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Kurzfassung

Die Verbesserung der Fahrsicherheit bei Dunkelheit hat in den letzten Jahren viel Aufmerk-
samkeit im Forschungsgebiet der Fahrerassistenzsysteme erlangt. In der vorliegenden Arbeit
wird ein lichtbasiertes Fahrerassistenzsystem vorgestellt, das auf Basis von Umfeldsensorik
und eines fusionierten Umfeldmodells die Fahrbedingungen bei Dunkelheit durch gezielte
situationsangepaÿte Beleuchtung des Vorfeldes deutlich verbessert. Die Verbesserung der
Beleuchtung wird durch zwei Module erreicht. Die Markierungslicht-Funktion hebt alle rele-
vanten Objekte und Lebewesen, die den Fahrer gefährden könnten, wie z.B. ein unvorsichtiger
Fuÿgänger, der eine befahrene Straÿe überquert, mit einem zusätzlichen Lichtstrahl hervor.
Die Fernlichtassistenz-Funktion, auch als "blendfreies Fernlicht" bezeichnet, blendet gezielt
andere vorausfahrende oder entgegenkommende Verkehrsteilnehmer aus, so dass der Fahrer
immer unter optimalen Lichtbedingungen fährt, ohne Andere zu blenden.

Objekterkennung und Situationsinterpretation sind Eckpfeiler in Fahrerassistenzsystemen.
Eine deutliche Verbesserung im Bereich der aktiven Sicherheitssysteme jedoch setzt eine
Leistungssteigerung der Erfassungssysteme der Fahrzeugumgebung voraus, was ein breiteres
Sichtfeld, eine höhere Präzision und eine bessere Zuverlässigkeit der Umfeldsensoren bein-
haltet. Dies kann über eine Verbesserung der vorhandenen Sensoren oder auch durch Fu-
sionieren der Informationen von verschiedenen Sensoren erreicht werden. Diese Arbeit stellt
eine Sensorfusions-Plattform vor, die die Informationen von verschiedenen Komponenten zu
einem Umfeld- und Situationsmodell zusammenführt. Die erste Komponente ist ein Vision-
Sensor, mit dem die Lichtquellen der entgegenkommenden sowie vorausfahrenden Fahrzeuge
detektiert werden. Die zweite Komponente ist ein LIDAR-System, das Objekte und Hin-
dernisse vor dem Versuchsträger erfasst. Die dritte Komponente ist ein GPS-Empfänger, der
die Position, den Kurswinkel und die Absolutgeschwindigkeit des Versuchsträgers ermittelt.
Die vierte Komponente ist ein Fahrzeug-zu-Fahrzeug-Kommunikations-Modul, das Daten
über die relative Positionierung zwischen dem Versuchsträger und den anderen Straÿenteil-
nehmern ermittelt. Die auf dem CAN-Bus verfügbaren internen Fahrzeugdaten über den
Status und die Dynamik des Versuchsträgers bilden schlieÿlich die fünfte Komponente.

Die hier vorgestellten Methoden und Techniken zur Sensorfusion sind allgemein und können
auch bei anderen sicherheitsrelevanten Systemen angewendet werden so eine vollständige
Repräsentation des Verkehrsraumes des Fahrzeugs erforderlich ist. Die Algorithmen und
Verfahren wurden mit realen Sensoren-Messungen aus verschiedenen Verkehrssituationen
und Umgebungen veri�ziert.

Schlagworte: lichtbasiertes Fahrerassistenzsystem, Objekterkennung, Datenfusion
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Abstract

Night driving safety has recently attracted much attention in the driver assistance system
research �eld. In this thesis, a Light Based Driver Assistance System (LBDAS) is presented.
This system aims at increasing the comfort and safety of the driver by enhancing the driving
conditions, through actively interacting with the environment of the host vehicle. The main
contribution of the proposed system goes into two directions. The �rst direction is the marker
light function, in which all the relevant objects and entities that may endanger the driver, like
a careless pedestrian crossing the driving road, will be highlighted with an extra light beam.
The other direction is a high beam assistance function, which is also called �glare-free high
beam�. This function enables the driver to use a permanent high beam light distribution to
illuminate the road; meanwhile the headlamps controller prevents glaring the other drivers
by shutting o� the light in their corresponding areas.

Object recognition and situation interpretation are key roles in the driver assistance systems.
In general, the currently available object detection sensors for monitoring the driving envi-
ronment are the main reason behind the limitation of using the driver assistance systems.
Basically because they provide a very limited amount of the information which is necessary
to manage higher level driving tasks. Studies and research programs show that achieving
signi�cant progress in automobile active safety technology requires a considerable increase in
the performance of the driving environment monitoring systems. This includes wider range,
higher precision, and better reliability information from the sensor. This can be achieved via
improving the existing sensors (LIDAR, radar, laser scanners, and vision systems) as well
as by fusing the information from di�erent sensors. This research presents an application
based on a data fusion model to handle the sensors constraints as well as to ful�ll real-time
requirements.

The data fusion platform is structured from di�erent types of components. The �rst com-
ponent is a vision sensor that is used to detect the light sources of the oncoming as well as
vehicles ahead. The second component is a LIDAR system that detects the entire objects
and obstacles in front of the host vehicle. The third component is a GPS receiver which �nds
the position of the host vehicle, in terms of longitude and latitude coordinates, in addition
to other information such as the heading angle and absolute velocity. The fourth component
is a Car-to-Car communication module that wirelessly exchanges data between the host and
other vehicles. The last component is the on-board vehicle sensors which supply the other
modules with information about status and dynamics of the host vehicle such as ego-velocity,
yaw-rate, and steering angle.

The presented methods and techniques are general, and can be applied to other safety sys-
tems, whenever a complete representation of the vehicle surroundings is required, including
information about objects on the road and driving path estimation together with the relative
position of vehicles and infrastructure. All algorithms and methodologies developed in the
thesis have been tested using real sensors data from various tra�c situations and environ-
ments.

Keywords: Light Based Driver Assistance System, Object recognition, Data fusion
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Chapter 1

Background and Motivations

1.1 Introduction

Since the introduction of the transport vehicles in 15th century and especially in the recent time,
safety equipment are one of the important and main parts in the vehicle's development process.
These requirements stem from the fact that road accidents are considered as one of the main
causes of death of young people. In Europe, the numbers reach to 1,700,000 accidents, causing
over 40,000 deaths and more than 1,300,000 injuries each year [Com01]. The investigations of
the European Road Safety Action Program show that this high number of car crashes can be
reduced by more than 50 percent by following three approaches. Firstly, by encouraging drivers to
behave in a safe manner through training, penalties and harsher policing. Secondly, by improving
road infrastructure. Thirdly, by making vehicles safer through improving the active and passive
safety measures and technologies. The focus of this thesis lays on some of the aspects of the
third approach, and more precisely on the improvement of the driver's visibility conditions at
night.

Over the last few decades, tra�c safety has become an important concern for the automotive
industry. Safety evaluation organizations, such as European New Car Assessment Program (Euro
NCAP), provide customers with information about the safety ratings for di�erent models. A few
years ago, these rankings were only based on the vehicle's passive safety considering components
such as airbags, seat belts, and crumple zone1. The success of the passive safety features is
impressive. The number of serious injuries in Germany has been reduced to one half and the
number of road deaths down to one-third of the 1970 statistics (the year with the highest number
of fatalities [BB]), despite the fact that the total distance driven is more than doubled.

Recently, automotive manufacturers as well as governmental authorities and research institutes
are investigating and putting much e�orts in the active safety; believing that these kind of
safety systems can and will decrease the number of accidents, especially fatal accidents. Active
safety systems, also known as Advanced Driver Assistance Systems (ADAS), are a collection of
integrated electronic components designed to help the driver in confusing and di�cult tra�c
situations. Their main target is to reduce tra�c accidents via supporting the driver to take
fast and e�cient decisions in complex scenarios. Another aspect of the ADAS is to increase the
comfort of the driver through reducing the work-load of routine tasks. For example, automatic
beam selection system can relieve the driver of the need to manually select and activate the

1The crumple zone of an automobile is a structural feature designed to compress during an accident to absorb
energy from the impact.
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2 CHAPTER 1. BACKGROUND AND MOTIVATIONS

correct beam as tra�c, weather, and road conditions change. ADAS is interacting with the driver
through producing warning signals (e.g. Front Collision Warning, Lane Departure Warning and
Night Vision), or by providing warning and guidance information (e.g. Blind Spot Detection),
or even by taking action independently through overriding the driver commands to avoid an
accident or at least to minimize the consequences of the accident (e.g. Collision Mitigation and
Pre-Crash).

Driving at night time can be considered as a great threat to any vehicle's driver. The studies
of the Germany's Federal Statistics Bureau [Bur02] showed that more than 40 percent of all
automobile accidents causing death occur at night, despite the fact that there is up to 80 percent
less tra�c on the road than during the day. Driving at night is not only a threat to the driver but
also to the pedestrians on the road. The statistical data of the National Highway Tra�c Safety
Administration2 (NHTSA) showed that more than 69 percent of pedestrian fatalities occurred
at night time. Figure 1.1.1 shows pedestrian fatalities by time of day. The analysis of these
tra�c fatalities reverts that to the poor visibility at night, the adverse weather, and the bad
road conditions as well. With these premises, it is obvious that any e�ort in reducing the cause
of accidents and/or reducing the e�ects of accidents at night and in particular increasing the
safety of the pedestrians is highly appreciated.

Figure 1.1.1: Pedestrian Fatalities by Time of Day and Day of Week [Tra06]

The proposed system in this thesis addresses this problem by trying to put guidelines to a
headlight system, which improves the driver visibility, warns the driver of obstacles on the driving
road, and warns the pedestrian of threat probability of the oncoming vehicle.

1.2 Safety and Lighting Technology

Vision plays a very essential role in human's life, especially while driving automobiles. Re-
searchers proved that humans perceive more than 90 percent of their information by vision
[BBF00]. In typical tra�c situations the contrast sensitivity and visual acuity as well as the

2www.nhtsa.dot.gov
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speed of perception and recognition of danger are strongly dependent on the ambient light distri-
bution. Internal e�ects such as tiredness and external such as weather conditions can in�uence
the driver's vision indicators drastically. This makes it di�cult to identify objects at short dis-
tances, read tra�c signs, locate lane as well as pavement markings, spot other vehicles as well as
pedestrians, and in general driving at night due to the glare of other vehicles headlights. Stud-
ies [FD06, OS86] have shown that the Perception Reaction Time (PRT), under normal driving
conditions for a normally alert driver is typically around 1.5 to 1.75 seconds. During nighttime
driving, the perception time can be increased due to many contributing factors, resulting in a
PRT of up to 2.5 seconds or more, depending on the conditions.

Figure 1.2.1: Main Parameters A�ecting the Roadway Visibility at Night

One of the most important tasks of the automotive lighting technology is to support human per-
ception at night and under adverse weather conditions. The easiest way to improve the visibility
is to produce a lot of light along the road ahead. However, the problem with this approach is that
strong light can dazzle the other road users, reducing their view of the road. So far, a compromise
had been adopted to resolve this con�ict, which was in the form of introducing the high beam
and dipped beam light distributions. The dipped beam is a non-dazzling light distribution, which
illuminates about 60 m in front of the vehicle. On the other side, the high beam is a bright light
distribution which illuminates more than 300 m e�ciently in front of the vehicle and may glare
oncoming tra�c up to 800 m. According to ECE3 national regulations, high beam is allowed to
be used only when there is no threat to glare other drivers; otherwise dipped beam should be
used. Recently, the number of vehicles and their speed-limits are increased rapidly resulting in a
more complicated tra�c situation, which had made the classical light distributions inadequate.
Thus concepts of new light distribution have been introduced. These concepts concern either
by modifying the dipped beam to gain more visibility distance or by adopting new technique's
domain such as invisible light area like infrared light beams, for example. In the next section an
overview of the state of the art in the automobiles lighting technologies will be presented.

1.2.1 Night Vision Systems

In contrast to the normal light distributions, which illuminate directly the road in front of the
vehicle, night-vision systems are based on displaying infrared images on visualization device,
almost a monitor. They are acquiring information about the objects, which the driver cannot

3Economic Commission for Europe



4 CHAPTER 1. BACKGROUND AND MOTIVATIONS

see with a dipped beam light distribution. Night-vision system can be classi�ed as either passive
or active [BBK+03, LKVB03, SM04]. The passive systems rely on a far-infrared (FIR) detector
to sense thermal radiation from the objects in front of the car. However, active systems operate
in the near infrared (NIR) and use an extra infrared source to illuminate the road ahead.

1.2.1.1 Passive Night Vision

Figure 1.2.2: Passive Night Vision

The main advantage of passive systems is their ability to di�erentiate warm objects, such as
pedestrians and animals, from a cold background providing a visibility distance up to 300 m
[OM99, OJG10]. Although passive systems are particularly e�ective during the dark winter
months, they can hardly detect pedestrians with heavy clothes, cold vehicles, and cold obstacles,
e.g., big stones on the road [Gro]. However, these objects can produce a real threat to the driver.

1.2.1.2 Active Night Vision

The alternative to FIR systems is the active night-vision. Active systems use cameras (CCD or
CMOS) to image a scene illuminated with an NIR radiation source in the range 780-1000 nm
[WWBH07]. They can support the driver with a visibility range of up to 150 m [OGWM94].
These systems eliminate the drawbacks of passive night vision but it also produces new challenges.
For example, the active night vision can be glared from oncoming IR-Radiator of other vehicles.

1.2.2 Advanced Front Lighting System (AFS)

AFS functions are considered as one of the main revolutions in the automobile lighting technolo-
gies in the last two decades. Many studies claimed that the AFS can improve the illumination of
the road in front of the vehicle extremely by splitting the low-beam function into di�erent light
distributions [Voe05b, LV04, BL07a]. They are o�ering the driver an optimal light pattern in
nearly every situation. In the next section the main AFS functions will be highlighted.

1.2.2.1 Road Dependent Light Distribution

These light distributions are targeting to provide optimal illumination in various driving condi-
tions by automatically modifying the dipped beam pattern of the headlight system in response
to vehicle speed and road situations [WWBH07]. These modi�cations can take one or even a
combination of the following forms:
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Figure 1.2.3: Examples Of Adaptive Light Distribution: Town Light (Top Left), Dynamic Curve
Light (Top Right), Static Curve Light (Bottom Left), Motorway Light (Bottom Right). Photo:
Hella

Figure 1.2.4: CL � Country Light, ML � Motorway Light, HB � High Beam, FFL � Front Fog
Light, AWL � Adverse Weather Light, TL � Town Light, BL � Bending Light [WWBH07]

1. Country mode: the dipped beam is distributed in such a way that the left edge of the road
is illuminated more brightly and widely. Therefore, the driver's range of vision is increased
by around ten meters.

2. Town mode: is a symmetrical wide light distribution. In low speed situations the beam
has the maximum spread, which leads to an optimized orientation in the outside areas. By
increasing the driving speed the spread becomes smaller to enable the headlight to project
more light in the driving lane.

3. Motorway mode: is a uniform cone of light, which illuminates the entire road width to a
range of up to 120 meters enabling the driver to gain up to 60 percent better visibility than
classical dipped beam.
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1.2.2.2 Adverse Weather Light Distribution

Dense fog or heavy rains situations are the worst cases for the driver and the other road par-
ticipants where they get the lowest level of information. In such cases, drivers can lose their
orientation quickly because of the absence of familiar guiding features such as the road mark-
ings and the road edges. Thus, AFS provides a compromise between the ability to be seen, the
visibility distance, and the e�ects of self and re�ex glare.

1. Enhanced fog lamps: its main task is to project a broad beam in such a way that the road
edges in particular are well illuminated. Therefore, the nearside of the road is illuminated
more e�ciently, improving the driver's visibility in this area. At the same time this wider
light distribution reduces back glare in foggy conditions. This lighting function is auto-
matically activated as soon as the rear fog lamp is switched on as long as the ego-velocity
is under speci�c limits.

2. Rain mode: is an asymmetric beam with high visibility distance on the driving lane and
reduced re�ex glare for the oncoming tra�c.

3. Heavy Rain mode: is light distribution similar to the town light

1.2.2.3 Static Bending Light

Static bending light is an extra �xed light source in the headlight that turned on in low speed
sharp turns. It is switched on automatically in presence of high steering wheel angle, low vehicle
velocity, and the con�rmation of the turn signal switch.

1.2.2.4 Dynamic Bending Light

It is also known as �Active Cornering Headlight System�. In contrast to the static bending light,
dynamic system features beam patterns which follow the driver's steering movements and swivel
in the driving direction - almost immediately - as the vehicle enters a curve. The illumination
range with classical dipped beam in curve of radius 190 m is about 30 m, while it is 55 m
when using dynamic bending light. It means that this function improves the illumination of the
curvature lane by up to 90 percent. It is worth mentioning here that the dynamic bending light
can be extended by coupling it with a lane curvature information, GPS information, and digital
maps [WWBH07, EWG01] to produce a predictive dynamic bending light distribution.

1.2.2.5 Automatic Leveling Headlight Systems

They use a control module as well as various sensors for vehicle pitch and yaw rates to auto-
matically adjust the angle of the headlights in response to changes in the road vertical curvature
[Kuh06]. The headlight projector unit is swiveled up or down by an electric motor. This keeps
the light beam at the same angle to the road surface during acceleration, braking, body pitch,
and body roll due to changing road surfaces.



Chapter 2

Research Analysis

2.1 Related Work

2.1.1 Light-Based Driver Assistance Systems

Intelligent Lighting Systems or Light-Based Driver Assistance Systems (LBDAS) are a new trend
in the automotive lighting technology [WLS06]. They go further behind the circumscription of
AFS. The system is so intelligent that it can automatically adapt its light distribution not only
to the road and weather conditions, but also to the corresponding tra�c situation. LBDAS are
based mainly on the interaction of modern remote sensors, powerful software for signal processing,
and state-of-the-art headlight technology.

2.1.1.1 High-Beam Assistance System

A scienti�c study in the United States has shown that drivers underuse their high beams in
circumstances where their use is highly recommended [SAMF03]. High-Beam Assistance System
(HBAS) aims to enable the driver to use the high beam more e�ciently. In September 2005,
BMW had introduced the HBAS in the 5 Series, 6 Series, and 7 Series automobiles. The system
switches the headlights from high beam to dipped beam as soon as it detects oncoming tra�c or
adequate street lighting. A camera integrated in the rear-view mirror identi�es the headlights
and rear lights of vehicles, as well as the ambient brightness. When the road ahead is clear, the
system automatically switches to high beam and vice versa.

2.1.1.2 Adaptive Cut-O�-Line System

Adaptive Cut-O�-Line (ACOL) adjusts continuously the light distribution such that the driver
has good visibility with the longest possible range [BL07b]. This is achieved through the adap-
tation of the headlight range to preceding or oncoming motor vehicles as shown in top view of
Fig. 2.1.1. This means that the dipped beam does not stop as usual at around 60 meters on the
oncoming lane anymore, but it is increased to gain several hundred meters.

The bottom view of Fig. 2.1.1 shows that the headlight cone always ends at nearest vehicle to
avoid dazzling the other road users. If the vision system does not detect any vehicles on the
road, the illumination range extends automatically to provide the driver with light up to the high
beam level. Once the system detects other road tra�c, the range of the headlights is adapted
accordingly.

7
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Figure 2.1.1: Light Distributions of The Adaptive Cut-O�-Line System [Hel06]

Figure 2.1.2: Construction of VarioX Headlight Module [Hel06]

There are various technical solutions to implement the above mentioned light function, for ex-
ample by using Hella VarioX-Module. This module is based on a free form rotating drum which
composed of di�erent shapes. By changing the position of those shapes via rotating the drum
as well as swilling the module, a high resolution adapted light distribution can be generated.

2.1.2 Active Lighting System

Active Lighting System (ALS) has been investigated intensively by Hella KGaA and Paderborn
university in their joint research center L-LAB. The system detects the objects on the road
and reacts by producing various adaptive light distributions. The ALS project has been under
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consideration for more than eight years and has resulted in a new thinking trend in producing
intelligent headlight systems. As the name �Active Lighting� suggests, such a system interacts
automatically with the environment through di�erent sensors and it processes the collected data
in a way well-aimed to detect all the relevant objects that may endanger the driver, threaten his
life, or the life of the any other road users. Although Adaptive Cut-O�-Line (ACOL) System can
be considered as the most intelligent LBDAS in the market so far, it cannot produce the optimum
light distribution in all the tra�c situations. The investigations in [RW04, SHS+06, SW06,
SW07b, WKE03, RW03] showed that controlling only the horizontal-cut-o�-line (HCOL) of the
projected light by modifying its position is inadequate to provide the driver with the suitable
light distribution in all tra�c scenarios. ACOL would increase the safety of the pedestrian at
the side of the road, but it would not really bene�t the pedestrian crossing the road. Thus, the
project Active Lighting has adopted a new concept of modifying the HCOL. The idea behind
the new concept is based on the fact that it is not necessary to modify all the light distribution
along the HCOL when a relevant object is detected, but it is totally su�cient to modify only
the area where the object is found. For this reason a new methodology to deal with the objects
on the road has been implemented. Hence in other words, ALS is an object dependent lighting
system; for example, objects like vehicles will be blinded out, and obstacles on the driving lane
will be highlighted (marked), and pedestrians will be warned, simultaneously. The concept of
ALS has been introduced and discussed in many publications. The �rst prototype illustrated
in [Ros05] had proposed a new light function called �Glare-Free High Beam�, which enables the
driver to use a permanent high-beam to recognize a wide range of road, taking into consideration
not glaring other drivers.

Figure 2.1.3: Left:Concept of The Glare-Free High Beam, Right: Output of The Prototype

Figure 2.1.3 shows the concept of the glare-free high beam. As can be seen in the �gure, the
illumination in the area of the oncoming vehicle is reduced to avoid dazzling the driver, however
the left and the right areas of the vehicle is illuminated e�ciently with high beam. This prototype
is based on Lidar sensor (see Section 3.2.1.2) and a Digital Micro-Mirror Device headlight (DMD)
(see Section 3.2.2.1). The quality and the safety gain of the new light distribution had been
evaluated from test-persons and it had shown a very good results as well as a high customer
acceptance. The main drawback of this prototype is a very short range of its object recognition
module.

As shown in Fig. 2.1.4, the driver of oncoming vehicle percepts the ALS light distribution as a
dipped beam as long as his vehicle is within the detection range of the system's sensor, otherwise
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Figure 2.1.4: Light Distributions of The ALS Prototype

he percepts it as a high beam. Thus, one of the main targets of the current research is to explore
new techniques to increase the range. Also a new light function �Marker Light� will be integrated.

Figure 2.1.5: Concept of The Marker Light

Figure 2.1.5 demonstrates the concept of the marker light. The new light distribution aims to
draw the driver's attention to any hazard potential as early as possible by directing marker lights
to objects that are of particular relevance for the visual perception of the driver. Marker light is
intended to be used where the glare free high beam is not permissible to be used; for example,
on the poorly illuminated city roads.
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2.2 Objectives of the Research

The overall objective of this research is to develop a platform for vehicle space recognition using
di�erent types of techniques within the �Active Lighting� project. Other goals are to develop
a situation analysis methodology that allow to choose the optimal light distribution that suites
the current situation. In addition, this research aims to investigate if the Hella ACC system
prototype (IDIS) can provide the basis for the new light function, namely �marker light�.

The main tasks of the thesis can be summarized in the following points:

� Analyzing the system requirements to gain an overview about the required hardware.

� Selection of the hardware components of the system.

� Preparing a test vehicle for data acquisition.

