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Abstract 

Hydrothermal vent fields along mid-ocean ridges can appear in many varieties and because 

they are very metal-rich the fields can be of great importance for the industries in the future. It 

is important to identify areas of hydrothermal activities along mid-ocean ridges from datasets 

which are acquired at the sea surface to save valuable research time. In the work presented 

here it was possible to prepare a list with main features of hydrothermal vent sites from 

bathymetric and magnetic datasets from the sea surface along two mid-ocean ridges in the 

western Indian Ocean. The features are separated into magmatic and tectonic activities.  

The area of interest is located between 21°S and 28°S and includes the southern Central 

Indian Ridge (CIR), the Rodriguez Triple Junction (RTJ), and the northern Southeast Indian 

Ridge (SEIR). With a full spreading rate of 4.7 cm/a the Central Indian Ridge represents a 

slow spreading mid-ocean ridge system and is mainly characterized by several offsets of the 

ridge axis, an overlapping spreading center, a Knorr rise, and an oceanic core complex. To the 

south the intermediate spreading Southeast Indian Ridge with a full spreading rate of 5.7 cm/a 

follows. This ridge is defined by several offsets of the ridge axis, three oceanic core 

complexes, and a large number of seamounts. Analysis of three known hydrothermal vent 

fields Sonne, Edmond, and Kairei of the Central Indian Ridge shows a dominance of features 

caused by tectonic activities such as ridge axis offsets, pull-apart basins, oceanic core 

complexes, and fault zones cross-cutting at some places. Magmatic processes pronounced in 

terms of neovolcanic ridges and seamounts seem to play a secondary role as heat source. 

During a detailed magnetic survey a decrease in the magnetic susceptibility of the basalts was 

observed right above the hydrothermal vent field Edmond. This altered rock body caused by 

hydrothermal processes is 3D forward modeled with IGMAS+ to get an impression of its 

dimensions. Characteristic for the hydrothermal vent fields is a great distance to the ridge axis 

between 5 and 7 kilometers. Furthermore, an increase in the elevation of the hydrothermal 

vent fields with increasing distance to the spreading axis was observed. The two active 

hydrothermal vent fields Edmond and Kairei are located at the segment ends of the ridges and 

on the steeper northeastern ridge shoulders.  

Keywords: mid-ocean ridges, hydrothermal vent fields, spreading rates



Zusammenfassung 

Hydrothermalfelder, die an mittelozeanischen Rücken in vielfältiger Form und Gestalt 

auftreten, sind auf Grund ihres hohen Metallgehaltes von zukünftig wichtiger Bedeutung für 

die Industrie. Um wertvolle Forschungszeit zu sparen ist es wichtig, anhand von Daten, die 

mit Geräten von der Meeresoberfläche gewonnen werden, Gebiete entlang mittelozeanischer 

Rücken einzugrenzen, die hydrothermale Aktivitäten aufweisen. In der vorliegenden Arbeit 

ist es gelungen, anhand bathymetrischer und magnetischer Datensätze Eigenschaften, 

unterteilt in magmatische und tektonische Aktivitäten aufzulisten, die für hydrothermale 

Aktivitäten entlang zweier mittelozeanischer Rücken im westlichen Indischen Ozean 

sprechen. Das Forschungsgebiet liegt zwischen 21°S und 28°S und umfasst den südlichen 

Zentralindischen Rücken, die Rodriguez Triple Junction und den nördlichen Südostindischen 

Rücken. Der Zentralindische Rücken stellt mit einer vollen Spreizungsrate von 4,7 cm/a ein 

langsam spreizendes System dar und ist hauptsächlich gekennzeichnet durch mehrere 

Versätze der Rückenachse, einem sich überlappenden Spreizungszentrum, einer Knorr 

Aufdomung und einem ozeanischen Mantelgesteins Komplex. Richtung Süden schließt sich 

der intermediär spreizende Südostindische Rücken mit einer vollen Spreizungsrate von 

5,7 cm/a an, der ebenfalls durch etliche Versätze der Rückenachse, drei ozeanische 

Mantelgesteins Komplexe und zahlreiche Seamounts charakterisiert ist.  

Analysen dreier bekannter Hydrothermalfelder Sonne, Edmond und Kairei des 

Zentralindischen Rückens zeigen eine Dominanz von tektonisch bedingten Merkmalen wie 

Versätzen der Rückenachse, pull-apart Becken und Störungszonen, die sich teilweise kreuzen. 

Magmatische Prozesse, die in Form von neovulkanischen Rücken und Seamounts zum 

Ausdruck kommen, spielen eine sekundär wichtige Rolle als Wärmequelle. Während einer 

magnetischen Detailvermessung konnte eine Abnahme der magnetischen Suszeptibilität der 

Basalte direkt über dem Edmond Hydrothermalfeld aufgezeichnet werden. Dieser durch 

hydrothermale Prozesse alterierte Gesteinsbereich wird mit IGMAS+ 3D vorwärts modelliert, 

um eine Vorstellung zu dessen Dimensionen zu bekommen. Charakteristisch für die 

Hydrothermalfelder sind eine große Entfernung zur Rückenachse von 5 km – 7 km, sowie ein 

Anstieg in der Heraushebung der Felder in Bezug auf das Spreizungszentrum mit 

ansteigender Entfernung zu diesem. Die zwei aktiven Hydrothermalfelder Edmond und Kairei 

befinden sich jeweils an den Segmentenden der Rücken und an deren steileren nordöstlichen 

Rückenschultern.  

Schlagwörter: mittelozeanische Rücken, Hydrothermalfelder, Spreizungsraten 
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1) Introduction 
 

Mid-ocean ridges are the interfaces of the Earth where new seafloor originates. They have a 

length of approximately 65.000 km (SEARLE, 2013) and are offset and segmented by 

transform faults and smaller discontinuities. Four ridge types can be distinguished depending 

on their full spreading rates: the ultra-slow-, slow-, intermediate-, and fast-spreading ridges. 

Mid-oceanic ridges are complex systems defined by their magmatic and tectonic processes 

and they can have totally different morphological appearances. Along mid-ocean ridges 

hydrothermal activities in the form of hydrothermal vent sites can be observed, evolving due 

to the interaction of magmatic and tectonic processes. In the future these hydrothermal vent 

fields may be of great economic importance with respect to metal resources.  

Slow and intermediate spreading mid-ocean ridges display a large diversity of hydrothermal 

systems. This includes vent systems along neovolcanic axes, large axial volcanoes at 

transform faults, and offsets associated with low angle detachment faults (TIVEY & DYMENT, 

2010). Hydrothermal systems can evolve because cold seawater migrates through the oceanic 

crust along fault zones in the recharge zone (SEARLE, 2013). In the reaction zone (SEARLE, 

2013) the cold seawater reaches the high-temperature reaction zone of a magma chamber and 

on its way up to the seafloor interacts with the surrounding rock material in the discharge 

zone (SEARLE, 2013) (Figure 1). On its way up to the seafloor the now called fluid leaches 

out the metals of the rocks which it passes through. Along fault zones the fluid reaches the 

seafloor and reacts with the cold seawater. This results in a precipitation of metal-rich sulfides 

because chemical and physical conditions change due to the mixture of cold (~2°C), oxygen-

rich seawater with the high temperature metal-rich hydrothermal fluid (HERZIG & 

HANNINGTON, 1995). HERZIG & HANNINGTON (1995) postulate that polymetallic massive 

sulfides can only develop when so called black smokers are active during a long time span. 

They published some studies which show that hydrothermal vent fields consist of a sulfide 

mound and a stockwork zone (Figure 1). The mound grows because of continued 

hydrothermal fluid circulation and old collapsed chimneys which become part of the mound. 

Particles can be transported by currents and accumulate at great distances from the 

hydrothermal vent. A typical black smoker can produce ~250 t of massive sulfides per year 

(HERZIG & HANNINGTON, 1995). 
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Figure 1: Cross 

section of a 

hydrothermal vent 

field (HERZIg et al., 

2000, modified) 

Depending on the fluid temperatures, high- and low-temperature hydrothermal vent fields can 

be distinguished 

and depending on 

the type of the 

surrounding 

rocks, basalt- and 

ultramafic-hosted 

hydrothermal vent 

fields can be 

observed (TIVEY 

& DYMENT, 

2010).  

 

 

Until now not much is known about the detailed bathymetry and magnetic structure of the 

mid-ocean ridge systems of the western Indian Ocean. The southern Central Indian Ridge 

(CIR) between 21°S and 25°40’S was investigated during several research cruises since 1983 

(SO28-Gemino1, 1983; SO43-Gemino2, 1986; SO52-Gemino3, 1987/88; SO92-Hydrotrunc, 

1993/94; M33-Hydrock, 1995). The first massive sulfides were found and recovered in the 

Indian Ocean in December 1993 from the Sonne hydrothermal vent site (HALBACH et al., 

1998). Questions and targets of the research project INDEX from the BGR Hannover are the 

following three: The first one is the understanding of how hydrothermal vent sites were built 

in interaction with structural features. The second one is to find and define prospective areas 

for marine polymetallic massive sulfide deposits, and the third one is to applicate areas for an 

exploration license at the International Seabed Authority (ISA). For a future mining, inactive 

hydrothermal vent fields are of great importance because active ones with fluid temperatures 

of approximately +418°C (SCHWARZ-SCHAMPERA & Shipboard Scientific Party, 2014) would 

destroy any exploration equipment. To find them, as a first step active hydrothermal vent 

fields have to be identified which further away from the ridge axis may become inactive. 
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Figure 2: Active chimney of the hydrothermal vent field Edmond at the Central 

Indian Ridge observed with a remotely operated vehicle (ROV) during the 

research cruise INDEX2013 (SCHWARZ-SCHAMPERA & Shipboard Scientific Party, 

2014).  

Many hydrothermal vent fields have been found by plume detection with methane anomalies 

(e.g. GAMO et al., 1996). The goal of this work is to find hydrothermally active areas out of 

bathymetric and magnetic datasets acquired at the sea surface to save important research and 

ship time. Out of these two datasets which features are characteristic for hydrothermal vent 

fields? Is it possible to limit areas at two mid-ocean ridge systems which have the potential 

for hydrothermal activities? To answer these questions structural and magnetic analyses of 

three known hydrothermal vent fields were done and the defined characteristics transfered to 

other areas along the ridge systems. With respect to structural conditions, normal faults and 

detachment faults as well as non-transform discontinuities seem to play a role in defining 

slow spreading ridge systems with hydrothermal vent field occurrence. To prepare an 

exploration license application for polymetallic sulfides, three research cruises were carried 

out in an area of importance between 21°S/28°S and 68°E/74°E. During the first one 

INDEX2011, 500 kilometers of the southern Central Indian Ridge were mapped with 

bathymetric, magnetic, and gravimetric measurements. In 2012 (INDEX2012) the same 

measurements have taken place along 500 kilometers of the northern Southeast Indian Ridge 

(SEIR). Additionally, the two hydrothermal vent fields Edmond (first discovered in 2001, 

VAN DOVER et al, 2001; GALLANT & VON DAMM, 2006) and Kairei (discovered and sampled 

in 2000, HASHIMOTO et al., 2001; GALLANT & VON DAMM, 2006) were mapped in detail. 

During the third cruise 

INDEX2013 possible 

license clusters were 

mapped in detail and 

hydrothermal vent 

fields were 

investigated (Figure 

2) and sampled with a 

remotely operated 

vehicle (ROV).  
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After a short introduction about the evolution of the Indian Ocean and its three active 

spreading ridge systems, a structural and magnetic description of two ridge systems CIR and 

SEIR follows. The known hydrothermal vent fields will first be marked in this description and 

afterwards be described in more detail. Prominent structures of every ridge system will be 

discussed and the mapped ridge system as a whole will be interpreted in terms of its structural 

evolution, magmatically and/or tectonically active areas, and spreading rate 

behavior/evolution. A list of characteristic structural and magnetic features associated with 

hydrothermal vent fields and an outlook for further potential areas sum up the work. 

For the structural description of the two spreading systems some definitions must be made. In 

the following the bathymetric minimum of the rift valley is defined as the active spreading 

center and plate boundary. The width of the rift valley was measured from the youngest (first) 

normal fault west and east of the rift valley. Especially for the intermediate spreading SEIR 

words such as “elevated” and “depressed” ridge shoulders are used. This definition was done 

by TUCHOLKE & LIN (1994) and means that the ridge shoulders on one flank are stronger 

uplifted (elevated) than the corresponding ones (depressed). Offset structures of the ridge axis 

which are no transform faults will be named “discontinuity” following a definition by BRIAIS 

(1995). In contrast to transform faults (first order discontinuities) these second order 

discontinuities are associated with a wide deformation zone, showing complex morphology 

and tectonics as well as a short life span (GRINDLAY et al., 1991; Van WIJK & BLACKMAN, 

2005).  

The following three hydrothermal vent sites have been investigated in the past by several 

authors. HALBACH et al. (1998) analyzed the deposits of the inactive Sonne hydrothermal vent 

site and recognized that they are typical for MOR massive sulfides, but in a stage of 

decomposition and beginning to be covered with sediments. The chimney structures had been 

built by several hydrothermal events and now they are removed through mass transports and 

decomposition (HALBACH et al., 1998). The authors published that the mineralization zone of 

Sonne has dimensions of approximately 1500 m by 400 m.  

For the Edmond HTF, GALLANT & VON DAMM (2006) calculated the dimensions of the area 

of extinct sulfide structures and talus with ~100 m by 60 m. With decreasing temperatures the 

Fe/Mn ratio also decreases which is likely a result of the loss of Fe from the fluids into sulfide 

and oxide phases (GALLANT & VON DAMM, 2006). Fe concentrations in fluids at the Edmond 
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field measured by GALLANT & VON DAMM (2006) are unusually high compared to a global 

data set. The very high temperatures of the fluids led to conclude that there must be a heat 

source that is relatively close to the surface which means that some of the basalts that underlie 

this site may have been emplaced relatively recently (GALLANT & VON DAMM, 2006). The 

same authors investigated the Kairei hydrothermal vent field with the help of elemental 

systematics and found out that it is hosted on altered crust. The fluids they collected are most 

similar to fluids collected from black smokers at the TAG (TransAtlanticGeotraverse) field 

and led to suggest that the substrate at both locations is extensively altered.  
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Figure 3: The Indian Ocean with its main bathymetric features surrounded by the 4000 m 

contour lines. The highlighted Rodriguez Triple Junction (RTJ) and active spreading ridge 

systems Central Indian Ridge (CIR) and Southeast Indian Ridge (SEIR) are the subjects of the 

work presented here (after HOCUTT, 1987, modified). 

 

2) The Indian Ocean: an overview 
 

The Indian Ocean, located between Asia, Australia, Antarctica, and Africa, is characterized by 

several ridge and fault systems which divide the ocean into various basins (Figure 3), such as 

the Madagascar Basin, the Crozet Basin, the Central Indian Basin, and the Wharton Basin. In 

the east the Indian Ocean is defined by the Ninetyeast Ridge and the Broken Ridge. Active 

spreading systems such as the Central-, Southeast-, and Southwest Indian Ridge (CIR, SEIR 

and SWIR) which meet at the Rodriguez Triple Junction (RTJ) characterize the western 

Indian Ocean. The three active spreading ridge systems represent the boundaries between the 

African and Indian plate (CIR), the Indian and Antarctic plate (SEIR), and the African and 

Antarctic plate (SWIR). The relief of the seafloor is defined by transform faults and their 

traces which could be regarded as witnesses of the long-lasting drift process of the Indian 

plate.  
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2.1) Evolution of the Indian Ocean  
 

The evolution of the Indian Ocean as it is known today is the result of seafloor spreading 

between the African, Antarctic, and Indian plates. The following text is based on research 

results of HEINE et al. (2004) unless otherwise indicated. The Indian Ocean is closely linked to 

the break-up of the supercontinent Pangaea during the upper Jurassic (~150 Ma) and the 

opening of the Tethys. The break-up of Pangaea was quite complicated and is still not fully 

understood. FRISCH & MESCHEDE (2007) postulate that multiple subduction zones existed 

along the boundaries of Pangaea and its surrounding ocean Panthalassa. According to these 

authors, these subduction zones caused a suction effect resulting in Pangaea getting under 

extension. Furthermore, the in some places very old lithosphere of the supercontinent acted as 

a thermal shield towards the deeper mantle causing a heat accumulation under the lithosphere 

of Pangaea. This heat accumulation resulted in an uplift of the supercontinent’s lithosphere in 

huge bulges and caused the supercontinent to break-up along weak zones. As a consequence, 

trench systems developed. These rift valleys continued to develop due to the tensile stress of 

Pangaea, leading to the break-up of the supercontinent into Laurasia in the north and 

Gondwana in the south (HOCUTT, 1987). The Tethys is considered to be a remaining part of 

Panthalassa and was an E-W oriented Proto-Mediterranean Sea (FRISCH & MESCHEDE, 2007). 

Therefore, the Indian Ocean is a successor of the Tethys, more specifically the Neotethys 

(Figure 4a & b).  

Around 165 m.y. ago spreading caused Gondwana to be divided into an eastern part, 

including Antarctica, Australia, India, and Madagascar, and a western part consisting of South 

America and Africa (Figure 4c). With progressing extension and the final separation of 

Africa/South America and Antarctica, a “central Gondwana gateway” opened, representing a 

marine connection between the southeastern Pacific and the central Tethys (Figure 4b). 

Approximately 20 m.y. later seafloor spreading in the Enderby basin lead to a renewed 

opening of a second “eastern Gondwana gateway” (Figure 4c). This gateway between 

Antarctica, Great India, and Australia had a marine connection to the eastern Tethys, whereby 

Madagascar and Great India became isolated. At late Jurassic times (160-140 Ma) the 

Mesotethys was a triangular shaped ocean with a passive, southern boundary and an active, 

northeastwards trending northern subducting boundary (Figure 5a & b, MT). 
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Figure 4: Development of the continents with a special look 

at the Tethys region and the Indian Ocean from the Early 

Triassic to the Late Cretaceous (after SENGÖR et al., 1988, 

modified) 

 

The active, mesotethic spreading ridge (Figure 5a, MTR), which opened the Mesotethys, 

migrated to the northern half of the Mesotethys. The direction of subduction was changing 

from a northeastern to a more northern direction due to rifting and active seafloor spreading 

around the northern part of Gondwana. Around 150 Ma the convergence rates increased from 

0.9 cm/a to 1.4 cm/a. The reason for this increase was the opening of the Argo abyssal plain 

and the spreading around the northern boundary of Gondwana. 140 m.y. ago the spreading 

ridge of the Mesotethys was subducted 

along the southeastern part of the 

Proto-Sunda deep sea trench. Figure 

5b points out that the subducting crust 

was younger than 20 m.y. Between 140 

and 135 Ma the subduction rate 

suddenly decreased to 0.3 cm/a due to 

the subduction of the spreading ridge of 

the Mesotethys and another change in 

the spreading direction from N to NNW 

occurred. This change developed 

because of a newly emerging spreading 

system which separated India and 

Australia in the Lower Cretaceous. 

After the reorganization, the subducting 

rates increased again to 0.8-0.9 cm/a. 

The Proto-Indian Ocean (Figure 5d, 

PIO) developed around 132 m.y. ago 

due to a rifting between India-Australia 

and India-Antarctica. Around 130 Ma 

the Mesotethys spreading ridge was 

almost fully subducted. Around 100 - 

95 Ma last small relicts of the 

Mesotethys were subducted along the 

northwestern area of the Proto-Sunda 

deep sea trench. At around 99 Ma India 

started to move northwards with 
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evidence for this motion being provided by magnetic anomalies in the southern and central 

Indian Ocean (Figure 5e-i). During the Late Cretaceous to Paleocene (80-60 Ma) the oldest 

seafloor of the Neotethys was subducted northwards under the southern boundary of Eurasia. 

65 to 55 m.y. ago northwest Great India collided with southern Eurasia. This event triggered 

great tectonic plate movements, which can be achieved only by a huge oceanic plate pushing 

India to the north and at the same time a spreading ridge in the proto-southern Indian Ocean 

which pushes India from the South. From Paleocene to Eocene (60-40 Ma) another 

compression along the Tethys-Eurasia boundary took place as a result of the subduction of 

progressively younger seafloor from the Neotethys and the active spreading ridge of the 

Wharton basin (see Figure 5f-g). During the Eocene (53 Ma) Australia separated from 

Antarctica and became part of the Indian Plate (Figure 5f, HOCUTT, 1987).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2)The Indian Ocean: an overview  2.1) Evolution of the Indian Ocean 

17 

 

 

Figure 5: Palaeo-ages for the time between 160 Ma and today in steps of 20 Ma a=160 Ma, b=140 Ma, 

c=120 Ma, d=100 Ma, e=80 Ma, f=60 Ma, g=40 Ma, h=20 Ma, i= today, MTR=Mesotethys spreading 

ridge, MT=Mesotethys, NT=Cenotethys (Neotethys), WB=West Burma Block PIO=Proto Indian Ocean 
(after HEINE et al., 2004) 
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2.2) The western Indian Ocean and ridge systems 
 

The western Indian Ocean developed during five major episodes of seafloor spreading 

(PATRIAT & SEGOUFIN, 1988). These are:  

1) Late Cretaceous – Early Paleocene (Anomaly 29 - Anomaly 27) 

2) Middle Paleocene – Early Eocene (Anomaly 27 - Anomaly 22) 

3) Middle Eocene – Late Eocene (Anomaly 22 – Anomaly 18) 

4) Late Eocene – Early Miocene (Anomaly 18 – Anomaly 8) 

5) Early Miocene – Recent (Anomaly 8 – Anomaly 5) 

If not labeled in a different way, the following explanations to these five different time 

intervals are based on PATRIAT & SEGOUFIN (1988).  

KAMESH RAJU & RAMPRASAD (1989) suggest that shortly before 80 Ma the existing ridge axis 

of the CIR north of Madagascar jumped to the south resulting in a change of the spreading 

direction and the start of the separation of Madagascar from India. Furthermore, they assume 

that during this time a Ridge-Ridge-Ridge type triple junction, the Rodriguez Triple Junction, 

developed in the southeastern part of the Madagascar Ridge which connected the new CIR 

spreading center with the already active SWIR and SEIR.  

Magnetic anomaly studies of PATRIAT & SEGOUFIN (1988) indicate that the plate boundary of 

the Africa-India plate was continuously extending during Anomaly 29 (~64.7 Ma) to 27 

(~61.2 Ma) (Figure 6). It developed at the eastern side of the Mascarene plateau into the 

Madagascar basin at the expense of the SEIR. That lead to a reorganization of the Africa-

India-Antarctic triple junction (equal to RTJ with CIR, SEIR and SWIR) and the development 

of the CIR. At this time the spreading rates were highest with ~20 cm/a in the Indian Ocean 

(PATRIAT & SEGOUFIN, 1988). Analyses of PATRIAT & SEGOUFIN (1988) have shown that the 

traces of the Rodriguez Triple Junction in the African and Antarctic plates cross each other. 

This indicates that the SWIR got a complex tectonic modification at this time, eventually 

resulting in ridge jumps. Since the Late Cretaceous spreading along the western side of the 

SEIR seems to have been continuous with fast to medium spreading rates (ROYER & SCHLICH, 

1988). 

Seafloor spreading rates between Anomaly 27 (~61.2 Ma) and Anomaly 22 (~49.7 Ma) were 

very high with 15 cm/a along the CIR and SEIR (Figure 7 and Figure 8). The evolution of 
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the Central Indian triple junction caused an extension of the SWIR. Until Anomaly 24 

(~52.6 Ma) the SWIR spread in a NNW-SSE direction, after that time the spreading direction 

rotated into its recent N-S orientation. After Anomaly 23 (~50.9 Ma) (Figure 8) the spreading 

rates of the CIR decreased and a small ridge jump took place at the CIR to maintain the R-R-

R mode at the Rodriguez Triple Junction.  

Between Anomaly 22 (49.7 Ma) and 21 (~47.9 Ma) a strong decrease in the spreading rates 

along the CIR and SEIR can be observed. In addition, a change in the spreading direction 

along the CIR towards NE occurred. From Anomaly 20 (~43.7 Ma) to 18 (~39.5 Ma) the most 

notable changes in plate movement took place along the CIR and SEIR with spreading 

direction changing approximately 20°. Typical features for the reorganization of the SEIR are: 

a combination of ridge segments at Anomaly 21 (~47.9 Ma), a ridge jump at Anomaly 20 

(~43.7 Ma), and oblique variations at Anomaly 18 (~39.5 Ma). Changes in the evolution of 

the triple junction at that time suggest that a R-T (ridge-transform) or R-T-T (ridge-transform-

transform) mode dominated. At Anomaly 18 (~39.5 Ma) a change in the seafloor spreading 

direction from a fast northern spreading to a slower northeastern spreading took place. This 

change in spreading direction and velocity is attributed to the collision of India with Eurasia 

and resulted in the beginning of spreading at the CIR (NORTON & SCLATER, 1979). 

In a time span between Anomaly 18 (~39.5 Ma) and Anomaly 8 (~25.9 Ma) the plate 

boundaries evolved to their recent appearance. Between Anomaly 18 (~39.5 Ma) and 

Anomaly 13 (~33.5 Ma) the spreading rates along the CIR decreased and some ridge jumps to 

the east in spreading direction have taken place. To a lesser extent this scenario occurred also 

along the SEIR. NORTON & SCLATER (1979) discovered that the triple junction was relocated 

by 7° to the west (with respect to Africa) during Anomaly 16 (~35.5 Ma) and also the SWIR 

migrated 3-4° northwards towards Africa. However, the Rodriguez Triple Junction moved 

faster in eastern direction as the SWIR spread (Figure 9).  

Most parts of the Central Indian Basin and the Crozet Basin which separates India from 

Antarctica today evolved along the SEIR between Anomaly 8 (~25.9 Ma) and Anomaly 5, 

~9.9 Ma (ROYER & SCHLICH, 1988). In comparison to earlier times the spreading rates along 

the CIR, SEIR and SWIR were very slow. 
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Figure 6: Reconstruction of the 

Central Indian Ocean in terms 

of Africa, Anomaly 28 (63 Ma) 
(after PATRIAT & SEGOUFIN, 1988, 

modified) 

 

 

Figure 7: Reconstruction of the 

Central Indian Ocean in terms 

of Africa, Anomaly 26 (57.9 

Ma) (after PATRIAT & SEGOUFIN, 

1988, modified) 
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Figure 8: Reconstruction of 

the Central Indian Ocean in 

terms of Africa, Anomaly 22 

(49.7 Ma) (after PATRIAT & 

SEGOUFIN, 1988, modified). 

 

Figure 9: Reconstruction of 

the Central Indian Ocean in 

terms of Africa, Anomaly 13 

(33.5 Ma) (after PATRIAT & 

SEGOUFIN, 1988, modified) 
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3) Methods 

3.1) Bathymetry 
 

To map the seafloor several possibilities exist. For a large spatial overview satellite 

measurements can be used with satellites like the American SEASAT (1978) and the 

European ERS-1 (1992) and ERS-2 (1994) (GIERLOFF-EMDEN, 1999). The missions are based 

on the fact that the sea surface reacts to gravity anomalies, which means the sea level 

correlates with irregular mass distribution at the seafloor due to the gravitational force 

(GIERLOFF-EMDEN, 1999). For example, seamounts result in a bulge of the sea surface of 

several meters but due to the attenuation effect of the water column this bulge at the sea 

surface has not the real size of the seamount (SANDWELL & SMITH, 1997). GIERLOFF-EMDEN 

(1999) showed that a very important factor for the measurement is the density distribution of 

the masses beneath the seafloor, meaning the specific weight of the rock bodies. The authors 

published the case of a salt diapir beneath a smooth seafloor which is expressed in a 

depression structure within the satellite measurements. Here, the density variation between the 

salt diapir and the surrounding rocks falsifies the resulting bathymetric estimations. That 

means gravity anomalies which are important for the measurements are not only caused by 

morphological shapes but also by their density (GIERLOFF-EMDEN, 1999). Deformations of the 

sea surface caused by local changes in the gravitational field must be large enough to be 

measured by a radar altimeter of a satellite orbiting the Earth (GIERLOFF-EMDEN, 1999). The 

measurement principle is based on radar waves sent from a satellite which will be reflected 

from the sea surface back to the satellite. Subsequently, the travel time is measured. A global 

tracking network with orbit calculations from a gravity model is used to measure the height of 

the satellite at a reference ellipsoid (SANDWELL & SMITH, 1997). A correlation exists between 

the bathymetry of the seafloor and the gravity within a 15-200 km wavelength band (SMITH & 

SANDWELL, 1997). So this limited frequency spectrum is needed to be measured from the 

radar altimeter. SMITH & SANDWELL (1997) argued that the estimation of bathymetry from 

gravity anomalies must be limited to the short wavelength band due to a “gravity-to-

topography transfer function” explained in detail in the study work of the authors. According 

to these two authors, the bathymetry/gravity ratio varies from one region to the other. Due to 

the great distance between the satellite and the object being measured and assumptions which 

must be made (position of the satellite, distance to a reference surface, reflection properties, 
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absorption, scattering, and different wavelengths) this measurement principle has a limited 

accuracy and a resolution of only 15 km (SMITH & SANDWELL, 1994). However, the 

advantage of the satellite data is that they cover the whole planet with only small gaps in the 

high polar regions.  

