected to support the development of information processing systems so that they can 

operate as self organising systems. Moreover, by means of such principles of natural systems 

biologically inspired life-like computer systems will be created [152]. In this case, nature can 

be considered as a model for technical systems aiming to cope with the increasing 

complexity. 

Organic systems or autonomic systems [153] [154] try to realise quality in several aspects 

of system engineering including: functional correctness, safety, security, 

robustness/reliability, credibility, and usability [48] [49]. This wide range of properties of 

organic systems can be used to establish the vital concept of "controlled self-organisation". 

Also, organic systems use the "controlled self-organisation" design paradigm, in which the 

unwanted behaviour should be prevented, whereas the desired behaviour should be rewarded. 

In this regard, the robustness of OC systems is a key property, because the environments of 

such systems are dynamic. 

Since OC systems are self-organising systems that exhibit some degrees of autonomy, the 

behaviour of these systems should be observed in order to take an appropriate intervention 

timely if necessary. Therefore, OC uses an observer/controller (O/C) architecture as an 

example in system design. Using the O/C design pattern proposed in [10], the behaviour of 

OC systems can be observed and controlled (for details see section 3.1). In this regard, a 

generic O/C architecture was introduced in [13] so that this architecture is able to be applied 

to various application scenarios. Additionally, the suggested O/C architecture has different 

distribution possibilities (from fully central to fully distributed), where designers have to 

select between them according to the applied scenario (for details see section 4.4.1). With that 

in mind, these possibilities of the generic architecture were studied and then implemented in 

[3] (for details see section 3.2). 

Within the Organic Computing initiative many projects were completed. Some of these 

projects that are more closely related to this thesis are: Organic Traffic Control (OTC) [92] 

[93] (For details see section 3.6), Organic Traffic Control Collaborative (OTCC) [94] [95] 

(For details see section 3.6), Observation and Control of Collaborative Systems (OCCS) [144] 

[145] (For details see section 3.8) and OC-Trust (For details see section 3.3.1.5). 

1.3 Scientific focus and contribution 

The main contribution of this thesis is the integration of concepts from different research 

areas into a practically applicable methodology “Robust Multi-Agent Systems” 

(RobustMAS). According to the previously introduced theoretical background, the scientific 

focus of this thesis and the contribution to the state of the art can be summarised as follows: 

• System architecture: This thesis presents a system architecture, which is a hybrid 

form of a central/decentral (central/self-organising) solution of the coordination problem for 

multi-agent systems. This means that the agents are (semi-) autonomous, because the central 

components of the system observe the agents and endow them with a plan as 
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recommendation. Consequently, such hybrid architectures permit that agents behave 

autonomously. An O/C (Observer/Controller) architecture adapted to the traffic intersection 

without traffic lights application scenario has been designed using the Organic Computing 

concept.  

• Hybrid coordination: RobustMAS addresses the conflict between a central controller 

(e.g., a central planning algorithm) and the autonomy of the agents. Thus, RobustMAS 

introduces a hybrid coordination of a multi-agent system (central and decentral) to solve this 

conflict. This hybrid coordination happens over the following three steps: path planning, 

observation and controlling. Here, the autonomy of the agents is considered as a deviation 

from the central plan (desired behaviour) when the agents violate this plan. 

• System aspect: As a system aspect, the focus of RobustMAS is the robustness of the 

multi-agent system, so that RobustMAS keeps the system at a desired performance level when 

disturbances and deviations from plan (desired behaviour) occur. RobustMAS proposes a 

novel concept towards building robust hybrid organic systems. Additionally, a new 

appropriate method has been developed to measure the robustness of such hybrid multi-agent 

systems. 

• General problem domain: The general problem domain of RobustMAS is the 

resource allocation problem (resource sharing problem). This is a dynamic coordination 

problem. RobustMAS tries to solve the question how agents move reliably in a common 

environment. In addition, RobustMAS gives a solution for the special problem domain, the 

traffic problem.  

• Traffic Control: The application scenario of RobustMAS is a traffic intersection 

without traffic lights. The problem of this application scenario is the coordination of 

autonomous vehicles. This application scenario is very interesting for the intelligent 

transportation system, which utilises autonomous vehicles. In this application scenario, 

RobustMAS tries to solve the question how vehicles move reliably in the intersection area in 

order to cross it as quickly as possible. 

1.4 Outline of the thesis 

This thesis is structured as follows. Chapter 2 presents the application scenario used in 

this thesis, a traffic intersection without traffic lights. This scenario serves as a testbed for the 

evaluation of the RobustMAS concept. Moreover, it introduces the required technology for 

autonomous vehicles needing to meet a wide range of requirements and safety standards. 

Chapter 3 presents a survey of related work that was published in the domain of robust 

systems. It gives an overview of many approaches or architectures, which were introduced 

concerning the construction of robust systems. Apart from related solutions, the generic 

Observer/Controller architecture will be explained in section 3.1, which serves as basis for 

this thesis. Afterwards, section 3.2 presents diverse architectures for technical systems 

presented in the literature. Subsequently, section 3.3 discusses several research fields that 

investigate the robustness of systems. This investigation contains: robustness in general, 

robustness of Organic Computing (OC) systems, robustness in MAS and measures for 

robustness. Afterwards, the current state-of-the-art will be given about the most closely 

related approaches to the scenario “traffic intersection without traffic lights” in section 3.4, 

3.5, 3.6 and 3.7. It contains also autonomous driving and autonomous cars and intersections 
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of autonomous cars. Section 3.8 introduces the comparison between the RobustMAS concept 

of this thesis and the most closely related work. 

Chapter 4 is the main part of this thesis. It presents the new developed methodology 

(RobustMAS), which serves as a basis for design of robust multi-agent systems. It describes 

the concept, architecture and objectives of RobustMAS. Furthermore, it highlights the hybrid 

central/self-organising concept as a main issue of RobustMAS. The general problem domain 

of RobustMAS, the resource sharing problem, is presented in section 4.4.3.2 together with the 

proposed solution to cope with it. Subsequently, the measurement of robustness and gain of a 

multi-agent system will be introduced in section 4.4.5. This measurement is based on the 

RobustMAS concept, where a new appropriate method is proposed. 

In Chapter 5 the realisation of RobustMAS will be discussed. This realisation has three 

steps: path planning, observation and controlling. These steps will be explained in section 5.1, 

5.2 and 5.3 respectively. 

The suggested RobustMAS concept was evaluated in Chapter 6. It explains the 

experimental setup and the simulation environment needed to verify the performance of 

RobustMAS in section 6.1. The three metrics: throughput, waiting time and response time 

used in the empirical evaluation will be explained in section 6.2. Additionally, section 6.3 

discusses the four test situations proposed to perform the evaluation, where the robustness and 

gain of RobustMAS are measured in section 6.3.4.1. 

Finally, Chapter 7 draws the conclusion of this thesis and gives a peek at future trends for 

follow-up research projects. 
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2 Scenario and required technology 

This section describes the application scenario of this thesis, a traffic intersection without 

physical traffic lights, where autonomous vehicles attempt to cross the intersection as fast as 

possible. Additionally, it presents diverse capabilities (required technology) that autonomous 

vehicles should possess so that they can move safely on roads. 

2.1 Application Scenario “Autonomous cars in a traffic intersection 

without traffic lights” 

Since the coordination of autonomous vehicles is a key point in this thesis, an application 

scenario has to be selected, which has a very strong relationship with autonomous vehicles. 

Therefore, the application scenario used in this work is a traffic intersection without physical 

traffic lights. For this reason, an intersection control algorithm based on virtual traffic lights is 

used. Such scenarios contain and assemble the required concerns that can be used to build 

robust multi-agent systems. 

In this scenario, a resource sharing problem (resource sharing conflict) arises, which has 

to be resolved in order to avoid collisions within the intersection (a shared resource). Thus, 

the coordination of autonomous vehicles is the problem of this application scenario, which 

will be used later for the evaluation of the RobustMAS concept. A trajectory-based approach 

will be used where dynamic replanning of trajectories will be investigated in the presence of 

disturbances. 

In this context, fully autonomous vehicles are considered, because autonomous vehicles 

promise huge benefits for the safety and efficiency of transportation. Recent advances in 

technology [15] suggest that modern vehicles will be controlled in the near future without 

direct human involvement, as well as recent advances in artificial intelligence suggest that 

vehicle navigation will be possible by autonomous agents [5]. 

In this regard, a special problem domain of RobustMAS has been defined making use of 

the traffic problem as an application scenario for RobustMAS. This domain, which is called 

"RobustMAS Traffic", deals with intersections of autonomous vehicles in order to solve the 

traffic problem. 

It is known that human driver errors represent the main cause of road traffic accidents. 

These human errors have been the reason of a high proportion of the automobile accidents on 

roads. Recent research in this domain indicates that human driver errors contribute to a very 

large part of all roadway crashes. Therefore, transportation would be able to gain safety and 

efficiency by using fully autonomous vehicles. Additionally, by eliminating such human 

driver errors, some estimates suggest as much as 96% of all automobile accidents can be 

avoided [16]. Autonomous vehicles would bring about an overall improvement in safety, even 

if each automobile accident were worse [6]. This means that fewer than 5% of all automobile 

accidents are caused by other reasons. Therefore, fully autonomous vehicles could avoid 

about 96% of automobile accidents. In addition to that, the autonomous vehicles and the 

environment, an intersection without traffic lights, should be observed. This observation aims 

to detect deviations from plan (trajectories of vehicles) or disturbances (accidents) that may 

occur. Consequently, replanning and corrective intervention will be directed, if necessary, 
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toward replanning (trajectories replanning) so that the system remains demonstrating safety 

and robustness. In this case, the system can deliver a bigger degree of safety. In short, using 

fully autonomous vehicles will reduce road traffic accidents, because of eliminating the major 

cause of road accidents (human driver errors).  

Figure 2-1 illustrates the form of the traffic intersection without traffic lights that has to be 

implemented in this thesis and consequently to be used by the evaluation of the RobustMAS 

concept. Here, the intersection was modelled as a grid-based layout. Vehicles that are 

controlled by agents, try to move through the intersection as quickly as possible. 

 

 
 

Figure 2-1: The intersection without traffic lights “RobustMAS Traffic” 

 

Vehicles behave differently regarding their locations, outside or inside the centre of the 

intersection (shared environment). Vehicles, which are outside the shared environment, 

attempt to move forward avoiding collisions (act in a fully autonomous way). However, 

vehicles get collision-free trajectories from the central controller of the intersection. These 

planned trajectories are provided to vehicles as a recommendation, so that every vehicle has 

its best possible (desired from controller) path inside the centre of the intersection. Therefore, 

autonomous vehicles either move faster than their planned trajectories causing deviations 

from the planned behaviour, or they follow them if deviations are not possible. Here, it is 

worth mentioning the assumption that the wishes for turning of vehicles are known. 

In this application scenario, RobustMAS aims to develop a robust traffic intersection, in 

the presence of accidents (disturbances) in the intersection, and unplanned autonomous 

behaviour of vehicles (deviations from planned trajectories). In this regard, the robustness 

measurement is based on the size of the accident (disturbance strength). Therefore, the 

simulation has been carried out in the cases that the size of the accident is 1, 2, and 4 (the 

accident occupies an area of size 1, 2 and 4 cells inside the intersection).  

More details about the used scenario can be found in section 6.1 (Experimental setup and 

the simulation environment). 

In the context of the scenario used in this thesis, shared spaces are of particular interest. 

Shared space is an approach, developed by Hans Monderman, which aims to minimise 

demarcations between vehicles and pedestrians in busier roads. This means that streets will be 
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without traffic signs, without signals and lane markings, without sidewalks and bike paths. 

Here, the goal is the freedom of the shared space, as well as all road users having equal rights. 

So, the shared space approach is an urban design, which is used usually in the more narrow 

streets of residential areas. An example for applying the shared space approach is the 

Exhibition Road in Kensington in London. It is important to distinguish that the shared space 

approach depends on uncertainty about who has the right of way. Therefore, all road users 

should decrease their speed aiming to reduce risks and damages [130]. 

For generalisation of the RobustMAS concept, the current scenario used in this thesis, 

intersections without traffic lights, can be replaced also with the more general scenario, shared 

spaces. This generalisation may be possible due to the similarities between the working 

circumstances and the environments presented in both systems. In this regard, both systems 

can be considered as unregulated traffic space, where vehicles move in a fully autonomous 

way without traffic lights. 

2.2 Required technology 

The implementation of autonomous cars requires a variety of technologies. In the context 

of this thesis, these technologies are assumed to have been created and merged completely 

and consequently they are not subject of this work. 

Autonomous vehicles require a variety of capabilities in order to function properly and 

safely on road networks. The most important capability is the communication or the 

cooperation with other vehicles or traffic lanes. Car-to-Car (C2C) or Vehicle-to-Vehicle 

(V2V) communication in addition to Car-to-X communication are promising technologies for 

autonomous vehicles. They enable the interaction between vehicles and infrastructures of 

roads aiming to enhance the safety of traffic (for details see section 3.7 Autonomous driving 

and autonomous cars). 

Autonomous vehicles have to capture their environment using available techniques like 

laser, radar, lidar, GPS and computer vision [131] (see section 3.7). Additionally, autonomous 

vehicles should keep safe distances from other vehicles, e.g., by means of adaptive cruise 

control (ACC) that adjusts the vehicle's speed in compliance with the surrounding traffic (see 

section 3.7). Furthermore, autonomous vehicles have to follow their lane, e.g., using a Lane 

Departure Warning System (LDWS) (see section 3.7). 

On the other hand, on the intersection level, Intersection Collision Avoidance (ICA) can 

be used to warn the vehicle while entering the intersection unsafely. Also, Cooperative 

Intersection Collision Avoidance (CICA) aims to prevent collisions in the intersection by 

means of the cooperation of intersections with vehicles (for details see section 3.7.1 

Intersections for autonomous cars).  

In this context, Intelligent Transportation Systems (ITS) were proposed as an active 

research field to optimise the use of traffic infrastructure. ITS is able to observe and 

consequently to adapt traffic dynamics achieving transport safety and transport efficiency (for 

details see the section 3.4 Intelligent Transportation Systems). Furthermore, agent 

technologies and MAS technologies are used to design and build traffic and transportation 

systems where safety and efficiency are key features (for details see the section 3.5 Agents in 

Traffic and Transportation). 
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The next chapter gives an overview of existing related work aiming to highlight the need 

of a novel approach to cover the gap recognised in the previous chapter. 
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3 State of the art 

Keeping a system at a desired performance level in presence of disturbances or deviations 

from plan has been investigated by researchers for years. Consequently, many approaches or 

architectures were introduced towards building robust systems. Therefore, this chapter 

attempts to present an overview of existing related work and to draw attention to the 

requirement of a novel system to fill the gap, building robust hybrid organic systems, 

considered in chapter 1. 

Since Organic Computing (OC) represents the theoretical basis of this thesis, section 3.1 

presents the generic observer/controller architecture proposed on the way to develop organic 

systems. Afterwards, several architectures for technical systems will be introduced in section 

3.2 using various methodologies. Subsequently, many research areas investigating the 

robustness of systems will be considered in section 3.3 containing the following subsections: 

robustness in general, robustness of OC systems, robustness in MAS and measures for 

robustness. Accordingly, different definitions of robustness will be discussed according to the 

context in which they are considered. The remaining sections of this chapter, section 3.4 - 3.7, 

point out the current state-of-the-art as described in the publications most closely related to 

the scenario “traffic intersection without traffic lights”. This contains relevant research areas 

and related research projects including: Intelligent Transportation Systems (ITS), Agents in 

Traffic and Transportation (ATT), Adaptive traffic control systems, autonomous driving and 

autonomous cars and intersections of autonomous cars respectively. Finally, section 3.8 

compares the RobustMAS concept introduced in this thesis with the most closely related 

work. 

3.1 Organic Computing (Observer/Controller architecture) 

As described above in section 1.2.2, Organic Computing (OC) is based on various 

distribution possibilities of the generic observer/controller (O/C) architecture. The O/C 

architecture is required, because self-organising systems are provided with some degrees of 

autonomy that may lead in turn to unwanted behaviours [146].  

A generic observer/controller architecture was proposed as depicted in Figure 3-1. This 

architecture aims to establish the controlled self-organisation in technical systems. 

Concerning this goal, each organic system should be able to keep working even when the 

observer and the controller can not continue to work for any reason. 

The concept based on the O/C architecture contains three main components forming the 

generic Observer/Controller design pattern. This design pattern provides a regulatory 

feedback loop that is able to observe and control the organic system using various 

mechanisms of observing, analysing, predicting, feedback, and deciding. The O/C 

architecture has a set of sensors and actuators to measure system variables and influence the 

system. 
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Figure 3-1: Concept of the Observer/Controller architecture [13] 

 

As depicted in Figure 3-1, the three main components are: the observer, the controller, and 

the system under observation and control (SuOC). The observer has to monitor the system 

state and its dynamics. It measures, quantifies, and predicts emergent behaviour using metrics 

and collecting information about the SuOC [13]. After that, the observer aggregates its 

observations as a vector of situation parameters, which will be sent to the controller. These 

situation parameters describe the current state of the SuOC. The controller has to evaluate 

these situation parameters so that appropriate actions can be taken to influence the SuOC 

concerning the goals given by the user. The system under observation and control (SuOC) is 

the lowest layer of the O/C architecture. It represents the productive part of the organic 

system and consists of a (possibly) large number of interacting sub-systems. Further details on 

the generic observer/controller architecture can be seen in [146]. 

It should be pointed out that this generic O/C architecture can be applied to diverse 

application scenarios. In particular, centralised as well as distributed variants are possible. 

Thus, according to the used scenario, the system designer chooses the most appropriate 

distribution possibility of the O/C architecture (see section 4.4.1).  

Shortly, it can be inferred that the observer and the controller of the O/C architecture have 

the function of surveillance and feedback. Therefore, sensors and actuators will be required so 

that the O/C architecture can observe and control the SuOC's behaviour and its environment 

[13]. 

3.2 Architectures for technical systems 

In the literature, diverse architectures were suggested in order to be applied to various 

technical systems. Architectures for technical systems are depending on specific requirements 

using design principles and methodologies in order to achieve desired goals, to solve specific 

problems, to create behaviour patterns of the technical system applied to. 
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The Adaptive Agent Architecture (AAA) introduced in [63] [64] is a multi-agent system 

architecture that was developed on the basis of the research in fault-tolerance and agent 

communication languages. This architecture works closely with the Open Agent Architecture. 

It was employed in multi-agent systems like Quickset [64]. Additionally, it depends on the 

teamwork-based approach, which is a decentralised approach. Due to the fault-tolerant trait of 

AAA-architecture, a robust multi-agent system can be designed by means of this architecture. 

For details see section 3.3.1.14 Fault-tolerance to design robust multi-agent systems. 

The AAA architecture is not useful for RobustMAS, because of its approach, which 

assumes that agents work as teams. This approach does not comply with the RobustMAS 

concept, which supposes that the agents are self-interested. 

Other work relating to the architectures proposed in order to solve collaborative or 

coordinate problems in multi-agent systems can be summarised as follows: 

 An application of the generic O/C architecture was presented in [146]. This 

application was applied to swarm robot scenarios, where the observer determines the 

unwanted clustering behaviour of robots. Based on this, the controller decides how the 

environment will be changed so that the system can be influenced indirectly in order 

to avoid this clustering behaviour. However, this application addresses only clustering 

behaviour, while RobustMAS deals with disturbances and deviations from plan 

(desired behaviour). 

 A computational framework for the coordination of large robot teams (at least 100 

robots) was developed and implemented in the CentiBOTS project [149]. The robots 

are mobile and resource limited.  The robot teams have exploration tasks in dynamic 

environments, which have to be done collaboratively with least possible monitoring 

effort. The project introduces a collaborative, distributed, multi-level control 

architecture in order to create a proposed collaborative behaviour. This architecture is 

adaptive to new tasks and team organisations. Additionally, it is fault-tolerant and 

scalable to very big robot teams so that it is appropriate for large-scale robot swarms. 

As a result, the CentiBOTS project does not deal with turbulent environment 

(disturbances). 

 A novel modelling methodology for distributed and collectively intelligent systems 

was proposed in [147]. This methodology was developed by the Swarm-Intelligent 

Systems Group (SWIS) of the EPFL (Swiss Federal Institute of Technology). They 

presented distributed control algorithm (architecture) using some swarm intelligence 

methods in order to inspect the overall collective behaviour of the swarm. The 

resultant methodology does not consider the system robustness against disturbances. 

 The Centre for Robot-Assisted Search and Rescue at the University of South Florida 

has extended the Sensor Fusion Effects (SFX) architecture that serves as the base for 

the cognitive model of a team of robots. The aim of this extension was to insert a 

distributed layer so that the concept of a person from psychology can be mimicked. 

This architecture is called the Distributed Field Robot Architecture (DFRA) [151]. 

DFRA is a distributed, decentralised implementation of the SFX-architecture. The 

DFRA architecture allows for dynamic discovery and acquisition of robot resources 

and the integration of humans and artificial agents in a team of robots [151]. So, it is a 

control architecture that manages the resources in robot teams, where Jini-services are 
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used for the access to the capabilities of a team of robots. One application of the 

DFRA architecture was a simulated demining task, where a heterogeneous team of 

ground and aerial robots was used [151]. However, DFRA architecture does not take 

into account the influence of disturbances on system functionality, while RobustMAS 

tries to reduce the effect of disturbances on system performance. 

 A behavioural architecture for swarm robots was suggested in [148]. This architecture 

is very effective for self-assembling tasks (swarm of self-assembling robots). It was 

developed in the Swarm-bots project that is sponsored by the Future and Emerging 

Technologies program of the European Commission. This project investigates novel 

methodologies to the design and implementation of self-assembling and self-

organising artefacts. The authors have proposed a control architecture that allows the 

definition of robot behaviours. Consequently, a group of robots is able to create the 

desired pattern through their interactions so that a collaboration between the robots is 

achieved in order to carry out a required task. In this architecture, the key role is 

played by the interactions among agents, which are responsible for the formation of 

the needed pattern. On the contrary, RobustMAS uses a central component that 

performs the desired behaviour (collision-free trajectories), where this planned 

behaviour is given to agents only as a recommendation. 

 The Autonomic Nano-Technology Swarm (ANTS) is a generic mission architecture 

introduced by NASA. The goal of NASA is to utilise approaches of multi-agent 

systems in space missions. The ANTS architecture is a mission/system architecture 

that can be applied to robust, scalable, highly distributed systems [150]. This 

architecture consists of autonomous and reconfigurable components (structures). It 

relies on social insect colonies in order to achieve the ‘swarm’ behaviour by means of 

utilising the success of such colonies. In this regard, task specialisation for the 

individual agents (elements) of the system is the main responsibility of ANTS 

architecture, where every agent performs its specific mission optimally. Consequently, 

cooperation between system agents is needed to accomplish mission goals. Shortly, it 

is using for human/robotic mission for the Human Exploration and Development of 

Space (HEDS) by NASA [150]. However, ANTS architecture has no consideration for 

the system robustness when disturbances occur in the environment. 

 Different distribution possibilities of the generic O/C architecture were investigated in 

[3]. The study aims to create collaboration patterns in multi-agent systems using the 

O/C architecture and to apply it to a traffic scenario. The authors have implemented a 

fully central and a fully distributed O/C architecture in order to compare them, where 

these both O/C architectures represent extreme possibilities (a multi-level O/C 

architecture is located between these two extremes). The results show that the design 

optimum should be somewhere between these two extremes (the central and 

distributed approaches) [3]. Therefore, it is recommended preferably to use an 

adaptive architecture that is able to utilise the advantages of these both O/C 

architectures (the centralised and distributed architectures). The proposed adaptive 

architecture is capable to switch between the centralised and distributed O/C 

architecture according to the recent complexity domain (the degree of collaboration 

between the system agents) [3]. 
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Briefly, it can be seen that most system architectures discussed above are focused on 

specific problems aiming to solve them (collaborative or coordinate problems) in context 

of multi-agent systems. However, the generic O/C architecture presented in [146] 

introduces generic methodologies and approaches, where the observation and control of 

such systems will supply the desired results avoiding unwanted behaviour of agents. In 

this regard, RobustMAS uses an O/C architecture to observe autonomous agents within a 

shared environment in order to detect deviations (unplanned autonomous behaviours) 

from desired behaviour. Additionally, RobustMAS intervenes when it is necessary, so that 

the system maintains a desired level of system performance in spite of disturbances in the 

environment. Consequently, RobustMAS focuses on the robustness of hybrid central/self-

organising multi-agent systems. 

3.3 Robustness of systems 

This section deals with the large research field investigating robust systems. First, section 

3.3.1 introduces robustness in general aiming to give different definitions of the robustness, 

which are referenced in the literature. There are many robustness definitions regarding the 

context. Second, section 3.3.2 presents the robustness of Organic Computing (OC) systems. 

Third, section 3.3.3 highlights key characteristics of robustness discussed in multi-agent 

systems (MAS). Forth, section 3.3.4 deals with efforts that are related to measure robustness 

in different research projects. 

3.3.1 Robustness in general 

What is robustness? Initially, it is important to mention that the definition of robustness 

differs in several points according to the context in which the robustness is considered. 

Therefore, this section will give a wide overview of existing related work discussing 

robustness in various relevant research fields. 

3.3.1.1 Robust API 

As a simple definition, robustness means the system should not break at the slightest 

disturbance [22]. Robustness requirements with examples were introduced in [22]. Five 

example requirements for robust API's were discussed there. Figure 3-2 illustrates these 

requirements. 

 

  
 

Figure 3-2: Robustness requirements for API's [22] 
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These five requirements can be summarised as follows: 

 [ROB.1] The listener shall be robust against invalid API-requests. It rejects any 

invalid API-requests and shall not terminate. 

 [ROB.2] The listener shall be robust against unexpected flood of requests (e.g., by an 

intentional attack). 

 [ROB.3] The listener shall never produce many application processes (e.g., to prevent 

the server to run out of memory). 

 [ROB.4] The application process shall be robust if it could not connect to the database. 

It shall terminate with an error message (no a zombie process). 

 [ROB.5] The database shall be robust against reaching the session limit (due to 

unexpected number of database connections). 

Based on this, robust API's provide the flexibility of programming and guarantee that 

applications are suitably designed with better maintainability. Therefore, a monitoring 

system, which can reliably detect the failed component or identify abnormalities, is 

required. Consequently, a robust application design can be achieved by integrating this 

monitoring capability. 

3.3.1.2 Robustness of structural systems 

The term structural system is used in structural engineering. It refers to load-resisting of a 

structure. The structural system is composed of interconnected structural components that 

carry the load. For an example, structures are buildings, bridges, roads, etc. 

In the context of structural systems, an effort in [25] is made to offer a practical overview 

of the main elements of robustness. Here, engineers are working in the field of structural 

robustness and structural reliability dealing with some typical circumstances and also 

establishing a guideline on robust structural design. They aim to enhance survival, or to 

mitigate the consequences of unforeseen events to structural systems. So, the robustness of a 

structural system is the property of the system that facilitates them to survive unforeseen or 

unusual circumstances [26]. Survival is a key concept for the robustness of a structural 

system. In this context, survival denotes the survival of function. This means that the 

robustness of the structural system enables it making the function available permanently 

independent of circumstances [25]. A review of the elements of robustness can be found in 

[25]. The review contains elements of robustness and also strategies and considerations for 

the establishment of robustness at the design phase of a structural system. 

Another related work in this context has the goal to achieve robust design of bridges [27]. 

This work presents the developed strategies and methods that can be used to quantify 

robustness in structures aiming to achieve improvements in the robustness. Methods for 

quantification of robustness were classified in [28]. These methods were compared and 

distinguished into two main categories: approaches based on structural behaviour and 

approaches based on structural attributes of systems.  

In short, the robustness of structural systems shows the importance of considering 

robustness not only of technical systems (or computer systems), but also of other systems that 

are not mainly related to computer systems. 
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3.3.1.3 Typical definitions of robustness in various domains 

Robustness definitions vary significantly containing definitions from engineering, 

scheduling, statistics, self-organising systems, multi-agent systems, etc. However, it can be 

typically defined as follows (selection of proposed definitions, among others): 

• “The ability of a system to maintain function even with changes in internal structure or 

external environment” [70]. 

• “The degree to which a system is insensitive to effects that are not considered in the 

design” [71]. 

• “A robust solution in an optimization problem is one that has the best performance 

under its worst case (max-min rule)” [72]. 

In the following, robustness definitions in engineering, computing and scheduling systems 

will be presented. 

Robustness in engineering design is a design principle in order to achieve stability. This 

means that the system should continue working without failure under different circumstances. 

In this context, manufacturing tolerances have to be considered showing their impact on the 

performance as well as their role in the design optimisation phase [73].  

Robustness in computing systems is mainly related to fault tolerance as described in 

section 3.3.1.12 Robustness and fault-tolerance. 

Robustness in scheduling is a necessary requirement for obtaining acceptable outcomes of 

a schedule (a plan) in changing and unexpected conditions. Thus, robustness should be 

provided for the schedule (the plan) during the schedule design process. A robust schedule 

has to generate solutions facing probable disturbances. A robust schedule was defined as 

follows: “A solution for a scheduling problem is robust if it has the ability of reacting to 

external events maintaining the solution as stable as possible” [74]. 

3.3.1.4 Robustness, flexibility, adaptivity and reliability 

The term Robustness is often linked to several other terms, e.g., flexibility, adaptivity, 

reliability, etc. These terms play a role to clarify requirements or attributes that must be 

owned by any system in order to consider it as a robust system. 

The notions robustness and flexibility were defined in [23]. These two notions depend on 

the adaptivity of the system. From both definitions, it can be concluded that every robust 

system, regardless of the degree of the robustness, is also adaptive. That means an adaptive 

system should not break even if the control mechanism of the system has temporarily lost the 

ability to work and consequently the system performs its function but likely with a reduced 

performance. Robustness is the capability to maintain an acceptable behaviour or a required 

functionality despite limited variations of system’s parameters. On the other side, flexibility is 

the need to modify the behaviour of the system’s elements when parameter values change 

[23].  

According to Waldschmidt et al. ([24]), two system features are significant when the 

robustness of the system is defined: reliability and adaptivity, which should be considered. 

Consequently, a robust system must be certainly reliable. Additionally, the availability of 

adaptivity is a crucial requirement for robustness [24]. 
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3.3.1.5 Robustness and trust in Organic Computing (OC Trust) 

Trust-based mechanisms and algorithms taking advantage of the organic properties of 

Organic Computing (OC) were used in the OC Trust project [30] and other research 

communities. The OC-Trust project deals with trust of complex and highly dynamic technical 

systems. One of the goals is the robustness of a trust-adaptive agent approach. The project 

investigates the robustness and the efficiency of a trusted desktop grid using trusted 

communities in [29]. The authors have shown that trust can improve the robustness of self-

organising complex systems (e.g., desktop grid systems) regarding malicious nodes. The 

robustness there was a concern according to disturbances where the malicious agents try to 

exploit the system. In this approach, trust-enhancement with agent adaptivity was used trying 

to improve the robustness and the efficiency of the desktop grid system. So, each node of the 

system was extended with an agent component where the relations between these agents were 

modelled with a trust mechanism. The experiments have confirmed that trust-adaptive agents 

are strongly robust against disturbances. Additionally, the system needs a recovery phase in 

order to return to its old state as it was before the disturbance occurred. 

3.3.1.6 Robustness in Trust and Reputation Systems (TRS) 

Similar to the robustness introduced in the OC Trust project, it is relevant to mention an 

interesting study given in [31] focusing on the robustness of Trust and Reputation Systems 

(TRS) [32]. The design and implementation of robust trust and reputation systems is a grave 

challenge. Trust and reputation systems shall be sufficiently robust in the face of attacks or 

strategic manipulation in order to achieve their goal (e.g., high quality services). According to 

the importance of the robustness in a system, robustness requirements are determined [31]. 

Achieving robustness in trust and reputation systems is one of the concerns that are inherent 

in the engineering of trustworthy self-organising systems [33]. 

3.3.1.7 General approaches for achieving robustness in unpredictable environments  

In order to deal successfully with unpredictable environments, complex systems try to 

unify the terms: adaptation, anticipation, and robustness using self-organisation [34]. As 

consequence of that, a system should exhibit sufficient robustness so that it can adapt and 

anticipate in an effective way [35]. A robust system has to be able to counteract disturbances 

or perturbations. Otherwise, a fragile system may break easily at the slightest disturbance or 

perturbation that may hinder the proper operation of the system. In this context, a robust 

system will continue to work in spite of disturbances or other environmental perturbations 

[36].  In this case, there are several approaches to perform the robustness of such systems. 

Among others, the following approaches, according to [34], can be mentioned: modularity 

[37], degeneracy [38] [41], distributed robustness [39] [42] or redundancy [40].  

 Modularity is a general systems concept where system’s components can be separated 

and recombined. One of the more important features of modules is “autonomy” [44]. 

That means, modules are independent of other modules. Therefore, modules 

(modularity in design of systems) are able to guarantee the robustness of a system by 

avoiding any spreading of injury in the whole system. 

 Degeneracy lets elements or objects change their nature from one case to another so 

that the final state may be probably simpler than its original state [45]. In an analogous 
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manner, degeneracy as a design principle is used to obtain the robustness of a system 

by allowing other elements in absence of an element to carry out the same task even 

though they have different structures. 

 Distributed robustness is used to define a network free from any single point of failure 

[43]. There are at least two alternative paths between any two points on the network. 

Here, if any one component is removed then the network will remain in function as 

before. That means, distributed robustness is against the loss of individual 

components. Consequently, the main advantage of the distributed robustness is the 

ability to use resources more efficiently, whether in computation or biology [43]. 

 Redundancy is the additional presence of functionally identical or comparable 

resources (components, elements, nodes, etc) of a technical system, if they are not 

needed for a failure-free operation under normal conditions [46]. Redundancy aims to 

increase the reliability of a system (fail-safe) so that every component has a back-up to 

take its role by occurrence of failure.  

3.3.1.8 Robustness and self-organisation in complex systems 

Complex systems are characterised by nonlinear dynamics, a high-dimensional degree of 

order, self-organisation and emergent behaviour. These systems are limited in their 

predictability. What is a self-organising system? 

“A system described as self-organizing is one in which elements interact in order to 

achieve dynamically a global function or behavior” [47]. 

In engineering, a self-organising system generally has elements, which are designed so 

that a certain problem can be solved or a defined function can be accomplished at the system 

level [47]. This should be made dynamically and autonomously. The main point here is that 

elements of the system are self-organising where each element has to make its decision about 

its next action. This decision is based only on local information according to its actual state. 

Self-organisation can be used to design and control complex systems where the 

unpredictability of their environment can be solved by means of combining several 

approaches: adaptation, anticipation, and robustness [34]. Therefore, design and control of 

self-organising systems have become recently the most important research fields aiming to 

develop complex systems. Adaptation lets a system react and adapt (changes or modifies 

itself) better in a changing environment. Robustness lets a system continue to work in spite of 

disturbances or perturbations. Anticipation lets a system predict changes in advance and 

hereby adapt to these predicted changes [34]. 

In this regard, the modelling of a self-organising system has to apply a control mechanism 

based on the required goals of this system. It guarantees the integrity of the system in the face 

of potential internal or external disturbances, i.e., it should be robust. However, a control 

mechanism should not extremely control a self-organising system and its elements, because 

self-organising systems and their elements are autonomous and hereby have their own goals. 

Consequently, a control mechanism of a self-organising system should be adaptive in order to 

be able to cope with its changing environment [34]. 
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3.3.1.9 Robustness and trust in Autonomic Systems  

Autonomic Computing (AC) is characterised by systems with self-managing 

characteristics of their distributed resources. AC is an IBM initiative [153] [154] to cope with 

increasing complexity of technical systems. It uses the adaptation capability so as to allow 

systems to adapt to their unpredictable environments. So, autonomic systems consist of 

several individual autonomic elements (components or subsystems), which are able to change 

(adapt) itself to their changing environment achieving the self-management property. In this 

regard, trust in autonomic systems (predominantly meant technical, not social) is needed, 

because the emphasis here is on developing trustworthy autonomic (i.e., trustworthy self-

managing systems). These trusted systems try to prohibit unwanted behaviour and of course 

reward the desired behaviour (i.e., controlled self-organisation). It is important to mention that 

trust in autonomic systems or in organic systems is comprised of the following facets [48] 

[49], where robustness, the main focus of this thesis, is of course one of these facets: 

 Functional correctness: Whether the system works truly as it is planned (with respect 

to its functional specifications).  

