
Complexity Classi�cations for

Nonmonotonic Reasoning and

Enumeration

Von der Fakultät für Elektrotechnik und Informatik

der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des Grades

Doktor der Naturwissenschaften

Dr. rer. nat.

genehmigte Dissertation

von

Dipl.-Math. Johannes Schmidt

geboren am 4. Juni 1984 in Hannover

2012

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Institutionelles Repositorium der Leibniz Universität Hannover

https://core.ac.uk/display/250264443?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Referent: Heribert Vollmer, Leibniz Universität Hannover
Korreferent: Till Tantau, Universität zu Lübeck
Tag der Promotion: 16. Oktober 2012

Acknowledgments

I would like to thank my supervisor Nadia Creignou for the great col-
laboration during the three years of my PhD � it was always a pleasure
and I learned a lot. I also thank my supervisor Heribert Vollmer and
my coauthors for the joint research. I thank Heribert Vollmer, Joachim
Reineke and Michael Holz for their great lectures that showed me the
beauty and fascination of mathematics. Finally, I thank my family for
their support and my sister Annalisa for her English advices. I thank in
particular my wife Annika for her love and support especially in the �nal
phase of writing.

Remerciements

Je remercie ma directrice de thèse Nadia Creignou pour la grandiose col-
laboration que l'on a partagé durant ces trois ans de thèse. Ça a tou-
jours été un plaisir dans lequel j'y ai beaucoup appris. Je remercie égale-
ment mon directeur de thèse Heribert Vollmer et mes coauteurs pour la
recherche que l'on a e�ectué ensemble. Je remercie Heribert Vollmer,
Joachim Reineke et Michael Holz pour leurs beaux cours qui m'ont mon-
tré la beauté et la fascination des mathématiques. Finalement je remercie
ma famille pour son soutien et ma s÷ur Annalisa pour ses conseils en
anglais. Je remercie en particulier ma femme Annika pour son amour et
son soutien spécialement durant la période de rédaction.

Danksagung

Ich möchte meiner Doktormutter Nadia Creignou für die groÿartige Zusam-
menarbeit während der drei Jahre meiner Promotion danken � es war
stets ein Vergnügen und ich habe viel gelernt. Ich danke auch meinem
Doktorvater Heribert Vollmer und meinen Koautoren für die gemeinsame
Forschung. Ich danke Heribert Vollmer, Joachim Reineke und Michael
Holz für ihre tollen Vorlesungen die mir die Schönheit und Faszination der
Mathematik gezeigt haben. Schlieÿlich danke ich meiner Familie für ihre
Unterstützung und meiner Schwester Annalisa für ihre Englischberatung.
Ich danke besonders meiner Frau Annika für ihre Liebe und Unterstütung
speziell in der �nalen Phase des Schreibens.

Abstract

In this thesis we consider the computational complexity of problems from
two central formalisms of nonmonotonic reasoning: abduction and argu-
mentation. The �rst one is designed to formalize the process of �nding
explanations for some observed manifestation, the second (and more re-
cent) one gives a theoretical framework to formalize the process of argu-
mentation. We focus on the explanation-existence problem for abduction
and on the argument-existence problem for argumentation. Considered in
full propositional logic these problems are believed to be computationally
costly tasks (they are often situated at the second level of the polyno-
mial hierarchy). With the purpose of understanding sources of hardness
and of identifying tractable fragments of propositional logic we consider
several abduction and argumentation problems in two well-established
settings allowing for complexity classi�cations. In the �rst one, Post's
Framework, restrictions are made on the allowed connectives in the used
formulæ, whereas in the second one, Schaefer's Framework, one considers
formulæ in conjunctive normal form, where the clauses are generalized to
applications of arbitrary Boolean relations to variables and one restricts
the allowed type of relations. We discuss di�erences and common features
between the explanation-existence and the argument-existence problem in
function of the two chosen frameworks.

Finally, we consider enumeration. In particular we consider the prob-
lem of enumerating all solutions (models) of a propositional formula by
non-decreasing weight in Schaefer's framework (the weight of a model be-
ing the number of variables assigned to true). We identify precisely those
relations for which this enumeration problem becomes tractable (i.e., is
enumerable with polynomial delay) and those relations for which it re-
mains intractable, unless the polynomial hierarchy collapses.

Keywords: Complexity Classi�cations, Abduction, Argumentation

Résumé

Nous considérons dans cette thèse la complexité algorithmique de prob-
lèmes émanant de deux formalismes de raisonnement non-monotone: l'ab-
duction et l'argumentation. Le premier est destiné à formaliser le proces-
sus de trouver des explications pour une manifestation observée, le sec-
ond (et plus récent) o�re un cadre théorique pour formaliser le processus
de l'argumentation. Nous nous concentrons sur le problème d'existence
d'une explication pour l'abduction et sur le problème d'existence d'un
argument pour l'argumentation. Dans le cadre de la logique proposition-
nelle dans son ensemble ces problèmes sont considérés comme étant des
tâches algorithmiques di�ciles (ils sont souvent situés au deuxième niveau
de l'hiérarchie polynomial). Notre but est d'une part de comprendre les
sources de di�culté, et d'autre part d'identi�er des fragments de la logique
propositionnelle dans lequels ces problèmes sont résolubles e�cacement.
Pour cela nous considérons ces problèmes d'abduction et d'argumentation
dans deux cadres bien-établis qui permettent des classi�cations de com-
plexité : Le cadre de Post et celui de Schaefer. Dans le cadre de Post,
des restrictions sont faites sur les connecteurs autorisés dans les formules
utilisées. Dans le cadre de Schaefer, on considère les formules en forme
normale conjonctive généralisée, les "clauses" sont alors des applications
de relations booléennes à des variables et on restreint le type des relations
autorisées. Nous discutons les points communs et les di�érences du point
de vue de la complexité, entre le problème d'existence d'une explication
et le problème d'existence d'un argument, et cela dans chacun des deux
cadres présentés ci-dessus.

Finalement, nous considérons l'énumération. En particulier nous con-
sidérons le problème d'énumérer toutes les solutions (modèles) d'une for-
mule propositionnelle par poids croissant dans le cadre de Schaefer (le
poids d'un modèle étant le nombre de variables assignées à vrai). Nous
identi�ons précisément les relations pour lesquelles ce problème d'énuméra-
tion devient e�cacement résoluble (i.e., est énumérable avec délai polyno-
mial) et les relations pour lesquelles il reste di�cile, à moins que l'hiérarchie
polynomiale ne s'écrase.

Mots clés: Classi�cations en Complexité, Abuction, Argumentation

Zusammenfassung

In dieser Dissertation betrachten wir die Berechnungskomplexität zwei
zentraler Formalismen des Nichtmonotonen Schlieÿens: Abduktion und
Argumentation. Ersterer ist dazu entworfen worden den Prozess des
Erklärens von Beobachtungen zu formalisieren, der zweite (und jüngere)
bietet ein theoretisches Umfeld um den Prozess des Argumentierens zu
formalisieren. Wir konzentrieren uns auf das Erklärungs-Existenz Prob-
lem für Abduktion und auf das Argument-Existenz Problem für Argu-
mentation. In vollständiger Aussagenlogik wird allgemein angenommen,
dass diese Probleme berechnungstechnisch komplex sind (sie liegen oft auf
dem zweiten Niveau der Polynomialzeithierarchie). Mit dem Ziel die tief-
eren Gründe der Komplexität, und einfachere Varianten dieser Probleme
in Fragmenten der Aussagenlogik zu identi�zieren, betrachten wir ver-
schiedene Abduktions- und Argumentationsprobleme in zwei etablierten
Umfeldern die Komplexitätsklassi�kationen erlauben. Im ersten, Post's
Framework, werden die in Formeln erlaubten Operatoren eingeschränkt,
während man im zweiten, Schaefer's Framework, Formeln in verallgemein-
erter konjunktiver Normalform betrachtet, wobei Klauseln zu Anwendun-
gen beliebiger Boolescher Relationen auf Variablen verallgemeinert wer-
den und man die erlaubten Typen von Relationen einschränkt. Wir be-
sprechen Unterschiede und Gemeinsamkeiten zwischen dem Erklärungs-
Existenz und dem Argument-Existenz Problem in Funktion der gewählten
Umfelder.

Schlieÿlich behandeln wir Enumeration. Speziell betrachten wir in
Schaefer's Framework das Problem alle Lösungen (Modelle) einer aussa-
genlogischen Formel nach nicht-absteigendem Gewicht aufzuzählen (das
Gewicht eines Modells ist die Anzahl der Variablen die auf wahr gesetzt
sind). Wir identi�zieren exakt jene Relationen für die dieses Aufzäh-
lungsproblem einfach (d.h. mit polynomiellem Delay aufzählbar) ist und
solche Relationen für die es komplex bleibt (unter der Annahme, dass die
Polynomialzeithierarchie nicht kollabiert).

Schlagworte: Komplexitätsklassi�kationen, Abduktion, Argumentation

Contents

1 Introduction 15

2 Preliminaries 23
2.1 Propositional Logic . 23
2.2 Complexity Theory . 24

2.2.1 Complexity Classes 24
2.2.2 Reductions and complete Problems 26

2.3 Abduction and Argumentation 27

3 Classi�cations in Post's Framework 33
3.1 Post's Framework . 33

3.1.1 Boolean clones and Post's Lattice 34
3.1.2 Post's lattice as a Tool for Complexity Analysis . . 36
3.1.3 Parameterizing by B -formulæ 39

3.2 The complexity of Symmetric Abduction 40
3.2.1 Technical results and tools 40
3.2.2 The complexity of the Existence Problem 42
3.2.3 The complexity of the Veri�cation Problem 50

3.3 The complexity of Positive Abduction 52
3.3.1 Technical results and tools 52
3.3.2 The complexity of the Existence Problem 53
3.3.3 The complexity of the Veri�cation Problem 59
3.3.4 Overview of results for Abduction 60

3.4 The complexity of Argumentation 62
3.4.1 Technical results and tools 62
3.4.2 The complexity of the Existence Problem 63
3.4.3 The complexity of the Veri�cation Problem 65

13

14 CONTENTS

3.4.4 The complexity of Relevance and Dispensability . 69
3.4.5 Overview of results for Argumentation 72

4 Classi�cations in Schaefer's framework 83
4.1 Schaefer's framework . 83

4.1.1 Preliminaries . 84
4.1.2 Background from Universal Algebra 86
4.1.3 Schaefer's Framework and the Galois connection . 88
4.1.4 Implementation results 91

4.2 The complexity of Argumentation 96
4.2.1 Complexity of the Existence Problem 96
4.2.2 Complexity of the Veri�cation Problem 100
4.2.3 Overview of results for Argumentation 103

4.3 Enumeration of Models 105
4.3.1 Complexity of Enumeration 105
4.3.2 Polynomial Delay Algorithms 106
4.3.3 Hardness Results 110

5 Concluding remarks 121

Chapter 1

Introduction

At the beginning of the 20th century the German mathematician David
Hilbert dreamed of grounding all existing mathematical theories to a �-
nite and complete set of axioms, and of proving that these axioms were
consistent (Hilbert's program). In 1931 Kurt Gödel arguably proved that
this will not be possible: he proved that any consistent and complete the-
ory of interesting expressiveness will be based on an uncomputable set of
axioms. This historical result was ground-breaking and in�uenced signi�-
cantly mathematics of the 20th century. Together with the reformulation
by Alan Turing this result was at the same time the �rst large spreading
of the notion of uncomputability: the mathematical community became
aware of problems that in general no computer may solve within �nite
time. The existence of uncomputable problems was naturally sobering
since it showed the limitations of computers, it showed that computers
may not compute anything. In the same time it was satisfying that there
was at least mathematical evidence of this fact. In practice, it became
clear that not every computable problem can e�ciently be solved: there
are computable problems that require provably at least exponential time
(i.e., the function describing the running time of a solving algorithm in
function of the size of the input instance is an exponential one). Problems
solvable in exponential time are generally not regarded as e�ciently solv-
able for practical use (the class of such problems is denoted EXP), since
only small increments of the input size cause huge explosions of the run-
ning time. However, polynomial running time (leading to the class P) is
commonly considered an appropriate notion of e�ciency. Unfortunately,

15

16 CHAPTER 1. INTRODUCTION

it appears that there are many problems of practical interest for which no
e�cient algorithms are known, but neither is there a mathematical proof
which excludes the existence of such an algorithm. The best known class
of such problems is the class NP, the class of e�ciently veri�able prob-
lems. A prominent example of an NP-problem is the Traveling Salesman
Problem: given a list of cities, their pairwise distances and a maximal
length k, the question is whether there exists a route of length at most k
that visits each city exactly once and returns to the origin city. This prob-
lem belongs to NP since it is apparently easy to verify whether a given
route satis�es the requirements. But �nding such a route appears to be
di�cult, the best known algorithms have still exponential running time
(that is, roughly speaking, the best known method is to systematically
try all possible routes). Since every e�ciently solvable problem is also
e�ciently veri�able we have clearly P ⊆ NP. But whether the inclusion is
strict is one of the most important open questions in theoretical computer
science.

An important step in the investigation of the P-NP problem was the
identi�cation of NP-complete problems, which means, problems in NP
that allow e�cient translations from any other problem in NP. NP-
complete problems may thus be viewed as the hardest problems in NP.
The �rst problem shown to be NP-complete is the problem Sat, the sat-
is�ability problem for propositional formulæ [Coo71]. Also the Traveling
Salesman Problem is NP-complete, that is, there are e�cient translations
from and to the Sat-problem. If for any NP-complete problem a poly-
nomial time algorithm was found, it would imply P = NP. So, while
even for the hardest problems in NP we cannot exclude the existence of
an e�cient algorithm, we can at least give good reasons to believe that a
problem does not admit an e�cient algorithm: prove that it is equivalent
to an NP-complete problem.