� Development of a data acquisition platform, to acquire data for developing the algorithms
and for the testing purposes.

� Design of a hardware architecture.

� Design of a software architecture.

� Development of the necessary algorithms for object recognition and for controlling of the
headlamp as well, to be integrated in the system.

� Implementation of the algorithms in the Visual C++.

� Testing and evaluating the system in di�erent tra�c situations.

2.3 Thesis Organization

After introducing the main goals, the motivation, and the objectives of the thesis in the �rst
two chapters, the technical approach is highlighted in chapter 3. The implementation of the
algorithms for environment perception and sensors data fusion are presented in chapter 4 and
5, respectively. Chapter 6 illustrates the methodologies used in the situation analysis, object
threat assessment, and the control strategies of the headlamp. The system is evaluated and
the obtained results are discussed in chapter 7. Finally, in chapter 8, the work in the thesis is
summarized and the suggestions for the future work are proposed.





Chapter 3

Technical Approach

3.1 System Requirements Analysis

3.1.1 Object Recognition

1. The system should be able to detect and classify di�erent types of objects, which may be
found on the driving road and can lead to an accident, such as vehicles, bulky obstacles,
and pedestrians. Also it should be able to detect those objects which are not visible to the
driver, i.e., they are not in the illumination range of the headlights.

2. The recognition distance for oncoming tra�c should be more than 800 m and for leading
vehicles more than 400 m [BL07b].

3. Azimuth angle should be more than ± 15° [Hel06].

4. The time between detection of a vehicle to the headlight control should be less than 1
second [BL07b].

5. The results published in [Kos03] showed that at 64 km/h driving speed the perception dis-
tance at which detection criteria is satis�ed to non-expectant dark-clad pedestrian crossing
a road from left-to-right is about 22 m and from right-to-left is about 36 m. Thus, to gain
a bene�t from the LBDAS the system should guarantee, for non-vehicle objects, at least a
detection distance more than double of the maximum perception distance (i.e., more than
72 m).

6. For the marking function, the time latency from detection to the headlight control should
be less than 100 ms (2.8 m at 100 km/h relative velocity).

7. To increase the reliability and performance of the system, it should be able to distinguish
between visible and non-visible objects to avoid unnecessary marking/glaring to objects
which are visible to the driver; for example a pedestrian wearing re�ecting clothes or a
vehicle standing on the road side and its warning lights are on.

8. The system should be able to assign the objects to the road lanes in order to determine
precisely the relevant objects and to avoid the misuse of the light function.

13
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3.1.2 Headlight

1. It should be capable of producing free programmable light distributions.

2. It should guarantee a fast response time, the recommended time for switching from the
dipped beam to full high beam should be less than 50 ms [Ros05].

3. Basic light distributions (high and dipped beam) should be always available and should
con�rm the ECE and SAE standards.

4. For integration compatibility, the interface between the headlamp and the system's control
unit should support one of the common vehicle's communication buses (CAN or FlexRay).

3.1.3 Processing Capacity

The system should be able to process the sensors' information and to take the required decisions
in real time.

3.2 Hardware State of the Art

As stated before, the main components of any LBDAS system are the environment sensing devices
which constitute the vehicle remote-sensors and the light producing equipment incorporated
in the headlights. In the following section, the state of the art of those components will be
highlighted in some of details.

3.2.1 Remote Sensors

A key role in any driver assistance system is obstacles detection and situation interpretation. Such
systems can only support the driver intelligently if they have access to the sensors which supply
them with adequate information about the vehicle itself, the road condition, and particularly
objects as well as obstacles in the vehicle environment. A modern vehicle has many internal
sensors which are widely used at many places and serve as a corner stone for many safety
systems like ABS and ESP.

On the other side are external sensors or remote-sensors as shown in Fig. 3.2.1. They are used to
detect the presence of the objects close to the vehicle and to give information about the vehicle's
tra�c space. Usually, a vehicle remote-sensor is a device which collects data about real-world
conditions, processes the received data in real time, makes a decision, and sends commands to
vehicle subsystems to help preventing an accident, mitigate its severity, or protect the vehicle's
occupants. Intelligent safety systems are demanding di�erent types of sensors with di�erent
working-principal for di�erent applications, and in some cases, multiple sensor types for the
same application. In the automotive �eld so far, the maximum detection range of the current
long-range remote-sensors is up to 200 m, which can be achieved via 77 GHz radar or lidar.
However, Laserscanners provide the maximum lateral scanning opening angle.

3.2.1.1 RADAR

Radar is an acronym for RAdio Detection And Ranging. The radar device emits a microwave
signal and observes the echoes returned from the objects [Sko89]. The elapsed time between
emission and return is a function of the distance of the object from the radar device. The
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Figure 3.2.1: Automotive Remote-Sensors [Mah06]

distance can be computed using equation (3.2.1). However, the speed and direction of a moving
object can be determined by analyzing the shift in the frequency of the microwave signal using
Doppler e�ect as shown in equation (3.2.2). The use of microwave radar sensors for obstacle
detection in the near vicinity around the vehicle has advantages in special situations like bad
weather, poor visibility or harsh environmental impacts like ice, snow or dust coverage [LHF+08].

Distance =
∆T.C

2
(3.2.1)

V elocity =
λ.Fdp

2
=
C.Fdp
2Ft

(3.2.2)

where: ∆T is the elapsed time between the transmitted signal and the received echo, C is the
velocity of the microwaves, λ is the wave length of the transmitted signal, Fdp is the Doppler
frequency, and Ft is the transmission frequency.

3.2.1.2 LIDAR

LIDAR (LIght Detection And Ranging) sensor is a modern opto-electronic measurement tech-
nology based on the principle of measuring the time of �ight [HLL05]. It can be considered as a
low-cost alternative solution for the radar systems. Lidar has successfully been used as a range
sensor mounted on vehicles for the purpose of detection of other vehicles as well as pedestrians.
This is done by performing an analysis of the light echoes re�ected by the object. On the basis
of the known propagation rate of light in a given medium, it is possible to calculate the distance
to an object through the measurement of its propagation time. A concentrated short duration
infrared light pulse with a high power is generated by a laser diode and is transmitted in the
direction of the object. The distance to the recognized object can be computed using the same
equation given in (3.2.1). However, the object's velocity can be determined by derivation of the
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distance. For simpli�cation, the velocity can be considered as the change of the position, 4d,
over a speci�c period of time, 4T , as given by equation (3.2.3).

V elocity =
4d
4T

(3.2.3)

To achieve high lateral resolution and a wide horizontal opening angle, the lidar sensor has been
designed as a multi-channel device. Since lidar does not use the principle of Doppler e�ect for
range measurements, it does not require the object that be measured to move with high velocity.
Hence, for the detection of slow moving and stationary objects at the city roads, lidar is an ideal
sensor [HLL05].

3.2.1.3 Laserscanner

Laserscanners are the 2d-counterparts to the long-used �xed-beam range �nders [FDEW02,
FDL03, WFD01]. This system uses the same method of the lidar to estimate the distance and
the velocity of the object. It consists of one or more EDM (Electronic Distance Measurement)
unit combined with a beam de�ection unit (Fig. 3.2.2). The EDM unit combines an InGaAs
laser diode for pulse emission with a detector diode.

Figure 3.2.2: Construction of Laserscanner [WWBH07]

The laser diode emits pulses in the near infrared. To cover a viewing angle of up to 270° around
the sensor, the laser beam is de�ected by a rotating prism in the sensor head. The angular
resolution is mainly limited by the maximum laser pulse frequency. Current technology allows
0.25° angular resolution at 10 Hz scan frequency or 1° angular resolution at 40 Hz scan frequency.

3.2.1.4 Camera

Charge coupled device cameras (CCD) and complementary metal oxide semiconductor (CMOS)
are two main types of imaging chips considered when it comes to choose the digital camera for a
vision system design [FP02]. A digitized image is a two-dimensional picture generated in a form
which can be stored and processed by the computer. The images are typically produced at a
25-30 Hz frame rate and are stored as a matrix in the computer memory which can be processed,
displayed, and searched for recognizable features using a model-speci�c �lter. Maximum-response
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locations are used as the initial search points for the model-matching process, possibly supported
by other features such as shape, symmetry or the use of a bounding box. Vision systems are
exceeding the other object detection systems in its ability to provide information about the
environment texture and objects class. Since vision systems are based on a passive sensor, they
have not considerable limitations comparing with Lidar and Radar which must work in a speci�c
emitting power range. Actually, the main limitation of the vision system is the capacity of its
processing unit, which nowadays is not a problem anymore. A signi�cant advantage of such
systems is usage of stereo-imaging techniques which allows constructing 3D maps of the objects.

Another important property of cameras is their ability to capture the colors, which can be used
to isolate the objects from the background. In the computer �eld, there are two well-known color
systems which are used to represent the color images shown in Fig 3.2.4.

Figure 3.2.3: Color Systems: Left Subtractive, Right Additive

The �rst one is subtractive color system, which is used in printing technology. Subtractive color
mixing means that one begins with white and ends with black; as one adds color, the result gets
darker and tends to black. The CMYK color system is an example of such systems. The second
system is additive color. Additive color mixing begins with black and ends with white; as more
color is added, the result is lighter and tends to white. RGB is a good presenter to the additive
color system. In image processing, RGB is widely used to extract the color information from
the image. For digital cameras, in order to capture the real color of an object, three sensors
should be used. Each sensor is dedicated to capture a speci�c color. However, its technically
and economically di�cult to produce a camera with three sensors. Therefore, most of the color
cameras in market has one sensor and a so-called Bayer mosaic �lter shown in Fig 3.2.4 referring
to Bryce Bayer patent in 1976. It is a color �lter array for arranging RGB color �lters on the
square grid of the photo-sensors in form of 50% green, 25% red, and 25% blue.

Figure 3.2.4: The Bayer Arrangement of Color Filters on the Pixel Array of an Image Sensor
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The Bayer �lter uses twice as many green elements as red or blue to mimic the physiology of
the human eye. The retina has more rod cells than cone cells and rod cells are most sensitive
to green light. Since each pixel is �ltered to record only one of three colors, the data from each
pixel cannot fully determine color on its own. To obtain a full-color image, various algorithms
can be used to interpolate a set of complete red, green, and blue values for each point.

3.2.2 Addressable Headlights

The current headlight modules for realizing AFS allow only a �xed number of light distributions
and do not ful�ll the demands as well as prerequisites to generate complex assisting light functions
under all circumstances. For this reason, new headlight systems have to be developed which can
generate freely adaptable light distribution; for example, illuminating an object on the road such
as a pedestrian and at the same time able to reduce the illumination on another object such
as a vehicle [KEW04, Voe05a]. In the following section, three active headlight concepts will be
presented and their functional principals will be explained.

3.2.2.1 Digital Micro-Mirror Device headlight

The core of a Digital Micro-Mirror Device (DMD) headlight is an array of micro aluminummirrors
that re�ect the light of a high intensity light source. Such a micro-mirror array is composed of
hundreds of thousands of mirrors with an edge length of about 13 µm mounted on small hinges
atop a CMOS device [DD05, GE05].

Figure 3.2.5: Left: Working principle of a DMD headlight. Right: Light distribution with display
function [KEW04]

The individually addressable mirrors can be tilted between two positions. Either the light is
directed through a projection lens to illuminate a target area or it is guided towards an absorbing



3.2. HARDWARE STATE OF THE ART 19

surface. Therefore, a DMD device allows the generation of a picture consisting of light and dark
pixels. Installing such a device as a headlight not only allows the generation of a large variety of
light distributions, it also permits the display of characters and symbols on the street, as shown
in Fig. 3.2.5.

3.2.2.2 LED-Array Headlight

In contrast to DMD, the LED-array headlight does not need moving elements to generate dif-
ferent light distributions. Instead, the light sources are addressed directly [Str05]. The light
distributions are generated by creating an image of a matrix of LED-chips. The possibility of
individually controlling each LED-chip of the matrix allows the generation of di�erent shapes of
light. Activating or deactivating single LED-chips of the matrix can easily realize assisting light
functions [GE05]. Using a PWM (Pulse Width Modulation) to drive the LED-chips makes it
possible to produce di�erent levels of brightness, which allows adjusting the light intensity ac-
cording to the road illumination. Activating single chips that contribute to the light distribution
above the cut-o� line could be used to realize a marking light function.

Figure 3.2.6: Left: LED-Array. Right: Exemplary Low-Beam and High-Beam Light Distribution
Generated with The LED-Array

Fig. 3.2.6 depicts a LED-array prototype as well as a low-beam and high-beam light distribution
generated with this array. The possibility of separately controlling the brightness of each LED-
chip of the matrix allows the generation of driver-speci�c light distributions.

3.2.2.3 Segmented Shutter Headlight

The above mentioned headlight concepts are of interest for future work, but today they are
much more expensive and less e�cient than conventional headlight systems [GE05]. In order
to get an a�ordable headlight with the characteristics mentioned previously, a system based on
a conventional HID headlight was developed. It consists of a projector module and a variable
shutter, which replaces the shield of the projector module [MS07].

Figure 3.2.7 shows a prototype of the high variable shutter. Every segment of the shutter can
move separately up and down with a step width of about 10µm, resulting in 1000 vertical steps.
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Figure 3.2.7: Segmented Shutter Headlight Construction

Thus arbitrary light distributions can be formed using the upper outline of the shutter segments.
The horizontal resolution is limited by the number of shutters. In the current prototype, nine
segments have been used with unequal width for the outer and inner shutters. The tight shutters
are placed in the middle of the headlight, which is in accordance with the prospective projection
principle considering the fact that distant oncoming tra�c appears near the center of the 2D
projection map of the road as shown in Fig. 3.2.8.

Figure 3.2.8: Illuminance of Segmented Shutter Headlight (Left : Front View, Right: Top View)

In addition to the high �exibility of this headlight, the shutters can move with a speed of up to 50
cm per second, which means switching from dipped to high beam takes about 20 ms, in contrast
to HID1 and halogen system that need about 150 ms. This system in combination with dynamic
curve lighting is able to realize highly dynamic and accurate light distributions. The shutters
are controlled by internal microcontroller connected to a CAN2 bus. It receives commands for
moving the shutters from any device connect on the communication bus. Such commands can be
mark or shad an object. Based on these commands, the microcontroller generates the required
movements of the shutters.

Figure 3.2.9 shows a car with oncoming tra�c. Both cars have traditional dipped beam light
distribution; the one on left is equipped with the segmented shutter headlights. In this case, one
of the shutters is moved down to cut o� the light in the direction of the oncoming car as shown in
Fig.3.2.10 left. Now there are two alternative strategies for blinding out the vehicle. The �rst is
to move down the neighbor shutter when the oncoming car comes closely. The other is to move

1High-Intensity Discharge (Xenon Headlamp)
2Controller Area Network
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Figure 3.2.9: Light Distributions of Segmented Shutter Headlight

the curve lighting and then to shut down the neighbor shutter. The second option gives better
results for distant cars, while the �rst one is preferable for close cars. Marking an object can be
realized by sequentially moving the shutters to their end positions as shown in Fig. 3.2.10 right.

Figure 3.2.10: Projection of Several Light Distributions on 25 m Distant Wall
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3.3 Solution Description

As stated in section 3.2.1, no sensor currently available in the market covers the above mentioned
system requirements. For this reason, a network consisting of di�erent types of sensors will be
used to develop an object detection platform which can ful�ll the system demands. The system
is designed according to the �ow of information as follows. Firstly, both internal and external
sensors are needed to monitor the vehicle states and the environment in the vicinity of the vehicle.
Then the acquired information must be processed. Among others, this involves disciplines such
as object recognition to gain the necessary knowledge about the vehicle's surrounding as well as
driving dynamics to take into account the vehicle's state. In the central information processing,
all the data collected by the sensor systems is analyzed, sorted, and interpreted in order to gain
knowledge about the environment in the vicinity of the vehicle and the vehicle states. Merging all
the important data from these areas gives us the system's internal representation of the current
situation. Then an appropriate strategy has to be chosen for the given situation. The strategy
includes the information on the basis of which objects are blinded out or marked and how to
do so. Finally, the chosen strategy is applied to the projected situation and the desired light
distribution is calculated.

In this context, the implemented solution presents two operating modes. The �rst one represents
a standalone concept, where the host vehicle has not the ability to exchange information with
the other road participants. In this concept, a multi-sensor data fusion system will be designed
to detect objects in front of the host vehicle. This multi-sensor data fusion system consists of a
set of internal and external sensors from which information is incorporated within a single data
fusion unit. Internal sensors give information about the host vehicle state, such as its velocity
and steering angle. External sensors (e.g., lidar and image sensors) sense information outside the
vehicle, such as oncoming/ongoing tra�c, obstacles, and road information. All the sensors and
the data fusion unit are connected via various physical and virtual buses. A system speci�cation
of communication messages will be built according to external sensors constraints.

In the second mode, which is called cooperative concept, vehicles are a part of cooperative
communication network and each of them can exchange its own information with its surrounding
as well as the other vehicles. The development of Wireless LAN using IEEE 802 standard
has enabled the capabilities of the development of new services based on Car to Car (C2C)
communication and Cars to road side Infrastructure (C2I) communication. In this system, the
position of the vehicle will be determined via GPS and digital maps. Then this information in
addition to the information about the vehicle state will be autonomously exchanged with the
other road participants, which leads to the extension and improvement of the detection range of
the vehicles.

It is worth mentioning that for the time being, the cooperative mode cannot be a replacement of
the standalone mode but it is actually an extension to it, since building secure vehicle networks
and preparing the required infrastructure to support DAS still requires further research. The
aim of investigating the second mode is to measure the bene�ts and the performance gain if these
techniques come in the market.

3.4 Conceptual Design of LBDAS in Mechatronics Discipline

Mechatronics is an interdisciplinary area of specialization, which involves the simultaneous ap-
plication of mechanical and electrical engineering principles together with computer software
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in designing the so-called smart devices. In mechatronics systems design, the functional units
have communication and decision-making capabilities, which means endowing them arti�cial
intelligence. Sensors and actuators are two major components of every mechatronics system
[Bis02]. The mechatronics concept establishes basic principles for a contemporary engineering
design methodology. In this methodology, engineering products and processes have components
that require manipulation and control of dynamic constructions to the required high degree
of accuracy. In addition, the design process requires integrating enabling technologies such as
information technology and control engineering.

Figure 3.4.1: Layout of a Mechatronics System

As shown in Fig. 3.4.1, a typical mechatronics system consists of a plant, a sensing unit, a
processor, and an actuating unit. A sensing unit can be as simple as a single sensor or can consist
of additional components such as �lters, ampli�ers, modulators, and other signal conditioners.
The controller receives the information from the sensing unit, makes decisions based on a control
algorithm, and outputs commands to the actuating unit. The actuating unit, which in its turn
in�uences the system behavior by generating the required energy to manipulate the status of the
system.

The mechatronics discipline makes it possible to design reliable and versatile systems, which
have encouraged the engineers to use it in designing and developing of automotive equipments
such as the anti-lock braking systems. LBDAS is another example of the mechatronics systems
in the automotive �eld as shown in Fig. 3.4.2. LBDAS is based on environment perception unit
representing the sensor, an illumination device (headlight) which corresponds to the actuator,
and a light control unit which represent the processor of the mechatronics system.

In [RS05, WWBH07], the authors have introduced guidelines to design intelligent systems in
the framework of the mechatronics, which have inspired a new methodology to enhance the
performance of the LBDAS proposed in section 2.1. For this reason, the following factors have
been considered during the system design:

1. Since the system is aimed at operating in a dynamic environment, it should be able to
rapidly change its behavior in response to the anticipation and changes in the environment.

2. The system should have the ability to decide when and how to change the system behavior
without waiting for external instructions. For example, in case of any hardware failure
(such as no image from the camera in glare free high beam mode) or non-plausible sensors
data (i.e., when ego-speed is 400 km/h) the system should switch to the dipped beam and
the driver is informed about not ready to assist state.
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Figure 3.4.2: Layout of Basic Design of LBDAS

3. It is recommended to design the system as a network of autonomous units, which guaran-
tee a high �exibility to the system while exchanging common information and adding or
removing a node; for example, investigating various hardware and software con�guration.
The Metcalf's Law[SV99] con�rms this concept by stating that the value of a network is
equal to a square of the number of its nodes. The implication is that the increase in utility
of a network, as it grows, is polynomial whilst the increase in expenditure for building extra
nodes is linear.

4. Since most decisions a�ect more than one node in a network, it is necessary to involve
all a�ected units in the decision-making process. The negotiation and voting could be
the mechanism to support this involvement. In addition, when the decision-making is
distributed to network nodes, which are close to sensors and actuators, the system is
capable of reacting far more swiftly to unexpected events than centralized system with
long reporting/instruction paths between information sources and executive mechanisms.

3.5 System Hardware Components

This section gives a brief introduction to the Hardware which will be used throughout the project,
including types of measured data and the communication interfaces.

3.5.1 Hella Multibeam Infrared Distance Management System Prototype
(IDIS)

The ACC system prototype from Hella is based on the LIDAR technology and extends the
functionality of conventional cruise control systems. The IDIS infrared ranging sensor which Hella
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Figure 3.5.1: Hella ACC IDIS Sensor, Photo: Hella

currently uses in its ACC is based on state-of-the-art optoelectronic measurement technology,
while IDIS uses lidar technology to measure the time that light requires for a speci�c distance.

Figure 3.5.2: Working Principle of Lidar [Boe05]

A reduced visibility of the sensor under bad weather conditions (e.g., rain, fog, spray, etc.) is
recognized by the backscatter signal of the sensor and target observation from the tracking as
shown in Fig. 3.5.2. Based on this information, the sensor is able to warn the driver in case of
reduced visibility, or even to shut down the functionality.

Figure 3.5.3: IDIS Detection Envelope
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For each laser channel, up to three objects can be identi�ed (Multi-Object-Detection). The
data of the relevant target and the data of up to 25 internal objects are tracked by the sensor
and taken into account by the ACC controller according to their distance, lateral position, and
relative velocity. Lateral object separation is based on the lateral resolution of the sensor (1°
di�erent objects in neighbor). Channels can be separated, if they have a speed di�erence greater
than 1.5 m/s.

3.5.2 Speci�cation

1. Characteristics:

a) Distance resolution: 0.1 m.

b) Update rate: 60 ms.

2. Detection range:

a) Opening angle (azimuth): ±6º.

b) Maximum sensor range (undistorted visibility): 200 m.

c) Distance di�erential resolution: 0.1 m.

d) Absolute accuracy (3 m -150 m): ± (1% +1 m).

e) Lateral deviation resolution: 1º.

3. Exta measured variables:

a) Relative velocity:

i. Range = -180 km/h . . . +180 km/h.

ii. Resolution = 0.1 km/h.

iii. Accuracy = ± 1.8 km/h (tracking time = 1 s).

b) Relative acceleration:

i. Range = -10 m/s2 . . . +6 m/s2.

ii. Resolution = ± 0.01 m/s2.

iii. Accuracy= ± 0.2 m/s2 (tracking time = 1.5 s).

4. Deployment: signal processing and ACC algorithms integrated in the sensor.

5. Communication interface: CAN Bus.

6. Multiple targets detection even in each individual channel.

7. Able to detect movable and stationary objects.

8. Able to detect non illuminated objects (not viewable).

9. The ACC algorithm can be used and adapted to suit marker light.
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3.5.3 Camera

The decision whether to use a CMOS or CCD is of great importance to the overall design as there
are signi�cantly di�erent hardware requirements, output data types, and other considerations
described before. The �nal decision was to use a CCD because of its high light sensitivity, which
is very important to detect weak and distant light sources.