 Safety: Whether there will be undesired effects (Whether there will be states or 

outputs, which could cause any injury). 

 Security: Whether the system is able to prevent any unauthorised process (announce 

private information or modify data without authorisation). 

 Robustness / reliability: Whether the system is able to guarantee the availability, i.e., it 

offers one of its services as soon as a service is required. In other words, whether the 

system (or its services) remains available even though disturbances (or partial failure) 

occur in the system or in its environment. 

 Credibility: Whether the system has the ability to interact with a user (or subsystems 

interact with each other). 

 Usability: Whether the system provides easy user interfaces so that the user can use it 

efficiently and effectively. 

Consequently, the definition of robustness in autonomic systems corresponds to the 

suggested robustness definition given in [50] in the context of complex systems: “Robustness 

is the invariance of [a property] of [a system] to [a set of perturbations]”. This means that a 

robust system has to preserve a certain property for a certain set of perturbations. However, it 

may be fragile for another property or other perturbations. Autonomic systems are self-

managing systems which provide robustness in face of changes or partial failures, where self-

healing properties provide recovery capabilities and thus an autonomic system can repair 

itself. In this regard, the degree of robustness that an autonomic system demonstrates is the 

main point. This degree plays a major role w.r.t. trust in such systems, which provide their 

services even under various perturbations, disturbances or partial failures [48]. 

3.3.1.10 Robustness in real-time complex systems  

A brief summary of the struggle between complexity and robustness was discussed in 

[53], where they considered struggle in both evolution and human design. In this regard, 

several mechanisms are required in order to increase the robustness of fragile systems and 
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therefore the desired system will be more complex.  Consequently, the extra complexity may 

lead to unforeseen malfunction so that new mechanisms are required to maintain the system 

robustness. So, the desired system will be even more complex and a trade-off between 

complexity and robustness has to be made [53]. The problem in this context raises the 

questions: “Could complex system behaviour really be modelled?” and “How to model 

complex system behaviour?”.  

A new concept was introduced in [52] based on the continuing struggle between 

complexity and robustness. This concept presented the idea: avoiding, accepting and 

influencing complex system behaviour. It is important that a Systems Engineer should take 

these three notions into account. First, Avoid complexity following the “KISS” design 

principle. It is the principle of simplicity (KISS principle: Keep It Simple, Stupid) and it aims 

to avoid unnecessary complexity. Second, Accept complex system behaviour using the “Live 

with it” or “Normal Accidents” principle. The “Normal Accidents” principle is an 

"unanticipated interaction of multiple failures" in a complex system [54]. Third, Influence 

complex system behaviour. This can be made possible by attempting to predict and hereby to 

avoid outlier behaviour [52]. 

3.3.1.11 Robustness in Software Engineering  

According to the Food and Drug Administration (FDA), the definition of robustness can 

be summed up in the next statement: “Robustness is the degree to which a software system or 

component can function correctly in the presence of invalid inputs or stressful environmental 

conditions” [55].  

It is very important, by a testing-based approach for performing robustness testing, to 

establish the robustness of input validation mechanisms and error-handling mechanisms. For 

an example, destructive testing tries to cause failure of the tested software aiming to measure 

its robustness and to prove that requirements of this software are met. 

In this context, poor robustness indicates that the modules of the tested software can not 

recover in the case of run-time errors. In order to improve robustness of such systems, better 

exception handling has to be added. Additionally, the use of test models should be intensively 

brought into focus [56]. 

3.3.1.12 Robustness and fault-tolerance  

In computing systems, robustness is mainly related to fault tolerance. Also, when a system 

exhibits fault-tolerant behaviour, it can tolerate deviations (faults, disturbances) and therefore 

it does not fail to deliver the expected service at the appropriate quality that will ensure the 

robustness of such system. 

In this context, a definition which indicates the relationship between robustness and fault 

tolerance was presented in [58]. A reformulation of this definition, in order to make it clearer, 

was introduced in [65] as follows:  “Robustness is the ability of a system to tolerate inputs 

that deviate from what is specified as correct input”.  More details of fault tolerance can be 

found in this thesis in section 3.3.5 Faults and fault tolerance.   
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3.3.1.13 An architectural process for achieving robustness  

Robust programming has become increasingly important in software engineering. This 

issue raises the question: How complex will be a simple program if the robustness of software 

has to be taken into account?.  

The related work in [66] deals with this problem and describes how architecture can be 

handled in relation to robustness demonstrating the significance and complexity of robustness. 

It gives a survey of several works which concentrate on the current software development 

industry from viewpoint of robustness. The survey aims to find a common way to define 

robustness of software application, to determine the characterisations of a robust application 

and to improve robustness in the development phase. The author has tried to define a process 

in order to perform analysis and design of software architecture from the viewpoint of 

robustness. So, the author’s goal was to obtain robustness using a special architectural process 

in software solution. 

There are various definitions of software robustness in the industry of software 

development. Therefore, the definition of robustness was proposed in [66] regarding the 

interview results that were conducted with various companies about their view of robustness 

and consequently the required means to obtain it (the interviews deal with the theme 

robustness and architecture). Additionally, an evaluation of the current related methods in the 

literature was used. The interviewees that work with software architecture introduced the 

robustness as a broad concept that is related to other existing concepts. As a consequence of 

this, the proposed definition of robustness comprises several concepts as depicted in Figure 

3-3. 

 

 
 

Figure 3-3: Robustness with relation to other concepts [66] 
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It is noteworthy that the proposed definition of robustness in [66] is very similar to that 

suggested in [58], which defines dependability as a collection of attributes: availability, 

reliability, safety, confidentiality, integrity and maintainability. So, the significance of the 

used attributes is based on requirements of the software product and the selection of a 

technical platform [66].  

Figure 3-4 illustrates the wide definition of robustness proposed in [66] including the 

interviewees’ concepts as well as the concepts noted in Figure 3-3. 

 

 
 

Figure 3-4: The wide definition of robustness of software architecture according to [66]  

 

Moreover, the central focus was on process measures, architectural solutions (software 

architecture) and implementation. Also, the architecture plays a role in achieving a robust 

software solution. In this context, a variety of analysis and design methods were then 

evaluated aiming to find an optimal method to design or analyse for robustness. As a 

consequence of this evaluation a design and analysis method was suggested. This method is 

based on two methods which were already evaluated (TRIAD: Trustworthy Refinement 

through Intrusion-Aware Design and ATAM: Architecture Tradeoff Analysis Method). The 

main point of this method is that it is composed of two parts. First, a design process that 

contributes to supporting the design of robust software architectures. Second, an evaluation 

process that contributes to supporting the analysis of the architecture for robustness concerns. 

Additionally, this method is applicable over the entire architectural design step. 

3.3.1.14 Fault-tolerance to design robust multi-agent systems  

An approach to combine issues from multi-agent systems and primitive fault-tolerance 

techniques was presented in [63]. This approach addresses the problem of fault-tolerance in a 

multi-agent system. It is based on the theory of teamwork: A multi-agent system that is based 

on a teamwork-based approach is characterised by the fact that the agents, which work as 

teams, make the multi-agent system more robust than self-interested agents. The goal of this 

approach is to design a robust multi-agent system by means of a fault-tolerant architecture. 

The authors showed that they have designed a robust brokered architecture which has the 
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ability to recover a multi-agent system from broker failures. The important feature here is that 

this architecture does not require excessive overheads. It uses a recovery scheme, which is 

based on teamwork. This scheme avoids the use of redundant brokers (overhead) that should 

be used to achieve the fault-tolerance. That means, this teamwork-based recovery scheme was 

proposed in order to utilise the redundancy of middle agents, instead of utilising traditional 

techniques, which are clearly based on redundancy. Additionally, it possesses the ability of 

scalability, i.e., it can accommodate a large number of brokers (assure a defined amount of 

them) in a complex multi-agent system. Furthermore, the agent autonomy assures an adequate 

quality of service and also contributes to make a multi-agent system more robust. The authors 

introduced the Adaptive Agent Architecture (AAA) in order to achieve experimental evidence 

for their approach. This multi-agent system architecture is based on a fault-tolerant middle 

agent (fault handling, detection and recovery from faults). Particularly interesting here is that 

the teamwork-based approach used here is considerably a decentralised approach. Moreover, 

no specific fault-tolerance techniques, which are specially designed for multi-agent systems, 

are required. So, basic fault-tolerance techniques were used on the basis of common concepts 

from multi-agent systems. Accordingly, the more appropriate traditional techniques aiming to 

recover a multi-agent system from broker failure are: warm and hot backups, object group 

replication with virtual synchrony [64]. As a result, the brokers which are already parts of the 

system and work as a team can deliver results akin to those from traditional fault-tolerance 

techniques (e.g., warm backups techniques, or object groups with virtual synchrony 

techniques). That can be made using the reasoning and planning capabilities which are 

already present in agents [63]. 

3.3.1.15 Robustness in Systems on Chip (SOC) design  

Embedded systems are typical applications of Systems on Chip (SOC), where an 

embedded system is designed as integrated circuit (IC), which contains entire components of 

an  electronic system in a single chip. However, heterogeneity and complexity pose a 

challenge in SOC designs due to various hardware and software components.  

The work in [24] addresses this challenge by dealing with the design methodology aiming 

to achieve robust system design. It discusses formal measures and metrics to obtain this 

robustness. Additionally, it deals with modelling and designing of adaptive computing 

systems (ACS), where the focus is on the reliability, adaptivity and robustness. That is 

because, when the robustness of a system is defined, two other system features, reliability (a 

robust system should be reliable) and adaptivity (to support robustness by adaptivity) should 

be considered. 

The authors introduced a new design methodology for robust adaptive system. Their 

methodology withstands changes of the environment as well as internal system deviations 

using the top-down design principle. The used methodology was characterised by the so-

called ABC philosophy that provides metrics for robust design. This ABC philosophy is a 

design paradigm with the ability to produce robust systems. In this context, the SystemC-

AMS framework can be employed in order to describe robust systems (structure and 

behaviour) using the ABC philosophy, where the support of robustness and adaptivity should 

be incorporated into this framework [24].  

Figure 3-5 shows the ABC design methodology that includes three phases. ABC is an 

abbreviation for the words: Avoid, Build and Correct. 
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Figure 3-5: The ABC design methodology [24] 

 

A. In design phase A, unnecessary specification has to be avoided keeping sufficient 

freedom for adaptivity and robustness specification, since in this phase degrees of 

specification freedom can be expressed. Thus, an adaptation to internal and 

external changes will be guaranteed by means of intervals of freedom for system 

specification.  

B. In design phase B, the implementation will be carried out (the process of synthesis 

and refinement of the specification). Here, the specified intervals of freedom have 

to be considered.  

C. Design phase C concentrates on the adaptation of the system to the environment. 

However, this adaptation should not exceed the limits of degrees of freedom that 

were defined in phase A. The specified interval of freedom can be implemented by 

reconfiguration. In summary, it is necessary to provide the ABC philosophy with 

the ability to control the automated design process. This can be achieved using 

measures and metrics of the intervals of freedom [24]. 

Furthermore, the authors in [24] have analysed two quantitative approaches, presented in 

[67] and in [69], towards a generalised robustness metric, where they discussed the ability to 

apply them in embedded systems designed as Systems on Chip (SOC). Details of this analysis 

can be found in section 3.3.4 (Metrics for robustness) in this thesis.  

3.3.1.16 Robustness and dependability of self-organising systems  

The analysis of robustness and dependability in the context of self-organising systems was 

introduced in [51]. It is based on the identification of perturbations (changes or faults) and 

subsequently showing the arising influence on invariants, robustness and dependability 

properties. The author compared the notions robustness and dependability. The robustness 
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notion was defined as follows: “A computing system can be said to be robust if it retains its 

ability to deliver service in conditions which are beyond its normal domain of operation” [57]; 

whereas the dependability notion is: “Dependability is the ability to deliver a service that can 

justifiably be trusted” (as qualitative definition) or “The dependability of a system is the 

ability to avoid service failures that are more frequent and more severe than is acceptable” (as 

quantitative definition) [58]. 

Dependability was introduced as a generic and integrating concept in [58] [59]. This 

concept encompasses the attributes: availability, reliability, safety, confidentiality, integrity, 

maintainability. Additionally, dependability faces threats (faults, errors, failures). According 

to these threats, several means to attain the dependability were originated (fault prevention, 

fault tolerance, fault removal, fault forecasting). 

Figure 3-6 shows the tree of the complete taxonomy of dependability (dependable 

computing) as described above.  

 

 
 

Figure 3-6: The dependability tree [59] 

 

The authors there discussed also the relationship of dependability with several other 

notions: security, survivability and trustworthiness. 

Attributes of dependability: 

 Availability: Guarantee for correct service. 

 Reliability: Guarantee for permanence of correct service. 

 Safety: Prohibition of dangerous impacts on the environment or on the users. 

 Confidentiality: Prohibition of any unauthorised revelation of information 

(actually, confidentiality is a further required attribute of security) 
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 Integrity: Prohibition of unacceptable system modifications. 

 Maintainability: Capability to overcome changes and repairs. 

Threats of dependability: 

 Failures: A service failure takes place if the delivered service deviates from correct 

service. 

 Errors: An error is the occurred deviation from correct service. 

 Faults: A fault is the cause of an error (the cause of a deviation). 

Means of dependability: 

 Fault prevention: in order to prevent the occurrence of faults. 

 Fault tolerance: in order to avoid service failures when faults occur. 

 Fault removal: in order to minimise the number and gravity of faults. 

 Fault forecasting: in order to assess the current state of faults and their expected 

impacts. 

The author in [51] discussed those four means to achieve dependability in the case of self-

organising systems as specific case. 

According to [59], robustness can be defined as a secondary attribute that specialises the 

primary attributes of dependability. That means, robustness of a system is the dependability of 

this system with regard to external faults (e.g., deviating input values) where the system 

reaction is characterised by a particular category of faults. Thus, the robustness is a 

combination of a specialisation of all primary attributes of dependability. 

Designers of self-organising systems need to identify the limits of the natural robustness. 

This means that the properties and the set of disturbances, which cause a system to be fragile, 

have to be recognised. This procedure for the design of self-organising systems is similar to 

that by safety engineers, where the technique (failure mode and effects analysis) is used by 

designing the system in order to discover all faults which may arise [51]. 

In this context, a definition of resilience is required because self-organising systems 

always encounter changes to the design condition. Thus, resilience can be defined with 

relation to the notion “dependability” as the persistence of dependability in the case that a 

system encounters changes [51]. 

The author listed types of faults that occur in self-organising systems. These faults may 

occur from each of the elements of a self-organising system (environment, agents, self-

organising mechanism or artefacts).  

Figure 3-7 illustrates the characterisation of such types. 
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Figure 3-7: Types of Faults in self-organising Systems [51] 

 

Considering the types of faults described above, the following properties of self-

organising systems can be specified: (invariants, self-organising systems robustness attributes 

and dependability attributes). 

Figure 3-8 shows the specified properties of self-organising systems. 

 

 
 

Figure 3-8: Properties of self-organising systems [51] 

 

Of particular interest for this thesis are the robustness attributes of self-organising 

systems, which are listed as follow: 

 Convergence: This property refers to the degree, to which the system converges to the 

desired target. 
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 Speed of convergence: The rate (speed) at which the system approaches its desired 

target. 

 Stability: This property indicates whether the system can keep (to be preserved) its 

target after obtaining it.  

 Scalability: The ability of the system to deal with increasing amounts of agents and 

artefacts. 

According to an investigated example (Ant-Based System) as a self-organising system, 

the author in [51] has concluded some remarks concerning the robustness and dependability 

attributes. First, the robustness attribute “convergence” is a critical factor that is required by a 

self-organising system in order to designate the dependability limits. Second, extra resilience 

(extra resilience techniques) will be required by a self-organising system when the robustness 

attribute “convergence” cannot be obtained or when the robustness attribute “Speed of 

convergence” to rational expectations is very slow (not good enough). This additional 

resilience contributes to sustain the self-organising mechanism. Otherwise, a self-organising 

system can tackle obviously disturbances in any specified conditions when this system always 

converges towards its desired target in spite of these disturbances. 

Summary: Robustness in general 

Many research fields investigate the robustness of systems in general. Therefore, very 

different definitions of robustness were introduced in the literature according to the context, in 

which the system is used. Consequently, a wide overview of existing related work was given 

in this section discussing robustness in various relevant research projects. 

One of the most appropriate definitions of robustness discussed above in relation to the 

RobustMAS concept would be the definition given in [70]:  

Definition: “Robustness is the ability of a system to maintain function even with changes 

in internal structure or external environment”. 

In this regard, RobustMAS considers a system to be robust if its performance degradation 

is kept below an acceptable level (at a minimum). Consequently, a robust system will 

continue working (at a desired performance level) in spite of the presence of deviations from 

desired behaviour (e.g., unplanned autonomous behaviour) and disturbances in the system 

environment. 

As a result, not one of these projects discussed above has focused on the robustness of 

hybrid central/self-organising multi-agent systems. 

3.3.2 Robustness of OC systems 

As mentioned above in section 1.2.1, the robustness of distributed self-organising 

systems, i.e. OC systems, was investigated in the project Organic Computing in [23]. 

Robustness is a critical property of OC systems that deal with dynamic and uncertain 

environments. In this project, robustness is a concept which is related to other concepts like 

flexibility and adaptivity. The emphasis was that robustness and flexibility depend on the 

adaptivity of the system, where definitions of these three concepts were presented. Robustness 

in OC systems was defined as follows: 
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“Robustness is the capability to maintain a required behaviour or functionality in spite of a 

certain range of parameter variations” [23]. 

This means that robustness is a key property of a system. This property reflects the ability 

of this system in order to keep its function or an acceptable behaviour even though abnormal 

environment changes and failures might occur. 

More accurately, the notion of robustness (as well as of flexibility) was defined based on a 

state space model. State spaces are used to model the system behaviour as illustrated in Figure 

3-9. Based on this, a system will be more robust when it has a big amount of states, which do 

not cause unwanted behaviour or decreased, even deteriorated, performance. 

 

 
 

Figure 3-9: System state spaces model [23] 

 

Figure 3-9 shows that the system has to attempt permanently to reach either the target 

space (optimal performance) or at least the acceptance space (acceptable but not optimal 

performance) without any explicit external control. However, a potential disturbance δ can 

move the system state from z


(t) to δ ( z


(t)), where the new state may lie outside of its 

acceptance space, for example in its survival space (minimal performance). In this case, a 

corrective intervention should be performed by means of the internal control mechanism 

aiming to move the system back to its acceptance space or may be to its target space. This 

intervention can be done by reconfiguration of the system. Finally, if a disturbance δ moves 

the system outside its survival space, the system will reach its dead space (permanently 

damaged), where the internal control mechanism is unable to move the system back to its 

acceptance space [23]. 

The authors categorised a system according to its degree of robustness into strongly 

robust, weakly robust and non-robust. First, a strongly robust system will keep an optimal 

performance (an ideal behaviour), where ideal states are mapped into ideal states (the target 

space is mapped into itself). Second, a weakly robust system exhibits an acceptable but not 
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optimal performance (an acceptable behaviour but not an ideal behaviour), where ideal states 

are mapped into acceptable states (the target space is mapped into the acceptance space). 

Finally, a non-robust system can not maintain an acceptable behaviour in the face of 

disturbances [23]. 

In other related work, the robustness of OC systems is defined as a property of the system, 

where the system should not leave a defined state space [1]. As result, the robustness 

demonstrates how a system reacts sensitively to changes in the environment or improper use. 

That means, it characterises the system reaction to a specific class of faults. 

Summary: Robustness of OC systems 

The project "Observation and Control of Collaborative Systems" (OCCS) [144] [145] has 

focused on Robustness of OC systems. However, OCCS defines robustness in such a way that 

it should comply with a state space model. The critique of this method is that it does not 

comply with the RobustMAS concept introduced in this thesis to characterise robustness. 

This non-compliance can be traced back to the fact that OCCS deals only with 

disturbances in the system environment. However, RobustMAS addresses deviations from 

desired behaviour (e.g., unplanned autonomous behaviour) as well as disturbances in the 

system environment. Consequently, on one hand, RobustMAS observes autonomous agents 

within a shared environment in order to detect deviations from desired (planned) behaviour. 

Moreover, on the other hand, RobustMAS intervenes if necessary, so that the system keeps at 

a nominal performance level in spite of disturbances in the system environment. Therefore, 

the focus of RobustMAS is on the robustness of hybrid central/self-organising multi-agent 

systems. Additionally, RobustMAS defines a new metric for the quantitative determination of 

the robustness.  

3.3.3 Robustness in multi-agent systems (MAS) 

Nowadays, robustness is one of several concepts that have to be considered when 

designing multi-agent systems. Thus, achieving robustness in multi-agent systems is of 

central importance. In the literature, a lot of research projects have been concerned with 

robustness of a multi-agent system in different research areas. However, there is a clear lack 

of study of robustness, to the best of our knowledge, in developing robust multi-agent systems 

in technical systems. In this context, various goals can be defined such as: 

• Addressing robustness issues (robustness considerations). 

• Providing a language for robustness. 

• Supporting agent system robustness. 

• Embedding a robustness-service into MAS. 

• Guaranteeing a robust MAS behaviour.  

• Supporting robustness mechanisms in agents to build robust agents (robust agent 

behaviour and robust agent architecture). 

• Building more robust MAS (increasing or improving robustness of an agent system). 

• Building robust teams of agents. 
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• Guaranteeing the robust execution of agent tasks. 

• Addressing robustness guaranteeing mechanisms. 

• Measuring robustness of MAS. 

The development of robust multi-agent systems can address the robustness in the face of 

various kinds of factors (i.e., in the sense of turbulences) such as unreliable agents, faulty 

agents, malicious attacks, system uncertainty, common disruptions, failing elements or 

components, unreliable components, variable (turbulent) environments, environmental 

catastrophes, unexpected situations and exceptional conditions. In short, the goal is to develop 

a robust multi-agent system despite disturbances and deviations occurred in the system 

(intern) or in the environment (extern). 

In the following, several research projects and approaches will be presented that are of 

interest in the context of this thesis. They deal in some way with robustness of multi-agent 

systems in various research fields. 

 The work in [75] tried to build robust multi-agent systems against unreliable agents 

and infrastructures using a domain-independent exception handling approach. The 

authors have proved that their approach has the ability to achieve the robustness of 

multi-agent systems. They have implemented their proposed approach for multi-agent 

systems that accomplish resource allocation using double auctions to handle 

communication exceptions. 

 Similar to the work in [75], the so-called “citizen” approach, was presented in [76]. 

The “citizen” approach tries to improve the robustness of multi-agent systems by off-

loading exception handling from problem solving agents to distinct domain-

independent services. It facilitates robust open multi-agent systems. This approach 

observes a multi-agent system in order to detect problems (exceptions) and 

consequently to intervene if needed. The case study of this approach was handling the 

agent death exception in the contract net protocol. According to the “citizen” 

approach, citizens embrace optimistic rules of behaviour but a whole host of social 

institutions will be used so as most exceptions can be handled (institutions deals with 

exceptions more efficiently than individual citizens). The main factor which leads to 

applying the citizen approach efficiently to the development of multi-agent systems is 

that widely reusable, domain independent exception handling expertise can be 

separated from the knowledge that agents in MAS can act upon to perform their usual 

jobs [76]. 

 Another approach to support robustness of multi-agent systems was introduced in 

[77]. This approach is based on logging aiming to build more robust multi-agent 

systems. It tries to deal with problems occurring in multi-agent systems and 

consequently to recover from them. It uses an execution logging in order to build 

robust agents. The execution logging (execution history) has to be ensured at the 

architectural level. This means that agents in MAS should possess architectural-level 

support for logging and recovery methods when the robustness of MAS is considered. 

The authors presented also how an infrastructure-level logging approach can sustain 

agents so that run-time problems in BDI agents can be recovered [77]. Additionally, 

the authors have defined a special programming language, called APLR (Agent 

Programming Language for Robustness). This language is a developer-level language 
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and defined especially for BDI agent programming. It aims to encode agent problem-

handling knowledge so that a specification of problem-handling information will be 

supported as well as the developer can be insulated and constrained from the 

infrastructure-level reasoning [77]. 

 In production planning and control (PPC), an approach in [78] has addressed the 

robustness of such systems that were designed as multi-agent systems. In this context, 

flexibility and robustness are especially looked for in the case of production 

environments that are subject to continual, substantial and rapid changes in conditions 

(disturbances or turbulences). The authors have applied database technologies on the 

basis of transactions in order to achieve the robustness of multi-agent systems. They 

assumed that robustness and reliability, which are common characteristics of current 

database systems, will solve the detected lack of reliability and robustness in the 

industrial deployment whether database technologies are applied. The database 

technologies will allow agents to perform their tasks robustly via providing robustness 

services, since robustness services are widespread in database techniques. 

Additionally, it is assumed that MAS can handle this problem more effectively than 

conventional centralised approaches on account of their flexible and robust behaviour. 

The authors have modelled a multi-agent system and then compared it to an 

Operations Research Job-Shop algorithm. The comparison was made using a 

simulation-based benchmarking scenario. According to this approach, robustness on 

the shop floor will be assured by using MAS and rescheduling algorithms. As a result, 

robustness of a production system against disturbances can be supported not only by 

scheduling algorithms but also by a proper MAS architecture [79]. On the other hand, 

a simulation-based benchmarking platform was developed at the University of 

Karlsruhe in Germany. This platform was part of the Karlsruhe Robust Agent SHell 

(KRASH) project that is based on a real world production scenario (shop floor 

scenario). The goal of the benchmarking platform was to discover whether MAS can 

improve the planning quality in the shop floor scenario. In short, due to the fact that 

robustness is a significant aspect of a manufacturing system, this approach presented a 

transaction-based robustness service using database technology so that disturbances 

(e.g., machine failures) can be handled [78]. 

 Closely related to the work in [78], an approach was developed in [80] aiming to 

increase the robustness of multi-agent systems. This approach is called transactional 

conversation. It applies transaction-based robustness mechanisms, which are common 

in database management systems (DBMS). These mechanisms were integrated in a 

robust FIPA-compliant MAS development framework. More accurately, agent 

conversations will be handled as distributed transactions. The authors have defined the 

robustness of MAS as following: “Robustness for Multi-Agent Systems means their 

ability to show predefined qualitative behavior in the presence of unaccounted types of 

events and technical disturbances”. According to this definition, the problems arising 

from disturbances during the agent interaction should be resolved so that the operation 

of MAS will be more robust. This approach was applied to applications of production 

planning and control (PPC). The authors have presented an agent implementation 

architecture that was used as a framework to argue about the various aspects of 

robustness as well as to categorise the heterogeneous approaches in this area to 

increase the robustness of MAS. This architecture is a structured overview that 
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organises the development tasks in ascending order based on abstraction levels that 

lead in turn to several layers (layered architecture) as depicted in Figure 3-10. In this 

regard, diverse issues were taken into account from the point of view of developers 

through the development process in order to build that agent architecture [80]. 

 

 
 

Figure 3-10: Layered agent implementation architecture [80] 

 

Obviously in this work, the concentration of robustness considerations has to be on the 

third layer, the conversation layer, where the agent cooperation is controlled, because 

this layer is the most critical layer for ensuring the general robustness of MAS. On the 

other hand, agent communication describes the meaning of a communication and is 

arranged in various conversations (interaction of the involved agents) which should 

comply with predetermined conversation protocol such as the contract net protocol 

(CNP) [80]. 

 Similar to the works in [78] [80], a promising approach was developed in [81] 

demonstrating a first step towards achieving robust multi-agent systems. This 

approach aims to increase the robustness of a multi-agent system that is applied in the 

distributed Information Systems (IS) field of study by means of an underlying 

middleware. This middleware has to guarantee the robustness of the MAS. The main 

point in this interdisciplinary approach is to discuss the relation between the 

technologies of both agents and databases, where agents need to share data 

asynchronously. Thus, the author claims that the agents of a MAS share a world model 

in which the present situations can be reflected in a common database. The author has 

defined the robustness as follows: “We define the robustness provided by the 

middleware in terms of guarantees given on a technical basis, which is guaranteeing 

the correctness in normal operation and recoverability of the system in case of 

disturbances.” [81]. The key idea of this work is to develop an extended transaction 

model encompassing agent plans and their emergency behaviour (emergency 

behaviour in the case of disturbances in order to react to them). Additionally, an 

execution agent has to be involved in order to execute this transaction model. This 

execution agent ensures the robustness of execution of agent actions. At the same 

time, the execution agent characterises the interactions with different elements of a 
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generic MAS architecture [81]. Figure 3-11 shows the proposed robust MAS 

architecture.  

 

 
 

Figure 3-11: Proposed robust MAS architecture [82] 

 

Here, the environment (the world) of the MAS is represented by databases. Every 

agent perceives its environment (reading from databases) and possibly changes it by 

producing certain actions (writing to databases). It is noteworthy that every agent is 

divided in two entities; a planning agent (located in the planning layer) and an 

execution agent (located in the execution layer) [82]. A planning agent has to 

cooperate with other planning agents to create the common shared plan, where each 

planning agent has its common goal and creates its local part of the shared plan and 

then hands it over to a peer execution agent. Every execution agent executes its 

received local plan, where coordination protocols will be used to coordinate the 

execution with other execution agents. In this context, local plans are represented by 

transaction trees, so that each single-agent action will be encapsulated in an ACID 

transaction (atomicity, consistency, isolation and durability). ACID transactions are 

utilities that can be used to guarantee the robust execution of agent actions, where it is 

known that the most commercial DBMS provide the ACID transactions [81]. 

 In the context of market-style open multi-agent systems, a study was introduced in 

[83] in order to define robustness quantitatively in such systems. This study assumes 

that robustness of MAS is more than redundancy, because problems caused by 

malicious agents in open systems can not be solved using redundancy. Therefore, it 

defines robustness of MAS with respect to performance measures and consequently a 

robust MAS keeps safety responsibilities despite events which cause disturbances. 

Thus, a MAS system will be robust if it preserves a certain level of performance. The 

authors presented quantitative definition of robustness, using an electronic market, as 

follows: “the expected drop of the performance measure in four perturbation scenarios 

(i) increase of population size, (ii) change of task profile over time, (iii) malicious 

agent intrusion, and (iv) drop-outs of agents.” [83]. According to this definition, 

robustness of the MAS presents the amount of performance decrease measured in a 
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perturbation scenario (e.g., in case of double population size). The contribution of this 

study lies in social agents, organisation of agent societies and robustness of social 

systems. In short, the authors suppose that the four properties (scalability, flexibility, 

resistance, and drop-out safety), which are required to cope with the perturbation 

scenarios, will be accomplished using [83]: 

1) Two types of operation (task delegation and social delegation). 

2) Four mechanisms for delegation (voting, authority, economic exchange and 

social exchange). 

It is important to pay attention that delegation is a complex concept that is very 

significant in the context of MAS. The delegation concept facilitates attaining 

robustness and flexibility of MAS. Task delegation is based on delegating tasks to 

other agents, which leads in turn to agents specialising in certain tasks [83]. 

 Another related work to attain robustness of multi-agent systems using the delegation 

concept was introduced in [84]. This work is based on simulation of social systems 

using the “social order” concept in the social sciences, because social order bears 

similarity to robustness in this context. Additionally, it illustrates the properties that 

agents should have in order to develop them in complex social systems. In this regard, 

the concept of flexible holons was used. This concept depends on arrangement of 

agents in groups (task delegation and social delegation) to model institutions in MAS 

and consequently to utilise their facility of achieving robustness of MAS. Thus, the 

authors have analysed the delegation between agents and applied it to holonic systems. 

Holons (holonic agents) are a useful method for purposes of modelling institutions in 

MAS [84]. This method is inspired from the notion of “recursive” or “self-similar” 

structures in the field of biological systems. The authors have stated that a holon (a 

holonic agent) consists of parts, which in turn are agents (and maybe holonic agents 

themselves). As a result, a holonic agent is part of a whole and consequently it assists 

to attain the aims of this superior whole. Additionally, modelling of institutions will 

make MAS robust, since institutions reduce complexity. A dynamic electronic market, 

which is able to manage transportation orders, has served as scenario for this work, 

where agents were created for this purpose [84]. 

 One additional study in this field was performed in [85], which proposed a new 

sociological concept. It studied self-organisation in multi-agent systems. Of particular 

interest in this study is the developed Framework for Self-Organization and 

Robustness in Multi-agent systems (FORM). The reason for that is that robustness 

(within the meaning of scalability) is closely related to self-organisation in some 

application scenarios. The authors have illustrated this framework with respect to the 

sociological features of organisations. FORM characterises organisational forms and 

relationships by means of the delegation concept in MAS. However, the study of MAS 

was limited to those developed for task-assignment. In short, the FORM-framework is 

used to model (and hereby to accomplish) self-organisation of MAS organisations 

[85]. 

 Most closely related to the work in [85], a new concept was introduced in [86] 

investigating organisational forms of MAS. This concept aims to build robust MAS 

utilising genetic algorithms that can be used as a search heuristic, since genetic 
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algorithms are effective mechanisms to deal with enormous search spaces. Based on 

this, the implemented genetic algorithm searches this space for superior forms of 

organisation. The authors have defined robustness with respect to a performance 

measure as follows: “Robustness is considered as graceful degradation of a system’s 

performance under perturbation.” [86]. Therefore, in order to evaluate the performance 

of the recent discovered forms (will be formed by recombination of mechanisms) of 

organisation under various circumstances, diverse robustness criteria were defined 

according to sociological theory (for details see [86]). That means, the evaluation of 

those forms of organisation was based on their involvement (beneficial effects) in the 

performance and robustness of the MAS in order to search for optimal combinations 

of the mechanisms. On the other hand, organisational forms (structures) are 

characterised by the specific applied mechanisms. This means that the behaviour of 

each organisational form will develop via the different possible mechanisms used by 

the organisations to satisfy their particular attributes. Here, the numbers within the 

gene stand for the used mechanism. For example, the first gene characterises the 

mechanism used for task delegation, where three specific mechanisms were 

implemented (economic exchange, economic exchange combined with gift exchange 

or authority). Based on this, the search process delivers organisational forms that have 

the ability to conform and act in a certain way, so that they demonstrate the best 

possible performance [86]. 

Summary: Robustness in MAS 

Many research projects in the area of multi-agent systems focus on robustness. These 

works investigate the robustness in various research fields, such as distributed Information 

Systems (IS), database technologies, social systems and organisation of agent societies. 

However, there is a clear lack of study of robustness in building multi-agent systems in 

technical systems. 

3.3.4 Metrics for robustness 

In order to have the ability to design robust multi-agent systems, robustness metrics are 

required. These metrics play the role to mitigate the expected degradation of the system 

performance when any disturbances occur. Many research projects deal with system 

robustness. Their objective is to measure robustness and to find an appropriate metric for it. 

To the best of our knowledge, there is a clear lack of study of these metrics in designing 

robust multi-agent systems. This thesis raises the question how the robustness can be 

guaranteed and measured in technical systems. 

In literature, there are diverse potential measures of system robustness proposed. Every 

robustness measure is based and designed according to the definition of the robustness 

concept in a specific context. The most common robustness measure uses the robustness 

definition related to the definition of a performance measure. Some robustness measures 

estimate the system performance using the average performance and its standard deviation, 

the signal-to-noise ratio, or the worst-case performance. Other robustness measures take into 

account the probability of failure of a system as well as the maximum deviation from a 

benchmark where the system has still the ability to deal with failures [23]. 
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Generalised robustness metric 

Viable quantitative approaches in order to measure robustness are required. Some 

approaches were introduced, among others, in [67] [69] [24]. Among those, both the FePIA 

procedure in [67] and the statistical approach in [69] are general approaches and consequently 

can be adapted to specific purposes (arbitrary environment). In both approaches, diverse 

general metrics were used to quantify robustness. These metrics estimate specific system 

features in the case of disturbances (perturbations) in components or in the environment of the 

system. Additionally, these metrics were mathematically described. Both approaches are 

applicable in embedded systems design [24] where embedded systems are designed as 

Systems on Chip (SoC). 