We will treat in this thesis problems that might be even harder so
solve than NP-complete problems: problems that are known to be e�-
ciently veri�able only with the help of an NP-oracle. That is, a verifying
algorithm may ask questions to another NP-problem (the oracle) and gets
the correct answer instantly (this class is denoted NPNP or alternatively
Σp

2). One can continue this procedure of de�ning the class of problems
being e�ciently veri�able with the help of an NPNP-oracle and so on,
leading to the polynomial hierarchy. A last important complexity class
we will encounter is the class DP of di�erences of NP-problems. The
above mentioned notion of completeness can analogously be applied to

17

any other class.
We will consider in this thesis problems taken from the contexts of ab-

duction and argumentation known to be complete for the above mentioned
complexity classes. Thus, most likely there are no e�cient algorithms to
solve them. Our purpose is to introduce parameters in these problems
that may regulate their complexity in order to identify fragments of lower
complexity.

Abduction Usual deduction is the process of deducing a conclusion
from a major premise (certain rules / knowledge about the world) and
a minor premise (cases). Consider for this the following example from
[Pop73]:

major premise: All people with tuberculosis have bumps
minor premise: Mr. Jones has tuberculosis
conclusion: Mr. Jones has bumps

Thus, knowing that All people with tuberculosis have bumps and that Mr.
Jones has tuberculosis, we may deduce that Mr. Jones has bumps. In
contrast, induction is the process of generalizing from the minor premise
and associated observations (the conclusion) to the rules, that is hypoth-
esizing the major premise. In our example, knowing that Mr. Jones
has tuberculosis and observing that Mr. Jones has bumps we could hy-
pothesize that maybe All people with tuberculosis have bumps. At last,
abduction is the process of �nding an explanation for a given observation
and some general rules, that is, hypothesizing the minor premise from a
given major premise and the conclusion. Observing that Mr. Jones has
bumps and knowing that All people with tuberculosis have bumps we may
consider Mr. Jones has tuberculosis a possible explanation.

For abduction it has become common to indicate the major premise as
the knowledge base that contains certain facts and rules about the behav-
ior of the world. Possible minor premises are the hypothesis from which
explanations may be formed for the observation or manifestation (the
conclusion). Abduction is said to be a form of nonmonotonic reasoning
since adding information to the knowledge base may invalidate previously
valid explanations. For instance, adding in the above example the simple
statement that Mr. Jones has no tuberculosis renders invalid the previous
explanation Mr. Jones has tuberculosis.

Nowadays abduction is a fundamental and important form of non-

18 CHAPTER 1. INTRODUCTION

monotonic reasoning that has extensively been studied within Arti�cial
Intelligence. As illustrates our example a possible �eld of application
is medical diagnosis [BATJ89]. Other application areas are text analy-
sis [HSAM93], system diagnosis [SW01], con�guration problems [AFM02]
and temporal knowledge bases [BL00].

There are several approaches to formalize the problem of abduction. In
this thesis we focus on logic-based abduction. Following the formalization
of Eiter and Gottlob [EG95], we are given the knowledge base Γ as a set
of propositional formulæ, the hypotheses as a set of variables A, and the
manifestation ϕ as a propositional formula. An explanation (or solution)
for an instance (Γ, A, ϕ) is a set E ⊆ A such that Γ ∪E is consistent and
logically implies the manifestation ϕ. In this thesis we will consider the
following two decision problems:

1. explanation-existence (Abd for short)
given (Γ, A, ϕ), decide whether there exist explanations;

2. explanation-validity (Abd-Check for short)
given (Γ, A, ϕ,E), decide whether E is a valid explanation.

In full propositional logic the �rst problem is Σp
2-complete, while the sec-

ond problem is DP-complete [EG95].

Argumentation According to the seminal work by Dung [Dun95], ar-
gumentation can be seen as a generalization of many forms of nonmono-
tonic reasoning previously developed (e.g., Reiter's Default Logic [Rei80]
or Moore's Autoepistemic Logic [Moo85]). It is therefore, as previous for-
malisms of reasoning with incomplete information, an attempt to make
machine-based reasoning more �exible, more powerful, more human like.
The basic principle of those formalisms is always the same: an assumption
or conclusion may be acceptable as long as no contradictory information
comes up. In argumentational reasoning a statement is believable if it can
be argued successfully against attacking arguments [Dun95].

As already implied, argumentation as a subject of intensive research
within Arti�cial Intelligence is a relatively young discipline. One can iden-
tify, among others, two important lines of research: abstract argumenta-
tion and logic-based argumentation. Abstract argumentation focuses on
the relation between arguments without taking their internal structure
into account. A basis for considerations is an (abstract) argumentation
framework [Dun95] that can be visualized by a directed graph whose nodes

19

are arguments, a directed edge (a, b) indicates that argument a attacks
argument b. One uses certain semantics to �nd acceptable subsets of ar-
guments by analyzing solely this graph obtained from the arguments and
con�icts. The term abstract indicates that both the nature of arguments
and the nature of the attack relation are ignored.

In this thesis we focus on logic-based argumentation. One goal in logic-
based argumentation is to �nd a concrete formal representation of an
argument and then to de�ne - on top of this concept - notions such as
counterarguments, rebuttals or undercuts (see [BH01]). Many proposals
consider an argument as a pair (Φ, α), where Φ is the support which has
to entail (or justify) the claim α. Let us illustrate this on an example
from [BH08].

Argument 1

Support: Simon Jones is a public person, so we can publicize de-
tails about his private life.

Claim: We can publicize that Simon Jones is having an a�air.

Argument 2

Support: Simon Jones just resigned from the House of Commons;
hence, he is no longer a public person.

Claim: Simon Jones is no longer a public person.

Each argument is well-formed since its support implies its claim. Though,
together they are con�icting: the claim of argument 2 contradicts the
support of argument 1. That is, argument 2 attacks argument 1. Note
that the attack relation is generally not symmetric.

To get more precise in the formalization, we de�ne an argument as
a pair (Φ, α), where the support Φ is a consistent set (or a minimal
consistent set) of formulæ from a given knowledge base ∆ that entails
the claim α which is a formula (see, for example [Cay95, BH01, AC02,
GS04, DKT06]). Di�erent logical formalisms provide di�erent de�nitions
for consistency and entailment and hence give di�erent options for de�n-
ing the notion of an argument. In this thesis we formalize arguments in
propositional logic. Among others, we will consider the complexity of the
following central decision problems:

1. argument-existence (Arg for short)
given (∆, α), decide whether there exists a support Φ ⊆ ∆ for α;

20 CHAPTER 1. INTRODUCTION

2. argument-validity (Arg-Check for short)
given (Φ, α), decide whether Φ is a valid support for α.

Computing the support for an argument underlies many reasoning prob-
lems in logic-based argumentation, for instance, the computation of argu-
ment trees as proposed in [BH01]. In full propositional logic the argument-
existence problem is Σp

2-complete [PWA03], while the argument-validity
problem is DP-complete.

Complexity Classi�cations We would like to draw a more detailed
picture of the complexity of the presented problems from abduction and
argumentation. We want to understand sources of hardness and to identify
tractable variants. A complexity classi�cation for a problem appears to be
an appropriate method to do so: introducing a parameter to a problem, a
(complete) complexity classi�cation permits to indicate for each possible
value of the parameter the precise complexity of the parameterized prob-
lem. In the literature, among others, two central frameworks have been
proposed that allow for complexity classi�cations. We will refer to them
as Post's Framework and Schaefer's Framework. Both frameworks give a
formal method of obtaining fragments of propositional logic and are thus
well-suited to parameterize the problems we are interested in. We will
give detailed introductions to the frameworks in Chapters 3.1 (Post) and
4.1 (Schaefer).

Results Abduction has already been considered in Schaefer's Frame-
work [CZ06, NZ08]. Our new contributions are to consider both abduction
and argumentation in Post's Framework (Chapters 3.2, 3.3 and 3.4) and
argumentation in Schaefer's Framework (Chapter 4.2). At last we will
address in Chapter 4.3 a problem of completely di�erent nature: Enu-
meration. In contrast to decision problems, Enumeration requires not to
decide whether there are solutions or not, but to explicitly generate all so-
lutions of a problem instance. We address the problem of enumerating the
satisfying assignments (models) of a propositional formula in Schaefer's
Framework.

Publications The results of Chapter 3 have previously been published
in [CST11] (abduction) and [CSTW11] (argumentation), except for the
classi�cations for the explanation-validity problem for abduction. The
results of Chapter 4 on enumeration previously appeared in [COS11],

21

the ones on argumentation have been accepted for publication at Fourth
International Conference on Computational Models of Argument, 2012
(COMMA'12).

22 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

We assume that the reader is familiar with basic mathematic objects such
as sets, functions and relations and with basic notions from theoretical
computer science such as Turing machines. Furthermore we assume fa-
miliarity with propositional logic.

2.1 Propositional Logic

The symbols 0 and 1 represent the Boolean constants false and true. The
set of all propositional formulæ is denoted by L. A model for a formula ϕ
is a truth assignment to the set of its variables that satis�es ϕ. An assign-
ment to an ordered set of variables (x1, . . . , xn) will generally be identi�ed
with an n-tuple over {0, 1}. We denote by mod(ϕ) the set of models of ϕ.
We say that a formula ϕ is satis�able (sat for short) if mod(ϕ) 6= ∅ and
unsatis�able (unsat for short) if mod(ϕ) = ∅. Let α, β be variables or con-
stants. We denote by ϕ[α/β] the formula obtained from ϕ by replacing all
occurrences of α with β. If X is a set of variables, ϕ[X/β] is the formula
obtained by replacing all occurrences of all variables ofX by β. For a given
formula ϕ we denote by Vars(ϕ) the set of variables occurring in ϕ. We
extend this de�nition on sets of formulæ Γ as Vars(Γ) =

⋃
ϕ∈Γ Vars(ϕ).

We identify �nite Γ with the conjunction of all the formulæ in Γ,
∧
ϕ∈Γ ϕ.

Naturally, Γ[α/β] then stands for
∧
ϕ∈Γ ϕ[α/β]. We will need the no-

tion of quanti�ed (Boolean) formulæ which extends propositional formulæ
with the shorthands ∃xϕ(x) := ϕ(0) ∨ ϕ(1) and ∀xϕ(x) := ϕ(0) ∧ ϕ(1),
where x is a variable and ϕ a quanti�ed formula. A variable x is free

23

24 CHAPTER 2. PRELIMINARIES

if it does not appear in the scope of ∃x or ∀x. A quanti�ed formula is
closed if it has no free variables. A closed quanti�ed formula is valid if
it is equivalent to 1. We will also consider propositional formulæ with
only existentially quanti�ed variables that still have free variables. For
a quanti�er free formula ϕ and a vector ~x = (x1, . . . , xn) of n variables
the models of ∃~xϕ are thus

⋃
c1,...,cn∈{0,1}mod(ϕ[x1/c1, . . . , xn/cn]). We

say that two formulæ ϕ and ψ are equivalent (written ϕ ≡ ψ) if every
assignment σ : Vars(ϕ) ∪ Vars(ψ)→ {0, 1} on the combined variable sets
satis�es ϕ if and only if it satis�es ψ. We say that two formulæ ϕ and ψ
are equisatis�able (written ϕ ≡SAT ψ) if ϕ is satis�able if and only if ψ is
satis�able. We write ϕ |= ψ if ϕ implies (entails) ψ, i.e., if ψ is satis�ed
by any assignment σ : Vars(ϕ) ∪ Vars(ψ)→ {0, 1} that satis�es ϕ. In an
implication ϕ |= ψ, we call ϕ the premise and ψ the conclusion.

A literal l is a variable x or its negation ¬x. A positive literal is a
variable x, a negative literal is the negation of a variable ¬x. Given a
set of variables V , Lits(V) denotes the set of all literals formed upon the
variables in V , i.e., Lits(V) := V ∪{¬x | x ∈ V }. A clause is a disjunction
of literals and a term is a conjunction of literals. A propositional formula
ϕ is in conjunctive normal form (CNF for short) if it is a conjunction of
clauses. The formula ϕ is in disjunctive normal form (DNF for short) if it
is a disjunction of terms. The formula ϕ is in kCNF if it is a conjunction
of clauses of size exactly k, ϕ is in kDNF if it is a disjunction of terms of
size exactly k.

2.2 Complexity Theory

2.2.1 Complexity Classes

We present here the complexity classes we will meet in this thesis.

We identify a decision problem with a language, i.e., its set of "yes"-
instances. We call a decision problem trivial if it can be solved within
constant time. The class P (resp. NP) is de�ned as the set of languages
(problems) that can be solved in polynomial time by a deterministic (resp.
non-deterministic) Turing machine. The class EXP is the set of languages
that can be solved in exponential time on a deterministic Turing machine,
where the class Logspace is the set of languages that can be solved in
logarithmic space by a deterministic Turing machine. The complement
of NP is denoted by coNP, that is the class of languages whose set of

2.2. COMPLEXITY THEORY 25

Logspace ⊆ P
⊆
⊆

NP

coNP

⊆

⊆
DP ⊆ Σp

2 ⊆ Σp3 ⊆ . . . ⊆ EXP

Figure 2.1: Known inclusions between complexity classes

"no"-instances lies in NP. The class NP can equivalently be de�ned as
languages that can be veri�ed in polynomial time. That is, NP is the class
of languages A for which there is a language B ∈ P and a polynomial p
such that for any instance x holds

x ∈ A ⇐⇒ ∃w, |w| ≤ p(|x|) : (x,w) ∈ B.