Figure 3.5.4: Vision Sensor

An industrial FireWire (IEEE 1394 interface) camera based on �Sony Progressive Scan CCD
sensor � has been used as the vision sensor (mounted inside the vehicle behind the windshield
along the central line) to take the images of the environment in front of the vehicle, including
the road, vehicles on the road, tra�c signs on the roadside, and sometimes other objects on the
road. The used camera has the following speci�cations:

� Resolution: 640x480 pixels.

� Frame rate 30 fps3 in full resolution.

� Platform: independent.

� Optics: Pentax high dynamic optics with anti-blooming �lter.

� Color system: RGB 24 bit.

� Opening angle: ± 16° (estimated).

3.5.3.1 Detection Range Of Light Sources

The Camera angle and resolution makes detecting far away tail lights a great challenge [LHB+08].
For instance, a tail light with a size of 10Ö10 cm at a distance of more than 150 m is represented
by less than one pixel in the image, which is not su�cient at all to initialize a light source
hypothesis. Fortunately, the emitted light beam forms a cone so that a tail light at 700 m still
hits areas of about 4 to 8 pixels and for head lights at distance 1000 m hits area of 6 to 10 pixels.

3.5.4 GPS Receiver

Two modules of FV-M11 GPS-receivers from San Jose Navigation were used to obtain the ge-
ographical position. The updating rate can be set in between 1 to 5 Hz by changing the GPS
con�guration through standard NEMA4 commands. Changing the updating rate would be fol-
lowed by changing the reading baud rate in the values speci�ed from the speci�cation table ??.

3Frame Per Second
4NEMA: National Electrical Manufacturers Association
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The interface to the GPS receiver is a serial port. GPS unit provides mainly the position of the
vehicle in terms of longitude and latitude. Moreover, some other data are also available and can
be extracted from GPS signal

� SoG (Speed over ground).

� CoG (course over ground) it represents the angle measured from the north pole.

� Altitude (height over ground).

3.5.5 Industrial WLAN Module

Figure 3.5.5: CAN View WLAN

Developing vehicular networks (also known as VANETs) for intelligent transportation is chal-
lenging due to the need of maintaining a reliable communication platform between high-speedi
vehicles [Lue04, RSK08]. Since 2004, Cars Manufactures tried to organize their work in order
to develop new standards of VANETs Communications. In Europe, car-to-car communication
consortium de�ned a new IEEE 802.11p standard, targeting mobile applications. The standard
bandwidth for VANETs communication was set to be in between 5.885 to 5.905 GHz. Cars
OEMs5 tend to use IPV6 as a basic network protocol to provide higher �exibility in nodes ad-
dressing compared to IPV4. IPV66 has been developed to meet the basic constrains of large
data transfer between high speed vehicles [JTM+06]. Although IPV6 is not a real time network
protocol, it has been adapted by so many car-to-car modules manufactures. Additionally, ten-
dencies were made to use mobile IPV6, which provides �exible and arbitrary access changes in
IPV6 networks.

The WLAN module used in this project is a �CAN View WLAN Module�. This module allows
wireless data transfer from one CAN-Network to another remotely located CAN-Network (which
is in this case the other vehicle). The module aims to transfer absolute geographical positions,
obtained from the GPS receiver, to provide accurate local relative positioning. The concept
behind adapting such a new intercommunication concept is to enable the vehicles to communicate
with each other to ensure safety and comfort for the drivers.

3.5.6 Addressable Headlight

The segmented shutter, which was introduced in 3.2.2.3 has been used.
5OEM: Original Equipment Manufacturer
6IPV6 (Internet Protocol version 6) is a network protocol to handle exchange of data packets and �exibility

of addressing (2128 addresses)
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3.5.7 On-Board Sensors

The test vehicle is equipped with internal sensors, which monitor the vehicle status. The main
sensors are the speed, steering angle, and yaw-rate sensors.

3.5.8 Ego-Vehicle Gateway

Figure 3.5.6: Communication Gateway

The evaluation board based on ATML AT91SAM7A3 Microcontroller was used to realize the
communication gateway between the IDIS sensor and vehicle CAN bus. The main function of
that gateway is to convert the vehicle dynamics data to IDIS speci�c format. In addition, it
checks the plausibility of the on-board sensors data.

3.5.9 Processing Unit

An Industrial computer with two mainboards from Intel® equipped with Pentium® 4 (2.8
GHz) processor and 2 Giga byte of RAM have been constructed. Also, additional I/O ports for
FireWire and CAN interface have been added. The communication between the two processors
was achieved via a Giga bit Ethernet bus.
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3.6 System Design

System design describes the system from two aspects. The �rst aspect identi�es the con�guration
of the system hardware and how they are connected together, which is called hardware architec-
ture. The second aspect illustrates the software con�guration its functionality, and dependability,
which is called software architecture.

3.6.1 Hardware Architecture

Figure 3.6.1: Hardware Architecture

As shown in Fig. 3.6.1, the external sensors are connected to the main controller unit via
a communication gateway consisting of various communication buses (such as CAN, Firewire,
Serial, USB, ect.). The processing software modules are distributed on the two processors. The
sensor speci�c information processing modules are running on the primary processor, however,
the post processing, decision making, and control signal generation modules are running on the
secondary processor. A human machine interface is used to inform the driver about the system
internal status and to receive driver's commands as well. The headlamp controller receives the
control strategy setting from the secondary processor via a private CAN bus.

3.6.2 Software Architecture

Figure 3.6.2 describes the main scheme of the software architecture. The proposed architecture
has the advantage of modularity. Each module is standalone and communicates with the other
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Figure 3.6.2: Software Architecture

system components via a pre-de�ned communication interface. This property enables to inves-
tigate di�erent hardware con�gurations without changing the topology of the architecture. The
environment perception function supplies the system with information about the objects on the
vehicle space and about the road infrastructure. Data fusion is considered as the main man-
agement unit in the system that is responsible for the data synchronization and interconnection
between the di�erent software modules. The output of the data fusion is a list of objects with
a mixture of features from the di�erent sensors and information about the driving path. In the
situation analysis, the relations between the objects and the infrastructure are estimated. By
analyzing the relations, system decisions has been taken. Headlamp control module is at the
end of the data �ow, which is responsible to interpret the issued decisions into physical light
distribution.

Since the decision making is based on the object type as well as its status, in the proposed
architecture, object classi�cation is not a local function of a speci�c module but its a system
global concern. Firstly, each sensor's speci�c-module classi�es the object based on its local
information, then in the data fusion, the information of the di�erent sensors are compared and
completed in order to extend the features of the object. Based on the new gained feature the
object class is con�rmed. Thereafter, in the Situation analysis, the global relationships between
the objects and the environment are used to increase the classi�cation con�dence of the system.

In the next sections, the software architecture and the implementation of its sub-functions will
be illustrated in details.
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3.7 Data Acquisition Subsystem

The data acquisition is a simple form of the hardware architecture described in section 3.6.1
without any information processing functionality. The software architecture consists of one main
data capturing unit connected directly to the data sources. The system is used to collect data
from the di�erent sensors in the vehicle and save it in a form that it can be replayed afterwords
o�ine for developing and testing the algorithms. The major challenge of any data acquisition
system is to capture synchronized data in real-time and be able to play it synchronized again. In
our system the camera image is used as medium to save all the system information. This is due
to the reason that, the camera data is too much to be integrated in any other sensor information
and image can describe the situation quickly which is helpful in �ltering the acquired data for
the labeling process. In addition, encoding all data in one �le is reliable and portable.

The last �ve rows of the image, which are approximately 9 kb, are reserved for the external
sensors data. In view of the fact that each pixel is represented in three bytes (red, green, blue),
the �rst two bytes are utilized to save the data, however the last byte is used to save the calculated
gray value of this pixel, which may be useful for lane detection, therefore reconstruction of the
image is performed in the lane detection sub module before extracting the lane segments.

As previously highlighted, the hardware works with di�erent update rates, thus the �rst byte in
each row is used as an indicator of the status of the relevant sensor data, if it is updated in this
cycle or not. Reading the synchronized data again from the �le is then a trivial task, since it
corresponds to a unique image frame number.

In the next chapter the environment perception module and its corresponding methods and
algorithms will be illustrated.



Chapter 4

Environment Perception

4.1 Camera Object Recognition

Since many decades, camera or vision-based systems are under investigation for applications
in driver assistance systems. So far, most of the studies use the camera to detect objects and
obstacles in the vehicle's environment in short range, up to 50 m, under the day light conditions.
As already established in many image processing publications, detecting objects at night-time
using image processing is a challenging task because most of the current algorithms depend on
extracting the contour of the object and comparing its features with a prede�ned criteria and
thresholds in order to classify it. But at night-time, the camera cannot get the contours of far
objects . Even with infrared cameras, objects cannot be detected at a distance more than 150
m, which is also not suitable for DAS such as High-Beam assistant system. However, the camera
is still the most reliable candidate sensor to detect vehicles at night. The physical nature of the
camera sensor enables it to detect the bright object on a dark background at a long distances.
This property is used to detect the vehicles from their light beams. The dilemma is that all
the detected bright objects on the road should not always be a light source of a vehicle. It
could be a tra�c light, or a re�ection of tra�c sign/road re�ector, or a streetlamp. Therefore,
many methodologies and algorithms were introduced to extract the right bright blobs which are
corresponding to the vehicles on the road. In [CH03], the lane boundaries were modeled as a
curve in the form of a second-order polynomial by using image objects corresponding to re�ectors
on the ground plane. Then all the bright spots between the road boundaries are considered as
vehicles. However, the re�ectors sometimes are broken in some sections of a highway and are
occluded by the front vehicles in the image. So, it is di�cult to recover the lane boundaries
from the limited number of re�ectors in the images. Also in [CH03] the authors assumed the
rear-light to be in the form of a white bright region surrounded by red pixels and have used a
�xed threshold to segment the image. Although, color signature of tail lamps is an important
feature for detecting leading vehicles, however the red and white pixels will be falsely detected
under di�erent illumination with a �xed threshold. In addition, the shapes of the rear-light are
di�erent in braking and moving situations. In [TDH94], the authors assume that the headlights
are the bright blobs relative to the dark background. Next, they perform binarization to extract
the headlights of the oncoming vehicles on the highway at night. However, the drawback of
this approach is that the detected headlights are easily a�ected by the other bright blobs. In
[WHF05], the lane boundaries were extracted by detecting the painted lane marks assuming
that the lane marks are fairly visible as daytime situations. However, at night, the painted
lane marks are not obvious in the image enough to generate su�cient segments to reproduce
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the lane boundaries. Besides, studies in [WHF05] have not taken into account the detection of
the oncoming tra�c. In our approach, a novel method has been implemented. It is based on
multi-band adaptive thresholding of the input color image to extract the relevant blobs. Then
for each blob a set of spatial features are extracted from the image contents as well as the global
relations among the blobs. After that, the feature vector is classi�ed and the blob is tracked as
will be shown in the next section.

Figure 4.1.1: Functional Flow of Camera Object Recognition Submodule

4.1.1 Road Lane Detection

Lane detection is an essential function in many intelligent vehicle applications, such as Lane
Departure Warning, Intelligent Adaptive Cruise Control, and for future full autonomous vehicles
[TsBM99]. The function provides information about the road construction (e.g., number of
available lanes) as well as the position and orientation of the vehicle within its driving lane. The
main feature used to detect the road lane is the white markers. Moreover, other contributions
have explored the possibility of using the road infrastructure such as guiding re�ectors and road
guarding rails to estimate the road boundaries.

Detecting lane at night is a great challenge, since the lane markers can only be seen at a distance
of a few meters in front of the host vehicle (about 30 m). Even using the second concept of using
the guiding re�ectors is a�ected dramatically with the light sources of the oncoming tra�c.
Therefore, the determination of the driving path in our system is not based only on the detected
lane from the camera, but it also makes use of the data from IDIS as well as digital maps to
estimate an accurate driving path for a long distance.

In our system, a simple lane detection module was implemented based on the detection of lane
markers. It assumes that the road 30 m in front of the vehicle is either straight otherwise for
the curvature, it can be approximated with connected straight segments. In addition, we also
assume for each lane left and right markers are available.
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4.1.1.1 Lane Segments Detection

Hough transformation is a well-known technique to detect straight lines in digital image pro-
cessing [BdMRJ04, DH72, MFS, MFS01]. In the current system, the Hough transformation is
applied on the lower part of the image, where it is expected to �nd the lane marker. The detected
segments are sorted according to their inclination angle with respect to the vehicle in form of
right lane or left lane. Since we are dealing with solid and dashed lane markers, multiple peaks
in the Hough space have been considered as the relevant segments. As the lane marker is not a
thin line, thus multiple segments candidates appear on the same marker, therefore the concurrent
segments are fused together to remove the redundant segments.

4.1.1.2 Road-Model Veri�cation and Road-Geometry Estimation

Figure 4.1.2: Lane Geometrical Model θ = θ1 + θ2 5 90º

In image space, from the vehicle point of view, the angle between left and right lane should be
smaller or equal to 90 degree according to the geometrical projection principle of parallel lines on
the image plan [FP02]. Thus, the algorithm starting to detect the ego lane by investigating the
inner segments to �nd a pair ful�lls the angle criterion. Then, for each lane side the remaining
segments are checked if they can be an extension to the estimated lane segment. After detecting
the ego lane successfully, the process is repeated again to detect available neighbor lanes. If the
segments coupled to the ego lane are not detected, the segments, which have angle < 90 degree,
are used to initialize the lane model for the veri�cation in the next cycles. After successful
detection of lane markers, the camera parameters and the �at-world assumption are used to
estimate the lane width in meters. The computed width is veri�ed against the allowed lane
width.

4.1.1.3 Lane Tracking

The result of the previous function is a list of segments describing the road lane geometry. Each
segment is represented by a start and an end point. These points are used as a tracking feature.
An (α, β) �lter analogous to the one illustrated in section 4.1.4.1 is used again to �nd the lane
in the next frame and to estimate the detection con�dence.

4.1.2 Light Sources Hypotheses Generation

The objective of this step is to generate reasonable hypotheses, which can be candidates of
possible light sources. This is often referred to as the process of clustering the relevant image
pixels into a set of non-overlapping regions, which often have similar color values. The aim is to
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de�ne the boundaries among the light sources candidates and the background, which is mainly
dependent on the determination of the thresholds.

4.1.2.1 Isolating Relevant Pixels using Thresholding

Thresholding is a shape extraction technique, in which the images are processed in a way to
separate the target objects from the background [NA02]. If for example, the shape to be extracted
is de�ned by its brightness, then by thresholding the image at a particular brightness level this
shape can be retrieved. Thresholding is clearly sensitive to the change in illumination. A change
in image illumination will also change the perceived brightness of the target shape. Therefore,
in such cases, unless the threshold level is adapted according to the change in brightness level,
the thresholding technique can fail. The main advantage of the thresholding technique is that it
does not require much computational resources.

Basic (or �xed) thresholding can be used in applications where the illumination can be carefully
controlled. However, if the overall illumination level cannot be controlled, such as in LBDAS, then
the threshold should be adaptively determined. Adaptive thresholding changes its level based
on the actual illumination status. Image-Histogram-Analysis is one of the popular methods
to estimate a global adaptive threshold. Assuming that the background pixels are the most
dominant in the image, then the optimal threshold is the value which best separates background
pixels from the rest. The major problem of global thresholding is that changes in illumination
across the scene may cause some regions to be brighter and some regions darker. Thus, in
the bright region non-relevant object's pixel can be extracted, while in darker region relevant
pixels can be missed. In order to solve this problem, local thresholds have been introduced
[NA02]. Instead of having a single global threshold, multiple thresholds can be estimated across
the image. In our implementation, a row based local threshold technique has been used. Since
we are searching for the bright objects in the image, the maximum pixel value in each row is
theoretically the ideal threshold. Although, 80% of the maximum value has been considered as
a recommended practical threshold. Then this value is checked against the minimum allowed
threshold in order to decrease the in�uence of the ambient and sensor noise.

gc(x, y) =

{
fc(x, y) ∀fc(x, y) ≥ τc
0 Otherwise

(4.1.1)

where τc is the color thresholds. The subscript c denotes the color, i.e., c ∈ {R,G,B}.

If gc(x, y) is the thresholded variant of fc(x, y), the value of gc(x, y) = fc(x, y) when fc(x, y) ≥ τc
otherwise gc(x, y) = 0. The thresholding procedure is repeated for each row in the image. As we
are dealing with a color image, the whole process is repeated for each color channel.

Horizontal thresholding (i.e., row-based thresholding) has the disadvantage that some blobs
which are horizontally mirrored, such as the re�ection of the headlights on the road, cannot be
separated from each other and results in a large blob. In addition, weak light sources like distant
tail lights will not be detected when in the same row a bright headlight exists, which makes the
local threshold of this row too high as shown in Fig. 4.1.3. Therefore, the thresholding process
is carried out again but this time in column-based manner.

For each thresholding direction, the thresholded images of the three color channels are compared
together and an intermediate image is built containing only the relevant target pixels. The same is
carried out to create an intermediate vertical thresholded image, which is is used to compensate
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Figure 4.1.3: Thresholds Estimation

the missed relevant pixels from the horizontal thresholding and to detect if an over�ow has
occurred between the blob of the light source and its re�ection. If an over�ow is detected, the
blobs are separated and a �nal thresholded image is created for the next processing steps.

4.1.2.2 Blobs Boundary Estimation

After isolating the relevant pixels, the resulted image is analyzed using connected components
labeling technique [DST92] to generate the blobs (or the hypotheses) which represent the light
sources. The goal of this function is to group pixels of the same brightness and color into regions
corresponding to similarity membership criteria. If the pixel under investigation satis�es the
membership criterion (considering its eight neighboring pixels), it will be merged into the region
of the neighboring pixels and acquires the same label.

In order to be able to describe a blob, its boundary should be determined. Boundaries occur
at points where the rate of change of the image brightness is a local maximum, which can be
interpreted mathematically as the peaks of the �rst derivative or, also equivalent to the zero
crossings of the second derivative of the Image. By looping over the region pixels searching for
the local maximum, the region's contours can be extracted. Since we are searching for a solid
blob (corresponding to the light sources), the inner and open contours are neglected. The result
of this step is a vector of pixels, which surrounds the region candidates. Each region is considered
as a light source hypothesis. Considering the color information during the region grouping as
well as the boundary estimation allows to separate e�ciently the blobs of the tail and headlamps
even in partial occlusion situations.

To simplify the blob identi�cation process, a so-called blob-bounding box is determined. The
bounding box is an approximation to the shape of the blob in form of a rectangle. The rectangle
should contain all the blob pixels, but sometimes the rectangle is larger than the blob itself
because of the approximation process. Therefore, a similitude factor is calculated, which is the
ratio of the blob area to the bounding box area. This factor is considered in the classi�cation
process. If the ratio is < 2/3, it indicates that the blob lays diagonal in the bounding box, which
is a typical feature of the lane markers.
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4.1.2.3 Blobs Filtration

In order to increase the system stability and to reduce the processing time, the blobs resulted
from the previous process are �ltered against the following criteria.

� Small blobs under 3 pixel are not considered as relevant blobs because of the great e�ect
of the noise on these blobs and can lead to increase the false alarm rates.

� Large blobs possessing more than 2/3 of the image width are neglected, since it consumes
too much processing time, which may break down the system performance. Moreover, light
source with this large size, should be detected from the IDIS sensor and can be retrieved
afterwards via the data fusion unit. For more details refer to section 5.1.

4.1.3 Features Extraction

Features are distinct object properties which can be regarded as the signature of this object. If
these features are combined together in a form of probability (classi�cation), it should enable to
identify that object. The features can be in the form of geometrical measurements like shape,
size, object texture, or even object dynamic behavior. For each hypothesis resulted from the
previous procedure, a feature vector is extracted as will be shown latter in this section.

4.1.3.1 Geometrical Features

This type of feature describes the physical geometrical constraints of the blob itself and its
relationship to the other neighbor blobs in the image.

Relative Position to Image Center

In a typical driving situation without a large pitching activity, following hypotheses can be
assumed. Firstly, small blobs which represent far away light sources should appear near the
image center. Secondly, large blobs (near light sources) should appear at the right and left
boundary of the image. In order to obtain plausible values, the host vehicle yaw angle should be
considered in estimating the relative position.

Blob Area and Width

According to the pinhole camera projection model [FP02], the objects close to the camera possess
a large area in the image given byBaα 1

d and vice versa. Practically, inverse blob area has delivered
more reasonable values than using the area itself. The Blob Area can be simply calculated by
counting its number of pixels. By knowing the scaling factors of the camera sensor, the blob
area and width can be also estimated. In addition, combining these features with the relative
position in the image, large blobs such as tra�c signs can be recognized and �ltered.

Width to Height Ratio

This feature estimates the squeezing of the blob. An ideal projection of a light source on the
image should be a solid disk. However, due to the ambient and sensor noise, it appears almost
as rectangle which tends to be a square. From that, if the width �height, it indicates that the
blob can be a guiding re�ector. On the other hand, if width�height, the blob can be a squeezed
tra�c sign.
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Pairing Probability

The pairing feature provides clues about the presence of a twin blob. This is due to the fact that
all four wheeled vehicles must have at least left and right head and tail lights, thus observing the
corresponding two bright spots sharing similar characteristics in the image leads to increase the
probability that both of blobs are light sources and belong to one vehicle. Of course, this feature
is not applicable for two wheeled vehicles, therefore it can be considered as a secondary feature
to con�rm the classi�cation results. Since neither the physical width of the observed target nor
its width in image plan can be estimated, a look-up table was generated containing for each row
in the image the expected minimum and maximum vehicle width in pixels. Then, for each blob,
a Region Of Interest (ROI) with the maximum width is placed on the right and left of the blob.
Each blob exists inside the ROI is investigated and a similarity factor (SF) is determined. If a
twin blob is found, the distance between the two blobs is checked against the minimum allowed
width.

Re�ection Existence Probability

The re�ection detection of the headlights on the road, especially in rainy weather is very helpful
to �lter and reduce the number of irrelevant blobs. Also, this feature increases the probability
of the presence of the light source. To detect the re�ection, a vertical correlation between the
blobs is estimated. If the correlation is larger than a threshold, the lower blob is considered as
a re�ection and the higher blob is assigned as a light source with re�ection. The threshold is
depending on the position of the blob in the image and the maximum allowed roll angle of the
host vehicle. From the observations, it was obvious that the re�ection area is almost smaller
than the blob itself and should be found in the lower part of the image (i.e., under the horizon).
Therefore, these properties were used also to con�rm the re�ection existence.

4.1.3.2 Texture and Color Features

Di�erence of Color Histograms

The main idea of this feature is to �nd a �nite number of color histograms, which can represent
the various types of head and tail lights. Each histogram describes a category of light sources,
which are thought to exhibit internal cohesion and/or external isolation.

For generating the master histograms, more than 500 samples were collected. They include many
types of vehicles head/tail lights in various tra�c situations, such as highways, secondary roads,
and city streets with scenarios of dense tra�c and also with few vehicles. For each light source,
three 15 bins histograms were extracted (a histogram for each color channel). Practically, the
important information is found in the high bins of each histogram, therefore only the last high
5 pins pro channel were considered. Afterwords, the histograms are normalized to make them
size-invariant.