To obtain more detailed maps of the seafloor topography, the method of surveying 

bathymetry with a multibeam echo sounder is used. High resolution images with great 

accuracy can only be achieved with these bathymetric measurements being either conducted 

from a ship or an instrument near the seafloor. The measurement principle of the multibeam 

echo sounder is the localization of sound. An acoustic signal is sent from the vessel’s 

transducer to the seafloor where it is being reflected. The vessel registers the reflected signal 

and measures the travel time. The total travel time of the wave (t) and the known mean sound 

velocity (c) are then used to calculate the water depth (h) using the equation of JONES (1999):  

   
 

 
    

The average velocity of an acoustic signal which travels vertically through the water column 

is approximately 1500 m/s (JONES, 1999). However, changes in several parameters such as 

pressure, water temperature, or salinity can influence the velocities (JONES, 1999). An 

increase of temperature by 1°C or in salinity by 1‰ for example causes an increase in the 

velocities by 3 m/s or 1.3 m/s, respectively. Therefore it is essential that these parameters are 

determined in the form of sound velocity profiles on a regular basis.  
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3.1.1) Multibeam echo sounder EM120 & EM122 
 

The functional principle of the multibeam swath sonar SIMRAD EM120 can be found in the 

manufacturer’s manuals of Kongsberg Simrad EM120 (KONGSBERG, 2006). This system is 

installed on the research vessel SONNE and was used to map the southern Central Indian 

Ridge. It is designed for full ocean depth and works with a sonar frequency of 12 kHz. 191 

beams are generated per ping as narrow as 2°. For shallow water depth the coverage sector 

can be set up to 150° and in water depths greater than 5000 m the swath width is up to 25 km. 

These parameters can be adjusted to the actual water depth in the research area. Furthermore, 

the movements of the vessel such as roll, pitch, and yaw can automatically be compensated by 

the system up to a certain level. The soundings are placed on a line perpendicular to the 

survey track to guarantee a uniform sampling of the bottom and a 100% coverage (Figure 

10). The transducers are linear arrays mounted in a Mills cross configuration amidships 

(Figure 11). Each transmitter unit which consists of 48 modules with 18 elements can be 

steered according to the roll, pitch and yaw movement of the vessel. The receiver transducer 

has 16 modules with 8 hydrophone arrays each. The latter one can be selected individually. 

The operation of the system during a cruise is controlled by a pc-workstation with real-time 

displays. For the bathymetric surveys a speed of around 8 kn over ground is ideal.  

The EM122, successor system to the EM120, is a multibeam system installed on the research 

vessel FUGRO GAUSS and was used to obtain a map of the northern Southeast Indian Ridge. 

It is a high performance multibeam echo sounder with unsurpassed high resolution, coverage, 

and precision. For more detailed information the reader is referred to the user manual of 

Kongsberg EM122 (2006). The transducers are the same as the ones of the EM120, but they 

contain a newer software package and electronic devices. 288 beams are generated at the 

same time per ping and the ping rate is twice as high as in the case of the EM120. This 

guarantees a resolution four times higher than before. The system also works with a sonar 

frequency of 12 kHz and a coverage sector of up to 150°. The recoverable swath width is on 

the order of 30 km at a water depth of 5000 m. The high density signal processing keeps the 

size of the acoustic footprint even for the outermost beams in the swath as small as possible. 

The transmit fan is divided into several small sectors which can be selected individually, 

depending on the roll, pitch, and yaw movements of the vessel. With this mechanism the 

soundings are placed on a “best fit” line perpendicular to the vessels track, thus ensuring a 

100% coverage. Like the EM120 the transducers are linear arrays mounted in a Mills cross 
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Figure 11: The Mills cross of the 

multibeam echo sounder system. The 

figure shows the ray paths for surveying 

sounding velocities (perpendicular to the 

vessel) and for calibration sounding 

velocities. (after JONES, 1999, modified) 

 

 

Figure 10: The multibeam echo sounder system with the transducer beam pattern. 

Blue lines show the survey mode perpendicular to the vessel track. (after JONES, 

1999, modified) 

configuration (Figure 11). The transmitter unit consists of up to 96 modules, each with 18 

elements arranged in a row of 6 elements. The receive unit contains up to 16 modules. The 

data are controlled at a pc-working station with the SIS (seafloor information system) 

software, involving survey strategy, 2-D and 3-D display, seafloor image, water column, and 

other individually selectable information.  
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3.1.2) Data processing 
 

As described before, bathymetric measurements work with the localization of sound. Several 

parameters such as the water depth, vessel velocity and the roll and pitch behavior of the 

vessel depending on weather conditions influence the data quality. Therefore it is necessary to 

edit the resulting data and delete beams which display a wrong, senseless water depth. For the 

data processing of the CIR map the open source software MB-system (version-5.2, CARESS & 

CHAYES, 1996) was used, whereas data of the SEIR were processed with the commercial 

Fledermaus software (QPS-hydrographic and marine software solutions). One benefit of 

editing with Fledermaus is the 3-D view of the dataset. The user can display the lines in 3-D 

and gets a complete overview of the bathymetric data which allows the user to easily identify 

and delete erroneous beams. After editing, bathymetric maps were created with the software 

Fledermaus and GMT (Generic Mapping Tools, Version 4.5.7., WESSEL & SMITH, 1995).  

The bathymetric profiles with simultaneous magnetic data acquisition were measured with a 

line spacing of approximately 5 km and a mapping velocity of 8 kn. In the following, the 

bathymetric maps have been generated with the software GMT where the color ranges from 

red-yellow to green-blue. Detailed maps from special areas of interest and cross profiles were 

prepared with the software Fledermaus and show 3-D views. Also slope maps can be created 

with Fledermaus making it easier to identify seamounts or directions of the slope dip.  
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Figure 12: Profile of the seafloor across a mid-ocean ridge with its typical stripe pattern and corresponding 

magnetic anomalies/times. On top is a ideal magnetic profile from INDEX2011 perpendicular to the Central 

Indian Ridge. With increasing distance from the mid-ocean ridge the lithosphere gets older (after JOCHUM et al., 

1997, modified).  

3.2) Magnetics 
 

In the late 1950s investigations of the seafloor in the Pacific Ocean with marine magnetic 

measurements revealed long stripes of alternating positive and negative magnetic anomalies 

(LOWRIE, 2007). This pattern runs parallel to the mid-ocean ridges (Figure 12) and originates 

because of changing polarities of the Earth’s magnetic field in geological times when 

lithospheric plates drift apart and new oceanic crust is formed (JOCHUM et al., 1997). This 

mechanism was first described correctly by VINE & MATTHEWS (1963) which was a critical 

breakthrough for the concept of plate tectonics. Spreading rate velocities along the mid ocean 

ridge influence the stripe pattern of the magnetic anomalies in a way that high spreading 

velocities are causing wider stripes because a lot of material can accumulate in a short time 

interval (LOWRIE, 2007).  

LOWRIE (2007) describes the process called thermoremanent magnetization as follows. Before 

the melt rises to the surface, grains of ferromagnetic minerals in igneous rocks are generally 

above their Curie temperature, which lies for magnetite at 578°C and for hematite at 675°C. 

There is no molecular field and the atomic magnetic moments can behave in a chaotic way. 
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Figure 13: Schematic sketch of the 

magnetization behavior of magnetic grains from 

paramagnetic to ferromagnetic with changing 

temperature above Curie point. During the 

paramagnetic phase the grains behave in a 

chaotic way. With cooling under the Curie 

temperature the magnetizations of the magnetite 

grains become blocked and align parallel to the 

prevalent field direction (after LOWRIE, 2007).  

The material has a paramagnetic magnetization as shown on the right side in Figure 13. 

During solidification of the rock it cools and the temperature decreases below the Curie 

temperature (Figure 13, top), a spontaneous magnetization takes place. With cooling 

progressing this magnetization increases. The magnetic moments of the grains are blocked in 

the direction of the magnetic field at that time (Figure 13, left side), the rock becomes 

ferromagnetic. The newly formed rock retains the prevalent Earth magnetic field and is 

thermoremanently magnetized. MEYER (1999) assumes that there are different mechanisms 

for the formation and conservation of this permanent induced magnetic field depending on the 

rock material. LOWRIE (2007) explaines that titanomagnetite series (iron oxide minerals) are 

responsible for the magnetic properties of oceanic basalts. They point out that magnetite (one 

end member of the series), a ferromagnetic mineral, has the strongest magnetic susceptibility 

of all naturally occurring minerals and furthermore a strong spontaneous magnetization. 
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Figure 14: Schematic principle of the measurement array for the magnetic data (after BARCKHAUSEN & BARGELOH, 

2012) 

3.2.1) Measurement principle 
 

Marine measurements of the magnetic field were carried out with three BGR magnetometers 

towed astern of a research vessel. The measuring system consists of two Overhauser 

magnetometer sensors and one Magson
TM

 fluxgate sensor. As shown in Figure 14 the array is 

towed 700 m astern of the vessel with a distance of 75 m between the individual sensors. The 

front and rear sensors are of Overhauser type, a proton-precession magnetometer enhanced 

with the Overhauser effect, which in gradiometer mode measures the total magnetic field in 

two different positions at the same time. This represents a scalar measurement. Based on the 

calculated difference of these two measurements it is possible to delete time variable parts of 

the Earth’s magnetic field and only the spatial changes remain (BARCKHAUSEN & BARGELOH, 

2012). As a result of the following integration of the measured gradient the inner part of the 

Earth’s magnetic field along a profile can be shown. Between these two sensors the 

Magson
TM

 fluxgate sensor is mounted which measures the magnetic field vector in its three 

components (vector measurement). The total distance of 700 m between the sensors and the 

vessel guarantees a decrease of the ship’s magnetic field to less than 1 nT and therefore 

minimizes the disturbing factor of the vessel. Furthermore, the measurement with three 

sensors has the advantage that data are still reliably obtained even in the case that one sensor 

experiences a malfunction.  

In the following the detailed measurement principles of these sensors will be explained based 

on BARCKHAUSEN & BARGELOH (2012), starting with the Overhauser magnetometer sensor. 

Here, the measurement is based on the stimulation of the proton sense (polarization) through 

radio waves. This is a difference to the standard proton magnetometers where a strong DC 

magnetic field is used for polarization. The wave length of the radio waves injects the spin of 

the electrons into an organic, proton rich fluid within the sensor. Electrons then transfer their 
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Figure 15: Schematic sketch of electrons transferring their spin to the protons on the left side and a 

schematic sketch of the principle precession frequency on the right side (after BASAVAIAH, 2011, modified). 

spin to the protons of the fluid through a mechanical process, called Overhauser effect 

(Figure 15 left side). The actual measurement of the prevalent magnetic field takes place with 

the relaxation frequency, which means the attenuation of the spin from the protons (Figure 15 

right side). The precession frequency (occasionally called Larmor frequency) is a measuring 

unit for the intensity of the prevalent magnetic field because a linear proportionality exists 

between the precession frequency and the field strength (HEINRICH, 1968). Within the sensor 

the generated signal is digitized and afterwards transmitted to the vessel through the tow cable 

which also provides the power supply.  

 

The Magson 
TM

 Fluxgate magnetometer consists of three orthogonally oriented fluxgate 

sensors and a set of inclinometers. The assembly is mounted on a platform into a glass fiber 

tube. The principal of vector compensation of three ring-core sensors based on three 

independent Helmholtz-coils is used. A precise zero level of the field inside the ring-core 

compensating the external magnetic field (in this case the Earth’s magnetic field) will be 

achieved through an internal feedback circuit, which is based on digitally controlled direct 

currents fed into the Helmholtz-coils. Because of this function it is possible to use the 

amplitude of the current as a signal and to measure the vector components of the magnetic 

field. Measurements conducted in the marine environment suffer from sensor motions caused 

by the sea waves. To measure the movement of the Magson Fluxgate sensor a special 
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platform is mounted inside on which two tilt sensors are attached. The first tilt sensor 

measures the pitch and roll angle through a conducting liquid in a half filled glass vial. The 

liquid covers five electrodes and from the level of that covering the inclination angle can be 

derived. Values from +/- 25° to +/-40° can be reached depending on the settings of the 

system. The second tilt sensor represents a dual axis accelerometer, measuring the pitch and 

roll angle in a span of +/-50° (roll) to +/-20° (pitch). This second sensor is generally more 

accurate, but also very temperature sensitive. In addition to the static acceleration both sensors 

also measure the dynamic acceleration, which results from the continuously moving fish. 

Within the water movements of the Fluxgate sensor such as rotating cannot be avoided, 

therefore it is very important to measure the motion angle with high accuracy. This then 

allows rotating the field coordinates from the coordinate system of the sensor into the 

geomagnetic coordinate system. By that kind of rotation about the Euler angle, the vertical 

and horizontal vector components are obtained. It would also be desirable to separate the 

horizontal component into a north and east component. This would require precise knowledge 

of the true north direction with respect to the sensor orientation. In theory this could be 

achieved with a gyro mounted to the instrument platform inside the sensor. Practically gyros 

have a high power consumption and suffer from drift problems which makes their use in 

vector magnetometer very problematic. An alternative way of estimating a true north direction 

is a method introduced by ENGELS et al. (2008) called “numerical yaw”. This method is used 

at BGR for the calculation of full three component vector data from measurements carried out 

with the towed Magson fluxgate sensor.  
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3.2.2) Data processing 
 

The raw data measured with the towed magnetometer sensors must be checked for quality and 

whether external parameters such as the course of the vessel, the velocity, time, field 

differences, magnetic storms, or daily variations could have affected the magnetic data 

providing erroneous results. First the sensor positions are corrected based on GPS data from 

the vessel and an interpolation of existing small gaps is carried out. Time deviations in the 

dataset on the order of a few seconds, which may occasionally occur, are interpolated as well. 

As a third step outliers have to be eliminated using a median filter. The expected value of the 

Earth’s magnetic main field at any place is taken to be that of the International Geomagnetic 

Reference Field, IGRF2010 (MAUS, 2010). Because the magnetic anomaly is defined as the 

difference between the observed and the expected values (LOWRIE, 2007), it is necessary to 

subtract the IGRF from the data. That process is called normal field reduction and results in 

the field anomalies of the oceanic crust. In this case it is assumed that either external field 

variations are neglectable or absent because the magnetic field was reconstructed from 

gradient measurements.  

LOWRIE (2007) points out that on the one hand deep-seated magnetic sources produce broad, 

long-wavelength magnetic anomalies and on the other hand shallow sources create narrow, 

short-wavelength anomalies. The crustal anomalies observed during the investigations 

presented here can be counted to the latter ones. Therefore it is important to filter the 

wavelength related to the anomalies originating from crustal sources (ENGELS et al., 2008). 

The process of band pass filtering is described in detail by ENGELS et al. (2008). They 

postulate that the relevant wavelength range can either be derived from spectral analysis or 

from the reversal time scales and spreading rate estimations out of the survey area data itself. 

The method was applied by FRANKE et al. (2008) to data from the South China Sea. The 

authors used a lowpass filter (LP) for the removal of wavelengths shorter than 2-4 km for 

short profiles crossing the spreading ridge axis. For long profiles like transit profiles they used 

a highpass filter (HP) which removed wavelengths longer than 250 km. This also removes 

much of the external daily variations which at typical survey speeds have a wavelength of 

400-500 km.  

Another correction which can be made is the crossover error correction between the profiles. 

In case of the profiles from west to east along the Central Indian Ridge and the Southeast 
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Indian Ridge no crossover points exist between the profiles, thus no correction with this 

method is possible. For two detailed mapping datasets with profiles running from north to 

south and west to east the crossover correction was carried out. The crossover errors of single 

sensor magnetic data sets are due to first, offsets between the profiles of different surveys and 

second, external variations like differences in passing the same location at different local 

times (HEYDE et al., 2014). ENGELS developed a code for the crossover error correction which 

detects the position of the errors and automatically levels all profiles with the help of a least 

square algorithm (EHRHARDT & Shipboard Scientific Party, 2011). The reduction of the 

average error is on the order of 70% (HEYDE et al., 2014).  

During the course of a day the intensity of the geomagnetic field at the Earth’s surface can 

change due to the Earth’s rotation beneath different layers of the ionosphere (LOWRIE, 2007). 

Such daily variations in mid-latitudes have a range of 10 to 100 nT (MEYER, 1999). The 

working area in the Indian Ocean (CIR and SEIR between 21°S and 28°13’S) is characterized 

by a long distance from the magnetic dip equator (inclination 0°). At this longitude the 

magnetic dip equator lies 8° north of the geographic equator, hence it is unlikely that the 

equatorial electrojet has influenced the measurements (BARCKHAUSEN & BARGELOH, 2012).  

The desired accuracy of the data can be adjusted depending on the goal of the measurements, 

for example, whether seafloor spreading anomalies as time markers need to be identified, or a 

zone of decreased magnetic values due to hydrothermal processes is of primary interest. 

Sources of error could be measurement errors of the sensors or failures, errors in the position 

coordinates, and interruptions of the measurements in order to perform sampling of rocks. The 

error in the measured data and the subsequent evaluation of these data is estimated to be 

10 nT for the survey profiles. In the case of the detailed surveys over hydrothermal sites, the 

error after all corrections is on the order of 2 nT.  

With the final filtered and processed data, representing the crustal anomalies, further 

modeling steps can be done.  
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3.3) Modeling of the magnetic data 
 

With the program SFLAS (1989), developed at the BGR Hannover, it is possible to calculate 

forward models to make assessments regarding the magnetic anomalies of the oceanic 

lithosphere over a specified time interval (ROESER, 1986). For the calculation of seafloor 

spreading anomalies the magnetic reversal time scale of CANDE & KENT (1995) was used. 

After some definitions of the magnetization parameters like inclination/declination of the 

recent field, strike direction of the spreading ridge, direction of the profiles, the spreading 

rates, and the time interval, the program calculates the stripe pattern and the assumed trend of 

the magnetic anomalies. The spreading rates over time were adapted iteratively until the 

model provides a good fit with the measured data curve. In doing so the flanks of Anomaly 1 

and, where present, the Jaramillo event were picked as age marks. In addition some transit 

profiles or older profiles from the GEODAS database (NOAA, 2009) which extend further 

from the ridge axis and also cover older anomalies could be used to increase the accuracy. 

With the help of these resulting models it was possible to locate the center of Anomaly 1 on 

each profile. An asymmetric or symmetric behavior of the spreading ridge areas results from 

the calculated models which sometimes reveal that one side of the ridge axis spreads faster 

than the other. At the end, as many measured curves as possible should fit into the model 

boundaries (Figure 16). While carrying out the modeling it is important not to loose the 

geological sense of the values, because there is never a 100% match of the modeled and 

measured curves. Afterwards the full spreading rate was calculated for each profile as follows, 

whereby for every profile the distance of the Anomaly 1 boundaries was measured and 

converted into spreading rates per year:  

780000 a/km = spreading rate.  

A difference in the measurement of 1 km in the distance of the Anomaly 1 boundaries 

produces a 1.3 mm/a difference in the spreading rate. It is estimated here that the actual error 

in measuring the distance of the Anomaly 1 boundaries is below 1 km for each individual 

profile. Since the spreading rates determined for ridge segments represent an average over 

~10 or more profiles, the resulting uncertainty in the calculated spreading rates can be 

assumed to be not higher than 0.5 mm/a. All in all 57 profiles along the slow spreading CIR 

and 64 profiles along the intermediate spreading SEIR were analyzed in this way. The profiles 
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Figure 16: SFLAS model for the spreading rates and time interval of Section 3 from the SEIR. A 

longer profile A2093L06_3 from the GEODAS database was used as a reference and to increase the 

precision of the modeling with further anomaly time marks.  

have all been projected to 60°E (CIR) and to 50°E (SEIR) and thus perpendicular to the 

spreading axe and run from SW to NE.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

During detailed magnetic surveys over one hydrothermal vent field a decrease of the magnetic 

values was recorded. To model this zone of lower magnetic values another software was used, 

the Interactive Geophysical Modelling Assistant (IGMAS+). This involves a 3D forward 

modeling software of the University of Kiel which is based on the principle of triangulation of 

subsurface structures and uses potential field data (SCHMIDT & GÖTZE, 2012). The program 

uses Universal Transverse Mercator (UTM) coordinates and the reference ellipsoid WGS84. 

Bathymetric and magnetic data must be prepared in a spreadsheet with the following order: 

x,y coordinates, water depth, and in case of magnetics the nT values. For the modeling 

outlined in Chapter 5.6 the main profile direction was W-E. The bathymetric dataset is 

required to be larger than the magnetic one to also allow modeling of the boundaries of the 



3)Methods  3.3) Modeling of the magnetic data 

36 

 

 

Figure 17: Cross section of the oceanic lithosphere with layer 

division and location of a possible hydrothermally influenced zone. 

HTF stands for hydrothermal field.  

magnetic dataset without creating misleading edge effects. With 21 sections and a minimal 

vertical distance of 5m the bathymetry represents the basis of the project. For the stations 

magnetic data are imported. For different layers the magnetic susceptibility can be defined 

individually and is necessary for the calculation of the models anomalies (calcMAGtotr. ~ 

total Field induced remanent). Some magnetic model parameters for the survey area are the 

total magnetic field of 49441 nT, an inclination of 60°, and a declination of 24°. From the 

large magnetic overview it is known that the modeled body lies within Anomaly 1 and 

therefore embedded in rocks which are magnetized parallel to the recent field. For the process 

of modeling the oceanic crust was separated into two layers (Figure 17). In general there are 

three layers, however, the first layer consists of sediments and therefore can be neglected in 

this case as the CIR is a young ridge system with almost no sediments being accumulated. 

Oceanic layer two represents the volcanic crust which can be subdivided into layer 2A with 

pillow basalts and a thickness of 0.5 km and layer 2B the Diabase dikes and 1.5 km thickness 

(KENT et al., 1978; LOWRIE, 2007). The third layer is the plutonic crust consisting of gabbros 

and ultramafic rocks and a thickness of 5 km (KENT et al., 1978; LOWRIE, 2007). Layer 2, 

especially 2A, exhibits the highest magnetic values (LOWRIE, 2007) and so the magnetic 

susceptibility values used in IGMAS+ are relatively high. The aim of the modeling process is 

to get an idea of the dimensions of the hydrothermally altered zone (Figure 17) and therefore 

the absolut magnetic susceptibility values used in the model are not in the focus of the study. 

It is only necessary to keep the 

contrast of the higher 

magnetized layer 2 and the all 

other model bodies high. The 

geometry of the hydrothermally 

altered rock body must be 

modified till the measured and 

the calculated magnetic lines fit 

on top of each other. Crossing 

lines in the model cannot be 

processed by IGMAS+ because 

of the triangulation principle.  
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4) Results 

4.1) A slow spreading ridge system 

4.1.1) Structural description 
 

The slow spreading ridge system of the southern Central Indian Ridge (CIR) was mapped 

during the first INDEX research cruise in 2011 and has a length of 500 km between 21°S and 

25°40’S (Figure 18). It strikes NNW-SSE and is characterized by a continuous well defined 

rift valley which strikes ~145° SE. Several discontinuities and one transform fault (Gemino 

transform fault) offset the ridge in a right-lateral sense (Figure 18). The southern Central 

Indian Ridge was divided into five working areas from north to south: EXFX, JX, Meso (after 

the research vessels Meteor and Sonne, HALBACH, 1997), Edmond and Kairei which will be 

described in more detail in the following. Afterwards the structures are analyzed and 

interpreted in Chapter 5.3. 
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Figure 18: Bathymetric map of the southern Central Indian Ridge. The dotted lines separate the five working 

areas (left side). Sketch of the main structural features along the CIR (right side). The blue line marks the 

ridge axis and the black lines are the rift valley boundaries. The known hydrothermal vent sites are marked 

with yellow stars. The white star labels a methane anomaly at EXFX. 
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EXFX, the first working area, is located between 21°S and 22°S with a length of ~130 km 

(Figure 19). Two structures of this ridge area stand out: in the northern part an overlapping 

spreading center (OSC) and more to the south a structure which can be described as bending 

of the rift valley and the youngest rift shoulders (Figure 19). The rift valley strikes ~145° SE, 

is asymmetric and well expressed along the whole working area by pronounced major faults 

on the western flank. It can be outlined with the 3250 m contour lines shown in Figure 20 

where the OSC and the bending structure can clearly be seen. It has an average width of ~6-

9 km where 9 km occur in the area of the bending. The average depth of the rift valley is 

~3450 m with two shallower areas in the middle and south of EXFX. The rift shoulders show 

an average water depth of 2200 m and the shallowest point is reached in the south of EX/FX 

on the eastern flank at ~2000 m (Figure 19). In general the eastern side shows more large-

scale uplift than the western flanks. This behavior can be seen in Figure 20 with the 2500 m 

contour lines and in the profiles across the ridge axis from west to east shown in Chapter 5.3. 

Typical for an overlapping spreading center such as in the north of EXFX is an offset of the 

active spreading center (Figure 19). Here the spreading center shows an offset to the western 

side, but without any change in the strike direction. Both the old and the new rift valley have a 

width of 2000 m in the area of the overlapping, which is 9.5 km long. North of that area the 

rift valley gets wider with ~9 km-9.5 km. The average water depth in both areas is ~3400 m. 

One obvious feature is in the northern part of the old spreading system a complex of three 

seamounts arranged like a string of pearls along a fault (Figure 21, Figure 22a & b). The two 

spreading centers are separated by an elongated bathymetric high in the middle with a 

difference in height to the valley floor of ~200 m. With a view on the bathymetric map the 

southern part of EXFX is dominated by a structure that can be described as some kind of 

bending (Figure 19). The rift valley and bordering rift shoulders bend to the east. The whole 

structure has a length of ~25 km and the rift valley gets wider up to ~9 km. Two strongly 

curved neovolcanic ridges rise ~500 m to 600 m over the surrounding seafloor (Figure 21 and 

Figure 22a). In the middle of that bending on the eastern side some kind of caldera is located 

with a seamount in it (Figure 23). Probably the caldera is a relatively old feature and the 

round shaped seamount the expression of youngest magmatic activity. A small basin structure 

in the rift valley on the western flank has a rhombus shape, typical for a pull-apart basin. At 

~3700 m water depth this basin is significantly deeper than the surrounding valley floor 

(Figure 22c and Figure 23). In the area of the bending, the western rift shoulders show a 

bathymetric high whereas the rift shoulders on the eastern flank could be defined as a 
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Figure 19: Bathymetric map of 

the working area EXFX with 

two prominent structural 

features, an overlapping 

spreading center (OSC) in the 

north and a bending structure in 

the south.  

bathymetric low (Figure 20, 2500 m contour line). With a look at the distribution of the 

seamounts in Figure 22b it is obvious that they are rarely located at the older rift shoulders on 

the eastern flank. Regardless where they occur, the majority shows no signs of shear, instead 

they are evolved in the neighborhood of such shear planes (Figure 22a). Inside of the rift 

valley several seamounts occur, most of them in the northern part. Two sheared volcanic 

fabrics influenced by faults are located on the western ridge shoulder (Figure 22b). All in all 

the seamounts show a round shape with characteristics of initial erosion. On the older rift 

shoulders on the eastern side one seamount has a large caldera structure (Figure 22b, green 

circle). More or less, the seamounts seem to be oriented along the major faults and vary 

distinctly in diameter from 400 m to 1000 m whereby the smallest diameters can be found 

within the rift valley. The maximum height over the seafloor is ~200 m. The major faults dip 

towards the rift valley (Figure 22c, grey=east and yellow=west) and strike approximately 

145° SE, in the same direction as the rift valley. A few faults in the north and south which dip 

to the south (Figure 22c, black lines) show different strike angles of 10°/20° NE up to 90°E. 