The class DP is the set of languages of di�erences between NP-languages,
i.e., DP = {A\B | A,B ∈ NP} = {A ∩ B | A ∈ NP, B ∈ coNP}.
For a complexity class C and a problem A we denote CA the class of
problems that can be decided by a C-machine using an A-oracle (that
is a Turing machine may ask questions of the style is x ∈ A? and gets
the correct answer in constant time). For a complexity class D we de�ne
CD :=

⋃
A∈D C

A. The classes of the polynomial hierarchy are de�ned as

Σpk+1 := NPΣp
k with Σp0 := P. Thus we have Σp0 = P, Σp1 = NP and the

class Σp
2 = NPNP is the set of languages that can be decided in polynomial

time by a non-deterministic Turing machine that uses an oracle A ∈ NP.
It clearly holds Σpk ⊆ Σpk+1 for all k.

Figure 2.2.1 visualizes known inclusions of the polynomial hierarchy
and the all compounding class EXP. It is generally believed that the
higher a problem lies in the polynomial hierarchy, the more time it will
take to solve it, the harder it is. The problems in P are generally said
to be e�ciently solvable or to be tractable, whereas the above classes are
said to represent di�erent degrees of intractable problems. It is worth
mentioning that up to know none of the indicated inclusions is known
to be strict, except P (EXP. Even the total collapse of the whole
polynomial hierarchy to Logspace is not excluded. For more background
information, the reader is referred to [Pap94].

26 CHAPTER 2. PRELIMINARIES

2.2.2 Reductions and complete Problems

In order to compare the di�culty of problems we consider logspace many-
one reductions, de�ned as follows: a language A is logspace many-one
reducible to some language B (written A ≤log

m B) if there exists a logspace-
computable function f such that x ∈ A if and only if f(x) ∈ B. For some
complexity class C, a language A is said to be C-hard if all languages in
C are logspace many-one reducible to A. A language A is C-complete if
A ∈ C and A is C-hard. Complete problems of a class C are the hardest
representatives of the class C, they do most likely not lie in lower classes.
The logspace many-one reduction is re�exive and transitive. To show C-
hardness of a problem A it su�ces thus to reduce a problem B already
known to be C-hard to A.

The satis�ability of propositional formulæ is the core of many com-
plexity classes and therefore provides central complete problems for many
classes. We list here some of the most relevant complete problems that
we will use often to obtain new hardness results.

Problem: 3Sat (NP-complete according to [Coo71])

Instance: A propositional formula ϕ in 3CNF.

Question: Is ϕ satis�able?

Problem: Pos-2in3-Sat (NP-complete according to [Sch78])

Instance: A propositional formula ϕ in 3CNF with only positive
literals.

Question: Is there an assignment to the variables of ϕ that sets
in each clause exactly two variables to true?

Problem: Qsat∃,2 (Σp
2-complete according to [Wra77])

Instance: A closed quanti�ed Boolean formula of the form ϕ =
∃x1 . . . ∃xn∀y1 . . . ∀ymψ, where ψ is a propositional for-
mula in 3DNF.

Question: Is ϕ valid?

From the NP-completeness of 3Sat one quickly identi�es the following
canonical problem as DP-complete.

Problem: SatUnsat (DP-complete)

Instance: Two propositional formulæ (ϕ,ψ) in 3CNF.

Question: Is ϕ satis�able and ψ unsatis�able?

2.3. ABDUCTION AND ARGUMENTATION 27

We will also use the following DP-complete problem as starting point
to show DP-hardness.

Problem: Critical-3Sat (DP-complete according to [PW88])

Instance: A propositional formula ϕ in 3CNF.

Question: Is ϕ unsatis�able but removing any of its clauses makes
it satis�able?

2.3 Abduction and Argumentation

Abduction Given a knowledge base Γ and a manifestation ϕ, an expla-
nation E is a set of literals that is consistent with Γ and that together
with Γ entails the manifestation ϕ. That is, an explanation E has to
satisfy

1. Γ ∪ E is consistent,

2. Γ ∪ E |= ϕ.

Note that these conditions are equivalent to the followings:

(B1) Γ ∧ E is satis�able,

(B2) Γ ∧ E ∧ ¬ϕ is unsatis�able.

We de�ne the explanation-existence problem as follows.

Problem: Abd

Instance: I = (Γ, A, ϕ), where Γ ⊆ L, A ⊆ Vars(Γ) and ϕ ∈ L
Question: Does there exist an explanation E ⊆ Lits(A)?

We refer to the above de�ned abduction problem as symmetric abduc-
tion, since every variable of the hypotheses A may be taken positively
or negatively to construct an explanation. An explanation E is full if it
holds Vars(E) = A. Note that every explanation can be extended to a
full one. We will also consider positive abduction, where we are interested
in purely positive explanations only. We call an explanation E a positive
explanation if holds E ⊆ A.

Problem: P-Abd

Instance: I = (Γ, A, ϕ), where Γ ⊆ L, A ⊆ Vars(Γ) and ϕ ∈ L

28 CHAPTER 2. PRELIMINARIES

Question: Does there exist an explanation E ⊆ A?

While in full propositional logic the positive and the symmetric ab-
duction problem are equivalent, we will see that their complexity di�ers
in fragments of propositional logic.

Example 2.3.1. [Logic based abduction] Let the knowledge base Γ be given
by the three formulæ

Charly-is-lazy ∧ Charly-is-alone→ Charly-plays-truant,
Dad-is-shopping→ Charly-is-alone,
¬
(
buses-are-running

)
→ Charly-plays-truant ∧ ¬

(
Dad-is-shopping

)
.

Let the hypotheses be the three variables
{buses-are-running,Dad-is-shopping,Charly-is-lazy}
Imagine we observe Charly-plays-truant. The set {Charly-is-lazy,Charly-is-alone}
is no valid explanation, since Charly-is-alone is no hypothesis. Though,

E1 = {¬
(
buses-are-running

)
}

is a valid explanation. Note that E1 is no positive explanation. A positive
explanations would be

E2 = {Dad-is-shopping,Charly-is-lazy}.

You can observe the nonmonotonicity of abduction by adding to the knowl-
edge base the fact ¬

(
Charly-is-alone

)
. This will invalidate E2 as an ex-

planation since E2 is not consistent anymore with the knowledge base.

Besides the explanation existence problem we are also interested in the
decision problem of validity. We de�ne the explanation-validity problem
as follows.

Problem: Abd-Check

Instance: I = (Γ, A, ϕ,E), where Γ ⊆ L, A ⊆ Vars(Γ), ϕ ∈ L
and E ⊆ Lits(A)

Question: Is E an explanation?

We will also consider the positive variant where we restrict our focus
on purely positive explanations.

Problem: P-Abd-Check

Instance: I = (Γ, A, ϕ,E), where Γ ⊆ L, A ⊆ Vars(Γ), ϕ ∈ L
and E ⊆ A

Question: Is E an explanation?

2.3. ABDUCTION AND ARGUMENTATION 29

Argumentation We will denote the knowledge base by ∆, represent-
ing a large depository of information, from which arguments can be con-
structed for arbitrary claims.

Following [BH01], an argument is a pair (Φ, α), where Φ is a set of
formulæ and α is a formula such that

1. Φ is consistent,

2. Φ |= α,

3. Φ is minimal with this last property, i.e., no proper subset of Φ
entails α.

We say that (Φ, α) is an argument for α. If Φ ⊆ ∆ then it is said to be an
argument in ∆. We call α the claim (or consequent) and Φ the support
of the argument. Note that these three conditions are equivalent to the
followings:

(C1) Φ is satis�able,

(C2) Φ ∧ ¬α is unsatis�able (i.e., Φ |= α), and

(C3) for all ϕ ∈ Φ, (Φ \ {ϕ}) ∪ {¬α} is satis�able (i.e., Φ is minimal).

We de�ne the argument-existence problem as follows.

Problem: Arg

Instance: I = (∆, α), where ∆ ⊆ L and α ∈ L.
Question: Does there exist Φ such that (Φ, α) is an argument in

∆?

Besides the decision problem for the existence of an argument we are
interested in the decision problems for validity, relevance and dispensabil-
ity. These problems can in particular be used to give general enumeration
schemes of arguments, a central task in argumentation [CSTW11].

Problem: Arg-Check

Instance: I = (Φ, α), where Φ ⊆ L and α ∈ L.
Question: Is (Φ, α) an argument?

Problem: Arg-Rel

Instance: I = (∆, α, ϕ), where ∆ ⊆ L(and α,ϕ ∈ L.

30 CHAPTER 2. PRELIMINARIES

Question: Does there exist an argument (Φ, α) in ∆ such that
ϕ ∈ Φ?

Problem: Arg-Disp

Instance: I = (∆, α, ϕ), where ∆ ⊆ L and α,ϕ ∈ L.
Question: Does there exist an argument (Φ, α) in ∆ such that

ϕ /∈ Φ?

Abd versus Arg We will observe in this thesis that the explanation-
existence problem for abduction and the argument-existence problem for
argumentation show quite di�erent behavior in fragments of propositional
logic. However, we want to outline here their proximity in full proposi-
tional logic. In full propositional logic the abduction problem Abd and
the argumentation problem Arg are equivalent (with respect to logspace
many-one reductions) since they are both complete for the second level
of the polynomial hierarchy ([EG95, PWA03]). Indeed there are very
simple reductions proving this equivalence. We give here exemplary the
reductions between P-Abd and Arg.

1. P-Abd ≤log
m Arg: (Γ, A, ϕ) 7→ (∆, α), where

∆ := {
∧
ψ∈Γ ψ} ∪A,

α := ϕ ∧
∧
ψ∈Γ ψ.

2. Arg ≤log
m P-Abd: (∆, α) 7→ (Γ, A, ϕ), where

∆ = {ϕ1, . . . , ϕn},
A := {x1, . . . , xn},
Γ := {xi ↔ ϕi | 1 ≤ i ≤ n},
ϕ := α.

For fragments of propositional logic these reductions do generally not
preserve the properties of the chosen fragment and are thus not suited to
transfer complete complexity classi�cations between abduction and argu-
mentation. Note for instance that Horn-formulæ are not preserved by the
second reduction. Nevertheless we will use the idea of the �rst reduction
to transfer certain hardness results from abduction to argumentation.

The complexity of both problems, Abd and Arg rests on two sources:
�nding a candidate explanation / support and verifying that it is indeed
valid. This gives a straight forward procedure to prove the Σp

2-membership:
guess an explanation / support and subsequently verify with the help of an
NP-oracle (or coNP-oracle) that it is valid. We will see that in fragments

2.3. ABDUCTION AND ARGUMENTATION 31

of propositional logic also NP-, coNP- and P-membership will occur. The
NP-membership typically occurs when the veri�cation step can be per-
formed in P, whereas coNP-membership occurs when there is a natural
candidate (that is the guessing step can be skipped). The P-membership
occurs if both is the case: there is a natural candidate that can be veri�ed
in P. Since the veri�cation step is based on satis�ability and implication,
we have NP-membership whenever these tasks are tractable. A natural
support for argumentation may be the whole knowledge base ∆ when it
is consistent. In the case of positive abduction a natural explanation may
be the whole set of hypotheses A when it is guaranteed to be consistent.

The structural di�erences between Abd and Arg are as follows.

(a) For Abd the knowledge base Γ can be assumed to be consistent
(it describes a consistent part of the worlds behavior), this does
usually not change the complexity; for Arg the knowledge base ∆
is usually explicitly inconsistent (otherwise no con�icting arguments
can be constructed, which is central in argumentation), assuming a
consistent ∆ usually rendersArg easier since the test for consistency
can be dropped.

(b) For Abd the knowledge base Γ is always entirely used (together
with a selected subset of hypotheses) in the tests for consistency
and entailment, while for Arg these tests are performed on a chosen
subset Φ of the knowledge base ∆. As we will see later on, this has
particular technical consequences when considering these problems
in fragments of propositional logic.

Another di�erence between abduction and argumentation regards the
minimality condition in the de�nition of an argument, whereas an expla-
nation for abduction is not needed to be minimal in this thesis. Where
in the argument-existence problem Arg this condition does not in�uence
the complexity (a support does exists if and only if a minimal support
exists), it matters for the veri�cation problem Arg-Check. As we will
see, there are fragments of propositional logic for which the argument-
veri�cation problemArg-Check is potentially harder then the argument-
existence problem Arg, unless the polynomial hierarchy collapses. This
phenomenon does not occur in the case of abduction where we do not
have to verify any minimality condition.

32 CHAPTER 2. PRELIMINARIES

BF

R1 R0

R2

M

M1 M0

M2

S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

D

D1

D2

E

E1 E0

E2

V

V0V1

V2

L

L0L1 L3

L2

N

N2

I

I0I1

I2

Figure 2.2: Post's lattice.

Chapter 3

Complexity Classi�cations

in Post's Framework

3.1 Post's Framework

In this chapter the approach to obtain fragments of propositional logic
is to restrict the allowed connectives in propositional formulæ. That is,
instead of considering propositional formulæ over the standard Boolean
connectives {∧,∨,¬}, we take the connectives from a given set B of ar-
bitrary Boolean functions, leading to the notion of so-called B-formulæ.
This approach has �rst been taken by Lewis [Lew79] who showed that
Sat(B), the satis�ability problem for B-formulæ, is NP-complete if and
only if the negation of implication (x ∧ ¬y) can be expressed by the
given connectives B. Since then, Lewis' approach has been applied to
a wide range of problems including equivalence and implication problems
[Rei03, BMTV09a], satis�ability and model checking in modal and tem-
poral logics [BHSS06, BSS+08], default logic [BMTV09b], and circum-
scription [Tho09].

At �rst sight, classifying the complexity of problems parameterized by
B-formulæ for all possible sets B requires the study of in�nitely many
cases. It appears that the complexity usually does not depend directly
on B, but on the expressiveness of B. More precisely, the complexity
depends on the clone [B] generated by B, that is, the set of Boolean
functions that can be obtained from the functions in B by projection and

33

34 CHAPTER 3. CLASSIFICATIONS IN POST'S FRAMEWORK

arbitrary composition. This reduces considerably the number of cases to
study. We will make this more precise in the following.