Computing the distance between a new entity and the 500 histograms - resulted from the above
mentioned step - is very time consuming. Thus, the histograms were clustered into subsets
using multi-dimensional k-mean cluster methodology [Mac67]. The k-means procedure can be
viewed as an algorithm for partitioning n samples into k clusters so as to minimize the sum of
the squared distances to the clusters center. The main advantage of the k-mean is the ability to
determine the number of target clusters. By iteration, it was found that 4 clusters have optimally
represented the headlights; however 9 clusters for tail lights were required. Then each cluster
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centroid has been saved as a master histogram. Thereafter, a modi�ed histogram intersection
algorithm was used to estimate the similarity factor between the target histogram (blob) and the
clustered master histograms. The standard algorithm of histogram intersection is represented in
[BTB05].

SFi(Master, Target) =

n∑
j=1

min(HM
i [j], HT [j])

max (
n∑
j=1

HM
i [j],

n∑
j=1

HT [j])

(4.1.2)

SF = max
i=1→k

{SFi(Master, Target)} (4.1.3)

where SF (Master, Target) is the similarity factor (if the blob histogram is identical to one of
the masters then SF → 1 otherwise SF → 0), n denotes the number of histogram's pins, j is a
histogram bin, k represents the number of master histograms, and HMand HT are the master
histogram and the target blob histogram, respectively.

Blob Brightness and Variance

A point light source is one of the forms of a point energy source that obeys the inverse square
law given by the equation (4.1.4). It propagates in the space in the shape of a sphere or part of a
sphere. Since the area of the sphere is related to the square of the radius of the sphere, which is
the distance from the point source, the illuminance decreases by the square of the distance from
the point source.

I =
S

4πr2
(4.1.4)

B =

u=x2∑
u=x1

v=y2∑
v=v1

Gu,v

|x2 − x1| |y2 − y1|
(4.1.5)

where S is the luminosity, I represents the illuminance at distance r from the point source, B
denotes the brightness, Gu,v is the gray value of the pixel, and {(x1, y1), (x2, y2)} represents the
diagonal corners coordinates of the blob.

The average of the gray values is used as indicator of the intensity of the light source acquired
by the camera. Since the headlights not always have the same strength and the dynamic range
of cameras is limited, it is not possible to use the light intensity directly to calculate the distance
between the host vehicle and the expectable targets. However, this feature can be used to indicate
roughly how far the light source can be. It might be worth mentioning that, the used camera has
delivered reasonable values for light sources which are more than 50 m away. All light sources
which are closer than this distance lay in the camera saturation level.

Based on the computed mean gray value, the variance (σ2) among the blob pixels was calculated.
The variance is used as a measure of spread of the pixels from each other.
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Estimating the mean gray value for all blobs is a heavy time consuming process, thus an inter-
mediate representation, known as the Integral Image algorithm [PM01], was used to provide a
fast alternative. The integral image, denoted by ii(x, y), at location (x, y) contains the sum of
the pixel values above and to the left of (x, y).

Figure 4.1.4: The Sum of Gray Values in Region A is Calculated as Follows:GA = L4 + L1 −
[L3 + L2]

ii(x, y) =
x∑

x′≥0

y∑
y′≥0

i(x′, y′) (4.1.6)

The intermediate image can be computed in one-pass over the original image using the following
recurrence relation:

s(x, y) = s(x, y − 1) + i(x, y) (4.1.7)

ii(x, y) = ii(x-1, y) + s(x, y) (4.1.8)

where s(x, y) denotes the cumulative row sum and s(x,−1) = ii(−1, y) ≡ 0. Given the integral
image, the sum of pixel values within a rectangular region of the image aligned with the coordinate
axes can be computed in only one step with four mathematical operations. For example, to
compute the sum of region A in Fig. 4.1.4, the values of the four corners have to be substituted
in equation (4.1.9).

GA = L4(x4, y4) + L1(x1, y1)− [L3(x3, y3) + L2(x2, y2)] (4.1.9)

The produced integral image will also be used latter in the situation analysis and threat assess-
ment section 6 to estimate the perceptibility probability.



42 CHAPTER 4. ENVIRONMENT PERCEPTION

Blob Homogeneity

As mentioned previously, the headlight can be considered as a point energy source. Consequently,
the center of the blob is always brighter than the area near its boundaries. However, tra�c signs
appear brighter on one side than the other due to illumination direction or the mounting position
on the road side. The homogeneity of the blob is calculated as a vector of normalized di�erences
between the centroid of the blob and the pixels on the boundaries for each side as given by:

Hn =

Xn
2∑

u=Xn
1

Y n2∑
v=Y n1

Gcentroid −Gu,v

|Xn
2 −Xn

1 | |Y n
2 − Y n

1 |
(4.1.10)

where H is the homogeneity, n denotes the number of region of interests (e.g., left, right, top,
and bottom), (X1, Y1) and (X2, Y2) are the coordinates of the diagonal corners of the region of
interest, and Gcentroid is the gray value of the blob-center-pixel.

For robustness and to reduce the e�ect of the applicable noise, 5% of the pixels around the center
were used to calculate the average value of the centroid pixel. Nevertheless, 10% of the boundary
pixels were used to calculate the homogeneity factor for each side.

Color Ratios

Color ratios in blob area are simple features, which are used to give a quick information about
the classi�cation tendency of the blob. The color ratios have been computed as follows:

Ratio =
Number of colored pixels

Blob area
(4.1.11)

� Red ratio: Red pixels indicate the probability of the presence of a tail light. A pixel is
considered red if the red component is dominant i.e., R

R+G+B > τr.

� White ratio: White pixels represent headlights or guiding re�ectors as well as white tra�c
signs. A pixel is white when the color components R+G+B > τw1 and R,G,B > τw2.

� Black ratio: In other hand black pixels give information about any texture in the blob. This
feature has been used to �lter white tra�c signs, since the information on the white signs
are almost written in black color. A pixel is black if the color components R+G+B < τb
and R,G,B > τb2.

The thresholds τr, τw1, τw2,τb1,τb2 can be experimentally determined.

4.1.3.3 Dynamical Features

This type of features depends on �nding correspondences between two or more sequential frames
to indicate the moving direction of the objects in the image. Thus it is useful to estimate this
feature after the tracking, because no extra matching is required anymore. Therefore, this feature
has been used to con�rm the classi�cation of moving objects and to increase its classi�cation
probability.



4.1. CAMERA OBJECT RECOGNITION 43

Lite Optical Flow

Optical �ow [FW06] is a well-known image processing technique to detect moving objects in
video stream. The main disadvantage of optical �ow is that it needs a huge processing capacity.
In this work, a simple optical �ow was implemented. Instead of �nding a correspondence for
each pixel in the blob, only the change in the blob centroid position between two frames was
computed in order to determine roughly the moving direction. This feature is aimed at detecting
overtaking vehicles with signi�cant high relative velocity, which are found on the side boundary
of the image.

4.1.4 Blob Tracking

Figure 4.1.5: Tracking Work Flow

This function is dedicated to track the blobs independent of their classi�cation. This gives the
opportunity to build a history for the blob, which will be used in the classi�cation module to
con�rm the classi�cation results. Since in this stage we are still in the image space and dealing
with colored objects, which have a speci�c color signature, a color template matching tracker
was used to track the objects. Template matching is a popular technique in computer vision,
which has been widely used in visual object recognition and tracking. The main drawbacks of
the traditional template matching methods are that they consume usually too much processing
time. This is due to the fact that, the template needs to be matched to every location in
the image to �nd a correspondence region[TT07], which makes it not suitable for real time
applications. In this thesis, a novel approach to accelerate the template matching is used. The
main computation saving is achieved by using an (α, β, γ) �lter to predict the blob position
in the next cycle, which limits e�ectively the searching window and improves signi�cantly the
processing e�ciency. Moreover, predicting the position increases the tracking robustness by
avoiding matching the blob to a wrong correspondence due to change in the blob appearance
features or when there are many other similar-looking blobs in the image.

4.1.4.1 The (α, β, γ) Filter

An (α, β, γ) �lter is a simpli�ed form of an observer for estimating and smoothing the states of
the system. It is closely related to Kalman �lter and to linear state observers used in the control
theory; however it does not require a detailed system model. The procedure is performed in two
steps as follows.
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Predict: Constant cycle interval is a major parameter for predicting accurately the future
states of a dynamic system. However, in image processing, the cycle interval varies depending
on the complexity of the situation. Therefore, a new methodology has been used to overcome
this problem. Instead of predicting the future states, the current states are predicted from the
previous ones as shown in Fig. 4.1.5. This means the cycle time will be estimated in each
cycle and used to predict the states in the current time. The direct measurements, which can
be determined in each cycle, are the x and y coordinates of the blob. While, velocity and
acceleration components vx, vy, ax, and ay can be observed. Then the state of the system can
be represented as the vector [x, y, vx, vy, ax,ay]

T . The prediction of states can be calculated as
follows:

x̂p(k + 1) = x̂(k) +4T · v̂(k) +
4T 2

2
â(k) (4.1.12)

v̂p(k + 1) = v̂(k) +4T · â(k) (4.1.13)

Update: In this step, the predicted values are used to estimate a �ltered status for the system
given by:

x̂(k) = x̂p(k) + α · [x̂m(k)− x̂p(k)] (4.1.14)

v̂(k) = v̂p(k) +
β

4T
[x̂m(k)− x̂p(k)] (4.1.15)

â(k) = âm(k) +
γ

4T 2
[x̂m(k)− x̂p(k)] (4.1.16)

where x̂, v̂, and â are smoothed x and y components of position, velocity, and acceleration,
respectively. The parameters x̂m, v̂m, and âm represent the measurements, while x̂p, v̂p, and âp
are the predicted states from the last cycle and 4T is the cycle time.

The values of {α, β, γ} are estimated experimentally depending on the system dynamics and
constraints, where 0 ≤ {α, β, γ} ≤ 1 . In general, large values tend to produce faster response
for tracking transient changes, while smaller values reduce the noise in the state estimates.

4.1.4.2 Template Matching

For each blob, a template in form of attributes vector is de�ned. Firstly, the bounding box of
the blob is divided horizontally and vertically into four parts and a 30 pin color histogram for
each part is extracted. After normalizing the resulting histograms, the pins values are added
sequentially in the template vector. In addition, the blob area, width, and height are inserted.

The target of the template matching procedure is to minimize the following objective function

O = w1

n∑
i=1

min(FC [i], F T [i])

max (

n∑
i=1

FC [i],

n∑
i=1

F T [i])

+ w2

∣∣AT −AC∣∣
AT

+ w3

∣∣W T −WC
∣∣

W T
+ w4

∣∣HT −HC
∣∣

HT
(4.1.17)
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where F T and FC are the color attributes of tracked blob and correspondence candidates, re-
spectively. Moreover, n is the number of template vector color attributes while, A, W and H
are the Area, Width, and Height, respectively. Weights w1, w2, w3, and w4 are used to adjust
the importance of the computed errors.

The dynamics of the host vehicle are modeled as noise added to the predicted position in form
of standard deviation σ. The σ value is adapted to the position of the blob in the image. When
a correspondence blob is found, the template of the new measurement is copied to the track
template in order to get an adapted template according to the updates in the blob status.

4.1.4.3 Tracks Management

This unit is responsible to mange the tracks attributes, such as assigning the identi�cation number
(ID), �ltering the track list from dead hypotheses, and to check the tracking plausibilisation.

4.1.5 Classi�cation

The major target of this function is to identify the generated hypotheses and to group them
systematically in categories. Since we are dealing with an open environment, there is not an
applicable technique that can be used to classify all the di�erent types of objects in the vehi-
cle's space. Therefore, the proposed classi�cation function deals with the identi�cation of three
categories of objects, namely tail lamps, headlamps, and re�ectors, which are the most probable
in the tra�c situations and may be considered as the relevant targets to our system. All other
objects are classi�ed as unknown.

4.1.5.1 Classi�er Selection

Selecting a classi�er is depending mainly on the objects to be classi�ed and the ability to mathe-
matically model the relationships between the object features to distinguish it from its surround-
ings. It is not always trivial (sometimes impossible) to derive the model governing the features
relationship, especially while dealing with di�erent types of objects in a complex environment.

Arti�cial Neural Networks (ANN) is one of the methodologies that have been used e�ectively
to model such complicated systems. The ANN estimates the relationships and the contribution
of each feature while recognizing the object via training samples. It tries to weight the input
features in a manner that gives the required output. In our classi�cation problem, a hardware
ANN classi�er implemented on FPGA chip called �CogniMem� from general vision company1 has
been successfully integrated in the recognition system. The CogniMem chip is a fully parallel
silicon neural network. It consists of a chain of identical elements that represent the ANN
neurons addressed in parallel and have their own �genetic� material to learn and recall patterns
without needing any synchronization to any supervising unit. A neuron is a reactive memory
which can autonomously evaluate the distance between an incoming vector and a reference vector
stored in its memory. If this distance falls within its current in�uence �eld, it returns a positive
classi�cation.

The CogniMem neural network features two non-linear models for the recognition: K-Nearest
Neighbor (KNN) and Radial Basis Function (RBF). In KNN mode, the notion of in�uence �eld
is discarded and the network always returns a response, which is the nearest category even if the

1http://www.general-vision.com
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Figure 4.1.6: RBF: The Space is mapped partially with certain zones being unclassi�ed (Black
Color). The zones with multiple colors are zones of uncertainty [Vis08].

Figure 4.1.7: KNN: The entire space is mapped with a single possible category per position
[Vis08].

shortest distance value can still be high since the zones of uncertainty are in-existent as shown
in Fig. 4.1.7. However, in RBF mode, which is presented in Fig. 4.1.6, the response can be more
re�ned. The classi�er delivers one of three possible classi�cation statuses: Identi�ed, Uncertain,
or Unknown. The RBF classi�er is especially suited for anomaly or novelty detection where the
classi�cation uncertainty is also important.

Another important feature of the CogniMem is the Automatic Adaptive Model Generator. This
feature enables the chip to build adaptively an ANN model without demanding the description of
the internal setup of the network, such as the number of hidden layers or the number of neurons
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to be used to solve the classi�cation problem.

Figure 4.1.8: Processing Time Comparison Between CogniMem and Traditional CPU

The signi�cant advantage of neuron arrangement into a parallel network is its capability to learn
and recognize a vector in a constant amount of time, independent from the number of neurons.
A second achievement is the ability to expand the size of the network by cascading chips. The
chip used in this project runs RBF model and has 1024 neurons performing 100,000 recognitions
of a 256-bytes vector/second [Vis08].

CogniMem is delivered as an embedded chip in an Image Recognition Board (IRB). The main
drawbacks of the IRB are that in the current implementation, the internal module can only inves-
tigate one region of interest per frame; moreover, in case of using the CogniMem video signature
extraction, a sub-sampling of the pixels in gray scale, only, inside the region of interest �ts in
the 256-byte feature vector. To overcome these problems, the all pre-classi�cation process, such
as hypotheses generation and feature extraction, are done in a software module running on the
system's processor and CogniMem is used as an external classi�er. In addition to the previously
mentioned advantage, CogniMem has the ability to interact with di�erent types of vision sensors
via extended digital I/O, which means if the pre-classi�cation process is implemented on the
chip; it would enable to produce a low cost camera object recognition system on the chip.

4.1.5.2 Preparing Features Vector

We commence by preparing the feature vector for classi�cation. The extracted features are nor-
malized to get size invariant features to guarantee the classi�cation generalization. By analyzing
the features, it was observed that a combination of features (especially the geometrical features)
obtained by the multiplication of their values deliver a new feature which in some cases can
signi�cantly help to identify the object. Therefore, the feature vector is extended with these
correlation values.

Since the CogniMem can only process a vector of bytes, consequently the normalized features
values are re-mapped between 0 and 255. In some cases, to represent the feature in a reasonable
accuracy, two bytes were used to describe the feature.
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Figure 4.1.9: CogniMem Architecture [Vis08]

4.1.5.3 Classi�er Training

For the training procedure, a set of 3000 feature vectors for the positive and negative samples
have been generated. The set is divided randomly into two categories: a training set which
includes 2/3 of the total samples while the other set containing the remaining 1/3 of the samples
for the testing propose. In order to accelerate the training process, the CogniMem Emulation
Kit (CMET) has been used. The emulation kit imitates all the functionality making it possible
to train the classi�er o�ine, and then the resulted knowledge base can be uploaded to the chip.
The property of save and restore the contents of the neurons has been used to �ne tune the
classi�cation reliability by undertaking further training procedure at any time. The internal
training of the CogniMem can be illustrated in the following example.

If a sample A is taught as headlight, the CogniMem neural network �rst identi�es if it recognizes
the sample. If only one category is recognized and it is a headlight, the network discards the
sample and does not take any action. If several categories are recognized, such as a tail light
or a re�ector, including the category headlight, the network does not commit a new neuron to
store the example, but instructs the neurons responding with a category other than headlight to
shrink their in�uence �elds. Otherwise, a new neuron is committed to recognize this sample.
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4.1.5.4 Primary Classi�cation

The classi�cation of a feature vector consists of evaluating if it lies within the in�uence �eld of
one or more neurons modeling the decision space. When a vector is broadcasted to the neural
network, all the neurons calculate their distance between the input vector and the prototype
stored in their memory. If the distance of a neuron is greater than its in�uence �eld, the neuron
excludes itself from the list of neurons recognizing the vector. Otherwise, it �res to indicate that
it recognizes the vector. The similarity range is expressed with the distance value. Its dimension
is a function of the type of data stored in the vector and the norm in use to calculate the distance.
Several neurons can recognize the input vector. The one with the smallest distance value has a
prototype in memory which is the closest to the input vector. Also, more than one neuron can
�re with the same smallest distance. If they have identical categories, it reinforces the con�dence
level of the recognition. If they do not have the same category, they point a level of uncertainty
in the recognition and potential ambiguities between certain categories. This uncertainty can be
considered by reading the categories recognized by the next �ring neurons, that is with the next
smallest distance value. The higher the distance, the less similarity between the prototype and
the input vector. If a neuron has a distance equal to 0, it means that the input vector matches
exactly to its prototype. As soon as the last component of the vector has been broadcasted to the
neurons, the ID (identi�ed) and UNC (uncertain) �ags are updated and written in the Network
Status register. The response of all the �ring neurons, if any, can be read as illustrated in Fig.
4.1.10.

Figure 4.1.10: CogniMem Vector Recognition Procedure [Vis08]

The classi�cation result and the uncertainty are saved in separate parameters set per category,
thus each hypothesis has four classi�cation parameters sets indicating its classi�cation tendency.
Depending on these parameters, the temporal classi�cation category is estimated in each cycle.

4.1.5.5 Secondary Classi�cation

This classi�cation step depends on a heuristic classi�er to use a secondary set of features, such as
the optical �ow and relative position to the detected lane, to con�rm the categorization results
of the primary classi�cation. Based on the result of this step and the result of the primary
classi�cation, an overall classi�cation probability is computed. In addition, for all blobs which
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have not been con�rmed from the tracker in the current cycle, a lost count is increased while the
classi�cation quality would not to be updated.

4.1.6 Vehicle Recognition

In this stage, only objects which have been con�rmed in two successive frames as a head/tail
light will be processed. Based on the classi�cation results and the pairing probability feature
computed in 4.1.3.1, the object will get a new classi�cation category; either a four-wheels or a
two-wheels vehicle.

Firstly, the pairing probability between each blob and its twin, which was assigned from the
previous cycles, is estimated and compared with the probabilities between the blob and the
others blobs in order to �nd its most suitable twin. Then a rough estimation of the distance
between the ego and the detected four-wheels vehicles is estimated using equation (4.1.18).

distance =
W3D · f · sx

W2D
(4.1.18)

where W2D is the width of object in pixels, f is the focal length of the camera in m, sx is camera
scaling factor in pixel/m, and W3D is the practical estimated value of the allowable distance
between the vehicle head/tail lights which is approximately 1.2 m.

The optics of the camera is assumed to be ideally planar without any distortion. Moreover, the
pixels of the camera are considered to be uniformly distributed on its opening angle. Thus, by
using equation (4.1.19) the object angle θ can be computed.

θ =
ϕ

2
− x · ϕ
Wimage

(4.1.19)

where ϕ is the camera opening angle, x is the x-position of the middle point of the vehicle in
pixel, and Wimage is the width of the image in pixels.

For smoothing the estimated values, an instance of (α, β, γ) �lter illustrated in section 4.1.4 has
been used. The estimated position is used to predict the position of the vehicle in the next frame.
Of course, the distance estimation is not applicable for the two-wheels vehicles, thus for those
objects the prediction is based only on the angle assuming that the change in angle between two
successive frames is not too large, so that it has been modeled as an added noise. The matching
between the twins from the previous cycle and current one is based mainly on the blob IDs which
were given by the blob tracking function and the prediction of the �lter, if available.

The main tasks of this stage can be summarized as:

� Building the object list which will be used later in the data fusion module.

� Managing the object status such as �ltration object list and occlusion handling.

� Determination of quality measurements such as existence probability.

� Estimating the pairing con�dence.
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4.2 IDIS Object Recognition

Figure 4.2.1: Functional Flow of IDIS Object Recognition Submodule

4.2.1 Building Object List

4.2.1.1 Extracting Object Information From CAN Messages

IDIS recognition and tracking unit delivers after every 60 ms a list of the detected objects and
information about their infrastructure in form of 23 CAN bus messages. Due to the limited
bandwidth of the CAN bus, the list contains information about the most important 10 ACC-
Objects per cycle [HLL05]. The supplied information includes the following data:

� Object tracking ID: This ID is unique and constant for each object as long as it is detected
from IDIS. If the object is lost, its information will be predicted for 6 successive cycles. If
it does not appear again, it will be deleted from the list and its ID will be freed. Then If
it appears again, it will get a new ID.

� Object position in car coordinate system, where x direction is the distance between the
object and the host vehicle, y the lateral position, while z is omitted since IDIS is a two
dimensional sensor and it cannot recognize the object altitude.

� Object width.

� Object longitudinal and lateral velocity.

� Object longitudinal acceleration.
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� Object lane: Based on prede�ned road geometry such as standard lane width, tracked
object trajectory, and legitimated driving behavior, IDIS tracking unit can reliably assign
a lane to each object. Therefore, the object can be assigned to own lane, right lane, left
lane, or roadside.

� Object life time.

� Road curvature.

� Number of estimated road lanes.

For each object, the above mentioned data are distributed on two CAN messages. Thus, all
objects CAN messages are collected in a bu�er, and then a cycle validation check is performed.
If this check is failed, all objects data in the bu�er for the current cycle is ignored, since it
contains a mixture of CAN messages from di�erent cycles.

4.2.1.2 Extending Object List using Raw Object Data

As mentioned previously in the system hardware description, IDIS is designed originally for
Adaptive cruise control assistance system, so that leading cars as well as the objects in its own
lane are the most important objects for the system. Which means in some situations, despite
there are vehicles or objects on the opposite direction, they will not be considered by the IDIS
recognition unit. In order to solve this problem, the raw data of the sensor are extracted and
�ltered to compensate the delivered object list. For each channel, IDIS can detect up to 3
targets, which means about 36 possible targets. Meanwhile, almost all objects on the vehicle
surroundings re�ect the IDIS infrared beams, therefore the raw measurement list should be
�ltered before further processing in order to reduce the processing time as well as to suppress
the possible noise. The �ltration procedure is based on the strength of the re�ected signal and
the detected position of the object.

Since IDIS already provides the data of 10 tracked objects, thus regarding their raw measurements
again is useless. A matching module to associate the raw data to their tracked objects has been
implemented as follows.

For each tracked object, a matching gate around the object is initialized. This gate depends on
the x, y position, relative velocity, and width of the object.

Gate = f(x, y, v, w) (4.2.1)

If a raw measurement is found in an object gate (by using the nearest-neighbor technique), it
is considered that it belongs to this object and is deleted from the measurement list. After the
matching process, all raw measurements, which have not been associated to any tracked object,
are regarded as possible objects candidates.