In the vicinity of the bending structure there are some faults which run towards each other. To 

sum up, characteristic structures for the working area EXFX are the overlapping spreading 

center, the bending of the rift valley and rift shoulders, stronger uplifted eastern rift shoulders, 

and one pull apart basin inside the bending structure.  
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Figure 20: Map of the contour lines from EXFX. On the left side the 3250 m lines which mark the rift 

valley. On the right side the 2500 m contour lines characterizing the stronger uplifted eastern side (green 

lines) and the western (blue lines) ridge shoulders.  

 

Figure 21: 

Bathymetric map 

of the working 

area EXFX with 

structural features 

like seamounts 

(circles) and faults 

(lines), the ridge 

axis and a 

neovolcanic ridge. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4)Results  4.1) A slow spreading ridge system 

42 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4)Results  4.1) A slow spreading ridge system 

43 

 

 

Figure 23: Detailed bathymetric map of the bending structure with outlined special 

features such as a pull-apart basin and a caldera structure with a seamount inside.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: Structural maps of the working area EXFX: a) labeled with circles for the seamounts and with 

lines for the faults; b) labeled with circles for the seamounts divided into those who are cone shaped, have 

a flat top or are tectonically influenced and with green circles for depression structures; c) labeled with 

lines for the faults dipping in different directions. 
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Adjacent to EXFX is the second working area JX from 22°S to 23°04’S (Figure 24). The 

northern part of JX was only mapped by a 65 km long transit profile. Here the rift valley has a 

width of ~4.5 km and is well expressed by the first normal faults on both valley sides (Figure 

25). The water depth at the segment ends is around 3900 m and gets shallower at 3300 m in 

the middle of that transit area. The few major faults strike parallel to the rift valley. At 

22°50’S the only real transform fault of the entire INDEX2011 survey area, the Gemino 

transform fault offsets the CIR (Figure 25). It was mapped over 46 km and offsets the rift 

valley by ~35 km in a left-lateral sense, however, the plate boundaries are offset in a right-

lateral sense (Figure 26). The Gemino transform fault strikes ~60° north-east and has a v-

shaped valley. One seamount is located directly in the eastern part of the transform fault 

(Figure 27a & b). It has a diameter of ~1500 m and a height of ~400 m above the seafloor. It 

seems that the seamount has the original rounded shape. To the north the transform fault 

shows a very sharp boundary. In a cross section of the transform fault from north to south 

there is a relief difference of up to 800 m. South of the Gemino transform fault very 

prominent major faults and older ridges strike parallel to the rift valley (Figure 27c). In the 

area of the transform fault these faults and ridges were bended to the north-east, which is the 

movement direction along the transform fault (Figure 25 and Figure 27c). The rift valley has 

a width of ~8 km and shows a neovolcanic ridge in the middle at ~3200 m water depth. To the 

south some seamounts occur in the vicinity of the rift valley and mainly on the western ridge 

flank (Figure 27a & b). The average water depth of the rift valley is ~3800 m. The rift 

shoulders on the western side experienced a stronger uplift at ~2100 m water depth than the 

rift shoulders on the eastern side as far as they were mapped. The ridge parallel faults (Figure 

27c, yellow and grey lines) which dip towards the ridge axis also strike ~145°SE. At the 

Gemino transform fault there are some faults dipping to the north (orange lines Figure 27c) 

and strike ~50°NE. Prominent features for the working area JX are the Gemino transform 

fault and in the southern part strongly pronounced ridge parallel normal faults.  
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Figure 24: Bathymetric map of 

the working area JX. 

 

Figure 25: Bathymetric map of the 

working area JX with structural 

features like seamounts (circles), 

faults (lines), the ridge axis (red 

dotted line), a neovolcanic ridge (red 

box), and the Gemino transform 

fault (red line). 
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Figure 26: Schematic sketch of the 

Gemino TF marked with stress ellipse. 

At the transform fault the ridge axis is 

offset left-laterally and the plate 

boundaries show right-lateral sense of 

movement (after SEARLE, 2013, 

modified).  
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Figure 27: Structural maps of the working area 

JX: a) labeled with circles for the seamounts 

and with lines for the faults; b) labeled with 

circles for the seamounts divided into those 

who are cone shaped, have a flat top or are 

tectonically influenced and with green circles 

for depression structures; c) labeled with lines 

for the faults dipping in different directions. 
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Figure 28: Bathymetric map of the working area Meso with two prominent neovolcanic ridges. The inactive 

hydrothermal vent field Sonne is marked by the yellow star. 

Between 23°05’S and 23°33’S the third working area named Meso extends over 8.4 km 

(Figure 28). The rift valley is well expressed and asymmetric with steeper eastern ridge 

flanks. It is wider at ~9 km at the section ends and narrower in the middle part at ~1600 m 

where neovolcanic ridges develop (Figure 29). In the northern part the average water depth of 

the rift valley lies around 3700 m and gets deeper to the south at ~4100 m. All in all the ends 

of the Meso region are deeper than the middle part where the neovolcanic ridges occur. This 

hourglass morphology (narrow middle part, wider and deeper ends) can be found on several 

sections along the slow spreading ridge (Figure 18). The seamount distribution is 

concentrated in the rift valley and on the western rift shoulders (Figure 30a & b). Most of 

them show no signs of shear and they concentrate in the north and south of the working area. 

Together with the large neovolcanic ridges in the middle of the Meso area (location of the 

Sonne hydrothermal vent site) the seamounts hint at an active heat source beneath. The 

neovolcanic ridge including the Sonne hydrothermal vent site (Figure 28, star) represents an 

along axis updoming in an elongated shape with some normal faults (Figure 29 and Figure 

30a & c). In north-south direction it has a length of 28 km, is situated in ~2700 m water depth 

and rises ~400 m above the seafloor. The other updoming structure east of the rift valley is 

clearly thicker and more homogeneous in its structure (Figure 29) with a smaller number of 

significant faults on the top. It has a length of ~21 km, rises 500 m to 600 m above the 

seafloor and lies in a water depth of ~2500 m. In general, the uplift of the rift shoulders is 

more pronounced in the east. Away from the rift valley there are areas with basin structures. 

The main faults run parallel to the rift valley and dip to the east or west. Summarizing features 

for the working area Meso are the two prominent neovolcanic ridges and, like in EXFX, 

stronger 

uplifted 

eastern ridge 

flanks.  
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Figure 29: Bathymetric map of the working area Meso with structural features like seamounts (circles), 

faults (lines), the ridge axis (red dotted line), and two neovolcanic ridges (red areas). 
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Figure 30: Structural maps of the working area Meso: a) labeled with circles for the seamounts and with 

lines for the faults; b) labeled with circles for the seamounts divided into those who are cone shaped, have a 

flat top or are tectonically influenced; c) labeled with lines for the faults dipping in different directions. 
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The fourth working area Edmond is located between 23°33’S and 25°09’S and has a length of 

~170 km (Figure 31). Here, the rift valley is well expressed in the north and also in the south 

where neovolcanic ridges give it an asymmetrical character. It has an average width of 

6.5 km -7 km in the northern part and 13 km in the southern area, but here it is difficult to 

define the boundaries. The average water depth is around 3700 m. A most prominent feature 

is the Knorr rise in the middle of that working area. It is a very young structure which 

interrupts the spreading center. The Knorr rise offset the spreading center by about 12 km and 

changes its course more to the western flank. Very distinct is the triangle-shaped outline of 

the rise with the peak in the south and shallower parts to the north (Figure 32). The whole 

seamount rises ~1200 m above the seafloor to a water depth of ~2200 m. Its surface structure 

is flat and smooth with valley features running parallel to the rift valley. In Figure 33 the 

2500 m contour line marks out that the rift shoulders north of the Knorr rise show a higher 

uplift east of the rift valley with water depths of around 2100 m whereas the western rift 

shoulders remain at ~2800 m. Here the major faults strike parallel to the rift valley. Despite 

this, there are also fault structures intersecting with other ones and cross cutting each other 

directly in the vicinity of the Edmond hydrothermal vent field (Figure 32 and Figure 34a). 

They are shown and discussed in more detail in Chapter 4.4. At the northern boundary of the 

working area Edmond a structure from a rift shoulder is located which bends towards 

northwest into the rift valley (Figure 31). Beneath that structure a further basin is found with 

characteristics of a pull-apart basin (Figure 35). North of the Knorr rise there exist 

remarkably few seamounts in the rift valley and again more of them on the western rift 

shoulders (Figure 34b). No seamounts are observed around the hydrothermal vent site. The 

well defined rift valley south of the Knorr rise shows the highest number of seamounts along 

the slow spreading ridge (Figure 34b). They are all of different size and shape. The smaller 

seamounts show the typical seamount structure, round and cone shaped. The bigger fabrics 

have almost all a flat, eroded top. They are located in the rift valley and in addition a few on 

the western ridge flank (Figure 34b). Some of them show influences of faults. Further 

prominent features are two developing neovolcanic ridges, both ~28 km long and with a water 

depth at the shallowest part of ~2700 m (Figure 34a). The northern part of those ridges is 

defined by a north-east bending and a greater width at that place (Figure 34a). The eastern 

flank is the steepest at both ridges. Major faults also run parallel to the rift valley as in the 

areas described before. In addition there are faults which directly taper off (Figure 34a & c). 

In a large area on the western side the rift shoulders show a greater uplift, nevertheless the 
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shallowest point with ~2000 m water depth is on the eastern side. A look at the bathymetric 

map makes clear that the area south of the Knorr rise is characterized by an hourglass 

morphology. At the section ends water depths of 3800m - 4200 m are reached, while the 

middle part with all the seamounts and neovolcanic ridges is shallower. At the southern 

section end in a water depth of ~4000 m lies a structure which has the shape of a pull-apart 

basin, but in the middle there is a cone like a seamount (Figure 35). To sum up for the 

working area Edmond five features are characteristic: first the evolving discontinuity in the 

northern area, second the two pull-apart basins, third the Knorr rise, fourth the neovolcanic 

ridge in the southern area, and fifth the highest number of seamounts in the south.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31: Bathymetric map of the working area Edmond with two pull-apart basins, the Knorr rise, and a 

prominent bending of the northeastern ridge shoulder in the northern part. The active hydrothermal vent field 

EDMOND is marked by the yellow star. 
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Figure 32: Bathymetric 

map of the working area 

Edmond with structural 

features like seamounts 

(circles) and faults 

(lines). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33: 2500 m contour lines of the areas Meso 

and Edmond. Blue lines represent the western ridge 

flank and the green lines the stronger uplifted eastern 

one. Black lines out marks the Knorr rise. 
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Figure 35: Detailed bathymetric map of two pull-apart basins located in the working area Edmond.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34: Structural maps of the working 

area Edmond: a) labeled with circles for the 

seamounts and with lines for the faults; b) 

labeled with circles for the seamounts 

divided into those who are cone shaped, 

have a flat top or are tectonically influenced 

and with green circles for depression 

structures; c) labeled with lines for the 

faults dipping in different directions. 
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Figure 36: Bathymetric map of the working area Kairei with the prominent oceanic core complex (OCC) 

and the location (yellow star) of the Kairei hydrothermal vent field.  

Kairei is the last working area limited by the coordinates 25°09’S to 25°30’S and has a length 

of 43 km (Figure 36). The rift valley is well expressed and more or less symmetric with a 

width between 5 and 6 km. The average water depth is ~4200 m. In the east the rift shoulders 

show the highest uplift with ~2200 m water depth (Figure 36). The northern part of the Kairei 

area is characterized by a ~16 km offset of the spreading center in a right-lateral sense. At this 

discontinuity a large seamount has evolved in the east (Figure 37). It has a diameter of 

~7.4 km and rises 900 m above the seafloor. In the vicinity of that large seamount a few other 

small cones are observed (Figure 38b). Once again there is a lack of seamounts around the 

Kairei hydrothermal vent field. The major faults are running parallel to the rift valley but 

there are also some which are oriented around 40° (Figure 37 and Figure 38a & c). Besides 

the large seamount there is another outstanding feature in the western part of the 

discontinuity, an oceanic core complex (OCC) (Figure 37). This complex is defined by 

lineations running perpendicular to the rift valley. North and east of the OCC faults are 

observed which strike 40°NE. The OCC has a length of 22 km and a width of 13 km. Its top 

has a relatively smooth surface but faults running across the OCC divide the complex into 

three sections. In the south several slope scarps and slides are evolved. The southern end of 

the working area Kairei is limited by the Rodriguez Triple Junction. As a summary the 

oceanic core complex as well as the stronger uplifted eastern ridge shoulders are typical 

features for the working area Kairei.  
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Figure 37: Bathymetric map of the working area Kairei with structural features like seamounts (circles) and 

faults (lines). 
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Figure 38: Structural maps of the working area Kairei: a) labeled with circles for the seamounts and with 

lines for the faults; b) labeled with circles for the seamounts divided into those who are cone shaped, have a 

flat top or are tectonically influenced and with green circles for depression structures; c) labeled with lines 

for the faults dipping in different directions. 
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Figure 39: Schematic sketch of the profiles running from 

north to south at the Central Indian Ridge. The yellow 

stars mark the active and inactive hydrothermal vent 

fields. The white stark marks the methane anomaly at 

EXFX.  

4.1.2) Magnetic observations 
 

A total of 57 magnetic profiles was measured along the southern part of the CIR which is a 

slow spreading ridge with 4.7 cm/a full spreading rate on average. For the analysis, some of 

these profiles have to be left out because they were measured along discontinuities or they are 

too short. The trend of the profiles from north to south can be seen in Figure 39. As described 

in Chapter 3.2.1 the magnetic profiles 

were acquired at the sea surface which 

limits the resolution with respect to small 

source areas at the seafloor.  

The first 17 profiles (303-322) in the 

northern working area are characterized 

by bathymetric minima which lie to the 

west of the center of magnetic Anomaly 1 

(Figure 40). Where the center of 

magnetic Anomaly 1 is close to the 

bathymetric minimum, in many cases the 

magnetic center is located on a 

bathymetric high which could be a 

neovolcanic ridge (Figure 41). The 

profiles strike ~N60°E perpendicular to 

the ridge axis. On all profiles the 

complete Anomaly 1 (0-0.78 Ma) could 

be mapped and the average full spreading 

rate for that area is approximately 

4.7 cm/a. Only a few profiles are long 

enough to cover the Jaramillo event on 

one side. Half of the profiles range 

around +/- 500 nT with the exception of 

profile 312 which shows a peak at 700 nT 

(Figure 42). The profiles 303 to 312 in 

the northern part of EXFX have 
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symmetric spreading velocities of 2.30 cm/a to the eastern and western side. That behavior 

changes to the south (Figure 40) where the spreading rates are getting asymmetric with 

2.30 cm/a to the west and 2.50 cm/a to the east (profiles 313-322). The locations with 

asymmetric spreading show an increase in the distance between the center of magnetic 

Anomaly 1 and the bathymetric minima. According to hydrothermal plume signals described 

by PLÜGER (1988) the profiles 304 and 305 should include a hydrothermal vent site 

corresponding to the overlapping spreading center structure in EXFX.  
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Figure 40: Magnetic map of the southern CIR with calculated full spreading rates on the left side and the 

asymmetric spreading behavior shown on the right side. The black circles mark the center of magnetic 

Anomaly 1 and the red circles the ridge axis. The white dotted lines limit the areas where the spreading 

behavior of the ridge flanks changes. The map is superimposed with the bathymetric contour lines every 

500 m. 
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Figure 41: Magnetic (top) and bathymetric (bottom) profile 310 of the Central Indian Ridge with both 

Anomaly 1 boundaries (green) and one flank of the Jaramillo event (orange). The center of magnetic 

Anomaly 1 is labeled with a blue line and the recent active spreading center, defined as bathymetric 

minimum, is labeled with a black triangle.  

 

Figure 42: Magnetic (top) and bathymetric (bottom) profile 312 of the Central Indian Ridge with both 

Anomaly 1 boundaries (green) and one flank of the Jaramillo event (orange). The center of magnetic 

Anomaly 1 is labeled with a blue line and the recent active spreading center, defined as bathymetric 

minimum, is labeled with a black triangle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

After the short transit profile which is not included here the next 14 profiles (328-343) were 

measured with a strike direction of N60°E again. Almost all profiles show the flanks of 

Anomaly 1 (0-0.78 Ma).With a full spreading rate of 5.0 cm/a this part of the working area is 

the fastest along the slow spreading ridge. More than half of the profiles reveal the center of 

magnetic Anomaly 1 at the location of a bathymetric peak. For the whole area an asymmetric 

spreading is obvious with 2.50 cm/a to the western side and 2.65 cm/a to the eastern side 

(Figure 40). The distance between the center of magnetic Anomaly 1 and the bathymetric 
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Figure 43: Magnetic 

(top) and bathymetric 

(bottom) profile 353 

of the Central Indian 

Ridge with one flank 

of Anomaly 1. The 

approximate center of 

magnetic Anomaly 1 

is labeled with a blue 

line and the recent 

active spreading 

center is labeled with 

a black triangle.  

minima increases southwards. The profiles 333 and 335 are located at two neovolcanic ridges 

where one of them hosts the inactive hydrothermal vent site Sonne crossed by profile 334.  

The following 13 profiles 344 to 356 show a slight asymmetric spreading whereby the eastern 

ridge flank has higher spreading rates with 2.60 cm/a than the western flank with 2.50 cm/a 

(Figure 40). The full spreading rate for the area is approximately 4.7 cm/a. In the northern 

and central part, the spreading axis migrates in the eastern direction, but to the south this 

behavior changes and the spreading axis moves to the western side. The tectonic and 

magmatic activity and the influence on the spreading behavior can clearly be seen in the 

southern region with the Knorr rise. The profiles 354 and 356, located just north and south of 

the Knorr rise, are characterized by an obvious asymmetric spreading pattern. To the west the 

ridge shows high full spreading rates of 2.50 cm/a and to the east the ridge spreads with 

1.60 cm/a between 0 and 0.8 m.y. and increases to 2.60 cm/a between 0.8 and 2 m.y. (Figure 

40). That the Knorr rise acts as a spreading stop becomes clear with profile 355 running 

through the central part of the seamount. Here the ridge spreads with 2.50 cm/a to the west 

while to the east the spreading decreases significantly and has the lowest value of 1.0 cm/a. 

The center of magnetic Anomaly 1 does not correlate with a bathymetric peak as in many 

profiles as before. The profiles 352 and 353 show the highest distance between the active 

spreading center and the center of magnetic Anomaly 1 (Figure 43). An explanation for that 

mismatch could be very recent, tectonically driven changes of the spreading geometry which 

cannot be seen in the magnetic anomalies yet. In detail, the changes occurred during the last 

100 000 years and the newly formed spreading center evolves because of high crustal 

extension even before volcanism can take place (BARCKHAUSEN & BARGELOH, 2012).  
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The profiles 371-362 show an average full spreading rate of 4.5 cm/a. The ridge spreads 

asymmetrically and changes the flanks of faster spreading. That means in detail that in the 

northern area (profiles 371-363) the eastern ridge side spreads faster with 2.50 cm/a than the 

western side with 2.30 cm/a (Figure 40). That behavior changes to the south (profiles 359-

205) where the western flank spreads faster with 2.30 cm/a than the eastern side with 

2.10 cm/a. The profiles 371-363 are characterized by the greatest distance between the center 

of magnetic Anomaly 1 and the spreading center and a ridge jump which could be identified 

by the change of the location of the spreading axis south of the center of magnetic Anomaly 1. 

The last two profiles measured during INDEX2011 (361-362) are replaced by the first two 

profiles of INDEX2012 (204-205), because these show a better data quality.  

To sum up, the trend of the full spreading rates along the slow spreading ridge is shown in 

Figure 44. A large variation in full spreading rates between 3.72 cm/a and 5.58 cm/a exists 

from 21°S towards the RTJ. South of Edmond there is a general decrease in the full spreading 

rates from 5.0 cm/a to 3.72 cm/a before they sharply increase at the Kairei vent field. The 

influence which structural edifices like the Knorr rise have on the spreading rate can clearly 

be seen. With a look at the trend there is a decrease in spreading rate of the single profiles 

south of the Knorr rise. Also, the hydrothermal vent site locations are labeled and with 

exception of EXFX which is just a methane anomaly, the vent sites are characterized by high 

full spreading rates between 4.87 cm/a and 5.6 cm/a.  

With a detailed look at the nT values within Anomaly 1 there are sometimes obvious spikes 

(relatively high magnetic values) which are located above the spreading center as can be seen 

in Figure 45 or other young, recent structures. In the following this feature will be called 

Central Anomaly Magnetic High (CAMH) as defined by POULIQUEN et al. (2001). In case of 

the profile crossing the SONNE hydrothermal vent site this CAMH is located directly at the 

larger eastern neovolcanic ridge as shown in Figure 46. In Figure 47 the CAMH is closely 

linked to the western flank of the Knorr rise (profile CIR-354), another neovolcanic ridge 

(profile CIR-369) and a huge seamount within the rift valley (profile CIR-364). In all cases 

the width of this CAMH is approximately 3 km. 

 

 



4)Results  4.1) A slow spreading ridge system 

65 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 44: Full spreading rate versus latitude of the slow spreading ridge system (CIR) from 21°S to the 

RTJ. The effect of the structural edifices to the spreading rate (Knorr rise, discontinuities) is obvious. The 

transparent area marks the error estimation according to Chapter 3.3. 
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Figure 45: Bathymetric map of the working area EXFX and two cross profiles containing bathymetry (grey) 

and magnetic (orange) data. The transparent red zone (circle and box) marks the central anomaly magnetic 

high (CAMH). 

 

Figure 46: Bathymetric map of the working area Meso and one cross profile with 

magnetic (orange) and bathymetric (grey) data. The star marks the hydrothermal vent 

site Sonne. The transparent red zone shows the central anomaly magnetic high 

(CAMH). 
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Figure 47: Bathymetric map of the working area Edmond and four cross profiles with magnetic 

(orange) and bathymetric (grey) data. The star marks the hydrothermal vent site Edmond. The 

transparent red zone shows the central anomaly magnetic high (CAMH). 
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4.2) An intermediate spreading ridge system 

4.2.1) Structural description 
 

In 2012 the northern part of the intermediate spreading Southeast Indian Ridge was mapped 

during the second research cruise at a length of ~500 km between 25°30’S and 28°S (Figure 

48). To the north it is bounded by the Rodriguez Triple Junction. The ridge strikes NW-SE 

and is characterized by a continuous well expressed rift valley, which strikes ~135° SE. Five 

discontinuities offset the ridge in a left-lateral sense. The SEIR was divided into 6 working 

areas, which are numbered consecutively (section 1-6). Sections 2 and 5 are defined as 

accommodation zones characterized by a rift valley which is not well expressed and rift 

shoulders not running parallel to the rift valley (Figure 48). Compared to the CIR more 

seamounts can be found in the rift valley and on the rift shoulders over the whole intermediate 

spreading ridge. 
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Figure 48: Bathymetric map of the northern Southeast Indian Ridge. The dotted lines separate the six 

working areas (top). Sketch of the main structural features along the SEIR (bottom). The blue lines mark the 

ridge axis and the black lines are the rift valley boundaries.  
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The Rodriguez Triple Junction (RTJ) is defined by the three ridge systems Southwest Indian 

Ridge (SWIR), Central Indian Ridge (CIR), and Southeast Indian Ridge (SEIR) as shown in 

Figure 49. The CIR and SEIR in that area show ridge parallel major faults. The SWIR instead 

is characterized by a series of step faults on the northern ridge flank. The east and west flanks 

of the SEIR are more uplifted in the direct vicinity of the RTJ. Between the CIR and the SEIR 

an offset is obvious which is characterized by an evolving small ridge structure inside the rift 

valley.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 49: Bathymetric map of the Rodriguez Triple Junction with major tectonic elements. The arrows 

show the relative movement directions and the red oval marks a small evolving ridge inside the RTJ. A 

small offset between the CIR and the SEIR became obvious.  
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Figure 50: Bathymetric map of Section 1 with prominent structural features like two basins and an OCC.  

Section 1 extends from 25°30’S to 26°08’S with a length of 85 km (Figure 50). The rift 

valley is very well defined with an average water depth of 3800 m and a width of 4 km to 

6 km. There is a trend from north to south where the rift valley is getting deeper. In Figure 51 

(left side) the 3750 m contour lines show the typical hourglass shaped morphology of this 

section where the water depth is shallowest in the middle and increases to the ends. Several 

faults are running parallel to the rift valley and dip towards it. The rift shoulders east of the 

rift valley show altogether a higher uplift. This can be seen in Figure 51 on the right side with 

the 2750 m contour lines. The shallowest point is reached on the western rift shoulder with 

~1700 m water depth. Many seamounts can be found in the rift valley as well as on the rift 

shoulders. Some are characterized by fault structures which cause the seamounts to be offset 

in one direction (Figure 52, Figure 53, and Figure 54b). The majority of the seamounts is 

defined by a flat top and not the typicall cone shape. Other seamounts show caldera structures 

which are more or less well expressed. Like in the case of the slow spreading ridge system, 

the majority of the seamounts is located on the western ridge flank, however, a lot more are 

tectonically influenced (Figure 54a & b). Furthermore many seamounts occur inside the rift 

valley. To the south there is another oceanic core complex like the one at the CIR (Figure 

50). Typical characteristics can be seen like the lineations (mullions) striking perpendicular to 

the rift valley. In the northwestern part of the OCC the line of movement is well distinct. The 

development of the OCC forces the rift valley to find another course, so in its northern part 

the ridge axis is offset by ~7 km. The adjacent older rift shoulders show a slight bending 

where they come together with the OCC. In the same area north-east of the OCC two basin 

structures are observed (Figure 50). To sum up, typical features for Section 1 are the stronger 

uplifted eastern flanks, several 

sheared seamounts, OCCs, two 

basins, and extremely ridge 

parallel faults (Figure 54c).  
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Figure 51: Map of the contour lines of Section 1. On the left side the 3750 m lines which mark the rift valley. 

On the right side the 2750 m contour lines characterizing the stronger uplifted eastern side (green lines) and the 

corresponding western flank (blue lines).  

 

Figure 52: Detailed bathymetric (left side) and slope inclination (right side) map of a sheared seamount in the 

vicinity of the RTJ.  
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Figure 53: Bathymetric map of 

Section 1 with structural features like 

seamounts (circles) and faults (lines).  
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Figure 54: Structural maps of Section 1: a) labeled with circles for the seamounts and with lines for the 

faults; b) labeled with circles for the seamounts divided into those who are cone shaped, have a flat top or are 

tectonically influenced and with green circles for depression structures; c) labeled with lines for the faults 

dipping in different directions. 
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Figure 55: Bathymetric map of Section 2 with two prominent oceanic core complexes.  

Adjacent to Section 1 is an accommodation zone Section 2 between 26°09’S and 26°12’S at a 

length of 43 km (Figure 55). The rift valley is well expressed only in the central part of that 

working area. It has an average water depth of 4300 m and a width of 4 km – 4.6 km. On 

average the trend of the rift shoulders parallel to the rift valley is missing. Hence, the major 

faults dip to the north, east, south and west and strike between 50°NE and 130°SE (Figure 56 

and Figure 57a & c). There are only a few seamounts which concentrate in the vicinity of the 

rift valley (Figure 57b). Like in Section 1 the seamounts show flat tops. In the north of 

Section 2 and east of the large OCC another younger oceanic core complex is just starting to 

develop (Figure 55 and Figure 58). It shows the smooth surface and initial mullions 

perpendicular to the spreading direction. A line of movement is tentatively marked in the 

northwestern part (Figure 58). Some step faults (Figure 58) can be found west of the young 

OCC. Towards the south there is a deep basin with a water depth of 4600 m and an indicated 

rhomboid shape, possibly another pull-apart basin (Figure 55). As a summary, typical 

features are another OCC, a pull-apart basin and the fact that the major faults are not striking 

ridge parallel but rather in every direction.  
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Figure 56: Bathymetric map of Section 2 with structural features like seamounts (circles) and faults (lines). 
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Figure 57: Structural maps of Section 2: a) labeled with circles for the seamounts and with lines for the 

faults; b) labeled with circles for the seamounts divided into those who are cone shaped, have a flat top or 

are tectonically influenced and with green circles for depression structures; c) labeled with lines for the 

faults dipping in different directions. 