3.1.1 Boolean clones and Post's Lattice

A Boolean function is an n-ary function f : {0, 1}n → {0, 1}. A Boolean
clone is a set of Boolean functions that is closed under superposition, i.e.,
it contains all projections (that is, the functions f(a1, . . . , an) = ak for
all 1 ≤ k ≤ n and n ∈ N) and is closed under arbitrary composition. We
will henceforth omit the term Boolean since we only deal with Boolean
clones. Let B be a �nite set of Boolean functions. We denote by [B]
the smallest clone containing B and call B a base for [B]. In 1941 Emil
Post identi�ed the set of all clones of Boolean functions [Pos41]. He gave
a �nite base for each of the clones and showed that the set of all clones
ordered by inclusion together with the operations [B ∪B′] and [B] ∩ [B′]
forms a lattice, hence the name Post's lattice (see Figure 2.2 on page 32).
In order to de�ne the clones we introduce the following properties, where
we give for each of them at least one example. We denote by f an n-
ary Boolean function. The dual of a function f is the Boolean function
dual(f)(x1, . . . , xn) := ¬f(¬x1, . . . ,¬xn). The function tnk denotes the
n-ary k-threshold function that evaluates to 1 if and only if at least k of
its n inputs are set to 1:

tnk (x1, . . . , xn) = 1 ⇐⇒
n∑
i=1

xi ≥ k

The function tn+1
n in particular can be written as

tn+1
n =

n+1∨
i=1

(x1 ∧ · · · ∧ xi−1 ∧ xi+1 ∧ · · · ∧ xn+1).

• f is c-reproducing if f(c, . . . , c) = c, c ∈ {0, 1}. The binary and (∧)
and the binary or (∨) are 0- and 1-reproducing, the binary exclusive
or (⊕) is 0-reproducing, but not 1-reproducing, whereas the unary
negation (¬) is neither 1- nor 0-reproducing.

• f is monotonic if a1 ≤ b1, . . . , an ≤ bn implies f(a1, . . . , an) ≤
f(b1, . . . , bn). Boolean functions build upon composition of only
∧,∨, 0, 1 are monotonic, like for instance g(x, y, z) ≡ x∧(1∧(y∨z)).

3.1. POST'S FRAMEWORK 35

• f is c-separating of degree k if for all A ⊆ f−1(c) of size |A| = k there
exists an i ∈ {1, . . . , n} such that (a1, . . . , an) ∈ A implies ai = c,
c ∈ {0, 1}. The (n+1)-ary threshold function tn+1

n being true if and
only if 'at least n variables are true' is 1-separating of degree n. For
instance t32(x, y, z) ≡ (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) is 1-separating of
degree 2.

• f is c-separating if f is c-separating of degree |f−1(c)|. The impli-
cation g(x, y) ≡ ¬x ∨ y ≡ x→ y is 0-separating.

• f is self-dual if f ≡ dual(f). The majority function g(x, y, z) ≡
(x ∧ ¬y) ∨ (x ∧ ¬z) ∨ (¬y ∧ ¬z) is self-dual.

• f is a�ne if f ≡ x1 ⊕ · · · ⊕ xn ⊕ c with c ∈ {0, 1}. The function
g(x, y, z) ≡ x⊕ y ⊕ z ⊕ 1 is a�ne and self-dual.

A list of all clones with de�nitions and �nite bases is given in Table 3.1
on page 37. In the naming of the clones the semantic of single indexes is
as follows. Index 2 indicates that the clone contains no constants at all.
Index 0 (resp. 1) indicates that the clone contains only the constant 0
(resp. 1) but not 1 (resp. 0). Clones with no index contain both constants
0 and 1. The only exceptions to this convention are the clones D and D1

which do not contain any constants at all. The index * stands for all valid
indexes. Clones of particular importance, since they mark points in Post's
lattice where the complexity of many problems changes, are:

• the clone of all Boolean functions BF = [∧,¬] = [∧,∨,¬, 0, 1]

• the monotonic clones M∗, e.g., M2 = [∧,∨], M = [∧,∨, 0, 1]

• the a�ne clones L∗, e.g., L2 = [x⊕ y ⊕ z], L = [x⊕ y, 0, 1]

• the disjunctive clones V∗, e.g., V2 = [∨], V = [∨, 0, 1]

• the conjunctive clones E∗, e.g., E2 = [∧], E = [∧, 0, 1]

• the c-reproducing clones R∗, R1 1-repr., R0 0-repr., R2 1- and 0-repr.

• the implication clone S0 = [→]

• the negated-implication clone S1 = [x ∧ ¬y]

• the dual clones D∗, D self-dual, D1 = D ∩ R2, D2 = D ∩M

• the clones S00 = S0 ∩ R2 ∩M = [x ∨ (y ∧ z)], S10 = S1 ∩ R2 ∩M =
[x ∧ (y ∨ z)] and S12 = S1 ∩ R2 = [x ∧ (y ∨ ¬z)]

36 CHAPTER 3. CLASSIFICATIONS IN POST'S FRAMEWORK

A propositional formula using only functions from B as connectives is
called a B-formula. The set of all B-formulæ is denoted by L(B).

Let f be an n-ary Boolean function. A B-formula ϕ with Vars(ϕ) =
{x1, . . . , xn} is called B-representation of f if f ≡ ϕ, i.e., there is a
permutation π on {1, . . . , n} such that ϕ(x1, . . . , xn) = 1 if and only if
f(xπ(1), . . . , xπ(n)) = 1. Such a B-representation exists for every f ∈ [B].
Yet, it may happen that a B-representation of some function uses some
input variable more than once, see Example 3.1.1.

Example 3.1.1. [Exponential blow up] Let h(x, y) ≡ ¬(x ∧ y). An {h}-
representation of the binary and, and(x, y) ≡ x ∧ y, is h(h(x, y), h(x, y)).
Observe that an {h}-representation of the n-ary and, andn(x1, . . . , xn) ≡
x1 ∧ · · · ∧ xn, based on the recursive application of the {h}-representation
h(h(x, y), h(x, y)) of the binary and to the formula(

. . .
(
((x1 ∧ x2) ∧ x3) ∧ x4

)
∧ . . .

)
∧ xn

leads to an explosion of the formula size. This is because the parentheses-
depth is linear in the number of variables and the variables x, y appear
twice in the {h}-representation h(h(x, y), h(x, y)) of the binary and. We
can avoid this exponential blow up by placing the parentheses in a way
such that we get a formula of logarithmic parentheses-depth, i.e.,(
. . .
(
(x1∧x2)∧(x3∧x4)

)
∧. . .

)
∧
(
· · ·∧

(
(xn−3∧xn−2)∧(xn−1∧xn)

)
. . .
)
.

3.1.2 Post's lattice as a Tool for Complexity Analysis

We denote by Prob(B) a general problem parameterized by B-formulæ,
i.e., its instances are made of B-formulæ.

Fix a set B of Boolean functions. Clearly, when showing membership
of Prob(B) to some complexity class, the membership also applies to
Prob(B′) for any B′ ⊆ B. Analogously, a hardness result for Prob(B)
also applies to all Prob(B′) such that B ⊆ B′. Summed up, in Post's
lattice membership spreads down and hardness spreads up.

As we already mentioned, the complexity of problems parameterized
by B-formulæ often is determined by the clone [B]. That is, the com-
plexity does not change inside a clone. Formally stated, it often holds
that

Prob(B1) ≤log
m Prob(B2) if B1 ⊆ [B2].

3.1. POST'S FRAMEWORK 37

Name De�nition Base

BF All Boolean functions {x ∧ y,¬x}
R0 {f | f is 0-reproducing} {x ∧ y, x⊕ y}
R1 {f | f is 1-reproducing} {x ∨ y, x⊕ y ⊕ 1}
R2 R0 ∩ R1 {∨, x ∧ (y ⊕ z ⊕ 1)}
M {f | f is monotonic} {x ∨ y, x ∧ y, 0, 1}
M1 M ∩ R1 {x ∨ y, x ∧ y, 1}
M0 M ∩ R0 {x ∨ y, x ∧ y, 0}
M2 M ∩ R2 {x ∨ y, x ∧ y}
Sn0 {f | f is 0-separating of degree n} {x→ y,dual(tn+1

n)}
S0 {f | f is 0-separating} {x→ y}
Sn1 {f | f is 1-separating of degree n} {x ∧ ¬y, tn+1

n }
S1 {f | f is 1-separating} {x ∧ ¬y}
Sn02 Sn0 ∩ R2 {x ∨ (y ∧ ¬z),dual(tn+1

n)}
S02 S0 ∩ R2 {x ∨ (y ∧ ¬z)}
Sn01 Sn0 ∩M {dual(tn+1

n), 1}
S01 S0 ∩M {x ∨ (y ∧ z), 1}
Sn00 Sn0 ∩ R2 ∩M {x ∨ (y ∧ z), dual(tn+1

n)}
S00 S0 ∩ R2 ∩M {x ∨ (y ∧ z)}
Sn12 Sn1 ∩ R2 {x ∧ (y ∨ ¬z), tn+1

n }
S12 S1 ∩ R2 {x ∧ (y ∨ ¬z)}
Sn11 Sn1 ∩M {tn+1

n , 0}
S11 S1 ∩M {x ∧ (y ∨ z), 0}
Sn10 Sn1 ∩ R2 ∩M {x ∧ (y ∨ z), tn+1

n }
S10 S1 ∩ R2 ∩M {x ∧ (y ∨ z)}
D {f | f is self-dual} {(x ∧ ¬y) ∨ (x ∧ ¬z) ∨ (¬y ∧ ¬z)}
D1 D ∩ R2 {(x ∧ y) ∨ (x ∧ ¬z) ∨ (y ∧ ¬z)}
D2 D ∩M {(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)}
L {f | f is a�ne} {x⊕ y, 1}
L0 L ∩ R0 {x⊕ y}
L1 L ∩ R1 {x⊕ y ⊕ 1}
L2 L ∩ R2 {x⊕ y ⊕ z}
L3 L ∩ D {x⊕ y ⊕ z ⊕ 1}
V {f | f is a disjunction or constants} {x ∨ y, 0, 1}
V0 V ∩ R0 {x ∨ y, 0}
V1 V ∩ R1 {x ∨ y, 1}
V2 V ∩ R2 {x ∨ y}
E {f | f is a conjunction or constants} {x ∧ y, 0, 1}
E0 E ∩ R0 {x ∧ y, 0}
E1 E ∩ R1 {x ∧ y, 1}
E2 E ∩ R2 {x ∧ y}
N {f | f depends on at most one variable} {¬x, 0, 1}
N2 N ∩ R2 {¬x}
I {f | f is a projection or a constant} {id, 0, 1}
I0 I ∩ R0 {id, 0}
I1 I ∩ R1 {id, 1}
I2 I ∩ R2 {id}

Table 3.1: List of all Boolean clones with de�nitions and bases.

38 CHAPTER 3. CLASSIFICATIONS IN POST'S FRAMEWORK

However, such a useful lemma can generally not easily be proved in
advance. The canonical idea of proving such a lemma is to transform
B1-formula into B2-formula by replacing every B1-connective by its B2-
representation. As illustrates Example 3.1.1, this reduction is not nec-
essarily polynomial: Since the B2-representation of some function may
use some input variable more than once, the formula size may grow ex-
ponentially. (The existence or not of a polynomial-size B2-representation
for any B1-formula is a topic of independent interest, which has been
addressed several times in the literature, see e.g., [KW88], [Spi71]). Nev-
ertheless we will use the idea of this reduction very frequently, avoiding
an exponential blow-up by special structures of the B1-formulæ. When
we show hardness-results for Prob(B) we generally show hardness �rst
only for Prob([B]) and show then in a second step that the proof can
indeed be extended to show hardness also for Prob(B), in the spirit of
the above mentioned canonical reduction.

It appears that many problems parameterized by B-formulæ allow the use
of some special Boolean function f 'for free': often one can prove with
little e�ort a lemma of the form

Prob(B) ≡log
m Prob(B ∪ {f}), for some f ∈ BF,

which reduces the number of cases to consider. We will therefore fre-
quently add some function f /∈ C to a clone C and consider the clone
C ′ = [C ∪ {f}] generated out of C and f . With Post's lattice one can de-
termine this C ′ quite easily: It is the lowest clone above C that contains
f . In this thesis it will be the Boolean constant 1 and sometimes also
the constant 0 that will be available 'for free'. The following list contains
identities we will frequently use.

• [S00 ∪ {0, 1}] = [D2 ∪ {0, 1}] = [S10 ∪ {0, 1}] = M

• [S02 ∪ {0, 1}] = [D1 ∪ {0, 1}] = [S12 ∪ {0, 1}] = BF

• [S1 ∪ {1}] = [D ∪ {1}] = BF

• [S00 ∪ {1}] = S01

• [D2 ∪ {1}] = S2
01

• [S10 ∪ {1}] = M1

• [S12 ∪ {1}] = [D1 ∪ {1}] = R1

3.1. POST'S FRAMEWORK 39

• [S02 ∪ {1}] = S0

• [L0 ∪ {1}] = L

• [L3 ∪ {1}] = L

3.1.3 Parameterizing by B-formulæ

Abduction In the above de�ned abduction problems we now introduce
two parameters in order to consider the problems in fragments of proposi-
tional logic. The �rst one is a set of Boolean functions B indicating that
the formulæ in the knowledge base Γ are restricted to B-formulæ.

We will also consider several restrictions of the manifestations. To
indicate them, we introduce a second parameter M meaning that the
manifestation ϕ is required to be

• Q (resp. PQ, NQ): a single literal (resp. positive literal, negative
literal),

• C (resp. PC, NC): a clause (resp. positive clause, negative clause),

• T (resp. PT, NT): a term (resp. positive term, negative term),

• L(B): a B-formula.