4.2.2 Object Classi�cation

In contrary to the vision sensor, the information delivered by IDIS about the shape of the object
is not su�cient to classify it precisely. Therefore, the classi�cation will depend mainly on the
dynamic properties of the object supported by its width and position [FDEW02].
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Figure 4.2.2: Velocity and Width Features of a Car (top) and a Pedestrian (bottom)

The history of the object plays also a vital role in the classi�cation process via observing the
behavior of the object for a long period of time, which leads to a more precise and robust result.
According to the expected object dynamics, the following classes have been de�ned.

� Leading vehicle: For large width and high velocity objects.

� Oncoming vehicle: For large width and high velocity objects in the opposite direction.

� Motorcycle (Tracked): For small width and high velocity objects.

� Bicycle: For small width and moderate velocity objects.

� Pedestrian: For small width and low velocity objects.
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� Unknown: For all stationary objects.

A neural network classi�er like the one illustrated in section 4.1.5 was used to solve this classi�-
cation problem. The following set of object's features was used to train the classi�er:

1. Absolute and Relative longitudinal velocity: Due to the ego velocity error, estimating an
accurate absolute velocity of the object is not possible, especially when the host vehicle
drives with high velocity. Thus, the relative velocity is considered as a measure of the
allowed error to judge if an object is stationary or not.

2. Absolute and relative lateral velocity: Small object, for which the lateral velocity >�>
longitudinal velocity, tends to be a pedestrian crossing the road.

3. Absolute acceleration.

4. Width.

5. Position (x,y).

6. Maximum and minimum absolute velocity.

7. Average of velocity from the object history.

Another set of features, which can be regarded as a secondary features, are used to con�rm or
to append the classi�cation results of the neural network. These features are:

1. Object lane: Position on the lane can be used to con�rm the classi�cation results, for
example objects classi�ed as oncoming vehicle should be found on the left lane.

2. Moved and stopped �ag: It is a �ag to indicate that the object has been already classi�ed
as a movable object but it has stopped now, therefore the object keeps its last classi�cation
category.

3. Classi�cation con�dence based on the object age and the �uctuation rate of classi�cation
category: If the classi�cation con�dence is larger than a certain threshold, the object is
considered as robust classi�ed and it should not be classi�ed via the neural network in the
next cycles.

4.2.3 Road Classi�cation

The driving road is classi�ed as a straight or a curved road depending on the estimated radius of
the curvature [FL02, FDW02]. If the radius of curvature determined by IDIS is approximately
10000 m the road is considered to be straight, otherwise the host vehicle is driving in a curve. The
curvature estimation depends on the yaw rate and steering angle of the host vehicle. Based on
the road curvature and the number of lanes, a model of the road is initialized. Then by analyzing
the classi�ed object trajectory and its distribution on the road, the driving path curvature and
lane association are veri�ed.
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Figure 4.2.3: Infrared Beams of IDIS Sensor, Photo: Hella

4.2.4 Tracking

As mentioned before, IDIS uses 12 �xed infrared emitters to illuminate the tra�c space in front of
the vehicle. For each emitter, there is a dedicated receiver which is turned on simultaneously with
the emitter. The gap between two successive emitters or receivers, as shown in Fig. 4.2.3, is one
of the drawbacks of such object detection systems. Due to such a gap, IDIS cannot continuously
detect small objects like a pedestrian crossing the road, which means crossing over the infrared
channels. Therefore, an extra local object tracking dedicated to solve that problem has been
developed. The position and velocity of the missed objects which exist in the gaps between the
beams have been predicted using kalman �lter (for technical details refer to section 5.2). Since
IDIS objects are already tracked, thus only relevant objects such as pedestrians and small objects
have been regarded as relevant to the local tracker. In each cycle, the small objects in the driving
lane or the ones which move with a high lateral velocity in relation to their longitudinal velocity,
are extracted from the IDIS object list and saved in another intermediate list. The intermediate
list (IL) is matched with the local tracker object list based on the tracked object ID. The state
can be expressed as follows.

X(k+1) = AXk (4.2.2)
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where ∆T is the cycle time (60 ms) and k refers to the cycle index. The states vector [x, y, vx,
vy, ax, ay] represents the position, the velocity and the acceleration components, respectively.

The number of cycles n, in which the object should be tracked in absence of new physical
measurements, depends on its position and relative lateral velocity as shown in equation below.

n ' x · tan(θ)

vy · 4T
(4.2.4)

where θ is the gap angle (θ ' 0.5°).
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4.3 Vehicle Detection Via Car-to-Car Communication

Figure 4.3.1: Functional Flow of Car-to-Car Communication Submodule

The Car-to-Car Communication function is used to decode the messages received via the wireless
module to extract information about the target vehicle. The function starts by estimating the
relative position d of the target and the orientation angle θ to the host vehicle. If the target is
not in the illumination range of the host vehicle headlamp, its data will be neglected, for example
when the target is behind the host vehicle or outside the azimuth angle of the headlamp. Then,
the relative driving direction β is estimated to determine if the target will be a�ected by the
ego headlamp. The mathematical equations to estimate the above mentioned parameters will be
presented in the next section.

Figure 4.3.2: Coordinates Exchange using Car-to-Car Communication
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4.4 Lane Estimation using GPS and Digital Maps

GPS accuracy depends on the quality of the pseudorange and carrier phase measurements as well
as the broadcast navigation data. Where the pseudorange time is equivalent to the di�erence
between the receiver clock reading when the signal (i.e., a particular code phase) was received and
the satellite clock reading when the signal was sent [ZJ95]. Meanwhile, carrier phase measurement
is another technique used by the GPS receiver to track the position of the satellites by measuring
the wave length, which is the period of the carrier frequency times the speed of light [Hon07].
There are a number of sources of error that corrupt these measurements, such as:

� Atmospheric interference: The ionosphere and the troposphere layers, which extend
more than 1000 km over earth surface, may cause de�ection in the GPS signal and thus a
time delay in receiving or transmitting the GPS signals.

� Trilateration errors: GPS receivers estimate the position using the trilateration concept,
which measures the distance between di�erent satellites and then intersect the spheres to
get the point of intersection that lies on the earth. Errors may arise when reading from
more than two satellites are not available or when the available satellites lie near each
other, which may produce a surface of intersection.

� Re�ections errors: The GPS signals may re�ect from the buildings and other objects
producing a time delay in receiving the signals.

� Satellite clock errors: The satellites contain atomic clocks that control all onboard tim-
ing operations, including broadcast signal generation. Meanwhile, the GPS uses commercial
quartz clock for synchronization. However, these types of clocks are not exact and possess
a drift with temperature variation. This temperature a�ects the correct estimation of the
distance, and thus the position will be assigned wrongly using trilateration technique.

In order to show the deviation in the street coordinates, two sets of tests were recorded from a
moving vehicle extracted from the Katastar maps and the second recorded from the GPS receiver.
The tests were repeated along the streets for di�erent vehicle's speeds and a great deviation is
observed from the real street path as shown in Fig. 4.4.1.

Figure 4.4.2 shows the estimated deviation in meters of 4 di�erent sensors. As can be noticed,
the GPS deviation varies in an unpredictable matter. In the next section, an approach of digital
map data matching will be presented to enhance the GPS positioning to be used in the threat
and situation assessment.

4.4.1 Creating of the Digital Map

Mapping GPS coordinates on a digital street map will enhance the position accuracy of the GPS
receiver. It is assumed that the host vehicle lies on the street, thus the lateral bias in the GPS
signal will be minimized. In the context of this work, a digital map has been manually constructed
to cover all the routes in which the tests should be performed. The maps are constructed by
using a very precise Di�erential GPS (DGPS) with a maximum 10 cm deviation. With the help
of these maps, GPS measurements can be directly assigned to the center lines assigned by the
digital maps. The system searches for parallel routes, if they exist, a perpendicular line will be
projected to the nearest lane lines center, as shown in Fig. 4.4.3. However, there are far more
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Figure 4.4.1: GPS Recorded Data From a Moving Vehicle

possibilities for this method. For example, if the road has two lanes, then the question arises
that to which lane line should the GPS position be assigned.

Figure 4.4.3 shows two lane center lines with a possibility that the real position lies on one of
them. The easiest way to solve this dilemma is to correct the GPS position with the nearest
lane line, neglecting the possibility that the vehicle can lie on the other lane line. The correction
of this assumption can be tested in the data fusion algorithms by checking and comparing the
constructed lane lines and the detected ones from the vision system, as has been introduced
in section 4.1.1. Nevertheless, lane lines matching algorithms can provide an optimum way to
assign the vehicle rightly to its corresponding lane line.

4.4.2 Driver Path Extraction using Digital Map

In the last section, we provided a brief illustration of the idea behind using the digital map in
GPS position enhancement. Moreover, digital maps can also be used to extract the information
of the leading driving path. First, a data base has to be built to include information of the
leading path, as depicted in Fig. 4.4.4.

In order to reconstruct the driver path from the digital map, a search region is de�ned to extract
the GPS points in the locality of the reference point. The extracted region is used to minimize
the processing time performed in correlating the GPS data. As stated earlier, the enhancement
algorithm searches for parallel lane lines, which means that the digital points should be �rst
transformed into the vehicle's coordinates to detect which lane lines are parallel to the vehicle. To
derive the distance between the reference point and a digital map point, the following procedure
is followed.

The latitude angle is converted into kilometers. The angle should be small so so that the function
can guarantee a good approximation. Figure 4.4.5 describes �x� to calculate the ellipse arc. The
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Figure 4.4.2: Deviation in GPS Tests in Meters

Figure 4.4.3: Digital Map Matching

replacement of the ellipse by a circle (with the radial distance of the ellipse to the appropriate
place), provides a su�ciently precise approximate result. This applies, however, only for very
small angle. First, the radial distance r of the ellipse is calculated, as a function in the latitude
angle (α), using the following equation:

r (α) =

√
(a2 cosα)2 + (b2 sinα)2

(a cosα) + (b2 sinα)
(4.4.1)

where a and b are the vertical and the horizontal earths radius, respectively. The ellipse shown
in Fig. 4.4.5, represents the distance between the GPS reference point (host vehicle) and one of
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Figure 4.4.4: Bu�ering Digital Map Point

Figure 4.4.5: Distance Between Two Points

the digital map points. So, the longitudinal di�erence can be calculated using the equation:

X =
(Lon− Lonref ) 2π R cos (2πLatref/360)

360
(4.4.2)

Analog to the above equation, the di�erence in Latitude can be converted into km using the
equation:

Y =
(Lat− Latref ) 2π R cos (2π Latref/360)

360
(4.4.3)

In equation (4.4.2), X is determined by the subtraction of two longitudinal values. The same
happens for Y in (4.4.3). However, the section of Y is determined by the subtraction of the two
latitudes results. The distance can therefore be extracted using the statement of Pythagoras as
follows.

Dist =
√
X2 + Y 2 (4.4.4)

The X and Y mentioned above are the coordinates of a system's origin determined by the
vehicle coordinates. These coordinates still need to be referenced relative to the direction of
host vehicle. The new reference system has to be rotated by an angle γ, which is the angle
resulted from subtracting the angle between the two GPS points and the COG angle of the
host vehicle. Considering the angle is obtained using the subtraction procedure, the following
conditions should be met:
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� If the angle γ is less than -180 degrees, 360 degrees will be added to it, i.e.,γ = γ + 360.

� If γ is greater than 180 degrees, then 360 degree should be subtracted from it i.e., γ = γ − 360.

These conditions result in a negative angle (from 0 to -180 degrees) for the right side and a
positive angle (from 0 to 180 degrees) for the left side of travel. The X and Y can be rede�ned
due to the new system's origin as:

Y = r cos γ (4.4.5)

X = −r sin γ (4.4.6)

Figure 4.4.6: GPS Correction Algorithm using Digital Map

Figure 4.4.6 describes the process of correcting the GPS measurements. The process can be
explained as follows.

1. First, the proposed algorithm tries to identify a parallel track to the reference point obtained
from the GPS measurements. As a rule, there are two points that ful�ll such a property.
A close observation of GPS measurement reveals that the extracted coordinates lie within
two control points from the digital map inside a distance of 1.1 m.

2. If none of these points are found, the process begins again to search for the nearest coor-
dinates, but this time the distance greater than the previously stored value is assigned. If
two points have been found, then a line connecting them is examined if it is parallel to the
driver travel direction.
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3. If no parallel path has been found, then the current GPS coordinates are discarded and a
new coordinate from the last one, direction, and speed is calculated based on the estimated
distance from the last recorded GPS measurements as follows.

Dist = velocity × 1 sec. (4.4.7)

X =
(Dist× sinCoG) 2π R cos (2π Latref/360)

360
(4.4.8)

Y =
(Dist× cosCoG) 2π R cos (2π Latref/360)

360
(4.4.9)

Lonnew = Lonref +X (4.4.10)

Latnew = Latref + Y (4.4.11)

As the distance can be estimated from the average speed of the vehicle multiplied by the
time of the last GPS measurements, which is 1 sec (the update rate of the GPS receiver).
X and Y transforms the distance into longitudinal and latitudinal, which should be added
to the last GPS measurement to extract the new position.

4. If the �rst lane line has successfully been found, then a search will be performed to �nd
the next lane lines. Assumption is �rst made that the second lane line is parallel to the
driving direction. If not, then we may consider the case of lane changing.

4.4.3 Lane Departure Detection

As a crucial condition for Lane changing detection, the position of the vehicle has to change
relative to the parallel lane. This behavior can be examined by recording the change in the CoG
angle, as can be noticed from Fig. 4.4.7.

Figure 4.4.7: Lane Departure Detection Criteria
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The lane changing can be detected, if the CoG angle is changed more than 3 degrees. This
action will fail the digital map matching processes, which were described in Fig. 4.4.6. Thus the
GPS position will be updated only by the distance covered by using equation (4.4.7). Since, the
accuracy of the GPS measurement is low, the lateral bias may be great, so the initial assumption
of the locating lane would be wrong. However, another consideration is made to actualize the
vehicle's position in a way that the assumed position will not contradict with the road map.

Figure 4.4.8 shows a successful detection of a lane departure maneuver.

Figure 4.4.8: Detection of a Lane Departure Maneuver



Chapter 5

Sensors Data Fusion

5.1 Object Data Fusion

Generally, Data fusion is de�ned as a multilevel multifaceted process dealing with the automatic
detection, association, correlation, estimation, and combination of data as well as information
from single and multiple sources. From another view, data fusion represents the techniques
to gather and combine information from di�erent allocated sensors to provide a generalized
knowledge about the sensed environment. The resulting information is more satisfactory than
the one extracted from the raw data of each sensor [HM04].

Other models such as Bowman model [BSW99] express data fusion between the sensors as a
process of estimation and prediction of an entity based on the measurements made from the
detection algorithms of each sensor.

Figure 5.1.1: Bowman Model

Figure 5.1.1 shows the proposed illustration of data fusion according to Bowman model. The
model divides the data fusion into a series of sub-processes.

� Detection Phase: In this sub-process, measurements from the sensors are provided to
the data fusion.

� Update and Predict Phases: These two sub-processes constitute the main parts of the
tracking algorithms. In the tracking process, the objects can be considered to have two
distinctive state vectors, namely kinematics (e.g: position, velocity, etc.) and classi�cation
(which represents the identity of the detected object, based on the processing algorithms
of each sensor). In addition to the issues of the measurements and the number of the
detected objects, each sensor has a degree of uncertainty associated with it. So, instead

65
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of representing the measurements with deterministic values, a probabilistic term will be
included to describe these uncertainties.

� Association Phase: It is de�ned as the process of correlating sensors data to each other.
From the previous phase, each Object has been assigned to a tracker, which mainly predicts
the most probable kinematic states in the next cycle (i.e., the prediction phase). This
prediction is essential to correlate the new measurements from each sensor to the previous
ones.

� Hypothesis Generation and Management Phases: When multiple objects from dif-
ferent sensors co-exist within a certain region, a data association sub-process cannot cor-
relate these objects correctly, unless hypotheses are generated as key elements of �nal
integration process. As mentioned previously, the Bowman model is only a simpli�ca-
tion of the data fusion process. In the next sections, detailed illustrations of the network
topology, communication models, and data association algorithms will be introduced.

5.1.1 Architecture

The main issue in designing a data fusion system is to select an appropriate architecture [Ess08].
The choice of this architecture is not arbitrary, as it depends mainly on many factors, such as

� The type of sensors used.

� The nature of the observed states.

� Finally, the type of the application in which data fusion will be applied.

The design choice a�ects the quality of the fused system as well as it determines the algorithms
or techniques that may be implemented if an architecture is adapted for use.

Figure 5.1.2: Joint Directors of Laboratories Model
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Figure 5.1.2 shows the basic functional architecture, known as the Joint Directors of laboratories
(JDL) model, which is presented by Hall [HM04]. The diagram illustrates the functions of the
main sublevels of the data fusion algorithms. As preprocessed sensor data is provided to the
Data Fusion Unit (DFU), it will be processed within the following levels:

� Level 0 (Preprocessing Phase): Deals with the synchronization and alignment of the sen-
sors data, which means transforming sensors data into a common spatial reference frame
taking into consideration the time di�erence between the measurements made by the cor-
responding sensors.

� Level 1 (Object Re�nement): It tackles the problem of correlating observations from mul-
tiple sensors to the targeted objects. Data association can simply be described as merging
two observations into one, as if they describe the same object in the real world. Preliminary
fusion is a subfusion process, such as the one used in estimating the geographical vehicle
position by integrating the GPS data and the onboard vehicle dynamics sensors as will be
illustrated in section 5.2, or in estimating lane and road geometry to be used later in Level
2 and 3 in the data fusion algorithms.

� Level 2 (Situation Assessment): It is the high level of data fusion. This level aims to
analyze and understand the entities relationships with each other and with the road geom-
etry. This process involves recognition of patterns and context-based reasoning based on
pre-described knowledge basis.

� Level 3 (Threat Assessment): It involves interpreting a situation from the consequences
point of view. This level assesses the potential threats of the situation. Alternative hy-
potheses are generated and projected into the future to determine the likely courses of
action for engagements as well as the consequences of these courses of action.

Although, the JDL Model is a generalized functional level illustration of the data fusion process,
there exists another categorization of the data fusion unit based on the hardware and software
architecture. The basic architectures, presented by Hall, describe the data �ow and the commu-
nication model between system nodes. According to Hall, three basic hierarchical representations
describe the interrelation between system's nodes. In the following, these architecture are brie�y
explained.

� Centralized Architectures

Based on this architecture, a central processor unit is fully responsible for collecting mea-
surements from sensor nodes and processing as well as interpreting the obtained informa-
tion. Since, the central processor is fully aware of the information from each sensor, tracking
and association algorithms can be performed once as shown in Fig. 5.1.3. Consequently,
it reduces the errors in the classi�cation, since the results can be validated from other
sensor's raw data. Centralized architecture may also include local fusion center to decrease
the amount of tasks performed by the central processor. Ine�ciencies of this method can
occur due to the large amount of data that needs to be transferred in real time between
the sensors and the central processor. In addition, all the sensors data should have the
same identity or measure the same physical quantity which is suitable to combine the data
of sensors like lidar, radar, and Laserscanner.
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Figure 5.1.3: Centralized Architecture

� Decentralized Architectures

In contrary to the centralized architectures, decentralized architectures o�er better ways
to overcome some of the problems and limitations associated with centralized hierarchy
[HM04]. In this approach, the preprocessed sensors data serves as the inputs to the DFU
and the sensors may be connected to each other to provide communication between several
sensor nodes. In addition, the performance will not be dependent on any particular central
processor, which means that system communication is robust against sensor failure and
modular.

� Hybrid Architectures

It is a combination of centralized fusion and decentralized fusion. The hybrid architecture
keeps all the advantages of the centralized architecture and additionally allows the fusion
of tracks coming from individual sensors in a sensor level fusion process. This type of
architecture is adopted to design the data fusion of the current system due to several
factors that will be discussed in detail in the next sections.

Figure 5.1.4 shows the information �ow and the sequence procedures, which the data fusion
algorithms go through. According to the proposed architecture, each sensor process its data
before reporting it to the DFU. As in camera and IDIS modules classi�cation and tracking
algorithms are performed to the measured raw data and then a tracked objects list is reported
to the DFU. On the other hand, GPS, C2C, and vehicle sensors units send their raw data to
the DFU instantly. All the reported data are saved in the shared bu�er within the DFU before
applying any algorithms.

Considering the fact that the sensors work in an asynchronous manner; the adapted commu-
nication model seems to be the optimal solution in handling large amounts of sensor's data.
Furthermore, sensors nodes do not communicate with each other, rather they communicate only
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Figure 5.1.4: Data Fusion Process Diagram

with the DFU. This communication model makes the system robust against sensor's failure
such as (node's communication failure). In this case, the DFU tries to resynchronize with the
faulted node; meanwhile it optimizes the matter in which it handles the available data from the
corresponding available sensors.

The functionality of the DFU is considered to be responsible mainly for the following tasks:

� Synchronizing the sensors data: In this task the communication protocols stamp the sensors
data and resynchronize the faulted nodes as will be shown in the next section..

� Correlating the data to a uni�ed spatial reference: This process is also referred to as data
alignment, which will be described in section 5.1.3.

� Update and track objects: The tracking algorithm is essential while associating the sensors
data. It will be explained in section 5.1.4.

5.1.2 Communication Model

The communication between DFU and the sensors submodules is performed using a traditional
Client-Server relationship based on the User Datagram Protocol (UDP). The model synchronizes
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the data packets and performs di�erent con�guration tasks based on the sent messages between
the system nodes. Depending on these messages identi�ers, the corresponding node will develop
a certain action, as will be described later in this section. Synchronization deals with timekeeping
matter between di�erent components of the system. It can be thought as the need of organizing
the systems di�erent components. We consider the problem that the DFU receives a data
packet from a sensor node. Before processing the received data, certain questions should �rst be
answered, e.g., what was the time when the raw data is recorded?, which time reference has the
recording sensor?, and is the data synchronized with the other received data packets from other
sensors?.

Figure 5.1.5: Time Delay Between Sensors Node and DFU

Figure 5.1.5 shows the time delay of a data packet from the time when the raw data was received
by a sensor node to the time when the packet is received by the DFU. As shown, raw Data
is recorded by the sensor node, preprocessing algorithms are performed, and then the data is
received by the DFU with a network-imposed time delay. This time scale shows the main delays
of the data till it has been received by the DFU, but the question remains; which time reference
the sensor has? In the work described by Lamport [LMS85], di�erent synchronization schemes are
mentioned that have been used in di�erent sensor networks. The schemes are brie�y summarized
as follows.

1. Peer-to-peer schemes: They constitute traditional synchronization schemes, which as-
sume the existence of a global timescale usually realized by a master clock.

2. Explicit schemes: Most of those time synchronization schemes aim to keep the clock
synchronized at all times. Applications assume that they can query the clock at any time
that is synchronized, which means that applications can perform an explicit conversion to
another timescale.

3. Virtual time schemes: This algorithm avoids the need of an explicitly synchronized
clock. It uses a virtual time, as each sender will include in the sent message the time stamp
of the sender, thus the receiver node can reset its local clock accordingly by using a value
greater than the value in the received message due to the propagation delays.

In order to solve the synchronization problem, a hybrid scheme of virtual time and explicit time
is adapted. Camera and IDIS modules are explicitly synchronized with the DFU, which means
that they reset their clock to match that of the DFU timescale. However, GPS and C2C module
cannot be re-synchronized, as they are hardware con�gured to send their own time only. So, it
is the task of the DFU to adjust its clock according to the time reported by GPS and C2C. The
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time Synchronization process is performed by the DFU during the system's initialization in the
following sequence:

� The server initiates connection to di�erent sensors by sending a message which contains
the main server local time.