 

Figure 58: Bathymetric map of two oceanic core complexes in Sections 1 and 2 with structural 

interpretation. The smaller OCC seems to be still developing. 
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Figure 59: Bathymetric map of Section 3.  

Working area Section 3 follows between 26°13’S and 26°30’S with a length of ~60 km. In 

contrast to Section 2 the rift valley is well expressed by the youngest uplifting rift shoulders 

(Figure 59). It has an average water depth of 4100 m and is deepening to the south. The 

average width is around 5 km. The whole section has the so often seen hourglass morphology 

where the section is shallower in the middle part (Figure 60, left side). With a look at the 

seamount distribution in Figure 61 and Figure 62b it can be seen that there are many of them 

on the older rift shoulders. The distribution on both sides of the ridge is relatively equal. In 

contrast to Section 1, several seamounts located on faults show no offsets. The major faults 

are running parallel to the rift valley and dip to the west or east (Figure 62c). The northern 

boundary of Section 3 is a large strike-slip fault with an extremely straight trend and a water 

depth of ~4300 m at the deepest point (Figure 59). At this place the ridge axis is offset by 

~43 km in a right-lateral sense but the plate boundaries are characterized by a left-lateral 

movement (Figure 63). At 71°02’E/26°13’S the strike-slip fault shows a left stepping transfer 

shown in Figure 62a & c (red dot-line line). There is a difference in height of ~2000 m from 

the older ridge segments of Section 3 to the strike-slip fault. The recent rift valley and older 

rift shoulders in the east show a bending to the west towards the strike-slip fault. The uplift of 

the older rift shoulders is asymmetric from north to south and from east to west (Figure 60, 

right side). That means that where the rift shoulders show a higher uplift on the western flank 

of the rift valley then the rift shoulders on the opposite side (east of the rift valley) are 

depressed. To the 

south of Section 3 

that behavior 

changes in a way 

that the rift 

shoulders on the 

eastern rift valley 

flank are higher 

uplifted than the 

rift shoulders on 

the western side 

(Figure 60, right 

side). To the south 

a discontinuity 
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Figure 60: Map of the contour lines of Section 3. On the left side the 3750 m contour lines which mark the rift 

valley and typical hourglass-shaped morphology of the section. On the right side the 2750 m contour lines 

characterizing the more uplifted parts of the ridge flanks where the green lines represent the eastern ridge flanks 

and the blue lines the western flanks. 

offsets the rift valley left-laterally and the rift shoulders show a slight bending. Typical 

features of this Section 3 are the strike-slip fault in the northern area, alternating elevated and 

depressed ridge shoulders and, as in Section 1, ridge parallel faults.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 61: Bathymetric map of Section 3 with structural features like seamounts (circles) and faults (lines).  
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Figure 63: Schematic sketch 

of the strike-slip fault with 

the stress ellipse (after 

SEARLE, 2013, modified).  

 

Figure 62: Structural maps of Section 3: a) labeled with circles for the seamounts and with lines for the faults; 

b) labeled with circles for the seamounts divided into those who are cone shaped, have a flat top or are 

tectonically influenced and with green circles for depression structures; c) labeled with lines for the faults 

dipping in different directions. 
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Figure 64: Bathymetric map of Section 

4 with prominent structural features 

such as evolving discontinuities and 

basins. 

Working area Section 4 extends from 26°30’S to 27°30’S along the SEIR (Figure 64). At a 

length of ~167 km it is the longest section and shows an area of possibly an evolving 

discontinuity in the northern and middle part. At this place the rift valley and also the rift 

shoulders seem to be thinned and have a slight bending (Figure 64 and Figure 65). This 

becomes clear with the 2750 m contour lines in Figure 66 (right side). The contour lines are 

interrupted in the areas of the probably evolving discontinuities. The rift valley is well defined 

with an average water depth of ~3750 m - 3900 m and a width of ~5 km. It can be outlined 

with the 3500 m contour lines shown in Figure 66 (left side). Many seamounts are observed 

on the rift shoulders as well as in the rift valley (Figure 67a & b). In the area of the two 

evolving offset structures the number of the seamounts decreases. There are more tectonically 

influenced seamounts in the south of Section 4 (Figure 67b). In the northern part the 

seamounts in the rift valley are aligned along the ridge axis. All in all a strong magmatic 

activity takes place at the rift valley and the western ridge flank. It is also worth noting that 

there are many seamount clusters or groups. The uplift behavior of the rift shoulders seems to 

be the same as in Section 3. Where the eastern shoulders show a high uplift, the western 

shoulders do not and the other way around (Figure 64). On average the eastern ridge side is 

more uplifted. To the south, between the evolving offset and the end of Section 4, the rift 

valley shows the typical hourglass morphology. The major faults are running subparallel to 

the rift valley and dip towards it (Figure 67c). Where other dipping faults are observed these 

are located at or near the evolving offsets. In the transition to Section 5 some basin structures 

occur on the eastern flank (Figure 64). Summarizing features are two evolving 

discontinuities, stronger uplifted eastern ridge flanks, two basin structures and again ridge 

parallel faults.  
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Figure 65: Bathymetric map of Section 4 with structural features like seamounts (circles) and faults (lines). 

 

Figure 66: Contour line map of Section 4. On the left side the 3500 m lines which mark the rift valley. On the 

right side the 2750 m contour lines characterizing the more uplifted eastern flank (green lines) and the areas 

which are interrupted by evolving discontinuity structures.  
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Figure 67: Structural maps of Section 4: a) labeled with circles for the seamounts and with lines for the 

faults; b) labeled with circles for the seamounts divided into those who are cone shaped, have a flat top or 

are tectonically influenced and with green circles for depression structures; c) labeled with lines for the 

faults dipping in different directions. 



4)Results  4.2) An intermediate spreading ridge system 

86 

 

 

Figure 68: Bathymetric map of Section 5 with a prominent OCC at the center of the section. 

Working area Section 5 follows at a length of ~36 km between 27°30’S and 27°43’S (Figure 

68). The section represents the second accommodation zone which means that there is a lack 

of faults running parallel to the rift valley (Figure 69). Besides the east and west dipping 

faults there are also north and south dipping ones (Figure 70a & c). The faults strike between 

35° NNE and 135° SE. The course of the rift valley is not clear and not well defined. There is 

an obvious increase in width at the ends of the rift valley and a narrow middle part. At the 

center of the section another OCC is located with mullions running perpendicular to the rift 

valley (Figure 68). The OCC is relatively small and it seems that like the small OCC in 

Section 2 it is in a developing stage. With the given resolution of the bathymetry data no clear 

line of movement can be seen. Typical for the accommodation zone, only a few seamounts 

can be found on the older rift shoulders. The few seamounts which have developed in the rift 

valley are located in the northern part (Figure 70b). The deepest point has a water depth of 

~4400 m. To the west and east there are some basin structures observed. To sum up the most 

typical structures for this section are faults running in every direction and a third small, young 

OCC.  
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Figure 69: Bathymetric map of Section 5 with structural features like seamounts (circles) and faults (lines). 
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Figure 70: Structural maps of Section 5: a) labeled with circles for the seamounts and with lines for the 

faults; b) labeled with circles for the seamounts divided into those who are cone shaped, have a flat top or are 

tectonically influenced and with green circles for depression structures; c) labeled with lines for the faults 

dipping in different directions. 
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Figure 71: Bathymetric map of Section 6 with an evolving discontinuity structure 

in the southern part.  

The southern end of the mapped part of the SEIR between 27°44’S and 28°13’S is 

represented by working area Section 6 at a length of ~65 km (Figure 71). The rift valley is 

relatively well developed with a width of 4.8 km - 5 km and has an average water depth of 

3600 m which increases to the south. This is also an area where again the rift shoulders 

become thinned and show a bending (Figure 71 and Figure 72). The typical parallellity of the 

major faults to the rift valley is interrupted there. Possibly like in Section 4 a new offset 

develops at this place. In the northern part at the boundary to the accommodation zone of 

Section 5 the rift shoulders bend towards northwest (Figure 73a & c). Again the section is 

characterized by a morphology which looks like an hourglass, shallowest in the middle and 

deeper at the ends. Many seamounts can be found in the rift valley as well as on the older rift 

shoulders (Figure 73b). On the rift shoulders in the east the seamounts show a cone shape and 

only a few indications for offsets. On the western ridge flank more seamounts are tectonically 

influenced. The volcanic activity is concentrated in the vicinity of the rift valley. Two obvious 

large seamounts are located on faults and the larger one shows a shear movement together 

with a caldera structure (Figure 73b). The larger of these two seamounts with a diameter of 

~9-10 km is situated on the western flank (Figure 73a & b). The smaller seamount with a 

diameter of ~6 km is close to the rift valley in the northern area (Figure 73a & b). Similar to 

Section 3, where the 

rift shoulders show a 

higher uplift on the 

western flank, the rift 

shoulders on the 

eastern flank are 

lower and the other 

way around (Figure 

74). In summary, 

typical features for 

working area Section 

6 are alternating 

elevated and 

depressed rift 

shoulders, two 

prominent large seamounts and faults running parallel to the ridge axis. 
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Figure 72: Bathymetric map of Section 6 with structural features like seamounts (circles) and faults (lines). 
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Figure 73: Structural maps of Section 6: a) labeled with circles for the seamounts and with lines for the 

faults; b) labeled with circles for the seamounts divided into those who are cone shaped, have a flat top or are 

tectonically influenced and with green circles for depression structures; c) labeled with lines for the faults 

dipping in different directions. 
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Figure 74: 3000 m contour 

lines of Section 6 which 

emphasize the more uplifted 

ridge flanks and the 

corresponding lower sides. 

The green lines represent 

the eastern ridge flank and 

the blue lines the western 

one. 
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Figure 75: Schematic sketch of the profiles along the Southeast Indian Ridge running from northwest to 

southeast.  

4.2.2) Magnetic observations 
 

Along the intermediate spreading SEIR with 5.7 cm/a full spreading rate on average, 64 

magnetic profiles were measured in total. The position and numbering of the individual 

profiles can be found in Figure 75. The profiles strike 50° E perpendicular to the spreading 

axis. In general the intermediate spreading ridge is characterized by an asymmetric spreading 

behavior (Figure 76). The eastern ridge flank spreads faster in the northern and central part of 

the surveyed area. That changes to the south where the spreading velocities on the eastern 

flank decreases and the western ridge side becomes faster. In each case within the area of the 

discontinuities the individual spreading velocities of the profiles increase. This also applies to 

the areas of the two probably evolving discontinuities. 
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Figure 76: Magnetic map of the northern SEIR including the full spreading rates for the Sections 1-6 on the left side and the model results for each ridge flank on the right 

side. The black circles mark the center of magnetic Anomaly 1 and the red circles the ridge axis. The map is superimposed with the bathymetric contour lines every 500 m.  
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The first profiles 204 to 219 south of the RTJ have an average full spreading velocity of 

5.3 cm/a and correspond to the working area Section 1. Except for profile 208 which is 

situated directly within the RTJ all profiles show the boundaries of Anomaly 1 (0-0.78 Ma). 

The complete Jaramillo event on both sides was mapped within the profiles 204, 206, 207, 

213-216. The remaining profiles only cover the Jaramillo event on one ridge flank. All 

profiles in that area have maximum nT values of around +/- 400 nT. The bathymetric 

minimum is located on the western side of the center of Anomaly 1. For most profiles the 

center of Anomaly 1 and the bathymetric minimum correlate very well or they just have a 

distance of around 2 km. On profile 219 the distance of the center of Anomaly 1 and the 

bathymetric minimum is highest because the profile is located in the direct vicinity of the 

large OCC. From the data an asymmetric spreading behavior was deduced where the western 

flank spreads with 2.60 cm/a and the eastern flank with 2.65 cm/a (Figure 77, Model 1).  

Section 2 consisting of the profiles 220-225 is defined as an accommodation zone. For the 

spreading rate calculation the boundaries of Anomaly 1 are necessary. In that case the 

boundaries could not be clearly identified, therefore no spreading rates can be given. The nT 

values range about +/- 400 nT. Profile 225 is defined by the boundary of Anomaly 1 on the 

western flank and the Jaramillo event.  

Section 3 with the profiles 226 to 232 is defined by an average full spreading rate of 5.6 cm/a. 

In all profiles the boundary of Anomaly 1 was localized but only profile 226 also covers the 

Jaramillo event on both flanks. More clearly the center of magnetic Anomaly 1 and the 

bathymetric minimum lie apart with the bathymetric minimum located east of the center of 

magnetic Anomaly 1. Profiles 266 and 231 (Figure 78) show indications for the Central 

Anomaly Magnetic High (CAMH). The former profile also has a double Jaramillo event on 

its western flank. It is located directly beneath the strike-slip fault. For the spreading behavior 

in this part an asymmetric spreading can be seen like before but in this case the eastern flank 

spreads faster with 3.00 cm/a than the western flank with 2.60 cm/a (Figure 77, Model 2).  

Profiles 233-253 define Section 4 with an average full spreading rate of 5.8 cm/a. There 

individual nT values with a maximum of +500 nT are reached. Except for profile 241, both 

boundaries of Anomaly 1 can be observed on all profiles. In addition the profiles 242, 243, 

246-249 cover the Jaramillo event on both flanks. A double Jaramillo event can be found in 

profile 234 which is located south of the third discontinuity which separates Sections 3 and 4. 
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On profile 247 another Central Anomaly Magnetic High was identified (Figure 79). In the 

area of the first northern evolving discontinuity a change in the position of the bathymetric 

minimum and the center of magnetic Anomaly 1 takes place. North of this discontinuity the 

bathymetric minimum is located west of the center of magnetic Anomaly 1 and to the south 

the bathymetric minimum changes its position to the east. Also at the segment ends the 

distance between them increases. Profiles 233 to 244 are characterized by an asymmetric full 

spreading with 2.60 cm/a spreading to the west and 3.00 cm/a to the east (Figure 77, Model 

2). Profiles 245 up to 253 spread faster to the western side with 3.20 cm/a and slower to the 

east with 2.60 cm/a (Figure 77, Model 3). An exception are the profiles 236-238 which show 

also an asymmetric full spreading but with 2.50 cm/a to the west and 3.70 cm/a to the east 

(Figure 77, Model 2). These latter profiles are located north of the first evolving discontinuity 

and the highest spreading values for the eastern ridge flank are reached.  

A further accommodation zone covered by profiles 254 to 258 is defined by a full spreading 

rate of 6.1 cm/a. Some caution is necessary with respect to this value because only three 

profiles (254, 256 and 257) show the boundaries of Anomaly 1 and the Jaramillo event and 

thus can be used for the spreading rate calculations. At the beginning and end of this 

accommodation zone high full spreading rates are observed. The asymmetric spreading 

continues with 3.20 cm/a to the west and 2.60 cm/a to the east (Figure 77, Model 3). One 

exception is profile 254 with 3.30 cm/a to the west and 3.00 cm/a to the east (Figure 77, 

Model 3). A +700 nT spike was measured on profile 258 at the eastern ridge flank. 

Section 6 with the profiles 259-269 has an average full spreading rate of 5.7 cm/a. As before 

the spreading behavior still remains asymmetric with 3.20 cm/a to the west and 2.60 cm/a to 

the east (Figure 77, Model 3). With the exception of the last three profiles both boundaries of 

Anomaly 1 and the Jaramillo event could be identified. 

Summarizing the spreading behavior along the SEIR with Figure 80 and Figure 76 it 

becomes clear that, with exception of the RTJ, there is no conspicuous increase or decrease in 

the spreading rates from 70°E to 74°E. A slight increase in spreading rates can be seen at the 

discontinuity structures and the two evolving discontinuities. The interruptions at Sections 2 

and 5 result from the fact that in these areas not the complete Anomaly 1 was measured.  
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Figure 77: Schematic sketch of the SEIR with the working areas and discontinuities on 

the left side and the magnetic modeling results with different full spreading rates in cm/a 

on the right side.  
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Figure 79: Bathymetric map of Section 4 and one cross profile containing bathymetry (grey) and magnetic 

(red) data. The red transparent zone (circle and box) marks the Central Anomaly Magnetic High (CAMH).  

 

Figure 78: Bathymetric map of Section 3 and two cross profiles containing bathymetry (grey) and magnetic 

(red) data. The red transparent zone (circle and box) marks the Central Anomaly Magnetic High (CAMH) 

and the green transparent circle the double Jaramillo event.  
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Figure 80: Full spreading rates along the SEIR from northwest to southeast with the location of the 

discontinuities and sections. Transparent green area marks the estimated error according to Chapter 3.3.  
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4.3) Hydrothermal vent field Sonne 
 

The inactive basalt hosted hydrothermal vent field named Sonne is located at 69°14’E and 

23°23’S in a water depth of about 2820 m and rises ~339 m above the ridge axis. It occurs in 

the central part of the working area Meso on an elongated ridge segment that extends for 

about 3.5 km and rises between 300 and 350 m above the western valley floor. The distance 

to the morphologic valley axis is 2400 m. A full spreading rate was determined at 5.0 cm/a 

and the distance to the center of magnetic Anomaly 1 is 5400 m. On the basis of half 

spreading velocities (2.5 cm/a) and the distance to the morphological spreading axis (2400 m) 

an average age of the bedrocks around the hydrothermal field could be estimated with ~ 

96, 000 years. 

 Distance 2400 m   
  
     

 

             

Half spreading rate 2.5 cm/a            

This does not necessarily reflect the age of the inactive hydrothermal field but it may 

constrain the period of its formation. In terms of morphology, the Sonne field is located in an 

area of regional morphological uplift with the formation of axis-parallel elevated ridges 

within the central valley. Neovolcanic ridges and seamounts imply enhanced magmatic and 

volcanic activity in this area. The western neovolcanic ridge hosted the vent field in its central 

part. Noteworthy are two prominent fault zones in the vicinity running subparallel to the 

valley axis. Investigations with cameras and rock samples showed that the northern part of the 

hydrothermal vent field is characterized by sheet flow lavas and in the direction of the rift 

valley axis the pillow basalts often show fractures (SCHWARZ-SCHAMPERA & Shipboard 

Scientific Party, 2012). The more massive, higher uplifted eastern neovolcanic ridge displays 

no clear normal faults or shear movements which led to the suggestion that there is probably 

an asymmetric magma lens beneath (Figure 81, schematic sketch).  

As summarized in Table 1 the Sonne hydrothermal vent field is defined by a water depth of 

2820 m, is situated 339 m above the ridge axis, has a distance to the ridge axis of 2400 m, and 

an approximately age of the bedrocks of 96,000 a. It is located in the central part of the 

working area on a neovolcanic ridge. The full spreading rate at this location is relatively high 

with 5.0 cm/a. Figure 82 show the inactivity of the Sonne hydrothermal vent field because no 

chimney structures are observed, instead only hydrothermally influenced sediments and 
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Figure 81: Top: Bathymetric map of the Sonne hydrothermal vent field. Middle: A cross section along the 

blue line in the top panel. Bottom: Schematic sketch of the Sonne vent field and a probably asymmetric 

magma supply. 

sulfide talus are found. An impression of a prominent fault zone which is characteristically for 

the vent field can be seen in Figure 83. Here the fault must be inactive for a while because 

fine sediment accumulations are observed and a younger magmatic event has taken place 

expressed in the round shaped pillow basalt directly at the rim of the fault.  

water 

depth 

height 

above 

ridge 

axis 

position distance to 

the 

spreading 

axis 

full 

spreading 

rate 

distance to 

the center 

of 

magnetic 

Anomaly 1 

approx. 

age of the 

bedrocks 

lava 

type 

2820 m ~339 m central part, 

on a 

neovolcanic 

ridge 

~2400 m 5.0 cm/a ~5400 m 96,000 a sheet 

flow 

Table 1: Summarizing features which are characteristically for the Sonne HTF.  
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Figure 82: Hydrothermally influenced sediments and sulfide relicts of the inactive 

hydrothermal vent field Sonne observed with a remotely operated vehicle (ROV) 

6000 Kiel (SCHWARZ-SCHAMPERA & Shipboard Scientific Party, 2014).  

 

Figure 83: A fault structure at the inactive hydrothermal vent field Sonne. The large 

pillow basalt leads conclude that there was an magmatic event younger than the 

tectonic event which causes the development of the fault. This underwater photo 

was observed with a remotely operated vehicle (ROV) 6000 Kiel (SCHWARZ-

SCHAMPERA & Shipboard Scientific Party, 2014).  
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Figure 84: Chimney structure and shrimps at the active hydrothermal vent field 

Edmond. The photo was observed with a remotely operated vehicle (ROV) 6000 

from Kiel (SCHWARZ-SCHAMPERA & Shipboard Scientific Party, 2014).  

4.4) Hydrothermal vent field Edmond 
 

The active basalt hosted Edmond hydrothermal vent field (Figure 84) is located at 69°35’E 

and 23°52’S in a water depth of ~3290 m. It is situated about 5200 m away from the well 

expressed valley axis, 868 m above the axis and on the steeper eastern side. In the direct 

vicinity of the field 

at the eastern flank 

there is a depression 

and young 

neovolcanic ridges 

showing sigmoidal 

orientation and 

suggesting the 

ongoing evolution 

of a discontinuity 

and tectonic 

activity. That 

prefers the 

evolution of 

pathways for the 

hydrothermal fluids. 

Additionally, the pull-apart basin north of Edmond is a hint for extensional movement and the 

dominance of tectonic activity. With a look at the whole section the hydrothermal vent field is 

located in the northern part of the ridge segment, close to an evolving discontinuity and on the 

inside corner. From the magnetic dataset full spreading rates of ~5 cm/a are calculated and the 

distance between the field and the center of magnetic Anomaly 1 is approximately 100 m. A 

calculation of the bedrock ages around the hydrothermal vent field (compare Chapter 4.3) 

gives an age of ~208, 000 years. From dredging results basalts as well as gabbros have been 

recovered (SCHWARZ-SCHAMPERA & Shipboard Scientific Party, 2014) which lead conclude 

that there must be a fault structure or another mechanism which causes the gabbros to be 

exhumed at the seafloor. During the research cruise INDEX2013 fluid temperatures of 

+418°C were measured out of a chimney of massive copper ore (SCHWARZ-SCHAMPERA & 

Shipboard Scientific Party, 2014). The sulfides have a copper rich composition. Edmond 
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represents a structurally controlled vent field because eight different strike directions, between 

10 and 170 degrees, of the major faults in the vicinity of the field are observed (Figure 85). 

At least two fault structures striking between 60° and 65° northeast influence the 

hydrothermal vent field as pointed out in Figure 85. Video observations during INDEX2013 

showed that the actual outflow of hydrothermal fluids takes place at one single chimney 

complex with a 29 m high chimney. Approximately 1.5 km away from Edmond in the 

northeast the inactive vent site Gauss was found in a water depth of ~3052 m (Figure 85). It 

has a distance to the center of magnetic Anomaly 1 of ~1005 m and rises 1100 m above the 

rift axis. With a spreading rate of ~5 cm/a and a distance of ~6500 m to the valley axis the 

average age for the bedrocks is calculated at 260,000 years. The field is copper rich as well 

and defined by an oxidation layer of a few centimeters (SCHWARZ-SCHAMPERA & Shipboard 

Scientific Party, 2014). High concentrations of amorphous silicic acid are responsible for a 

good preservation of the complexes. South of these two locations another inactive field named 

Score (Seafloor Confirmed ORE) was found during INDEX2013. It is located ~1.2 km 

southeast of Edmond and has a lateral extension of ~200 m. The short distance of those three 

locations led to conclude that it is one large hydrothermal vent field (named Edmond) with 

three localized outflows at the seafloor, two of them inactive. During a detailed magnetic 

survey in 2012 a clear decrease in the magnetic values right above the hydrothermal vent field 

was measured. This behavior will be explained and modeled in more detail in Chapter 5.6. 

To summarize the characteristics for the Edmond hydrothermal vent field (Table 2), it is 

located in a water depth of 3290 m, at the northern end of the working area in the vicinity of 

an evolving discontinuity on the steeper eastern ridge shoulder. The hydrothermal vent field 

lies approximately 868 m above the ridge axis and in a distance of 5.2 km. With 5.0 cm/a the 

full spreading rate is again relatively high and the distance to the center of magnetic Anomaly 

1 is just 100 m. It is characterized by sheet flows and the bedrocks have an age of 

approximately 208,000 a. 
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Figure 85: Detailed bathymetric map of Edmond, Gauss and Score (labeled with stars). The lines show the 

main faults with their corresponding strike directions.  

 

Table 2: Summarizing features which are characteristically for the Edmond hydrothermal vent field.  

 

 

water 

depth 

height 

above 

ridge 

axis 

position distance 

to the 

spreading 

axis 

full 

spreading 

rate 

distance to 

the center 

of 

magnetic 

Anomaly 1 

approx. 

age of 

the 

bedrocks 

lava 

type 

3290 m ~868 m northern end, 

steeper eastern 

flank, vicinity 

of an evolving 

discontinuity 

~5200 m 5.0 cm/a ~100 m 208,000 a sheet 

flow 
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4.5) Hydrothermal vent field Kairei 
 

Kairei is located in the southernmost part of the Central Indian Ridge at the steeper eastern 

flank of the rift valley at 70°02’E and 25°19’S in a water depth of 2521 m. It has a distance of 

~8000 m to a prominent local discontinuity in the north and is located ~1800 m above the 

ridge axis at the inside corner. The field developed on the shoulder of a westward dipping 

slope of a recently formed abyssal hill which is named Hakuho Knoll (KUMAGAI et al., 2008). 

The rift valley reaches the greatest depths at 4240 m and largest width between 5000 m and 

6000 m. Smaller normal faults can be found between the hydrothermal field and the deepest 

part of the rift valley. In contrast to Edmond, the majority of the identified faults (Figure 86) 

strike ridge parallel between 140 and 150 degrees. There are no obvious cross-cutting faults in 

the vicinity of the hydrothermal vent field. Just a small number strikes 110° or 170° and there 

is far less variability in strike directions compared to Edmond. Furthermore, Kairei is located 

at a large, massive structure of the older ridge shoulder which is not as influenced by faults as 

the Edmond field. With a distance of 7000 m Kairei is characterized by the greatest distance 

to the morphological ridge axis. A small evolving neovolcanic ridge inside the rift valley 

leads suggest that in recent times magmatic activity takes place. The full spreading rate is 

5.58 cm/a and the distance from the hydrothermal vent field to the center of magnetic 

Anomaly 1 is ~5000 m. The age of the bedrocks has been determined at 251,000 years, based 

on the distance to the ridge axis. Video observations of INDEX2013 have shown that the field 

is characterized by sheet flows, a lot of talus on the flanks, and collapsed dead chimneys at 

the sulfide mound. It is a large widespread sulfide mound where the active fluids come out of 

three chimneys. Fluid temperatures between +270 and +370 °C were measured and the copper 

rich composition of the sulfides led to conclude that the formation temperatures must be very 

high (SCHWARZ-SCHAMPERA & Shipboard Scientific Party, 2014). 

Table 3 summarizes the main characteristics for the Kairei hydrothermal vent field. It is 

located in a relatively shallow water depth of 2521 m on the steeper eastern ridge flank in the 

northern end of the working area. Like the Edmond hydrothermal vent field previously it is 

located close to a discontinuity structure. The hydrothermal vent field rises 1800 m above the 

ridge axis and shows the highest distance to the ridge axis with ~7 km. With 5.58 cm/a the 

highest full spreading rate is reached at this hydrothermal vent field. The average age of the 

bedrocks is 251,000 a and the field is again characterized by sheet flows.  
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Figure 86: Detailed bathymetric map of Kairei (marked with a yellow star) and main faults with 

corresponding strike directions.  