In the above used notation the de�nition of Abd(B,PQ) for instance
is as follows.

Problem: Abd(B,PQ)

Instance: I = (Γ, A, q), where Γ ⊆ L(B), A ⊆ Vars(Γ) and q a
variable

Question: Does there exist an explanation E ⊆ Lits(A)?

For a speci�ed set M of manifestation variants we will use Abd(B,M)
to talk about all manifestation variants inM simultaneously.

Argumentation For the argumentation problems we introduce only
one parameter. Even if the claim α is not necessarily present in the
knowledge base ∆, it seems us the most natural variant to consider the
support and the claim to be of the same type of formulæ. Contrary
to abduction, the process of argumentation does not stop after having
formed one argument. Hence the claim of an argument may be used to
form another support for another claim.

40 CHAPTER 3. CLASSIFICATIONS IN POST'S FRAMEWORK

The parameter is a set of Boolean functions B indicating that the
formulæ in the knowledge base ∆ and the claim α are B-formulæ. The
de�nition of Arg(B) for instance is as follows.

Problem: Arg(B)

Instance: I = (∆, α), where ∆ ⊆ L(B) and α ∈ L(B).

Question: Does there exist Φ such that (Φ, α) is an argument in
∆?

3.2 The complexity of Symmetric Abduction

3.2.1 Technical results and tools

As we mentioned in Section 3.1.2, often some special Boolean functions
can be used 'for free'. In the case of symmetric abduction these are the
constants 0 and 1. As shows the following important lemma, we may
always assume that our B contains the constant 1. In some cases also the
constant 0 is available. We will explain afterwards on an example how
this reduces the number cases we have to study.

Lemma 3.2.1. Let B be a �nite set of Boolean functions.

1. IfM∈ {Q,C,T,L(B)}, then

Abd(B,M) ≡log
m Abd(B ∪ {1},M),

Abd-Check(B,M) ≡log
m Abd-Check(B ∪ {1},M).

2. IfM∈ {Q,C,T} and ∨ ∈ [B], then

Abd(B,M) ≡log
m Abd(B ∪ {0},M),

Abd-Check(B,M) ≡log
m Abd-Check(B ∪ {0},M).

Proof. One direction of the equivalences is trivial and hence omitted. To
reduce Abd(B∪{1},M) to Abd(B,M) we transform any instance of the
�rst problem in replacing every occurrence of 1 by a fresh variable t and
adding the unit clause (t) to the knowledge base.

3.2. THE COMPLEXITY OF SYMMETRIC ABDUCTION 41

To reduce Abd(B ∪ {0},M) to Abd(B,M), let P = (Γ, A, ψ) be
an instance of the �rst problem and f be a fresh variable. Since M ∈
{Q,C,T}, we can suppose w.l.o.g. that ψ does not contain 0. We map P to
P ′ = (Γ′, A′, ψ), where Γ′ is the B-representation of {ϕ[0/f] ∨ f | ϕ ∈ Γ}
and A′ = A∪{f}. Note that Γ′ is equivalent to Γ[0/f]∨ f . Let now E be
a solution for P, i.e., Γ ∧ E is satis�able and Γ ∧ E ∧ ¬ψ is unsatis�able.
One easily veri�es that E′ = E ∪ {¬f} is a solution for P ′. Conversely,
let E′ be a solution for P ′. De�ne E = E′\{¬f}. The unsatis�ability
of Γ′ ∧ E′ ∧ ¬ψ allows us to conclude that ¬f ∈ E′. With this and the
satis�ability of Γ′ ∧E′ we obtain that Γ∧E is satis�able and Γ∧E ∧¬ψ
is unsatis�able.

The same reductions work for Abd-Check.

This lemma holds also for purely positive/negative queries, clauses or
terms, i.e., Q,C,T can be replaced by PQ,PC,PT or NQ,NC,NT, re-
spectively. This is because the manifestation is essentially left unchanged
by the reductions.

Lemma 3.2.1 together with the identities of clones mentioned in Sec-
tion 3.1.2 reduces the number of cases we have to study. For instance later
on we will show a hardness result for Abd(B,PQ) in the three following
cases:

1. S00 ⊆ [B]

2. D2 ⊆ [B]

3. S10 ⊆ [B]

In case 1 it holds that ∨ ∈ [B] and we may thus apply Lemma 3.2.1 for
both constants 0 and 1. It su�ces then to show hardness of Abd(B ∪
{0, 1},PQ). Since further M = [S00∪{0, 1}] ⊆ [[B]∪{0, 1}] = [B∪{0, 1}],
showing hardness of Abd(B,PQ), we may thus assume that M ⊆ [B].

In case 2, applying Lemma 3.2.1 for the constant 1, it su�ces to show
hardness of Abd(B ∪ {1},PQ). It holds further that S2

01 = [D2 ∪ {1}] ⊆
[[B] ∪ {1}] = [B ∪ {1}]. Thus it we may assume that S2

01 ⊆ [B]. But for
those B we have ∨ ⊆ [B] and hence we may now apply Lemma 3.2.1 for the
constant 0: It su�ces to show hardness of Abd(B ∪ {0},PQ) (for B such
that S2

01 ⊆ [B]). Now we have M = [S2
01 ∪ {0}] ⊆ [[B] ∪ {0}] = [B ∪ {0}].

Thus we may �nally assume that M ⊆ [B].

42 CHAPTER 3. CLASSIFICATIONS IN POST'S FRAMEWORK

Analogously to case 2, also case 3 is reduced to the case M ⊆ [B] such
that �nally, in order to cover all three cases, it su�ces to consider the case
M ⊆ [B]. We will often play this game of going up in Post's lattice by
adding constants and applying Lemma 3.2.1. However, we will henceforth
give less details.

In [CZ06] and [NZ08] the authors study abduction in Schaefer's frame-
work. We will use some results from [NZ08] on a�ne formulæ, namely
Propositions 66, 67, 69 and 70. A�ne formulæ can be seen as a con-
junction of ⊕-clauses, i.e., as a system of linear equations over the �nite
�eld GF(2) (the exclusive or ⊕ can be seen as addition modulo 2). The
fragment of a�ne formulæ is the only one which appears in both Post's
and Schaefer's Framework. Therefore the results on a�ne formulæ are the
only ones we can use from [NZ08]. For instance Proposition 66 of [NZ08]
translates to P-membership for Abd(L,C), [NZ08, Proposition 67] trans-
lates to P-membership for Abd(L,T), [NZ08, Proposition 70] translates
to NP-hardness for P-Abd(L3,PT).

3.2.2 The complexity of the Existence Problem

We will consider �rst the variant where the manifestation is a single query
(Q,PQ,NQ), then we turn to clauses (C,PC,NC), terms (T,PT,NT) and
B-formulæ (L(B)). We will always �rst classify the positive variant and
then derive with little e�ort the classi�cations for the other variants.

Thus, the �rst problem under consideration isAbd(B,PQ) where we want
to explain a single positive literal.

Problem: Abd(B,PQ)

Instance: I = (Γ, A, q), where Γ ⊆ L(B), A ⊆ Vars(Γ) and q a
variable

Question: Does there exist an explanation E ⊆ Lits(A)?

The following theorem gives a complete classi�cation of the complexity
of Abd(B,PQ) in function of the authorized connectives B. The classi�-
cation is visualized in Figure 3.1 on page 74.

Theorem 3.2.2. Let B be a �nite set of Boolean functions. Then the
symmetric explanation-existence problem for propositional B-formulæ with
a positive literal manifestation, Abd(B,PQ), is

3.2. THE COMPLEXITY OF SYMMETRIC ABDUCTION 43

1. Σp
2-complete if S02 ⊆ [B] or S12 ⊆ [B] or D1 ⊆ [B],

2. NP-complete if S00 ⊆ [B] ⊆ M or S10 ⊆ [B] ⊆ M or D2 ⊆ [B] ⊆ M,

3. in P if L2 ⊆ [B] ⊆ L, and

4. in Logspace in all other cases.

The same classi�cation holds for Abd(B,Q), Abd(B,PC) and Abd(B,C).

We split the proof of Theorem 3.2.2 into several propositions.

Proposition 3.2.3. Let B be a �nite set of Boolean functions such that
[B] ⊆ E or [B] ⊆ N or [B] ⊆ V. Then Abd(B,PQ) ∈ Logspace.

Proof. Let P = (Γ, A, q) be an instance of Abd(B,PQ).
For [B] = N or E, Γ is equivalent to a set of literals, hence P has

the empty set or {q} as a solution if P possesses a solution at all. Finally
notice that satis�ability of a set of N-formulæ can be tested in logarithmic
space (basically check for contradicting literals, reducing nested negation
on the �y).

For [B] = V each formula ϕ ∈ Γ is equivalent to either a constant or
disjunction of positive literals. The knowledge base Γ is equivalent to a
positive CNF-formula, thus it is unsatis�able if and only if it contains the
empty clause or the constant 0 as a formula. It holds that (Γ, A, q) has
a solution if and only if Γ contains a formula ϕ ≡ q ∨ x1 ∨ · · · ∨ xk such
that {x1, . . . , xk} ⊆ A, and Γ[x1/0, . . . , xk/0] is satis�able. This can be
tested in logarithmic space, as satis�ability of V-formulæ and substitution
of symbols (on the �y) can be performed in logarithmic space (according
to [Sch05] satis�ability of monotonic formulæ is in Logspace).

Proposition 3.2.4. Let B be a �nite set of Boolean functions such that
L2 ⊆ [B] ⊆ L. Then Abd(B,PQ) is in P.

Proof. In this case, deciding whether an instance of Abd(B,PQ) has a
solution logspace reduces to the problem of deciding whether a proposi-
tional abduction problem in which the knowledge base is a set of linear
equations over GF(2) has a solution. This has been shown to be decidable
in polynomial time in [Zan03].

Proposition 3.2.5. Let B be a �nite set of Boolean functions such that
S00 ⊆ [B] ⊆ M or S10 ⊆ [B] ⊆ M or D2 ⊆ [B] ⊆ M. Then Abd(B,PQ) is
NP-complete.

44 CHAPTER 3. CLASSIFICATIONS IN POST'S FRAMEWORK

Proof. We �rst show that Abd(B,PQ) is e�ciently veri�able. Let P =
(Γ, A, q) be an Abd(B,PQ)-instance and E ⊆ Lits(A) be a candidate
for an explanation. De�ne Γ′ as the set of formulæ obtained from Γ by
replacing each occurrence of the proposition x with 0 if ¬x ∈ E, and each
occurrence of the proposition x with 1 if x ∈ E. It holds that E is a
solution for P if Γ′ is satis�able and Γ′[q/0] is not. These tests can be
performed in polynomial time, because Γ′ is a set of monotonic formulæ
[Lew79]. Hence, Abd(B,PQ) ∈ NP.

Next we give a reduction from the NP-complete problemPos-2in3-Sat,
i.e., the problem to decide whether there exists an assignment that satis-
�es exactly two propositions in each clause of a given formula in conjunc-
tive normal form with exactly three positive propositions per clause, see
[Sch78]. Let ϕ :=

∧
i∈I ci with ci = xi1 ∨ xi2 ∨ xi3, i ∈ I, be the given

formula. We map ϕ to the following instance P = (Γ, A, q). Let qi, i ∈ I,
be fresh, pairwise distinct propositions and let A := Vars(ϕ)∪{qi | i ∈ I}.
The set Γ is de�ned as

Γ := {ci | i ∈ I} (3.1)

∪ {xi1 ∨ xi2 ∨ qi, xi1 ∨ xi3 ∨ qi, xi2 ∨ xi3 ∨ qi | i ∈ I} (3.2)

∪ {
∨
i∈I
∧3
j=1 xij ∨

∨
i∈I qi ∨ q}. (3.3)

We show that there is an assignment that sets to true exactly two proposi-
tions in each clause of ϕ if and only if P has a solution. First, suppose that
there exists an assignment σ such that for all i ∈ I, there is a permuta-
tion πi of {1, 2, 3} such that σ(xiπi(1)) = 0 and σ(xiπi(2)) = σ(xiπi(3)) = 1.
Thus (3.1) and (3.2) are satis�ed, and (3.3) is equivalent to

∨
i∈I qi ∨ q.

From this, it is readily observed that {¬x | σ(x) = 0} ∪ {¬qi | i ∈ I} is a
solution to P.

Conversely, suppose that P has an explanation E that is w.l.o.g. full.
Then Γ ∧ E is satis�able and Γ ∧ E |= q. Let σ : Vars(Γ) → {0, 1} be
an assignment that satis�es Γ ∧ E. Then, for any x ∈ A, σ(x) = 0 if
¬x ∈ E, and σ(x) = 1 otherwise. Since Γ ∧ E entails q and as the only
occurrence of q is in (3.3), we obtain that σ sets to 0 each qi and at least
one proposition in each clause of ϕ. Consequently, from (3.2) it follows
that σ sets to 1 at least two propositions in each clause of ϕ. Therefore,
σ sets to 1 exactly two propositions in each clause of ϕ.

It remains to show that P can be transformed into an Abd(B,PQ)-
instance for all considered B. Observe that ∨ ∈ [B ∪ {1}] and [S00 ∪
{0, 1}] = [D2∪{0, 1}] = [S10∪{0, 1}] = M. Therefore due to Lemma 3.2.1

3.2. THE COMPLEXITY OF SYMMETRIC ABDUCTION 45

it su�ces to consider the case [B] = M (see Section 3.2.1 for details). Using
the associativity of ∨ rewrite (3.3) as an ∨-tree of logarithmic depth and
replace all the connectives in Γ by their B-representation (∨,∧ ∈ [B]).

Proposition 3.2.6. Let B be a �nite set of Boolean functions such that
S02 ⊆ [B] or S12 ⊆ [B] or D1 ⊆ [B]. Then Abd(B,PQ) is Σp

2-complete.