In the following, the FePIA procedure and the statistical approach will be explained. 

3.3.4.1 FePIA procedure 

The FePIA procedure is presented in [67] in order to derive a robustness metric so that it 

can be used for an arbitrary system. The authors there discussed the robustness of resource 

allocations in parallel and distributed computing systems. Consequently, a derived metric 

from the FePIA procedure was designed for a certain allocation of independent applications in 

a heterogeneous distributed system demonstrating the utility of the robustness metric. Here, 

the goal was to maximise the robustness of the produced resource allocations. Moreover, the 

authors have defined the robustness (indeed, a resource allocation is to be robust) as a 

restricted degradation of the system performance against uncertainties (perturbations) in 

specified system parameters. 

FePIA stands for Features Perturbation Impact Analysis. The FePIA procedure defines a 

schema that presents a robustness-radius for the system based on a tolerance region. This 

procedure identifies four general steps [67] [24]: 

1. The important system performance features fi that may cause degradation of the 

system performance. They are combined into a feature vector Φ: Φ = {ϕ1, ..., ϕn}. 

2. The perturbation parameters:  π = {π1, ..., πm}. 

3. The impact of perturbation parameters on system performance features. This is 

modelled with individual functions fi j : πi → ϕ j , selecting a tolerance region (βj
min , 

βj
max) for each ϕ j (see Figure 3-12). 

4. The analysis (it analyses the values of πi) to determine the degree of robustness. 

The main point here is to produce a mathematical relationship between the system 

performance features and the perturbation parameters (in the sense of the impact). After that, 

a variation in the perturbation parameters, which lead to a performance degradation exceeding 

the allowable performance limits (tolerance region), can be detected. This variation represents 

the robustness radius (optimisation problem) [69].  

So, r (ϕ j , πi) represents the robustness-radius of the system according to the system 

performance feature ϕ j and the perturbation parameter πi. Accordingly, in order to calculate 

the robustness of the whole system in the case of a certain perturbation parameter, the 

minimum across all features of system performance has to be found. Figure 3-12 illustrates 

the FePIA procedure.  
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Figure 3-12: The general FePIA procedure [24] 

 

Here, a tolerance region is defined by a lower boundary ( min ) and an upper boundary 

( max ), which can be expressed as in the next formulas: 

     rfrf origorig   ,minmin  (3.1) 

     rfrf origorig   ,maxmax  (3.2) 

A robustness definition for analog and mixed signal systems was derived in [24] using the 

FePIA procedure. The author has evaluated the proposed robustness formula applying affine 

arithmetic (modelling the deviations by affine expressions as in [68]) with a semi-symbolic 

simulation. The symbolic representation used in semi-symbolic simulations makes designers 

aware of the contribution of uncertainty to the deviation at the output of the simulated system. 

Also, the outcomes of the simulation are affine expressions, which semi-symbolically 

represent possible deviations [68]. 

As a result, a robustness definition for analog and mixed signal systems was derived that 

is based on the estimation of precision versus the robustness radius using the FePIA procedure 

as described in the next formula: 
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Where )(rad  characterises the confidence interval of deviations from π [24]. 

According to this formula, which can be used in the design phase, three cases can be 

considered. 

 First, the robustness is less than 1 and hence the system is not robust and it may fail. 

 Second, the robustness is equal to 1 and therefore the system is robust to some extent 

and it fulfils the minimum requirements. 
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 Third, the robustness is greater than 1 and hence the system is robust against 

additional deviations [24]. 

The drawback of the FePIA procedure is that the tolerance regions (the limits of the 

performance features) are arbitrarily selected. Thus, the FePIA procedure is applicable for 

systems where the system performance and the tolerable deviations can be well-defined [24]. 

3.3.4.2 Statistical approach 

The statistical approach has been introduced by England et al. in [69] to obtain a type of 

robustness metric, which can be used for an arbitrary system. The authors there present a 

methodology aiming to characterise and measure the robustness of a system (using a 

quantitative metric) in the face of a specific disturbance (perturbation). 

The authors define robustness as follows: “Robustness is the persistence of certain 

specified system features despite the presence of perturbations in the system’s environment.” 

[69]. 

Similar to the FePIA procedure, system performance features in the statistical approach 

will be taken into consideration versus the perturbation size (disturbance size). Therefore, the 

intention of the authors was to measure the amount of degradation of the system performance 

relative to the perturbation size [24] [69]. For this purpose, the cumulative distribution 

function (CDF) of a system performance feature is used. CDF is the proportion of 

observations less than or equal to a specified value (x) when a set of performance 

observations (X) is given [69]. The robustness can be determined according to the difference 

between functions F and F*. The function F is the CDF of a performance feature in the case 

of normal operating conditions; whereas the function F* is the CDF of a performance feature 

in the case of perturbations. 

The maximum distance between F and F* represents the amount of performance 

degradation. This distance (δ) was computed by means of the Kolmogorov-Smirnov (K-S) 

statistic (sup is the supremum): 

     xFxF
x

*sup 


  (3.4) 

Moreover, the distance (δ) has to be weighted with a weighting function  x  (to 

compensate for the underestimation of δ) producing the adjusted K-S statistic (δw): 

       xxFxF
x

w 


*sup  (3.5) 

The advantage of this method is that it considers the complete distribution of system 

performance (performance observations); whereas other methods consider only average 

measurements. In this context, it can be inferred that the system is robust against the applied 

perturbation when the distance between F and F* (the amount of performance degradation) is 

very small. Therefore, the smaller the distance is, the more robust the system becomes. Figure 

3-13 illustrates the statistical approach (the adjusted K-S statistic) [69]. 
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Figure 3-13: Characterising the robustness of a system according to the statistical approach [24] 

 

In Figure 3-13, the robustness of a system is characterised by the measurement of δw as a 

function of the applied perturbation size (in other words, by the gradient of δw relative to the 

amount of perturbation experienced [24]). This means that this system can withstand different 

levels of perturbation. Here, three cases can be recognised. First, the robust system, wherein 

δw exhibits a slight increase with increasing the perturbation size. Second, non-robust system, 

wherein δw shows a great (probably non-linear) increase with increasing the perturbation size. 

Third, the super-robust system, wherein δw exhibits a slight decrease with increasing the 

perturbation size. The perturbation in the last case is a profitable perturbation (see [69] for an 

example). 

According to [24], the proposed robustness metric based on the statistical approach is 

appropriate to use in the design process, where it acts as absolute robustness indicator for 

profiling targets. In this case, specifications must be executable, so that simulations can be 

carried out to supply an adequate amount of statistical data. 

Comparing with the FePIA procedure, this methodology is generally applicable to various 

classes of computing systems. Also, it is easier to determine the robustness. That means, the 

statistical approach has avoided the drawback of the FePIA procedure, so that a tolerance 

region needs not to be formed. Additionally, they employed their methodology in three 

applications of job scheduling: backfilling jobs on supercomputers (parallel machines), 

overload control in a streaming video server, and routing requests in a distributed network 

service. The third application shows the role of robustness to obtain improvements in system 

design. Additionally, as mentioned above, this robustness metric would have the advantage of 

the consideration of the complete distribution of system performance.  

Summary: Measures for robustness 

Several research projects propose diverse measures of system robustness. These projects 

measure robustness according to their definition of the robustness in different application 

areas. In this context, some quantitative approaches were used, such as the FePIA procedure 

in [67] and the statistical approach in [69]. However, there is a clear lack of study of the 

robustness metrics in designing robust multi-agent systems in technical systems. Therefore, 
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there still is the question how the robustness can be guaranteed and measured in technical 

systems. As a result, both approaches discussed above do not comply with the RobustMAS 

concept introduced in this thesis to characterise robustness. 

This non-compliance can be traced back to the fact that RobustMAS focuses on the 

robustness of hybrid central/self-organising multi-agent systems. For this purpose, 

RobustMAS proposes the concept of relative robustness for measuring the ability to maintain 

a specific minimum level of system performance (a desired performance level) in the presence 

of deviations from desired behaviour (e.g., unplanned autonomous behaviour) and 

disturbances in the system environment. Based on this, according to the RobustMAS concept, 

robustness is the ability of the system, with minimal central planning intervention, to return 

after disturbances (internal and external changes) to the normal state. 

3.3.5 Faults and fault tolerance 

Faults, errors and failures are threats which can be faced when the dependability and 

robustness of a system are addressed. These three threats are defined as follows [59]: 

“An error has been defined as the part of a system’s total state that may lead to a failure 

— a failure occurs when the error causes the delivered service to deviate from correct service. 

The cause of the error has been called a fault”. 

Consequently, ways or means have to be used so that the robustness and dependability of 

a system can be guaranteed in face of such threats. Fault prevention, fault tolerance, fault 

removal and fault forecasting are some of the ways that were developed to achieve this goal 

[59]. 

Robust systems should be fault-tolerant in order to deal (tolerate) with deviations (faults) 

and to continue working effectively and fulfilling their major tasks. When a system can not 

tolerate faults in the behaviour of its elements, then that may lead to a bad performance or 

even cause a system failure. In this context, a fault is the cause of an error (the cause of a 

deviation from correct behaviour) which may cause a failure. 

Many systems use different mechanisms (using specific architectures or algorithms) to 

detect faults (deviations) and to intervene if necessary. This means that such designed systems 

remain demonstrating fault-tolerant operation against a set of faults. Fault tolerance avoids 

system failures in the presence of faults. Systems therefore will exhibit a safe behaviour in 

spite of faults. 

However, attention may be paid to related concepts of fault tolerance. For an example, the 

repair concept is related to fault tolerance. Repairs and modifications, which occur during the 

use phase, are included under the notion “maintenance”. That means, repair is one form of 

maintenance and can be seen as part of fault removal. Additionally, repair situations should be 

taken into account by fault forecasting [58]. 

3.3.5.1 The taxonomy of faults 

Various faults, as mentioned in [59], may have an effect of a system during its 

development and use. These faults can be grouped in accordance with eight major 

classification criteria.  

Figure 3-14 shows these fault classes (elementary faults). 
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Figure 3-14: The elementary fault classes [59] 

 

It is possible that combinations of these fault classes can be created. The classes of 

combined faults and their matrix and tree representation were introduced in [59]. 

3.3.5.2 The taxonomy of failures 

Failures of a system can be grouped in accordance with four viewpoints [58]. Figure 3-15 

shows these failures aspects, whereas every failure mode describes incorrect service with 

respect to one viewpoint. For complementary information about every viewpoint, the reader 

can refer to [58]. 

 

Figure 3-15: Failure modes [58] 
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In this regard, two types of systems can be found in the literature according to their modes 

of failure: fail-uncontrolled and fail-controlled systems. The fail-controlled systems do not 

own mechanisms to detect errors and therefore they may behave arbitrarily and maliciously 

[60]. However, the fail-controlled systems were designed so that they fail certainly in 

dedicated modes of failure. 

In the literature, approaches to fault-tolerance can be found in two domains: 

- Multi-agent systems 

- Traditional distributed and database systems. 

3.3.5.3 Fault-tolerance in multi-agent systems 

A (multi-agent) system is fragile because failures may bring down the whole system. 

Therefore, a multi-agent system has to possess the ability to avoid such failures. Fault-

tolerance is one of the more common concepts (means) that can be used to design robust 

multi-agent systems. In order to do that, several approaches were developed using algorithms 

or specific architectures. Two major approaches were suggested for fault-tolerance in multi-

agent systems. The first approach is based on exception handling and recovery (healing 

approach) [60]. The second approach is based on redundancy, i.e., replication (prevention 

approach), which is commonly used in data bases. A brief study by [62] on multi-agent 

systems and fault-tolerance demonstrated both approaches. The authors showed that the 

redundancy approach achieves fault-tolerance by means of tolerating faults of the components 

in the MAS so as it avoids happening of problems. However, the exception handling approach 

claims that the system programmer has to handle the occurrence of exceptions through the use 

of additional code. Since the system programmer may neglect potential exceptions, it would 

be better to detect any abnormal behaviour autonomously whenever the tolerance range is 

exceeded. 

The authors of [63] propose two categories of fault tolerance in multi-agent systems. Both 

have to identify failures and try recovering from them. The first category uses guards 

(sentinels) that are located external to the agents. These guards observe all inter-agent 

communications. The second category uses self-monitoring (introspection) observing the 

agent's behaviour at run time. Regarding the first category, several approaches from the 

literature to fault tolerance in multi-agent systems are also pointed out by [63]:  

• Use of external sentinel agents: The sentinel agents have the tasks of monitoring all 

communications, detecting agent crashes, and taking corrective actions. 

• Use of exception-handling service: The exception-handling service is a centralised 

approach to monitor the overall progress of the system aiming to detect, diagnose 

faults, and take corrective measures. 

• Use of a social diagnosis: The social diagnosis approach enables agents with similar 

social behaviour to compare their individual state with the state of other agents in 

order to detect possible failures. 

• Use of caching. 

The last approach of this category is very interesting for the study of robustness. The 

caching approach has been studied in [156] in the context of a multi-agent system, which uses 

matchmakers in order to improve the system robustness against matchmaker failures. This 
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approach uses caching of the matchmaking knowledge by individual agents (locally) of the 

multi-agent system. Consequently, the use of matchmaking information cached locally will 

decrease the load on a matchmaker [156]. This approach compliments the work in [64] [63] 

and may be deployed with techniques that are based on teamwork (see the section 3.3.1.14 

“Fault-tolerance to design robust multi-agent systems” that presented an approach to combine 

issues from multi-agent systems and primitive fault-tolerance techniques).  

3.3.5.4 Traditional Fault-Tolerance Techniques (Fault-tolerance in traditional 

distributed and database systems) 

In general, the traditional fault-tolerance techniques are considered to be appropriate for 

particular cases and consequently for particular failures. Therefore extra support, such as 

infrastructures, equipment, mechanisms ...etc is needed [63]. There are various techniques for 

fault-tolerance that have been developed in traditional distributed and database systems. 

These techniques address the occurred failures using recovery strategies. A brief review in 

[63] showed that the most essential fault-tolerance techniques used in traditional distributed 

and database systems use redundancy as main principle. Here are some examples of these 

techniques: 

- Object group replication. 

- Virtual synchrony. 

- N-version voting. 

- Warm and hot backups. 

The first three techniques require particular mechanisms, wherein the replicas can 

communicate and synchronise among them. Several of these traditional techniques, which are 

categorised in three groups (techniques for database recovery, techniques for application 

recovery, and techniques for recovery of distributed systems) are illustrated in Figure 3-16.  

 

 
 

Figure 3-16: Traditional Fault-Tolerance Techniques [63] 
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It is noteworthy that most of these recovery techniques largely concentrate on replication 

in order to achieve more robustness. Replication techniques have the advantage of duplicating 

all important system data and services that may fail. That means, the needed replication is for 

the purpose of fault-tolerance, but this leads in turn to overheads (due to replicas). 

Summary: Faults and fault tolerance 

Robustness in computing systems is mainly related to fault tolerance. Fault-tolerance is 

one of the more common concepts used to design robust multi-agent systems. Additionally, 

fault tolerance is one of the means to attain dependability, since fault tolerance is generally 

used to avoid service failures when faults occur. 

Robust systems should be fault-tolerant with the aim of making them capable of dealing 

(tolerating) with deviations (faults, disturbances) so that they continue working. On the 

contrary, systems that are not fault-tolerant, regarding the faults identified in behaviours of 

their individual components, may fail or their performance may deteriorate considerably 

leading to inacceptable situations. Consequently, the fault-tolerant trait of a multi-agent 

system architecture can play a main role in designing a robust multi-agent system. Based on 

this, the performance of such multi-agent systems has to remain acceptable in the face of 

faults (deviations) or disturbances. 

RobustMAS uses the fault-tolerance (deviation-tolerance) capabilities. It makes a decision 

whether the detected deviations (faults) from the desired (planned) behaviour can be tolerated. 

That means, it determines if replanning is necessary according to the tolerable deviation limit, 

where a tolerance region should be formed. RobustMAS defines a safety distance (free 

positions) around the agents in their shared environment. Accordingly, it tolerates a deviation 

from planned behaviour unless the limit of the safety distance is exceeded. 

Similar to the authors of [63], RobustMAS uses two categories of fault tolerance in multi-

agent systems. These categories will detect deviations (faults) or disturbances and try 

recovering from them. The first category uses an O/C architecture. This architecture observes 

behaviours of agents and detects if the agents are not respecting their commitments (central 

plan, where the planned behaviour is given to agents only as a recommendation). The second 

category uses self-organising behaviour, because the agents in RobustMAS are autonomous 

(decentral, self-organised) and thus deviations from the planned behaviour are possible. Here, 

autonomous agents may behave in a fully autonomous way using only their local rules (in the 

sense of self-monitoring supported by the limited local capabilities) causing deviations. Both 

categories form the hybrid central/self-organising approach of RobustMAS. 

3.4 Intelligent Transportation Systems 

In general, the notion “Intelligent Transportation Systems (ITS)” is nowadays used by 

many researchers who deal with the problems of transport systems in order to improve them, 

taking into account many aspects, such as: transport safety, transport efficiency. ITS is based 

on communication and information technologies that can be applied to vehicles and to the 

available infrastructure of transport systems [87]. Additionally, it contains the applications of 

both informatics and telecommunications in traffic and automotive engineering [88].  ITS’s 

goals can be summarised as follows [88]: increase of traffic safety, improvement of efficiency 

of road traffic, reduce of environmental pollution and increase of travel comfort. For many 
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years, diverse research projects were engaged in vehicular traffic aiming to achieve one or 

more of these goals.  

In this context, several notions became well-known such as: intelligent cars (vehicles), 

intelligent intersections, autonomous cars (vehicles), floating car data, autonomous driving, 

Car-to-Car (Vehicle-to-Vehicle) communications, Car-to-X communications, telematics 

systems, and cooperative traffic management (e.g., cooperative traffic signal system). 

The work in [89] deals with Vehicle-to-Vehicle communications demonstrating the 

problem of vehicular ad hoc network (VANET) where the robustness of message exchange 

between vehicles by means of radio communication is considered. The authors have provided 

an appropriate model of communication in VANETs (packet reception model). 

In the context of ITS, several intelligent transport applications were developed such as 

[87]: emergency vehicle notification systems (via in-vehicle eCall devices that make an 

emergency call automatically after an accident), automatic road enforcement (e.g., a traffic 

enforcement camera system, to identify vehicles that violate the speed limit), variable speed 

limits (with respect to the road congestion, e.g., on Britain's M25 motorway), collision 

avoidance systems (e.g., sensors on highways in Japan), cordon zones with congestion pricing 

(e.g., in Singapore, London and Stockholm to collect a congestion fee from vehicles in a city 

centre) and dynamic traffic light sequence (via intelligent RFID traffic control). 

Intelligent transport applications utilise one or more of various technologies such as [87]: 

wireless communications (e.g., UHF and VHF frequencies, WAVE (IEEE 802.11) and 

WiMAX (IEEE 802.16) protocols, GSM, or 3G), computational technologies 

(microcontroller, microprocessor, embedded system platforms, artificial intelligence, and 

ubiquitous computing), floating car data/floating cellular data (in order to collect raw data for 

vehicles using one of the following methods: triangulation method, vehicle re-identification, 

or GPS-based methods), sensing technologies (e.g., RFID, intelligent beacon, infrastructure 

sensors such as in-road reflectors, vehicle-sensing systems to deploy the infrastructure-to-

vehicle and vehicle-to-infrastructure electronic beacons), inductive loop detection (inductive 

loops in a roadbed are used to detect vehicles via loop's magnetic field in order to count the 

number of vehicles, as well as to measure the speed, length, and weight of vehicles and the 

distance between them), and video vehicle detection (e.g., automatic incident detection or 

automatic number plate recognition). 

ITS is of particular interest to this thesis, since it is related to the application scenario 

used. Traffic control is a special application domain of RobustMAS, particularly the 

application scenario "a traffic intersection without traffic lights". This scenario uses 

autonomous vehicles aiming to solve a traffic problem. In this context, ITS has numerous 

applications in traffic and automotive engineering, where intelligent vehicles and intelligent 

intersections are used. Additionally, ITS tries to achieve transport safety and transport 

efficiency. 

3.5 Agents in Traffic and Transportation 

Diverse research projects use agent technologies and MAS technologies to develop 

modern and efficient traffic and transportation systems. Safety and efficiency of traffic and 

transportation systems was, for a long time, and still is a great challenge for researchers and 

engineers of traffic and transportation systems. Thus, traffic engineering (transportation 
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engineering) becomes more and more important in line with the tremendous development in 

modern technology. In this context, complex traffic and transportation scenarios can be 

modelled using MAS techniques and agent techniques and then simulated. With respect to the 

purpose of the selected transportation scenario, appropriate control strategies will be selected 

(e.g., single intersection control, traffic restrictions in roads, and synchronization of traffic 

lights) [90]. Furthermore, Cooperative Adaptive Cruise Control (CACC) system is a part of 

ITS. CACC introduces solutions to problems of automotive transportation (e.g., security, 

efficiency and passenger comfort) [91]. 

Agents in Traffic and Transportation (ATT) is one of the most active research areas 

closely related to the application scenario “traffic intersection without traffic lights”. In this 

scenario, vehicles are modelled as agents. In the context of ATT, a lot of research projects are 

carried out. This section will explain initially some Non-MAS traffic control systems focusing 

on the centralised solution in urban traffic systems. After that, MAS in traditional traffic 

control systems will be discussed. Finally, related work that mainly uses agent technologies to 

support the self-organisation of autonomous cars will be described. 

Non-MAS traffic control systems  

There are several approaches that deal with traditional traffic systems (traditional traffic 

lights) trying to optimise traffic light phases. SCOOT [157] and SCAT [158] are two well-

known traditional traffic control systems (not MAS), which use a centralised approach in 

order to solve control tasks in urban traffic systems. However, these centralised approaches 

have the drawback that they are not scalable and they need long response times. Therefore, 

the focus was shifted towards the investigation of self-organised or locally organised solutions 

to traffic control. In this regard, there are many approaches that attempt to improve the 

traditional traffic control systems, which are based on traffic lights, using agent technologies 

and MAS technologies. 

MAS in traditional traffic control systems 

An agent-oriented approach combining MAS and evolutionary game theory has been 

developed by Bazzan in [159]. The approach represents a new method for decentralised traffic 

control. In this approach, each intersection is modelled as an individually-motivated agent. 

Therefore, the system contains multiple intersection managers (multiple agents). These agents 

have two types of goals. First, local goals are to enable vehicles to cross the intersection. 

Second, global goals are to minimise travel times of vehicles across the intersection. 

Consequently, intersection managers (agents) form a distributed traffic signal system, which 

should be coordinated in an efficient and decentralised manner. Compared to the RobustMAS 

concept, Bazzan’s system focuses on the coordination of multiple intersection managers, 

while RobustMAS concentrates on the coordination of agents (vehicles) at one intersection. 

Another approach has been presented by Roozemond in [160]. The author tries to provide 

vast amounts of reliable traffic data so that the drawbacks of the SCOOT approach (the lack 

of traffic data) can be solved. The approach aims to enable traffic intersections to act 

autonomously w.r.t. sharing the data they collect. After that, the gathered information will be 

utilised by the intersections in order to predict the traffic flow in short- and long-term using an 

urban traffic network model. Consequently, multiple intersections are able to share 

information so that each intersection can be kept informed about the recent traffic situations. 

Compared to the RobustMAS concept, Roozemond's system focuses on the cooperation of 
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multiple intersections to gather more traffic data, while RobustMAS concentrates on the 

coordination of vehicles at one intersection. 

In contrast to the system targeted by this thesis, both Bazzan’s system and Roozemond's 

system consider traditional traffic control systems and consequently human drivers (human-

controlled vehicles). However, RobustMAS considers virtual traffic lights and autonomous 

vehicles. 

In the context of the fairness approach of vehicles in traffic systems, Balan et al. [161] 

presented an approach that represents a history-based traffic control. The approach aims to 

maximise fairness of vehicles so that all vehicles may encounter similar delays. It is a multi-

intersection approach, where traditional traffic lights are used at each intersection. 

Additionally, credits for vehicles will be allocated according to the delays (shorter or longer) 

of these vehicles earlier in their journey (historically) so that vehicle A will take a higher 

credit than vehicle B if vehicle A has a longer delay than vehicle B. Consequently, vehicle A 

will take a higher priority (expected to encounter shorter delays) than vehicle B at following 

intersections. Compared to the RobustMAS concept, Balan's system is a multi-intersection 

approach considering traditional traffic control (traffic lights), while RobustMAS is an 

intersection approach using virtual traffic lights to coordinate autonomous vehicles. 

Related work regarding the control of the individual vehicles is also carried out. In 

contrast to a multi-intersection system, such related work is known as a multi-vehicle system. 

However, much of this work focuses on the concept of vehicle platoons. This concept enables 

vehicles to create platoons of vehicles, where these platoons are groups of vehicles (like the 

train). The foremost vehicle makes decisions for the whole platoon so that the effect of stop-

and-go driving will be minimised. A MAS approach has been presented by Halle et al. [162]. 

Here, every vehicle is controlled by an agent. The approach forms platoons, which represent 

groups of vehicles with different degrees of autonomy aiming to create a proposed 

collaborative behaviour of multiple vehicles. Compared to the RobustMAS concept, Halle's 

system exploits traditional traffic lights at an intersection to provide automated control of 

vehicles, while RobustMAS coordinates autonomous vehicles in an intersection without 

traffic lights (autonomous vehicles are free from the control of traffic lights). 

MAS in traffic intersections of autonomous cars 

In the context of using MAS in traffic intersections of autonomous cars, several research 

projects are carried out. Such works are considered as artificial examples, since most of them 

are not applicable presently to realistic environments. Moreover, they demand further 

additional car features, as well as intersections infrastructure. Works more related to this topic 

are: Multiagent Traffic Management [5], OCCS [3], SKY [136], various ICA- and CICA 

projects focusing on Intersection Collision Avoidance (ICA) and Cooperative Intersection 

Collision Avoidance (CICA) [142]. These works will be explained and discussed in section 

3.7.1 (Intersections for autonomous cars).  

As a result, not one of these research projects discussed above focuses on the robustness 

of traffic systems use agent technologies. Additionally, the idea of applying a hybrid solution 

(central/self-organising) to control traffic systems using MAS technologies has not been 

addressed. 
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3.6 Adaptive traffic control systems 

Traffic control is a multi-disciplinary and a very active area of research. It deals generally 

with traffic congestion and the management of traffic flows by using certain means which 

observe the traffic status in order to detect abnormal and emergency situations and to change 

its control strategy accordingly. Static traffic control systems typically have a static timer 

controller that manages the traffic lights; whereas adaptive traffic control systems have the 

ability to adapt their control strategy aiming to increase the system performance or to avoid 

the traffic congestion. 

Several related works, which deal with such systems, have developed adaptive and self-

configuring traffic systems (self-configuration or self-control indicates adaptivity). Two 

related works will be presented in this section.  

The first work, Organic Traffic Control (OTC) [92] [93], is a novel approach to control 

traffic lights at urban traffic intersections. It proposes an architecture for an adaptive learning 

node controller that enables the dynamic reconfiguration of the traffic parameters [96]. This 

architecture is based on the Observer/Controller concept of the Organic Computing 

community (OC), where OC systems can reconfigure themselves at runtime according to 

internal or external changes [98]. OTC is based on traffic-responsive control in order to 

realise a decentralised control of road traffic [97]. Based on this OTC approach, another 

approach, Organic Traffic Control Collaborative (OTCC) [94] [95], was presented. It tries to 

enable an OTC system to control and optimise traffic signals in urban road networks. 

Therefore, the OTC architecture was extended to facilitate the collaboration among the node 

controllers [98]. Furthermore, this approach represents a decentralised solution (hierarchically 

organised) to achieve self-improvement at runtime [99] [100]. After that, the (OTC
3
) project 

was coordinated in order to realise an OTC system extending the presented system with route 

guidance as well as a driver information component [101]. According to the current and 

expected state of the urban road networks, route recommendations will be conducted so that 

travel times of drivers can be minimised and traffic congestions can be avoided. A novel DRG 

(Dynamic Route Guidance) approach for road networks was presented in [102] based on the 

OTC system. 

The second work, Adaptive Self-Configuring Traffic Control Systems [103], is a 

completely adaptive and self-configuring traffic light controller. It aims to decrease the 

waiting times (mean and variance of them), which are measured by using fixed cycle or fixed 

time interval algorithms. The traffic light controller presented in this approach integrates a 

feedback loop based on the sensed traffic rate. Hereby, the collected information will be used 

to optimise the mean waiting time at the traffic lights. It is an embedded controller that adapts 

its strategy in order to improve the traffic flows by adjusting the intervals of the traffic lights 

[103] . The authors have attempted to design the traffic control system as general as possible 

in order to be able to test different models. The system model has three components: an 

intersection module, a simulator module and lane modules, where the lane module includes 

traffic rate, state, and car arrival times. Briefly, this proposed adaptive control approach 

demonstrates better performance than a static control system (fixed-cycle controller) in 

various different scenarios. Additionally, it is a general approach to optimise the traffic flows; 

thereby it can be applied to any environment (traffic intersection) [103].  
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3.7 Autonomous driving and autonomous cars 

In the near future, it is expected that vehicle driving will be an opportunity for human 

(drivers) to utilise driving time in a positive way. Over decades, new driver assistant devices 

were integrated into modern cars aiming to reduce the driver's responsibility of driving and to 

make the driving more safe and comfortable. In this context, two categories of autonomous 

cars can be recognised; partially autonomous cars and fully autonomous cars (an autonomous 

car is also known as robotic, driverless or vehicle).  

Several research projects aim to construct a fully autonomous car, where autonomous 

driving in dynamic environments is a big challenge. Autonomous driving aims to replace 

ordinary cars (manual cars) that are controlled completely by humans with autonomous (self-

driving) cars that can drive themselves. Some advantages of fully autonomous cars can be 

stated as follows: human safety (less car accidents), convenience (as personal chauffeur, 

simple or automated parking, save the time of all family members) and beneficial side effects 

to the environment (avoid wasting gas due to their optimised driving) [104]. An autonomous 

car has the ability to capture the environment and sense the world by means of several 

available techniques like laser, radar, lidar, GPS and computer vision [131].  

RADAR (Radio Detection and Ranging) is a sensor that detects objects using 

electromagnetic waves (especially metal) allowing to avoid collisions or to coordinate car’s 

speed. Similar to RADAR, LIDAR (Light Detection and Ranging) sensor is an enhancement 

of RADAR sensor using pulses of light instead of electromagnetic waves and consequently it 

can be easily manipulated. In the case of a LIDAR sensor on the front of the car, this car is 

able to recognise objects and their distance, which are located directly in front of the vehicle 

to perform an emergency stop if necessary. In the case of a LIDAR sensor on the roof of the 

car, the sensor unit consists of two LIDAR sensors orientated at 90 degrees to each other. By 

the rotation of this unit and the entanglement of both LIDAR sensors, a 3D image of the 

current environment can be produced [132]. Moreover, GPS (Global Positioning System) / 

IMU (Inertial measurement unit) is a receiver used for global positioning of the car and for 

three-dimensional positioning in space. Furthermore, cameras can be used in order to take 

pictures of the current environment and then evaluated in terms of their information content 

[132]. Additionally, infrared sensors are also employed in modern cars where a thermographic 

camera (sensor) or infrared camera (sensor) can be utilised to generate an image using 

infrared radiation. Infrared sensors will support the driver especially during a night drive to 

highlight objects, mostly creatures, from the environment making them widely visible [132]. 

The autonomous automobile “RAVON” (Robust Autonomous Vehicle for Off-road 

Navigation) is a realistic example of an autonomous car where different types of sensors are 

combined. This car was developed at the University of Kaiserslautern for use in its 

surrounding area [133]. Other research projects carried out in the context of autonomous cars 

are:  

 The projects “CAR EcoSystem” and “SMART@CAR” of the “Center for Automotive 

Research” at the Ohio State University (OSU) [106]. 

 The project “DARPA Grand Challenge”, earlier known as “DARPA Urban 

Challenge” [107]. 
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 Autonomous Outdoor Robot RTS-HANNA, at the Institute for Systems Engineering 

(ISE), Real Time Systems Group (RTS) of the Leibniz University Hannover [108]. 

The RTS Group is active in several research fields. Of particular interest is the field of 

autonomous and mobile robots. An interesting study of self-organisation and task 

distribution in autonomous mobile robotic systems is done by Smolorz and Wagner 

[111].  

 The “Autonome 2030 concept” that is a transport system designed for the future [109] 

[110]. 

 The project “Stadtpilot” at the “Technical University Braunschweig (TU 

Braunschweig)” in Germany, including the CarOLO team and two cars: “Henry” and 

“Leonie” [112] [113]. 

 The project “AutoNOMOS” at the “Free University Berlin (FU Berlin)” in Germany 

[114], including the autonomous cars: “Spirit of Berlin” [115], “Dodge Grand 

Caravan” [116], and “MadeInGermany” [117]. 

 The project “Google Driverless Car” has modified the car “Toyota Prius” so that it can 

operate as a Google self-driving car [119]. 

 The issue of “driving 3.0” at the Karlsruhe Institute of Technology (KIT) in Germany 

[121]. 

 The “Halo Intersceptor” concept by the UK designer Philip Pauley [122] [123]. This 

concept presents a multi functional vehicle that would serve as car, boat, plane and 

helicopter. 

Other projects do not aim to construct a fully autonomous car, but aim to provide 

technologies or components for future autonomous cars. Therefore, these components, which 

can be considered supporting partially autonomous features, were included in modern cars 

such as traction control and electronic stability control systems in order to increase driver’s 

safety [104]. These partial autonomous features are called “driver-assistance” in other 

literature and can be categorised in various groups: sensorial-informative, actuation-corrective 

and systemic [131].  

 First, sensorial-informative: This group of mechanisms can notify the driver of events 

that may be ignored by him like; Lane Departure Warning System (LDWS), rear-view 

alarm, visibility aids, blind spots, night vision, etc [131]. 

 Second, actuation-corrective: This group of mechanisms can perform the instructions 

of the driver more effectively than he does. Examples are: Anti-lock Braking System 

(ABS) also known as Emergency Braking Assistance (EBA), Traction Control system 

(TCS), Four Wheel Drive (AWD), Electronic Stability Control (ESC) also known as 

Electronic Stability Program (ESP), Dynamic Steering Response (DSR), traction 

control, airbag systems and Intelligent Speed Adaptation (ISA) [131] [132]. 

 Third, systemic: This group provides several mechanisms such as; automatic parking, 

following another car on a motorway – "Enhanced" or "Adaptive" Cruise Control 

(ACC) [105], Cooperative Adaptive Cruise Control (CACC) [135], distance control 

assist, dead man's switch [131].  
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However, the communication with other vehicles or with the intersections is a prerequisite 

for implementing such systems. Here, Car-to-Car (C2C) in addition to Car-to-X are 

communication technologies used by autonomous vehicles. 

Car-to-Car (C2C) communication 

Car-to-Car (C2C) or Vehicle-to-Vehicle (V2V) communication is a promising technology 

aiming to improve road safety and comfort as well as to decrease the risk of accidents and 

congestion in traffic systems. Since the implementation of modern WLAN technologies is 

achieved fast for C2C communication, modern cars utilise widely available WLAN 

technologies. Here, WLAN 802.11p was used to enable a Wireless Access for Vehicular 

Environments (WAVE) such as ambulances and traveller cars [124]. In this regard, many 

project researches in the area of Car-to-Car communication are managed such as: FleetNet 

[127], Invent [128], NOW (Network On Wheels) [129]. 