� Clients receive that message and set their time to match that of the server and send their
time back to the server.

� Server then receives every node's local time and calculates the delay over the network.

� Server orders the sensor nodes to begin sending their data packets.

� If an out of synchronization error is reported due to any unexpected time di�erence between
the time of raw data arrival and the receiving time at the DFU, the server re-initiates the
synchronization process.

Figure 5.1.6 illustrates the synchronization process. Firstly, each sensor stamps the raw data
with its local time. DFU receives the data asynchronously from the sensors nodes (here only
camera and IDIS are shown) and pushes them in their corresponding data bu�er. Each received
cycle is stamped by the receiving time at the DFU.

Figure 5.1.6: Time Stamping Process

The task of the synchronization unit is to check the time di�erence between the received time
of the raw data and the arrival time at the DFU. This time di�erence is an indication to the
processing time, which the sensor module consumes in processing its raw data, and the time delay
in the network. In case that the time di�erence exceeds the thresholds, an out of synchronization
error will be reported to the DFU to re-initiate the synchronization process. As mentioned earlier,
the interaction between server and client nodes is achieved through the packets of data containing
a message number in its header. Table 5.1 shows the messages identi�ers which are used in the
interaction process.
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Table 5.1: Messages of The Client and Server Listening Threads

5.1.3 Spatial Alignment

Spatial alignment is a method of referencing di�erent data from di�erent sensors into a uni�ed
scheme. IDIS measures the position in X, Y , Z where Z = 0. The vertical measurement angle
of 3◦ is not provided by the IDIS measurements and it cannot be neglected as it would produce
errors in the alignment and also in the association process. So, this angle can be estimated using
lane visionary recognition to get the tilted angle of the ground plane, or also from the Altitude
values of the leading road which are provided by the digital map.

Camera gets projected coordinates of the object (Projection of X, Y , Z of real world into x, y
image plane). Many Researchers adapted the approach of extracting theX, Y , Z dimensions from
the image by using either set of stereo cameras or more than two cameras [Zha00]. Each Camera
captures the scene's image from a di�erent angle and then the images are correlated to each other
to get a 3D geometry of the observed objects. It should be noted that all the cameras should
be calibrated and �xed at known distances. Maehlisch et al.[MDLR07a, MDLR07b] described a
method to �nd the intrinsic parameters of the IDIS by capturing the re�ection positions of the
IDIS beams on a distanced wall in the image domain. Afterwards, several iterations should be
performed to �t IDIS beams with the image plane.

As stated earlier, IDIS measures the distance of the detected objects relative to the host vehicle.
Since, the main aim is to correlate the image and IDIS data, IDIS data can easily be projected
to the image plane by using the projection matrix of the camera plane [SRF+08]. To form such
a matrix the pinhole camera model [FP02] is used. The camera projection matrix is derived
from the intrinsic and extrinsic parameters of the camera. It is often represented by a series
of transformations, e.g., a matrix of camera intrinsic parameters, a 3x3 rotation matrix, and a
translation vector. Figure 5.1.7 shows the relation of the real world and the camera coordinates,
where external parameters represent the rotational as well as the transformational matrices
between the two coordinates.

The conversion from the world coordinates system to the camera coordinates system can be
performed with the following equation.
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Figure 5.1.7: Coordinates Systems

 xc
yc
zc

 = M


Xw

Yw
Zw
1

 (5.1.1)

M = SPRzRyRxT (5.1.2)

where {xc, yc, zc} are the camera coordinates and {Xw, Yw, Zw} denote the world coordinates.
In equation (5.1.2) , M is the product of scaling (S), perspective (P ), rotation {Rz, Ry, Rx}, and
transformation (T ) matrices.

The camera coordinates should not be confused with the image coordinates, as the camera
intrinsic parameters describe the transformation from the camera coordinates into the image
plane. Image coordinates can be obtained from camera coordinates by using the next equation.

 u
v
1

 = A

 xc
yc
zc

 (5.1.3)

A =

 fku 0 uo
0 −fkv vo
0 0 1

 (5.1.4)

where {u, v} are the image coordinates, A is the intrinsic parameters matrix, the (uo, vo) coor-
dinates is the center point of the image, {ku, kv} represent the scale factors of the camera, and
f is the focal length.

The Matrix M in equation (5.1.2) should be modi�ed to match the installation setting between
the IDIS and camera as follows.

Rz =


cosφz − sinφz 0 0
sinφz cosφz 0 0

0 0 1 0
0 0 0 1

 (5.1.5)

where φz is the rotation angle around the z-axis and Rz is the correspondence rotation matrix.
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Similarly, the rotation around y-axis and x-axis are given by the equations:

Rx =


1 0 0 0
0 cosφx − sinφx 0
0 sinφx cosφz 0
0 0 0 1

 (5.1.6)

Ry =


cosφy 0 sinφy 0

0 1 0 1
− sinφy 0 cosφy 0

0 0 0 1

 (5.1.7)

where φx is the rotation around x-axis with 180◦+ tilted angle of the ground plane and φy is the
rotation around y-axis with 180◦.

In addition, the translation matrix should be included. This is due to the reason that the IDIS
is mounted on the head of the vehicle, whereas the Camera is beyond it with 1 m.

T =


1 0 0 0
0 1 0 −1
0 0 1 0
0 0 0 1

 (5.1.8)

The last column in the above transition matrix (T ) represents the transition of the camera view
point in x, y and z arranged from the �rst row. After constructing the M matrix, IDIS data can
be projected in image plan using the equation: u

v
1

 = AM


Xw

Yw
Zw
1

 (5.1.9)

5.1.4 Data Association

In a data fusion problem, we commence by de�ning a state of nature which we are interested
in. Such a state may be a description of the spatial location of an object, its identity in terms
of attributes, a complex dynamic state, or simply a single numeric quantity. The objective is to
infer the true state based on, often incomplete and sometimes con�icting, information obtained
from a variety of sources and to optimize the way in which such information will be handled.
Data association addresses the problem of assigning many observation pairs (if any) to each
other, indicating that the observations describe the same entity.

In general, the sensor unit consists of two main parts, namely the sensor element which measures
the physical entity and the signal processing unit which ampli�es as well as records the measured
entities. Additionally an embedded Interface System (IS) is needed to provide the reading to the
outside world as shown in the Fig. 5.1.8.

Sensor can be regarded as a system whose output can be described as a function of the following
terms:

Entity-Name (E): This includes the name of the physical property which was measured by the
sensor and the units in which it is measured. Often, the units are de�ned implicitly in the way
the system processes the measurement value.
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Figure 5.1.8: Overview of Sensors Elements

Time Instant (t): This is the time when the physical property was measured. In real-time
systems, the time of a measurement is often as important as the value itself.

Measurement (y): This is the value of the physical property measured by the sensor element.
The physical property may have more than one dimension; therefore it will represented as a
vector y.

Uncertainty (∆y): This is a generic term and includes many di�erent types of errors in y,
including the measurement errors, calibration errors, loading errors, and environmental errors.
Some of these errors are de�ned a priori in the sensors data sheet and others may be calculated
internally (if the sensor is capable of validating its own measurements).

Variable of Interest (H): This variable should be distinguished from the measurement y, as
it is not directly observed rather must be inferred from the measurements. For example, this
variable can represent identity.

Symbolically, the task of inferring H is interpreted as estimating the posteriori probability,
P (H = θ|y,E), where θ represents the true value of the variable of interest H and y =
(yt1 , yt2 , . . . , ytN )T denotes the vector of N sensor measurements. The posteriori probability
density function (PDF) P (H = θ|y,E) can also be extended to include the uncertainty ∆y as:

P (H|y,E) =
P (y|H,E)P (H|θ,E)

P (y|E)
(5.1.10)

where:

A-Priori pdf P (H|E): This is a continuous probability density function which describes our
a-priori beliefs about H. This pdf is related to the a-priori information through the tracking
management by imposing certain weight on the hypothesis, indicating that the old object from
the old cycle still exists within certain range.

Likelihood function P (y|H,E): This is a continuous function which describes how the raw
sensor measurements y depend on the true value H.

Evidence P (y|E): Which represents the sensor reliability. This is a discrete probability distri-
bution which speci�es the a priori reliability of the sensor. In the simplest model, there are two
states: {λ0, λ1}. Here, λ0 denotes fault-free operation and λ1 denotes faulty operation, where
ordinarily P (y|E = λ0) = 1. The above equation describes the probabilistic belief of the mea-
surement for a given sensor. Now we consider the problem of correlating multiple measurements
from multiple sensors.
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In the work described by Hofmann [HRD01] on Radar-Vision Data fusion, the hypothesis region is
constructed for each detected object. The region indicates the area where the object should exist
arbitrary at any position in the next measurement cycle. If these hypotheses are not updated
for a number of sequential cycles, hypotheses should be removed from the system and regarded
as false measurements. In general, constructing hypothesis regions are dependent on the range
of the sensor itself (as far away objects may be confused with the noise of the sensor). Hence a
con�dence factor for each measurement should be included in the assigning process. By assuming
a set of n sensors measurements [y11, y12, y13 . . . y1n] from sensor A and [y21, y22, y23 . . . y2n] from
sensor B, the state model can be used to relate the measurements to state vector X, whose values
are recorded in discrete times as follows.

y = M ×X (5.1.11)

where M is the observation matrix and X is the states vector X = [x1, x2, .....xn].

Here, each xb (b = 1, 2, ..., n) signi�es an attribute or distinct object type. Each attribute or
object xb is characterized by a set of observable parameters and so the observation model consists
of a parameter set M = {m1,m2 . . .mm} which relates each observation yb to the state elements
of X. According to Bayesian theory, the chain rule of conditional probability P (Hi|E) can be
described as:

P (Hi|E) =
P (E|Hi)P (Hi)∑
i P (E|Hi)P (Hi)

(5.1.12)

where P (Hi|E) is the posteriori probability of hypothesis Hi being true given the evidence E,
P (Hi) is the priori probability of hypothesis Hi being true, and P (E|Hi) is the probability of
observing evidence E given that Hi being true.

The above mentioned equation describes the probability of a certain hypothesis Hi in case that
a certain event E is already occurred. Also it describes the methodology behind integrating
di�erent sensors data by combining the probabilities of di�erent sensors. Thus, the measurements
from the camera and IDIS sensors can be described in a normal probability function, providing
a mathematical relation between the positions of the observed data related to the spatial plane.

Figure 5.1.9: Spatial Probability of Two Sensors

Figure 5.1.9 shows two PDF functions of one entity from the two sensors. The graph describes
the normal probability distribution of the position of the object in the spatial plane. Sensor
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A observed an object at position P1 (PDFA) and assigns it a normal Gaussian distribution
expressing how con�dent the detection is. Similarly, for sensor B the detected object is at
position P2 (PDFB). These PDFs provide a way to generate hypotheses for each sensor in
spatial plan to answer the question, at what real position is the detected Object? To combine
the probability of the two sensors, the following equation is used.

P (H|y1, y2, E) = P (y2|H,E)P (H|y1, E) (5.1.13)

The equation updates the hypotheses based on combining the two probabilities and describes
the possibility that the observed object can be at position (x, y) by searching the position (x, y),
which is the maximum value of the calculated PDF. The main problem of this equation is that
the position (x, y), which has the maximum combined probability, can attain any value between
(x1, y1) and (x2, y2) where the real object has been detected from sensor A and sensor B, respec-
tively. The above equation can be reformulated in terms of association metrics. The association
metrics aim to quantify the similarities between observation-pairs, based on optimization or like-
lihood criteria. Such a metric provides means to quantify whether observations are similar or
dissimilar based on constructing suitable likelihood criteria. These likelihood criteria can be
derived by comparing each observation position from one sensor to the others and correlating
the minimum distanced observations to each other. This approach is known as NN (Nearest-
Neighbor) and has been used widely in many applications. The NN addresses the problem of
searching two observations, which minimize the following equation.

Diff =
√

(yi − yj)2 (5.1.14)

where yi is the observation from sensor i and yj is observation from sensor j.

The NN is trivial to be implemented and the error of such primitive assigning may be reduced
by getting the minimum distanced observation with the same classi�cation (if applicable). In
[FHL05], the authors presented an approach to minimize the error in the fused probability based
on a weighting factor given by

Wi =
Confb
Disti

(5.1.15)

whereDisti is the distance between two spatial measurements and Confb is the measurement
reliability

Another association metrics is to use the identity of the detected object, e.g., from camera or
IDIS. In [HM04] the authors described that the winner identity will have maximum likelihood
probability obtained by:

Max(P (yj ∩ y2 ∩ . . . ∩ yn|Hi)) (5.1.16)

where yj indicates measurement of sensor j, which gives score to the identity Hi.

The equation indicates that the winning identity will have the maximum combined probabil-
ity. This simple approach combines the identity in an optimal manner, but as indicated in
equation (5.1.10), the probability assigned to any hypothesis is dependent on priori informa-
tion, which means that in case of poor input data, the output data will give high probability to
any repeated false classi�cation. So, in order to avoid this problem, association algorithms are
performed in two stages listed below.

1. Current Cycle Association (CCA): It integrates the sensors data from the current cycle,
neglecting priori information from tracking algorithm.
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2. Data Base Association (DBA): CC list will be merged with the DB list, based on the
maximum likelihood probability based on Dempsters Shafer method [WSSY02].

5.1.4.1 Current Cycle Association (CCA)

As mentioned previously, sensors operate in an asynchronous manner, which means that the DFU
can receive data from a number of sensors at a time. The received data is saved for processing.
By assuming that all the sensors data are available then association will be performed in a
cascaded manner, which means that two sensors data sets ( for example, from IDIS and camera)
will be associated together as a �rst step and then the result will be used in associating the next
data set and so on. Association Metrics will be a combination of position and identity for every
pair objects from two sensors. The equation (5.1.16) can be reformulated using the weighting
methodology. The resulting validation process based on the weighted approach can be expressed
as

 W1

W2

W3

 =

 R11 R12 R13

R21 R22 R23

R31 R32 R33

 C11 + C12 + C13

C21 + C22 + C23

C31 + C32 + C33

 (5.1.17)

W = R× C (5.1.18)

where W is the vector of weight identity factor, R is the certainty matrix of the classi�cation,
and Cij represents the classi�cation of sensor i to the identity number j.

The equations represent identity data fusion of 3 categories for 3 di�erent sensors. The weights
Wi (i = 1, 2, 3) are normalized according to

W1 = W1/
3∑
i=1

Wi (5.1.19)

W2 = W2/

3∑
i=1

Wi (5.1.20)

W3 = W3/
3∑
i=1

Wi (5.1.21)

For example, if IDIS classi�es an object as �category 1� C11 will be equal to 1, however C12

and C13 will equal to zero. The con�dence of the classi�cation will be included in the factor
R11. Furthermore, the con�dence factor is a normalized Gaussian distributed factor. For the
case of the data received from the C2C module, the con�dence factor for category 2 is set to be
equal to 1 to indicate that the object, which keeps sending its coordinates, is a vehicle. Such an
action gives the highest weight to compensate the false classi�cation from the camera and the
IDIS. Weight identity factors of each category will be calculated from equation (5.1.17) and the
maximum weight will be the assigned to the category of the requested object.
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5.1.4.2 Data Base Association (DBA)

To use priori information from the old cycle, history about the detected objects should be saved
to be used in association process. Merging Current Cycle (CC) with Data Base (DB) should
take into consideration two basic factors:

� Position.

� Identity.

The same two factors are used in CCA and will be used here as well. But to optimize the
association process, priori information from the DB will be used. The association process will
be performed in the following steps:

1. Estimating the objects position by using Kalman �lter.

2. Associating CC data with DB.

3. Updating Kalman Filter parameters.

Dempster Shafers method [WSSY02] provides a mean to construct a hypothesis based on several
evidences to associate the CC data with that of the DB. The method is a generalization of
the Bayesian theory that allows a general level of uncertainty. It utilizes uncertainty intervals
to determine the likelihood of hypotheses based on multiple evidences. The basic idea behind
this method is to assign measures of belief to combinations of hypotheses instead of assigning
evidence to a set of mutually exclusive hypotheses.

The method determines that if there exist any set of n exclusive and exhaustive sets of proposi-
tions given by

ψ = [A1, A2, . . . , An] (5.1.22)

According to Dempster Shafer's method several random sets can be constructed from the above
sets, such as

Θ = [A1 ∩A2 ∩A3]Or[A2 ∩A3] (5.1.23)

These sets describe the hypotheses based on any combination of evidences. A mass function
can also be constructed from the above set to provide a measure of belief. The developed mass
function follows the general probability rules, e.g.,

m(Θ) ≤ 1 (5.1.24)

∑
m(Θ) = 1 (5.1.25)

Based on the work described by Dang [Dan03], a realization of Dempster Shafer's theory can be
applied in Data Base Association problem as follows.

1. Prediction of the found objects' states using Kalman �lter

2. Calculating the mass function between the prediction vector X and the measurement vector
Y
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3. Calculating the belief Matrix between the track vector X and the measurement vector Y

4. Decision is made, if local maxima from mi is consistent with local maxima from mj ,
otherwise decision will be ignored

To illustrate the above sequence, Kalman �lter is used to update the estimation of a tracked
object's position (for more details about Kalman �lter, refer to section 5.2). This estimation is
necessary to reduce the error that may occur while correlating the DB objects with that detected
from the CC. The update procedure is performed using following equations.

xk = [Xi, Yi] (5.1.26)

x−k+1 = [X−i , Y
−
i ] (5.1.27)

yk+1 = [Xm, Ym] (5.1.28)

xk+1 = x−k+1 +Gk+1(yk+1 − Cx−k+1) (5.1.29)

where (Xi, Yi) is the position of object i in x, y coordinates and (Xm,Ym) is the new position
after the association process.

Kalman Filter is initialized for each new object of the DB. The current states of the �lter Xi and
Yi describe the position of the object in the image plane. The �lter assumes that the states do
not change dramatically, so a prediction of the position in the next cycle will be made at position
Xi− and Y −i . The (-) sign indicates the priori belief of the objects position. Thereafter, the �lter
is updated by the measurements yk+1, which represents the actual position of the tracked �lter
from CC, but the question arises that, which object of CC is corresponding to that of the DB.

Figure 5.1.10: Candidates Selection From Current Cycle

Figure 5.1.10 shows a DB object surrounded by three detected objects from the CC, which
represents the candidates that lie within the threshold cycle (the hypothesis region). The process
of choosing the winning candidate is now a matter of constructing the mass function (such as
likelihood or matching criteria) and determining the most appropriate object that ful�lls the
maximum matching score as follows.

m(Θi1) =
1

K ∗Distance
(5.1.30)
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m(Θi1Norm) = m(Θi1)/
n∑
i=1

m(Θi1) (5.1.31)

m(Θi2) =

{
0.5 if they have the same Category;
0 if they have di�erent Category.

(5.1.32)

m(Θi) = m(Θi1Norm)×m(Θi2) (5.1.33)

where m(Θi1) is position mass function of Candidate i, m(Θi1Norm) denotes the normalized
position mass function of candidate i, m(Θi2) is the identity mass function of candidate i, m(Θi)
represents the combined position-identity mass function of candidate i, and K is a weighting
constant.

Here, m(Θi1) describes the position mass function between candidate i and DB object (1). The
position mass function is de�ned as the reciprocal of the di�erence between the two compared
objects. Normalization is necessary to avoid over �oating while processing and also to enable
the combination when using the identity mass function.

Identity mass function is implemented as a Boolean state. If one of the candidates has the same
category of the DB object, it will have the mass function of value of 0.5; otherwise the mass
function will be zero. The combined mass function contains the position and identity proposition.
The candidate, who has the maximum mass function will be assigned with DB object.
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5.2 Lane Fusion

Detecting the Lane lines from the image plane has been introduced in section 4.1.1. Furthermore,
digital maps can provide information about the road boundary and also information about the
number of lane lines [Ess08]. The main aim of this section is to integrate the lane location
information obtained from the vision system and the one estimated from the digital map to
get a precise information of the driver path. To achieve this goal, a road boundary from the
digital maps has to be reconstructed in the image plane using the projection matrices, which
were introduced in the last section. It should be noted that certain requirements should be met
to assure that the reconstructed scene matches the one obtained from the camera.

1. Precise GPS Position and Course Angle of the Vehicle

This information is essential while transforming the road boundary from the digital maps
to the vehicle coordinates. In addition, an enhancement of the position and orientation
of the vehicle has to be performed by integrating GPS with on-board vehicle sensor to
minimize the lateral o�set (error) in the GPS.

2. Digital Maps Road Boundary Projection

Lane plane has to be estimated at a pre-de�ned distance ahead of the vehicle. Practically,
the lateral o�set of the GPS is the o�set between the lane plane in the image and the one
reconstructed from the digital map. So, it is important to project the digital maps road
boundary to the image plane, taking into consideration the orientation angle of the vehicle,
as the reconstructed scene should rotate respectively to get a precise simulation of the road
from the camera's point of view.

5.2.1 Vehicle Position Enhancement using the Ego Dynamics Data

The primary objective of any navigation system is to combine the navigational data with the route
information in order to relate the system position to the surrounding environment. The work in
[BTMM04] summarizes the position extraction of the host vehicle into three basic approaches,
given below

� Relative localization: In this method an in-board vehicle sensors (such as speed, yaw
rate, and acceleration sensors) are used to dynamically update the position and the attitude
angle of the vehicle.

� Absolute localization: This scheme uses GPS to provide the absolute position.

� Hybrid localization: It combines the above two approaches together to minimize the
localization error.

Estimating absolute accurate position is one of the main goals of many mobile systems (such
in robotics) as knowing the position relative to the environment leads to a system's accurate
functionality. In spite of the recent progress and advancement in the GPS design, there still
exists an error margin of 20 cm that may extend in certain situations to 2 m. Furthermore,
GPS signal may not be available in some urban areas (such as tunnels) due to signal shielding
or signal unavailability. As a remedy to this problem, many articles have been published in the
literature suggesting the inclusion of the on-board vehicle sensors in hybrid form to correct the
calculated position [SGKN10, RG04, PDEP01, BD98].
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In order to provide the position of the vehicle with a decent accuracy, information from the
GPS, on-board vehicle dynamics sensors, and digital maps are integrated to compensate the
positioning errors which arise when using the GPS alone. It will be needed to interpolate the
positions between the GPS points, since the GPS operates at 1 Hz. The interpolated positions
are calculated in terms of longitude and latitude coordinates. In the work by Obradovic [OLS06],
a formula is introduced to calculate the new Geodic coordinates by updating the longitudinal
and latitudinal position given by[

longk+1

latk+1

]
=

[
longk
latk

]
+ Ψ

{
sin (∆α/2) (1 +Dist)

∆β/2

[
cosαk + ∆α/2
sinαk + ∆β/2

]}
(5.2.1)

where αk stands for the orientation angle, Ψ represents the transformation from the planar to
the WGS84 coordinate system, and β denotes the attitude angle of the vehicle.

The formula is an additive process, in which changes in the vehicle's dynamics should be added
to the current position. This additive process is known as �dead reckoning� [KHW02], which can
be de�ned as a process in which the system's states (mainly, the position and speed) are updated
by the distance between two measures and the change of orientation.

Figure 5.2.1: Di�erence Between the Orientation and Attitude Angle

Figure 5.2.1 illustrates the di�erence between the orientation angle α and the attitude angle β of
the vehicle. The orientation angle is the angle between the North Pole and the longitudinal axis
of the vehicle, while the attitude angle is the angle by which the vehicle tends to move relative
to its longitudinal axis. So, change in the attitude angle of the vehicle can be regarded as the
change in the orientation angle itself.