Proof. Membership in Σp
2 is easily seen to hold: given an instance (Γ, A, q),

guess an explanation E and subsequently verify that Γ ∧ E is satis�able
and Γ ∧ E ∧ ¬q is not.

Observe that ∨ ∈ [B∪{1}]. By virtue of Lemma 3.2.1 and the fact that
[S02∪{0, 1}] = [S12∪{0, 1}] = [D1∪{0, 1}] = BF, it su�ces to consider the
case [B] = BF. From [EG95] it can be easily derived that the propositional
abduction problem remains Σp

2-complete when the knowledge base Γ is a
set of clauses. From such an instance (Γ, A, q) we build an instance of
Abd(B,PQ) by rewriting �rst each clause as an ∨-tree of logarithmic
depth and then replacing the occurring connectives ∨ and ¬ by their B-
representation, thus concluding the proof.

Note that the problem Abd(B,Q) obeys the same classi�cation as
Abd(B,PQ) since all bounds, upper and lower, easily carry over.

For Abd(B,NQ) the problem becomes trivial if [B] ⊆ M (more pre-
cisely, it cannot have a solution). For [B] ⊆ L Abd(B,NQ) is solvable
in polynomial time according to [Zan03]. For the remaining clones (i.e.,
for S02 ⊆ [B], S12 ⊆ [B], and D1 ⊆ [B]), we can again easily adapt the
proofs of Abd(B,PQ). This way we obtain a dichotomous classi�cation
for Abd(B,NQ) into P-membership and Σp

2-complete cases; thus skipping
the intermediate NP level.

Theorem 3.2.7. Let B be a �nite set of Boolean functions. Then the
symmetric explanation-existence problem for propositional B-formulæ with
a negative literal manifestation, Abd(B,NQ), is

1. Σp
2-complete if S02 ⊆ [B] or S12 ⊆ [B] or D1 ⊆ [B],

2. in P if L2 ⊆ [B] ⊆ L, and

3. trivial in all other cases.

The same classi�cation holds for Abd(B,NC) and Abd(B,NT).

We now consider the symmetric abduction problem for di�erent variants
on the manifestations: clause, term and B-formula.

46 CHAPTER 3. CLASSIFICATIONS IN POST'S FRAMEWORK

ABD(B, PC) For clauses, it is obvious that we have Abd(B,PQ)
≤log

m Abd(B,PC). Therefore, all hardness results continue to hold for
Abd(B,PC). It is an easy exercise to prove that all algorithms that have
been developed for a single literal can be naturally extended to clauses.
Therefore, the complexity classi�cations for the problems Abd(B,PC),
Abd(B,C) and Abd(B,NC) are exactly the same as for Abd(B,PQ),
Abd(B,Q) and Abd(B,NQ), respectively.

ABD(B, PT) Allowing for terms as manifestations increases the com-
plexity for the clones V∗ (from membership in Logspace to NP-complete-
ness). The intuitive reason for this is that knowledge base Γ as a conjunc-
tion of positive clauses, together with the positive term in the manifes-
tation, allows to express negative literals in the knowledge base, thus
simulating a 3CNF-formula.

Proposition 3.2.8. Let B be a �nite set of Boolean functions such that
V2 ⊆ [B] ⊆ V. Then Abd(B,PT) is NP-complete.

Proof. Let B be a �nite set of Boolean functions such that V2 ⊆ [B] ⊆ V
and let P = (Γ, A, t) be an instance of Abd(B,PT). Hence, Γ is a set
of B-formulæ and t is a term, t =

∧n
i=1 li. Observe that E is a solution

for P if Γ ∧ E is satis�able and for every i = 1, . . . , n, Γ ∧ E ∧ ¬li is not.
Given a set E ⊆ Lits(A), these veri�cations, which require substitution of
symbols and evaluation of an ∨-formula, can be performed in polynomial
time, thus proving membership in NP.

To prove NP-hardness, we give a reduction from 3Sat. Let ϕ be
a 3CNF-formula, ϕ :=

∧
i∈I ci. Let x1, . . . , xn enumerate the variables

occurring in ϕ. Let x′1, . . . , x
′
n and q1, . . . , qn be fresh, pairwise distinct

variables. We map ϕ to P = (Γ, A, t), where

Γ := {ci[¬x1/x
′
1, . . . ,¬xn/x′n] | i ∈ I}

∪ {xi ∨ x′i, xi ∨ qi, x′i ∨ qi | 1 ≤ i ≤ n},
A := {x1, . . . , xn, x

′
1, . . . , x

′
n},

t := q1 ∧ · · · ∧ qn.

We show that ϕ is satis�able if and only if P has a solution. First
assume that ϕ is satis�ed by the assignment σ : {x1, . . . , xn} → {0, 1}.
De�ne E := {¬xi | σ(xi) = 0}∪{¬x′i | σ(xi) = 1} and σ̂ as the extension of
σ mapping σ̂(x′i) = ¬σ(xi) and σ̂(qi) = 1 for all 1 ≤ i ≤ n. Obviously, σ̂ |=

3.2. THE COMPLEXITY OF SYMMETRIC ABDUCTION 47

Γ ∧ E. Furthermore, Γ ∧ E |= qi for all 1 ≤ i ≤ n, because any satisfying
assignment of Γ∧E sets to 0 either xi or x

′
i and thus {xi∨qi, x′i∨qi} |= qi.

Hence E is an explanation for P.
Conversely, suppose that P has a full explanation E. The facts that

Γ ∧ E |= q1 ∧ · · · ∧ qn and that each qi occurs only in the clauses xi ∨
qi, x

′
i ∨ qi enforce that, for every i, E contains ¬xi or ¬x′i. Because of

the clause xi ∨ x′i, it cannot contain both. Therefore in E the value
of x′i is determined by the value of xi and is its dual. From this it is
easy to conclude that the assignment σ : {x1, . . . , xn} → {0, 1} de�ned
by σ(xi) = 0 if ¬xi ∈ E, and 1 otherwise, satis�es ϕ. Finally P can be
transformed into an Abd(B,PT)-instance by replacing every occurrence
of ∨ by its B-representation. An exponential blowup is avoided since
every formula in Γ is the disjunction of at most three variables.

The other fragments can easily be obtained from the classi�cation for
Abd(B,PQ) or are already solved in the literature.

Theorem 3.2.9. Let B be a �nite set of Boolean functions. Then the
symmetric explanation-existence problem for propositional B-formulæ with
a positive term manifestation, Abd(B,PT), is

1. Σp
2-complete if S02 ⊆ [B] or S12 ⊆ [B] or D1 ⊆ [B],

2. NP-complete if V2 ⊆ [B] ⊆ M or S10 ⊆ [B] ⊆ M or D2 ⊆ [B] ⊆ M,

3. in P if L2 ⊆ [B] ⊆ L, and

4. in Logspace in all other cases.

The same classi�cation holds for Abd(B,T).

Proof. 1. The Σp
2-hardness follows directly from Proposition 3.2.6.

2. For the clones V2 ⊆ [B] ⊆ V, see Proposition 3.2.8. In all other
clones, the NP-hardness follows from a straightforward generaliza-
tion of the proof of Proposition 3.2.5.

3. Membership in P follows from [NZ08, Proposition 67].

4. Analogous to Proposition 3.2.3.

48 CHAPTER 3. CLASSIFICATIONS IN POST'S FRAMEWORK

We observe that once again all upper and lower bounds forAbd(B,PT)
easily carry over to Abd(B,T). Further, it is also easily seen that the
problemAbd(B,NT) is classi�ed exactly asAbd(B,NQ) (Therorem 3.2.7).

ABD(B, L(B)) Allowing B-formulæ as manifestations makes the clas-
si�cation dichotomous: all problems become either Σp

2-complete or they
are in P.

Problem: Abd(B,L(B))

Instance: I = (Γ, A, ϕ), where Γ ⊆ L(B), A ⊆ Vars(Γ) and
ϕ ∈ L(B)

Question: Does there exist an explanation E ⊆ Lits(A)?

The main result we need is stated by the following proposition.

Proposition 3.2.10. Let B be a �nite set of Boolean functions such that
S00 ⊆ [B] or S10 ⊆ [B] or D2 ⊆ [B]. Then Abd(B,L(B)) is Σp

2-complete.

Proof. We prove Σp
2-hardness by giving a reduction from the Σp

2-hard
problemQsat∃,2 [Wra77]. Let an instance ofQsat∃,2 be given by a closed
formula χ := ∃x1 · · · ∃xn∀y1 · · · ∀ymϕ with ϕ being a 3-DNF-formula.
First observe that ∃x1 · · · ∃xn∀y1 · · · ∀ymϕ is true if and only if there exists
a consistent set X ⊆ Lits({x1, . . . , xn}) such that X ∩ {xi,¬xi} 6= ∅, for
all 1 ≤ i ≤ n, and ¬X ∨ ϕ is (universally) valid (or equivalently ¬ϕ ∧X
is unsatis�able).

Denote by ϕ the negation normal form of ¬ϕ and let ϕ′ be obtained
from ϕ by replacing all occurrences of ¬xi with a fresh proposition x′i,
1 ≤ i ≤ n, and all occurrences of ¬yi with a fresh proposition y′i, 1 ≤
i ≤ m. That is, ϕ′ ≡ ϕ[¬x1/x

′
1, . . . ,¬xn/x′n,¬y1/y

′
1, . . . ,¬ym/y′m]. Thus

ϕ′ =
∧
i∈I c

′
i, where every c

′
i is a disjunction of three propositions. To χ

we associate the propositional abduction problem P = (Γ, A, ψ) de�ned
as follows:

Γ := {c′i ∨ q | i ∈ I}
∪ {xi ∨ x′i | 1 ≤ i ≤ n} ∪ {yi ∨ y′i | 1 ≤ i ≤ m}
∪ {fi ∨ xi, ti ∨ x′i, fi ∨ ti | 1 ≤ i ≤ n},

A := {ti, fi | 1 ≤ i ≤ n},
ψ := q ∨

∨
1≤i≤n(xi ∧ x′i) ∨

∨
1≤i≤m(yi ∧ y′i).

3.2. THE COMPLEXITY OF SYMMETRIC ABDUCTION 49

Suppose that χ is true. Then there exists an assignment σ : {x1, . . . , xn}
→ {0, 1} such that no extension σ′ : {x1, . . . , xn} ∪ {y1, . . . , ym} → {0, 1}
of σ satis�es ¬ϕ. De�ne X as the set of literals over {x1, . . . , xn} set to
1 by σ. De�ning E := {¬fi, ti | xi ∈ X} ∪ {¬ti, fi | ¬xi ∈ X}, we obtain
with abuse of notation

Γ ∧ E ∧ ¬ψ ≡SAT
∧
i∈I c

′
i ∧
∧

1≤i≤n(xi ⊕ x′i) ∧
∧

1≤i≤m(yi ⊕ y′i)∧∧
1≤i≤n,σ(xi)=1 xi ∧

∧
1≤i≤n,σ(xi)=0 x

′
i

≡SAT ¬ϕ ∧X,

which is unsatis�able by assumption. As Γ∧E is satis�ed by any assign-
ment setting in addition all xi, x

′
i, 1 ≤ i ≤ n, and all yj , y

′
j , 1 ≤ i ≤ m, to

1, we have proved that E is an explanation for P.
Conversely, suppose that P has an explanation E. Assume w.l.o.g.

that E is full. Due to the clause (fi ∨ ti) in Γ, we also may assume that
|E ∩ {¬ti,¬fi}| ≤ 1 for all 1 ≤ i ≤ n.

Setting X := {xi | ¬fi ∈ E} ∪ {¬xi | ¬ti ∈ E} we now obtain∧
1≤i≤n

(
(fi∨xi)∧(ti∨¬xi)∧(fi∨ ti)

)
∧E ≡SAT X and Γ∧E∧¬ψ ≡SAT

¬ϕ ∧X as above. Hence, ¬ϕ ∧X is unsatis�able, which implies the ex-
istence of an assignment σ : {x1, . . . , xn} → {0, 1} such that no extension
σ′ : {x1, . . . , xn} ∪ {y1, . . . , ym} → {0, 1} of σ satis�es ¬ϕ. Therefore, we
have proved that χ is true if and only if P has an explanation.

It remains to show that P can be transformed into an Abd(B,L(B))-
instance for any relevant B. Since [S00 ∪ {1}] = S01, [S10 ∪ {1}] = M1,
[D2∪{1}] = S2

01 and S01 ⊆ S2
01 ⊆ M1, it su�ces to consider the case [B] =

S01 by Lemma 3.2.1. Observe that x ∨ (y ∧ z) ∈ [B]. The transformation
can hence be done in polynomial time by local replacements, rewriting ψ
as
∨

1≤i≤n q ∨ (xi ∧ x′i) ∨
∨

1≤i≤m q ∨ (yi ∧ y′i) and using the associativity
of ∨.

The following classi�cation is visualized in Figure 3.3 on page 76.

Theorem 3.2.11. Let B be a �nite set of Boolean functions. Then
the symmetric explanation-existence problem for propositional B-formulæ
with a B-formula manifestation, Abd(B,L(B)), is

1. Σp
2-complete if S00 ⊆ [B] or S10 ⊆ [B] or D2 ⊆ [B],

2. in P if L2 ⊆ [B] ⊆ L, and

50 CHAPTER 3. CLASSIFICATIONS IN POST'S FRAMEWORK

3. in Logspace in all other cases.

Proof. 1. See Proposition 3.2.10.

2. Membership in P follows directly from [Zan03].

3. Analogous to Proposition 3.2.3.

Observe that there are no sets B of Boolean functions for which
Abd(B,L(B)) is NP-complete.

3.2.3 The complexity of the Veri�cation Problem

For the argument-veri�cation problem we consider only the basic vari-
ant where the manifestation is a single positive literal. Most results on
the other variants can be derived with little e�ort as in the case of the
explanation-existence problem.