Car-to-X communication 

Another budding technology in this context is Car-to-X communication. This technology 

is based on using wireless communication between vehicles (V2V), or cars (C2C), on one 

side and between vehicles and infrastructure on the other side. Car-to-X communication 

means that any road user can involve in this communication system. It was employed in 

diverse applications so that safety measures can be improved. In this context, Car-to-X 

communication can be regarded as main application of mobile ad hoc networks that enable 

various communication network users to exchange the information needed about the traffic 

system like safety and traffic data [125]. This data can be used by warning and assistance 

systems in order to hand out warnings about any upcoming danger. One of the most important 

researches in the area of Car-to-X communication is the “simTD” project in Germany [126]. 

Summary: Autonomous cars 

Many research projects have been carried out in the context of autonomous cars. Here, the 

more important communication technologies needed are Car-to-Car (C2C) and Car-to-X 

communications. Moreover, a variety of technologies are required for the effective 

implementation of autonomous cars. These technologies are presumed to have been 

developed entirely and consequently they are not subject of this thesis. Likewise, RobustMAS 

assumes that (for details see section 2.2 Required technology):  

 An autonomous car is able to capture its environment sensing the world around it 

using techniques like laser, radar, lidar, GPS and computer vision.  

 Some partial autonomous features are available like Lane Departure Warning System 

(LDWS), Anti-lock Braking System (ABS), and Adaptive Cruise Control (ACC).  

 Car-to-Car (C2C) and Car-to-X communications are existing technologies that are 

responsible for the interaction between vehicles and infrastructures of roads. 

3.7.1 Intersections for autonomous cars 

As mentioned in section 3.7, many research projects were carried out towards building 

autonomous cars that navigate through roads and drive themselves. This section presents the 

idea that deals with the problem of coordination and management of autonomous cars at 

traffic intersections without traffic lights. Such intersections will be available and possible in 
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the near future according to the recent advances in autonomous cars that will be controlled 

without direct human involvement, as well as the recent advances in Car-to-X communication 

technology. In this regard, the coordination of movements of autonomous cars can be 

considered as a path planning problem which was studied in several works such as in [11] [2] 

[5]. Thus, a plan for multiple agents (autonomous cars, robots, etc.) to move in a common 

environment was required so that they can travel reliably in their environment. 

Most closely related work to this idea was proposed in the project “Multiagent Traffic 

Management” by the University of Texas at Austin [5]. In this project, autonomous cars are 

modelled as agents that depend on a central plan developed by the intersection manager. 

Every car uses (obeys) this plan to cross the intersection without traffic lights safely so that 

the movements of all cars can be coordinated. Moreover, several strategies were defined to 

coordinate the autonomous cars, but all strategies are based completely on central planning 

where all cars must comply with the plan. The car agents work according to a reservation-

based concept so that traffic congestion can be avoided. The intersection manager agent can 

grant time slots as reservation for the cars in the intersection, which is divided into a grid of 

tiles of reservation. The work defines a traffic system called a managed intersection control 

mechanism (a traffic light system that guides an intersection is also a managed mechanism, 

where the traffic light acts as the coordinator agent), because an intersection manager by 

every intersection operates as the coordinator agent of the intersection that has to coordinate 

traffic [143]. 

 According to the high costs of the managed intersection control that involves specialised 

infrastructure, the project “Multiagent Traffic Management” has suggested an unmanaged 

intersection control mechanism, particularly at low-traffic intersections. The unmanaged 

intersection control is based on vehicle-to-vehicle "V2V" technology (peer-to-peer) so that no 

specialised infrastructure at the intersection is required. This means that no coordinator agent 

will be needed to manage the traffic in the intersection (a stop sign system that guides an 

intersection is also an unmanaged mechanism, where the stop sign acts as the coordinator 

agent) [143]. The unmanaged intersection control is useful in the case that the managed 

intersection control is not feasible (too costly and even not required or efficient for small 

intersections). It should be pointed out that the behaviour of the developed driver agent 

encompasses three steps: lurking (with respect to lurk distance in order to communicate with 

other agents), creation of a reservation and intersection crossing [143]. Additionally, the 

vehicle safety can be assured only if the driver agent's behaviour will abide predetermined 

rules in the intersection. The authors have compared the three competing systems: unmanaged 

V2V system, unmanaged four-way stop signs system, and managed traffic-lights system. The 

simulation was based on a 4-way intersection so that each direction has only one lane for 

traffic. The results have showed that the unmanaged V2V system performs better than other 

systems in terms of performance, but only in the case of intersections with low traffic 

volumes [143]. On the contrary, in the case of high traffic volume intersections, the managed 

traffic-lights system will have enormous advantages in terms of performance and thereby it is 

more appropriate. Consequently, the authors in [143] have concluded that the best test case of 

unmanaged intersection control will be attained by using a 4-way intersection that has a single 

lane in each direction. 

 A study of the impact of a multi-agent intersection control protocol for fully autonomous 

vehicles on driver safety is presented in [6] in the project “Multiagent Traffic Management”. 
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The safety mechanisms in the intersection were explained to cope with catastrophic 

mechanical failures. In this study the simulations deal only with collisions. It assumes that the 

colliding vehicle sends a signal and the intersection manager becomes aware of the situation 

immediately. Thus, the goal of the work is to mitigate any catastrophic failure that may be 

encountered in intersections of autonomous vehicles. 

 Other related work to cope with the coordination problem of autonomous cars at 

intersection was introduced in [3]. The work proposed a priority-based algorithm that 

produces a collaborative behaviour between cars of an intersection without traffic lights. The 

priority allocation mechanism was applied on diverse distribution levels of the generic O/C 

(observer/controller) architecture. Consequently, the priority allocation occurs on diverse 

abstraction levels (a macro or a micro level) with respect to the implemented O/C architecture 

[3]. In this context, priorities for cars will be allocated according to the waiting times of these 

cars in the intersection so that car A will take a higher priority than car B if car A has a higher 

waiting time than car B. So, the controller of the O/C architecture has to determine these 

priorities of the cars and thereby it will send the appropriate command to the corresponding 

cars (drive or stop). The advantage of this concept is that the dynamic priority allocation 

algorithm enables the O/C architecture to adapt itself to changes in traffic flows of the 

intersection without traffic lights [3]. 

A detailed comparison of RobustMAS with these works can be found in section 3.8 

(Comparison of the RobustMAS concept with related work), or a brief comparison in 

(Summary: Intersections for autonomous cars). The comparison shows one of the more 

distinguishing features of RobustMAS. The advantage of this feature is that the intersection 

size can be arbitrary and thus RobustMAS can handle a large amount of cars. Moreover, the 

comparison illustrates that the OCCS project is the start point of RobustMAS. 

Intersection Collision Avoidance (ICA) 

In the context of intersections of autonomous cars, focus can be placed on Intersection 

Collision Avoidance (ICA) that is able to warn a human driver in the case of entering the 

intersection perilously. In the future, it may even enable autonomous cars to carry out safety 

measures by such unsafely or riskily entering. Therefore, a Field Operational Test (FOT) is 

required to conceive the efficiency and usefulness of ICA in order to avoid: crossing collision, 

stop-sign violation, red signal violation and rear-end collision by red signal queue [136]. 

There are several projects that deal with the concept of Intersection Collision Avoidance. 

The SKY Project is one of these projects. It is a national project in Japan with 6 partners; the 

project management is by NISSAN MOTOR CO.,LTD. The project has started in 2004 in 

Yokohama city in Japan as a field operational test of applications of real traffic systems. 

Some of SKY the project ideas are: intelligent speed advisory, intersection collision 

avoidance using Vehicle-to-Intersection (V2I) communication, small children traffic safety 

using RFID, pedestrian traffic safety using GPS cell phone, hazard warning on winter road 

and real time probe car data collection [136]. The goals of this project are to mitigate traffic 

congestion utilising ITS as well as to decrease traffic accidents. For this purpose measures 

should be taken such as: collaboration with infrastructure, technology in vehicles, and also 

taking advantage of information about the state of vehicles in the neighbourhood and the 

immediate traffic environment [136]. 



Chapter 3. State of the art 56 

Another ICA work was the project by the Mechatronics Laboratory and Department of 

Computer Science at the University of Paderborn, in addition to C-LAB at the University of 

Paderborn and Siemens Nixdorf lnformationssysteme AG. The goal of this project was to 

develop a decentralised solution to the problem of intersection collision avoidance aiming to 

manage autonomous vehicles at intersections. The proposed decentralised intersection 

management can be achieved without the need to any additional infrastructure at the 

intersection with the intent to enhance safety as well as to avoid congestion [139]. So, 

semaphore-based (permissions-based) algorithms were used in order to guarantee collision 

avoidance, where all intersecting points of vehicle’s trajectories are considered as potential 

points of collision [137]. Such algorithms ensure that only one vehicle can stay in a critical 

section of the intersection. The idea is similar to the token-ring concept used in computer 

networking. In this regard, computers in the network (vehicles in the intersection) try to attain 

a token to send out data (vehicles try to reserve all required tiles in the intersection to traverse 

across it); whereas other computers can only receive data (other vehicles can not traverse 

across the same tiles simultaneously) [138]. After that, the current computer has to pass the 

token to the next computer (the next vehicle will get the opportunity to reserve its required 

tiles). The collision avoidance algorithm was verified by simulations using a Petri net analysis 

demonstrating its security and correctness [137].  

Another idea related to the concept of Intersection Collision Avoidance (ICA) using 

autonomous cars is “Steering behaviours for autonomous characters” introduced in [140]. 

Autonomous characters are a kind of autonomous agents used in computer animation as well 

as in interactive media like video games and virtual reality [140]. This work has shown the 

capability to steer autonomous characters (to navigate finding the way) in the neighbourhood. 

The applied mechanism (autonomous steering) enables autonomous cars in intersections to 

avoid collisions. The important highlight of this work was that no special agent or particular 

infrastructure at the intersection is needed. Additionally, autonomous steering mechanisms 

will run at arbitrary intersections in the case that cars are supplied with such mechanisms 

[141]. However, the disadvantage of this mechanism is that it is inappropriate to apply in real 

traffic systems, because cars have only to avoid collisions, but not to consider safety features 

[141]. 

Cooperative Intersection Collision Avoidance (CICA) 

CICA is known also as Cooperative Intersection Collision Avoidance Systems (CICAS). 

A CICA system is an ICA system where the intersection contributes cooperatively with cars 

(cars have internal ICA systems) to avoid collisions in the intersection. CICA systems will be 

required when the driver can not see that another driver commits a traffic violation. This can 

be situations where vision is restricted by buildings or other road users that leads in turn to the 

need for a cooperative system (e.g., using cameras that are able to detect cars which have 

overrun a red light). CICA is an application of a cooperative vehicular highway system 

(CVHS) that attempts to achieve improvements in road traffic. CICA has to warn drivers 

against any probable violation of traffic (traffic control devices). Additionally, it can facilitate 

crossing over the intersection through manoeuvres in addition to notify other concerned 

drivers of upcoming violations. Furthermore, it can recognise cyclists and pedestrians that are 

currently present inside the intersection [142]. 

A CICA system is composed of three components: car-based technologies, infrastructure-

based technologies and communications systems-dedicated short-range communications 
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(DSRC) where the last component is responsible for the communication between the 

infrastructure and cars (warnings or data) [142]. It is noteworthy that various ICA- and CICA 

projects are sponsored by U.S. Department of Transportation (U.S. DOT.). In this context, 

Infrastructure Consortium was a research program founded in cooperation with the Intelligent 

Vehicle Initiative (IVI) aiming to accomplish intersection decision support systems that 

concentrates on two types of ICA systems (infrastructure-based and cooperative-based 

systems) [142]. 

Summary: Intersections for autonomous cars 

In contrast to the system targeted by this thesis, not one of these research projects 

discussed above concentrates on the robustness of the traffic intersections, while RobustMAS 

focuses on the robustness of intersections. RobustMAS develops a robust traffic intersection, 

in the presence of unplanned autonomous behaviour of vehicles (deviations from desired 

behaviour of agents) and accidents (disturbances) in the intersection. Additionally, no projects 

use a hybrid central/self-organising approach to control traffic intersections. On the contrary, 

RobustMAS applies a hybrid solution (central/self-organising), where collision-free 

trajectories for vehicles (the desired behaviour) are calculated by a central component and 

then given to vehicles only as a recommendation. Consequently, autonomous vehicles either 

obey their planned trajectories or deviate from them. Moreover, in contrast to the related work 

in the context of intersections of autonomous cars discussed above, RobustMAS deals with a 

large amount of cars. Accordingly, a distinguishing feature of RobustMAS is that the 

intersection size can be arbitrary and consequently it concerns also the issue of shared spaces 

in intersections (environments). 

3.8 Comparison of the RobustMAS concept with related work 

In this thesis, we focus the discussion of related work on: 

 Agent-based approaches used for fully autonomous vehicles within an intersection 

without traffic lights. Additionally, the related work that combines 

 Hybrid forms of a central/self-organising solutions aiming to resolve the 

coordination problem for multi-agent systems was at the centre of attention. 

Finally, most closely related work that places emphasis on 

 Building robust multi-agent systems was considered. 

The main results of the comparison can be roughly listed as follows: 

I. The project “Multiagent Traffic Management” introduced in [5] is based on 

centralised control (central plan). The autonomous cars modelled as agents interact 

directly with the intersection manager agent, which is alone responsible for planning 

the path reservation for all cars. The autonomous cars have to obey this plan so that 

they can traverse the intersection without traffic lights safely (for details see section 

3.7.1). 

 RobustMAS is based on a hybrid form of central/self-organising control for 

a multi-agent system, where the fully autonomous agents (autonomous 

cars) are allowed to deviate from the central plan. Therefore, RobustMAS 

recognises the autonomy of the agents as a deviation from the plan of the 
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central planning algorithm. Consequently, RobustMAS solves the conflict 

between a central planning algorithm and the autonomy of the agents 

(decentral, self-organised) so that agents that behave in a fully autonomous 

way can be tolerated. 

II. The project “Multiagent Traffic Management” has dealt with driver’s safety in a 

study [6] explaining the impact of the control protocol for fully autonomous cars at 

an intersection without traffic lights on driver’s safety. In this study, the simulations 

deal only with collisions (i.e., with catastrophic mechanical failures) in intersections 

of autonomous vehicles. This means that the study deals only with the problem after 

an accident has already happened aiming to minimise the losses and to mitigate 

catastrophic events. However, it can be noted that the study has not considered the 

robustness of the intersection system (for details see section 3.7.1). 

 RobustMAS focuses on the robustness and safety of multi-agent systems in 

intersections without traffic lights. It deals not only with collisions 

(accidents) but also with deviations from the plan. That means, it deals with 

the deviation from plan before an accident has occurred aiming to avoid 

accidents, as well as it is able to handle the situation caused by accidents. 

Therefore, the observer in RobustMAS observes the autonomous cars 

within an intersection without traffic lights in order to detect any deviations 

from the plan (several deviation classes are presented). Consequently, the 

controller intervenes when it is necessary so that the system remains 

demonstrating robustness and safety. 

III. The project “Multiagent Traffic Management” works as managed or unmanaged 

system. The managed intersection control mechanism depends on an intersection 

manager at every intersection, like the work in [5]. On the other hand, the 

unmanaged intersection control mechanism is based on vehicle-to-vehicle (V2V) 

technology, like the work in [143]. This means that a managed system is centralised 

(like a traffic-light system); whereas an unmanaged system is decentralised (like a 

stop sign system). It should be pointed out that the unmanaged system by the project 

“Multiagent Traffic Management” operates satisfactorily, only under special 

conditions where traffic flows are low and the intersection is small (4-way 

intersection that has one lane in each direction) (for details see section 3.7.1). 

 RobustMAS is a hybrid system that is able to operate with both systems, 

managed and unmanaged. Path planning of RobustMAS indicates that 

RobustMAS is a managed system, because path planning is performed 

centrally (central planning). However, deviations from plan are possible 

due to the fully autonomous behaviour of vehicles (decentralise). 

Therefore, an autonomous vehicle may cause deviations from its plan when 

it decides to move faster than its planned trajectory or when it attempts to 

avoid an accident (disturbance), which could occur in the intersection. The 

shortcoming of low traffic volumes by the unmanaged system of the project 

“Multiagent Traffic Management” was overcome mainly by means of the 

hybrid trait (a hybrid central/self-organising architecture) of RobustMAS. 

Here, despite the autonomous behaviour of vehicles, they always get the 

best possible (desired) trajectories from the central unit of the intersection. 
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Consequently, RobustMAS can work under different conditions; low and 

high traffic flows and as well at small and large intersections. 

IV. The project “Observation and Control of Collaborative Systems” (OCCS) [144] 

[145] investigates different types of the generic observer/controller architecture: 

central, decentral and multi-level architecture (for details see section 4.4.1). It 

concentrates on the design of distributed observer/controller O/C architectures for 

Organic Computing systems. Additionally, it considers the robustness of self-

organising technical systems that are based on distributed O/C architectures. In this 

regard, the robustness has to comply with the state space model that represents the 

system behaviour. Shortly, it deals with robustness of distributed self-organising 

systems. 

 RobustMAS is based on a hybrid form of O/C architectures. This form 

contains both central and self-organising systems. Consequently, it 

concentrates on the investigation of robustness of such hybrid central/self-

organising systems, especially in disturbed environments (for details see 

section 4.4.2.). So, RobustMAS deals with robustness as a key property of 

OC systems. 

V. Another point of comparison lies in the results of the project “Observation and 

Control of Collaborative Systems” (OCCS) presented in [3]. The study compares a 

fully central and a fully distributed O/C architecture using a traffic scenario. The 

authors have shown that the central O/C architecture is better than the distributed 

one when the traffic load is low (low-complexity scenario). Otherwise, when the 

traffic load is high, the distributed O/C architecture is better than the central one. 

Therefore, the more complex the scenario is, the better will be the results of the 

distributed architecture compared to the central one. Accordingly, the design 

optimum can be possibly achieved by using an adaptive architecture, which switches 

between the central and distributed O/C architecture as needed [3]. 

 Regarding the results of the OCCS project presented in [3], it can be 

considered that the OCCS project is the starting point for the RobustMAS 

concept. RobustMAS has been made in response to the urgent need to 

develop hybrid organic systems. These systems use both central and 

distributed approaches, so that the benefits of both approaches can be 

combined. Thus, RobustMAS aims to keep the system as decentralised as 

possible, i.e., agents (vehicles) are designed to be as autonomous as 

possible. Furthermore, RobustMAS plans to take a centralised intervention 

as little as possible, especially needed in cases of conflicts and disturbances 

(accidents). Accordingly, the hybrid approach used by RobustMAS exhibits 

the central/self-organising trait simultaneously. 

VI. Various works related to robust multi-agent systems investigate the robustness in 

different research domains, such as database technologies, organisation of agent 

societies and social systems. As an example, the approach of transaction agents 

introduced in [81] applied database technologies on the basis of transactions aiming 

to increase the robustness of multi-agent systems. This approach aims to assess the 

applicability of MAS in the information systems (IS) applications, where robustness 

is an essential factor. 
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 RobustMAS is a methodology to design robust technical systems using the 

Organic Computing (OC) concept. Thus, it provides technical systems with 

some life-like properties (self-organising) to avoid deterioration of system 

performance in case of arising disturbances or strong deviations in the 

system behaviour from the desired one. Accordingly, RobustMAS focuses 

on the applicability of robust MAS in technical systems (e.g., traffic 

systems). 

In general, RobustMAS contributes to build a robust hybrid central/self-organising 

architecture for multi-agent systems. Furthermore, in the context of intersections of 

autonomous vehicles, RobustMAS has the feature that the intersection size can be arbitrary.  

The next section 3.9 will summarise the comparison of RobustMAS concept with this 

closely related work. 

3.9 Summary 

The analysis of the state-of-the-art confirms that none of the addressed approaches or 

projects has filled the recognised gap, building robust hybrid organic systems (robust hybrid 

central/self-organising systems). That means, there is no approach that is able to achieve such 

needed systems satisfactorily.  

There are enormous works concerning safety properties of usual traffic intersections that 

concerns only human-operated vehicles. Additionally, there are some works in connection 

with safety measures of autonomous vehicles within an intersection. In this regard, according 

to our knowledge, there are no projects that focus on the robustness of autonomous vehicles 

within an intersection without traffic lights, where disturbances occur. 

There are a variety of works in relation to the study of multi-agent systems as centralised 

or decentralised systems, but there is a clear lack of study of the hybrid form of multi-agent 

systems (e.g., the central/self-organising form), particularly in technical systems. In the 

literature, diverse architectures were presented in order to be applied to various technical 

systems, where the most distribution possibilities of system architectures are either centralised 

or decentralised. However, hybrid central/self-organising architectures, which support a 

hybrid coordination (central and decentral), are not thoroughly investigated, where the 

conflict between a central algorithm and the autonomy of agents has to be solved. 

Although there are numerous research projects made towards building robust multi-agent 

systems in diverse fields, a study of robustness of technical systems, which are modelled as 

multi-agent systems, does not exist yet (at least it is extremely rare, e.g., an attempt by the 

Organic Computing Initiative [152]). 

To the best of our knowledge, this thesis (RobustMAS concept) represents the first study 

towards building robust hybrid central/self-organising multi-agent systems in intersections 

without traffic lights using the organic computing concept. 

The following Table 3-1 summarises the discussed results demonstrating the RobustMAS 

concept's similarities and differences with selected related work (OCCS: Observation and 

Control of Collaborative Systems, MTM: Multiagent Traffic Management, TA: Transaction 

Agents). This serves as an overview of closely related work and the abilities they lack in 

comparison to the RobustMAS concept developed in this thesis. 
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 OCCS MTM TA RobustMAS 

Robustness 

(Robust multi-agent system) 
limited no yes yes 

Hybrid 

(Central/self-organising) 
no no no yes 

Technical system yes yes 

no 

(database and 

information 

system) 

yes 

Resource sharing problem 

(Resource allocation conflict) 
no no no yes 

Measuring robustness 

(quantitatively)  
limited no limited 

yes 

(new metric) 

Traffic system limited yes no yes 

Autonomous vehicles no yes no yes 

Organic Computing 

(O/C architecture) 
yes no no yes 

Fault-tolerance no no no 

yes 

(deviation-

tolerance) 

Turbulent environments yes limited limited 

yes 

(deviations + 

disturbances) 

Path planning no yes no 

yes 

(adapted A*-

algorithm) 

 

Table 3-1: RobustMAS in comparison with selected related work  

 

The next chapter introduces in detail the general problem domain of RobustMAS, the 

resource sharing problem in addition to the proposed solution to cope with it. Subsequently, it 

presents the traffic problem as a special problem domain (RobustMAS Traffic). 
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4 Design and architecture for robust multi-agent systems 

The concept and objectives of RobustMAS will be presented in the next sections. 

Additionally, the problem domain, the components, the agent classes and the proposed system 

architecture of RobustMAS will be clarified highlighting the hybrid central/self-organising 

architecture as the key concept of RobustMAS. Subsequently, the approach of RobustMAS in 

a special problem domain, RobustMAS Traffic, will be described accordingly. The 

measurement of robustness and gain of a multi-agent system according to the RobustMAS 

concept will be presented in term of definition and proposition of a new appropriate method 

for their measurement. 

4.1 Robust system with disturbance 

The RobustMAS concept introduces a robust hybrid central/self-organising multi-agent 

system (hybrid coordination) solving the conflict between a central planning algorithm and 

the autonomy of the agents (decentral, self-organised). Here, the autonomy of the agents is 

recognised as a deviation from the plan of the central algorithm, if the agents are not 

respecting this plan. 

The application scenario used in this work is an intersection without traffic lights, where 

vehicles are modelled as autonomous (semi-autonomous) agents (Driver Agents) with limited 

local capabilities.  The vehicles are trying as quickly as possible to cross the intersection 

without traffic lights. In the meantime, an interaction between decentralised mechanisms 

(autonomous vehicles) and centralised interventions arises. Here, the goal is to build a robust 

intersection without traffic lights when disturbances (e.g., accidents) and deviations (e.g., 

unplanned autonomous behaviour) occur. 

Moreover, RobustMAS addresses a further problem that occurs in the system wherever 

multiple agents (e.g., robots, vehicles, etc.) move in a common environment. This problem is 

called resource sharing conflict (Resource Allocation Problem). This problem raises the 

question: “How can agents of a system move reliably in their environment?”. RobustMAS 

uses coordination mechanisms (a manager is responsible for coordinating tasks) to solve the 

resource sharing conflict. These coordination mechanisms are based on the idea of path 

planning, which must be performed taking into consideration other agents (vehicles) and the 

geometry of the environment (intersection). The path planning is performed in a 3-

dimensional space with two geometrical dimensions (x, y) representing the intersection and 

time t. 

For the path planning, RobustMAS uses an adapted A*- algorithm to calculate collision-

free trajectories (central planning) for all agents (vehicles) in a shared environment (the centre 

of the intersection) enabling them to avoid collisions. This path planning (collision-free 

trajectories) is given to agents (vehicles) as a recommendation. 

Since the agents (vehicles) are autonomous (decentral, self-organised) and thus deviations 

from the plan (trajectories) in principle are possible, RobustMAS performs an observation of 

compliance with these trajectories (e.g., by an observer). 

RobustMAS aims to make the system capable to return to its normal state with minimal 

central planning intervention after disturbances occur (e.g., by a controller). 
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 Furthermore, RobustMAS has the capability to support real time systems (discussed in 

the evaluation chapter by means of the metric “response time”). It makes the system 

(intersection without traffic lights as traffic system) capable of operating under real time 

conditions, where a short response time is required in such systems.  

A generic O/C (Observer/Controller) architecture has been proposed in [13]. RobustMAS 

shows how to use an O/C architecture to observe autonomous agents (vehicles) within an 

environment (an intersection without traffic lights) in order to detect deviations and to 

intervene when it is necessary, so that the system remains demonstrating robust, safe and 

fault-tolerant operation. The controller is informed by the observer about the detected 

deviations from the plan, so that it can intervene in time. The controller selects the best 

corrective action that corresponds to the current situation so that the target performance of the 

system is maintained. 

Robust systems should be fault-tolerant in order to deal with faults, deviations or 

disturbances and to continue working effectively and fulfilling their major tasks. In the 

context of this thesis, fault tolerance avoids system failures in the presence of deviations and 

disturbances that occur in the system allowing the agents (vehicles) of the system to move 

reliably in their environment (intersection without traffic lights). 

In order to conceive the fundamental idea of RobustMAS, three cases of the system 

operation will be considered: 

1. Operation without disturbance. 

2. Operation with disturbance without intervention.  

3. Operation with disturbance with intelligent intervention.  

Figure 4-1 illustrates the main idea of this thesis in establishing a robust system that 

tolerates faults, disturbances and deviations which could be occurred in the system. 

 

 
 

Figure 4-1: Robust system with disturbance occurrence   
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As depicted in Figure 4-1, the performance (e.g., throughput) of the system is at its best 

(i.e., equal to 1) when no disturbances occur. When a disturbance occurs, the system 

performance would begin to fall and probably it would become worse (deteriorate) over time, 

if no corrective intervention is taken in due time. In contrast, if the corrective intervention is 

intelligent and fast enough, the system performance should improve in the course of time 

when a disturbance occurs. This means that the system performance remains acceptable 

despite the occurrence of disturbance. 

4.2 Goals (contributions) of RobustMAS 

The main contribution of this thesis is the integration of concepts from different research 

areas into a practically applicable methodology. Figure 4-2 summarises the methodologies 

integrated within RobustMAS. 

 

 
 

Figure 4-2: The methodologies integrated within (RobustMAS) 

 

The main goal of the new concept (RobustMAS) is to solve the conflict between a central 

planning algorithm and the autonomy of the agents using a hybrid form of a central/self-

organising solution of the coordination problem for multi-agent systems. This approach:  

 Keeps a multi-agent system at a desired performance level when disturbances and 

deviations occur. 

 Coordinates autonomous/semi-autonomous agents. 

 Recognises the autonomy of the agents as a deviation from the plan. 

 Tolerates that some agents behave in a fully autonomous way. 
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 Tolerates that some autonomous agents leave the control of the fully central 

architecture. 

 Forms a hybrid central/self-organising architecture for a multi-agent system, which is 

a special form of the fully central architecture. 

 Deals with turbulent environment (disturbances). 

 Has the goal to develop a robust multi-agent system despite disturbances and 

deviations in the system (internal) or in the environment (external). 

A key point in the work is the coordination of autonomous vehicles. This is the central 

component of the application example, a traffic intersection without traffic lights, which will 

be used for the evaluation. 

Furthermore, RobustMAS establishes a robust traffic intersection without traffic lights. 

Here, the deviations will be first detected by the observer, so that the controller could 

intervene in time, if needed, in order to guarantee the robustness of the intersection. A 

disturbance is, for example, an accident in the intersection; and a deviation is, for example, an 

unplanned autonomous behaviour of a vehicle. 

In addition, RobustMAS solves a coordination problem by a central algorithm (a central-

planning algorithm), using an adapted A*- algorithm that was used for path planning. Here, 

the path planning is considered as a resource allocation problem (resource sharing problem) 

where multiple agents move in a shared environment and need to avoid collisions. 

For evaluation, it is necessary to determine the degree of the system robustness using a 

suitable metric, which quantifies this robustness. 

4.3 Objectives of RobustMAS 

Overall, RobustMAS provides contributions to: 

(1) The system architecture. 

(2) The system property (robustness), and 

(3) The specific problem domain (traffic). 

First, the system architecture is a hybrid form of a central/decentral (a combination of a 

central controller and self-organising autonomous agents) solution of the coordination 

problem for multi-agent systems. RobustMAS deals with the conflict between a central 

controller (i.g., a central planning algorithm) and the autonomy of the agents, leaching to a 

hybrid coordination of a multi-agent system (central and decentral). 

Second, as a desired system property, RobustMAS focuses on the robustness of multi-

agent systems against disturbances and deviations from the plan. Furthermore, RobustMAS 

provides a new method to measure the robustness of such hybrid multi-agent systems. 

Third, the general problem domain of RobustMAS is the resource allocation problem 

(resource sharing problem). RobustMAS enables agents to move reliably in their common 

environment. In addition, RobustMAS gives a solution for the special problem domain, the 

traffic scenario. 
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4.4 Concept and architecture 

The main idea and goals of RobustMAS have been defined in sections 4.1 and 4.2. This 

section describes the approach and the proposed architecture of RobustMAS demonstrating 

the distribution possibilities of system architecture, which are varying from fully central to 

fully distributed architectures. 

4.4.1 Distribution possibilities 

Organic Computing investigates basic mechanisms of an O/C architecture in order to 

observe and control the behaviour of organic systems. The behaviour of the technical system 

should be observed to intervene in time when it is necessary. For the purpose of this thesis, 

the generic O/C architecture has to be customised to the traffic application scenario. 

The distribution possibilities of the proposed O/C architecture are varying from a fully 

central to fully distributed architecture [17]. The three main options to realise the generic 

architecture as depicted in Figure 4-3 are:  

(a) Central: One O/C for the whole system. 

(b) Decentral: One O/C for each subsystem. 

(c) Multi-level: One O/C for each subsystem as well as one (or more) for the whole 

system. 

 

 
 

Figure 4-3: Distribution possibilities of the generic observer/controller architecture [17] 

 

Organic Computing proposes concepts to achieve controlled self-organisation as a new 

design paradigm, which requires coping with degrees of freedom as a necessity of the self-

organisation [18]. The developer has to select an adequate version of the O/C architecture in 

the design phase in order to realise the specific O/C architecture. 

4.4.2 Hybrid central/self-organising concept for multi-agent systems 

In this thesis, the term “hybrid central/self-organising multi-agent system” is introduced. 

It is a new possibility of the distribution of the proposed architecture.  
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Figure 4-4 shows the main idea of this hybrid central/self-organising concept derived from 

the fully central architecture.  

 

 
 

Figure 4-4: The hybrid central/self-organising concept  

 

(a) Fully central architecture: One O/C for the whole system under observation and 

control. 

(b) Hybrid central/self-organising concept: One O/C for the whole system under 

observation and control, but the autonomous agents can leave the control of the fully 

central architecture to behave in a fully autonomous way (but still under observation). 

In this work, the hybrid central/self-organising concept aims to increase the autonomy of 

agents compared to the central architecture. This means, the hybrid concept tolerates that 

some agents behave autonomously. It solves the conflict between a central planning algorithm 

(a component in the controller) and the autonomy of the agents (the entities of the system 

under observation and control). The autonomy of the agents is recognised as a deviation from 

the plan of the central algorithm, if the agents are not respecting this plan. 

Figure 4-5 shows the general flow plan proposed by RobustMAS to solve the conflict 

between a central planning algorithm and the autonomy of the agents. A central planning 

algorithm generates a plan for every agent in the system. Since the agents are autonomous and 

they behave in a completely autonomous way, they may not obey this central plan. If they 

comply with the central plan then the system works effectively as planned (no deviations from 

plan). However, if they do not comply with the central plan then RobustMAS detects this 

deviations from the plan (e.g., by an observer) in order to arrange an appropriate corrective 

intervention (e.g., by a controller). It makes also replanning, if necessary, with respect to the 

new situation. 
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Figure 4-5: The conflict between a central planning algorithm and the autonomy of the agents 

(The general flow plan proposed by RobustMAS solving the conflict) 

 

Consequently, RobustMAS comprises the use of a central O/C architecture, autonomous 

agents and deviations from a central plan in order to solve coordination problems in multi-

agent systems. Additionally, it keeps the system at a desired performance level (via 

replanning and corrective intervention of the controller) when deviations and disturbances 

occur in the system behaviour, so that the agents of a system can move reliably in their 

environment. 

4.4.3 Approach of RobustMAS 

The key issue of RobustMAS, hybrid central/self-organising concept, has been clarified in 

sections 4.4.2. This section describes the approach of RobustMAS. It deals with the life cycle, 

the problem domain, the components, the agent classes and the proposed system architecture 

of RobustMAS. 

4.4.3.1 Life cycle of RobustMAS 

As mentioned in section 4.2 and 4.3, the general problem domain of RobustMAS is the 

resource allocation problem (resource sharing problem) which occurs in the system wherever 

multiple agents move in a common environment. This section presents the proposed solution 

to cope with this problem.  

RobustMAS uses coordination mechanisms to solve the resource sharing problem. These 

coordination mechanisms are based on the idea of path planning, which must be performed 

taking into consideration other agents and the geometry of the shared environment in the 

configuration space-time (x, y, t). Here, the path planning is considered as a resource 

allocation problem (resource sharing problem). 
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Since the goal of RobustMAS is to keep a multi-agent system at a desired performance 

level when disturbances and deviations occur in the system behaviour, agents have to be 

observed (through the observer) within the shared environment. This will be made to 

intervene (through the controller) in time when it is necessary so that the system remains 

demonstrating robustness and safety properties. The paradigm of the proposed solution 

consisting in an Observer/Controller architecture can be seen in Figure 4-6. 

 

 
 

Figure 4-6: The paradigm of the proposed solution consisting in an Observer/Controller 

architecture 

 

This Figure depicts a hybrid coordination scheme of a multi-agent system. It takes place 

in three steps:    

 1.  Path planning: The agents send requests to the controller, which computes collision-

free trajectories and arranges the participants. This means that the first step is a central 

planning of the trajectories without deviations of the agents. The agents get their planned 

trajectories only as recommendation from the controller. Autonomous behaviour of the 

agents means that they either obey the plan or deviate from it or the agents are completely 

outside of the plan. 

 2.  Observation: The observation of actual trajectories of agents in the shared 

environment is done by an observer component in order to identify eventual deviations 

from the plan, using the memory of all planned trajectories. The observer informs the 

controller about its observation. 

 3.  Controlling: The controller carries out a replanning for the trajectories of the affected 

agents, if needed, in order to accomplish an appropriate corrective intervention. The 
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controller uses a decision mechanism to take a decision how it could intervene most 

suitably. 

4.4.3.2 Problem domain of RobustMAS 

As mentioned in section 4.2 and 4.3, the general problem domain of RobustMAS is the 

resource allocation problem (resource sharing problem). This section presents the general 

problem domain of RobustMAS and the proposed solution to cope with it. 