 

 

 

 

 

 

 

 

 

 

 

water 

depth 

height 

above 

ridge axis 

position distance 

to the 

spreading 

axis 

full 

spreading 

rate 

distance 

to the 

center of 

magnetic 

Anomaly 

1 

approx. 

age of the 

bedrocks 

lava 

type 

2521 m ~1800 m northern end, 

steeper 

eastern flank, 

vicinity of a 

discontinuity 

~7000 m 5.58 cm/a ~6000 m 251,000 a sheet 

flow 

Table 3: Summarizing features which are characteristically for the Kairei hydrothermal vent field. 
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Figure 87: A chimney structure at the active hydrothermal vent field Kairei characterized by a large 

amount of shrimps. The underwater photo was observed with a remotely operated vehicle (ROV) 6000 

from Kiel (SCHWARZ-SCHAMPERA & Shipboard Scientific Party, 2014). 
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5) Discussion 
 

First of all in this chapter a short review of the previously described two ridge systems and the 

three hydrothermal vent fields will be given. Afterwards the main features of the slow 

spreading Central Indian Ridge and the intermediate spreading Southeast Indian Ridge will be 

interpreted and discussed. Finally an outlook on characteristic areas of other hydrothermal 

vent sited is given.  

5.1) Review of the two active spreading systems 
 

As a short summary for the two active spreading ridge systems Table 4 and Table 5 show the 

main characteristic features divided into the working areas and the discontinuities from north 

to south. The strike direction of the working areas of one ridge system remains constant and 

the values of both ridges are very similar as well. On the Central Indian Ridge, EXFX and 

Edmond are the longest working areas with the highest rift valley width between 6 km – 

13 km. The highest average water depth of the rift valley can be observed in the working area 

Kairei at ~4200 m. Along the whole Central Indian Ridge the older ridge shoulders have on 

average the shallowest water depth at ~2100 m. In all working areas of the slow spreading 

ridge system a more or less well pronounced neovolcanic ridge was observed. From north to 

south the Central Indian Ridge is characterized by an overlapping spreading center, a bending 

of the ridge axis, the Gemino transform fault, the Sonne hydrothermal vent field, neovolcanic 

ridges, the Knorr rise, an evolving discontinuity, the Edmond hydrothermal vent field, an 

oceanic core complex, the Kairei hydrothermal vent field, several pull-apart basins, and on 

average a stronger uplifted northeastern ridge flank.  

At the Southeast Indian Ridge Section 4 has the highest length and in contrast to the Central 

Indian Ridge the width of the rift valley in all working areas is almost the same with ~5 km 

and shows not such large variations. Section 1 is defined by the shallowest water depth of the 

older ridge shoulders (1700 m). Similar to the Central Indian Ridge the northeastern ridge 

shoulders are on average stronger uplifted. A prominent behavior at the intermediate 

spreading Southeast Indian Ridge is the alternating elevated and depressed ridge shoulder. 

Again oceanic core complexes are observed as well as pull-apart basins and evolving 

discontinuities.  
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From 21°S to 27°30’S 11 discontinuities are observed as shown in Table 5 where two of them 

represent transform faults. They show the highest ridge axis offset values with 35 km and 

43 km. The remaining discontinuities offset the ridge axis by on average 15 km. No clear 

trend or dependency can be observed in the amount of the ridge axis offset along both ridge 

systems.  
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segment strike 

direction 

length rift valley 

width 

rift valley 

depth 

shallowest 

water depth 

height neovolcanic ridge 

above ridge axis 

special features  

EXFX 145°SE 130 km 6 km – 9 km ~3450 m 2000 m 500 m – 600 m (bending area) OSC, bending ridge axis, pull-apart basin, stronger 

uplifted northeastern ridge shoulders  

JX 145°SE 88 km 4.5 km – 8 km ~3800 m 2100 m 450 m Gemino transform fault, strongly pronounced ridge 

parallel normal faults 

Meso 145°SE 8.4 km 1.6 km – 9 km ~3900 m 2200 m 400 m – 600 m Sonne hydrothermal vent field, two neovolcanic 

ridges, stronger uplifted NE ridge shoulders  

Edmond 145°SE 170 km 7 km – 13 km ~3700 m 2100 m 1200 m (Knorr rise) 

400 m – 600 m (southern part) 

Knorr rise, two pull-apart basins, two neovolcanic 

ridges, one evolving discontinuity, highest amount 

of seamounts in the southern area 

Kairei 145°SE 43 km 5 km – 6 km ~4200 m 2200 m 300 m OCC, stronger uplifted northeastern ridge shoulders 

Section 1 135°SE 85 km 4 km – 6 km ~3800 m 1700 m  stronger uplifted northeastern ridge shoulders, 

sheared seamounts, OCC, two basins 

Section 2  135°SE 43 km 4.5 km ~4300 m 1800 m  OCC, pull-apart basin, diffuse striking direction of 

major faults 

Section 3 135°SE 60 km 5 km ~4100 m 2200 m  strike-slip fault, alternating elevated and depressed 

ridge shoulders 

Section 4 135°SE 167 km 5 km ~3800 m 2000 m  two evolving discontinuities, stronger uplifted 

northeastern ridge shoulders, two basins 

Section 5 135°SE 36 km 7 km ~4100 m 2100 m  young OCC, diffuse striking direction of major 

faults 

Section 6 135°SE 65 km 5 km ~3600 m 2250 m  alternating elevated and depressed ridge shoulders, 

two prominent large seamounts 

Table 4: A summary of the main features characterizing first the slow spreading Central Indian Ride (EXFX – Kairei) and second the intermediate spreading Southeast Indian 

Ridge (Section 1-6). 
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discontinuity Offsets the segments sense Ridge axis offset 

21°09’S EXFX   

22°08’S EXFX - JX dextral 13 km 

22°50’S JX – JX Gemino TF sinistral 35 km 

23°05’S JX - Meso dextral 14 km 

24°41’S Edmond (north) – Edmond (south) dextral 12 km 

25°14’S Edmond - Kairei dextral 17 km 

26°02’S Section 1 – Section 2 sinistral 19 km 

26°10’S Section 2 – Section 3 dextral 43 km 

26°21’S Section 3 – Section 4 sinistral 13 km 

27°23’S Section 4 – Section 5 sinistral 15 km 

27°29’S Section 5 – Section 6 sinistral 16 km 

Table 5: Summary of discontinuities along the Central- and Southeast Indian Ridge with main characteristics 

such as offset sense and amount.  
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5.2) Review of the HTFs along the CIR 
 

Hydrothermal vents strongly correlate with the ridge geometry and that of magma chambers, 

their depth and size, and the valley morphology. Structurally controlled environments with 

cross cutting fault systems play an important role as outlined in the case of the Edmond 

hydrothermal field. Such structures represent pathways for the fluids to reach the seafloor and 

react with the seawater to build hydrothermal system.  

A regional uplift behavior can be seen at the Sonne field and the Knorr rise. It is related to 

intense magmatic activity at the central rift and in the entire region. This magmatic activity 

obviously has an impact on the spreading rates, likely related to higher melting rates and 

intermittent spreading. SEARLE (2013) published that water is not able to penetrate magma 

which leads to the conclusion that the enhanced magmatic activity at the Sonne field could 

possibly block important channel ways and hinder the hydrothermal fluids to reach the 

seafloor. This seems to be an explanation for the inactivity of the Sonne field. From video 

observations at Sonne, Edmond, and Kairei it becomes clear that all these fields are 

dominated by sheet flows (SCHWARZ-SCHAMPERA & Shipboard Scientific Party, 2012). 

Seamount distribution maps point out that there is a lack of seamounts at and around the 

hydrothermal vent fields.  

Figure 88 points out the large distance of the active vent fields Edmond (5200 m) and Kairei 

(7000 m) from the bathymetric low. The inactive Sonne field (2400 m) and Gauss (6500 m) 

occur at variable distances from the morphological low. However, the distance of the Sonne 

field to the bathymetric low east of the second active neovolcanic ridge is 7700 m. This 

equidistance between 5 and 7 km from the active spreading axis may indicate a distinct 

structural control of sustainable fluid upflow and discharge at the seafloor. It seems possible 

to define structural fault zones and, or detachment faults that are responsible for focusing the 

fluid flow. An increasing elevation of the vent sites with increasing distance from the 

bathymetric low (Figure 88) is likely related to the fact that hydrothermal fluids are tapped by 

regional detachment faults (where present) and that these detachment faults may allow for the 

presence of hydrothermal activity at a great distance to the spreading axis. Also dykes can 

transport mass and heat vertically as well as laterally through the crust (BEHN & ITO, 2008). 

The formation of detachment faults in oceanic crust is supported by tectonic extension as a 

result of magma supply to the ridge axis (PETERSEN et al., 2009). This statement is confirmed 
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by the fact that detachment faults preferably occur at the segment ends. They could be 

pathways for the circulation and transport hydrothermal fluids away from the heat source 

(PETERSEN et al., 2009). This process is very important for the fluid flow at a black smoker 

along slow spreading ridges. Detachment faults make it possible that hydrothermal vent sites 

like Edmond and Kairei are situated relatively close to a discontinuity structure.  

There is a very good correlation between basalt ages, distances and elevation. Kairei and 

Edmond/Gauss are associated with the oldest basaltic rocks, have the greatest distance from 

the active spreading center and they occur at the highest elevation above the bathymetric low. 

The age of Kairei is a little bit younger because here the spreading rates are comparatively 

high. As a consequence the vent field moves further away from the rift valley in a relatively 

short time period. Sonne is hosted by the youngest basalts and shows the lowest elevation.  

The location of the prospective areas EXFX and JX as well as the active Edmond and Kairei 

fields is close to discontinuities at the segment ends. This may suggest enhanced heat flow at 

fault intersections, shallower magma chambers towards the discontinuities, limited volcanic 

activity, and enhanced channel ways for hydrothermal fluids. The locations, however, differ 

from the Sonne field which shows a larger distance to the discontinuity of the ridge. In 

general, the active vent fields are situated on the steeper eastern ridge flank. 

Another evidence for the occurrence of detachment faults are oceanic core complexes as 

found north of Kairei. VAN WIJK & BLACKMAN (2005) and other authors (KARSON, 1990; 

TUCHOLKE & LIN, 1994) suggest that oceanic core complexes were built by a slip movement 

along detachment faults which are rooting below the rift valley. Exhumation from the valley 

rift might be an additional critical factor for massive sulfide potential. All in all four OCCs 

have been observed, one at the slow spreading ridge and three at the intermediate spreading 

ridge. 

It seems possible that the acoustic signals of the multibeam echo sounder are not able to 

detect the seafloor where hydrothermal activity takes place. They will be reflected in an 

erroneous way and produce “holes” in the bathymetric map. Such a seemingly wrong beam 

fits perfectly to the Edmond hydrothermal vent field in the data of cruise INDEX2011. 

Possibly in combination with other investigations this could be a hint for prospective areas.  
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Figure 88: Elevation of the hydrothermal vent sites along the CIR above the bathymetric low 

with respect to the distance towards the bathymetric low. The white rhombus shows the methane 

anomaly of EXFX. The yellow rhombuses are the active and inactive HTF known so far.  

The known hydrothermal vent sites from the Central Indian Ridge are associated with full 

spreading rates between 4.87 cm/a and 5.6 cm/a. This is the upper spectrum of the full 

spreading rates along that ridge. It indicates potential especially for the JX area but also for 

other areas around Sonne, Edmond and Gauss. It is also evident that the inactive Sonne 

hydrothermal vent field is situated within an area of lower spreading rates. The range leaves a 

significant number of areas with similar spreading rates. After FONTAINE et al. (2008), 

statistical analysis showed that there is a decrease in numbers of axial hydrothermal vent sites 

with decreasing spreading rates. WILCOCK & DELANEY (1996) suggest that the dimensions of 

high-temperature hydrothermal sulfide edifices vary with the spreading rate. On the basis of 

detailed magnetic surveys local minimum areas of magnetic values are recognized around the 

Edmond and Kairei hydrothermal vent fields. This decrease could probably be a result of 

hydrothermal interactions and a process called metal leaching. The mineral Titanomagnetite 

of the basalts will be replaced by non-magnetic sulfide minerals caused by the hydrothermal 

fluids on their way up to the seafloor (TIVEY & DYMENT, 2010).  

 

 

 

 

 

 

 

 

 

To summarize, from bathymetric data parameters like fault distributions, crossing faults, 

seamount distribution, distances to the spreading axis, height above the rift valley, 

discontinuities, oceanic core complexes, and seemingly bad measured beams can be deduced. 

Magnetic measurements give information about the spreading rates and areas with a decrease 

in magnetic values.  
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Figure 89: Interpretation 

of the working area EXFX. 

Prominent structural 

features identified from 

INDEX2011 are labeled as 

well as the “overlapping 

spreading center” noticed 

by BRIAIS (1995).  

5.3) Slow spreading Central Indian Ridge system 
 

At slow spreading ridge systems mechanical deformation and tectonic processes play an 

important role (MUTTER & KARSON, 1992). An asymmetric ridge morphology as can be seen 

at the slow spreading Central Indian Ridge is the result of primary volcanic activity modified 

by tectonic activities (BALLARD & VAN ANDEL, 1977). With decreasing spreading rates the 

tectonic processes are getting more and more important. In the following, after a short 

analysis of the main prominent structural features (OSC, bending and OCC), a differentiation 

will be done between these magmatic and tectonic activities along the CIR.  

A very prominent structural feature of the slow spreading ridge system is the overlapping 

spreading center in the northern part of EXFX (Figure 89). Here, the ridge axis overlaps by 

about 9.5 km. BRIAIS (1995) published an evolution chronology of the tectonic deformation 

for the 21°45’S offset (Figure 90). At time t0 a straight ridge axis exists, which is interrupted 

at time t1 around 0.7 Ma. 0.4 m.y. later a valley developed and the ends of the rift valley bend 

to the sides which causes an increase in offset. At recent time t3 the extremely bended 

morphology reduces the offset and the overlapping zone.  
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With the new high resolution bathymetric data the area at 21°45’S described by BRIAIS (1995) 

as an OSC cannot be confirmed. Newest data show the location of the OSC at 21°25’S 

(Figure 89). The area at 21°45’S is the northern tip of the bending structure in the southern 

part of EXFX. Moreover, this bending structure does not represent an offset of the ridge axis. 

Instead, it is a slight curving of the ridge axis and the youngest ridge flanks to the east, but 

without any interruption. The term “21°45’S offset” used by BRIAIS (1995) is false at this 

location. At the real OSC there are no hints for a propagation of the ridge segment ends, 

instead this section seems to be defined by a ridge jump. A second study exists for 

overlapping spreading centers compiled by SEARLE (2013). Some authors like MACDONALD & 

FOX (1983) and SEARLE (2013) describe OSCs as characteristic for fast spreading ridge 

systems, but in the case discussed here it is definitely a part of a slow spreading ridge system. 

That means OSCs are not only typical for and limited to fast spreading ridges. In the evolution 

model of SEARLE (2013), the ends of the offset spreading segments overlap each other by 

about three times the offset length and between them an ‘overlap basin’ will be formed. Such 

a basin could not be found at the OSC of EXFX. Instead, between the two overlapping 

spreading segments a ridge evolves. Probably that is the difference between OSCs at fast and 

slow spreading ridges: fast spreading ridges are characterized by an ‘overlap basin’ between 

the overlapping spreading centers (SEARLE, 2013) and slow spreading ridges show an ‘overlap 

rise’ between the spreading centers. After SEARLE (2013) the overlapping process must lead 

to either a deformation or rotation in the region of the overlap. The author suggests that the 

propagation of an OSC along the ridge axis causes a material transfer from one plate to the 

other one. This material leads to a time-averaged asymmetric spreading and can also provide a 

mechanism for ridge reorientation following a change in spreading direction (SEARLE, 2013). 

This assumption of the author of an asymmetric spreading behavior cannot be reconstructed in 

 

Figure 90: 
Evolution of the 

21°45’S offset in 

four stages (BRIAIS, 

1995, modified). 

During 

INDEX2011 this 

was identified as 

the tip of a 

bending structure. 
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this case. With a look at the magnetic data and the spreading rates in that area the ridge 

spreads symmetrically with half spreading rates of 2.30 cm/a. Possibly that is another 

difference to OSCs along fast spreading ridges. Referring to the time development model 

presented by BRIAIS (1995), the OSC at 21°25’S could be in stage t1 because the overlapping 

segments show not such a strong curvature as this is the case at time t2 and additionally no old 

overlapping segments east and west of the OSC can be seen as the typical feature for stage t3. 

SEARLE (2013) argued that it is typical for slow spreading ridges to develop oblique offsets 

rather than OSCs, because the axial lithosphere at slow spreading environments is thicker and 

stronger, hence it withstands rotations or deformations typical for OSC. Considering that the 

OSC evolves at a slow spreading ridge this probably means that the axial lithosphere is not 

thicker in this area proved by the bending structure and pull-apart basin which are hints for 

extensional movements.  

It seems possible that in a slow spreading environment the development of OSCs is 

characterized by a ridge jump, an evolving rise between the spreading centers, and 

symmetrical spreading. Furthermore, there is no deformation or rotation, it is just a shifting 

because the strike direction of the ridge axis still remains the same.  

With a look at structural analysis of SAUTER et al. (1996) it becomes clear how important 

actual high resolution bathymetry data are. SAUTER et al. (1996) described an area between 

21°10’S and 22°25’S, corresponding to the working area EXFX, with the help of bathymetry 

data from 1984 (Rodriguez project) (MUNSCHY & SCHLICH, 1990), 1986 (Gemino-2) (HERZIG 

& PLÜGER, 1988) and 1987/88 (Gemino-3) (HERZIG & PLÜGER, 1988). These data have a 

resolution of 120 m. They identified second-, third- and fourth-order discontinuities along the 

slow spreading ridge. The authors defined second-order discontinuities as small non-

transform offsets below 30 km. The third-order discontinuities have offsets below 10 km and 

fourth-order discontinuities are just fine forms of segmentation without an interruption of the 

ridge axis. Between the discontinuity in the southern part and the bending structure of EXFX 

SAUTER et al. (1996) described the rift valley as hourglass shaped. With the high resolution 

bathymetry (~50 m) of INDEX2011 this behavior cannot be confirmed. Also the described 

second- and third-order discontinuities in that area could not be reproduced. The authors 

identified two non-transform discontinuities (NTD) at 21°47’S and 22°15’S. The first one at 

21°47’S corresponds with the northern end of the bending structure in the modern bathymetry 

and the interpretation as a discontinuity must be rejected. It is more a bending of the recent 
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ridge valley. Following the definition of SAUTER et al. (1996), this means that the bending 

area is not an offset structure but rather a fourth-order discontinuity because the rift valley is 

not interrupted. At such places the segments can behave like fractures, because the lithosphere 

is thin enough and such fractures are able to cause a bending to neighboring segments 

(BRIAIS, 1995). The second NTD described at 22°15’S by SAUTER et al. (1996) is the location 

of the discontinuity which bounds the southern part of the working area EXFX. Petrographic 

and geochemistry studies from the basalts north and south of the bending structure show 

different textures (SAUTER et al., 1996). The different grades and processes of fractionation 

makes the authors believe that there is also a segmentation of the magma reservoir along the 

rift axis. To sum up, not all results of SAUTER et al. (1996) can be confirmed with the newest 

dataset. The interpreted NTD at 21°47’S is in agreement with the interpretation of BRIAIS 

(1995) but is not true. Definitely the ridge axis shows no offset structure, instead it is just a 

curving behavior. The second NTD defined by SAUTER et al. (1996) at 22°15’S correlates 

with the newest data. This observation makes clear that there is a great difference in the 

interpretation of the dataset with a resolution of 120 m and the newest one with 50 m 

resolution. Large offset structures could be identified before but smaller structures are 

occasionally interpreted in a wrong way. The assumption of a segmented magma reservoir 

along the rift axis should be clarified with further investigations and specific rock sampling 

north and south of the bending structure.  

Along detachment faults, representing large offset normal faults, plutonic lower crust can be 

exhumed so that mantle rocks are exposed on the seafloor forming an oceanic core complex 

(RESTON & RANERO, 2011). Oceanic core complexes are typical for magma-starved 

conditions as prevalent at the slow spreading CIR and can be generated by a ridge jump or 

asymmetric spreading (KUMAGAI et al., 2008). The detachment fault serves as the pathway for 

fluids and is a connection to the heat regime deep beneath. Thus it is not unusual to find 

hydrothermal vent fields at the flanks of oceanic core complexes. OCCs mostly occur at 

inside corner (IC) highs of ridge offsets (Figure 91) and evolve during periods of tectonic 

extension (BOSCHI et al., 2006). Typical for oceanic core complexes are the lineations running 

perpendicular to the spreading axis. They can be outlined very well with a map of the slopes 

seen in Figure 91. Here, also the line of movement can be seen in the western part of the 

OCC (red line). Several OCC structures exist in the Atlantic Ocean at segment ends which are 

very well investigated. The knowledge of these OCCs should be used to explain the OCC in 
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Figure 91: Bathymetric and slope inclination map of the working area Kairei. The large red box marks the 

OCC and the small dotted red box marks the identified OCC after KUMAGAI et al. (2008) which cannot be 

confirmed with the data today.  

the southern part of the slow spreading ridge system near the Rodriguez Triple Junction. After 

RESTON & RANERO (2011), OCCs represent the exhumed footwalls of oceanic detachment 

faults that extend into the basement. GRÁCIA et al. (2000) suggest that OCCs occur where a 

high amount of extension is present because that results in lithospheric stretching and thinning 

which favors the exposure of mantle rocks. SATO et al. (2009) published a study of the OCC 

at the slow spreading ridge system at 25°S. The oceanic core complex is located off-axis on 

the western ridge flank and evolved during the Matuyama reversal chron. This structure is 

characterized by megamullion morphology and developed probably 0.8 Mio years ago. That 

is a shorter period of time than the oceanic core complexes along the Mid-Atlantic Ridge need 

to evolve. Compared with the surrounding seafloor of the same age the magnetization 

intensity over the OCC is poorly developed. This indicates that the OCC mainly consists of 

gabbros, which have a lower magnetization than basalts. From the morphology of the OCC 

the following origin can be concluded: after the OCC developed, the segment north of Kairei 

and south of the Knorr rise migrated south-southeast. The OCC itself migrated off-axis as a 

result of seafloor spreading in this segment. The Kairei working area propagated north-

northwest and so the OCC is located at the western side of the recent ridge axis of this 

segment. A second OCC location was published by KUMAGAI et al. (2008). They suggest that 

the Uraniwa hills (KUMAGAI et al., 2008) east of Kairei also represent an OCC because of 

olivine-abundant mafic plutonic rocks (Figure 91, small dotted red box). From the 

bathymetric data of INDEX2011 and structural analysis no indication was found that these 

hills could be an OCC. Also the map of the slopes shown in Figure 91 does not give any hints 

for such an assumption since there are no lineation structures perpendicular to the spreading 

axis or lines of movement. 
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Figure 92: Seamount distribution map of the whole mapped CIR. 

The grey line represents the ridge axis and some prominent features 

are labeled for orientation like the Gemino transform fault, the 

Knorr rise and the OCC.  

The pattern of magmatic activity along mid-ocean ridges can be shown with maps of the 

seamount distribution because seamounts are an expression for magmatic activities. 

Furthermore, in the following a time differentiation between tectonic and magmatic phases 

can be made. The division of seamounts which are typically cone shaped and those which are 

tectonically influenced by faults 

makes it possible to distinguish 

between areas where the 

magmatic activity must be 

younger than the tectonic one 

and vice versa. In the previous 

Chapter 4.1.1 detailed seamount 

distribution maps have been 

shown for every single working 

area. Figure 92 summarizes 

these results in one large 

overview map. From the fact that 

several cone-shaped seamounts 

occur on the ridge flanks far 

away from the rift valley it is 

possible to conclude that the 

magmatic source beneath the 

spreading center is not limited to 

the ridge axis. That is especially 

true for the working area EXFX, 

where more seamounts are 

concentrated in the northern part 

as well as on the western ridge 

flank. This distribution of 

seamounts on the western flank 

and along the rift valley can also 

be found in the working area JX. 

That means that EXFX and JX 

are possibly characterized by an 
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asymmetric magma chamber beneath shifted to the western side (Figure 93). That 

observation correlates with a study of BUCK et al. (2005). They found out that in slow 

spreading ridge systems most of the magmatic accretion takes place on one side of the ridge. 

Mostly it is the side with smaller fault offsets which result in asymmetric magmatic accretion 

along the ridge system (BUCK et al., 2005). For such high resolution detailed studies of fault 

offset measurements deep-towed bathymetric data are needed. A very high magmatic activity 

must exist in the working area Meso beneath the ridge axis, expressed by two large 

neovolcanic ridges (Figure 92 and Figure 93). A conspicuity of the seamount distribution is a 

lack of them around these neovolcanic ridges and hence at the inactive hydrothermal vent 

field Sonne. Possibly the neovolcanic ridges are a consequence of a magma chamber which is 

bigger and hotter or just shallower in the crust. Thus there are no small seamounts in that area 

and the hydrothermal vent field becomes inactive because the magmatic activity is very high 

and the fluid pathways become blocked. Also the Knorr rise and the larger number of 

seamounts and the neovolcanic ridge in the southern part of Edmond are an expression for 

enhanced magmatic activity. Elevated heat flow through shallower magma chambers exactly 

beneath the ridge axis may be suggested.  

BALLARD & VAN ANDEL (1977) found out that several seamounts in one area occurring at 

more or less the same water depth suggest the same hydrostatic level and one individual 

magma chamber. That could be true for EXFX where the seamounts near the rift valley occur 

in a water depth between 3100 and 3200 m. With respect to the time development between 

magmatic and tectonic activity deduced from the seamount maps, it becomes clear that where 

the present magmatic activity is expressed by cone-shaped seamounts this must be younger 

than the tectonic activity. A very nice example can be seen at the Gemino transform fault, 

where one single, large seamount is round and cone-shaped with no pattern of a shear 

movement. Only in the working areas EXFX, Meso and Edmond a few seamounts are sheared 

by fault structures.  

The small neovolcanic ridge in the working area Kairei is located in a very deep part of the 

slow spreading ridge system near the RTJ. Those neovolcanic ridges which are located in the 

deepest part of the ridge could be the expression for regions of crustal thinning (MUTTER & 

KARSON, 1992).  



5)Discussion  5.3) Slow spreading Central Indian Ridge system 

123 

 

 

Figure 93: Schematic sketch of 

magmatically active zones and a 

possible trend of the magma chamber 

underneath to the western ridge flank 

(EXFX and JX) or more central 

directly beneath the ridge axis (Meso 

and southern part of Edmond).  

Apparently higher nT values within the boundaries of Anomaly 1 seem to correlate with 

zones of neovolcanic ridges or higher numbers of seamounts along the slow spreading ridge 

system. TIVEY et al. (2003) showed that an axial volcanic ridge seems to be correlated with a 

high crustal magnetization of the Brunhes anomaly. That behavior is typical for the locus of 

volcanic accretion, because very young basalts have the highest magnetization as found out 

by JOHNSON & TIVEY (1995) and SEARLE (2013). POULIQUEN et al. (2001) called the zone of 

most recent volcanism, where frequently higher magnetic values are observed, the Central 

Anomaly Magnetic High (CAMH). In their study most of the CAMH locations correspond to 

the bottom of the axial bathymetric valley. TIVEY & JOHNSON (1987) as well as POULIQUEN et 

al. (2001) have shown from the Juan de Fuca Ridge that newly erupted basalts locally 

coincide with a magnetic low as a 

result of extensive low-temperature 

alteration. As described in Chapter 

4.1.2 the peak in the magnetic values 

within Anomaly 1 (CAMH) does 

correlate in many cases with the 

bathymetric minimum, the rift 

valley. On the profiles of Meso and 

Edmond the CAMH is not observed 

directly above the bathymetric 

minimum, instead it is located above 

neovolcanic ridges or seamounts 

which are also expressions for high 

magmatic activities. As a result from 

this, it is possible to identify zones of 

recent volcanism from the magnetic 

data analysis.  
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For the analysis of tectonically active areas along the CIR it is important to analyze the fault 

behavior and to understand how faults evolve along a slow spreading ridge. BUCK et al. 