Equation (5.2.1) can be re-calculated based on Haversine formula. This formula calculates the
distance between two points on the sphere given their geographic coordinates (Latitude and
Longitude). Sinnott [Sin84] devised a way to ease the computations in spherical coordinates for
the triangles using Haversine formula.

By relating the angle (Θ) with the radius of the earth (R), the distance (Dist = c) can be
extracted from the formula:

Dist = cos−1 (sin(Lat1)× sin(Lat2) + cos(Lat1)× cos(Lat2)× cos(∆Long))×R (5.2.2)

where the latitudes and longitudes are transformed into radians. In fact, when Sinnott devised
the Haversine formula, computational precision was limited. Nowadays, most modern computers
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Figure 5.2.2: Calculating Distance in Geographic Coordinates

use IEEE 754 64-bit �oating-point numbers, which provide 15 signi�cant �gures of precision.
With this precision, the simple spherical law of cosines formula gives well-conditioned results
down to distances as small as around 1 meter. Furthermore, Sinnott rewrites the equation
(5.2.1) as:

Latk+1 = sin−1

(
sin(Latk)× cos(

Dist

R
) + cos(Latk)× sin(

Dist

R
)× cos(CoG)

)
(5.2.3)

Lonk+1 = Lonk + tan−1

(
sin(CoG)× sin(DistR )× cos(Latk)

cos(DistR )− sin(Latk)× sin(Latk+1)

)
(5.2.4)

According to the above equations, the new Course over Ground angle (CoG) is needed to estimate
the new longitude and latitude values. If change in attitude angle (β) of the vehicle is known,
CoG can be updated as:

CoGnew = CoGold + β (5.2.5)

The angle β cannot directly be measured, but it can be estimated from simpli�ed bicycle model.
The bicycle model [RG04, Tra07] is only an approximation to model the vehicle dynamics in
terms of the main vehicle states. The model describes the vehicle motion in terms of the main
states (e.g., attitude angle and yaw rate).

Figure 5.2.3 introduces the bicycle model described in [RG04], which approximates the vehicle
movement by using the symmetry approach. Thus, the main equations of motion are given by

may = Fsvcosδ + Fsh (5.2.6)

Jzω
.. = FSV cosδlv − FSH lH (5.2.7)

FSV ∼= CαV αV (5.2.8)

FSH ∼= CαHαH (5.2.9)

αV ∼= δ − β − lV
vxω.

(5.2.10)
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Figure 5.2.3: Bicycle Model [Tra07, RG04]

The attitude angle (β) can be estimated by solving these above dynamic equations. The equations
can be rewritten in the state space form as:[

β.

ω..

]
=

[
−CV +CH

mv
CαH lH−Cαvlv

mv2
− 1

−CαH lH
Jz

Cαvl2v−CαH l2H
Jzv

] [
β
ω.

]
+

[ Cαv
mv

CαvlV
Jz

]
δ (5.2.11)

Table 5.2 shows the vehicle constants mentioned in the above equations. These constants were
obtained from the BMW 530i data sheet.

Parameter Value
Cαv 75000 N/rad
CαH 150000 N/rad
Jz 28000 Kg. m2

Lv = lH 1.44 m
m 1555 kg

Table 5.2: Test-Vehicle Parameters

As can be noticed from the above state equations, the model is not linear, since the system's
matrix has the velocity (v) in its coe�cients. It is assumed that v is constant, while solving the
above state space model. The problem could arise e.g., when the value of the velocity leads to an
unstable system, which means unmatched results from the stable real model. In order to ensure
adequate stability of the proposed model, the characteristics equation is written in the following
form as

mv2 (CαH lH − Cαvlv) + CαvCαH l
2
v (5.2.12)

According to the table 5.2, the term CαH lH −Cαvlv is always greater than zero, which produces
negative poles and thus a stable model for all values of v. This means that the vehicle will have
a stable value of the attitude angle regardless of the driving conditions. This assumption does
not consider the fact that the vehicle under extreme driving conditions, such as high speed or
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slippery road surface may su�er from an unstable rotation and may turn over. But in normal
driving situations, the model can be veri�ed to provide a good estimation of the vehicle's states.

Since, ω. can be measured directly from the vehicle sensor, it can be excluded from the state
space equations and handled as an input to the model. Thus the above model will be reduced
to the attitude angle as a linear function of (ω, δ, v).

Using the model in the discrete state, β. can be replaced by βk+1. This discretization is reasonable
under the condition that the interval sampling time Ts is relatively small with respect to the
time constant of the proposed model.

βk+1 = −CαV + CαH
mv

βk +

(
CαH lH − CαV lV

mv2
− 1

)
ωk +

Cαv
mv

δk (5.2.13)

It should be noted that the proposed model is only an approximation and the error in estimating
the attitude angle could be accumulative, unless the attitude angle is corrected by integrating the
measurements from the GPS. Kalman Filter is used as an integrating �lter between the bicycle
model and the measurements from GPS.

5.2.1.1 Kalman Filter

Kalman �lter is an estimation �lter that is used widely in many applications, ranging from
multi-object tracking to data fusion, which also is the case here. The �lter consists of two main
phases:

1. Prediction phase, in which the new states values are predicted based on the old states.

2. Correction phase, in which Kalman gain and prediction matrices are modi�ed based on the
actual measurement values.

Given a dynamic system, its equation of motion can be written as follows

xk+1 = Axk +Buk + wk (5.2.14)

yk+1 = Cyk +Duk + vk

where xk is the state of the system, uk denotes the inputs vector, yk represents the measurement
vector, A is the dynamic matrix, B and D are the input matrices, C output matrix, and (wk,
vk) are the process and measurement noise, respectively.

The equations are written in discrete form and describe the states xk+1 as a function in previous
state observations xk. The matrices A, B, C, and D are constants for linear systems and
represent the system model.

x−k+1 = Axk +Buk + wk (5.2.15)

P−k+1 = APkA
T +Q (5.2.16)

where Q is the process noise covariance and can be derived as a PDF in wk. The (-) sign indicates
that the correspond to the prediction phase of the �lter.

Gk+1 = P−k+1

(
CP−k+1C

T +R
)−1

(5.2.17)
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xk+1 = x−k+1 +Gk+1

(
yk+1 − Cx−k+1

)
(5.2.18)

Pk+1 = (1−Gk+1C)Pk+1 (5.2.19)

where Gk+1 is the Kalman gain and R denotes the measurement noise covariance.

As shown from the above equations, the prediction is made using the current states as well as the
value of the Kalman gain. This gain will be corrected with deviation between the prediction and
the actual measurements. Finally, next states xk+1 will be corrected by the actual measurements.
These two phases of operation make Kalman a self-corrected �lter, able to follow the system
dynamics.

Figure 5.2.4: Graphical Presentation of the Kalman Filter

Figure 5.2.4 shows a graphical representation of the Kalman �lter. The variables of the �lter are
given by:

x = [v, α] (5.2.20)

yi = [v, α] (5.2.21)

u = [∆v, β] (5.2.22)

ya = [SoG,CoG] (5.2.23)

where ya is the measurement vector from the GPS, yi denotes the estimated output vector of the
�lter, α is the orientation angle of the vehicle measured from the North Pole, ∆v and β are the
changes in the velocity and the attitude angle, respectively, and β represents the attitude angle.

The Kalman �lter may be considered to have three main phases of operation:



88 CHAPTER 5. SENSORS DATA FUSION

1. Extrapolation Phase: The GPS data is not available in this phase, so the measurements
are updated using the vehicle dynamics input vector (u) with the help of the prediction
matrices given by

x−k+1 = Axk +Buk + wk (5.2.24)

yik+1 = Cxk +Duk (5.2.25)

P−k+1 = APkA
T +Q (5.2.26)

It should be noted, that no correction is applied in this phase because performing the
correction without real measurements will force the states to follow the measurements
providing incorrect results.

2. Correction Phase: In this phase, the GPS data is available, however input vector (u) is
not. Thus, the �lter gain (G) will be corrected as:

Gk+1 = P−k+1

(
CP−k+1C

T +R
)−1

(5.2.27)

3. Integration Phase: In this phase, both data are available, so the priori prediction will be
used to correct the �lter gain by comparing the measurements from the GPS with the
prediction made in the last cycle. As a �nal stage, a prediction matrix is adjusted using
the Kalman Gain in order to provide better states estimation for the next cycles.

Gk+1 = P−k+1(CP−k+1C
T +R)−1 (5.2.28)

xk+1 = x−k+1 +Gk+1

(
yk+1 − Cx−k+1

)
(5.2.29)

Pk+1 = (1−Gk+1C)Pk+1 (5.2.30)

Figure 5.2.5 illustrates the results when using Kalman �lter to interpolate the vehicle orientation
angle. The GPS data is shown in the red crosses, while the vehicles states steering angle, yaw
rate, and velocity are shown in black, green, and magenta, respectively. The sub graphs are
illustrated as follows.

In a), the vehicle's dynamics data is provided to the Kalman �lter, where measurements (GPS-
data) were absent. The orientation is initialized using the location of the GPS orientation at
the test beginning. Therefore, the �lter tries to predict the new orientation angle based on the
bicycle model as mentioned previously. The GPS points illustrate the deviation between the
model output and the real measurements form the GPS.

The sub graph b) shows the test with providing the measurements of the GPS to the Kalman
�lter. It can be noticed that the deviation is too small, when the measurements are provided to
the �lter.
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Figure 5.2.5: a) Updating the Orientation Angle in the Absence of GPS Signals. b) Updating
the Orientation Angle with Integration of the GPS Signals.

In addition, c) shows a section of the interpolated path, where the GPS data were absent in one
curve. The interpolated path is �tted with the vehicle dynamics to match the next value of GPS
measurement.

Meanwhile, d) presents the ripples in the interpolated path; this unusual behavior is due to a
sudden change of the steering angle at the speci�ed point, as can be noticed from the black line.

As shown in equation (5.2.4), the attitude angle and the measured distance are used in estimating
the new geographical position of the vehicle. The tests in the Fig. 5.2.5 are used to map the
interpolated GPS position on the digital map.

Figure 5.2.6 shows the interpolated path in the absence of GPS points. It can be shown that the
simpli�ed vehicle's model cannot keep a track of the actual position of the vehicle in the absence
of GPS signals. Thereafter, the test was repeated to update the vehicle's position by integrating
the GPS data; the obtained results are represented in Fig. 5.2.7.

5.2.2 GPS Position Adjustment using Lane Fusion

In the previous section, a GPS position interpolation has been introduced using the vehicle model,
by estimating the change in the orientation angle of the host vehicle and the distance traveled
between two measurements. However, this approach cannot compensate the (bias) errors in the
GPS position, since the GPS measurements are assumed to be accurate and are used as trusted
outputs to correct the estimated states within the Kalman �lter. In order to compensate the bias



90 CHAPTER 5. SENSORS DATA FUSION

Figure 5.2.6: Updating the Vehicle Position in Absence of GPS Signals

in the GPS positioning, an attempt is made to match lane lines detected from the vision system
to those indicated from the road boundary of the digital map, resulting in a better estimate of
the correct GPS position and the course angle. If no lane markings are detected, the position
and the course will be solely obtained via GPS until lane markings re-appear.

Matching the vehicle position using digital map is discussed in many papers [KHW02, OLS06].
The basic idea behind this approach is to assign the position of the vehicle to the most probable
nearby route, to match the perception that the vehicle is always located on the road. The
problem still remains that which lane should the vehicle be assigned to?

In this section, a matching algorithm will be described based on the lane fusion concept. This
algorithm integrates the lane coordinates obtained from the camera module to that projected by
the digital map. Digital maps include sets of control points, which are presented in longitude
and latitude values, to describe the road geometry ahead. To illustrate how a digital map can be
projected into the image plane, the Sinnott formula, which makes use of the distance between two
GPS points, is considered. The formula is used to obtain digital map points in polar coordinates,
related to the vehicle as its origin. These points can be projected into the image plane to provide
a good measure of the deviation in the road boundary between digital map and that detected
from the image. This deviation (o�set) is used to correct the GPS position by comparing the
actual lane coordinates with that extracted from the digital map as well as while using digital
map to �nd relevant objects based on the road geometry.

The road boundary can be constructed from the digital map points by getting the distance as
well as the angle between the vehicle and each control point ahead. The distance (Dist) is
obtained by using equation (5.2.2), while the angle is given by
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Figure 5.2.7: Updating Vehicle Position with GPS Data

= = cos−1

(
(Lat2 − Lat1)× π ×R×Dist

180

)
(5.2.31)

where = is the angle between the two GPS points. According to the vehicle coordinates, the
above equation represents the digital map points in polar coordinates, which can be transformed
into vehicle coordinates using XW

YW
ZW

 = Dist

 cos=
sin=

0

+

 0
0

∆height

 (5.2.32)

where ∆height is the change in the altitude value between the host vehicle and the corresponding
digital map point. Once the digital map points are represented in the real world, the projection
matrix can be applied and the road boundary can be reconstructed with respect to the camera's
point of view as follows.

 u
v
1

 = AM


XW

YW
ZW

∆height

 (5.2.33)

Figure 5.2.8 shows a bird eye view of digital map and its corresponding projection in the image
plane. The yellow rectangle is the estimation of the vanishing point. It should be noted that the
digital map is measured in the host vehicle coordinates, while the digital map is rotated with
respect to the heading angle of the vehicle to get the geometry of the road with respect to the
driving direction.
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Figure 5.2.8: Projecting Digital Map

Detecting the lane lines in the image is done only in the lower part of the image frames. This
part is used in re-modifying the calibration matrix, which was used to match the camera view
with the reconstructed virtual one obtained from the digital map.

Figure 5.2.9: Position Adjusting using Lane-Lines

Figure 5.2.9 shows the lateral o�set in the GPS position. While projecting the boundary road
lines obtained from the digital map to the image, it should coincide with road line of the real
image. The adjustment algorithm is illustrated in Fig. 5.2.10.

As shown in Fig. 5.2.10, the GPS position data will be used to calculate road points from the
digital maps with respect to the vehicle coordinates, and then the points will be projected to
the image plane. Lane lines can be represented by four points, since we are only interested in
calculating the lateral o�set of the GPS position with that of the real lane.
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Figure 5.2.10: Position Adjusting Algorithm

The lateral o�set should be transformed back to the geographic coordinates in order to be added
to the position of the GPS. The main problem is that the projection matrix is not symmetric
and the loop ends when the o�set is less than 10 cm, or the number of loops exceeds 30. The
chosen four points that represent the lane points are assumed to be located at a �xed distance
of 10 m, 40 m from the driver. Points from the digital map will be extracted at these locations
and o�set will be calculated as follows:

Errorx =

∑
(Xi − xi)

4
(5.2.34)

Errory =

∑
(Yi − yi)

4
(5.2.35)

where [Xi, Yi] and [xi, yi] are the positions of the lane points in the image and digital maps,
respectively.

Finally, the o�set error between the points of the trapezoidal, corresponding to the real image
and the virtual image (obtained by digital maps), is calculated.





Chapter 6

Situation Analysis and Threat

Assessment

Situation analysis is de�ned as a process of examining the main elements governing a situation
and their inter-relations to provide and maintain a state of situation awareness for the decision
maker. In the current system, these relationships can be classi�ed as vehicle to surroundings
relationship (e.g., orientation and ego-velocity), vehicle to object relationship (e.g., visibility,
distance, and relative velocity), and object to object relationship (e.g., inter-distance and inter-
relative velocity).

∀r ∈ S ∃ ri = f(pk1, p
k
2, ...., p

k
n) (6.0.1)

where r is the relationship, S is the situation, ri (0, 1, 2, ...m) are the relations, and pk are the
controlling parameters.

The aim of this Situation Analysis and Threat Assessment Unit (SATAU) is to estimate the
parameters [p1, p2, ...., pn] and to establish the various relationships [r1, r2, ...., rm] of the current
driving situation from the available input data. The SATAU receives a stream of time-stamped
information events about the state of the vehicle (e.g., ego velocity, yaw rate, and orientation),
the road type (e.g., highway or city road, number of available lanes, and road curvature), road
participants and obstacles (e.g., vehicle and pedestrian), and the actions of the driver (e.g.,
system activation / deactivation, overwriting the decision of the controller). During a drive,
SATAU builds a probability domain Pi by comparing the received information with that stored
situations data. If a relevant situation is found in the database, it is assigned to the current
situation and its relevant light distribution will be extracted.

The knowledge database used here is constructed from two layers. The �rst layer which is based
on the general parameters and is used to estimate a base light distribution (in this study it is
constrained to either a high beam or a dipped beam). In the second layer, which is based on
the object speci�c parameters, the situation is divided into various sub-situations. Each sub-
situation represents a distinct object condition (e.g., marking or blinding out). The masking of
the output of the second layer (object speci�c) with the output of the �rst layer (base) splits
the current situation to bright and dark zones, which will be used latter on by the headlight
controller to model the light distribution. To develop the database generic situations, a collection
of illumination strategies were de�ned. Each strategy describes a possible base light distribution
followed by an intelligent agent dedicated to that situation. Moreover, it was assumed that these
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illumination strategies can be generated by observing a �nite set of key parameters associated
with each situation.

6.1 Parameters for Estimating the Base Light Distribution

6.1.1 Ego-Velocity and Steering Angle Rate

Driving at low speed and high steering angle rate characterizes a typical driving behavior on a
city road. Therefore, dipped beam is chosen as the base light distribution to avoid unnecessary
glare to the pedestrians and cyclists on the road side. This decision is con�rmed with the GPS
and digital maps data (if available). If the driving speed increased over a speci�c value, the
base light distribution is changed to high beam. The parameter can be computed with the
equation 6.1.1. In order to achieve stability in the projected light distribution, a hysteresis was
implemented to avoid the rapid switching between the various base light distributions due to the
�uctuation in the driving velocity.

PB1 =


1 ∀(v ≥ vτ2)

1 ∀(v ≥ vτ1), (P
Bt−1

1 = 1)

0 otherwise

(6.1.1)

where v is the ego-velocity, vτ1 andvτ2 are the lower and upper thresholds, respectively. PB is
the probability of the base light distribution (1 for high beam and 0 for dipped beam), and PBt−1

is the base light distribution of the previous cycle.

Figure 6.1.1: Activation Velocities and Hysteresis

Figure 6.1.1 shows the activation and switching velocities and the hysteresis limits as well. It
should be noticed that the described velocity thresholds can be experimentally adjusted and
�ne-tuned based on the tra�c conditions.
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6.1.2 Yaw Rate and Road Curvature

Driving with high beam in a sharp curve can produce hazards due to the appearance of the
oncoming vehicle in a short distance (critical zone) which may cause a disability glare to the
driver.

PB2 = 1− {min(1,
ψ.

τψ.
)} (6.1.2)

where ψ. is the yaw rate of the host vehicle and τψ. is the allowed threshold.

Car to car (C2C) communication sub-module plays a vital role in such situations by providing
the system with the essential information about the vehicles on the curves enabling the system
to take reasonable decisions. Therefore, the probability computed in the above equation can be
represented as follows:

C2CPB2 = PB2 (1− PC2C) (6.1.3)

where PC2C is the probability gain obtained from the C2C communication module. If the relative
heading angle and the radial distance of oncoming/leading vehicle are smaller than the allowed
thresholds, the zone of the vehicle where it is expected to appear will be dipped immediately
(i.e., PC2C = 1).

If the data of the C2C is not available (PC2C = 0) and a high yaw rate is detected, the dipped
beam will be used as base light distribution, otherwise the high beam will be recommended.

6.1.3 Light Sources and Average Image Brightness

A combination of a large number of the detected light sources and high image brightness is used
as indication of driving in a city road or in a tra�c jam, which recommends to use dipped beam
as a base light.

6.2 Parameters for Estimating the Object Illumination Strategy

Since, each object should be either marked or blinded out, therefore one probability for each
controlling parameter will be estimated, which can be described as follows:

Si =

{
mark ∀POi = 1

shade ∀POi = 0
(6.2.1)

where S is the situation decision and PO is the object's illumination probability.

6.2.1 Object Class

Principally, all the detected vehicles should be blinded out and all non-vehicle objects which are
found on the driving road will be marked.

PO1 =

{
0 ∀vehicles
1 ∀non-vehicles

(6.2.2)
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6.2.2 Object Perceptibility Probability

The mean gray value of the object is used to estimate its visibility grade. Non self-illuminating
objects have always small perceptibility probability except the objects with highly re�ecting
surfaces.

PO2 = 1−min(
Gavg
τgrey

, 1) (6.2.3)

where Gavg is the average gray value of the object and τgrey is the minimum gray value to see
non self-illuminating object.

In order to avoid unnecessary glare to the road users, the threshold τgrey is kept high enough
to �lter most of tra�c signs, road re�ectors, and pedestrians wearing re�ecting clothes. The
average value is computed using the method proposed in section 4.1.3.2.

6.2.3 Time to The Closest Point of Approach

A crucial parameter in many threat evaluation techniques is the Closest Point of Approach
(CPA). In this method, for stationary objects, threatening targets are prioritized based upon
which ones will reach their CPA �rst. Since, we are dealing with dynamic as well as stationary
objects another term called Time-to-CPA (TCPA) or Time To Collision (TTC) is introduced.
It is the time taken to reach CPA of an object. For simpli�cation, it can be assumed that while
the computation of the CPA/TCPA parameters the object velocity will remain constant during
the sampling time. The TCPA can be computed with the following equation.

TCPA =

{
d

vego−vobj for (vego − vobj) > 0

∞ otherwise
(6.2.4)

where d is the object distance from the host vehicle, vego is the ego velocity, and vobj is the
absolute velocity of the object. It should be noted that, the above equation is valid as long as
vego − vobj > 0 where a collision is possible. However, for zero and negative values, the TCPA
gets a very large number.

When the driver wants to change the lane and turns on the indicator, a time o�set Tindicator will
be subtracted from the TCPA when the host vehicle will drive in the direction of the object
lane, giving the driver more visibility distance to decide if it makes sense to change the lane or
not. Otherwise the time o�set will be added TCPA when the host vehicle drives away from the
object's lane.

TCPA =
d

vego − vobj
± Tindicator (6.2.5)

Object position on the road produces di�erent threats values, for instance objects on the ego
driving lane are more important than those which are long way o� the road sides. Therefore,
another parameter Tlane is considered to modify the estimation of TCPA in equation (6.2.5),
where 0 ≤ Tlane ≤ 1. The total TCPA can be calculated using the next equation.

TCPA = (
d

vego − vobj
± Tindicator) ∗ Tlane (6.2.6)
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Hence, if the TCPA of an object is smaller than a threshold τttc, the object would be regarded
as a hazard and should be marked.

PO3 = 1−min{(TCPA
τttc

), 1} (6.2.7)

where τtcc is the maximum permissible time to collision so that the object should not be marked.

6.3 Decision Making

Decision making can be considered as an outcome of the cognitive process leading to the selection
of a sequence of actions among several alternatives [BA01, Hug09, KT79]. Making a decision
implies that there are alternative choices to be thought and in such a case it is not desired only to
identify as many of these alternatives as possible but to choose the one that best �ts with system
goals, objectives, and values [Ful05]. In the literature [TML03, SDA06, KMM96, KT79], there
exist several techniques to solve a decision problem. The selection of an appropriate method
is not an easy task and depends on the concrete decision problem, as well as on the objectives
of the decision makers. Sometimes �the simpler the method, the better�, but complex decision
problems may require complex methods.