There are different works proposed in the literature, which present solutions to cope with 

the resource sharing conflict occurring in the system wherever multiple agents (e.g., robots, 

cars, etc.) move in a common environment. In [3], a priority-based algorithm, in [7], traffic 

rules, and in [14], a communication architecture have been used in order to solve this 

problem. 

Compared to the RobustMAS concept, all of these approaches lack the ability to consider 

virtual obstacles by planning of resource allocation (resource allocation is considered as a 

path planning by RobustMAS, where multiple agents act in a common shared environment). 

In RobustMAS, virtual obstacles are used to model blocked surfaces, restricted areas 

(prohibited allocations of resources). Often, these obstacles are produced due to the 

reservation results or other barriers. Additionally, these approaches do not consider potential 

deviations from the desired resource allocations, while RobustMAS takes into account all 

possible deviations from the resource allocation plan. 

The resource allocation problem considered in RobustMAS occurs in a multi-agent 

system wherever multiple agents move in a shared environment. That means, agents compete 

for the shared environment (a shared resource) in order to move over it quickly, and 

coordination of these agents in its common environment has to be achieved. 

In order to avoid a potential resource sharing conflict in such multi-agent systems, 

RobustMAS introduces a coordination mechanism. This coordination mechanism is based on 

the idea of path planning (planning of resource allocation over a certain period of time), 

which must be performed taking into consideration other agents and the geometry of the 

shared environment in the configuration space-time (x, y, t). 

The central controller of the O/C architecture performs the resource allocation, i.e., the 

path planning (by a controller component). This means that the resource allocation used by 

RobustMAS is done by a central planning algorithm, while the agents consume these 

resources. 

Since the goal of this work is to keep a multi-agent system at a desired performance level  

when deviations occur in the system behaviour and when disturbances occur in the 

environment, autonomous agents have to be observed (through the observer) within a shared 

environment to detect deviations and to intervene (through the controller) when necessary. 

Furthermore, autonomous behaviour of agents with low delays is desired in this work. In 

order to achieve this, a generic proposed system architecture, an O/C architecture, has been 

designed as depicted in Figure 4-7. 
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Figure 4-7: System architecture 

 

However, the resource allocation in RobustMAS is characterised by “Spatial-dependent 

resource assignment”. Spatial-dependent resource assignment is a plan-based resource 

allocation in the 3-dimensional configuration space-time (x, y, t), so that the next requested 

resource at the next time-step is nearby (successive time-steps). That means if the space (x1, 

y1) is the allocated resource at the time-step (t1) for an agent, then the planning algorithm 

must take into account that the next potential resource, the space (x2, y2), at the next time-step 

(t2) for this agent has to be close (1-neighbourhood, see section 5.2.2.1) to the previous 

allocated resource. In the same way the next space (x3, y3), at the next time-step (t3) for this 

agent has to be close to the former allocated resource, etc. 

Figure 4-8 shows the simplification of a shared environment in the 3-dimensional 

configuration space-time. It illustrates the resulting trajectories (planned resource allocations). 

For simplification, only one planned trajectory is shown. 
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Figure 4-8: Simplification of a shared environment, example for planning of trajectories 

(resulting resource allocations) 

 

In this example, the planned trajectory consists of six points, where every point has its (x, 

y, t). Consequently, this trajectory can be modelled as a vector of six space-time points as 

follows: 

 Trajectory = { (x1,y1,t1) , (x2,y2,t2) , (x3,y3,t3) , (x4,y4,t4) , (x5,y5,t5) , (x6,y6,t6) } (4.1) 

In this context, it is noteworthy that the shared environment (intersection in the traffic 

scenario) is divided into a grid of n×n cells (tiles or resources), where n represents the 

granularity of the resource allocations (reservation) system. Figure 4-9 shows an example for 

a shared environment, which are divided into a 12 x 12 grid of reservation tiles. So, each tile 

that has its coordinates (xi, yi) can be reserved by one agent Ai at time ti. 

 

 

 

Figure 4-9: A shared environment as a 12 x 12 grid of reservation cells (tiles) 
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If the shared environment is divided into a 1x1 grid of reservation tiles (i.e., 1-tile 

granularity or 1-tile reservation), only one agent is allowed to occupy the shared environment 

at time ti. Similarly, when the shared environment is a 2x2 grid of reservation tiles (i.e., 2-tiles 

granularity or 2-tiles reservation), then more than one agent can act in the shared environment 

at the same time ti, but certainly not in the same quadrant [5]. 

 Of course, a better performance level will be achieved by increasing the granularity of the 

shared environment (wider environments), but the computational complexity will be 

increased. The granularity of the intersection system, which is used later for the evaluation of 

RobustMAS concept, is 100 (10-tiles reservation), where the intersection is a 10x10 grid of 

reservation tiles. 

4.4.3.3 System components 

RobustMAS consists of two basic components: An Observer/Controller and the agents 

(the system under observation and control). 

The O/C architecture consists of an observer and a controller. The main tasks of the 

observer are: 

 Identification of deviations from planned resource allocation (via the deviation 

detector component in the observer). 

 Identification of disturbances, which could occur in the environment (via the 

disturbance detector component in the observer). 

 Storage of planned trajectories (via the trajectory memory unit), which will be used to 

detect any deviations from plan. 

Since the proposed system architecture in Figure 4-7 is a generic architecture, the observer 

has n detectors. Therefore, the observer could apply a set of other detectors according to the 

used scenario. Furthermore, the controller has the following main tasks: 

 Central planning of resource allocation (via the path planning component in the 

controller). 

 Tolerance for some agents that behave in a completely autonomous way (via the 

decision maker component in the controller). 

 Replanning (via the path planning component in the controller).  

 Corrective intervention (via the decision maker component in the controller). 

Other components are the system under observation and control (the agents). These agents 

consume the allocated resources. Since the agents are allowed to behave in a completely 

autonomous way, they may not obey the central plan. They agree to the allocation of 

resources (agree to the central plan) or they reject the allocation of resources (do not obey the 

central plan). In the case of agent's consent to the plan, the resource allocation is optimal (no 

deviations from plan), because the plan is performed by a central algorithm, which has a 

global view of all available resources that can be allocated to the system agents. In the case of 

an agent's rejection of the plan, a potential resource allocation conflict between the agents is 

recognised, because of the consumption of resources which are possibly reserved for other 
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agents. Based on this, it may be distinguished between two cases: there are no conflicts or 

conflicts occur. 

1. If no resource allocation conflict arises (the consumption of other resources, which are 

not currently consumed by other agents but are reserved by other agents), the system 

will continue to work normally (no damage). However, a new resource allocation has 

to be performed trying to avoid any resource conflicts between the agents. Here, the 

system performance may go down depending on the available resources.  

2. On the other hand, if a conflict arises (the attempt to consume other resources, which 

are currently consumed by other agents) the system will continue to work abnormally 

(damage). However, a new resource allocation has to be performed avoiding further 

resource conflicts between the agents. Here, the system performance probably goes 

down depending on the available resources. 

4.4.3.4 Agent classes 

In this section, the agent classes created in order to be used by RobustMAS will be 

described. 

Each agent class represents a specialised role that can be performed by the agents of this 

class in run time. Each class has certain capabilities in order to interact with other agent 

classes, which should take into account the whole goal of the desired system. 

RobustMAS implements agent classes allowing the agents to play their roles. Based on 

the type of their class that they belong to, the agents try to maximise: 

 Class 1: Only their own fitness (e.g., their own utility), which can be achieved by 

travelling across the environment as quickly as possible, i.e., minimisation of their 

individual travel times of agents across the environment, or 

 Class 2: Only the fitness of the whole system (the system throughput), or 

 Class 3: Their own fitness and then the fitness of the whole system respectively in 

every step. 

These agents are either Non-Autonomous Agents (NAA) or Autonomous Agents (AA). 

 A = {NAA, AA} (4.2) 

In turn, Autonomous Agents (AA) are either Autonomous and Rational Agents (ARA) or 

Autonomous and Non-Rational Agents (ANRA). 

 AA = {ARA, ANRA} (4.3) 

In this regard, “rational” means “reasonable autonomy”, i.e., agents are aware of their 

capabilities to make a rational choice of an action that is reasonable to maximise their own 

utility. However, and simultaneously, these agents follow safety rules carefully, so that they 

do not cause resource sharing conflicts (efficiently aware of their environment). 

As a result, these agents by RobustMAS are generally classified as follows: 

 Class 1: Autonomous and Non-Rational Agents (ANRA): They deviate from the 

plan and cause disturbances. These agents are competitive. They try to maximise only 

their own fitness (e.g., their own utility) and they do not consider the fitness of the 
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whole system (e.g., the system throughput). However, they do not agree to the 

allocated resources and they cause possibly a resource sharing conflicts with other 

agents, because of their non-rationality. 

 Class 2: Non-Autonomous Agents (NAA): They do not deviate from the plan and do 

not cause disturbances. These agents are cooperative. They try indirectly to maximise 

the fitness of the whole system (e.g., the system throughput) and they agree to the 

allocated resources. That means they do not cause resource sharing conflicts. 

 Class 3: Autonomous and Rational Agents (ARA): They deviate from the plan, but 

do not cause disturbances. These agents are cooperative and competitive at the same 

time. They try to maximise their own fitness (e.g., their own utility) and then the 

fitness of the whole system (e.g., the system throughput). However, they do not agree 

to the allocated resources, but they do not cause resource sharing conflicts, because of 

their rationality. 

Consequently, RobustMAS has three classes of agents according to their behaviour: 

 Class 1: Competitive agents: These agents are Autonomous and Non-Rational 

Agents (ANRA). 

 Class 2: Cooperative agents: These agents are Non-Autonomous Agents (NAA). 

 Class 3: Cooperative & Competitive agents: These agents are Autonomous and 

Rational Agents (ARA). 

Class 3 agents, Autonomous and Rational Agents (ARA), are the desirable class. This is 

because RobustMAS aims to tolerate those agents to behave in a fully autonomous way and at 

the same time  tries to keep the multi-agent system at a desired performance level even though 

deviations and disturbances occur. This class of agents (ARA) behaves as follows: 

1. Avoid causing a resource sharing conflict with other agents. 

2. Deviate from the allocated resources (the plan), if it is possible, trying to maximise 

its own fitness (e.g., its own utility). 

3. Comply with the allocated resources (the plan), if it was not possible to deviate 

from the plan. 

4.4.3.5 System architecture 

This section gives an overview of the proposed system architecture and how to implement 

it on a highly relevant technical problem: the control of autonomous agents moving in a 

shared environment demonstrating a robust multi-agent system. Additionally, it describes the 

adaptation of this architecture to the traffic intersection without traffic lights. 

Figure 4-10 shows the detailed internals of the RobustMAS architecture. The system 

under observation and control is considered as a set of elements possessing certain attributes 

in terms of multi-agent systems. This system under observation and control contains all agents 

that move within the shared environment avoiding collisions. The agents outside the shared 

environment send messages (requests) to the controller which replies with collision-free 

planned trajectories for all agents (path planning unit). 
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Figure 4-10: Detailed RobustMAS system architecture 

 

Every agent by itself is assumed to be egoistic (class 1 and 3 agents), because it is 

autonomous and tries to quickly cross the shared environment so that it may not obey its 

planned trajectory. Therefore competition situations arise due to the egoistic behaviour 

(competition-based behaviour) of agents, which in turn leads to congestions, where agents 

with different moving directions block each other in the common environment. These 

congestions may cause a large cluster of blocked agents for a long time. 

The observer reads the planned trajectory of an agent from the trajectory memory 

(memory of trajectories unit TM) only when this agent is located within the shared 

environment and compares it with the agent’s actual travelled trajectory using the deviation 

detector (deviation detector unit DD) to identify all deviations from the planned trajectories. 

The observer uses also the collision detector (collision detector unit CD) to detect whether a 

deviation led to a collision and to detect the deviation class (see below). Afterwards, it 

aggregates (aggregator unit) its observations as a vector of situation parameters (situation 

descriptor unit SD). These parameters are then sent to the controller. The controller has to 

intervene on time if necessary (decision maker unit DM) and to select the best corrective 

action (it makes a decision whether a replanning is required and uses also the path planning 

unit PP if needed) that corresponds to the current situation so that the system performance 

remains acceptable and the target performance of the system is maintained. The intervention 

of the controller (the decision of the decision maker) will be done with respect to the goal 

given by the user. 
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4.4.3.6 Definition of deviation and disturbance in RobustMAS 

Since the definition of deviation and disturbance varies according to the context condition, 

it is necessary to define both terms clearly in the context of this thesis. 

According to the RobustMAS concept, the deviation and the disturbance can be defined as 

follows: 

 Definition 1: “A deviation is a different behaviour or path or plan from what was 

initially planned (desired or expected) for an agent. In other words, a deviation is an 

unplanned autonomous behaviour. Deviations from the plan of the central planning algorithm 

occur, if the agents are not respecting this plan”. 

Definition 2: “A disturbance is a permanent change in environmental conditions, which 

leads to an unwanted evident change in the target performance of the system. Moreover, 

disturbances are obstacles (blocked surfaces, restricted areas, or any additional difficulty) in 

the way of the agents. These obstacles block agents in the neighbourhood causing longer 

delays than planned”. 

Additionally, the disturbance strength can be defined according to the RobustMAS 

concept as follows: 

Definition 3: “A disturbance strength is a positive constant defining the strength (size) 

of the disturbance”. 

4.4.4 Approach of RobustMAS in a special problem domain: “RobustMAS Traffic” 

Section 4.4.3 discussed the general problem domain of RobustMAS and the proposed 

solution to cope with it. However, this section presents the approach of RobustMAS in a 

special problem domain, "RobustMAS Traffic", which deals with autonomous vehicles in 

order to solve a traffic problem. 

4.4.4.1 Special problem domain “RobustMAS Traffic” 

A special application domain of RobustMAS is the traffic, particularly the application 

scenario “a traffic intersection without traffic lights”, where the resource allocation problem is 

considered as a shared space over time (the intersection area). Vehicles of the intersection are 

modelled as agents whereas an intersection manager (the controller of the O/C architecture) is 

responsible for coordinating tasks (trajectories planning for the vehicles) to solve the potential 

resource sharing conflict between the vehicles (to avoid collisions in the centre of the 

intersection). Here, “RobustMAS Traffic” tries to solve the question how vehicles move 

reliably in the intersection without traffic lights in order to cross over it as quickly as possible. 

That means, vehicles compete for the centre of the intersection (a shared resource) in order to 

cross over it quickly if possible and the coordination of those vehicles in the centre of the 

intersection has to be achieved. Consequently, a robust traffic intersection without traffic 

lights can be established despite deviations from the planned trajectories (due to the 

autonomous vehicles) and despite disturbances (e.g., an accident in the intersection). 
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4.4.4.2 System components of “RobustMAS Traffic” 

Similar to the system components of RobustMAS discussed in section 4.4.3.3, the 

components of the special application domain, RobustMAS Traffic, can be utilised. For this 

purpose, the words agent, which is used in RobustMAS, and vehicle, which is used in 

RobustMAS Traffic, can be used interchangeably. Additionally, the term “shared 

environment” in RobustMAS is used interchangeably for “centre of the intersection” in 

RobustMAS Traffic. 

For the special application domain, RobustMAS Traffic, the intersection area is a shared 

space over time. Therefore, the resource allocation problem is considered as a path planning 

in order to allocate appropriate trajectories for the autonomous vehicles in the intersection. 

Here, the O/C architecture represents the Intersection Manager which has the coordinating 

task of the autonomous vehicles in the intersection.  

Compared to the RobustMAS, which plans the resource allocations, “RobustMAS 

Traffic” has to plan trajectories for all vehicles. Furthermore, “RobustMAS Traffic” should 

identify deviations from the planned trajectories, in addition to intervene in case of accidents 

(disturbances in RobustMAS). 

The other components of the traffic intersection system are the vehicles (driver agents). 

These vehicles occupy tiles (cells) of the intersection area (the planned trajectories). Since the 

vehicles are allowed to behave in a completely autonomous way, they may not obey their 

planned trajectories. However, the existing intersection area is covered optimally by the 

vehicles, when vehicles follow the central plan. In this regard, two cases can be classified: 

accidents occur, and there are no accidents. 

1. If a conflict arises (two vehicles or more occupy the same position in the intersection 

area at the same time), there will be deviations from the planned trajectories as well as 

an accident. Consequently, the traffic intersection may continue to work not normally 

(damage due to the accident). Nevertheless, the controller re-plans the trajectories 

trying to avoid further accidents. 

2. There are deviations from the planned trajectories without an accident, if no conflict 

arose. In this case, every vehicle moves to another position only if this position is not 

occupied by another vehicle, and consequently there are no attempts to occupy cells of 

the intersection area, which are currently occupied by other vehicles. This means that 

the attempts here are to occupy cells of the intersection area, which are reserved for 

other vehicles. As a result, the traffic intersection keeps working normally even 

through deviations (no injury because no accident). Even so, a new trajectory planning 

is required to avoid accidents. 

4.4.4.3 Vehicle classes 

For “RobustMAS Traffic”, the vehicles are modelled as agents (driver agents). Here, 

vehicles have their own utility to cross over the intersection as fast as possible. 

In an analogous manner to the agent classes of RobustMAS discussed in section 4.4.3.4, 

the vehicle classes of “RobustMAS Traffic” can be classified. For this intention, the symbols 

“A”, which corresponds to “Agent” in RobustMAS, and “V”, which corresponds to “Vehicle” 
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in RobustMAS Traffic, can be used synonymously. Consequently, vehicles are either Non-

Autonomous Vehicles (NAV) or Autonomous Vehicles (AV). 

 V = {NAV, AV} (4.4) 

On the other hand, Autonomous Vehicles (AV) are either Autonomous and Rational 

Vehicles (ARV) or Autonomous and Non-Rational Vehicles (ANRV), where the term 

“rational” denotes that vehicles do not cause accidents. 

 AV = {ARV, ANRV} (4.5) 

Overall, vehicles by “RobustMAS Traffic” are categorised into three classes according to 

their behaviour in the intersection (for details see section 4.4.3.4): 

 Class 1: Autonomous and Non-Rational Vehicles (ANRV). 

 Class 2: Non-Autonomous Vehicles (NAV).  

 Class 3: Autonomous and Rational Vehicles (ARV). 

Accordingly, vehicles by “RobustMAS Traffic” can be also summarised as follows (for 

details see section 4.4.3.4): 

 Class 1: Competitive vehicles (the ANRV vehicles) 

 Class 2: Cooperative vehicles (the NAV vehicles). 

 Class 3: Cooperative & Competitive vehicles (the ARV vehicles). 

Class 3 vehicles, Autonomous and Rational Vehicles (ARV), are the desirable class, 

which behaves as follows: 

1. Avoiding: Avoid causing an accident with other vehicles. 

2. Speeding:  Deviate from the planned trajectories, if it is possible, trying to move faster 

than their planned trajectories to maximise its own utility (crossing the intersection so 

quickly as possible). 

3. Compliance: Comply with the planned trajectories, if it was not possible to deviate 

from their planned trajectories. 

4.4.4.4 System architecture of “RobustMAS Traffic” 

The system architecture of RobustMAS (see Figure 4-10) discussed in section 4.4.3.5 can 

be adapted to the traffic intersection without traffic lights. In this way, the agents are the 

vehicles and the intersection area (the centre of the intersection) is the shared environment. 

The system goal is the corrective intervention on time to guarantee the robustness of the 

intersection performance, so that the vehicles can move reliably in the intersection in order to 

cross it as soon as possible, while retaining their autonomy as far as possible. For more details 

see section 4.4.3.5 that discusses the generic proposed system architecture of RobustMAS. 

4.4.4.5 Definition of deviation and disturbance in “RobustMAS Traffic” 

Similar to the definition of deviation and disturbance introduced section 4.4.3.6, the 

definition of both terms can be defined, according to the “RobustMAS Traffic”, as follows: 
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Definition 4: “A deviation is a different trajectory from what was initially planned 

(desired) for a vehicle. Deviations from the planned trajectories occur, if the vehicles are not 

respecting these trajectories”. 

Definition 5: “A disturbance is a permanent accident in the intersection”. 

Additionally, the disturbance strength can be defined according to the “RobustMAS 

Traffic” as follows: 

Definition 6: “A disturbance strength is a simulation parameter that represents the size 

of the accident in the traffic intersection”. 

The disturbance strength is measured in terms of tiles (cells) occupied by an accident as 

depicted in Figure 4-14. 

4.4.5 Measurement of robustness and gain 

Since RobustMAS aims to keep a multi-agent system at a desired performance level even 

though disturbances and deviations occur in the system, a method to measure the robustness 

of a multi-agent system is required. The equivalent goal of RobustMAS by the application 

scenario, a traffic intersection without traffic lights, is to keep the traffic intersection at a 

desired performance level even though deviations from the planned trajectories and accidents 

occur in the intersection. Therefore, a new concept will be introduced in order to define the 

robustness of multi-agent systems. Additionally, the gain of RobustMAS will be defined and 

used to show the benefit of the hybrid central/self-organising concept. 

The robustness of a multi-agent system can be defined as follows: 

Definition 7: Robustness: 

“A (multi-agent) system is considered robust against disturbances if its performance 

degradation is kept at a minimum”. 

Consequently, the RobustMAS concept assumes that a robust system keeps its 

performance acceptable after occurrence of disturbances and deviations from the plan. 

Definition 8: Relative robustness: 

“The relative robustness of a (multi-agent) system in the presence of a disturbance is the 

ratio of the performance degradation due to the disturbance divided by the undisturbed 

performance”. 

In order to measure the robustness of RobustMAS in the traffic intersection system, the 

throughput metric is used for determining the reduction of the performance (system 

throughput) of RobustMAS after disturbances (accidents) and deviations from the planned 

trajectories. That is because throughput is one of the most commonly used performance 

metrics. Therefore, the comparison of the throughput values is required in the three cases: 

(1) Without disturbance. 

(2) With disturbance with intervention.  

(3) With disturbance without intervention. 

Based on this, the robustness measurement of RobustMAS will be considered in two 

ways: 
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 Using cumulative system performance, i.e., cumulative throughput (# Agents), where 

the system is considered only until the time when the disturbance ends. 

 Using system performance, i.e., throughput per time unit (# Agents/sec), where the 

system is considered until the time when the system returns after disturbances to its 

normal state like before. 

For this explanation of the robustness measurement, the words agent and vehicle can be 

used interchangeably. 

 

1- Using cumulative system performance (cumulative throughput) 

Figure 4-11 illustrates this comparison where t1 is the time at which the disturbance 

(accident) occurs. The disturbance is assumed to remain active until the time t2. This figure 

shows the cumulative performance (throughput) values of the system before and after the 

disturbance comparing the three mentioned cases. 

 

 

 

Figure 4-11: Comparison of cumulative system performance (throughput) for three situations 

 

The black curve is the performance (throughput) of the system if no disturbance occurs. 

The green curve is the performance of the system when a disturbance at time t1 occurs and the 

central planning intervenes on time. The system is considered until time t2 when the 

disturbance ends. The red curve is the performance of the system when a disturbance at time 

t1 occurs and the central planning does not intervene. Here, two areas can be distinguished: 

Area1 and Area2 in order to measure the robustness of RobustMAS as depicted in Figure 4-12. 
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Figure 4-12: Measuring robustness and gain using cumulative system performance 

 

Figure 4-12 shows the idea of how the robustness of the system as well as the gain of the 

system can be determined according to the RobustMAS concept. 

The relative robustness (R) of a system (S) is determined as follows: 
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(4.6) 

This means that the robustness is Area2 divided by the sum of the two areas 1 and 2. Area2 

is the integral of the green curve (disturbance with intervention) between t1 and t2. The sum of 

Area1 and Area2 is the integral of the black curve (no disturbance) between t1 and t2. 

Additionally, the gain of the system can be used as a secondary measure. In this context, 

the gain of a system can be defined as follows: 

Definition 9: Gain 

“The gain of a system is the benefit of the system through central planning (compared to 

decentral planning). Accordingly, the gain of a system represents the difference between the 

system performance (throughput) in the two cases, with and without intervention of the 

central planning algorithm”.  

This issue is expressed by the following equation: 

 )()( onInterventitionNoInterven PerPerGain   
(4.7) 

As depicted in Figure 4-12, the gain of the system can be calculated using the values of 

the system performance (throughput values) at the time t2. Here, ΔPer(Intervention) 

represents the difference between the system performance in the two cases, without 

disturbance and disturbance with intervention of the central planning algorithm; whereas 
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ΔPer(NoIntervention) represents the difference between the system performance in the two 

cases, disturbance with and without intervention of the central planning algorithm. 

 

2- Using system performance (throughput per time unit) 

In this case, the system performance, i.e., throughput per time unit (# Agents/sec) is used. 

Additionally, the system is considered longer than in the case of the cumulative performance 

(cumulative throughput) values. Therefore, compared to that case that defines time t1, the 

occurrence time of disturbance, and time t2, the end time of disturbance, the times t3 and t4 

will also be defined. Here, t3 is the time at which the system returns to its normal state with 

minimal central planning intervention, while t4 is the time at which the system returns to its 

normal state without central planning intervention. In this regard, the normal state represents 

the system performance level at its best when no disturbances occur (under normal operating 

conditions). 

Here, we use the following functions: 

 P0 (t): represents the system performance when no disturbances occur (normal 

state). 

 Pd, ni (t): represents the system performance with a disturbance with no intervention 

by the central planning. 

 Pd, i (t): represents the system performance with a disturbance with an intervention 

of the central planning. 

Figure 4-13 shows the performance (throughput per time unit) values of the system before 

and after the disturbance until the time when the system returns to its normal state like before 

comparing the three mentioned cases. 

 

 
 

Figure 4-13: Comparison of system performance (throughput per time unit) for three situations  
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In accordance with the definition 8 mentioned above, the relative robustness (R) of a 

system (S) is determined as follows: 

 10;
)()(

)()(

4

1

0

4

1

,






R
tdtP

tdtP
R

t

t

t

t

id

 
(4.8) 

Here, the lower and upper boundaries can be set as follows: 

 R = 0 represents the lower boundary case of the relative robustness, where the 

system is considered as non-robust against disturbances (very poor performance). 

It appears when Pd, i (t) << P0 (t), i.e., the performance degradation is very strong 

due to the disturbance in spite of the intervention, compared to the performance 

when no disturbance occurs. Thus, the system behaviour is not acceptable in the 

face of disturbances. 

 R = 1 represents the upper boundary case of the relative robustness, where the 

system is considered as strongly robust against disturbances (an optimal 

performance, an ideal behaviour). It occurs, when Pd, i (t) = P0 (t), i.e., there is no 

performance degradation due to the intervention despite the presence of 

disturbances. 

Furthermore, the system could be also weakly robust if its performance level is acceptable 

but not optimal in the presence of disturbances. Therefore, the system behaviour is acceptable 

but not ideal. 

Similar to the definition 9 mentioned above, the gain of a system is determined as the 

difference between the performance in both cases, disturbances with and without intervention: 
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Consequently, the loss of a system is determined as the difference between the 

performance in both cases, no disturbance and disturbances with intervention: 
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The discussion of the robustness measurement using the system throughput metric will be 

based on the parameter disturbance strength (see the definition in section 4.4.4.5). In the 

traffic scenario, the disturbance strength represents the size of the accident in the traffic 

intersection. Accordingly, the robustness measurement was repeated in the cases that the 

disturbance strength is 1, 2, and 4. That means, the accident occupies an area of size 1, 2 and 

4 cells in the traffic intersection as depicted in Figure 4-14. 
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Figure 4-14: The disturbance strength (the accident size) in three cases: 1, 2, and 4 cells in the 

traffic intersection 

 

Obviously the disturbance strength influences the system performance, which in turn leads 

to different degrees of system robustness. When the disturbance strength is increased, then the 

system performance will be reduced. This means that the increase of the disturbance strength 

is inversely proportional to the degree of the system performance. 

However, the definition of system robustness can be extended to include the strength of 

disturbances experienced (amount of disturbances applied). Accordingly, the robustness 

(Rob) of a given system depending on the disturbance strength (Diststr) can be determined as 

follows: 
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This means that Rob = R * Diststr , where R is the relative robustness defined above. In this 

case, the integral will be between the time t1 at which the disturbance begins, and time t2, at 

which the disturbance ends. This formula implies that a system shows varying degrees of 

robustness (Rob) while the disturbance strength is varied. For the evaluation of the 

RobustMAS concept, the relative robustness R will be used later in section 6.3.4.1 

(Measuring robustness and gain). 

According to the used application scenario “RobustMAS Traffic”, the size of the accident 

influences the intersection throughput (the number of vehicles that have left the intersection 

area), which in turn leads to different degrees of the robustness of the intersection. When the 

size of the accident increases, then the intersection performance will decrease. This can be 

justified simply on the ground that accidents will cause obstacles for the vehicles in the 
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intersection. These obstacles will impede the movement of vehicles which are behind the 

accident location. Additionally, the central plan algorithm considers the accidents as virtual 

obstacles (restricted areas) and therefore it limits the planned trajectories of potential traffic. 

The autonomous vehicles which do not obey their planned trajectories have to avoid the 

accident location by performing a lane change (to the right or to the left of the accident 

location) if it is possible as depicted in Figure 4-15. Certainly, autonomous vehicles have to 

check the possibility to avoid the accident by pulling into another lane before they take this 

evasive action. 

 

 

Figure 4-15: The evasive action of autonomous vehicles that check the possibility (right or 

left) to avoid the accident by pulling into another lane 

  

Figure 4-15 shows the evasive action of autonomous vehicles according to “RobustMAS 

Traffic”. Here, the vehicle behind the accident location tries to overtake the accident location 

on the right if the intended position is not occupied by another vehicle. Otherwise, if the 

intended position is occupied by another vehicle, then the vehicle tries to overtake the 

accident location on the left if the intended position is not occupied by another vehicle. If all 

potential intended positions are occupied, then the vehicle stops (doesn’t change its position) 

and repeats this behaviour (the evasive action) again in the next simulation step. 

4.5 Summary 

This chapter discussed the RobustMAS methodology, followed by a detailed explanation 

of concept, objectives, agent classes and the proposed architecture and its components. The 

resulting concept allows building robust multi-agent systems in presence of disturbances. 

RobustMAS uses a hybrid approach (a combination of central and self-organising form) that 

is robust enough against disturbances. In this way, RobustMAS guarantees an acceptable 

system performance by limiting the degradation of the performance in the presence of 

disturbances. In other words, RobustMAS combines the use of a central O/C architecture, 

autonomous agents, disturbances and deviations from the planned behaviour aiming to solve 

coordination problems in multi-agent systems. In this context, RobustMAS solves the conflict 

between a central controller (i.g., a coordination algorithm) and the autonomy of agents so 
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that the system robustness can be achieved. More accurately, RobustMAS introduces a hybrid 

coordination of a multi-agent system. This hybrid coordination takes place in three steps: path 

planning, observation, controlling (for details see chapter 5). 

Furthermore, this chapter presented the general problem domain of RobustMAS, the 

resource sharing problem (resource allocation problem), followed by the proposed solution to 

cope with it. This problem appears in a multi-agent system wherever multiple agents move in 

a shared environment. In this context, agents struggle to get resources (the shared 

environment) in order to move over it quickly. Therefore, RobustMAS provides a 

coordination mechanism to prevent a potential resource sharing conflict. This mechanism uses 

a concept of path planning so that the required resource allocation is planned over time. 

Accordingly, the resource allocation is made by a central controller, while the agents employ 

these resources. The resource planning is done in the configuration space-time (x, y, t), so that 

the agents can move reliably in their environment. We use the term “Spatial-dependent 

resource assignment” to denote the fact that the next needed resource at the next time-step is 

nearby (successive time-steps).  

On the other hand, this chapter proposed “RobustMAS Traffic” as a special problem 

domain of the RobustMAS concept. “RobustMAS Traffic” focuses on the traffic problem in 

an intersection without physical traffic lights. Here, vehicles are modelled as autonomous 

(semi-autonomous) agents with limited local capabilities. These vehicles try as quickly as 

possible to cross the intersection. “RobustMAS Traffic” aims to design a robust traffic 

intersection in the presence of disturbances (e.g., accidents) and deviations (e.g., unplanned 

autonomous behaviour). 

Finally, the measurement of robustness and gain of a multi-agent system was presented in 

this chapter. Subsequently, a method to measure robustness and gain of multi-agent systems 

was proposed. 

The next chapter explains the realisation of RobustMAS investigating which techniques 

cab be applied to accomplish the three steps of the RobustMAS concept: path planning, 

observation, and controlling. 

 



Chapter 5. Realisation of RobustMAS 89 

5 Realisation of RobustMAS 

After the concept and objectives of RobustMAS have been presented in section 4, the 

realisation of RobustMAS will be explained in the next sections. The realisation of the three 

steps of the concept of RobustMAS (path planning, observation, controlling) will be 

explained respectively. 

5.1 First step: Path planning 

For the explanation of the algorithms, the words agent and vehicle are used 

interchangeably. Also, the term “shared environment” is used interchangeably for “centre of 

the intersection”. 

This section presents the realisation and requirement of path planning in RobustMAS and 

illustrates the resulting trajectories. Accordingly, the adapted A*- algorithm to calculate 

collision-free trajectories for all agents is introduced using virtual obstacles. This section 

gives also a summary of the path planning process. 

When every agent has its unique path from one point to another, no conflict is possible 

when no unexpected errors or disturbances occur during movement of agents. In order to plan 

such unique paths for multiple agents that move in a shared space (centre of the intersection 

area), global knowledge and centralised control will be needed so that it will be easy to 

prevent conflicts. 

Path planning in this work is the applied coordination mechanism to solve the problem of 

resource sharing wherever multiple agents cross the shared environment avoiding collisions. 

Path planning delivers collision-free trajectories for all participants in this multi-agent system. 

The behaviour of an agent outside the shared environment do not need path planning, because 

an agent outside the shared environment has only local rules (as described later), through 

which it tries to move forward avoiding collisions with other agents. Path planning has to be 

done only for agents inside the shared environment. 

When an agent arrives at a border of the shared environment (Figure 5-1), it sends a 

message (request) to the controller (intersection). The path planning unit of the controller 

(path planning unit of the intersection) has to reply to this message thereby the agent can cross 

the shared environment safely provided no unexpected errors or deviations from the plan 

occur within this process. 
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Figure 5-1: The traffic intersection without traffic lights 

 

When the path planning unit of the controller receives a request from an agent (vehicle), it 

simulates the trip of that agent through the shared environment taking into consideration the 

presence of other agents and the geometry of the shared environment (intersection) in the 

configuration time-spaces. It calculates an appropriate trajectory and sends it to the agent. 

Furthermore, the calculated trajectory is stored in the trajectory memory. 

The enquiring agent gets its trajectory, which guarantees a coordinated behaviour with the 

other agents in order to avoid traffic jams in the intersection. 

It can be assumed that every agent obeys its trajectory in the case that all agents are non-

autonomous and that the circumstances of the system operation are ideal (no disturbances). 

But this is not guaranteed in dynamic and disturbed environments, where autonomous agents 

are of significant importance so that each one can choose its own actions. Therefore the 

observer of the intersection (the observer of the O/C architecture) observes whether the 

current travelled path of an agent in the shared environment corresponds to the planned 

trajectory of this agent in the trajectory memory. If this is not the case, then the intersection 

controller is informed so that it could intervene on time if necessary. 

The problem of path planning for multiple agents (robots) has been discussed in various 

papers in order to coordinate the movements of the agents [11] [2] [5]. There are various 

approaches to solve this problem. Two well-known approaches are: the coordination 

technique and an A*-based path planning technique [2]. The first approach (coordination 

technique) [8] arranges and discovers the optimal paths of the individual agents (robots) and 

then computes a schedule how the robots have to traverse these trajectories. The second 

approach (A*-based technique) applies the A* search algorithm (a graph search algorithm 

that finds the least-cost path from a given initial node to one goal node) to work out 

independent planning of the paths for the individual robots in their configuration time-spaces, 

which extends the configuration space of the robot by a time axis. In [2], a series of 

experiments have been performed to compare these approaches. These experiments 

demonstrate that the A*-based technique significantly outperforms the coordination 

technique. It shows that the A*-based technique is much more efficient because of the 

independent planning of the paths for the individual robots in the time-spaces configuration. 