Problem: Abd-Check

Instance: I = (Γ, A, q, E), where Γ ⊆ L, A ⊆ Vars(Γ), q a vari-
able and E ⊆ Lits(A)

Question: Is E an explanation?

We recall that to verify whether E is an explanation we have to verify the
following two conditions:

(B1) Γ ∧ E is satis�able,

(B2) Γ ∧ E ∧ ¬q is unsatis�able.

This gives straightforward the DP-membership, the �st condition be-
ing checkable in NP and the second one in coNP. We will prove the fol-
lowing classi�cation theorem. The classi�cation is visualized in Figure 3.5
on page 78.

Theorem 3.2.12. Let B be a �nite set of Boolean functions. Then the
symmetric explanation-validity problem for propositional B-formulæ with
a positive literal manifestation, Abd-Check(B,PQ), is

1. DP-complete if S02 ⊆ [B] or S12 ⊆ [B] or D1 ⊆ [B]

2. in P if [B] ⊆ L

3.2. THE COMPLEXITY OF SYMMETRIC ABDUCTION 51

3. in Logspace if [B] ⊆ M or [B] ⊆ N

We split the proof into two propositions.

Proposition 3.2.13. Let B be a �nite set of Boolean functions such that
S02 ⊆ [B] or S12 ⊆ [B] or D1 ⊆ [B]. Then Abd-Check(B,PQ) is DP-
complete.

Proof. For the DP-membership we de�ne

A = { (Γ, A, q, E) | Γ ∧ E is sat } and
B = { (Γ, A, q, E) | Γ ∧ E ∧ ¬q is unsat }.

Obviously A ∈ NP, B ∈ coNP and Abd-Check = A ∩B.
To prove DP-hardness, let (ϕ,ψ) be an instance of the DP-complete

problem SatUnsat. Our mapping is as follows:

(ϕ,ψ) 7→ (Γ, A, q, E), where

q a fresh variable,

Γ = {ϕ} ∪ {q ↔ ¬ψ}
A = E = ∅

Obviously it holds

ϕ sat
ψ unsat

}
⇐⇒

{
Γ ∧ E ≡ ϕ ∧ (q ↔ ¬ψ) sat
Γ ∧ E ∧ ¬q ≡ ϕ ∧ ψ ∧ ¬q unsat

It remains to show that (Γ, A, q, E) can be transformed into an
Abd-Check(B,PQ)-instance for all considered B. Observe that ∨ ∈
[B ∪ {1}]. By virtue of Lemma 3.2.1 and the fact that [S02 ∪ {0, 1}] =
[S12 ∪ {0, 1}] = [D1 ∪ {0, 1}] = BF, it su�ces therefore to consider the
case [B] = BF. Thus, it remains to rewrite Γ as a set of B-formulæ for B
such that [B] = BF. In order to do so, we use the associativity of ∧ and
rewrite ϕ and (q ↔ ¬ψ) as ∧-trees of logarithmic depth and then replace
the connectives ∨,∧,¬,↔ by their B-representation.

Proposition 3.2.14. The following memberships hold.

1. Abd-Check(N,PQ) ∈ Logspace

2. Abd-Check(M,PQ) ∈ Logspace

52 CHAPTER 3. CLASSIFICATIONS IN POST'S FRAMEWORK

3. Abd-Check(L,PQ) ∈ P

Proof. We have to check the two conditions (B1) and (B2). Since we deal
with N-, monotonic or a�ne formulæ, this can be done in Logspace (see
[Sch05] and Proposition 3.2.3) or P (Gaussian elimination), respectively.

3.3 The complexity of Positive Abduction

3.3.1 Technical results and tools

We will now study the complexity of positive abduction, in which an
explanation consists of a set of positive literals.

To begin with, note that we still have the constant 1 'for free', but no
corresponding property for the constant 0, as we have for symmetric ab-
duction. The reason is that there are no negative literals anymore in an
explanation which helped previously to express the constant 0.

Lemma 3.3.1. Let B be a �nite set of Boolean functions. If M ∈
{Q,C,T,L(B)}, then

P-Abd(B,M) ≡log
m P-Abd(B ∪ {1},M),

P-Abd-Check(B,M) ≡log
m P-Abd-Check(B ∪ {1},M)

Proof. Analogously to the proof of Lemma 3.2.1.

However, we have another useful property. For 1-reproducing or mono-
tonic sets of formulæ, deciding the existence of a positive explanation
reduces to testing whether A is one.

Lemma 3.3.2. For [B] ⊆ R1 or [B] ⊆ M, an instance (Γ, A, ϕ) of
P-Abd(B,M) has solutions if and only if A is a solution.

Proof. Let E ⊆ A be an arbitrary positive explanation for the given in-
stance (Γ, A, ϕ), i.e., Γ ∧ E is satis�able and Γ ∧ E ∧ ¬ϕ is unsatis�able.
With the 1-validity (respectively monotonicity) of Γ it follows immediately
that Γ ∧A is satis�able and that Γ ∧A ∧ ¬ϕ is unsatis�able.

3.3. THE COMPLEXITY OF POSITIVE ABDUCTION 53

As a consequence we will see that some of the formerly NP-complete
cases become tractable and that some of the formerly Σp

2-complete cases
become coNP-complete.

3.3.2 The complexity of the Existence Problem

We begin our study with the variant of a positive literal manifestation.

Problem: P-Abd(B,PQ)

Instance: I = (Γ, A, q), where Γ ⊆ L(B), A ⊆ Vars(Γ) and q a
variable

Question: Does there exist an explanation E ⊆ A?

Proposition 3.3.3. Let [B] ⊆ M. Then P-Abd(B,PQ) ∈ Logspace.

Proof. According to Lemma 3.3.2 it su�ces to test if A is a solution, that
is, to test if Γ ∧ A ∧ ¬q or equivalently Γ ∧ A[q/0] is unsatis�able and if
Γ ∧ A is satis�able. This can be done in logarithmic space, since Γ ∧ A
and Γ ∧A[q/0] are monotonic formulæ [Sch05].

Proposition 3.3.4. Let S02 ⊆ [B] ⊆ R1 or S12 ⊆ [B] ⊆ R1 or D1 ⊆
[B] ⊆ R1. Then P-Abd(B,PQ) is coNP-complete.

Proof. According to Lemma 3.3.2 it su�ces to test whether A is a solution.
Since Γ∧A is always satis�able, only the task of testing whether Γ∧A∧¬q
is unsatis�able remains. And this can be done in coNP.

Since [D1 ∪ {1}] = [S12 ∪ {1}] = R1, [S02 ∪ {1}] = S0 and S0 ⊆ R1, we
may assume that S0 ⊆ [B] by Lemma 3.2.1. To show coNP-hardness we
give a reduction from 3Sat. Let ϕ =

∧
i∈I ci be a 3CNF-formula. Since

[{→, 0}] = BF, each clause ci has a representation as a {→, 0}-formula
which we indicate by c′i. Since each clause ci consists of the disjunction
of exactly three literals, each c′i has a �xed number of occurrences of the
implication connective →. Let q be a fresh proposition. We map ϕ to
(Γ, ∅, q), where we de�ne Γ =

⋃
i∈I c

′
i[0/q]. Note that Γ is a set of S0-

formulæ of polynomial size and 1-reproducing. Let ϕ be unsatis�able.
Then Γ is satis�ed by the assignment setting to 1 all propositions and
Γ ∧ ¬q is unsatis�able, because it is equivalent to ϕ ∧ ¬q. Summing up,
∅ is an explanation for (Γ, ∅, q). Conversely, let ϕ be satis�able. This
implies that Γ ∧ ¬q is satis�able and thus (Γ, ∅, q) has no explanations.

54 CHAPTER 3. CLASSIFICATIONS IN POST'S FRAMEWORK

It remains to transform (Γ, ∅, q) into a P-Abd(B,PQ)-instance for any
relevant B. As → ∈ S0 ⊆ [B], this is done by replacing in Γ every occur-
rence of→ by its B-representation. An exponential blow up may not occur
since the implication connective → has a �xed number of occurrences.

The following classi�cation is visualized in Figure 3.2 on page 75.

Theorem 3.3.5. Let B be a �nite set of Boolean functions. Then the
positive explanation-existence problem for propositional B-formulæ with a
positive literal manifestation, P-Abd(B,PQ), is

1. Σp
2-complete if D ⊆ [B] or S1 ⊆ [B],

2. coNP-complete if S02 ⊆ [B] ⊆ R1 or S12 ⊆ [B] ⊆ R1 or D1 ⊆ [B] ⊆
R1,

3. in P if L2 ⊆ [B] ⊆ L,

4. in Logspace in all other cases.

The same classi�cation holds for the problems P-Abd(B,Q), P-Abd(B,PC)
and P-Abd(B,C).

Proof. 1. In [EG95], Eiter and Gottlob prove that the abduction prob-
lem in which the knowledge base is a set of clauses remains Σp

2-hard
even if explanations are required to comprise positive literals only.
A reduction from this problem can be done analogously to the one
in Proposition 3.2.6.

2. See Proposition 3.3.4.

3. Membership in P follows from [NZ08, Proposition 66].

4. See Proposition 3.3.3.

Once again all upper and lower bounds for P-Abd(B,PQ) easily carry
over to P-Abd(B,Q).

For P-Abd(B,NQ) the problem becomes trivial if [B] ⊆ R1 (Lemma 3.3.2).
For L0 ⊆ [B] ⊆ L and L3 ⊆ [B] ⊆ L, we obtain membership in P since in
this case P-Abd(B,Q) is in P. For all remaining cases (i.e., for D ⊆ [B]
and S1 ⊆ [B]), we obtain Σp

2-completeness from an easy adaptation of the
�rst part in the proof of Proposition 3.3.5.

3.3. THE COMPLEXITY OF POSITIVE ABDUCTION 55

Theorem 3.3.6. Let B be a �nite set of Boolean functions. Then the
positive explanation-existence problem for propositional B-formulæ with a
negative literal manifestation, P-Abd(B,NQ), is

1. Σp
2-complete if D ⊆ [B] or S1 ⊆ [B],

2. in P if [B] ∈ {L, L0, L3},

3. trivial in all other cases.

The same classi�cation holds for P-Abd(B,NC).

We turn now to the study of positive abduction for manifestations that
are restricted to be respectively a clause, a term, or a B-formula.

P-ABD(B, PC) Analogously to the symmetric case the algorithms can
be extended to clauses. Thus, P-Abd(B,PC) is classi�ed as P-Abd(B,PQ).
Similarly the classi�cations for P-Abd(B,C) and P-Abd(B,NC) are the
same as classi�cations for P-Abd(B,Q) and P-Abd(B,NQ).

P-ABD(B, PT) The classi�cation for positive terms is identical to the
one for a single positive literal, except for the a�ne clones L0, L3, and L.
For these, the complexity of P-Abd(B,PT) jumps from membership in P
to NP-completeness.

Proposition 3.3.7. Let L0 ⊆ [B] ⊆ L or L3 ⊆ [B] ⊆ L. Then P-Abd(B,PT)
is NP-complete.

Proof. Let (Γ, A, t) with t =
∧
i∈I xi be an instance of P-Abd(B,PT).

To check whether a given E ⊆ A is an explanation, we have to test the
satis�ability of Γ∧E and the unsatis�ability of Γ∧E∧¬xi for every i ∈ I.
These tasks are equivalent to solving systems of linear equations, which
can be done in polynomial time. As for the hardness by Lemma 3.2.1 it
su�ces to consider the case L3 ⊆ [B], since L3 ⊆ L = [L0 ∪ {1}]. The
hardness for L3 ⊆ [B] follows easily with [NZ08, Propositions 69, 70].

Theorem 3.3.8. Let B be a �nite set of Boolean functions. Then the
positive explanation-existence problem for propositional B-formulæ with a
positive term manifestation, P-Abd(B,PT), is

1. Σp
2-complete if D ⊆ [B] or S1 ⊆ [B],

56 CHAPTER 3. CLASSIFICATIONS IN POST'S FRAMEWORK

2. coNP-complete if S02 ⊆ [B] ⊆ R1 or S12 ⊆ [B] ⊆ R1 or D1 ⊆ [B] ⊆
R1,

3. NP-complete if [B] ∈ {L, L0, L3},

4. in P if [B] ∈ {L1, L2},

5. in Logspace in all other cases.

The same classi�cation holds for P-Abd(B,T).

Proof. 1. Follows from the �rst item of Proposition 3.3.5.

2. Both membership and hardness follow from Proposition 3.3.4.

3. See Proposition 3.3.7.

4. Since L1 ⊆ R1, according to Lemma 3.3.2, it su�ces to check whether
A is a solution. This task reduces to solving systems of linear equa-
tions which is in P.

5. Analogously to Proposition 3.3.3.

Once again all upper and lower bounds for P-Abd(B,PT) carry over to
P-Abd(B,T).

For P-Abd(B,NT) the problem becomes trivial if [B] ⊆ R1 (Lemma 3.3.2).
For [B] ∈ {L, L0, L3}, we obtain NP-completeness with the hardness be-
ing obtained from an easy reduction from P-Abd(B,PT): according to
Lemma 3.2.1 is su�ces to consider B ∪ {1}. As we have x ⊕ y ∈ L =
[[B] ∪ {1}] = [B ∪ {1}], we can simply transform the given positive term
into a negative one. For the remaining cases (i.e., D ⊆ [B] and S1 ⊆ [B]),
we obtain Σp

2-completeness from an adaption of the �rst part in the proof
of Proposition 3.3.5.

Theorem 3.3.9. Let B be a �nite set of Boolean functions. Then the
positive explanation-existence problem for propositional B-formulæ with a
negative term manifestation, P-Abd(B,NT), is

1. Σp
2-complete if D ⊆ [B] or S1 ⊆ [B],

2. NP-complete if [B] ∈ {L, L0, L3},

3. trivial in all other cases.