(2005) showed that the dip angle of normal faults at mid-ocean ridges shows systematic 

variability as a function of the spreading rate. Thus more or less all faults at slow spreading 

ridges dip in the direction of the ridge axis called inward-facing faults because they develop 

due to extension. That behavior can be observed in the fault distribution figures of Chapter 

4.1.1. There the main ridge parallel faults dip to the east or west towards the ridge axis and 

strike between 140°-145° E. Faults which dip or strike in a different way are located near 

discontinuity structures and indicate tectonic movements. Long-lived faults produce an 

asymmetrical axial thermal structure, consequently the thinner lithosphere can be found on the 

side of the ridge with the active faults (BEHN & ITO, 2008). The along-axis variations in 

crustal thickness are expressed by the hourglass shaped morphology of the individual ridge 

segments. That implies thinner, warmer crust at the segment centers and thicker, colder crust 

towards the ends. BEHN & ITO (2008) found out that these crustal variations correspond to 

along-axis changes in the fault style. Hence, small closely spaced faults can be found at 

segment centers and the larger more widely spaced and long-lived faults near the segment 

ends. The magma supply influences the faulting style predominantly by varying the amount of 

magmatic extension (BEHN & ITO, 2008). BEHN & ITO (2008) constructed a model for the 

sequential fault development at mid-ocean ridges as shown in Figure 94. The model works as 

follows: faulting at mid-ocean ridges occurs sequentially and starts near the axis because there 

the lithosphere is thinnest. Due to continued magma accretion the initiated fault rafts off-axis 

until the stress which is required to continue the initial fault exceeds the stress required to 

break a new fault. The first fault becomes inactive and a new active fault will develop. This 

new fault will often become antithetic and develops on the opposite side of the ridge axis. 

That mechanism results in asymmetric spreading rates of off-axis fault transport. After BEHN 

& ITO (2008) there are four parameters which influence the distance to which a fault remains 

active. These are the lithospheric thickness, the off-axis slope of the lithosphere, the fault dip, 

and frictional properties of the lithosphere. The fault behavior itself is mechanically controlled 

by the balance between the pulling force needed to keep a fault active and the force needed to 

break a new fault closer to the axis (ITO & BEHN, 2008). Generally five parameters control the 

fault characteristics, first the duration of the tectonomagmatic cycle, second the magmatic 

time fraction, third the axial lithospheric thickness, fourth the topographic growth during 

magmatic phases, and finally the spreading rate (ITO & BEHN, 2008). These authors indicate 
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that during a tectonic phase faults develop and remain active while with a magmatic phase 

they rift away from the axis. 

 

 

 

 

 

Profiles across the ridge axis point out the inward-facing behavior of the faults (Figure 95, 

96, 97, and 98). In addition, the behavior of the ridge flanks is pointed out when one ridge 

side is elevated more than the corresponding one. That observation implies an isostatical 

compensation behavior of the slow spreading ridge system. In a more general view the 

profiles point out that the eastern ridge flanks are stronger uplifted along the entire ridge 

segment analyzed here.  

Increasing water depth at segment ends as can be found along the CIR expressed in the 

hourglass shaped morphology, reflects a lower magmatic influence and a greater tendency to 

a rifting behavior (SEARLE, 2013).  

Second-order discontinuity structures occur more often along slow spreading ridges than 

transform faults, representing first-order discontinuities. The structural features which develop 

at those discontinuities are not stable in time because they are influenced by strike-slip 

movements and oblique extensional faulting (GRÁCIA et al., 2000). There are two mechanisms 

described by ABELSON & AGNON (1997) which cause ridge segmentation. First the along-axis 

variations in mantle upwelling and melting, and second lithospheric extension in a region 

where mantle upwelling and crustal supply is oblique to the spreading direction.  

To sum up, the tectonically active areas as pointed out in Figure 99 can be found first of all at 

the discontinuity structures along the whole mapped CIR. One first order discontinuity, the 

Gemino transform fault, offsets the ridge by about 35 km. Furthermore, the OSC as well as 

the bending structure are characteristic for tectonic activities. Inside of the bending structure a 

pull-apart basin as a hint for strike-slip movement, proves this assumption. Such pull-apart 

 

Figure 94: Sketch for the sequential fault development at a MOR (after BEHN & ITO, 2008, modified). 
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Figure 95: Profiles across the ridge axis of the working area EXFX striking from southwest to northeast. 

The vertical exaggeration of the profiles is 4.0. 

basins can be found additionally in the northern part of the Edmond area with its evolving 

discontinuity and in the southern part of Edmond close to the discontinuity separating the 

working areas Edmond and Kairei and the OCC. The latter pull-apart basin has one specialty 

because a cone-shaped seamount evolves directly inside of this basin. That underlines the 

recent magmatic activity further north with the highest amount of seamounts and the 

neovolcanic ridge. Hence, that is an area where tectonic and magmatic activity takes place at 

the same time.  
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Figure 97: Profiles across the ridge axis of the working area Edmond striking from southwest to northeast. The 

vertical exaggeration of the profiles is 3.0.  

 

Figure 96: Profiles across 

the ridge axis of the 

working area JX and Meso 

striking from southwest to 

northeast. The vertical 

exaggeration of the profiles 

is 4.0.  
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Figure 98: Profiles across the ridge axis of the working area Kairei striking from southwest to northeast. 

The vertical exaggeration of the profiles is 2.0.  
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Figure 99: Schematic sketch of the 

total mapped CIR with outlined areas 

of tectonic activity in terms of 

discontinuities, OSC, bending of the 

rift valley, pull-apart basins, and an 

OCC.  

 

 

 

 

 

 

 

 

 

 

 

 

 

With figures of the contour lines it is possible to get hints for the spreading direction and the 

sense of movement whether there was a simple spreading movement to the west and east or 

additionally a strike-slip movement. At the first working area EXFX the 3000 m contour lines 

shown in Figure 100a represent the boundaries of the rift valley. In Figure 100b the closure 

of the rift valley is shown for the case that the northeastern valley flank is moved back to the 

southwest. The spreading in the northern part is now closed, but the bending structure still 

remains open. This structure can be closed if the northeastern flank moves to the north as 

shown in Figure 100c. This means that there must have been a strike-slip movement active 

which is also expressed in the pull-apart basin located directly at the bending structure. The 
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Figure 100: 3000 m contour lines of EXFX and the movement process to reconstruct the spreading 

movement. Blue lines mark the western flank and the green lines the eastern one. 

assumed movement direction of the eastern plate to the north-east can also be supported by 

the seamount chain in the vicinity of the OSC which strikes in a northern direction. That the 

eastern plate in the vicinity of the bending structure is moving faster has been shown with the 

magnetic results (see Chapter 4.1.2).  

 

In the working area Meso and Edmond the 3250 m contour lines shown in Figure 101 

represent the boundaries of the rift valley. In the area of the Sonne hydrothermal vent field the 

contour lines are interrupted due to the updoming structures where the hydrothermal vent 

field is located. North of Edmond hints exist for the development of a new discontinuity. 

There the contour lines bend and the rift valley continues more to the west. Again with the 

3250 m contour lines the spreading can be reconstructed (Figure 101). The northeastern flank 

must be moved to the southwest to close the rift valley. From this analysis there are no 

obvious hints for a movement to the north or south. Possibly a slight strike-slip movement 

exists expressed in the pull-apart basin near the Edmond hydrothermal vent field. 

Furthermore, the rift shoulder which bends into the rift valley could also be an indicator for 

changing states of stress and an evolving discontinuity structure in the future. 

 

 



5)Discussion  5.3) Slow spreading Central Indian Ridge system 

131 

 

 

 

 

 

 

 

 

 

 

 

On a global scale BRIAIS (1995) found out that the relief across the rift valley decreases with 

increasing spreading rates. That is applicable to the working area Meso. At this place the 

spreading rate is highest along the slow spreading ridge with 5.0 cm/a and the rift valley 

morphology is very smooth with the two neovolcanic ridges inside of the valley. Also the 

magmatic activity increases with increasing spreading rates as the location Meso shows. 

Where the spreading rates decrease to 4.5 cm/a south of the Knorr rise the rift valley 

morphology becomes rougher. 

SAUTER et al. (1996) published the spreading rate evolution over the CIR between 21°40’S 

and 22°10’S from 0-1.049 Ma as shown in Table 6. That area corresponds to the southern 

part of the working area EXFX including the bending section of the rift valley. For the time 

span 0-0.780 Ma the newest results of INDEX2011 show some deviations in the total 

spreading rates. The total spreading rate is 4.8 cm/a with 2.3 cm/a at the southwestern flank 

and 2.5 cm/a at the northeastern flank. The newest data show slightly higher values than the 

data from SAUTER et al. (1996), but these are just minimal variations and the results overlap 

within the error margins. As an important message the fact that the northeastern flank spreads 

faster can be seen in both datasets. During INDEX2011 only both flanks of Anomaly 1 were 

measured, that is why it is not possible to give a comparison with the data of SAUTER et al. 

(1996) for ages older than 0.780 Ma.  

 

Figure 101: 3250 m contour lines of Meso and Edmond and the movement process to reconstruct the 

spreading movement. Blue lines mark the western ridge flank and the green lines the eastern one. 
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Time span 

[Myr] 

Total spreading rate [mm/a] SWflank [mm/a] NEflank [mm/a] 

0-0.780 

INDEX2011 

45.5 +/- 2.4 

48.0 +/- 0.5 

20.8 +/- 1.5 

23.0 

24.7 +/- 0.9 

25.0 

0.780-0.984 46.0 +/- 7.8 23.6 +/- 5.8 22.4 +/- 2.0 

0.984-1.049 110.3 +/- 11.9 52.8 +/- 4.5 57.5 +/- 7.4 

Table 6: Spreading rate evolution over the CIR between 21°40’S and 22°10’S from 0-1.049 Myr (after Sauter et 

al., 1996).  

PARSON et al. (1993) described the evolution history of the CIR and the fracture zones in the 

vicinity of the RTJ as influenced by a complex development of short-lived discontinuities. 

They suggest that the regional trend of the CIR and its recent geometry evolved during the 

reorganization of the plate boundaries resulting from the collision of India with Asia. In this 

context it was necessary that the ridge developed its new geometry because the spreading 

direction changed at that time by about 30° clockwise. Further small-scaled reconfigurations 

of the ridge modified the geometry in the following time periods. PARSON et al. (1993) are 

convinced that the ridge system between the Gemino transform fault and the RTJ developed 

by an extension of the CIR since Anomaly 20 times (~45 Ma) and the orientation was 

controlled by the local tectonic evolution of the RTJ. Ductile, tectonic processes of the plate 

geometry arrangement take place within the warm, central parts of each segment. These 

processes facilitate the development of short, oblique offsets and overlapping spreading 

centers. A popular explanation for second order discontinuities like offsets is after PARSON et 

al. (1993) a new spreading direction which forces itself on existing ridge geometry. 

Responsible for variations in the character of offsets, their evolution and extinction are 

changes in spreading direction and/or spreading rate. Studies of SAUTER et al. (1996) have 

shown that south of 21°S to the RTJ the segments become younger in age and the last 

segment north of the RTJ evolved around 12 m.y. ago. In their analysis the average spreading 

rate for the last 50 m.y. (Anomaly 21) is 4.3 cm/a close to the RTJ and 3.4 cm/a to the north. 

The findings from their study seem to indicate that the CIR first developed during the late 

Cretaceous, 63 m.y. ago (Anomaly 29).  
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5.4) Intermediate spreading SEIR system  
 

First of all the Rodriguez Triple Junction, defined by three ridge systems, two of them 

described during this study, will be analyzed from its evolving history. Afterwards the main 

characteristic features for the intermediate spreading SEIR such as the OCCs and the uplift 

behavior of the older ridge shoulders will be described. Finally, magmatically and tectonically 

active areas are shown.  

Several authors like TAPSCOTT et al. (1980), PATRIAT & SEGOUFIN (1988), MÜNCH (1995) and 

HONSHO et al. (1996) have studied the evolution of the Rodriguez Triple Junction and believe 

that it evolves as a Ridge-Ridge-Ridge type triple junction since 60 Ma. For the last 10 m.y. 

the RTJ evolution can be described with such an R-R-R type velocity diagram where the CIR 

and SWIR are lengthening obliquely (TAPSCOTT et al., 1980; HONSHO et al., 1996). These 

authors argued that the SEIR segment nearest to the RTJ still remains constant in its length. 

With a look at the CIR and SEIR at the RTJ, a small offset between them becomes obvious 

(Figure 49). The size of this offset is important for the configuration mode of the RTJ. 

HONSHO et al. (1996) published an evolution cycle containing a continuous R-R-R mode and 

a discontinuous phase. They believe that if the offset between the CIR and SEIR remains 

small then the RTJ is in the continuous mode. When that offset gets larger, the phase of the 

RTJ changes into the discontinuous mode, which lasts until the CIR segment is completely 

separated from the RTJ. After HONSHO et al. (1996) one whole cycle over these two phases 

creates one CIR segment. The small ridge structure inside of the RTJ (Figure 49) can be 

explained as being previously a part of the Australian plate, which has been transferred to the 

African plate by recent rifting of a small segment of the southern end of the CIR (HONSHO et 

al., 1996). Today the RTJ is a stable R-R-R type triple junction as believed by MITCHELL & 

PARSON (1993) and MÜNCH (1995). Other authors like MUNSCHY & SCHLICH (1989) 

published that the RTJ can be explained by an instable Ridge-Ridge-Transform model. 

PATRIAT & COURTILLOT (1984) suggest that the RTJ evolved out of two different phases, first 

the effusive one which represents the R-R-F model and second a tectonic one representing the 

R-R-R model. These two phases alternate with a frequency of 1 m.y. depending on the 

dominance of magmatism or tectonism (PATRIAT & COURTILLOT, 1984; SEARLE, 2013). The 

stability of the configuration of the RTJ whether it is in a R-R-F or R-R-R mode depends on 

the geometry of the three spreading ridges and the relative velocities between them 

(SEARLE, 2013). To summarize, with the new bathymetric map of the RTJ and the resulting 
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Figure 102: Bathymetric and slope inclination map of the three oceanic core complexes at the intermediate 

spreading ridge system. A schematic sketch of the location and the inner and outer corners is shown on the 

right side.  

structural analyze a R-R-R configuration of the triple junction can be confirmed. An 

indication for this assumption is the offset between the CIR and SEIR, seen in the newest 

dataset, as well as the identification of indicators for tectonic activity such as the inward-

facing faults at the CIR and SEIR and the step faults at the SWIR.  

The prominent oceanic core complexes of the intermediate spreading ridge system are located 

at the inside corners (Figure 102, schematic sketch) of the discontinuity structures. They can 

build when the melt supply falls to a critical level of approximately half the crustal accretion 

rate and end when the melt supply resumes (TUCHOLKE et al., 2008; SEARLE, 2013). In the 

case of the largest OCC in Section 1, the ridge flanks nearby bound to the east because of the 

uplift movement of the OCC. A detachment fault trace becomes very clear in the north-west 

of the OCC (Figure 102), where lower crust can be exhumed. The evolution of detachment 

faults is supported by tectonic extension due to magma delivery to the ridge axis, which is 

confirmed by the fact that detachment faults occur at segment ends (PETERSEN et al., 2009). 

The two smaller OCCs just start to evolve because their lineations and line of movement are 

not very well pronounced yet. With the help of bathymetric slope maps which mark out the 

lineations running perpendicular to the spreading axis it is easier to identify them. Lineation 

or mullion structures develop due to the movement of the ductile footwall, which is pulled 

past the brittle 

hanging wall 

(SPENCER, 1999; 

SEARLE, 2013).  
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Figure 103: Uplift behavior of the ridge shoulders in a schematic sketch at the top 

(after TUCHOLKE & LIN, 1994, modified) and as an example Section 3 of the SEIR 

below.  

A very prominent feature along the mapped intermediate spreading SEIR is the more and less 

elevated behavior of the ridge shoulders corresponding to each other. As previously described 

for Sections 3, 4 and 6, the isostatical compensation behavior of the ridge is expressed in a 

stronger elevated ridge shoulder than the corresponding one on the other side. One 

explanation for stronger uplifted ridge shoulders could be an underlying magma chamber and 

the resulting difference in density. With a look at the maps of the seamount distribution this 

seems not to be the reason, because several seamounts occur on both sides of the rift valley. 

There is no pattern of seamount numbers increasing at the elevated rift shoulders. In contrast, 

many tectonically influenced seamounts lead to the conclusion that a tectonic process might 

be responsible for the uplift behavior. TUCHOLKE & LIN (1994) and previously 

SEVERINGHAUS & 

MACDONALD (1988) 

have noted that along 

mid-ocean ridges the 

inner corners (IC) of a 

segment are elevated 

whereas the outer 

corners (OC) are 

depressed (Figure 

103 top). They 

suggest that the 

surface of the oceanic 

crust slopes 

downward from 

inside to outside 

corners. An 

explanation for the 

elevating behavior at 

inner corners includes 

static and dynamic 

components 

(TUCHOLKE & LIN, 1994). SEARLE (2013) published that outer corners are defined by 

relatively old, cold lithosphere which lies deeper because of its greater density while on the 
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Figure 104: Seamount distribution map along the whole mapped SEIR divided into those who are cone 

shaped, have a flat top or are tectonically influenced. The green circles mark depression structures. 

contrary inner corners are decoupled from the older lithosphere by detachment faults and 

thinner, thus more uplifted.  

SAUTER et al. (1991) found out for the evolution of the segments that magmatic and tectonic 

phases vary episodically. During magmatic periods, volcanic and thermal processes take place 

in the axial zone above the melt reservoir where the crust is weakened. In these periods the 

axial valley is filled up with lavas and bulges under thermal effects. When the melt reservoir 

becomes empty this bulged zone collapses by thermal subsidence. The second period defined 

by SAUTER et al. (1991) is the tectonic phase. During this phase the axial zone is no longer 

melt enriched. Tectonic processes like active faulting and block tilting take place and extend 

over tens of kilometers away from the ridge axis.  

Indicators for magmatic activities are seamounts. In contrast to the slow spreading CIR, 

obviously more seamounts occur at the intermediate spreading SEIR. It becomes clear that 

with increasing spreading rates magmatic processes also occur more frequently. With a look 

at the seamount distribution maps of Chapter 4.2.1 and the summarizing Figure 104 the first 

obvious matter of fact is a decrease in seamount occurrence at the two accommodation zones 
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Figure 105: Estimations of the magmatically active zones resulting from the seamount distribution maps 

and the tendency of a magma chamber beneath the ridge axis or to the ridge flanks.  

Sections 2 and 5. This observation results in the assumption that these areas are influenced by 

tectonic processes described later. The other sections are characterized by a high number of 

seamounts where on average the majority of seamounts is located on the western ridge flank 

and leads to the assumption that the magma chamber has a western trend (Figure 105). 

Furthermore, in contrast to the CIR many seamounts show tectonic influences, they are 

sheared. In those areas (western flank of Section 1 and central part of Section 6) the tectonic 

event must be younger than the magmatic activity. Section 3 is defined by many seamounts 

which are located directly on faults but showing no shear movements. That implies a recent 

magmatic activity which is younger than the tectonic phase. Flat-topped volcanoes which do 

not occur systematically, but show a slight tendency to the segment ends, are formed by long-

lived eruptions which produce a lava lake and surrounding levees (CLAGUE et al., 2000, 

SEARLE, 2013).  

To summarize, the intermediate spreading ridge seems to be characterized by a magma 

chamber which is in general more pronounced to the western ridge flanks. Within the 

magmatically active areas some local tectonic activities take place identified with sheared 

seamounts. 
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Tectonically active areas like Sections 2 and 5, defined as accommodation zones, show less 

volcanic activity and increasing water depths. It can therefore be concluded that these sections 

have no magma lens beneath. At these places the tectonic influence is highest, causing the 

ridge axis to be offset. In each case two basin structures can be observed in the northern part 

of the accommodation zones which also lead to conclude that extensional movements take 

place (Figure 107 i-j). From the fault distribution in these areas many different strike and dip 

directions could be determined. SAUTER et al. (1991) argued that local variations in the facing 

direction of faults and their strike correspond to a change in the strike of the axial valley 

which can be seen in Sections 2 and 5. This can be summarized under the keyword 

microsegmentation (SAUTER et al., 1991). An increase in spreading velocities near and at the 

discontinuities along the whole mapped SEIR confirms the tectonic influence as well. 

Magnetic data of profiles 226 and 234 both show a double Jaramillo event. SCHULZ et al. 

(1988) as well as CONDER & FORSYTH (2001) attributed such double Jaramillo events to small 

ridge jumps of less than 10 km (MITCHELL, 1991). This explanation can be supported with a 

look at the location of both profiles. Profile 226 is situated in direct vicinity of the strike-slip 

fault and profile 234 lies south of the discontinuity which separates Sections 3 and 4. Ridge 

jumps are caused by a reheating and thinning of the lithosphere in the vicinity of the ridge 

axis (ROYER & SCHLICH, 1988). The inward-facing faults which are typical for Sections 1, 3, 

4, and 6 (Figure 106 and Figure 107) and which run parallel to the rift valley evolve at the 

ridge axis. As shown in Figure 94, they are transported away by rifting processes afterwards. 

These older faults reflect neovolcanic zones linked to intense periods of magmatism (SAUTER 

et al., 1991). Like CAMHs they would correlate to positive magnetic peaks. An increasing 

tectonic influence can be seen on the western flank at the end of Section 6. Here, the 

seamounts get more influenced by faults and the seamount distribution decreases. 

Additionally, from the magnetic data it is obvious that the western flank starts to spread faster 

than the eastern side. The strike-slip fault at 71°E is referred to by TAPSCOTT et al. (1980) and 

MÜNCH (1995) as an indicator for the relative movement between Indian and the Antarctic 

plate.  

Figure 108 summarizes the areas which are tectonically active at the intermediate spreading 

SEIR. Mainly these are the two accommodation zones with the OCCs and the other 

discontinuity areas. Also some basin structures are hints for the tectonically active regions.  
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Figure 106: Profiles across the ridge axis of Section 3 which points out the elevated and 

depressed rift shoulders as well as the inward facing normal faults.  

 

Figure 107: Profiles across the ridge axis of Section 4 from southwest to northeast with major 

faults and two basin structures at the end of this section as an expression for extensional 

movements.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5)Discussion  5.4) Intermediate spreading SEIR system 

140 

 

 

Figure 108: Tectonically active areas of the whole mapped SEIR resulting from the appearance of 

discontinuities, basins, faults and OCCs. 

The process of spreading in Section 1 can be reversed in a model with the 3500 m contour 

lines as shown in Figure 109. With the northeastern plate moved back to the southwest the 

rift valley can be closed. Only a small area in the south still remains open. This is the location 

of the OCC where the ridge axis is offset by 7 km.  

 

 

 

 

 

 

 

 

 

Figure 109: 3500 m contour lines of Section 1 and the movement process to reconstruct the spreading 

movement. Blue lines mark the western flank and the green lines the eastern one.  
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Figure 110: 3500 m contour lines of Section 3 and the movement process to reconstruct the spreading 

movement. Blue lines mark the western flank and the green lines the eastern one. 

 

Figure 111: 3250 m contour lines of Section 4 and the movement process to reconstruct the spreading 

movement. Blue lines mark the western flank and the green lines the eastern one.  

A simple spreading movement was identified in Section 3 using the 3500 m contour lines 

(Figure 110). There the spreading of the ridge flanks can be reversed with a simple 

movement of the northeastern plate to the southwest. In the southern part the area near the 

evolving discontinuity still remains open. Possibly at this place the first extensional 

movements took place.  

 

With a simple spreading SW-NE movement in Section 4 (Figure 111, 3250 m contour lines), 

the area of the second evolving discontinuity remains open. That part can be closed if an 

additional shear movement is assumed.  
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Figure 112: Spreading rate development over the SEIR (after ROYER & SCHLICH, 1988, 

modified).  
 

 

For the interpretation of the spreading rate history ROYER & SCHLICH (1988) used magnetic 

data from cruises between 1961 and 1984 and the reversal time scale of LOWRIE & ALVAREZ 

from the year 1981, where Anomaly 5 starts at 10.3 Ma and Anomaly 6 begins at 24.6 Ma 

(boundary Miocene/Oligocene). The spreading rates along the SEIR vary considerably which 

can be seen in the profiles measured at the same ridge flank and ridge segment. ROYER & 

SCHLICH (1988) identified three spreading episodes for the SEIR. The first episode between 

Anomaly 18 and 11 was characterized by full spreading rates of 6.0 and 8.0 cm/a. During the 

second phase between Anomaly 11 and 5 the spreading rates decreased to an average value of 

2.5 cm/a. In the third, the recent episode, the spreading rates show a slight increase to 3.0-

3.5 cm/a. Since 20 Ma the northeastern ridge flank has higher spreading rates than the 

southwestern flank. The spreading along the SEIR is asymmetrical since the Miocene. Figure 

112 represents the evolution of symmetric or asymmetric spreading along the SEIR. The 

letters A, B and C can be compared to the working areas of INDEX2012 (A = Section 1, 2 

and 3; B = Section 4 and 5; C = Section 6). After ROYER & SCHLICH (1988) region A is 

defined by a symmetric spreading until Anomaly 2, but the results from the INDEX cruise 

show a slight asymmetric spreading with 2.60 cm/a to the west and 2.65 cm/a to the east 

(Figure 113). Area B should spread symmetrically after ROYER & SCHLICH (1988) while the 

results from INDEX definitely show an asymmetric spreading of 2.60 cm/a west and 
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Figure 113: Overview of the spreading rate evolution from 0 to 4 Ma and the behavior 

of the ridge flanks spreading faster or more slowly, based on INDEX magnetic data 

and a new analysis of three older magnetic profiles from the GEODAS database. 

3.00 cm/a east and more to the south 3.20 cm/a west and 2.60 cm/a east (Figure 113). The 

results of area C agree with the results from INDEX, here the southwestern ridge flank 

spreads faster with 3.20 cm/a than the northeastern ridge flank with 2.60 cm/a. After a 

massive change in spreading direction during the Middle Eocene (Anomaly 22-19) the SEIR 

spreads with medium spreading rates of 5-7 cm/a at a stable direction of N045°. Magnetic 

profiles between 25.5°S (RTJ) and 41°S (southeast of Saint-Paul island) show half spreading 

rates of 2.7-3.5 cm/a between 0 and 8 Ma and 2.4-3.1 cm/a between 8 and 20 Ma (ROYER & 

SCHLICH, 1988). With increasing distance from the RTJ to the south the spreading rates also 

increase. This behavior can be seen with the recent magnetic data as well (Figure 76) where 

the spreading rates increase from 5.3 cm/a at the RTJ up to 5.7 cm/a at 74°E.  