These experiments demonstrate also that the A*-based approach is well suited to control the 
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motions of a team of robots in various environments and illustrate its advantages over the 

coordination technique. 

5.1.1 A*-algorithm 

Since RobustMAS uses the A*-based technique, which employs the A*-algorithm, this 

section presents the A* procedure described by Nilsson et al. in [134]. As mentioned above, 

A*-algorithm is a search algorithm to obtain the optimal path (minimum-cost path according 

to a given cost function) from a given start state to a target state in a graph. In order to build 

only paths that lead towards the target state, A* uses priorities assigned to each path. The 

priority of a path n is determined by the cost function: f (n) = g (n) + h (n). It should be 

mentioned that using a priority queue to store paths through the graph (already visited nodes) 

together with their related A* costs is the most common implementation of the A*-algorithm. 

For this purpose, the lower the A* cost, i.e., the f (n) cost, of the node n, the higher the 

priority assigned to this node. 

Here, f (n) is the total A* cost of the path from the start state (start node) until the current 

state (current node) n, where f (n) is composed of g (n) and h (n). First, g (n) represents the 

accumulated costs of reaching the state n from the start state. Second, h (n) is the estimated 

cost of reaching the goal state from the state n. The estimated cost is called heuristics.  The 

cost function f (n) plays a main role in finding optimal paths, because A* takes into account 

the distance already travelled, the g (n) function. Therefore, A* will certainly obtain the 

shortest path, if it exists, when a good heuristics is selected. The algorithm 5.1 gives an 

overview of how the A*-algorithm works. 

----------------------------------------------------------------------------------------------------------------- 

Algorithm 5.1: Overview of the A*-algorithm 

----------------------------------------------------------------------------------------------------------------- 
A-Star (startNode, goalNode) 

BEGIN 

// G: graph of all nodes, Q: priority queue of nodes to be traversed,  

// startNode: initial state. 

Initialise (G, Q, startNode);    

 

CostUntilNow [startNode] = 0;   

optimalPathUntilNow [startNode] = startNode;  

 

// Insert the start node in the priority queue Q with the initial cost f=0. 

Q = addToQueue (startNode), f (startNode) = 0; 

 

while not isEmpty (Q) do 

 bestNode = returnFirstElementOfQueue (Q); 

if (bestNode = = goalNode) then 

// optimal path from startNode to goalNode is given by  

// optimalPathUntilNow []. 

return optimalPathUntilNow [];       

end if 

 // for each neighbour n of bestNode. 

for all n in successors (bestNode) do 

// Check if the path through bestNode to n is shorter than the 

// current way. 

if (CostUntilNow[n] > CostUntilNow [bestNode] + 

CostDistBetweenNeighbour (bestNode, n)) then 

 

// Update the costs due to the cost between two neighbours.  
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// These costs are given by the function  

// CostDistBetweenNeighbour 

CostUntilNow [n] = CostUntilNow [bestNode] + 

CostDistBetweenNeighbour (bestNode, n); 

optimalPathUntilNow [n] = bestNode; 

if (n in Q) then 

// update the A* cost f(n) of the node n. This cost 

// is composed of the accumulated costs g(n) =  

// CostUntilNow [n] of reaching the node n from the 

// start node, and the estimated cost h (n,  

// goalNode) of reaching the goal node from the  

// node n (the estimated cost is called  

// heuristics). 

update f(n)= CostUntilNow[n] + h(n, goalNode) in Q; 

else 

// Insert the node n in priority queue Q with the 

// cost f(n). 

Q = addToQueue (n), f(n) = CostUntilNow [n] + h (n, 

goalNode); 

end if 

end if 

end for 

end while 

// No path could be found between startNode and goalNode. 

return failure; 

END 

----------------------------------------------------------------------------------------------------------------- 

5.1.2 Trajectories 

A trajectory in RobustMAS represents the path of an agent only inside the shared 

environment (inside the intersection). The controller plans trajectories for all agents in the 

system, which have to be collision-free. If all agents comply with their planned trajectories, 

then the throughput of the system would be better (the intersection will be covered optimally 

by the vehicles), because RobustMAS uses a central algorithm in order to plan the 

trajectories. Here, the central planning algorithm (A*-algorithm) has a global view of all 

available resources (cells in the intersection) that can be allocated to the agents.  

The agents get its planned trajectories only as recommendation from the controller, 

because they can behave in a fully autonomous way. 

The memory of all trajectories serves the observer to detect any deviations from the 

planned trajectories occurred in the system, where the observer compares the actual travelled 

trajectories to this memory. 

A trajectory is modelled as a vector (n-tupel) of space-time points, where each point has 

its coordinates (xi, yi) that can be reserved at time ti:  

 
 niniwithtyxtyxtrajectory nnn ,;1)},,(,),,,({ 111 

 
(5.1) 

5.1.3 An adapted A*-algorithm 

In RobustMAS, the A*-procedure for path planning of agents is applied and the 

minimum-cost path in its three-dimensional configuration time-space is searched. However 
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this A*-based procedure has been adapted for the requirements of the used application 

scenario “intersection without traffic lights”, because a vehicle can only take a “rational” path, 

whereas an agent (e.g., robot) can take any calculated path. Here, the term "rational" denotes 

the fact that a vehicle carries out a goal-directed motion along a rational (most reasonable) 

path in the intersection when it moves towards its target. This path will be a straight or 

concave trajectory (or sections of a trajectory) with respect to the travel direction as depicted 

in Figure 5-2. 

 

 
 

Figure 5-2: Rational paths of vehicles with respect to the travel direction  

 

However, robots can follow an arbitrary (winding) path. As a result, due to the use of the 

A*-algorithm not adapted to a traffic intersection, “non-rational” path (or sections of the path) 

from one waypoint to the target can be built and consequently used, where vehicles can not 

take such paths in the centre of an intersection to reach their targets. Examples of “irrational” 

paths are due to repeated zigzag movements, or back and forth movements (crisscross). 

Figure 5-3 shows how A* is used for the problem supported by an example. Here, the 

trajectory of the vehicle consists of six points. Every point has its (x, y, t) in the three- 

dimensional configuration time-space as follows: 

 Trajectory = [ (x1,y1,t1) , (x2,y2,t2) , (x3,y3,t3) , (x4,y4,t4) , (x5,y5,t5) , (x6,y6,t6) ] (5.2) 
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Figure 5-3: An adapted A*-algorithm used for the problem of path planning in the three- 

dimensional configuration time-space. 

 

Compared to the A*-algorithm described above, the adapted A*-algorithm, which is used 

in RobustMAS, has the following features: 

 The function BuildVirtualObstacles (n): It uses this function in order to build virtual 

obstacles into the path from the current node n to the goal node, because a vehicle can 

only follow a “rational” path as explained above. Virtual obstacles are blocked areas, 

which can not be crossed by vehicles. For details see section 5.1.4 (Virtual obstacles). 

 It plans independent paths for the individual vehicles in their three dimensional 

configuration time-spaces. Thus, reservation of space-time points (xi, yi, ti) is the key 

step of the adapted A*, where each node (space-time point, tile or cell in the 

intersection) of the graph that has its coordinates (xi, yi) can be reserved by one agent 

Ai at time ti. For this purpose, the adapted A*-algorithm uses the function 

isCellReserved (n, time). This function tests whether the node n(x, y) has been 

already reserved for an other agent for a specific time, where the parameter “time” 

represents the time at which the agent, for which A* is looking for the best trajectory, 

will reach the node n(x, y) according to its planned trajectory so far. So, RobustMAS 

considers the problem of path planning for teams of agents. 

 It provides the possibility to react to potential deviations of the agents from their 

planned trajectories during the plan execution. Deviations from the planned 

trajectories are detected by the observer of the O/C architecture, where the controller 

is informed of it. Consequently, the adapted A* re-plans the affected trajectories using 

the function replanNewTrajectoriesOfAffectedAgents (). Moreover, it takes into 

account the presence of disturbances (i.e., accidents in the intersections) by computing 

the paths. 

 The heuristics used in the adapted algorithm for the estimated cost of reaching the goal 

state is based on the straight-line distance from any given state (a node in the graph) to 

the goal state:  



Chapter 5. Realisation of RobustMAS 95 

 min || (xs, ys) - (xg, yg) || ; (xs, ys): start state, (xg, yg): goal state (5.3) 

This heuristics (a heuristic estimation of the distance in the case of path planning) will 

enable definitely A* finding the shortest path, if it exists, where the search will be 

limited to selected collections of the state space. Thus, a heuristic estimate of the 

distance to be travelled may be the straight-line distance between two states in a 

shared environment, so that optimal paths can be planned. 

5.1.4 Virtual obstacles 

The implementation of the adapted A*-algorithm in RobustMAS has been carried out 

under consideration of virtual obstacles. Virtual obstacles have been adopted, where blocked 

surfaces should not be considered by the planner. Virtual obstacles model blocked surfaces, 

restricted areas, which may arise as a result of reservations, accidents or other obstructions. In 

addition, virtual obstacles can be used for traffic control. Figure 5-4 shows the shape of the 

blocking surfaces (virtual obstacles), which are used by RobustMAS in order to plan 

trajectories using an adapted A*-algorithm. 

 

 
 

Figure 5-4: Blocking surfaces (virtual obstacles) used by RobustMAS 

 

Such virtual obstacles are necessary and save time while searching for a suitable 

trajectory. E.g., if a vehicle coming from the south wants to turn right, the planner excludes a 

large area from the intersection, which should not be used. Thus, a vehicle takes only a 

“reasonable” or “rational” way. 

5.1.5 Summary: Path planning 

The path planning by RobustMAS is the applied coordination mechanism to solve the 

problem of resource sharing wherever multiple agents (vehicles) cross the shared environment 

(centre of the intersection) avoiding collisions. 

Path planning serves to compute collision-free trajectories and to arrange the agents 

(vehicles).  The controller performs the path planning using a central planning algorithm and 

sends the planned trajectories to the agents (vehicles) only as recommendation, whereas the 
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agents can behave in a fully autonomous way (obey the plan or deviate from it or the agents 

are completely outside of the plan). 

A trajectory in RobustMAS represents the path of an agent (vehicle) only inside the 

shared environment (inside the intersection). 

An adapted A*-algorithm for path planning of agents (vehicles) has been applied. The 

adaptation was necessary for the requirements of the used application scenario “intersection 

without traffic lights”, because a vehicle can only take a “rational” path. A*-algorithm 

searches the minimum-cost path in its three dimensional configuration time-spaces. The 

implementation has been carried out under consideration of virtual obstacles that model 

blocked surfaces, restricted areas, which may arise as a result of reservations, accidents or 

other obstructions. 

 

5.2 Second step: Observation 

This section describes the realisation of the second step of the concept of RobustMAS, the 

observation. Furthermore, it presents the classes of deviations, the detection of deviations, an 

example of the detection of deviations, and the situation parameters, which will be collected 

including the specification of deviations and disturbances (accidents) occurred in the system 

under observation. Finally, it gives a summary of the observation process. 

The main goal of RobustMAS introduced in sections 4.2 and 4.3  is keeping a multi-agent 

system at a desired performance level when disturbances and deviations occur in the system 

behaviour. Agents (vehicles) have to be observed within the shared environment (intersection) 

through an observer (the observer of the O/C architecture), because the agents are 

autonomous (decentral) and they are allowed to behave in a completely autonomous way, 

therefore deviations from the planned trajectories (central plan) are possible.  

The A*-based path planning algorithm considered here provides no means to react to 

possible deviations of agents from their planned trajectories during the plan execution. For 

example, if one agent is delayed because unforeseen objects block its path, alternative plans 

for the agents might be more efficient. In such situations, it is important to have means for 

detecting such opportunities and to re-plan dynamically [2]. 

5.2.1 Deviation classes 

 The observer is able to detect when something has gone wrong. In order to detect the 

deviation class, which occurred in the shared environment, the second detector of the observer 

(the collision detector) is used. It discovers the deviation class and whether the deviation led 

to a collision. There are a large number of possible classes of deviations. We use the 

following ones, where these selected classes aim to illustrate the possibilities of deviations but 

the deviation class does not affect the functioning of the algorithm: 

1. The first class of deviations is a deviation through the unplanned behaviour of an 

agent (driver agent of a vehicle). This class could emerge due to the deviation of this 

or another driver, who has deviated either because of an obligatory reason, or because 

the driver is an egoistic (autonomous) driver and does not obey his prescribed 

trajectory aiming to move more speedily than planned if it is possible. 
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2. The second class of deviations is a deviation through the hardware of an agent 

(vehicle). This class could emerge due to any error in vehicles, e.g., a deviation 

because of an error in the vehicle’s sensors. 

3. The third class of deviation is a deviation through the environment (road of vehicles). 

This class could emerge due to any errors, disturbances in the road or the environment 

of the system, e.g., a deviation because of a slippery patch in the road or a deviation 

because of a disturbance in the environment (an accident in the intersection). 

Furthermore, there are many classes of deviation, which emerge due to mechanical 

failures. These classes of deviation are not in the concern of RobustMAS, e.g. deviation 

because of a flat tire, failed brakes or other causes that lead to a severe catastrophic event. 

However, since mechanical failures can happen any time, RobustMAS assumes that the 

worst-case deviation (failure) will lead to an accident. 

5.2.2 Detection of deviations 

The observer concentrates only on the agents (vehicles) within the shared environment. 

Therefore, other observers in order to observe the agents outside of the shared environment 

(on the way to the intersection) are not considered in RobustMAS. 

Figure 5-5 shows how such deviations are detected through the observer (through the 

deviation detector and collision detector) in the system. 

 

 
 

Figure 5-5: Detection of deviation 

 

The observer reads the planned trajectory of an agent (vehicle) from the trajectory 

memory (target state), only when this agent is located within the shared environment (within 

the intersection). At the same time, it reads also the current travelled trajectory (actual state) 

of this agent, including (xi, yi, ti), as well as other observations (see section 5.2.4 Situation 

Parameters). The deviation detector in the observer compares the two states (target and actual 

states) of every agent in order to detect whether any deviation from the plan occurred as in the 

next equation: 
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 deviation = if (target state) ≠ (actual state) (5.4) 

Nevertheless, this should not be considered as absolute correspondence of both states, 

because RobustMAS has the deviation-tolerance capability, so that some deviations from the 

desired (planned) behaviour can be tolerated as described later (see section 5.2.2.1 

Neighbourhood). 

When any deviation from the plan occurs, the collision detector performs the next process. 

This process detects whether the deviation led to a collision and finds the deviation class. The 

possible deviation classes, which could be detected through the observer in this system, are: 

autonomy (a deviation from plan), accident (a disturbance) or autonomy with accident (a 

deviation with a disturbance). We assume that the observer is able to perceive such deviations 

using surveillance cameras or other sensors, as well as by automatic notification systems, 

such as: Automatic Collision Notification (ACN) or Advanced Automatic Collision 

Notification (AACN). A device, like to that used on cars to trigger an airbag, is required to 

send an emergency signal to the intersection in the case of an accident. In an analogous 

manner, devices in aircraft are used to send distress signals and locator beacons in the case of 

a crash [6]. 

Afterwards, the observer aggregates its observations as a vector of situation parameters 

(for details see section 5.2.4 Situation Parameters) describing the actual states and sends it to 

the controller, which selects the more suitable actions and sends it to the system with the new 

trajectories. 

It is important to mention that the controller decides whether the detected deviations can 

be tolerated with respect to the safety distance around the agents as described in section 5.3.1. 

The deviation detector uses the idea of neighbourhood in order to compare the two states 

(target and actual states) of every agent (vehicle) as described in 5.2.2.1. 

5.2.2.1 Neighbourhood 

The term neighbourhood is used in this thesis wherever multiple agents (e.g., robots, 

vehicles, etc.) move in a common environment (intersection). It designates the places of 

occurred deviations: 1-step neighbourhood (the direct neighbourhood), 2-step neighbourhood, 

etc).  

Here, the neighbourhood is a square-shaped area, which can be used to define a set of 

cells (C) surrounding a given cell c0 (x0, y0); whereas the common environment (the 

intersection) is a square grid. 

When an agent A is located in a cell c0 (x0, y0) of the intersection, then the neighbourhood 

N (c0) of this cell is the set of cells C = {ci (xi, yi)} that can be “seen” by this agent from the 

central cell c0 (x0, y0). Consequently, the neighbours of this agent A are defined as a set of 

agents Ai, which are located in this neighbourhood N (c0). 

The neighbourhood has a distance (radius), which determines its borders. This extent 

represents the view of an agent. In a metric space of cells M = (C, d), where d is a distance 

function or simply the distance, a set Nr (c0) is a neighbourhood of a cell c0 if there exists a set 

of cells with centre c0 and radius r, so that 
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 Nr (c0) = N (c0; r) = {c   C | d(c, c0) < r} (5.5) 

Figure 5-6 shows the idea of neighbourhood, which is used in RobustMAS. 

 

 
 

Figure 5-6: The used neighbourhood in RobustMAS 

 

This definition of neighbourhood can be seen as the well-known Moore neighbourhood 

(also known as the 8-neighbours) where the distance (radius) is 1. In reference [21], the 

Moore neighbourhood of range r is defined by: 

 }||,|:|),{()y,(x 00
00

ryyrxxyxN
M

  (5.6) 

Here, the neighbourhood is a set of cells surrounding a given cell (x0, y0). Moore 

neighbourhoods for ranges r = 0, 1, and 2 are illustrated in Figure 5-6. It can be inferred that 

the number of cells in the Moore neighbourhood of range r is the odd squares (2r + 1)
2
. 

It can be seen that the number of cells in the Moore neighbourhood of range r=0 is 1, i.e., 

it contains only the cell c0 (x0, y0) where the agent, whose neighbourhood is under search, is 

located. However, it contains 9 cells in the Moore neighbourhood of range r=1, i.e., it 

contains 8 neighbours and the cell c0 (x0, y0) itself. In this case of Moore neighbourhood 

(r=1), the neighbourhood can be called the 1-step neighbourhood (first or direct 

neighbourhood). The 1-step neighbourhood is used in RobustMAS as depicted in Figure 5-7. 
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Figure 5-7: The 1-step neighbourhood (direct or first neighbourhood) in RobustMAS 

 

Here, the agent is located in the central cell and the 8 neighbours of this agent are named 

according to the direction, in which there are the following neighbours: 

N: North, E: East, S: South, W: West. 

NW: North West, NE: North East, SE: South East, SW: South West. 

Therefore, the neighbourhood of the central cell c0, where the agent is located, can be 

defined as follows:  

 N1 (c0) = N (c0; 1) = {c   C | d(c, c0) < 1} (5.7) 

 N1 (c0) = {c0, N, E, S, W, NW, NE, SE, SW} (5.8) 

By the range r=2, the Moore neighbourhood contains 24 neighbours and the cell c0 (x0, y0) 

itself (the 2-step neighbourhood). 

When the observer detects that an agent is located (the actual state) in a cell (e.g., the cell 

N), which belongs to the 1-step neighbourhood N1 (c0), instead of in their planned cell (e.g., 

the central cell c0 that is the target state), then it informs the controller that the deviation of the 

agent is within the 1-step neighbourhood N1 (c0). In a similar way, the observer informs the 

controller that the deviation of the agent is within the 2-step neighbourhood, if it detects that 

the agent is located in a cell, which belongs to the 2-step neighbourhood N2 (c0) instead of in 

their planned cell c0.  

5.2.3 Detection of deviations (an example) 

In order to simplify it, an example for the detection of deviations is given in three 

situations as depicted in Figure 5-8. 
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Figure 5-8: Detection of deviation (Example)  

 

Situation (1): 

 Vehicle (1) should drive forward. 

 But this vehicle has stopped. 

 Vehicle (2) which is behind vehicle (1) has driven forward. 

 I.e. an accident happened and the deviation class is (accident). 

 

Situation (2): 

 Vehicle (1) should drive forward. 

 But this vehicle has driven rightwards diagonally or has driven forward (two steps) 

instead of one step. 

 And there were no immediate neighbouring vehicles next to it. 

 I.e. vehicle (1) is egoistic (autonomous) and the deviation class is (autonomy). 

 

Situation (3): 

 Vehicle (1) should drive forward. 

 But this vehicle has driven rightwards (or leftwards) diagonally or has driven forward 

(two steps) instead of one step. 

 And there was an immediate orthogonally neighbouring vehicle (2). 
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 I.e. vehicle (1) is egoistic (autonomous), an accident happened and the deviation class 

is (accident and autonomy). 

5.2.4 Situation Parameters 

The situation parameters contain the class of the detected deviation and the coordinates of 

the deviation (the new state), if the observer has detected a deviation. When the controller gets 

the situation parameters containing a deviation message, then it activates the decision maker 

and plans new trajectories, if needed, and sends to the system the more suitable actions with 

the new trajectories. 

The situation parameters represent the global description of the current situation of the 

system under observation and include five parameters: 

 [deviations, accidents, exceptions, predictions, confidence interval] (5.9) 

1- Specification of the detected deviations (unplanned autonomous behaviour). 

2- Specification of the detected disturbances (accidents). 

3- Exceptions: e.g., an emergency car. 

4- Predictions: e.g. the arrival time of the emergency car to the intersection (that is future 

consequences). 

5- Confidence interval: e.g., currently normal planning but after two minutes, a special 

plan for the emergency car shall be activated (that is future consequences). 

5.2.4.1 Deviation and disturbance (accident) specification 

Figure 5-9  shows the specification of deviations and disturbances (accidents) which can 

occur in the intersection system. 
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Figure 5-9: Deviation and disturbance (accident) specification 

 

The specification of the deviations includes the following features: 

1- Deviation existing: if any deviation from plan was detected: {true, false}. 

2- Time of the deviation occurrence: if a deviation has occurred (true), then the begin 

time of the deviation occurrence, Start (t) and the end time, End (t). 

3- Deviation location: the location of the deviation, the coordinates (x, y). 

4- Deviation type: the type of the deviation (deviation from the planned trajectories). 

Here, there are four possible deviation types. According to the time of the 

deviation occurrence, it can recognise two deviation types. First, vehicles can 

change their speed (change speed) trying for example to cross the intersection 

more quickly than planned. Second, vehicles can stop trying to avoid a potential 

collision with another vehicle in the intersection. However, according to the 

location of the deviation, two other deviation types can be recognised. First, 

vehicles can change their lane (change lane) trying for example to leave a full lane 

of vehicles in order to move quickly as long as possible. Second, vehicles can 

change their direction (change direction) trying for example to avoid a potential 

collision with another vehicles in the intersection or trying to avoid a traffic jam in 

the intersection. 

5- Deviation outcome: the result of the deviation. If the deviation caused an accident 

or not: {Accd, No. Accd}. 

6- Disturbance (accident) specification: The specification of the disturbance 

(accident) includes the following features: 
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a) If any accident was detected: {true, false}. 

b) If an accident occurred (true), then the time of the accident occurrence, 

Start (t). 

c) The duration of the accident, if it is predictable. 

d) The size of the accident: the size of the blocked area in the intersection. 

e) The location of the accident where it occurred, the coordinates (x, y). 

5.2.4.2 Exceptions 

Traffic Signal Priority deals with the utilisation of priority-based concepts, so that both 

maximum benefits for public transport and minimum effect of intervening with individual 

traffic can be guaranteed. So, various existing technologies provide priorities to favour public 

transport vehicles. Transit Signal Priority (TSP) is a solution, which tries to speed up public 

transport vehicles (e.g., buses and trams) at intersections, as well as to maintain the public 

transit systems on schedule. In this context, several technologies can be used, e.g., induction 

loops, signposts/roadside beacons, optical emitters, data radio, etc [120]. 

Public transport vehicles signify their impending arrival to an intersection when they 

approach it. For this purpose, they send audio, optical, or radio signal asking for their 

priorities. The signal controller provides priorities for the transit vehicles announced their 

arrival, and transmits the high-priority traffic first. Here, a green phase will be extended or the 

red phase will be early terminated, as required, to enable the transit vehicles to cross speedily. 

Subsequently, to minimise the effect on the individual traffic, the priority granted will be 

terminated directly subsequent to the vehicle crossing [120]. 

Similar to Transit Signal Priority (TSP), Emergency Vehicle Preemption (EVP) is a 

preferential strategy adequate for a safe and expeditious transit of emergency vehicles through 

intersections. EVP enables such vehicles to move quickly as possible. Emergency vehicles 

send an advance request for high priority movement to the intersection controller that 

prioritises the flow of them. Compared to EVP, TSP has a lower priority to change the traffic 

light phases, i.e., to extend the green phase or to truncate the red one [118]. 

In this regard, RobustMAS uses a priority-based concept, where the situation parameters, 

which are sent from the observer to the controller, contain “exceptions”. This means, there are 

situations where the system has to change its traditional strategy in order to accommodate 

new circumstances. In the intersection application scenario, all normal vehicles have the same 

priority when the controller plans the trajectories using the traditional strategy. When an 

emergency car announces its coming to the intersection, then the system will select another 

strategy, because the emergency car has a high-priority. 

An emergency car (e.g., fire engine, police car, or an ambulance) sends a signal to the 

intersection requesting priority. The observer forwards it to the controller with the needed 

information about the expected state endowing preference to this emergency car. The 

controller uses a special strategy (alley strategy) forming an alley, a narrow street, so that the 

vehicles keep the way free for the emergency car so that it can cross over the intersection 

quickly. 

Another required strategy is the special strategy for public transport (e.g., a bus) which 

has a high-priority and need to cross the intersection without long waiting time. Here, the 
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controller considers the public transport to be urgent and consequently gives the public 

transport a higher priority than the other vehicles by the trajectories planning using a special 

strategy (public transport strategy). However, in this thesis, the priority concept has been 

designed but not implemented. 

In contrast to RobustMAS, both TSP and EVP systems use the priority-based concept to 

modify the traffic light phases by extending green or early termination of red phase. However, 

RobustMAS takes into account the transit priority by the trajectories planning for all vehicles 

based on the received priority requests. Thus, the trajectory plan is adapted by a traffic public 

transport (or emergency vehicles) priority module, so that public transit vehicles (or 

emergency vehicles) can be given higher priorities. 

5.2.5 Summary: Observation 

The observation of compliance with the planned trajectories (the central plan) is needed; 

because the agents (vehicles) are autonomous (decentralised in the sense of having local rules) 

and thus deviations from the plan are possible. Therefore, agents (vehicles) are observed 

within the shared environment (intersection) through an observer (the observer of the O/C 

architecture) using the memory of all planned trajectories.  

 Different types of deviations from the plan were introduced. The deviation detector in the 

observer compares the two states (target and actual states) of every agent in order to detect 

whether any deviation from the plan occurred. The collision detector detects whether the 

deviation led to a collision. 

Afterwards, the observer aggregates its observations as a vector of situation parameters 

including the specification of deviations and disturbances (accidents) occurred in the system 

under observation. Finally, the observer sends the situation parameters to the controller. 

 

5.3 Third step: Controlling 

This section describes the realisation of the third step of the RobustMAS concept, the 

controlling, focusing on the control process of the system to deal with the occurred deviations 

or disturbances (accidents). Furthermore, it presents the decision making (decision maker), 

the controller algorithm, the actions table of the controller and decision making under 

certainty and under uncertainty. Finally, it summarises the tasks of the decision maker and 

gives a summary of the controlling process. 

When deviations in the system behaviour (unplanned autonomous behaviour) from the 

central plan or disturbances in the system environment (an accident in the intersection) were 

detected (through the observer), then RobustMAS tries to make the system capable to return 

to its normal state like before with minimal central planning intervention (through the 

controller). This means that the main goal of the O/C architecture of RobustMAS is the 

monitoring and coordination of the participants in conflict achieving a robust multi-agent 

system. 



Chapter 5. Realisation of RobustMAS 106 

5.3.1 Decision making 

The decision maker is the central part of the controller (see Figure 4-10). The controller 

uses the decision maker to take a decision how it can intervene most suitably when it is 

necessary so that the system can be influenced with respect to the given goal by the user. The 

given goal of the user in the introduced application scenario (the intersection) is to keep the 

system at a nominal performance level in spite of fully autonomous behaviour (causes 

deviations from plan) and disturbances (accidents) which could appear in the intersection 

system.  In addition, it aims to allow for autonomous traffic with minimal delays. 

The decision maker is activated when the controller gets the situation parameters from the 

observer containing a deviation message. On the other side, when there is no deviation, this 

means that everything is as planned and the decision maker will not be used. 

The controller has to intervene on time if it is necessary (decision maker unit) and to 

select the best corrective action (it makes a decision whether a replanning is required and it 

uses also the path planning unit if needed) that corresponds to the current situation so that the 

system performance remains acceptable and the target performance of the system is 

maintained. Here, the controller has the capability of fault-tolerance (deviation-tolerance) and 

consequently it decides whether the detected deviations can be tolerated with respect to the 

free positions (safety distance) around the agents (vehicles). It tolerates a deviation unless the 

limit of the safety distance is exceeded through the deviated agent (vehicle). The controller 

sends to the system the appropriate actions with the new planned trajectories according to the 

actions table. 

5.3.2 Controller algorithm 

The algorithm 5.2 serves to give an overview of how the controller algorithm works and 

cooperates with the observer. This algorithm allows the controller to intervene dynamically 

through replanning all trajectories of the affected agents, when the observer has detected 

deviations from the planned trajectories.  

The controller algorithm is based on two terms, Deviation Detector (DD) and Emergency 

Threshold (ET). The Deviation Detector (DD) represents the number of the detected 

deviations from the planned trajectories, whereas the Emergency Threshold (ET) represents 

the degree of the system sensitivity to the deviations that occur, at which the controller should 

change its normal strategy to the emergency strategy. The Emergency Threshold (ET) can be 

adjusted according to the used application scenario. E.g., when the application scenario is 

risky (vehicles application scenario), the ET can be adjusted to a very low value. Otherwise, 

ET can be adjusted to a higher value. Another possibility, ET can be adjusted dynamically 

taking into consideration the changing circumstances in the used application scenario. That 

means, ET will be adjusted and changed dynamically in run-time.  

----------------------------------------------------------------------------------------------------------------- 

Algorithm 5.2: Overview of the controller algorithm with the aid of the observer 

----------------------------------------------------------------------------------------------------------------- 
O/C (trajectory memory) 

BEGIN 

The observer compares the actual travelled trajectories 

(actual state) of all agents A to the planned  

trajectories (target state)using the trajectory memory. 
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for t = 1 to A do 

 

- identify eventual deviations δ from the plan. 

δ ← (target state) XOR (actual state) 

 

The observer checks δ: 

if (δ = 0) then 

- Do nothing. There is no deviation, and  

Everything is as planned, and the decision  

maker will not be used here. 

else 

- there is a deviation from the plan (δ ≠ 0). 

- if the detected deviation δ is in the  

tolerance range (TR), then this deviation  

from the planned behaviour can be tolerated. 

The tolerance range is the defined safety 

distance (free positions) around the agents 

in their shared environment. 

 

if (deviation δ ∈ tolerance range TR) 

- the deviation δ will be tolerated. 

else 

- there is a deviation δ from the plan 

and replanning is necessary. 

- increase the counter of the Deviation Detector: 

(DD = DD + 1). 

if (DD ≥ ET) 

then 

activate the state of emergency. 

end if 

- the observer finds the deviation class, and 

stores it in the deviation message. 

end if 

end if 

end for 

 

- the observer sends its observations (deviation 

 message) to the controller. 

- the controller reads the deviation message 

and re-plans the trajectories of the affected 

agents (vehicles), and sends it to the system. 

END 

----------------------------------------------------------------------------------------------------------------- 

When the value of DD reaches the Threshold (ET), the controller activates the emergency 

state. In the emergency state, the controller behaves as follows. First, all the planned 

trajectories are no longer valid and will be deleted informing all agents (vehicles) to stop. 

Second, the controller will stop the distribution of new trajectories to other agents until end of 

the emergency state. Third, the controller uses only step by step (successive) planning of the 

new trajectories. This means, it plans only the next step for the agents (the next iteration, tick, 

of the simulation). Then, it lets the agents perform their actions waiting for the next 

observations of the observer (i.e., no more planning trajectories). According to the new 

observed situations the controller plans for the next step, and so on. 

There are two methods in order to re-plan new trajectories (i.e., the rescheduling of the 

trajectories), namely the complete test and the limited test. 
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 In the first one, the complete test, the trajectories of all agents will be tested always 

after the agents have carried out their actions. This method will be performed at the 

state of emergency, where the situation is critical and the attention is big. 

 In the second method, the limited test, only the trajectories of the deviated agents will 

be tested, which could be in conflict with other agents. This method will be performed 

in the normal strategy of the system, where the situation is normal and the attention is 

low because there are only little deviations from the plan. 

5.3.3 Action table of the controller 

Section 5.3.1 mentioned that the controller sends to the system under observation and 

control the most suitable actions with the new planned trajectories according to the actions 

table. The actions table distinguishes between four situations (a deviation, a disturbance: an 

accident, a high priority agent: an emergency-car, and above emergency-threshold) as 

described in Table 5-1. 

 

Condition Behaviour 

Deviation 

 Re-plan trajectories of affected vehicles 

 Deviation Detector (DD) = DD+1 

 If (DD > ET) then Emergency-State (ET: 

Emergency Threshold) 

Disturbance (accident) 

 Allow the vehicles behind the accident place trying 

to pass the place of accident on the right or left 

(agent behaviour) 

 Stop all vehicles which have the location of the 

accident as part of their planned trajectory 

 Re-plan trajectories of affected vehicles 

 Plan new trajectories of the accident vehicles when 

the accident duration is over 

High Priority Agent 

(Emergency car) 

 Special strategy: (Alley: narrow street). 

 Re-plan trajectories of vehicles in front of the 

emergency car so that this car can cross over the 

intersection quickly 

Above emergency threshold 

 Switch to emergency-operation (single-step mode) 

 Delete all planned trajectories 

 Plan (step by step) 

 Switch to normal-operation (trajectory mode), if no 

deviation is detected 

 

Table 5-1: The actions table of the controller 
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5.3.4 Decision making (under certainty & under uncertainty) 

There are two situations, in which decisions must be made, decision making under 

certainty (DMUC) and decision making under uncertainty (DMUU). 

Decision Making under Certainty: This means that everything is clear and decisions can 

be made under certainty or assurance. This can be seen in situations, in which there is only 

one outcome for each action (for each decision alternative). 

 In this case, the decision maker in the controller assumes that everything he sends as 

control signals (actions) to the system will certainly be executed correctly, e.g., the vehicles 

follow surely the new action from the controller. For this case, the approach (look-up table) 

can be used as solution which is simple (if - then) statements. 

Decision Making under Uncertainty: This means that not everything is clear and 

decisions have to be made under uncertainty or unconfidence. This can be seen in situations, 

in which there is more than one outcome for each action. 

In this case, the decision maker in the controller assumes that everything he sends as 

control signals (actions) to the system will not necessarily be executed correctly, e.g. the 

vehicles may either follow the new action from the controller or may not. 

Here, there are several solutions to make decisions under uncertainty. The decision theory 

has been proposed for this problem; exactly the Expected Utility Theory (EUT) [155] can be 

applied here as solution. If an agent makes a decision under uncertainty, then the probability 

plays a role in that decision. The decision theory consists of two theories: the probability 

theory and the utility theory. The decision theory is used to build a system that makes 

decisions by considering all possible actions and choosing the one that leads to the best 

expected outcome. In this context, the expected utilities (EU) of all possible actions are 

evaluated and then compared with each other to choose the best suitable action. The general 

formula of the expected utilities (EU) is described in the next equation: 

 EU(Actioni) = P1.U(X1) + P2.U(X2) + ……+ PN.U(XN) (5.10) 

Suppose that there are N possible outcomes {X1, X2, .. , XN}, when Actioni was selected and 

executed. Where {U(X1), U(X2), .. , U(XN)} are the utilities of these N possible outcomes, and 

where {P1, P2, .. , PN} are the probabilities of occurrence of these N possible outcomes. It can 

be generalised as follows: 

 EU(Action) = ∑ P.U (5.11) 

This means, the expected utility of an (Actioni) is an aggregation value of all expected 

utility values of every possible outcome. 