In the current problem, we are dealing with a large number of nominal scale dependent variables.
Moreover, the system should produce a binary output, either marking or blinding out decision for
each object. Thus, the decision tree model [Qui86] was regarded as the most suitable technique
to generate the rules which will be used to assess the object state.

6.3.1 Generating the Knowledge Base Rules

For generating the intellectual rules of the knowledge base, a simple learning mechanism was
used to build the internal model of the decision tree. As shown in Fig. 6.3.1 the work �ow of
the training steps can be summarized as follows.

Figure 6.3.1: Work Flow of the Situation Analysis and Threat Assessment Submodule

When a new ground truth example [x1, x2, x3....xn] of category Y is presented for learning, the
decision tree �rst attempts to recognize it. If the example is not recognized by any existing rule,
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a new rule is automatically added to the tree in order to store the new example and its category
value Y . If the example is recognized by one or more rules and they all agree that it matches a
category Y , then the new example is discarded since it does not add any new information to the
existing knowledge base. If the example is recognized by several rules where one or more identify
it with a category other than Y , these rules which are in disagreement with the category to learn
automatically reduce their similarity domain to exclude the new example. This corrective action
changes the knowledge base by making certain rules more conservative in their classi�cation
process. As a result, a learning operation can have the following impact on a knowledge base:

� Add a new rule.

� Reduce the similarity of existing rules.

� Reduce the similarity domain of existing rules and add a new rule.

� Do nothing.

It is important to realize that when the similarity domain of rules are reduced, it might very
well happen that an example which was recognized with the correct category at an earlier time
is now no longer recognized because the rule which originally recognized the said example now
excludes it. Therefore, repeating the learning procedure for all examples until the number of
rules reaches a constant is a robust method to build the knowledge.

The above mentioned procedure is used to generate two knowledge bases, the �rst one is dedicated
to recognize the base light distribution; however the second one is used to identify the illumination
action for the objects

6.3.2 Situation Interpretation and Recognition

After generating the rules, the knowledge bases are used to recognize the situation. Firstly,
the parameters of background estimation are fed to the decision tree classi�er to determine the
suitable base light distribution for the current situation. Thereafter, for each object, its set of
the parameters is used to assess the threat and to identify whether the object should be marked
or it should be shaded. The decided action for the object is added to its information to be used
in the next assessment cycle to compensate the change in the light distribution. For example, if
an object is con�rmed in the current cycle as a relevant object to be marked, then the headlight
will illuminate it, which means in the next cycle it will be recognized with a higher perceptibility
probability than its original one, that can a�ect the decision making negatively. Therefore,
the change in the object status is regarded during calculating the perceptibility probability by
replacing the new calculated value with the original one which was estimated before the status
change.
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6.4 Illumination Modeling and Headlight Control

6.4.1 Light Distribution Optimization

Based on the simulation of the light distribution strategies found via the software used in [Ros05]
and the practical observations, the following facts have been put into consideration while mod-
eling the light distribution, which was studied in the previous section.

1. All the vehicles, which are less than 4° apart from each other, should be merged together.

2. For oncoming tra�c, a left bu�er (about 5% of the shading width) is added in order to
avoid the dazzling in high relative velocity situations.

3. To compensate the high dynamics of the vehicle (e.g., pitching), a shading bu�er of size
approximately 5 % of the shading width is added.

4. Objects which are found in the ego lane and may produce threat to the driver should be
marked for less than one second to avoid dazzling the other road participants even if there
is a vehicle in the marking range.

5. If a pedestrian is detected and classi�ed by the system, it can be, for example, continuously
marked taking in consideration the above mentioned points.

6.4.2 Headlight Control

Figure 6.4.1: Functional Flow of Headlight Control Submodule

This function is dedicated to issue the required signals to control the shutters of the headlight
to produce the computed light distribution. The procedure is carried out as follows:

1. Acquiring the current status of the headlight's shutters and compare it with the status
saved from the previous cycle.

2. Convert the calculated light distribution to a sequence of physical headlight's angles, indi-
cating which areas should be illuminated.
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3. Decide if swiveling the headlights right or left is a�ordable to realize the the required light
distribution.

4. Update the status of each shutter (up/down).

5. Send the control signal to headlight control unit.

6. Check the status of the shutters to assure that each shutter is in the required position. If
any deviation detected, reset all the shutters and send the control signal again.



Chapter 7

System Evaluation and Results

System evaluation is a crediting process in which the outcomes of the system are compared to
the prede�ned requirements. This section presents results from a series of on-road veri�cation
tests performed to determine the performance of the prototype, as well as to identify areas
of system's weak points that should be improved in the next development cycle. Data was
collected from tests conducted on the public roads using a BMW 5 series vehicle equipped with
the LBDAS prototype. The objectives of the on-road tests were to drive the test vehicle in
an uncontrolled driving environment to measure the system's susceptibility to nuisance alerts,
assess alerts in perceived threatening situations, and evaluate system availability. The testing
procedure is based on the guidelines published by NHTSA [NHT08] for testing the so-called
�Integrated Vehicle-Based Safety Systems�.

7.1 Recognition Range

Detection range is considered as the main parameter which a�ects dramatically the system
performance; therefore this parameter has been tested exclusively. In practice, the two light
distributions namely glare-free high beam and the marker light have di�erent detection range
requirements; consequently each light function has been evaluated separately. Since we are
dealing with a multi sensors system, in which all the hardware components interact together
and each in�uences the system's performance, the evaluation of the recognition range has been
measured in form of the �nal outcomes represented in the control strategy.

7.1.1 Case Study: Glare-Free High Beam

Glare-Free function requires a long detection range (more than 800 m), which cannot be evaluated
directly from the output of the recognition unit. Thus in order to measure the e�ectiveness
recognition range of the LBDAS, the experiment (for the evaluation of the �rst proptype [Ros05])
has been adapted to cover the enhanced detection range by using GPS position to estimate the
distance continuously.

In addition to the test vehicle, another target vehicle was equipped with a Luxmeter to measure
the illuminance projected on the driver's eyes. A correct recognition of the target and a right
decision taken by the LBDAS causes the target's area to be shaded out. This is perceived by the
driver as if the host vehicle is driving with dipped beam light distribution; hence the illuminance
detected by the Luxmeter should also be in the allowance range of the dipped beam. The
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detection range of the light sources in various tra�c situation will be illustrated in the following
section.

Figure 7.1.1: Schematic of the Experiment used to Measure the Projected Illuminance on the
Driver Eyes of an Oncoming Vehicle
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Figure 7.1.2: Illuminance Measured by Luxmeter Mounted on the Front Windshield of an On-
coming Vehicle

Figure 7.1.2 demonstrates a situation where an oncoming vehicle is detected from the system
at a distance of about 1300 m and is tracked continuously. The system has modeled the light
distribution of the host vehicle so that the area of the target vehicle is excluded from the illumi-
nation space, thus the illuminance measured by the Luxmeter is like that of the dipped beam.
The ripples in the measured illuminance of LBDAS at distance of 100 m are resulted from the
vehicle dynamics (e.g., pitching) of both the host vehicle and the target vehicle.On the other
hand, Fig. 7.1.3 shows that the leading vehicle is recognized and tracked up to 650 m then the
system has lost the vehicle, therefore the decision making unit has commanded the headlamps
to illuminate the area of the leading vehicle with the high beam assuming that there is no glare
threat anymore for the leading vehicle. Thus, the illuminance measured after losing the target
vehicle is equal to that one of the high beam light distribution.

The above mentioned experiment has been carried out with two di�erent target vehicles, the
�rst one is Mercedes E class equipped with Xenon headlight, while the second is VW Sharan
equipped with halogen headlight. For each vehicle, the average as well as the minimum and
maximum recognition range for the headlights and the tail lights has been measured.
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Figure 7.1.3: Illuminance Measured by Luxmeter Mounted on the Back Windshield of a Leading
Vehicle
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Figure 7.1.4: Recognition Distance of Light Sources in the Standalone Mode

Figure 7.1.4 shows the detection range of the system in the standalone mode; where the symbols
N, H, and � denote the minimum, the maximum, and the average recognition range, respec-
tively. The results demonstrate that the obtained average recognition range ful�lls the system
requirements which are 800 m for oncoming vehicles and 400 m for leading vehicles. The Xenon
headlamps are detected early at an average distance of more than 1100 m while the halogen
headlamps are registered foremost at an average distance of 1050 m. In addition, it can also
be noticed that the �rst detection of the tail lamps fall sometimes to 350 m, however when the
leading vehicle is taken over and is tracked from the system, the minimum achieved recognition
range is about 450 m.

The results obtained in the cooperative mode will be illustrated and discussed later in this
section.
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7.1.2 Case Study: Marker Light

In contrast to the glare-free evaluation methodology, the marker light function has been directly
evaluated. The recognition distance of the object has been noted when it is illuminated from
the LBDAS headlight. In the experiment, three types of objects have been considered to be
investigated, which are a car, a pedestrian, and a dummy obstacle in form of a carton box. The
objective of the experiment is to determine the variation of maximum range of the marker light
against di�erent speeds of the host vehicle. The tests have shown that the host vehicle velocity
in�uences dramatically the detection performance of the small objects, namely pedestrians.

R
e
c
o
g
n
it
io
n
 R
a
n
g
e
 [
m
]

0

20

40

60

80

100

120

140

160

180

200

220

0

20

40

60

80

100

120

140

160

180

200

220

Ego-Velocity [km/h]

0 10 20 30 40 50 60

0 10 20 30 40 50 60

Tracked Objects
 Raw Objects

Figure 7.1.5: Range of the Marker Light Covered by IDIS for a Car

Figure 7.1.5 shows that the system can recognize the cars up to 180 m. The slight performance
drop at ego-velocity of 50 km/h can be compensated by considering the raw data. However,
the detection performance of pedestrians drops dramatically down from 110 m obtained at ego-
velocity of 10 km/h to about 30 m at velocity of 50 km/h. Even by using the raw data, the
detection range has not been increased impressively as shown in Fig. 7.1.6. The dummy object
has been robustly detected from the system. Figure 7.1.7 shows that the raw object information
has increased the detection performance with more than 33%.
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Figure 7.1.6: Range of the Marker Light Covered by IDIS for a Pedestrian
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Figure 7.1.7: Range of the Marker Light Covered by IDIS for a Dummy Obstacle

7.2 Object Classi�cation Performance

In order to describe the classi�cation performance of the system for the various types of objects,
a couple of parameters are de�ned as follows.

� Positive object: This is the object which is relevant to the classi�cation module. For
example, light sources are the positive objects of the camera system.

� Negative object: This denotes those ones other than the positive object. If the classi�cation
module deals with more than one positive category, the selected category is treated as the
positive object, and all other categories are grouped as the negative objects.

� True positive (TP): This refers to the number of positive objects where the classi�cation
module correctly predicts their type..

� False positive (FP): In this case, the classi�cation module assigns the positive object cat-
egory to a negative object. For instance, a re�ector is classi�ed as a light source.

� True negative (TN): This represents the number of negative objects where the classi�cation
module predicts their types as a non-positive object. The correct classi�cation of the
negative objects is not counted (e.g., a tra�c sign is classi�ed as a re�ector).

� False negative (FN): This denotes the case when a negative object category is assigned to
a positive object.

Actual Class Prediction Class

Postive Object Negative Object

Postive Object TP FN

Negative Object FP TN

Table 7.1: Illustration of the Classi�cation Parameters

Based on the above mentioned de�nitions of TP, TN, FP and FN, the following performance
measures can be calculated.
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accuracy =
TP + TN

TP + TN + FP + FN
(7.2.1)

sensitivity =
TP

TP + FN
(7.2.2)

specificity =
TN

TN + FP
(7.2.3)

precision =
TP

TP + FP
(7.2.4)

FMeasure = 2 · precision · sensitivity
precision+ sensitivity

(7.2.5)

where accuracy indicates how close is the quality of classi�cation process to the true value,
sensitivity denotes the proportion of the correctly predicted positive objects, speci�city is the
proportion of correctly identi�ed of negative objects, precision represents the repeatability of the
classi�cation, and F-Measure [Sas07] is the subcontrary mean of precision and sensitivity which
gives an overall measure of the quality of the prediction.

7.2.1 Light Sources Classi�cation Performance

The classi�cation quality of the light sources is measured as the capability of the system to distin-
guish between the light sources and the other infrastructure re�ections. The results represented
in table 7.2 show a robust classi�cation accuracy of more than 95% with a precision of about
93%. It is worth to mention that the accrediting process is independent of the type of the light
source (e.g., a headlight or a tail light); i.e. if a bright tail light is classi�ed as white headlight,
it has been considered as a correct classi�cation one since both are light sources.

Performance Measure Value

Accuracy 95.10%
Sensitivity 91.48%
Speci�city 96.78%
Precision 92.95%
F-Measure 0.9221

Table 7.2: Classi�cation Performance Measures of the Light Sources

Figure 7.2.1 demonstrates the Receive Operating Characteristic (ROC) curve of the light sources
classi�cation performance. The ROC [Han89] is a graphical plot of the system sensitivity against
the false positive rate which is equivalent to (1- speci�city). The results presented in the �gure
show that the system can achieve more than 99% true positive rate when 10% false alarms is
allowed.
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Figure 7.2.1: Light Sources Receive Operating Characteristic Curve

7.2.2 IDIS Objects Classi�cation Performance

The IDIS object recognition sub-function has shown an accurate classi�cation performance of
more than 99 % for all non-stationary objects as shown in table 7.3.

CSD COD PSD POD BSD BOD

Accuracy 100.00% 99.82% 99.64% 99.94% 99.82 99.70%
Sensitivity 100.00% 97.56% 98.43% 100.00% 100.00% 100.00%
Speci�city 100.00% 100.00% 100.00% 99.92% 99.80% 99.64%
Precision 100.00% 100.00% 100.00% 99.76% 98.11% 98.29%
F-Measure 1 0.9877 0.9934 0.9988 0.9905 0.9914

Table 7.3: IDIS Classi�cation Performance Measures

Category CSD COD PSD POD BSD BOD

CSD 315 0 0 0 0 0
COD 0 120 0 0 0 3
PSD 0 0 376 1 5 0
POD 0 0 0 413 0 0
BSD 0 0 0 0 288 0
BOD 0 0 0 0 0 156

Table 7.4: IDIS Classi�cation Confusion Matrix

where CSD denotes the cars driving in the same direction of the host vehicle while COD represents
the cars driving in the opposite direction. Analogue, P denotes pedestrians and B is for the
bicycles.

The classi�er is able to identify leading cars without any false alarms, however slow distant
oncoming cars are miss-classi�ed as oncoming bicycles as can be concluded from the confusion
matrix shown in table 7.4. In addition, a number of fast pedestrians running in the same direction
of the host vehicle have been classi�ed as ongoing bicycles.
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7.3 Performace Evaluation of Di�erent System Con�gurations

Di�erent hardware con�gurations have been tested to estimate the in�uence of each component
on the overall system performance. The results can be summarized as follows:

7.3.1 IDIS

Classi�cation of IDIS objects has improved the performance by more than 5%. Such improvement
is obtained by �ltering the camera's miss-classi�ed stationary objects, like guiding re�ectors and
tra�c signs as well as detecting the vehicles which are too close to the host vehicle and their
hypotheses have been �ltered out in the blob extraction procedure. However, this is valid as
long as the driving road is straight. In sharp curves, stationary objects had been detected from
IDIS as movable ones with high lateral velocity, which increases the system nuisance alert rates
by about 30%. Therefore, in absence of valid road boundaries from the data fusion module,
distant objects detected by IDIS, while the host vehicle driving in the curvature lane, should be
neglected and therefore do not contribute in the decision making regarding the glare free high
beam. However, this drawback has not proved a serious e�ect on the marker light, since each
object will be checked if it is bright enough or not to be marked. Practically, it has been observed
that illuminating the obstacles in curvature can increase the driver safety by illuminating the
guiding rails, for example, by warning the driver about the road boundaries. Nevertheless, this
situation should be investigated further in details.

7.3.2 Camera

Camera has shown a signi�cant contribution in reducing about 60% of the false alarm rates of the
marker light. The image information (for the calculation of the perceptibility) and the detected
lane position (for the adjustment of the extracted road boundary from the digital maps) have
increased the system reliability by avoiding the unnecessary illumination of objects, like vehicles
standing in red tra�c light and miss-allocated guiding re�ectors.

7.3.3 Digital Maps

Accurate lane detection and robust driving path estimation have played an essential role in
increasing the system performance for both glare-free and marker light. Right associating objects
to the road lanes made it possible to correct the miss-classi�ed light sources and to determine
accurately the relevant objects for marker light. The altitude information has improved the
object matching and association process in the data fusion by adjusting the vanishing point of
the camera which has a great e�ect in projecting the IDIS objects and the road boundaries.
However, the inaccurate GPS position in�uences the use of the digital maps dramatically, as
with the current GPS accuracy it is hardly possible to determine the absolute position of the
host vehicle on the road, especially in multiple lanes roads. Therefore, adjusting road boundaries
via the lane information obtained from the vision system has increased impressively the bene�ts
of using the digital maps (for detailed information, refer to section 5.2).

7.3.4 Car-to-Car Communication

Independent of the driving direction (e.g., oncoming or ongoing), a detection range of 800 m
as well as a 0.5 degree heading angle accuracy have been successfully achieved by using C2C
communication.
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Figure 7.3.1: Recognition Distance of Light Sources in the Cooperative Mode

As shown in Fig. 7.3.1, C2C has enhanced the detection range of the distant leading vehicles by
about 35% . However, it o�ers no enhancement in detection of the oncoming vehicles, since this
issue is already addressed from the camera quite e�ectively. In addition, C2C has increased the
use of the glare free function in curves by about 70% in situations when no other vehicles are
detected.





Chapter 8

Conclusion and Future Work

8.1 Conclusion

The presented system can be considered as a new step on the road to solve the con�ict between
improvement of driver visibility and dazzling of other road participants. The developed LB-
DAS in some aspects could be considered as an extension to the �rst prototype introduced in
[Ros05]. The main function of the system �Glare-Free high beam� has been inherited. Other-
wise, the following enhancements have been added. Hardware and software architectures have
been designed which enabled testing various hardware con�gurations as well as evaluating the
contribution of each component on the overall system performance. New object detection sensors
and recognition techniques have been investigated and utilized to ful�ll the requirements of the
system. New methodologies for situation analysis and target selection have been implemented
which supported the system in correctly producing an optimal light distribution. The provisional
DMD headlight has been replaced by a new automotive apt addressable headlamp (Segmented-
Shutters Headlamp) which enabled testing the system in uncontrolled environments and in real
tra�c situations. Last but not least, a new light function �Marker Light� has been integrated.
The new light distribution aims at drawing the driver's attention to any potential hazard as
early as possible by directing marker lights to these objects that are of particular relevance to
the visual perception of the driver. Marker light is intended to be used wherever the glare-free
high beam is not permitted; for example, on the city roads. However, marker light is considered
as an opposite implementation to the glare-free high beam, in this thesis a new strategy has
been introduced showing that merging the glare-free high beam with the marker light in one
system provides the driver with superior �exible light distribution, which can be called a full
speed LBDAS.

The system is designed according to the �ow of information as follows. Firstly, both internal
and external sensors are needed to monitor the host vehicle status and the environment in the
vicinity of it. Afterwords, the acquired information is processed. Among others, this mechanism
involves disciplines such as object recognition to gain the necessary knowledge about the host
vehicle's surrounding as well as driving dynamics calculations to take the host vehicle status into
account. In the central information processing, all the data collected by the sensor systems is
analyzed, sorted, and interpreted. Merging all the necessary data yields the system's internal
representation of the current situation. Consequently, an appropriate strategy is chosen for the
given situation. The strategy includes information on the basis of which objects are blinded out
or marked and how to do so. Finally, the chosen strategy is applied to the situation and the

113
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desired light distribution is projected. The developed solution works in two operating modes.
The �rst operating mode is a standalone mode, where the host vehicle has no physical contact
with other road participants. The other operating mode is a cooperative mode, where all vehicles
are elements in a cooperative communication network, and each of them has the ability to get
information about other vehicles in its surrounding. It is worth mentioning that for the time
being, the cooperative mode cannot replace the standalone mode, nevertheless, it is actually
an extension to it, simply because building secure vehicles networks and preparing the required
infrastructure to support DAS are still requiring further research. The aim of investigating the
cooperative communication network mode was to measure the bene�ts and the performance gain
when these techniques are available in the market.

LBDAS demand fast and robust object detection methods in order to perform e�ciently. The
thesis introduced new techniques to detect vehicles at night, based on their light sources for a
distance up to 1000 meters as well as new methodologies to classify objects of the infrared sensor
(IDIS) based on object's dynamics. C2C communication has been investigated and showed a
robust performance within a communication range of 800 meters.

Assessing threat possibility depends mainly on classi�cation quality of sensors data. In order
to ful�ll the system requirements concerning the detection range and classi�cation accuracy,
methods for sensors data fusion have been implemented. The thesis presented hybrid data
fusion architecture by constructing a communication network using WinSocket programming
techniques. The architecture was chosen to ensure the Independence of the remote-sensors (e.g.,
IDIS and camera) modules from each other in order to minimize the false alarms in the system,
which are produced by classi�cation uncertainty of each sensor. The CPU time of the main data
fusion unit has been used as a global timing reference to solve data synchronization issues in the
adapted communication network. The correlation of the di�erent sensors data is performed in
the two-dimensional image space as a uni�ed plane to project all sensors data on. The sensors
data association is realized by using an optimized approach based on constructing association
metrics which depends on correlating the sensors information via spatial and identity matching.

GPS position of the host vehicle is used to extract the road's coordinates in front of the host
vehicle from the data base of the digital maps. The low update rate of GPS receiver (1 Hz)
imposes the need for extrapolating the host vehicle position up to 20 Hz in order to obtain
an adequate performance. Therefore, a linear vehicle model has been integrated with the GPS
signals through Kalman �lter to update the geographical position based on the dynamics of the
host vehicle. Digital maps provide the system with means to estimate the relevancy of objects on
the road by relating their position to the road, which is used in assessing the threat of a possible
collision.

The system performance has been evaluated in various tra�c situations. The results have demon-
strated a promising performance for the proposed LBDAS regarding detection range, real-time
capability, and false alarm rate.
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8.2 Future Work

All objectives of the thesis have been realized and a prototype was successfully implemented
based on the objects data as well as environment information obtained from various sensors.
However, the prototype has been tested qualitatively under limited conditions in relatively sim-
ple situations due to the time constraints as well as the limited resources such as availability of
the digital maps for all roads during the development phase. Therefore, extending the system
and testing it in more complex situations are highly recommended. In addition, the system acti-
vation/deactivation parameters (e.g., ego velocity) should be �ne-tuned based on an evaluation
from test drivers.

This research has demonstrated that an accurate system for a real-time classi�cation of objects
in tra�c situations based on their dynamics can be implemented using Hella ACC IDIS sensor.
IDIS has shown a robust performance in detecting of the vehicles as well as the bulky objects.
However, combining IDIS with a passive night vision system can enhance the detection range
of pedestrians and it can also be used to verify the classi�ed IDIS objects, which increases the
usability bene�ts of the marker light function.

Distant street lights as well as tra�c lights are main sources of the system false alarms. Therefore,
developing algorithms to �lter such objects can increase the robustness of the system.

As mentioned previously, the digital maps, which are used currently in the system, were created
for the development purpose. Thus, integrating the developed GPS position-correction algorithm
with professional digital maps can improve the performance of marker light.

The resolution of the Segmented-Shutter headlamp is acceptable taking in consideration that it
is an automotive apt addressable headlamp solution; however using a headlamp with a resolution
less than one degree can enhance obviously the system accuracy.
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