 

 

 

 

 

 

 

To sum up the results of both studies the first obvious fact is the time in which the data were 

collected. ROYER & SCHLICH (1988) used data from 1961-1984 and the magnetic data of 

INDEX2012 were measured in 2012. Hence, there is a great difference in resolution and 

accuracy which further develops with time. A second fact is the used time reversal scale 

which differs between the one from LOWRIE & ALVAREZ (1981) and the one from CANDE & 

KENT (1995). The general trend that the northeastern flank spreads faster than the 

southwestern flank can be observed in both data sets. In case of INDEX 2012 only a time 

span of 0 to 4 Ma can be covered and the time interval 2-4 Ma just with reprocessed transit 

profiles from the GEODAS database. However, the large number of profiles and high data 

quality make clear that for the younger time the INDEX results are more reliable. 
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5.5) Slow vs. Intermediate 
 

To sum up the most prominent characteristics of the slow spreading CIR and the intermediate 

spreading SEIR they will be compared in the following. The sketch of Figure 114 

summarizes the most important results deduced from bathymetric and magnetic data. First of 

all it becomes clear that the intermediate spreading ridge shows more discontinuities or 

evolving ones. It is more segmented and thus more tectonically influenced. Both ridges have 

in common that their eastern ridge flank is more uplifted in total and steeper than the western 

flank. As shown with the fault distribution maps, the slow spreading ridge is characterized by 

normal faults which face towards the rift valley, so called inward-facing faults, also described 

by several authors (TAMSETT & SEARLE, 1988; WHITMARSH & LAUGHTON, 1976; MITCHELL, 

1991). The intermediate spreading ridge in contrast has besides inward-facing faults also 

faults which dip away from the rift valley, defined as outward-facing faults (HUMLER & 

WHITECHURCH, 1988; MITCHELL, 1991). A lower amount of magma intrusion and off-axis 

lithosphere thickening produces larger, widely spaced faults at magmatically starved ridges 

like the slow spreading one (ITO & BEHN, 2008). Large magma intrusions and rapid off-axis 

cooling of the crust is responsible for small, closely spaced faults and magmatically robust 

ridges like the intermediate spreading ridge (ITO & BEHN, 2008). The two ridge systems have 

prominent structures of oceanic core complexes, one at the slow spreading ridge and three at 

the intermediate spreading ridge (Figure 115). They are located relatively close to the RTJ 

with exception of the third, small evolving OCC at the SEIR, and they are situated at the 

inside corners of discontinuity structures. With a look at the magmatic activity, the slow 

spreading ridge shows on average less seamounts than the intermediate spreading one. At this 

point it has to be emphasized that the two ridge maps were acquired with different multibeam 

echo sounder systems. The EM122 used in the case of the intermediate spreading ridge 

provides significantly higher data quality and resolution. From the global view, the majority 

of the seamounts are located on the western ridge flanks on both ridges leading to the 

assumption that there are asymmetric magma lenses beneath the rift valley (Figure 115). 

Outstanding features regarding the volcanic activity are the neovolcanic ridges at the slow 

spreading ridge. The intermediate spreading ridge has more seamounts but no indications of 

neovolcanic ridges are observed, at least no distinct evolved neovolcanic ridges like the ones 

at the Sonne field or in the southern part of the working area Edmond. A reason for the lack of 

neovolcanic ridges along the intermediate spreading SEIR could be the behavior of the 
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Figure 114: Schematic sketch of the three ridge systems at the RTJ and their 

relative movement as well as the spreading velocity behavior and magmatic 

activity at the CIR and SEIR. 

magma chamber. With decreasing spreading rates the magma lens will become deeper 

(PHIPPS MORGAN & CHEN, 1993; BARAN et al., 2005). Consequently, the slow spreading CIR 

must be characterized by a deep magma chamber. When magmatic activity takes place along 

the slow spreading CIR, the magma source lies very deep and hence, at the seafloor it occurs 

more like a point source resulting in neovolcanic ridges and less seamounts. At the 

intermediate spreading SEIR the magma chamber has a shallower depth and a broader 

expansion hence, magmatic activity can occur over a wider area. Slow spreading ridges are 

defined by a small width of the rheological weak zone where the lithospheric deformation 

occurs (SMALL et al., 1999). In contrast to this, at intermediate spreading ridges age dependent 

strengthening does not create a narrow weak zone and deformation can occur over a broader 

plate boundary zone (SMALL et al., 1999). In terms of the spreading velocities both ridges 

spread asymmetrically with a faster eastern ridge side except for the southern part of the 

intermediate spreading ridge where this behavior changes and the western ridge flank gets 

faster (Figure 114). This behavior can be explained with the relative movement directions 

(Figure 114, dotted 

arrows) of the 

ridges. Because the 

SWIR extends like a 

wedge there is not 

much space for the 

western ridge sides 

of the CIR and 

SEIR. The only way 

to move faster is the 

northeastern side 

because there is over 

a long distance no 

structure which 

could block the 

spreading movement 

of the ridges.  
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Figure 115: Schematic sketch of the CIR and SEIR with tectonically and magmatically influenced areas. The 

estimation of the magmatically influenced areas results from the seamount distribution along both spreading 

ridges. Tectonically active areas are characterized by discontinuities, pull-apart basins, overlapping spreading 

centers, transform faults, and oceanic core complexes. 

The summarizing Figure 115 makes clear, that both spreading ridges are strongly tectonically 

influenced. The observation is supported by discontinuities, inward-facing faults, OCCs, and 

pull-apart basins. Nevertheless, there are some exceptional areas where magmatic activity 
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takes place. In the mapped area the SEIR obviously shows more well developed 

discontinuities and OCCs, furthermore the magmatic activity expressed by seamounts 

increases at the intermediate spreading ridge. Conspicuous is the fact that the asymmetric 

location of the magma chamber is opposed to the asymmetric spreading behavior. The 

northeastern ridge flank spreads faster but the magma chambers seem to be more pronounced 

to the southwestern ridge flanks as concluded from the seamount distribution maps. Hence, 

the magma chambers are located beneath the slowlier spreading southwestern ridge flank. 

Due to the faster movement of the northeastern ridge side there is no time for so many 

seamounts to evolve.  
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Figure 117: Magnetic map with 

superimposed survey lines of 

Edmond. The 50 nT line has a width 

of ~1.5 km. The blue area represents 

the decrease in magnetic values due 

to the process of metal leaching 

caused by the hydrothermal fluids.  

 

Figure 116: Bathymetric map 

with the detailed survey lines 

for Edmond.  

5.6) Magnetic modeling of Edmond 
 

During a detailed mapping survey a bathymetric and magnetic grid was taken over Edmond 

(Figure 116). Three profiles were measured in E-W and N-S direction with a distance of 

~1.3 km. This detailed magnetic survey with a reduced vessel velocity and closely spaced 

profile lines in different directions reveals a decrease in the magnetic susceptibility of the 

basalts, caused by the process of metal leaching right above the hydrothermal vent field and 

extends also to the south (Figure 117). That makes it possible that south of Score also hints 

for hydrothermally activity can be found. To get an idea of the dimensions of this 

hydrothermally influenced body a 3D forward modeling was done. Model and system 

parameters are explained in Chapter 3.3.  
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Figure 118: 2D view of the measured magnetic data on the left side and the calculated magnetic data on the 

right side. The blue area marks the decrease of the magnetic values due to hydrothermal influence.  

According to the literature, Layer 2 of the oceanic crust consisting of basalts has normally the 

highest magnetization (LOWRIE, 2007). That does not mean that the gabbros are not 

magnetized. They show the same composition but are coarse grained. For the magnetic 

measurements structures close to the seafloor are of highest interest. That means the basalts 

are the primary source for the observed values in the total magnetic field and right above the 

hydrothermal vent field they seem to be demagnetized.  

Figure 118 shows the results of the modeling process in 2D in summary. On the left side the 

measured magnetic values are illustrated and on the right side the calculated ones out of the 

modeling process. The blue area represents the decreased magnetic values with 50 nT as 

previously shown in Figure 117. It can clearly be seen that there is no 100% match especially 

at the northern edge but the area of interest fits very well. Modeling results indicate that the 

lateral extension of the hydrothermally influenced body increases from 1.5 km at Section 11 

(Figure 119) to 2.5 km at Section 12 (Figure 119). At Sections 13 and 14 that lateral 

extension decreases to 2.3 km (Figure 119). More generally, there is a decrease in width to 

the north and south. The body has a minimum thickness of 4 km as pointed out in Section 12 

(Figure 120). Section 14 reveals the rise of gabbros to the seafloor which can be proved with 

rock samples from that area including basalts and gabbros. The modeled dimensions of this 

body do not mean that the hydrothermal vent field or the sulfide mound have such 

dimensions. It is just the size of the rocks which are influenced by hydrothermal activities. 

With the dimensions of the modeling a simple volume estimation can be done in which the 

hydrothermally influenced body could have a volume of at least 35 km
3
 (Figure 120). 
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Figure 119: Modeled Sections 11 – 14 with the measured magnetic values (green line) and the magnetic 

values calculated from the model (red dotted line). Beneath each magnetic line the corresponding 2D section is 

shown with the basalts (light green), the grabbos (dark green), and the hydrothermally influenced body (red).  
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Figure 120: Hydrothermally 

altered body in a three 

dimensional view with the 

previously shown cross 

sections 11 to 14.  

 

 

 

 

 

 

 

 

Deep-towed magnetic studies of TIVEY et al. (2003) show a decrease in magnetic values south 

of the TAG hydrothermal vent field in the Atlantic. They present two hypotheses for the 

evolution of these decreased magnetic values. First they argue that the decrease in magnetic 

values exists because of thermal demagnetization of the crust due to a broad thermally active 

region beneath the hydrothermal vent field. Secondly, and that is what the authors favor, the 

magnetic decrease could develop because of a thinned magnetic crust due to tectonic 

extension on a normal fault for example. With the modeled results of IGMAS+ the second 

hypotheses can be ruled out for the Edmond HTF because the thickness of Layer 2, the 

“magnetic layer”, does not decrease and remains more or less constant in thickness. Another 

difference in the measured values of Edmond is that the decreased values are situated directly 

above the hydrothermal vent field with expansion to the south. The data from TIVEY et al. 

(2003) show all in all a decreased magnetic zone which is shifted to the south and does not 

occur over the hydrothermal vent field. Attention must be paid to the data acquisition because 

the study of TIVEY et al. (2003) was done with deep-towed magnetics and the data from 

Edmond derived from sea surface measurements.  
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With detailed magnetic surveys at massive sulfide complexes on land TIVEY & DYMENT 

(2010) found out that strong demagnetization areas above the stockwork zone exist caused by 

the replacement of titanomagnetit with non magnetic sulfide minerals. TIVEY & DYMENT 

(2010) postulate that not all types of hydrothermal activity cause reduced magnetization. They 

have the opinion that in some cases hydrothermal activity can be the reason for the 

development of magnetite caused by a process called serpentinization and result in an increase 

of the measured magnetic values. At basalt-hosted hydrothermal systems, as it is the case for 

Edmond, the crustal magnetization is influenced by hydrothermal fluid circulations especially 

along upflow zones where high temperature fluids rise to the seafloor (TIVEY & DYMENT, 

2010).  

A combination of the bathymetric dataset with the mapped major faults and the magnetic 

dataset with the decreased magnetic susceptibility of the basalts right above the HTF result in 

a schematic sketch striking from southwest to northeast as shown in Figure 121. Seawater 

(blue lines) is able to migrate through the oceanic crust along fault zones and reaches the 

high-temperature zone of a magma chamber (yellow-orange body). Along at least two fault 

zones (red lines), mapped with the bathymetry, the seawater interacts with the surrounding 

rocks and leaches out the metals on its way up to the seafloor (orange lines). The now called 

fluids reaches the seafloor and due to the great temperature difference between fluids and 

seawater metals fall out and black smokers as observed for the Edmond hydrothermal vent 

field can evolve. The hydrothermally altered rocks (transparent red zone) produce the zone of 

decreased magnetic values as shown with the schematic magnetic behavior (black line) in the 

upper part of Figure 121. It is a decrease of the magnetic susceptibility of the basalts 

compared to the surrounding basalts which are not hydrothermally influenced. Dredging 

results have shown that beside basalts also gabbros can be observed at the seafloor. A possible 

mechanism for the exhumation of these gabbros to the seafloor could be one of the fault zones 

(red lines). In the schematic sketch the normal fault northeast of Gauss could be the place 

where the gabbros reach the seafloor. As the detailed magnetic survey has shown it seems to 

be very likely that south of Edmond and Score hydrothermal activity can be found as well.  
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Figure 121: Schematic sketch of the Edmond HTF out of bathymetric and magnetic data and analysis.  

Further investigations should include deep-towed magnetic and bathymetric surveys to get 

higher resolution data and seismic studies or drilling to get precise insight into the dimensions 

of the hydrothermally influenced body.  
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5.7) Characteristic areas of other HTFs 
 

After a structural and magnetic interpretation of both ridge systems and a presentation of three 

hydrothermal vent fields an outlook will be given for further potential areas with 

hydrothermal activities. As summarized in Table 7 several characteristic features exist which 

can be hints for hydrothermal activities and limit areas of interest along both ridge systems. 

From the magmatic point of view the most interesting observation is the lack of seamounts in 

the direct vicinity of the known hydrothermal vent fields. In the case of the Sonne field the 

neovolcanic ridge is an expression of high magmatic activity which presumably hinders the 

fluids to reach the seafloor (SEARLE, 2013) and results in an inactive hydrothermal vent field. 

From the tectonic point of view many characteristic features can be observed such as cross-

cutting faults, the location at segment ends at discontinuities and a location on the steeper 

eastern ridge flanks. With a look at Table 7 it becomes obvious that many more tectonic 

features play an important role for hydrothermal activities. This observation was previously 

made by several authors like GERMAN & PARSON (1998), PARSON et al. (2000), and GRÁCIA et 

al. (2000). They published studies from slow spreading environments where the magmatic 

activity is not the primary control for the distribution of hydrothermal vent fields. BAKER et 

al. (2001) have shown the same result for an area in the Pacific at 15°-18°N. Where less 

tectonic activity takes place, the axial surface appears smooth and not influenced by faults 

resulting in weak and sparse hydrothermal activities (BAKER et al., 2001). The authors also 

found out that on the other hand a well developed rift valley or deep faults cause increased 

permeability and hydrothermal activity. Measurement investigations have been done by 

GERMAN et al. (2010, 1998) and they argued that high-temperature vents will occur at least 

every 100 km along slow spreading ridge systems. This prediction could not be verified for 

the slow spreading Central Indian Ridge and its known hydrothermal vent fields. However, 

until now only three locations for hydrothermal activities are known which is not enough for 

such a statistic analysis.  

An obvious tectonic feature ideally suited for hydrothermal vent fields are oceanic core 

complexes. As described in Chapter 5.3 they develop with a detachment fault representing an 

ideal pathway for hydrothermal fluids. Furthermore, OCCs are characteristic for a high 

asymmetric form of lithospheric accretion and hydrothermal activity is more common at 

asymmetric segments (SEARLE, 2013). Thus it is likely that in the vicinity of the four OCCs of 

both ridge systems hydrothermal activity can be found.  
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In the following further potential areas for hydrothermal activity are shown primary based on 

areas with decreased magnetic values along both ridge systems (Figure 122, Figure 123, and 

Figure 124). In doing so only small, limited areas with decreased magnetic values are taken 

into account which make sense in terms of the dimensions of HTFs. Large areas with such 

decreased magnetic values are unrealistic and also edge effects next to prominent positive 

magnetic anomalies must be excluded. A special attention must be paid to those days during 

the measurements which are characterized by high Kp-values (Planetary index number K for 

magnetic activity). Introduced by BARTELS in 1939 (BARTELS, 1957) a planetary 3-hour Kp-

Index can be calculated for each day. This index represents the effect of solar particle 

radiation on the Earth’s magnetic field (BARTELS, 1957). High Kp-values mean increased 

magnetic activity which results in variations of the Earth’s magnetic field within short time 

intervals. At the mid-latitude position of the survey areas it must be suspected that at Kp-

values of 5 and more small observed magnetic anomalies on the order of 50 nT could be 

entirely the effect of the magnetic variations. After the selection based on the magnetic 

observations these areas are analyzed in terms of cross-cutting faults and other hints for 

tectonic activities with the goal that as many as possible observed features summarized in 

Table 7 apply. Past studies of SCOTT et al. (1974) have shown that magnetic lows are caused 

by hydrothermal alteration of the magnetic minerals of the basalts. The authors postulate at 

that time that this observation could be a future exploration tool for the fast identification of 

hydrothermal vent sites.  
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Magmatic Tectonic Other 

neovolcanic ridge 

(inactive Sonne field, too 

much heat) 

inner corner 

(decoupling from lithosphere by 

detachment faults after SEARLE, 

2013) 

methane anomalies 

(vicinity of the OSC in EXFX after 

PLÜGER, 1988) 

sheet flows 

(Sonne, Edmond, Kairei) 

spreading rates  

(4.87-5.6 cm/a at known HTF) 

zone of decreasing magnetic 

values  

(Edmond and Kairei) 

lack of seamounts 

around the HTF 

detachment faults “wrong” beams  

(Edmond) 

 OCCs distance measurements 

(HTF every 100 km after GERMAN et al., 

2010) 

 segment ends  

(close to discontinuities; Edmond and 

Kairei) 

large distance to spreading axis 

(Sonne, Edmond, Kairei) 

 steeper eastern ridge flanks  

 cross-cutting faults  

(Edmond and Kairei) 

 

 

 

 

 

Table 7: Summary of features characteristic for the three hydrothermal vent fields along the CIR divided 

into magmatic and tectonic events and other characteristics.  
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In the working area EXFX six potential areas are observed from the decreased magnetic value 

analysis. They are shown in Figure 122 and are applicable to tectonically active areas. 

Locations #2 and #3 are situated at the overlapping spreading center and in both cases at the 

end of the evolving ridge between the overlapping segments. This place is defined by a jump 

 

Figure 122: Magnetic (top) and bathymetric (bottom) map of the working area 

EXFX. Areas with a magnetic low are pointed out by circles and their positions are 

marked in the bathymetric map below as well.  
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of the ridge axis and hence an ideal place with pathways for the fluids. Locations #1, #4, #5 

and #6 have a great distance to the spreading axis and except for #1 are located at the steeper 

flanks of the area (#4 on the western flank and #5, #6 on the eastern flank). #5 and #6 show 

similarities to the known Kairei hydrothermal vent field because they are located at the 

segment end, on the steeper eastern flank, and on an elevated ridge shoulder. Location #4 is 

situated at the northern end of the bending structure which with the pull-apart basin represents 

an area of extensional and strike-slip movement, ideal for evolving faults as pathways. The 

neovolcanic ridge inside the bending structure is an indicator for a heat source in the vicinity.  

Within the working areas JX, Meso, Edmond and Kairei shown in Figure 123 further seven 

locations with decreasing magnetic values are observed, counted from #7 to #13. Once again, 

locations #7 to #10 and #13 are situated in tectonically active areas and at the segment ends. 

Number 10 roughly corresponds to the known hydrothermal vent field Edmond. At this point 

it has to be mentioned that it seems to be possible to detect or limit potential areas for 

hydrothermal activities with magnetic data from the sea surface. The locations #8 and #9 are 

characterized by an evolving discontinuity, representing a perfect pathway for the fluids and 

they are far away from the ridge axis on the steeper eastern ridge flank. A heat source for 

these two locations could be the magma chamber beneath the Sonne field and due to a 

detachment fault the fluids can be transported away to the positions #8 and #9. Number 7, 

#11, and #12 are located in magmatically active areas. #11 and #12 are located exactly at the 

southwestern end of the Knorr rise where the ridge axis has jumped more to the west. 

Consequently, it can be looked upon as the way that a discontinuity structure would behave. 

So it is a magmatically active area, but due to tectonic movements pathways exists. As 

mentioned previously, OCCs are prominent structures for hydrothermal activities. Location 

#13 is situated directly on the northwestern flank of the OCC in the working area Kairei. That 

is the place of the detachment fault trace, the line of movement from the OCC structure, and 

therefore an ideal area for hydrothermal fluids to rise to the seafloor. Resulting from the Kp-

Index analysis almost all days during the measurement of the Central Indian Ridge have had 

relatively calm conditions with Kp-values ≤ 4 with the exception of #11 and #12. These two 

locations, defined by the profiles CIR355 and CIR356 (Knorr rise), show high Kp-Index 

values ranging between 5 and 7. Consequently, these two locations must be viewed with 

caution in terms of the magnetic results. From the geologic point of view especially #12 

seems to be promising because of the close proximity to an offset structure.  
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Figure 123: Magnetic (left side) and bathymetric (right side) map of the working areas JX; Meso, Edmond 

and Kairei. Areas with decreased magnetic values are marked by white circles in the magnetic map as well as 

in the bathymetric map.  

Along the mapped intermediate spreading SEIR no hydrothermal vent field is known today. It 

is only possible to transfer the results and features observed from the hydrothermal vents of 

the CIR. 18 promising areas along the SEIR are shown in Figure 124. The majority of these 

locations (#14, #16 - #21, #24, #28 and #31) are situated in tectonically active areas and along 

the segment ends or evolving discontinuities. Locations #18 to #21 correspond to the inner 

corners which are stronger elevated and represent a decoupling from the lithosphere by 

detachment faults (SEARLE, 2013) which could be perfect pathways for the fluids. Especially 

in Section 4 the zones of decreasing magnetic values are located at the steeper eastern ridge 

flank (locations #22 - #26). The large OCC structure in the transition between Sections 1 and 

2 causes a very large zone of decreasing magnetic values labeled with the red line in Figure 

124. The locations #14, #19 - #20 and #29 show similarities to the Kairei hydrothermal vent 

field location from the southern end of the CIR because they are situated along strongly 

elevated older ridge shoulders. The Kp-Index analyses for the Southeast Indian Ridge also 
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show relatively calm conditions for the majority of the profiles with Kp-values ≤ 4. For 

locations #16 and #17, corresponding to profiles SEIR220-223 (accommodation zone Section 

2), the Kp-values increase to 5-6. Compared to the other locations #17 is noticeable because 

the magnetic low there is much stronger than at the other locations. Another location which 

could be affected by slightly higher Kp-values of 4-5 is #28 (profiles SEIR256-257, 

accommodation zone Section 5). To sum up, from the magnetic point of view these three 

locations must be regarded with caution.  

Another interesting area for hydrothermal activity which is not characterized by decreased 

magnetic values is situated between 69°51’E/24°54’S and 69°56’E/25°03’S, north of Kairei 

in the southern part of working area Edmond. It is characterized by an asymmetric axial 

valley with steeper slopes on the eastern valley flank and neovolcanic ridges on the western 

axial valley flank. Here, on the western flanks normal faults occur which are possible 

pathways for hydrothermal fluids. The combination of neovolcanic ridges and a large number 

of seamounts in the rift valley indicates magmatic activity underneath. There are some 

similarities to the Sonne hydrothermal vent field like tectonic activity through normal faults 

and magmatic activity represented by neovolcanic ridges. Possibly that is an area to find 

further inactive hydrothermal vent fields due to the strong magmatic activity in that area 

which blocks the pathways at recent times. At this point it is worth noting that the inactive 

Sonne hydrothermal vent field also is not associated with a magnetic low.  
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Figure 124: Magnetic (top) and bathymetric (bottom) map of the SEIR. Areas with a magnetic low are 

pointed out by white circles and their positions are marked in the bathymetric map below as well. 

In comparison with the literature of other hydrothermal vent fields, especially those in the 

Atlantic Ocean, it becomes clear that most of them have been found with luck such as Lucky 

Strike (LANGMUIR et al., 1997), TAG (SCOTT et al., 1974), and Snake Pit (KARSON et al., 
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1988) or by detection of methane anomalies caused by the hydrothermal plumes like Rainbow 

(GERMAN et al., 1996), Nibelungen (MELCHERT et al., 2008), and 

Ashadze/Logatchev/Krasnov (FOUQUET et al., 2008). Along the ultraslow spreading 

Southwest Indian Ridge the first evidence for hydrothermal activities came from water-

column anomalies obtained in 1997 (GERMAN et al., 1998; TAO et al., 2012). All these 

hydrothermal vent fields have been found with measuring tools near the seafloor such as 

autonomous underwater vehicles (AUVs) with Eh (redox potential) measurement tools or 

video systems attached, remotely operated vehicles (ROVs) or video cameras mounted on a 

drill string as it was the case for Snake Pit (KARSON et al., 1988). Resulting from structural 

analysis it is possible to compare the three hydrothermal vent fields from the Central Indian 

Ridge with hydrothermal vent fields from the Atlantic in order to find similarities.  

The active TAG (TransAtlanticGeotraverse) hydrothermal vent field at 26°N in the Atlantic is 

hosted on a tectonically-controlled terrain, far away from the ridge axis and on the eastern 

ridge flank (SCOTT et al., 1974; RONA, 1980; KLEINROCK & HUMPHRIS, 1996; GERMAN & 

LIN, 2004). Research cruises of the Trans-Atlantic Geotraverse project found the 

hydrothermal vent field via dredging with good luck between 1972 and 1973 (SCOTT et al., 

1974). It has several similarities to the tectonically-controlled active Edmond hydrothermal 

vent field. At both locations faults and fractures increase the permeability of the rocks (RONA, 

1980) and enable the fluids to reach the seafloor.  

From analyzing results of the Kairei hydrothermal vent field it correlates with the Logatchev-

1 hydrothermal vent field in the Atlantic which was discovered in 1994 (FOUQUET et al., 

2008). PETERSEN et al. (2009) published the characteristics for Logatchev-1 which is located 

~7 km off-axis in an area with ridges running parallel to the rift axis, ~1000 m above the ridge 

axis and at an OCC. This description of the Logatchev-1 field supports the assumptions made 

during this study.  

The inactive Sonne hydrothermal vent field can be compared to an inactive hydrothermal vent 

field at 50°28’E on the Southwest Indian Ridge. There the inactive hydrothermal vent field is 

located towards the segment center with thick crust and no axial rift valley formed (TAO et al., 

2012). TAO et al. (2012) described promising looking areas for hydrothermal activities along 

slow and ultraslow spreading ridges as areas which are characterized by large heat values due 

to enhanced magmatism and where the crust has a suitable permeability.  
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To summarize, in the future work areas should be defined which are tectonically active as 

seen by faults (especially cross-cutting faults), discontinuities, and pull-apart basins, but also 

have a heat source in the vicinity expressed by neovolcanic ridges or an increasing number of 

seamounts. The areas should have a large distance to the ridge axis, a location at segment 

ends, and ideally a decrease in magnetic values. A more or less sure sign for hydrothermal 

activity are oceanic core complexes which can be easily identified with slope maps and by 

their lineation structures running perpendicular to the ridge axis. It seems possible to limit 

areas for hydrothermal activity based on bathymetric and magnetic datasets acquired at the 

sea surface and thus with a reasonable amount of ship time required.  
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6) Conclusions 
 

To sum up, along mid-ocean ridges hydrothermal vent systems occur in many shapes from 

low- to high-temperature and as basalt- or ultramafic-hosted vent fields. For the development 

of hydrothermal vent fields a combination of magmatic and tectonic activities is necessary 

whereby a higher amount is represented by tectonic activities. Hydrothermal vent fields are 

possibly of great future importance for industries because of their high metal content. In the 

past many hydrothermal vent fields have been found with luck or by plume detection with 

methane anomaly measurements. All these findings rely on the expensive and time-

consuming use of deep-towed equipment. The goal of this work was the identification of 

hydrothermal systems or areas looking promising in terms of hydrothermal activities along 

two mid-ocean ridge systems in the western Indian Ocean based on sea surface acquired 

bathymetric and magnetic data.  

Detailed structural maps including the seamount distribution and fault behavior have shown 

that differences exist between the slow spreading CIR and the intermediate SEIR. These are 

in terms of magmatic activities the lack of neovolcanic ridges along the SEIR and instead a 

higher amount of seamounts probably due to a shallower magma chamber. Both ridges have 

in common that the seamount distribution is more pronounced on the southwestern ridge 

flanks. Hence, in some working areas such as EXFX, JX, Section 1, and Section 4, the magma 

chamber underneath could be characterized by a slight asymmetry with a shift to the 

southwestern ridge side. Analyses of both ridge systems have shown that they are defined 

more by tectonically active areas than magmatic ones. Oceanic core complexes for example 

occur at both ridge systems and seem to be independent from the different spreading rates. 

Results from magnetic analyses have shown that the northeastern ridge flanks at the CIR and 

SEIR spread faster. To get an idea of the main features which are characteristic for 

hydrothermal activities, the three already known hydrothermal vent fields Sonne (inactive), 

Edmond (active), and Kairei (active) were analyzed and a table compiled which summarizes 

the main points. The main features are divided into magmatic causes, tectonic causes, and 

those which are a mixture of both. For all three hydrothermal vent fields a lack of seamounts 

in their vicinity is characteristic as well as a large distance of the fields to the spreading axis. 