An example: There are two possible actions. Action1: stop all vehicles, which are in the 

immediate neighbourhood of an egoistic (autonomous) vehicle; whereas, Action2: do not stop 

them. To choose one of these two possible actions, either Action1 or Action2, the expected 

utilities (EU) of every action are evaluated using the following formulas: 

 EU(Action1) = P.U(Outcome_A) + (1 - P).U(Outcome_B) (5.12) 

 EU(Action2) = P.U(Outcome_X) + (1 - P).U(Outcome_Y) (5.13) 
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Suppose that there are only two possible outcomes for every action, Outcome_A: when the 

agents (vehicles) surely follow the new action (Action1) from the decision maker in the 

controller; whereas Outcome_B: when the agents (vehicles) do not follow the new action 

(Action1) from the decision maker in the controller. Here, (P) is the probability that the 

vehicles surely follow the new action from the decision maker; whereas, (1-P) is the 

possibility that the vehicles do not follow the new action from the decision maker. Similarly, 

it is Outcome_X and Outcome_Y for the Action2. Recalling, that the expected utility of the 

Action1 is the sum of the expected utility of Outcome_A and the expected utility of Outcome_B; 

whereas the expected utility of the Action2 is the sum of the expected utility of the Outcome_X 

and the expected utility of the Outcome_Y. At the end, the best action is selected and executed 

Action1 or Action2, which is most suitable and leads to the best expected outcome. 

In these cases, probabilities Pi can be estimated through experience, because Pi represents 

the likelihood that an event will occur. In the traffic scenario, it depends on the likelihood that 

the intersection encounters a particular hazard, e.g., a disturbance increases beyond a certain 

threshold (the accident size is enormous) leading to slow response to strong disturbance.  

5.3.5 Uncertainty of sensor values 

Accuracy of sensors is crucial to the system performance and its components. The sensor 

accuracy represents the maximum difference between the measured value at its output and the 

actual value. Based on this, inaccuracy in sensor values may lead to an incomplete description 

of the system and its environment. Real sensors may return uncertain and probably invalid 

values, because real sensors can not typically be modelled completely. 

Sensors may malfunction and consequently return incorrect sensor values, so that the 

system may go into a fault state and not work properly. Furthermore, sensors may fail to send 

the value information that may lead in turn to unwanted consequences, especially, when the 

value information should be delivered at the right time to support the system to make the right 

decision.  

In the traffic scenario, the sensors accuracy is important to perform the observation and 

consequently the control of the traffic intersection successfully. In this scenario, sensors are 

mainly needed to observe continuously the locations of the vehicles in the intersection. For 

vehicle observations, the sensor values are measured and used to report the vehicle locations 

to the deviation detector (DD component in the observer) for detecting potential deviations 

from the planned trajectories. 

However, since the vehicle locations (sensor values) being observed are continuously 

changing, the reported sensor values may be different from the exact actual values of the 

vehicle locations. Consequently, comparing the measured sensor values to the values of the 

planned trajectories stored in the trajectory memory can create faulty results. For example, the 

result of the comparison is that one or more deviations occurred despite the fact that there are 

no deviations, or vice versa. 

From the point of view of dealing with uncertainty of sensor values, the aim in the traffic 

scenario is to minimise the variance of both measured and actual sensor values. For this 

purpose, safety distance is considered in order to make the aggregate results of observations 

more tolerant to faulty sensor values. The safety distance represents free positions, which 

should be left around vehicles, so that uncertain sensor readings can be handled and tolerated 
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by avoiding any potential collision. Sensor uncertainty can be traced back to the fact that each 

measured value (i.e., a vehicle location) is only an approximate value of the actual vehicle 

location being observed in the intersection. 

5.3.6 Tasks of the decision maker 

The tasks of the decision maker in the controller of the O/C architecture can be 

summarised 

- It makes a decision whether replanning is required according to the detected 

deviations. It decides whether the detected deviations can be tolerated utilising the 

capability of fault-tolerance (deviation-tolerance). 

- It uses also the path planning unit if needed and sends the new planned trajectories to 

the system. 

- It selects the most appropriate actions and sends them to the system according to the 

actions table. 

- It adjusts and changes the Emergency Threshold (ET) dynamically in run-time 

according to the new circumstances. 

- It activates emergency-operation (single-step mode) when the value of Deviation 

Detector (DD) reaches the value of ET. 

- It switches to Special strategy (e.g., Alley: narrow street) when there is a high 

priority agent (e.g., an Emergency-Car). 

- It selects the appropriate method (complete test or limited test) to re-plan new 

trajectories (i.e., the rescheduling of the trajectories) determining the affected agents 

(vehicles).  

- In the emergency-state, it plans step by step instead of trajectories. 

- It lets free positions (safety distance) around the agents (vehicles) that behave as if 

they owned the place according to the number of their deviations. I.e., the agents, 

which frequently deviate from the plan, need a greater safety distance than the agent, 

which rarely deviate. 

- In the case of uncertainty, the expected utilities (EU) of all possible actions are 

evaluated and then compared with each other to choose the best suitable action. 

5.3.7 Summary: Controlling 

The decision maker is activated when the controller gets the situation parameters from the 

observer containing a deviation message. On the other side, when there is no deviation, this 

means that everything is as planned and the decision maker will not be used in this case. 

When the controller gets the situation parameters from the observer containing a deviation 

message (deviations or disturbances were detected), it follows the next course of action: 

1- It activates the decision maker unit. 

2- It plans new trajectories (if needed) using the path planning unit. 
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3- It sends the appropriate actions with the new planned trajectories according to the 

actions table of the controller to the system under observation and control. 

This means, the controller selects an appropriate corrective intervention corresponding to 

the current situation according to its actions table taking into account the given goal by the 

user. Of particular interest is that the system returns after disturbances to the normal state with 

minimal central planning intervention. 

5.4 Summary 

This chapter discussed the realisation of RobustMAS including the three steps of the 

RobustMAS concept: path planning, observation, controlling. Additionally, it summarised 

each of the three steps mentioned separately after an extended explanation of each one of 

them (see section 5.1.5, section 5.2.5 and section 5.3.7).  

The path planning was the applied coordination mechanism. It contributes to solve the 

resource sharing problem wherever multiple agents (vehicles) cross the shared environment 

(centre of the intersection) avoiding collisions. In this regard, an adapted A*-algorithm for 

path planning of agents was applied. This algorithm computes collision-free trajectories for 

all agents. The controller completes the path planning using a central planning algorithm. 

Accordingly, the agents get the planned trajectories only as recommendation.  

 The observation process is designed to detect deviations from the planned trajectories 

(desired behaviour), because agents are autonomous and consequently deviations from such a 

plan are possible. In this context, diverse types of deviations from the plan were presented, 

followed by determining the situation parameters. These parameters contain the specification 

of deviations and disturbances (accidents) occurred in the system under observation. 

The controlling step concentrated on the control process of the system to cope with the 

occurred deviations or disturbances (accidents). For this purpose, a decision maker was used. 

This decision maker will be activated when the controller gets a deviation message from the 

observer. Based on this, the controller algorithm was developed and discussed, followed by 

the actions table of the controller. The actions table was structured to achieve a desired 

strategy distinguishing between four different situations (a deviation, a disturbance: an 

accident, a high priority agent: an emergency-car, and above emergency-threshold). Based on 

this, the controller decides on an appropriate corrective intervention. In this way, the 

controller aims to allow the system to return after deviations or disturbances to its normal 

state with minimal central planning intervention. 

The next chapter addresses the evaluation of the previously suggested RobustMAS 

concept using three different metrics. 
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6 Evaluation 

The traffic intersection without traffic lights from Chapter 2 served as a testbed for the 

evaluation of the RobustMAS concept proposed in this thesis. The next sections will prove 

the performance of RobustMAS presenting an empirical evaluation including experiments 

with three metrics: throughput, waiting time and response time. Here, the first metric, the 

throughput, is required for estimating the overall reduction of the system's performance, in 

which deviations from the plan of the controller occur. Furthermore, it presents two modes of 

the trajectories-reservation algorithm. The evaluation was made using four test situations. 

Additionally, the robustness measurement of RobustMAS was carried out, where a new 

concept was introduced in order to define the robustness of multi-agent systems. The gain of 

RobustMAS was used as another metric. This chapter gives also a summary of the evaluation 

process for every used test situation. 

6.1 Experimental setup and the simulation environment 

Once the model of the system, intersection without traffic lights, has been designed and 

developed, it is possible to implement and simulate its behaviour over time. The Recursive 

Porous Agent Simulation Toolkit (RePast) [12] has been used in this thesis as the simulation 

engine to perform discrete event driven simulations. Simulation consists of repeating steps 

(ticks) until a preset limit is reached or the user clicks on the stop button. It provides a fully 

concurrent discrete event scheduler so that agents can be triggered to execute their predefined 

behaviour in each time step. Furthermore, Repast provides functionalities such as pause and 

stop which make it easy to control a simulation when it is running.  

The intersection without traffic lights in this thesis has been modelled as a grid-based 

layout (grid environment), i.e., the intersection is divided into a number of cells (see Figure 

6-1) so that neighbourhoods can be defined in different ways. Vehicles in this environment try 

to cross the intersection as quickly as possible. 

 

 
 

Figure 6-1: The traffic intersection as cells 

 

The main agents of a multi-agent traffic simulation are the vehicles. Every vehicle is 

controlled by an individual agent as described below. Other important elements of the 

simulated environment can also be modelled as agents, for example a no-road agent that 
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forms cells of the simulation area which are not defined as road (yellow cells in Figure 6-2). 

A traffic light agent would be another example however is not used in this system. 

 

 
 

Figure 6-2: The traffic intersection without traffic lights 

 

The behaviour of a vehicle outside the centre of the intersection (blue vehicles in Figure 

6-2) is simple so that a vehicle tries to move forward avoiding collisions with other vehicles. 

That means, a vehicle moves forward, if there is no vehicle in front of it. Otherwise, if the 

position is occupied by another vehicle, it stops and doesn’t change its position. The vehicle 

inside the centre of the intersection (green vehicles in Figure 6-2) may obey (if no deviations 

occurred) its calculated trajectory, which is planned through the path planning unit that is 

located in the controller of the O/C architecture (a calculated trajectory will be given as 

recommendation); or may not obey it making deviations (e.g., to cross more quickly than 

planned). That means, a trajectory of a vehicle represents the calculated path of this vehicle 

only inside the centre of the intersection.  

In Figure 6-2, there are two traffic flows with orthogonal directions. The first traffic flow 

has vehicles that enter the intersection from the west direction and move into east direction 

(West2East) across the centre of the intersection. The second traffic flow has vehicles that 

enter the intersection from the south direction and move into north direction (South2North) 

across the centre of the intersection. The maximum possible number of vehicles that enter the 

intersection in one direction at the same time (at each tick) is 10 vehicles. 

When the simulation is run without any planning or intervention (without the central path 

planning unit of the controller), e.g. the behaviour of a vehicle outside and inside the centre of 

the intersection is fully autonomous, it has been observed that vehicles with different driving 

directions block each other in the centre of the intersection. That is because every vehicle has 

only a goal to maximise its own gain by crossing over the intersection as fast as possible. That 

means that competition situations arise due to the egoistic behaviour (competition-based 

behaviour) of vehicles, which in turn lead to a traffic jam in the centre of the intersection 

when more than one vehicle may want to occupy the same position at the same time. 
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6.2 System performance metrics 

A classification of metrics, which can be used to measure the system performance, is here 

first discussed.  

High performance is always required and expected in traffic engineering; therefore 

appropriate metrics to evaluate the performance of the RobustMAS system are needed. The 

measurement of the system performance quantitatively should rely on well-known metrics. 

This can be broken down into two fundamental performance metrics in traffic engineering: a 

high throughput and a low waiting time (a low latency). Accordingly, the goal of the 

implemented O/C architecture can be defined as minimising the waiting time and maximising 

the throughput, because RobustMAS uses a traffic application scenario to analyse these two 

common performance metrics in traffic engineering. 

Another metric is response time, which is very important for real time systems, because in 

those systems short response time is required. Response time (it will be precisely defined 

later) is the time which takes a system to react to a given input. A short response time is also 

necessary in RobustMAS, because vehicles approaching the intersection need trajectories 

(plan). Moreover, the reservation algorithm for the trajectories of vehicles has been 

implemented in two ways: ”AllTrajectoriesVector” and “PhotoOfGrid” trying to get better 

response time of the system. 

Throughput, mean waiting time and mean response time are also measured in this work. 

Throughput here is the total number of vehicles that left the intersection (simulation area) 

over time, whereas the mean waiting time is the average time (ticks or iterations) needed by 

vehicles to traverse the intersection. Therefore, each vehicle has an internal counter to keep 

track of its own waiting time. The counter is increased each time the vehicle cannot move and 

remains unchanged otherwise. Consequently, mean waiting time MWT here is the sum of all 

waiting times of all vehicles, which are located in the simulation area (inside and outside the 

intersection), divided by the total amount of those vehicles. 
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Where: 

MWTi is the mean waiting time of the system at the time (tick) i. 

Wk,i is the waiting time of the vehicle k at the time i. 

v is the total amount of vehicles. 

The response time RT has two parts. Firstly, the path planning time Tpp: It is the time to 

search for trajectories, i.e., the time between the moment when the path planning unit in the 

controller of the O/C architecture gets messages (requests) from the system (vehicles) and the 

moment when it sends appropriate trajectories to the system (vehicles). Secondly, the 

observation/controlling time (Toc): It is the needed  

 time by the observer Tobserver to detect a deviation and the needed  

 time by the controller Tcontroller to re-plan the affected trajectories. 
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Toc

controllerobserverpp TTTRT   (6.2) 

In this application scenario, the system with the O/C architecture will provide a better 

system performance if the response time is shorter. 

The application of path planning of the O/C architecture to the system facilitates the 

collaboration between the vehicles, and this in turn leads to larger throughput and lower 

waiting time in the centre of the intersection. Therefore, throughput is used in order to show 

collaborative group behaviour in the traffic application scenario. In this application scenario, 

the system with the O/C architecture will provide a better system performance if the 

throughput is larger. 

Other common metrics used in traffic engineering to measure the system performance are 

not used in this thesis like the travel time, the difference between the minimum possible travel 

time and actual travel time, percentage of stopped vehicles and density of vehicles. However, 

RobustMAS concentrates on metrics, which have greater relevance to traffic engineering, i.e., 

the fundamental performance metrics: throughput and waiting time (as mentioned above). 

6.2.1 Modes of the reservation algorithm for trajectories 

The reservation algorithm for the trajectories of vehicles has been implemented in two 

ways (modes): ”AllTrajectoriesVector” and “PhotoOfGrid” in order to find the more 

appropriate way that needs shorter response time of the system.  

The first mode is ”AllTrajectoriesVector”. Here, every cell in the intersection is an object 

(instance) of the class SpaceTimePoint (x, y, time). Each trajectory in turn is a vector (a 

vector defined in Java). This vector contains all points (SpaceTimePoints) which represent a 

trajectory. Accordingly, the AllTrajectoriesVector is a vector that contains all trajectories of 

vehicles. 

Figure 6-3 shows the structure of the AllTrajectoriesVector mode that can be used in the 

reservation algorithm for the trajectories of vehicles. 

 

 
 

Figure 6-3: The structure of the AllTrajectoriesVector mode 

 

The second mode is “PhotoOfGrid”. Here, for each tick (each unit of time) in the 

simulation a “photo” for the whole area of the intersection will be stored. Therefore, in every 

cell an “AgentID” (VehicleID) is saved if this cell at this time (at this tick) for this agent 

(vehicle) is reserved. Each level represents a photo of a specific tick of the simulation. Thus, a 
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photo represents the coordinates (x, y), whereas a level represents the third axis (time), so that 

the configuration time-space is formed. Each photo is implemented as a HashMap (in Java), 

where the keys are the ticks and the values are the photos according to the next equation: 

 (key, value) = (Tick, PhotoOf Grid) (6.3) 

       

Figure 6-4 shows the structure of the PhotoOfGrid mode that can be used in the 

reservation algorithm for the trajectories of vehicles. 

 

 
 

Figure 6-4: The structure of the PhotoOfGrid mode 

 

Here, the configuration time-space can be seen, in which all points (x, y) of all trajectories 

of vehicles at a specific time (t) will form one level (one photo) in the three dimensional 

configuration. 

6.3 Test situations 

According to the goal of the RobustMAS system, four different test situations were used 

in order to measure the performance of the RobustMAS system. The goal of the RobustMAS 

system is to build a robust intersection without traffic lights when disturbances (e.g., 

accidents) and deviations (e.g., unplanned autonomous behaviour) occur. Consequently, these 

four test situations are:  

 First test situation: Si1 (Plan): No Deviations, No Disturbances (No Accidents): There 

are no deviations from the plan and there are also no accidents in the intersection. 

 Second test situation: Si2 (Deviation): Deviations, No Disturbances (No Accidents): 

There are deviations from the plan but there are no accidents in the intersection. 

 Third test situation: Si3 (Plan, Disturbance): No Deviations, Disturbances (Accidents): 

There are accidents in the intersection but there are no deviations from the plan. 

 Fourth test situation: Si4 (Deviation, Disturbance): Deviations, Disturbances 

(Accidents): There are deviations from the plan and also accidents in the intersection. 
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It is noteworthy to mention here that despite the presence of an accident by Si3, all 

vehicles comply with the new planned trajectories and consequently no deviations will occur.    

For each test situation, the three metrics (throughput, mean waiting time and mean 

response time) are measured, as shown in Table 6-1. 

 

 
 

Table 6-1: The four test situations with the three used metrics 

 

Test environment 

 As a test environment, a Pentium 4 personal computer with 2.8 GHz speed and 2 GB 

RAM has been used to perform the simulation of the traffic application scenario of the 

RobustMAS system. 

6.3.1 First test situation: Si1 (Plan) 

In this test situation, all vehicles obey their planned trajectories (plan) and thus no 

deviations from the plan will occur. In addition, there are no accidents in the intersection. This 

means that everything is as planned (full central plan) and the decision maker will not be used 

here. 

Since the path planning algorithm plays an important role in the RobustMAS system to 

achieve high performance, an evaluation of this algorithm is required under different test 

scenarios considering various loads of vehicles, where no deviations and accidents occur in 

the system. 

Evaluation scenarios: 

Four different evaluation scenarios are used to measure and compare the system 

performance, which results from change of values of the following two simulation 

parameters. The first simulation parameter is the maximum number of vehicles in each 

direction. The second simulation parameter is the production rate of vehicles in each direction 

(traffic level or traffic flow rate). The four different evaluation scenarios ensure that the 

system performance in various combinations of the parameter remains effective even when 
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the intersection is very busy, especially during rush hour (during morning and afternoon peak 

traffic).  

The simulation parameter Vmax “the maximum number of vehicles” in one direction 

represents the theoretical maximum capacity of vehicles in this direction (vehicles moving in 

one direction at once). However, the simulation parameter TL “the traffic level” (i.e., the 

production rate of vehicles) in one direction represents the rate at which vehicles enter this 

direction. This parameter describes the effect of changes in traffic streams (traffic 

congestion). In other words, it influences the headway of vehicles, especially in the centre of 

the intersection, where vehicles from all directions converge to cross over. 

Table 6-2 shows the resulting four evaluation scenarios. Here, “equal TL” means that the 

traffic flow rates of vehicles in each direction are the same, while these rates in each direction 

are different in the case of “not equal TL”. Similarly, the “equal Vmax” and “not equal Vmax” 

can be expressed by the parameter “maximum number of vehicles”. 

 

 
 

Table 6-2: The four evaluation scenarios 

 

For each evaluation scenario, the three metrics (throughput, mean waiting time and mean 

response time) are measured, as shown in Table 6-3. 

 

 
 

Table 6-3: The four evaluation scenarios with the three used metrics 

 



Chapter 6. Evaluation 120 

The three used metrics of RobustMAS have been measured in an interval between 0 und 

3000 ticks (time steps in simulator). The results of the simulation of these three metrics were 

discussed also after 3000 ticks. As shown in Figure 6-2, two traffic flows with orthogonal 

directions are taken into account: W2E (West2East) and S2N (South2North).  

According to the size of the traffic intersection implemented in this work (see Figure 6-2), 

the study of intersections with very low traffic volumes will be clearly a trivial case. 

Therefore, the values of both simulation parameters, mentioned above, were chosen in such a 

way that a wide spectrum of traffic volumes can be covered (low, medium, high and extreme 

traffic volumes). 

Table 6-4 shows the four different evaluation scenarios. 

 

 
 

Table 6-4: The four evaluation scenarios (two traffic flows with orthogonal directions) 

 

Evaluation scenario I (Equal-Equal): 

In evaluation scenario I (Equal Vmax – Equal TL), the throughput and the mean waiting 

time of the system have been measured in the case that the traffic flow rates (traffic levels) of 

vehicles in south-north and west-east directions is equal, namely 5 vehicles/tick, where the 

measurement has been repeated in the cases that the maximum number of vehicles in each 

direction is equal, namely 20, 40, 80, 100, and 500 vehicles. The case of 500 vehicles in every 

direction is an extreme case, where the maximum number of vehicles is greater than the 

capacity of the intersection (very busy intersection). 

Evaluation scenario II (Equal-not Equal): 

In evaluation scenario II (Equal Vmax – not Equal TL), the throughput and the mean 

waiting time of the system have been measured in the case that the traffic level of vehicles in 

each direction is different, namely in south-north direction 5 vehicles/tick and in west-east 

direction 8 vehicles/tick, where the measurement has been repeated in the cases that the 

maximum number of vehicles in each direction is equal, 20, 40, 80 and 100 vehicles. 

Evaluation scenario III (not Equal-Equal): 

In evaluation scenario III (not Equal Vmax – Equal TL), the throughput and the mean 

waiting time of the system have been measured in the case that the traffic level of vehicles in 

south-north and west-east directions is equal, namely 5 vehicles/tick, where the measurement 

has been repeated in the cases that the maximum number of vehicles in each direction is 

different, namely in south-north direction 20, and in west-east direction 20, 40, 80 and 100 

vehicles. 
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Evaluation scenario IV (not Equal-not Equal): 

In evaluation scenario IV (not Equal Vmax – not Equal TL), the throughput and the mean 

waiting time of the system have been measured in the case that the traffic level of vehicles in 

each direction is different, namely in south-north direction 5 vehicles/tick, and in west-east 

direction 8 vehicles/tick, where the measurement has been repeated in the cases that the 

maximum number of vehicles in each direction is different, namely in south-north direction 

20, and in west-east direction 20, 40, 80 and 100 vehicles. 

The next part of this discussion shows the results of the evaluation of RobustMAS in the 

traffic application scenario using the three metrics described above, where no deviations and 

accidents occur (first situation: Si1: Plan). 

6.3.1.1 Results of throughput measurement 

Section 6.2 has mentioned that the throughput used in the traffic application scenario is 

the total amount of vehicles that left the intersection over time. Here, the path planning of the 

O/C architecture has been implemented assuming that no deviations and accidents occur in 

the system according to requirements of the first situation (Si1: Plan).  

Figure 6-5 shows the cumulative system throughput (# Vehicles) for each evaluation 

scenario that was measured in an interval between 0 und 3000 ticks. Furthermore, Figure 6-6 

shows the same as Figure 6-5 using the throughput per time unit (# Vehicles/tick). Recalling, 

that one tick in the simulator means one time step. 
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Figure 6-5: The cumulative system throughput (# Vehicles) for each evaluation scenario (I, II, 

III, and IV) in an interval between 0 und 3000 ticks 
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Figure 6-6: The system throughput (# Vehicles/tick) for each evaluation scenario (I, II, III, 

and IV) in an interval between 0 und 3000 ticks 

 

It can be seen that from approximately the tick (120) the vehicles begin to leave the 

intersection (simulation area), because at the beginning of the simulation the intersection was 

empty. Therefore, the system throughput in this interval (0 until ca. 120 ticks) is zero. 

Thereafter, the system throughput increases always with time in the case of the cumulative 

curve, or it is at its best (i.e., approximately constant throughput per time unit) in the case of 

the throughput per time unit curve. This note applies to the four evaluation scenarios. 

Figure 6-7 shows the system throughput comparing the four evaluation scenarios 

according to varying the value of the maximum number of vehicles in each direction after 

3000 ticks; whereas Figure 6-8 shows the same but including the extreme case (500 vehicles 

in every direction and consequently 1000 vehicles in both directions). Here, on the x-axis is 

the maximum number of vehicles together in both directions W2E and S2N. Due to the 

extreme case, the maximum number of vehicles on the x-axis in Figure 6-8 has 1000 as 

maximum value; whereas in Figure 6-7 has 200 as maximum value. 
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Figure 6-7: The throughput of system in the four evaluation scenarios after 3000 ticks 

 

 

 

Figure 6-8: The throughput of system in the four evaluation scenarios including the extreme 

case after 3000 ticks 

 

In evaluation scenario (I) (Equal-Equal), the system throughput achieves a value of 

around 1000 vehicles after 3000 ticks when the maximum number of vehicles in each 

direction is (20-20), whereas it achieves a value of around 2000 by (40-40) vehicles and a 

value of around 5000 vehicles by (100-100) vehicles. This means that the system throughput 

increases almost always linearly with the number of vehicles. In a similar manner, the same 

behaviour of the system throughput applies to the other evaluation scenarios (see Figure 6-7). 

However, this behaviour of the system throughput will be changed only in the extreme case 

(see Figure 6-8).  

 In the extreme case (500-500) vehicles and consequently 1000 vehicles in both directions, 

the system performance achieves a value of around 9500 vehicles, because the maximum 
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number of vehicles here is greater than the capacity of the intersection. Thus, it can be 

concluded that the system throughput within the capacity of the intersection increases almost 

always linearly with the number of vehicles. 

In evaluation scenarios I and II, the values of the system throughput are approximately 

identical. This means that the maximum number of vehicles in each direction is relevant, not 

the traffic levels (traffic flow rates) of vehicles in each direction. The system achieves a 

throughput of around 5000 vehicles by (100) vehicles in every direction in both evaluation 

scenarios I and II (see Figure 6-8).  

A similar conclusion can be obtained when the values of the system throughput in 

evaluation scenarios III and IV are compared. 

However, it is obvious that the values of the system throughput in evaluation scenario III 

are not similar to the values in the evaluation scenario I and II, because the total amount of 

vehicles in both directions in evaluation scenario III is less than the amount in evaluation 

scenarios I or II. Here, in evaluation scenario III, the maximum number of vehicles are (20, 

20) then (20,40) then (20,80) then (20,100); whereas in evaluation scenarios I or II the 

maximum number of vehicles are (20,20) then (40,40) then (80, 80) then (100,100). 

Therefore, the values of the system throughput in evaluation scenario III or IV is lower than 

in evaluation scenario I or II. 

In general, it can be noted that the system throughput increases almost always linearly 

with the number of vehicles in all evaluation scenarios (I, II, III, and IV) as long as the 

maximum number of vehicles is not greater than the capacity of the intersection. 

6.3.1.2 Results of mean waiting time measurement 

Section 6.2 has mentioned that the mean waiting time used in the traffic application 

scenario is the mean waiting time (ticks or iterations) needed by vehicles to traverse the 

intersection. This can be done using the internal counter of each vehicle including its own 

waiting time. 

Figure 6-9 shows the mean waiting time for each evaluation scenario that was measured in 

an interval between 0 und 3000 ticks. 
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Figure 6-9: The mean waiting time for each evaluation scenario (I, II, III, and IV) in an 

interval between 0 und 3000 ticks 

 

It can be seen that from the beginning of the simulation up to approximately the tick 100, 

a short threshold (the initially effect where time < 100 ticks) is formed. That is because the 

intersection was empty at the beginning of the simulation and the vehicles of both directions 
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W2E and S2N arrive roughly together at the borders of the central area of the intersection. 

Therefore, several conflicts (competitions) arise at these times which increase in turn the 

waiting time for multiple vehicles. The maximum value of the mean waiting time of the 

system by this threshold is around 3 ticks when the maximum number of vehicles in each 

direction is (100,100) vehicles, which is a low value of waiting time. After this, the threshold 

disappears and the mean waiting time will be lower. Thereafter, the more the total amount of 

vehicles in the intersection, the greater the mean waiting time of the system. This observation 

applies to the four evaluation scenarios.  

In evaluation scenario (I) (Equal-Equal), for an example, the maximum value of the mean 

waiting time is around 1 tick when the maximum number of vehicles in each direction is (20-

20) and (40-40) and (80,80) vehicles; whereas around 2 ticks by (100,100) vehicles. However, 

it is slightly different in the extreme case (500,500) vehicles. Here, due to the large number of 

vehicles the maximum value of the mean waiting time is around 1.5 ticks and the mean 

waiting time of the whole system will be reduced. 

In evaluation scenarios I and II, the values of the mean waiting time of the system are 

approximately identical. The same can be concluded when the values of the mean waiting 

time of the system in evaluation scenarios III and IV are compared. 

However, it can be seen that the values of the mean waiting time of the system in 

evaluation scenario III are not the same as the values in the evaluation scenario I and II, 

because the total amount of vehicles in both directions in evaluation scenario III is less than 

the amount in evaluation scenarios I or II. Here, in evaluation scenario III, the maximum 

number of vehicles are (20,20) then (20,40) then (20, 80) then (20,100); whereas in evaluation 

scenarios I or II the maximum number of vehicles are (20,20) then (40,40) then (80, 80) then 

(100,100). Therefore, the values of mean waiting time of the system in evaluation scenario III 

or IV is lower than in evaluation scenario I or II. 

Now, the results of the mean waiting time metric will be discussed for the extreme case, 

(500) vehicles in every direction, where the maximum number of vehicles is greater than the 

capacity of the intersection (very busy intersection). That is done in order to show the longest 

waiting time at all with its standard deviation. 

For this purpose, the measurements were repeated in the cases that the traffic levels of 

vehicles in south-north and west-east directions are: (1,1), (1,8), (5,5), (5,8), (8,8) 

vehicles/tick. The different rates at which vehicles enter each of the directions are chosen to 

investigate the effect of traffic streams with equal/unequal strength on the mean waiting time 

which vehicles experience as depicted in Table 6-5. Additionally, Figure 6-10 shows the same 

as Table 6-5 using a box plot. The mean waiting times and the standard deviations of all 

vehicles, that left the intersection, have been registered after 3000 ticks in the extreme case. 
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Table 6-5: The mean waiting time and the standard deviation of all vehicles that left the 

intersection after 3000 ticks in the extreme case (1000 vehicles) 

 

 

 

Figure 6-10: The mean waiting time in the extreme case (1000 vehicles) 

 

Despite the huge number of vehicles, which is greater than the capacity of the intersection, 

the resulting mean waiting times were low values with small standard deviations in all 

different traffic flow rates (traffic levels). The largest mean waiting time is by traffic rate (8,8) 

around  Φ 4 ± 1.19 . 

 

6.3.1.3 Results of mean response time measurement 

Section 6.2 has mentioned that the response time used in the traffic application scenario 

has two parts: the path planning time and the observation/controlling time. Additionally, the 
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reservation algorithm for the trajectories of vehicles has been implemented in two ways 

(modes): ”AllTrajectoriesVector” and “PhotoOfGrid” trying to get better response time of the 

system. 

According to the first situation (Si1: Plan), no deviations and accidents will occur in the 

system, the mean response time here is the mean computation time of the search for the best 

appropriate trajectories of vehicles. 

In order to compare the two proposed ways of the reservation algorithm for trajectories, 

the mean response time of the system has been measured for both reservation ways after 3000 

ticks in two selected scenarios. Scenario I is a simple scenario in terms of a small number of 

vehicles. In this scenario, the mean response time of the system has been measured 

considering that the traffic level of vehicles in south-north and west-east directions is only 1 

vehicles/tick, whereas the maximum number of vehicles in each direction is only 20 vehicles. 

Scenario II is a complex scenario in terms of a large number of vehicles. In this scenario, the 

mean response time of the system has been measured with a traffic level of vehicles in south-

north and west-east directions of 4 vehicles/tick, whereas the maximum number of vehicles in 

each direction is 100 vehicles. 

Table 6-6 shows the resulting mean response times comparing both reservation ways in 

simple and complex case. 

 

 
 

Table 6-6: The mean response times after 3000 ticks comparing both reservation ways 

 

According to the resulting values in Table 6-6, it can be concluded that the second 

reservation mode (PhotoOfGrid) requires about 6 times longer time than the first reservation 

mode (AllTrajectoriesVector) in the scenario I (simple case), whereas it is about 13 times 

longer in the scenario II (complex case). Accordingly, the reservation mode 

(AllTrajectoriesVector) has approximately a quadratic complexity, O(n
2
), whereas the 

reservation mode (PhotoOfGrid) has approximately a cubic complexity, O(n
3
). That is 

because time is additional to the (x, y) form in this 3-D configuration.  

Since the reservation mode (AllTrajectoriesVector) outperforms significantly the other 

reservation mode (PhotoOfGrid) by computation time in several situations, only the former 

(AllTrajectoriesVector) will be further measured and discussed. 

Figure 6-11 shows the system performance (mean response times) for the evaluation 

scenario I (Equal-Equal) after 3000 ticks using the reservation mode (AllTrajectoriesVector). 
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Figure 6-11: The mean response times of system in scenario I (Equal-Equal) after 3000 ticks 

using the reservation mode AllTrajectoriesVector 

 

Here, on the x-axis the maximum number of vehicles together in both directions W2E and 

S2N is shown. The mean response time of the system in this scenario has an approximate 

value of 0.1 ms when the total number of vehicles in both directions is 40 vehicles, whereas 

an approximate value of 0.83 ms by 200 vehicles. That means, the mean response time of the 

system increases approximately quadratically with the total number of vehicles requiring less 

than 1 ms when the total number of vehicles in both directions is 200 vehicles. 

Real world 

The simulation has been made by the simulation framework RePast, but what about the 

real world? In order to make the traffic system in this work realistic as a practical and 

implementable system in the real world, it has to be tested assuming a variety of conditions. 

Therefore the following assumptions were taken into account: 

 Each cell in the simulation area has a length of 10 meters. 

 The total length of the simulation area is 40 cells, i.e. 400 meters. 

 The total width of the simulation area is 40 cells, i.e. 400 meters. 

 The speed of a vehicle is 10 meters per second, i.e. 1 cell per second, i.e. 36 km/h. 

 The shortest time to cross the simulation area is 400/10 = 40 seconds. 

 In each tick one vehicle can move only 1 cell, i.e. each 1 tick in the simulation 

represents 1 second in reality. 

In evaluation scenario I (Equal-Equal), the measured mean response time of the system 

after 3000 ticks using the reservation mode (AllTrajectoriesVector) is 0.845 ms, where the 

total amount of vehicles in south-north and west-east directions together is 200 vehicles and 

the total traffic level of vehicles in both directions together is 10 vehicles/tick. This value is 

less than 1 ms. According to the assumptions described above, that is feasible, because it was 

assumed that each tick represents 1 second. 
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Since communication delays Cd in the delivery of messages or control actions may be 

present, the consideration of the communication delay is normally required. Cd may range 

from some microseconds to a few hundred milliseconds according to the communication 

networks used. In this work, communications are considered to be under no delay condition. 

Thus, Cd has not been computed assuming that the underlying communication network 

ensures the required level of communication (Cd may assumed to be constant). Therefore, it is 

essential to provide the minimum required bandwidth to send messages (communication). An 

example, a message m that has the maximum size of 688 byte is sent by the use of an IEEE 

802.11 network, which has 5.5 Mbps data rate transmission. Here, the transmission time to 

send the message m is around 1 ms. 

Content Addressable Memory (CAM) 

If the system has to be even more effective with respect to the short response time 

capability, then the reaction time of the system has to be improved. One of several ways to 

achieve this goal is the associative memory (Content Addressable Memory, CAM). The CAM 

provides a performance advantage over other memory search algorithms in the search time. 

The associative memory is used in real-time systems, in two cases: First, as hardware 

associative memory [19]. It is a memory for search applications that require a very high 

speed. A typical application area for this memory is a fast cache memory, memory tables that 

often are accessed and data structures in artificial intelligence [20]. All cells of this memory 

can be tested in one operation due to the hardware design. That leads to very fast search 

operations. This achieves in turn an advantage for the system performance. The penalty of 

using a hardware associative memory is the cost, because it is designed in hardware. 

However, this form of memory is today replaced largely by hashing techniques, which work 

with the conventional memory and are therefore much cheaper to implement. This second 

variant is called a software associative memory (associative array). It is slower than the 

hardware associative memory, but it costs actually much less than the hardware one. 

Accordingly, a CAM is the hardware embodiment of what in software terms would be called 

an associative array. Finally, it can be concluded, that the use of hardware associative memory 

can improve the system performance assuring a faster reaction time of the system in order to 

keep it at a desired performance level when errors, disturbances and deviations occur in the 

system behaviour, particularly in the cases, in which a short response time capability is 

required. However, a special study has to be made to assess the actual improvement of the 

system performance that can be achieved using a hardware associative memory. 

6.3.1.4 Summary: First test situation: Si1 (Plan) 

In this test situation, no deviations from the plan will occur and consequently there are no 

accidents in the intersection. That means, all vehicles obey their planned trajectories (full 

central plan) and the decision maker will not be used here. 

Four different evaluation scenarios were used to measure and compare the system 

performance.  

 Evaluation scenario I (Equal-Equal) 

 Evaluation scenario II (Equal-not Equal) 

 Evaluation scenario III (not Equal-Equal) 
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 Evaluation scenario IV (not Equal-not Equal) 

The three used metrics of RobustMAS have been measured in interval between 0 und 

3000 ticks (time steps in simulator): throughput, mean waiting time and mean response time. 

Also, a discussion of the measured values for this three metrics after 3000 ticks was managed.    

1) Throughput: 

As long as the maximum number of vehicles is not greater than the capacity of the 

intersection, the system throughput increases almost always linearly with the number of 

vehicles. 

2) Mean waiting time:  

Despite of the huge number of vehicles which is greater than the capacity of the 

intersection, the resulting mean waiting times were low with small standard deviations in all 

different traffic flow rates (traffic levels). The largest mean waiting time is by traffic rate (8,8) 

around  Φ 4 ± 1.19 . 

3) Mean response time: 

According to the first situation (Si1: Plan), no deviations and accidents will occur in the 

system, the mean response time here is the mean used computation time of the search for the 

best appropriate trajectories of vehicles. 

The reservation mode (AllTrajectoriesVector) outperforms significantly the other 

reservation mode (PhotoOfGrid) by computation time in several situations.  

The mean response time of the system increases approximately quadratically with the total 

number of vehicles requiring less than 1 ms when the total number of vehicles in the both 

directions is 200 vehicles. 

Assumptions, that are required, have been discussed in order to make the traffic system 

realistic in the real world. Additionally, a hardware associative memory can assure a faster 

reaction time of the system. 

6.3.2 Second test situation: Si2 (Deviation) 

In this test situation, the vehicles do not obey their planned trajectories (plan) and thus 

deviations from the plan will occur but there are no accidents in the intersection. 

Of course, an observation of actual trajectories by the observer component has to be made 

in order to identify any deviations from plan allowing replanning all affected trajectories by 

the controller using the path planning algorithm. 

Here, the desired type of potential deviations in the simulation of the traffic system is 

change speed. That means, vehicles can change their speed trying for example to cross the 

intersection more quickly than planned. With respect to this type of deviations, vehicles that 

can only make one move (its planned speed is one move) in one tick (a single time step) are 

trying to make two moves in the same length of simulation time (one tick). For example, a 

vehicle moves two steps forward, if there is no vehicle in the next two cells in front of it in the 

intersection. Otherwise, it moves only one step (as its planned speed) if there is no vehicle 

only in the next cell in front of it. However, deviations do not cause any accident. 
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Here, a comparison between the first test situation Si1 (Plan), see section 6.3.1, and the 

second test situation Si2 (Deviation) is of particular interest. The values which are results of 

throughput measurement, see section 6.3.1.1, and results of mean waiting time measurement, 

see section 6.3.1.2, and results of mean response time measurement, see section 6.3.1.3, will 

be compared with their corresponding values obtained from the measurement of throughput, 

mean waiting time and mean response time by the test situation Si2 (Deviation). This 

comparison can lead to discover the effect of non-compliance with the central plan (planned 

trajectories of vehicles). Consequently, the comparison here is between the first test situation 

Si1 (Plan) which is the fully central plan and the second test situation Si2 (Deviation) which is 

the hybrid coordination (central and decentral). 

The measurement of the three metrics will be made using several values of the simulation 

parameter, the maximum number of vehicles, employing the evaluation scenario I (Equal-

Equal). Accordingly, the traffic flow rates (traffic levels) of vehicles in south-north and west-

east directions is equal, namely 5 vehicles/tick. However, the measurement has been repeated 

in the cases that the maximum number of vehicles in each direction is equal, namely 20, 40, 

80, and 100 vehicles (40, 80, 160, 200 vehicles in both directions). The three used metrics 

have been measured after 3000 ticks. 

Here, the comparison was managed between the measured values of the first test situation 

Si1 (Plan) and the measured values of the second test situation Si2 (Deviation) using the three 

metrics: throughput, mean waiting time and mean response time. 

6.3.2.1 Results of throughput measurement 

Table 6-7 shows the comparison of the system throughput measured after 3000 ticks 

between the first test situation Si1 (plan) and the second test situation Si2 (Deviation) with 

varying amounts of the maximum number of vehicles in both directions from 40 to 200 

vehicles. Additionally, Figure 6-12 shows the same comparison of the system throughput as 

diagram. 

 

 
 

 Table 6-7: The comparison of the system throughput after 3000 ticks between the first and 

second test situations 
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Figure 6-12: The comparison of the system throughput after 3000 ticks between the first and 

second test situations 

 

In this regard, the same behaviour of the system throughput applies to both test situations 

Si1 (plan) and Si2 (Deviation) can be seen. Consequently, the values are roughly identical by 

both test situations Si1 (plan) and Si2 (Deviation). Here, the system throughput by Si1 or Si2 

achieves a value of around 990 vehicles after 3000 ticks when the maximum number of 

vehicles in each direction is (20-20), whereas it achieves a value of around 1950 by (40-40) 

vehicles and by (100-100) vehicles a value of around 4800 vehicles. That means, the system 

throughput by the second test situation Si2 (Deviation) increases almost always linearly with 

the number of vehicles despite deviations from the planned trajectories (due to the 

autonomous vehicles).  

This emphasises that no degradation of the system throughput was observed when 

vehicles make deviations (move more speedily than the plan) and thus do not obey their 

planned trajectories. Therefore, it is inferred that the central plan (the path planning by means 

of a central planning algorithm) was optimal. However, no improvement of the system 

throughput was found. The reason for this is that the vehicles which move more speedily than 

planned block other vehicles in the neighbourhood to obey their planned trajectories. 

Therefore, a speed increase of a vehicle will be at the expense of the speed of other vehicles in 

the next neighbourhood and thus it may lead to delays of these vehicles. 

6.3.2.2 Results of mean waiting time measurement 

Table 6-8 shows the comparison of the mean waiting times and the standard deviations of 

all vehicles, that left the intersection measured after 3000 ticks between the first test situation 

Si1 (plan) and the second test situation Si2 (Deviation) with varying amounts of the maximum 

number of vehicles in both directions from 40 to 200 vehicles. Additionally, Figure 6-14 

shows the same comparison of the mean waiting time as diagram, whereas Figure 6-13 

illustrates the box plot output for Si1and Si2 combined. 
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Table 6-8: The comparison of the mean waiting times and the standard deviation of all 

vehicles that left the intersection after 3000 ticks between the first and second test situations 

 

 

 

Figure 6-13: The comparison of the mean waiting times between Si1 and Si2 

 

 
 

Figure 6-14: The comparison of the mean waiting times and the standard deviation of all 

vehicles that left the intersection after 3000 ticks between the first and second test situations 
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Here, it can be seen that the same behaviour of the waiting times applies to both test 

situations Si1 (plan) and Si2 (Deviation). Consequently, the mean waiting times are roughly 

identical by both test situations Si1 (plan) and Si2 (Deviation). More accurately, there is very 

small increase by Si2 due to deviations. For example, the mean waiting times by Si1 and Si2 

is the same (Φ 0.59 ± 0.80) when the maximum number of vehicles in each direction is (20-

20), i.e., no increase of the waiting times; whereas Si2 (Deviation) has a very low increase 

(0.04 ticks, from 0.84 to 0.89 ticks) by (40-40) vehicles. However, Si2 has a very low increase 

(0.08 ticks, from 1.13 to 1.21 ticks) by (80-80) vehicles; whereas Si2 has a very low increase 

(0.07 ticks, from 1.43 to 1.50 ticks) by (100-100) vehicles. That means, the mean waiting 

times by the second test situation Si2 (Deviation) increase very slightly despite the deviations 

from the planned trajectories (due to the autonomous vehicles). 

The very small increase of the mean waiting times by Si2 (Deviations) can be traced back 

to the deviations of vehicles (move more speedily than planned) which lead in turn to block 

other vehicles in the neighbourhood causing longer delays than those intended (planned). This 

confirms the conclusion that the central plan (the path planning for the vehicles) was optimal. 

6.3.2.3 Results of mean response time measurement 

Section 6.2 has mentioned that the response time used in the traffic application scenario 

has two parts: the path planning time and the observation/controlling time. According to the 

second situation (Si2: Deviation), deviations but no accidents will occur in the system, the 

response time here has the two parts. 

Table 6-9 shows the comparison of the mean response time between the first test situation 

Si1 (plan) and the second test situation Si2 (Deviation) with varying amounts of the maximum 

number of vehicles in both directions from 40 to 200 vehicles. Additionally, Figure 6-15 

shows the same comparison of the mean waiting time as diagram. This comparison was made 

by the evaluation scenario I (Equal-Equal) after 3000 ticks using the reservation mode 

(AllTrajectoriesVector). 

 

 
 

Table 6-9: The comparison of the mean response time after 3000 ticks between the first and 

second test situations 
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Figure 6-15: The comparison of the mean response time after 3000 ticks between the first and 

second test situations 

 

Here, a different behaviour of the response times between the test situations Si1 (plan) and 

Si2 (Deviation) is clearly seen. More accurately, there is an increase by Si2 due to deviations. 

For example, the mean response time by Si2 (Deviation) increases slightly (about 2.50 ms, 

from 0.267 to 2.709 ms) when the maximum number of vehicles in each direction is (20-20); 

whereas Si2 (Deviation) increases more (about 5 ms, from 0.258 to 5.329 ms) by (40-40) 

vehicles. However, Si2 increases even more (about 7 ms, from 0.323 to 7.065 ms) by (80-80) 

vehicles; whereas Si2 increases most (about 14 ms, from 0.486 to 14.465 ms) by (100-100) 

vehicles. That means, the mean response times by the second test situation Si2 (Deviation) 

increase clearly but reasonably despite deviations from the planned trajectories (due to the 

autonomous vehicles). 

The reasonable increase of the mean response times by Si2 (Deviations) can be attributed 

to the long time (comparing with the Si1: Plan without deviations) needed to detect deviations 

occurred in the system and to re-plan all affected trajectories. It can be seen that by (100-100) 

vehicles in the intersection the mean response time is less than 15 ms, which can be 

considered a reasonable value for the today's modern computing devices. 

6.3.2.4 Summary: Second test situation: Si2 (Deviation) 

In this test situation, deviations from the plan will occur but there are no accidents in the 

intersection. That means, vehicles do not obey their planned trajectories (i.e., decentral due to 

autonomous vehicles). Here, actual trajectories of vehicles will be observed identifying any 

deviations from plan in order to make replanning by means of the path planning algorithm. 

Here, vehicles try to change their speed crossing the intersection more quickly than planned 

(deviation type is change speed). 

In this regard, a comparison was made between the first test situation Si1 (Plan) and the 

second test situation Si2 (Deviation). So, the comparison here is between the first test 

situation Si1 (Plan) which is full central plan and the second test situation Si2 (Deviation) 

which is hybrid coordination (central and decentral). 
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The three used metrics of RobustMAS have been measured after 3000 ticks (time steps in 

simulator): throughput, mean waiting time and mean response time. The measurement of this 

metrics was made using the evaluation scenario I (Equal-Equal). 

1) Throughput:  

- There was no degradation of the system throughput in spite of deviations which 

made by vehicles in the intersection (move more speedily than planned) and 

consequently do not obey their planned trajectories. 

- There was no improvement of the system throughput, because the vehicles which 

move more speedily than their plan block other vehicles in the neighbourhood to 

obey their planned trajectories. 

- The central plan (the path planning of the central planning algorithm) was optimal. 

2) Mean waiting time:  

- There is very slight increase in the mean waiting time by Si2 (Deviation) due to 

deviations from the planned trajectories (due to the autonomous vehicles). These 

deviations of vehicles lead in turn to block other vehicles in the neighbourhood 

causing longer delays than planned. 

- The central plan was optimal. 

3) Mean response time: 

- There is a clear but acceptable increase of the mean response time by Si2 (Deviation) 

due to deviations from the planned trajectories. Longer times are needed by Si2 than 

by Si1 (Plan without deviations) in order to detect deviations occurred in the system 

and to re-plan all affected trajectories.   

- By 200 vehicles in the intersection, the mean response time is less than 15 ms. 

 

Conclusion: 

Consequently, the conclusion of this comparison between the first test situation Si1 (Plan) 

and the second test situation Si2 (Deviation) was the following:  

- The system of central planning shows approximately the same performance as the 

system of decentral planning when only deviations from the central plan occur but 

no accidents (disturbances) occur.   

- A local problem (e.g., small deviation) can be solved at local level. 

6.3.3 Third test situation: Si3 (Plan, Disturbance) 

In this test situation, all vehicles obey their planned trajectories (plan) and thus no 

deviations from the plan will occur. However, there are accidents in the intersection because 

of unforeseen mechanical failures. 

Because there is not much difference between the test situations Si3 and Si4, and because 

the test situation Si4 is more applicable (it contains both deviations and accidents), the 

discussion will be limited to the test situation Si4. 
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6.3.4 Fourth test situation: Si4 (Deviation, Disturbance) 

In this test situation, the vehicles do not obey their planned trajectories (the central plan) 

and thus deviations from the plan will occur as well as accidents in the intersection. 

In this regard, an observation of actual trajectories by the observer will be made in order 

to detect any deviations from plan and to detect potential accidents in the intersection 

allowing the controller to make replanning for all affected trajectories using the path planning 

algorithm.  

It can be recalled here that the identification of deviations from planned trajectories will 

be carried out via the deviation detector component in the observer; whereas the identification 

of disturbances (accidents) will be detected via the collision or accident detector component in 

the observer. Section 5.2.4.1 describes the specification of deviations and disturbances 

(accidents) which can occur in the intersection system. 

Here, deviations will occur when autonomous vehicles change their speed trying to move 

more speedily than planned (change speed is the type of deviations). The vehicles that can 

make only one move (according to the planned trajectories) in one tick (a single time step in 

the simulation) are allowed to make two moves in the same length of simulation time (one 

tick) if it is possible. 

The test situation Si4 serves to measure the robustness of the traffic intersection system 

and to assess the degree of the robustness of RobustMAS during disturbances (e.g., accidents) 

and deviations (e.g., unplanned autonomous behaviour). In order to achieve that, the 

simulation of the test situation Si4 was carried out under two conditions. First, disturbances 

(accidents) without intervention. In this case, disturbances (accidents) and deviations occur 

and no corrective intervention by central planning will be performed. That means, the 

autonomous agents (vehicles) were instructed to continue their usual local behaviour avoiding 

the accident position in order to move farther without any centralised interventions (without 

the O/C architecture). Second, disturbances (accidents) with intervention. In this case, 

disturbances (accidents) and deviations occur but replanning and corrective intervention by 

central planning will be performed (by means of the O/C architecture). This means that the 

autonomous agents (vehicles) will get a new planning (new trajectories) after accidents and 

deviations. The new planning takes into account the accident positions (as obstacles) allowing 

the agents (vehicles) to avoid it with the most appropriate way taking the advantage of the 

centralised interventions.  

Here, a comparison between the first test situation Si1 (Plan), see section 6.3.1, and the 

fourth test situation Si4 (Deviation, Disturbance) in the first case (without intervention) and 

second case (with intervention) described above, is of particular interest. This comparison 

serves to illustrate the benefits of using a centralised intervention (i.e., the second case) 

compared to using only local behaviour (i.e., the first case) after disturbances (accidents), 

where the results of Si1 is used as comparison reference values for both cases. 

6.3.4.1 Measuring robustness and gain 

In order to measure the robustness of RobustMAS in the traffic intersection system, the 

throughput metric is used to determine the reduction of the performance (system throughput) 

of RobustMAS after disturbances (accidents) and deviations from the planned trajectories 
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occur. That is because throughput is one of the most commonly used performance metrics. 

Therefore, the values resulting from the throughput measurement by the test situation Si1 

(Plan), see section 6.3.1.1, will be compared with their corresponding values obtained from 

the measurement of the throughput by the test situation Si4 (Deviation, Disturbance) in both 

cases, with and without intervention from the central planning algorithm. 

The discussion of the robustness measurement using the system throughput metric is 

based on the simulation parameter, the disturbance strength (the size of the accident). The 

measurement has been repeated in the cases that the disturbance strength is 1, 2, and 4. That 

means, the accident occupies an area of size 1, 2 and 4 cells in the traffic intersection as 

depicted in Figure 4-14. The results were obtained in an interval between 0 und 3000 ticks, 

where the maximum number of vehicles (Vmax) is 40 vehicles in both directions and the 

traffic level (TL) is 5 vehicles/tick in each direction. 

It can be concluded that the increase in the size of the accident is inversely proportional to 

the degree of the intersection robustness.  

RobustMAS tries to guarantee a relatively acceptable reduction of the intersection 

robustness when the size of the accident increases. RobustMAS ensures at least that 

increasing of size of the accident will not lead to failure of the intersection. 

In the simulation, individual vehicles could cause accidents and consequently they could 

be crashed. If a vehicle is crashed, then they will directly stop moving and remain stopped. 

More accurately, autonomous and Non-Rational Vehicles (ANRV) make deviations from 

their planned trajectories and therefore they may cause accidents with other vehicles because 

of their non-rationality. These vehicles try to maximise only their own throughput in order to 

cross the intersection as quickly as possible.  

Because the location of the accident within the intersection plays a major role in the 

performance of the intersection system, the simulation was repeated 10 times. Each time of 

repetition, an accident will be generated in a random position of the intersection by choosing a 

random (x, y) coordinate pair within the intersection. This (x, y) coordinate pair represents the 

central cell of the accident. The other cells which represent the whole accident location will 

be chosen also randomly depending on the value of the simulation parameter “size of the 

accident”, so that the chosen cells will surround the central cell (x, y) of the accident. So, it 

can be ensured that accidents will be generated in different parts of the intersection achieving 

more realistic study. The average values of the system throughput will be calculated from 

several repetitions of the simulation (random accident locations), so that a picture of how an 

accident would affect the system performance is created. 

The simulation parameter “Disturbance occurrence time” (Accident occurrence time) 

represents the time (the time step in the simulation) at which the accident will be generated. 

The time is measured in ticks.  In the simulation, the “Accident tick” was adjusted to the 

value of the tick “1000”, i.e., an accident should be generated at tick “1000”. That means, the 

simulation has no accident in the interval [0-1000]; whereas it has an accident in the 

remaining simulation interval [1000-3000] as depicted in Figure 6-16. 

 



Chapter 6. Evaluation 142 

 
 

Figure 6-16: The “Disturbance occurrence time” adjusted to the tick 1000 and the simulation 

length is 3000 ticks (upper figure is cumulative throughput; lower figure is throughput per 

time unit) 

 

Here, the system performance is the intersection throughput. The throughput is measured 

by the number of vehicles that left the intersection area (cumulative throughput values in the 

upper figure or throughput values per time unit in the lower figure). 

The upper figure of Figure 6-17 shows the cumulative system performance values 

(throughput) of the intersection system in an interval between 0 und 3000 ticks comparing the 

three mentioned cases (without disturbance, disturbance without intervention and disturbance 

with intervention) using various values of the disturbance strength (size of the accident). 

Furthermore, the lower figure of Figure 6-17 shows the same as the upper figure using the 

throughput per time unit (# Vehicles/tick). 
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Figure 6-17: The system throughput per time unit (lower figure) and the cumulative system 

throughput (upper figure) using different values of the disturbance strength (size of the 

accident) 

 

The robustness and the gain of the traffic intersection system can be determined using the 

two formulas of the relative robustness (R) and the gain of the system which were described 

in section 4.4.5. In order to see the effect of the disturbance strength (size of the accident), 

Table 6-10 compares the obtained results of the robustness and the gain of the system for 

various values of disturbance strength after 3000 ticks. The values of this table are based on 

the results of the system performance (throughput) that can be extracted from the three 

diagrams in Figure 6-17.  

 

Disturbance strength 

(Accident size) 

Robustness (R) 

(%) 

Gain 

(Vehicles) 

1 87 137 

2 86 161 

4 83 169 

 

Table 6-10: The robustness and the gain of the system for various values of disturbance 

strength 

 

So, when the disturbance strength is 1, then the robustness of the system was 87%; 

whereas it was 86% and 83% when the disturbance strength was 2 and 4 respectively. That 

means, when the disturbance strength increases, the robustness of the system decreases, but 
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very slightly showing a high degree of robustness. This emphasises that a degradation of the 

system throughput was established when an accident has occurred in the intersection and the 

vehicles made deviations violating their planned trajectories. Therefore, in case of 

disturbances (accidents), the intervention of the central plan (a central planning algorithm) led 

to better system performance than the decentralised solution in which agents (vehicles) have 

to plan locally their trajectory. 

However, when the disturbance strength is 1, then the gain of the system was 137 

vehicles; whereas it was 161 and 169 vehicles when the disturbance strength was 2 and 4 

respectively. That means, when the disturbance strength increases, the gain of the system 

increases. This confirms the conclusion that the intervention of the central plan was better 

demonstrating an improvement of the system throughput. 

Therefore, it is inferred that a global problem (e.g., an accident in the intersection) should 

be solved at global level, because there is a central unit (the O/C architecture) that has the 

global view of the system. This central unit can plan better than a decentral unit. A central 

unit needs only longer time than a decentral unit. This issue can be solved simply by 

providing central units that have sufficient resources, e.g., CPU capacity (real-time 

requirements), memory capacity, etc, as well as the management of these resources. 

6.3.4.2 Summary: Fourth test situation: Si4 (Deviation, Disturbance) 

In this test situation, deviations from the plan occurred and accidents also took place in the 

intersection. That means, vehicles may violate their planned trajectories, because of their 

autonomy.  

The identification of deviations from planned trajectories was carried out via the deviation 

detector component in the observer; whereas the identification of disturbances (accidents) was 

detected via the collision or accident detector component in the observer. 

This test situation Si4 has served to measure the robustness of the traffic intersection 

system assessing the degree of the robustness of RobustMAS after disturbances (e.g., 

accidents) and deviations (e.g., unplanned autonomous behaviour) occur.  

The simulation of Si4 was carried out in two cases: disturbances (accidents) with and 

without intervention (corrective intervention by central planning). 

A comparison between the first test situation Si1 (Plan) and the fourth test situation Si4 

(Deviation, Disturbance) was made with and without intervention. This comparison has 

served to illustrate the benefits of using a centralised intervention compared to using only 

local behaviour after disturbances (accidents). 

The robustness of a multi-agent system has been defined according to the RobustMAS 

concept as a degradation of the system performance under disturbances and under deviations 

from the plan.  

Since throughput is one of the most commonly used performance metrics, it was used to 

determine the reduction of the system performance of RobustMAS after disturbances 

(accidents). 

Additionally, the gain of the system has been used as a measure. It has been defined 

according to the RobustMAS concept as a benefit of the system through central planning 

compared to decentral planning. 
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The analysis of the robustness measurement using the system throughput metric was 

based on the simulation parameter, the disturbance strength (size of the accident). The 

cumulative system performance (throughput) of the intersection system in an interval between 

0 und 3000 ticks was measured to compare the three mentioned cases (without disturbance, 

disturbance without intervention and disturbance with intervention) by using various values of 

the disturbance strength (1, 2 and 4 cells as the size of the accident). 

The disturbance occurrence time (accident occurrence time) was adjusted to the value of 

the tick “1000”, so that the accident remains until the end of the simulation (the tick “3000”). 

The robustness and the gain of the traffic intersection system were determined using the 

two formulas of the robustness and the gain of the system, which were developed by this 

thesis. 

1) Robustness: 

- There was a degradation of the system throughput due to the accident in the 

intersection. 

- When the disturbance strength (accident size) increases, the robustness of the system 

decreases, but very slightly showing a high degree of robustness, i.e., the increase of 

the disturbance strength is inversely proportional to the degree of the system 

robustness. 

- Therefore, in case of disturbances (accidents), the intervention of the central plan (a 

central planning algorithm) led to better system performance than the decentralised 

planning. 

2) Gain: 

- When the disturbance strength increases, the gain of the system increases. This 

confirms that the central plan has demonstrated an improvement of the system 

throughput. 

Conclusion: 

- The system of central planning shows better performance than the system of 

decentral planning when accidents (disturbances) occur.   

- A global problem (e.g., an accident in the intersection) should be solved at global 

level, because a central unit has a global view of the system. 

- RobustMAS is characterised by a relatively acceptable level of reduction of the 

system robustness when the disturbance strength is increased in the system. 

6.4 Summary 

This chapter presented the evaluation of RobustMAS. It described the experimental setup 

and the simulation environment. For this purpose, the three metrics: throughput, waiting time 

and response time were used. This chapter discussed the four test situations proposed to 

perform the evaluation with respect to the goal of the RobustMAS system. The four test 

situations are: 

- Si1 (Plan): No Deviations, No Disturbances (No Accidents). 

- Si2 (Deviation): Deviations, No Disturbances (No Accidents). 
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- Si3 (Plan, Disturbance): No Deviations, Disturbances (Accidents).  

- Si4 (Deviation, Disturbance): Deviations, Disturbances (Accidents).  

Additionally, this chapter summarised each of the four test situations mentioned 

separately after an extended explanation of each one of them (see section 6.3.1.4, section 

6.3.2.4 and section 6.3.4.2). 

The first test situation (Si1) declared the benefits of employing coordination mechanisms 

(central path planning) among fully autonomous vehicles. Moreover, this chapter presented 

two modes of the trajectories-reservation algorithm. As a result, the reservation mode 

(AllTrajectoriesVector) outperforms notably the other reservation mode (PhotoOfGrid) by 

computation time in numerous conditions. 

Next, the second test situation (Si2) proved that a local problem (e.g., small deviations 

from central plan) can be solved at local level. However, the fourth test situation (Si4) 

confirmed that a global problem (disturbances, e.g., accidents in the intersection) should be 

solved at global level.  

Additionally, the fourth test situation (Si4) was used to measure the robustness and gain of 

RobustMAS. For this purpose, the simulation was accomplished by Si4 in two cases: 

disturbances (accidents) with and without centralised intervention. Subsequently, a 

comparison between Si1 and the Si4 (with and without intervention) was performed to show 

the advantages of using a centralised intervention compared to using only local rules in the 

presence of disturbances (accidents). As a result, RobustMAS ensures an acceptable level of 

reduction of the system robustness against increasing of disturbance strength. On the other 

hand, the system gain increases when the disturbance strength increases. That means, the 

central plan expressed an improvement of the system throughput. 

The next chapter contains the conclusion of this thesis and gives an overview of promising 

future projects. 
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7 Conclusion and future work 

7.1 Conclusion and final words 

The goal of Organic Computing (OC) is to develop robust, adaptive and flexible technical 

systems using several principles observed in natural systems like self-organisation. The 

robustness of OC systems represents a key property that should be investigated. This is 

particularly interesting for future systems which are complex enough so that the desired 

behaviour of such systems can not be guaranteed, or these systems are not able to withstand 

diverse disturbances, which may occur in systems or in their environments. This leads in turn 

to weakly robust systems or maybe even to not robust systems, especially in dynamic 

environments. 

In this thesis, a new methodology called “Robust Multi-Agent System” (RobustMAS) was 

introduced. The focus of this methodology was the robustness of multi-agent systems in the 

context of organic computing. A traffic intersection without traffic lights was used as an 

application scenario for this thesis, where vehicles are driven by agents. In this traffic 

scenario, RobustMAS was proposed as a system for coordinating vehicles at traffic 

intersections using an O/C architecture. In this connection, the desired system architecture 

was presented together with the technique that is to be used to cope with this scenario. The 

traffic intersection is regulated by a controller, instead of having a traffic light. 

RobustMAS is a new approach towards building a robust hybrid central/self-organising 

multi-agent system in intersections without traffic lights. This approach addresses the conflict 

between a central controller (e.g., a central planning algorithm) and the autonomy of the 

agents (vehicles). A hybrid central/self-organising multi-agent system was introduced to solve 

this conflict. It aims to keep a multi-agent system at a desired performance level in the 

presence of potential disturbances (accidents, unplanned autonomous behaviour). RobustMAS 

introduces a hybrid coordination of a multi-agent system (central and decentral). This hybrid 

coordination takes place in three steps: path planning, observation and controlling. Based on 

this, RobustMAS can be considered as a trajectory-based approach, which uses dynamic 

replanning in the presence of disturbances. Such a hybrid approach tolerates that agents 

(vehicles) behave in a fully autonomous way despite the central architecture. Also, the 

autonomy of the agents was recognised as a deviation from the central plan when the agents 

violate this plan. This leads in turn to an increase of the autonomy of agents in the fully 

central architecture 

In this regard, the generic O/C architecture adapted to the intersection without traffic 

lights scenario was implemented. The goal of this architecture was to increase the system 

performance when there are no deviations from plan or disturbances. Certainly, the other goal 

was to maintain the system at a desired performance level when deviations from plan or 

disturbances occur. Additionally, the resource sharing conflict, which arises in the system 

wherever multiple agents move in a common environment, was discussed. The goal here was 

to avoid collisions in the centre of the intersection (a shared resource). Then, some 

coordination mechanisms to cope with this problem, resource sharing, were presented. These 

coordination mechanisms are based on the idea of path planning, which must be performed in 

the configuration space-time (x,y,t). Further, the A*-algorithm of path planning was adapted 
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for the requirements of the traffic intersection scenario. Then, the adapted A*- algorithm was 

applied in the search for the most appropriate trajectories for all vehicles aiming to coordinate 

them by crossing the centre of the intersection and consequently avoiding collisions. In this 

context, fully autonomous vehicles were used. Thereafter, the possibility how to observe these 

autonomous vehicles in an intersection without traffic lights was explained. This observation 

aims to detect deviations from the plan which represent unplanned autonomous behaviours of 

agents (vehicles), as well as to detect disturbances (accidents) which may occur in the system 

(intersection). Therefore, various classes of deviations from plan, which can be encountered, 

were defined. Subsequently, control features of the system designed to deal with these 

potential types of deviations or disturbances were introduced. That leads in turn to an 

intervention in time when it is necessary, so that the system remains demonstrating 

robustness.  

The development and the evaluation of this interdisciplinary methodology (RobustMAS) 

were made concerning diverse evaluation scenarios by using different metrics of system 

performance. The empirical evaluation includes experiments with three metrics: throughput, 

mean waiting time and mean response time. 

As evaluation metrics, the throughput was used to measure the system performance in 

four different evaluation scenarios in various combinations of system parameters. Moreover, 

throughput was required for estimating the overall reduction of the system's performance 

when deviations from plan or disturbances occur. Furthermore, two modes of the trajectories-

reservation algorithm were presented (”AllTrajectoriesVector” and “PhotoOfGrid”). 

The robustness measurement of RobustMAS was made based on the new concept 

introduced to define the robustness of multi-agent systems. In this context, the robustness was 

defined as a degradation of the system performance under disturbances and under deviations 

from the plan. Moreover, the gain of RobustMAS was used as an additional metric. It was 

defined as a benefit of the system through central planning compared to decentral planning. In 

accordance with both definitions, two formulas of the robustness and the gain were developed 

and used. 

The evaluation was made using four test situations with respect to the goal of the 

RobustMAS system.  The first test situation is Si1 (Plan): No Deviations, No Disturbances 

(No Accidents). The second test situation is Si2 (Deviation): Deviations, No Disturbances (No 

Accidents). The third test situation is Si3 (Plan, Disturbance): No Deviations, Disturbances 

(Accidents). The fourth test situation is Si4 (Deviation, Disturbance): Deviations, 

Disturbances (Accidents). The three metrics (throughput, mean waiting time and mean 

response time) were measured for each test situation. Finally, a summary of the evaluation 

process for every used test situation was also given. 

 The experiments of the first test situation showed a high success potential by using fully 

autonomous vehicles and the coordination mechanisms (central path planning). Thus, it can 

be concluded that the application of path planning part of the O/C architecture to the system 

leads to a larger throughput and lower waiting time in the centre of the intersection. 

On the other hand, the system performance by using central planning is roughly the same 

as by using decentral planning in the second test situation. This could indicate that a local 

problem (e.g., small deviation from plan) can be solved at local level. 
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However, the system performance by using central planning is better than the one by 

using decentral planning when disturbances (accidents) occur (i.e., the fourth test situation). 

This could point out that a global problem (a disturbance; e.g., an accident in the intersection) 

should be solved at global level. This can be traced back to the global view of the central unit 

on the system.  

The experiments of the fourth test situation demonstrated that RobustMAS provides a 

high degree of robustness. Also, when the disturbance strength (accident size) increases, the 

robustness of the system decreases very slightly, but the gain of the system increases. Briefly, 

RobustMAS ensures a relatively acceptable level of reduction of the system robustness 

against increasing of disturbance strength. 

7.2 A peek at future trends 

It should be pointed out that only some of the aspects of the topic under study in this 

thesis could be taken into account and therefore they were included in the investigation. This 

can be traced back to the vastness of the topic. In this regard, robustness of hybrid multi-agent 

systems, especially in a traffic intersection without traffic lights, will play an important role in 

the future. That is because of the ever increasing development of autonomous vehicles, where 

vehicles can be driven by agents. Based on this, traffic intersections in the future will not 

require traffic lights, wherein such intersections of self-driving vehicles can be developed as a 

multi-agent system. Accordingly, safety and robustness of this desired system will remain key 

features, because the system’s agents (vehicles) work autonomously and consequently they 

are faced with challenges in the presence of disturbances (e.g., accidents). 

One aspect that may be of interest for follow-up research projects is the fairness between 

the system’s agents (vehicles). In order to achieve this fairness, there are different approaches 

that deal with this issue. In this context, the fairness approach has to deliver promised results 

so that the system’s performance remains effectively adequate for the requirements of the 

application scenario. According to the applied traffic scenario in this thesis, a fairly 

straightforward approach can be incorporated into the plan algorithm. Such approach aims to 

maximise the fairness between the vehicles so that all vehicles in the intersection encounter 

similar delays. This will surely be required where traffic levels are high. Conversely, in cases 

where traffic levels are very low, there's no need to a fairness approach. That is because of the 

adequate efficiency of traffic in low amounts of vehicles, where the average delay of vehicles 

can be employed as objective function. 

The other aspect that will be an important issue for researchers in future is the 

coordination and cooperation of multiple intersections without traffic lights. The system can 

be considered as a network of nodes where every node represents an intersection with traffic 

lights. Consequently, the existing system will be extended and improved with a traffic 

information component. In this regard, a global optimisation of the whole traffic network 

could be reached by allowing these intersections to communicate with each other. For this 

reason, the intersections exchange information on traffic conditions, current and predicted 

traffic situations. This information can be used to cover a bigger area for optimisation. Based 

on this, the intersections cooperate to find their optimal strategies aiming to achieve global 

optimisations.  
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Finally, the presented thesis leaves space for the applicability of the RobustMAS concept 

for shared spaces. The current traffic scenario introduced in this work has similarities to 

shared spaces in the working environments and conditions, where vehicles move 

autonomously in a shared environment. 
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