The active hydrothermal vent fields Edmond and Kairei are both located on the steeper, 

stronger uplifted northeastern ridge shoulders, close to a discontinuity, and at the segment 
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ends. Faults, especially cross-cutting faults, are the pathways for the fluids to reach the 

seafloor and have been observed at Edmond. A very prominent behavior was observed during 

a detailed magnetic survey where a decrease of the magnetic susceptibility of the basalts was 

measured right above Edmond with expansion to the south. This behavior was modeled to get 

an idea of the dimensions of the hydrothermally altered rock body caused by a replacement of 

the magnetic minerals of the basalts by non-magnetic sulfide minerals. Afterwards a 

schematic sketch shows a possible situation for the Edmond hydrothermal vent field with its 

two inactive outflows Gauss and Score, the dimensions of the hydrothermally influenced 

body, and at least two fault zones which are responsible for the hydrothermal activity. Further 

investigations in that area should include seismic measurements to get precise information 

about the dimensions of that altered body. Additionally, further studies must be done at the 

three known hydrothermal vent fields with video-systems such as ROV to find out which 

dimensions the sulfide mound has and whether there are additional chimney complexes or 

not. It is important to understand the complex structure and functional principles of these 

fields.  

To find further areas of potential hydrothermal activities the results of bathymetric and 

magnetic measurements are taken and 13 promising locations for the CIR and 18 locations for 

the SEIR are defined. In the future areas with a large distance to the spreading axis, uplifted 

inner corners, detachment faults, cross-cutting faults, decreased magnetic values, close 

proximity to a discontinuity at the segment ends, and oceanic core complexes should be 

investigated in terms of hydrothermal activities. As a result of this work it seems possible as a 

first step to limit areas along mid-ocean ridges for hydrothermal activities based on 

bathymetric and magnetic data acquired at the sea surface which saves research and ship time. 

Following investigations must be done with deep-towed video-systems in the areas defined in 

this work to confirm whether or not hydrothermal activity takes place there. Furthermore, 

seismic measurements over areas with hydrothermal activity can be of great importance to 

complete the picture in the depth and to get an overview of the dimensions because video-

systems always have a limited view at the seafloor. An additional useful tool could be the 

sidescan sonar. It is also a deep-towed measurement tool which produces high resolution 

bathymetry maps and could acquire magnetic data close to the seafloor. For the expensive and 

time consuming deployment of all deep-towed measurement tools it is necessary to define 

smaller areas of interest from a larger dataset.  
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Figure A1: Magnetic (top) and 

bathymetric (bottom) profiles 

CIR303-CIR305 across the CIR 

from northwest to southeast 

(working area EXFX). The 

boundaries of Anomaly 1 are 

labeled with green lines and the 

boundaries of the Jaramillo event 

with orange lines. The ridge axis, 

defined as the bathymetric 

minimum, is shown with a black 

triangle. The blue lines represent 

the center of magnetic Anomaly 

1.  
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Figure A2: Magnetic (top) and 

bathymetric (bottom) profiles 

CIR309-CIR311 across the CIR 

from northwest to southeast 

(working area EXFX). The 

boundaries of Anomaly 1 are 

labeled with green lines and the 

boundaries of the Jaramillo event 

with orange lines. The ridge axis, 

defined as the bathymetric 

minimum, is shown with a black 

triangle. The blue lines represent 

the center of magnetic Anomaly 

1.  
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Figure A3: Magnetic (top) and 

bathymetric (bottom) profiles 

CIR312-CIR314 across the CIR 

from northwest to southeast 

(working area EXFX). The 

boundaries of Anomaly 1 are 

labeled with green lines and the 

boundaries of the Jaramillo event 

with orange lines. The ridge axis, 

defined as the bathymetric 

minimum, is shown with a black 

triangle. The blue lines represent 

the center of magnetic Anomaly 

1.  
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Figure A4: Magnetic (top) and 

bathymetric (bottom) profiles 

CIR315-CIR317 across the CIR 

from northwest to southeast 

(working area EXFX). The 

boundaries of Anomaly 1 are 

labeled with green lines and the 

boundaries of the Jaramillo event 

with orange lines. The ridge axis, 

defined as the bathymetric 

minimum, is shown with a black 

triangle. The blue lines represent 

the center of magnetic Anomaly 

1.  
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Figure A5: Magnetic (top) and 

bathymetric (bottom) profiles 

CIR318-CIR320 across the CIR 

from northwest to southeast 

(working area EXFX). The 

boundaries of Anomaly 1 are 

labeled with green lines and the 

boundaries of the Jaramillo event 

with orange lines. The ridge axis, 

defined as the bathymetric 

minimum, is shown with a black 

triangle. The blue lines represent 

the center of magnetic Anomaly 

1.  
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Figure A6: Magnetic (top) and bathymetric (bottom) profiles CIR321-CIR322 across the CIR from 

northwest to southeast (working area EXFX). The boundaries of Anomaly 1 are labeled with green lines 

and the boundaries of the Jaramillo event with orange lines. The ridge axis, defined as the bathymetric 

minimum, is shown with a black triangle. The blue lines represent the center of magnetic Anomaly 1.  
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Figure A7: Magnetic (top) and 

bathymetric (bottom) profiles CIR328-

CIR331 across the CIR from northwest 

to southeast (working area JX and 

Meso). The boundaries of Anomaly 1 

are labeled with green lines and the 

boundaries of the Jaramillo event with 

orange lines. The ridge axis, defined as 

the bathymetric minimum, is shown 

with a black triangle. The blue lines 

represent the center of magnetic 

Anomaly 1.  
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Figure A8: Magnetic (top) and 

bathymetric (bottom) profiles CIR332-

CIR334 across the CIR from northwest 

to southeast (working area JX and 

Meso). The boundaries of Anomaly 1 

are labeled with green lines and the 

boundaries of the Jaramillo event with 

orange lines. The ridge axis, defined as 

the bathymetric minimum, is shown 

with a black triangle. The blue lines 

represent the center of magnetic 

Anomaly 1.  
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Figure A9: Magnetic (top) and 

bathymetric (bottom) profiles CIR335-

CIR338 across the CIR from northwest 

to southeast (working area JX and 

Meso). The boundaries of Anomaly 1 

are labeled with green lines and the 

boundaries of the Jaramillo event with 

orange lines. The ridge axis, defined as 

the bathymetric minimum, is shown 

with a black triangle. The blue lines 

represent the center of magnetic 

Anomaly 1.  
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Figure A10: Magnetic (top) and 

bathymetric (bottom) profiles CIR339-

CIR341 across the CIR from northwest 

to southeast (working area JX and 

Meso). The boundaries of Anomaly 1 

are labeled with green lines and the 

boundaries of the Jaramillo event with 

orange lines. The ridge axis, defined as 

the bathymetric minimum, is shown 

with a black triangle. The blue lines 

represent the center of magnetic 

Anomaly 1.  
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Figure A11: Magnetic (top) and bathymetric (bottom) profiles CIR342-CIR343 across the CIR from 

northwest to southeast (working area JX and Meso). The boundaries of Anomaly 1 are labeled with green 

lines and the boundaries of the Jaramillo event with orange lines. The ridge axis, defined as the bathymetric 

minimum, is shown with a black triangle. The blue lines represent the center of magnetic Anomaly 1.  



192 
 

 

Figure A12: Magnetic (top) and 

bathymetric (bottom) profiles CIR344-

CIR346 across the CIR from northwest 

to southeast (working area Edmond). 

The boundaries of Anomaly 1 are 

labeled with green lines and the 

boundaries of the Jaramillo event with 

orange lines. The ridge axis, defined as 

the bathymetric minimum, is shown 

with a black triangle. The blue lines 

represent the center of magnetic 

Anomaly 1.  
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Figure A13: Magnetic (top) and 

bathymetric (bottom) profiles CIR347-

CIR349 across the CIR from northwest 

to southeast (working area Edmond). 

The boundaries of Anomaly 1 are 

labeled with green lines. The ridge axis, 

defined as the bathymetric minimum, is 

shown with a black triangle. The blue 

lines represent the center of magnetic 

Anomaly 1.  
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Figure A14: Magnetic (top) and 

bathymetric (bottom) profiles CIR350-

CIR352 across the CIR from northwest 

to southeast (working area Edmond). 

The boundaries of Anomaly 1 are 

labeled with green lines. The ridge axis, 

defined as the bathymetric minimum, is 

shown with a black triangle. The blue 

lines represent the center of magnetic 

Anomaly 1.  



195 
 

 

Figure A15: Magnetic (top) and 

bathymetric (bottom) profiles CIR353-

CIR355 across the CIR from northwest 

to southeast (working area Edmond). 

The boundaries of Anomaly 1 are 

labeled with green lines and the 

boundaries of the Jaramillo event with 

orange lines. The ridge axis, defined as 

the bathymetric minimum, is shown 

with a black triangle. The blue lines 

represent the center of magnetic 

Anomaly 1.  
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Figure A16: Magnetic (top) and bathymetric (bottom) profile CIR356 across the CIR from northwest to 

southeast (working area Edmond). The boundaries of Anomaly 1 are labeled with green lines. The ridge axis, 

defined as the bathymetric minimum, is shown with a black triangle. The blue lines represent the center of 

magnetic Anomaly 1.  
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Figure A17: Magnetic (top) and 

bathymetric (bottom) profiles 

CIR371-CIR369 across the CIR 

from northwest to southeast 

(working area Kairei). The 

boundaries of Anomaly 1 are 

labeled with green lines. The 

ridge axis, defined as the 

bathymetric minimum, is shown 

with a black triangle. The blue 

lines represent the center of 

magnetic Anomaly 1.  
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Figure A18: Magnetic (top) and 

bathymetric (bottom) profiles 

CIR368-CIR366 across the CIR 

from northwest to southeast 

(working area Kairei). The 

boundaries of Anomaly 1 are 

labeled with green lines. The 

ridge axis, defined as the 

bathymetric minimum, is shown 

with a black triangle. The blue 

lines represent the center of 

magnetic Anomaly 1.  
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Figure A19: Magnetic (top) and 

bathymetric (bottom) profiles CIR365-

CIR363 across the CIR from northwest 

to southeast (working area Kairei). The 

boundaries of Anomaly 1 are labeled 

with green lines and the boundaries of 

the Jaramillo event with orange lines. 

The ridge axis, defined as the 

bathymetric minimum, is shown with a 

black triangle. The blue lines represent 

the center of magnetic Anomaly 1.  
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Figure A20: Magnetic (top) and 

bathymetric (bottom) profiles CIR359-

CIR361 across the CIR from northwest 

to southeast (working area Kairei). The 

boundaries of Anomaly 1 are labeled 

with green lines. The ridge axis, defined 

as the bathymetric minimum, is shown 

with a black triangle. The blue lines 

represent the center of magnetic 

Anomaly 1.  



201 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A21: Magnetic (top) and bathymetric (bottom) profile CIR362 across the CIR from northwest to 

southeast (working area Kairei). The boundaries of Anomaly 1 are labeled with green lines. The ridge axis, 

defined as the bathymetric minimum, is shown with a black triangle. The blue lines represent the center of 

magnetic Anomaly 1.  
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Figure A22: Magnetic (top) and 

bathymetric (bottom) profiles SEIR204-

SEIR206 across the SEIR from 

northwest to southeast (working area 

Section1). The boundaries of Anomaly 1 

are labeled with green lines and the 

boundaries of the Jaramillo event with 

orange lines. The ridge axis, defined as 

the bathymetric minimum, is shown 

with a black triangle. The blue lines 

represent the center of magnetic 

Anomaly 1.  
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Figure A23: Magnetic (top) and 

bathymetric (bottom) profiles SEIR207-

SEIR209 across the SEIR from 

northwest to southeast (working area 

Section1). The boundaries of Anomaly 1 

are labeled with green lines and the 

boundaries of the Jaramillo event with 

orange lines. The ridge axis, defined as 

the bathymetric minimum, is shown 

with a black triangle. The blue lines 

represent the center of magnetic 

Anomaly 1.  
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Figure A24: Magnetic (top) and 

bathymetric (bottom) profiles SEIR210-

SEIR214 across the SEIR from 

northwest to southeast (working area 

Section1). The boundaries of Anomaly 1 

are labeled with green lines and the 

boundaries of the Jaramillo event with 

orange lines. The ridge axis, defined as 

the bathymetric minimum, is shown 

with a black triangle. The blue lines 

represent the center of magnetic 

Anomaly 1.  
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Figure A25: Magnetic (top) and 

bathymetric (bottom) profiles SEIR215-

SEIR217 across the SEIR from 

northwest to southeast (working area 

Section1). The boundaries of Anomaly 1 

are labeled with green lines and the 

boundaries of the Jaramillo event with 

orange lines. The ridge axis, defined as 

the bathymetric minimum, is shown 

with a black triangle. The blue lines 

represent the center of magnetic 

Anomaly 1.  
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Figure A26: Magnetic (top) and bathymetric (bottom) profiles SEIR218-SEIR219 across the SEIR from 

northwest to southeast (working area Section1). The boundaries of Anomaly 1 are labeled with green lines 

and the boundaries of the Jaramillo event with orange lines. The ridge axis, defined as the bathymetric 

minimum, is shown with a black triangle. The blue lines represent the center of magnetic Anomaly 1.  
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Figure A27: Magnetic (top) and 

bathymetric (bottom) profiles SEIR220-

SEIR222 across the SEIR from 

northwest to southeast (working area 

Section2). The boundaries of Anomaly 1 

are labeled with green lines and the 

boundaries of the Jaramillo event with 

orange lines. The ridge axis, defined as 

the bathymetric minimum, is shown 

with a black triangle.  
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Figure A28: Magnetic (top) and 

bathymetric (bottom) profiles SEIR223-

SEIR225 across the SEIR from 

northwest to southeast (working area 

Section2). The boundaries of Anomaly 1 

are labeled with green lines and the 

boundaries of the Jaramillo event with 

orange lines. The ridge axis, defined as 

the bathymetric minimum, is shown 

with a black triangle. The blue lines 

represent the center of magnetic 

Anomaly 1.  
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Figure A29: Magnetic (top) and 

bathymetric (bottom) profiles SEIR226-

SEIR228 across the SEIR from 

northwest to southeast (working area 

Section3). The boundaries of Anomaly 1 

are labeled with green lines and the 

boundaries of the Jaramillo event with 

orange lines. The ridge axis, defined as 

the bathymetric minimum, is shown 

with a black triangle. The blue lines 

represent the center of magnetic 

Anomaly 1.  
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Figure A30: Magnetic (top) and 

bathymetric (bottom) profiles SEIR229-

SEIR231 across the SEIR from 

northwest to southeast (working area 

Section3). The boundaries of Anomaly 1 

are labeled with green lines and the 

boundaries of the Jaramillo event with 

orange lines. The ridge axis, defined as 

the bathymetric minimum, is shown 

with a black triangle. The blue lines 

represent the center of magnetic 

Anomaly 1.  
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Figure A31: Magnetic (top) and bathymetric (bottom) profile SEIR232 across the SEIR from northwest to 

southeast (working area Section3). The boundaries of Anomaly 1 are labeled with green lines and the 

boundaries of the Jaramillo event with orange lines. The ridge axis, defined as the bathymetric minimum, is 

shown with a black triangle. The blue lines represent the center of magnetic Anomaly 1.  
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Figure A32: Magnetic (top) and 

bathymetric (bottom) profiles SEIR233-

SEIR235 across the SEIR from 

northwest to southeast (working area 

Section4). The boundaries of Anomaly 1 

are labeled with green lines and the 

boundaries of the Jaramillo event with 

orange lines. The ridge axis, defined as 

the bathymetric minimum, is shown 

with a black triangle. The blue lines 

represent the center of magnetic 

Anomaly 1.  
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Figure A33: Magnetic (top) and 

bathymetric (bottom) profiles SEIR236-

SEIR238 across the SEIR from 

northwest to southeast (working area 

Section4). The boundaries of Anomaly 1 

are labeled with green lines and the 

boundaries of the Jaramillo event with 

orange lines. The ridge axis, defined as 

the bathymetric minimum, is shown 

with a black triangle. The blue lines 

represent the center of magnetic 

Anomaly 1.  
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Figure A34: Magnetic (top) and 

bathymetric (bottom) profiles SEIR239-

SEIR241 across the SEIR from 

northwest to southeast (working area 

Section4). The boundaries of Anomaly 1 

are labeled with green lines and the 

boundaries of the Jaramillo event with 

orange lines. The ridge axis, defined as 

the bathymetric minimum, is shown 

with a black triangle. The blue lines 

represent the center of magnetic 

Anomaly 1.  
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Figure A35: Magnetic (top) and 

bathymetric (bottom) profiles SEIR242-

SEIR244 across the SEIR from 

northwest to southeast (working area 

Section4). The boundaries of Anomaly 1 

are labeled with green lines and the 

boundaries of the Jaramillo event with 

orange lines. The ridge axis, defined as 

the bathymetric minimum, is shown 

with a black triangle. The blue lines 

represent the center of magnetic 

Anomaly 1.  
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Figure A36: Magnetic (top) and bathymetric (bottom) profile SEIR245 across the SEIR from northwest to 

southeast (working area Section4). The boundaries of Anomaly 1 are labeled with green lines and the 

boundaries of the Jaramillo event with orange lines. The ridge axis, defined as the bathymetric minimum, is 

shown with a black triangle. The blue lines represent the center of magnetic Anomaly 1.  
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Figure A37: Magnetic (top) and 

bathymetric (bottom) profiles SEIR246-

SEIR248 across the SEIR from 

northwest to southeast (working area 

Section4). The boundaries of Anomaly 1 

are labeled with green lines and the 

boundaries of the Jaramillo event with 

orange lines. The ridge axis, defined as 

the bathymetric minimum, is shown 

with a black triangle. The blue lines 

represent the center of magnetic 

Anomaly 1.  
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Figure A38: Magnetic (top) and 

bathymetric (bottom) profiles SEIR249-

SEIR251 across the SEIR from 

northwest to southeast (working area 

Section4). The boundaries of Anomaly 1 

are labeled with green lines and the 

boundaries of the Jaramillo event with 

orange lines. The ridge axis, defined as 

the bathymetric minimum, is shown 

with a black triangle. The blue lines 

represent the center of magnetic 

Anomaly 1.  
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Figure A39: Magnetic (top) and bathymetric (bottom) profiles SEIR252-SEIR253 across the SEIR from 

northwest to southeast (working area Section4). The boundaries of Anomaly 1 are labeled with green lines and 

the boundaries of the Jaramillo event with orange lines. The ridge axis, defined as the bathymetric minimum, 

is shown with a black triangle. The blue lines represent the center of magnetic Anomaly 1.  
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Figure A40: Magnetic (top) and 

bathymetric (bottom) profiles SEIR254-

SEIR256 across the SEIR from 

northwest to southeast (working area 

Section5). The boundaries of Anomaly 1 

are labeled with green lines and the 

boundaries of the Jaramillo event with 

orange lines. The ridge axis, defined as 

the bathymetric minimum, is shown 

with a black triangle. The blue lines 

represent the center of magnetic 

Anomaly 1.  



221 
 

 

 

 

 

 

 

 

 

 

Figure A41: Magnetic (top) and bathymetric (bottom) profiles SEIR257-SEIR258 across the SEIR from 

northwest to southeast (working area Section5). The boundaries of Anomaly 1 are labeled with green lines 

and the boundaries of the Jaramillo event with orange lines. The ridge axis, defined as the bathymetric 

minimum, is shown with a black triangle. The blue lines represent the center of magnetic Anomaly 1.  
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Figure A42: Magnetic (top) and 

bathymetric (bottom) profiles SEIR259-

SEIR261 across the SEIR from 

northwest to southeast (working area 

Section6). The boundaries of Anomaly 1 

are labeled with green lines and the 

boundaries of the Jaramillo event with 

orange lines. The ridge axis, defined as 

the bathymetric minimum, is shown 

with a black triangle. The blue lines 

represent the center of magnetic 

Anomaly 1.  
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Figure A43: Magnetic (top) and 

bathymetric (bottom) profiles SEIR262-

SEIR264 across the SEIR from 

northwest to southeast (working area 

Section6). The boundaries of Anomaly 1 

are labeled with green lines and the 

boundaries of the Jaramillo event with 

orange lines. The ridge axis, defined as 

the bathymetric minimum, is shown 

with a black triangle. The blue lines 

represent the center of magnetic 

Anomaly 1.  
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Figure A44: Magnetic (top) and 

bathymetric (bottom) profiles SEIR265-

SEIR267 across the SEIR from 

northwest to southeast (working area 

Section6). The boundaries of Anomaly 1 

are labeled with green lines and the 

boundaries of the Jaramillo event with 

orange lines. The ridge axis, defined as 

the bathymetric minimum, is shown 

with a black triangle. The blue lines 

represent the center of magnetic 

Anomaly 1.  
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Figure A45: Magnetic (top) and bathymetric (bottom) profiles SEIR268-SEIR269 across the SEIR from 

northwest to southeast (working area Section6). The boundaries of Anomaly 1 are labeled with green lines 

and the boundaries of the Jaramillo event with orange lines. The ridge axis, defined as the bathymetric 

minimum, is shown with a black triangle. The blue lines represent the center of magnetic Anomaly 1.  
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Profile 

number 

Position of 

bathymetric low 

from the center of 

magnetic Anomaly 1 

Distance 

between each 

other [km] 

Spreading rates 

[cm/a] 

Distance 

Anomaly 1 

from each 

other [km] 

303 W 0.5 4.49 35 

304 W 1.5 4.42 34.5 

305 W +/-0 4.49 35 

309 W 1.5 2.18 (4.36) 17 

310 W 1 4.61 36 

311 W 2 4.7 37 

312 W 1 4.61 36 

313 W 3 5.0 39 

314 W 4.5 4.87 38 

315 W 4 4.87 38 

316 W +/-0 4.61 36 

317 W 0.5 4.87 38 

318 W 3 4.7 37 

319 W 2.5 4.61 36 

320 W 2 4.87 38 

321 W 3 4.87 38 

322 W 6 4.7 37 

 

328 W 4 2.43 (4.87) 19 

330 W 1 2.37 (4.74) 18.5 

331 W 2 5.12 40 

332 W 2 5.0 39 

333 W 2 5.13 40 

334 W 3 4.87 38 

335 W 2.5 4.81 37.5 

336 W 4 5.0 39 

338 W 2 5.51 43 

339 W 3 4.94 38.5 

340 W 1 4.94 38.5 

341 W 5.5 5.13 40 

342 W 4 5.0 39 

343 W 7 5.0 39 
 

344 W 4 5.0 39 

345 W 4.5 5.0 39 

346 W 4.5 5.0 39 

347 W 6 2.56 (5.13) 20 

348 W 2 2.37 (4.74) 18.5 

349 W 3.5 2.44 (4.87) 19 

350 W 3 2.37 (4.74) 18.5 

351 W 6 2.44 (4.87) 19 

352 W 13 2.44 (4.87) 19 

353 W 12 2.37 (4.74) 18.5 
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Profile 

number 

Position of 

bathymetric low 

from the center of 

magnetic Anomaly 1 

Distance 

between each 

other [km] 

Spreading rates 

[cm/a] 

Distance 

Anomaly 1 

from each 

other [km] 

354 W 10 4.10 32 

355 W 9 3.72 29 

356 W 2 4.10 32 
 

371 E 3.5 4.36 34 

370 E 6 4.62 36 

369 E 9 4.49 35 

368 E 7.5 4.7 37 

367 E 13 4.62 36 

366 E 13 4.7 37 

365 E 5.5 4.62 36 

364 E 6 4.62 36 

363 E 7.5 4.49 35 

359 W 5 4.23 33 

360 W 5 4.36 34 

361 W 2 4.23 33 

362 E 1 4.36 34 
 

204 E 1 5.58 43.5 

205 E – same +/-0 4.81 37.5 

206 E 1 4.74 37 

207 same - W +/-0 5.0 39 

208 W 1 2.18 (4.36) 17 

209 E 2.8 5.51 43 

210 W 1 5.51 43 

213 E – same +/-0 5.39 42 

214 W 3 5.39 42 

215 W 2 5.51 43 

216 W 2 5.51 43 

217 W 2 5.64 44 

218 W 1.5 5.77 45 

219 W 13 (mag. 0 OCC) 6.03 47 

226 E 4 5.64 44 

227 E 6 5.64 44 

228 E 4 5.51 43 

229 E 4.5 5.64 44 

230 E +/-0 5.51 43 

231 W 1 5.77 45 

232 E 3 5.39 42 
 

233 W - same +/-0 5.77 45 

234 W 9 5.64 44 

235 W 6 5.51 43 

236 W 1 6.15 48 
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Profile 

number 

Position of 

bathymetric low 

from the center of 

magnetic Anomaly 1 

Distance 

between each 

other [km] 

Spreading rates 

[cm/a] 

Distance 

Anomaly 1 

from each 

other [km] 

237 E 1 6.28 49 

238 E 2 6.54 51 

239 E 4 5.51 43 

240 E 2 5.90 46 

241 E 2   

242 W 5 5.64 44 

243 W 5.5 5.64 44 

244 W 8 6.03 47 

245 W 7 5.51 43 

246 W 4 5.64 44 

247 W 4 5.64 44 

248 W 5 5.51 43 

249 W 3 5.51 43 

250 W 6 5.77 45 

251 W 4 5.77 45 

252 W 7.5 5.90 46 

253 W 8.5 5.64 44 
 

254 E 1 6.28 49 

255     

256 E 3 5.77 45 

257 W 11.5 6.28 49 

258     
 

259 W 3 5.51 43 

260 W 3.5 5.51 43 

261 W 5 5.64 44 

262 W 3 5.64 44 

263 W 3.5 5.77 45 

264 W 6 5.77 45 

265 W 5 5.51 43 

266 W 5 5.64 44 

267 W 5 5.90 46 

268 W 5 5.77 45 

269 W 6.5 5.77 45 
Table A1: Each profile of the Central- and Southeast Indian Ridge with individual magnetic results such as 

spreading rates and anomaly distances.  
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Figure B1: Bathymetric map of the working area EXFX (Central Indian Ridge) with superimposed 

magnetic profiles. The white numbers on the left side label the profiles and the white dotted lines represent 

the center of magnetic Anomaly 1 (0), the boundaries of Anomaly 1 (0.78) and the boundaries of the 

Jaramillo event (1.0).  
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Figure B2: Bathymetric map of the working areas JX, Meso, Edmond, and Kairei (Central Indian Ridge) 

with superimposed magnetic profiles. The black numbers on the left side label the profiles and the white 

dotted lines represent the center of magnetic Anomaly 1 (0), the boundaries of Anomaly 1 (0.78) and the 

boundaries of the Jaramillo event (1.0).  
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Figure B3: 

Bathymetric map of 

the working areas 

Section 1 and 2 

(Southeast Indian 

Ridge) with 

superimposed 

magnetic profiles. The 

black numbers on the 

left side label the 

profiles and the white 

dotted lines represent 

the center of magnetic 

Anomaly 1 (0), the 

boundaries of 

Anomaly 1 (0.78) and 

the boundaries of the 

Jaramillo event (1.0).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B4: Bathymetric map of the working areas Section 2, 3, and 4 (Southeast Indian Ridge) with 

superimposed magnetic profiles. The black numbers on the left side label the profiles and the white dotted 

lines represent the center of magnetic Anomaly 1 (0), the boundaries of Anomaly 1 (0.78) and the boundaries 

of the Jaramillo event (1.0).  
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Figure B5: Bathymetric map of the working areas Section 5 and 6 (Southeast Indian Ridge) with 

superimposed magnetic profiles. The black numbers on the left side label the profiles and the white dotted 

lines represent the center of magnetic Anomaly 1 (0), the boundaries of Anomaly 1 (0.78) and the boundaries 

of the Jaramillo event (1.0).  
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Figure B6: Bathymetric map of the Central and Southeast Indian Ridge labeled with the main magnetic 

results like average full spreading rates on the left side and the symmetric or asymmetric spreading behavior 

of the ridge flanks (arrows with numbers in cm/a). The red dots mark the spreading center defined as 

bathymetric minimum and the black dots label the center of magnetic Anomaly 1.  
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Figure B7: Bathymetric and structural map of the Central Indian Ridge. The seamounts are labeled with 

circles and the faults with lines.  



235 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B8: Structural map of the Central Indian Ridge labeled with circles for the seamounts and with lines 

for the faults dipping in different directions.  
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Figure B9: Bathymetric and structural map of the Southeast Indian Ridge. The seamounts are marked with different circles depending on their shape and the faults are labeled 

with lines. 
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Figure B10: Structural map of the Southeast Indian Ridge labeled with circles for the seamounts and with lines for the faults dipping in different directions.  
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