3.3. THE COMPLEXITY OF POSITIVE ABDUCTION 57

P-ABD(B, L(B)) The complexity of P-Abd(B,L(B)) di�ers from the
complexity of P-Abd(B,PQ) for the clones either (a) above E or V and
below M or (b) above L0 or L3 and below L. For the former the com-
plexity increases to coNP-completeness, whereas for the latter we obtain
only membership in NP; the exact complexity of positive abduction when
both the knowledge base and the manifestation are represented by non-1-
reproducing a�ne formulæ remains open.

Problem: P-Abd(B,L(B))

Instance: I = (Γ, A, ϕ), where Γ ⊆ L(B), A ⊆ Vars(Γ) and
ϕ ∈ L(B)

Question: Does there exist an explanation E ⊆ A?

Proposition 3.3.10. Let B be a �nite set of Boolean functions such that
L0 ⊆ [B] ⊆ L or L3 ⊆ [B] ⊆ L. Then P-Abd(B,L(B)) ∈ NP.

Proof. Let E ⊆ A be a potential solution. The test for satis�ability of
Γ ∧ E and the test for unsatis�ability of Γ ∧ E ∧ ¬ϕ are equivalent to
solving two systems of linear equations, which can be done in polynomial
time.

Proposition 3.3.11. Let B be a �nite set of Boolean functions such
that S00 ⊆ [B] ⊆ M or S10 ⊆ [B] ⊆ M or D2 ⊆ [B] ⊆ M. Then
P-Abd(B,L(B)) is coNP-complete.

Proof. We will �rst prove coNP-membership. According to Lemma 3.3.2,
it su�ces to test whether A is a solution. This can be done by �rst ver-
ifying that Γ ∧ A is satis�able, and afterwards verifying that Γ ∧ A ∧ ¬ϕ
is unsatis�able. As Γ is a set of monotonic formulæ, deciding the satis-
�ability of Γ ∧ A can be done in logarithmic space [Sch05]; and deciding
whether Γ ∧A ∧ ¬ϕ is unsatis�able is in coNP.

To establish coNP-hardness we give a reduction from 3Sat. Let ϕ be
an instance of 3Sat with Vars(ϕ) = {x1, . . . , xn}. Let ϕ′ be obtained
from ϕ by replacing all occurrences of ¬xi with a fresh proposition x′i,
1 ≤ i ≤ n. That is, ϕ′ ≡ ϕ[¬x1/x

′
1, . . . ,¬xn/x′n]. Thus ϕ′ =

∧
i∈I c

′
i

where every c′i is a disjunction of three propositions. To ϕ we associate
the propositional abduction problem P = (Γ, ∅, ψ) de�ned as follows:

Γ := {c′i ∨ q | i ∈ I} ∪ {xi ∨ x′i | 1 ≤ i ≤ n},
ψ := q ∨

∨
1≤i≤n(xi ∧ x′i).

58 CHAPTER 3. CLASSIFICATIONS IN POST'S FRAMEWORK

Observe that

Γ ∧ ¬ψ ≡ ϕ ∧ ¬q ∧
n∧
i=1

(xi ⊕ x′i). (3.4)

Suppose that ϕ ∈ 3Sat, i.e., ϕ is unsatis�able. From (3.4) it follows that
Γ ∧ ¬ψ is unsatis�able. As Γ is satis�able, ∅ is a solution for P.

Suppose conversely that ∅ is a solution for P. Then Γ∧¬ψ ≡ ϕ∧¬q∧∧n
i=1(xi ⊕ x′i) is unsatis�able. Since q and the x′i do not occur in ϕ, we

obtain the unsatis�ability of ϕ. Thus, ϕ ∈ 3Sat.
The transformation of P into an P-Abd(B,L(B))-instance for any

relevant B can be done in exactly the same way as in the proof of Propo-
sition 3.2.10.

The following classi�cation is visualized in Figure 3.4 on page 77.

Theorem 3.3.12. Let B be a �nite set of Boolean functions. Then the
positive explanation-existence problem for propositional B-formulæ with a
B-formula manifestation, P-Abd(B,L(B)), is

1. Σp
2-complete if D ⊆ [B] or S1 ⊆ [B],

2. coNP-complete if S02 ⊆ [B] ⊆ R1 or S12 ⊆ [B] ⊆ R1 or D1 ⊆ [B] ⊆
R1 or S00 ⊆ [B] ⊆ M or S10 ⊆ [B] ⊆ M or D2 ⊆ [B] ⊆ M

3. in NP if [B] ∈ {L, L0, L3},

4. in P if [B] ∈ {L1, L2},

5. in Logspace in all other cases.

Proof. 1. Follows from the �rst item of Proposition 3.3.5.

2. See Proposition 3.3.11 and 3.3.4.

3. See Proposition 3.3.10.

4. See the fourth item of Proposition 3.3.8.

5. For [B] ⊆ V, a B-formula is a positive clause. Thus the result follows
from Theorem 3.3.5. For [B] ⊆ N and [B] ⊆ E, see Proposition 3.2.3.

3.3. THE COMPLEXITY OF POSITIVE ABDUCTION 59

3.3.3 The complexity of the Veri�cation Problem

As in the case of symmetric abduction, for the argument-veri�cation prob-
lem we consider only the basic variant where the manifestation is a single
positive literal.

Problem: P-Abd-Check

Instance: I = (Γ, A, q, E), where Γ ⊆ L, A ⊆ Vars(Γ), q a vari-
able and E ⊆ A

Question: Is E an explanation?

The following classi�cation is visualized in Figure 3.6 on page 79.

Theorem 3.3.13. Let B be a �nite set of Boolean functions. Then the
positive explanation-validity problem for propositional B-formulæ with a
positive literal manifestation, P-Abd-Check(B,PQ) is

1. DP-complete if D ⊆ [B] or S1 ⊆ [B],

2. coNP-complete if S02 ⊆ [B] ⊆ R1 or S12 ⊆ [B] ⊆ R1 or D1 ⊆ [B] ⊆
R1,

3. in P if [B] ⊆ L, and

4. in Logspace if [B] ⊆ M or [B] ⊆ N.

Proof. 1. By virtue of Lemma 3.3.1 and the fact that [S1 ∪ {1}] =
[D ∪ {1}] = BF, it su�ces thus to consider the case [B] = BF.
One easily veri�es that for this case exactly the same proof as in
Proposition 3.2.13 applies (since A = E = ∅).

2. Due to the fact that Γ ∧ E is always satis�able (B ⊆ R1), exactly
the same proof as in Proposition 3.3.4 for P-Abd(B,PQ) applies.

3. We have to check the following two conditions.

(B1) Γ ∧ E is satis�able,

(B2) Γ ∧ E ∧ ¬q is unsatis�able.

Since we deal with a�ne formulæ, this can be done in P via Gaussian
elimination.

4. We have to check the same two conditions as mentioned in the last
item. This can be done in Logspace since we deal with N- or
monotonic formulæ.

60 CHAPTER 3. CLASSIFICATIONS IN POST'S FRAMEWORK

3.3.4 Overview of results for Abduction

The following two tables give an overview of the results for the studied
symmetric and positive abduction problems. The small numbers on the
right side in the table cells refer to the corresponding theorem / proposi-
tion. The number is omitted for trivial results.

M E∗ N∗ V∗ L∗ D2, S∗0 ⊆ D1, S∗2 ⊆
[B] ⊆ M [B] ⊆ BF

NQ,NC,NT trivial trivial trivial ∈ P 3.2.7 ∈ L 3.2.7 Σp
2 -c 3.2.7

PQ,PC,Q,C ∈ L 3.2.3 ∈ L 3.2.3 ∈ L 3.2.3 ∈ P 3.2.4 NP-c 3.2.5 Σp
2 -c 3.2.6

PT,T ∈ L 3.2.9 ∈ L 3.2.9 NP-c 3.2.8 ∈ P 3.2.9 NP-c 3.2.9 Σp
2 -c 3.2.9

L(B) ∈ L 3.2.11 ∈ L 3.2.11 ∈ L 3.2.11 ∈ P 3.2.11 Σp
2 -c 3.2.10 Σp

2 -c 3.2.10

Table 3.2: The complexity ofAbd, where ∗-subscripts on clones denote all valid
completions, L abbreviates Logspace, and the su�x �-c� indicates completeness
for the respective complexity class.

M E∗,N∗, L1, L2 L0, L3, L D2, S∗0 ⊆ D1, S∗2 ⊆ D, S1 ⊆
V∗ [B] ⊆ M [B] ⊆ R1 [B] ⊆ BF

NQ,NC trivial trivial ∈ P 3.3.6 trivial trivial Σp
2 -c 3.3.6

NT trivial trivial NP-c 3.3.9 trivial trivial Σp
2 -c 3.3.9

PQ,PC,Q,C ∈ L 3.3.3 ∈ P 3.3.5 ∈ P 3.3.5 ∈ L 3.3.3 coNP-c 3.3.4 Σp
2 -c 3.3.5

PT,T ∈ L 3.3.8 ∈ P 3.3.8 NP-c 3.3.7 ∈ L 3.3.8 coNP-c 3.3.8 Σp
2 -c 3.3.8

L(B) ∈ L 3.3.12 ∈ P 3.3.12 ∈ NP 3.3.10 coNP-c 3.3.11 coNP-c 3.3.12 Σp
2 -c 3.3.12

Table 3.3: The complexity of P-Abd, where ∗-subscripts on clones denote
all valid completions, L abbreviates Logspace, and the su�x �-c� indicates
completeness for the respective complexity class.

In the case of symmetric abduction our results show, for instance,
that when the knowledge base's formulæ are restricted to be represented
as positive clauses (column V∗, Table 3.2), then the abduction problem
for single literal manifestations is very easy (solvable in Logspace); this
still holds if the manifestations are represented by positive clauses. But
its complexity jumps to NP-completeness if we change the restriction on
the manifestations to allow for positive terms.

Considering the case that all monotonic functions can be simulated
(column D2,S∗0 ⊆ [B] ⊆ M, Table 3.2), the abduction problem is NP-
complete for manifestations represented by literals, clauses, or terms. Here
allowing manifestation represented by a monotonic formula, causes the
jump to Σp

2-completeness. This increase in the complexity of the problem

3.3. THE COMPLEXITY OF POSITIVE ABDUCTION 61

can be intuitively explained as follows. The complexity of the abduction
rests on two sources: �nding a candidate explanation and checking that
it is indeed a solution. The NP-complete cases that occur in our classi-
�cation hold for problems in which the veri�cation can be performed in
polynomial time. If both the knowledge base and the manifestation are
represented by monotonic formulæ, verifying a candidate explanation is
coNP-complete.

It comes as no surprise that the complexity of P-Abd(B,M) is lower
than or equal to the complexity of Abd(B,M) in most cases (except
for the a�ne clones, see column L0, L3, L, Table 3.3). We have seen in
Lemma 3.3.2 that for monotonic or 1-reproducing knowledge bases only
one candidate needs to be considered. In these cases the complexity of
the abduction problem is determined by the veri�cation of the candidate.
This explains the appearance of coNP-complete cases in our classi�cation
(columns D2,S∗0 ⊆ [B] ⊆ M and D1,S∗2 ⊆ [B] ⊆ R1, Table 3.3). For the
a�ne clones (i.e., [B] ∈ {L, L0, L3}), on the other hand, the tractability
of Abd(B,M) relies on Gaussian elimination. This method fails when
restricting the hypotheses to be positive while the manifestation is also
an a�ne formula: the exact complexity of P-Abd(B,L(B)) remains open
for [B] ∈ {L, L0, L3}.

62 CHAPTER 3. CLASSIFICATIONS IN POST'S FRAMEWORK

3.4 The complexity of Argumentation

3.4.1 Technical results and tools

Similar to abduction, also for the argumentation problems we may often
use a constant 'for free', facilitating the complexity analysis. The following
lemma states that when the considered B can express conjunction, we may
suppose that B contains the constant 1.

Lemma 3.4.1. Let Arg-P denote any of the problems Arg, Arg-Check,
Arg-Rel or Arg-Disp. Let B be a �nite set of Boolean functions such
that ∧ ∈ [B], i.e., E2 ⊆ [B]. Then Arg-P(B ∪ {1}) ≤log

m Arg-P(B).

Proof. Let I be the given instance. We map I to the instance I ′ obtained
by replacing each formula ψ occurring in I by ψ[1/t] ∧ t, where t be a
fresh variable.

With a little more e�ort, one can also simulate the constant 1 for the
problems Arg(B) and Arg-Rel(B) when B can express all self-dual and
monotonic functions.

Lemma 3.4.2. Let B be a �nite set of Boolean functions such that D2 ⊆
[B]. Then Arg(B ∪ {1}) ≤log

m Arg(B) and Arg-Rel(B ∪ {1}) ≤log
m

Arg-Rel(B).

Proof. Let g(x, y, z) := (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z). The function g is a
base of D2 and evaluates to true if and only if at least two of the variables
are set to true. Given an instance (∆, α) of Arg(B ∪ {1}), we de�ne
an instance (∆′, α′) of Arg(B) by ∆′ := {ψ[1/t] | ψ ∈ ∆} ∪ {t} and
α′ = g(α[1/t], t, q), where t and q are fresh variables. We claim that there
is an argument for α in ∆ if and only if there is an argument for α′ in ∆′.

Let Φ be an argument for α in ∆. Consider Φ′ := {ψ[1/t] | ψ ∈
Φ} ∪ {t}. Observe that Φ′ ≡ Φ ∧ t. Thus Φ′ is satis�able and Φ′ |= α,
hence Φ′ |= α[1/t] ∧ t, as t does not occur in α. Therefore, we obtain
Φ′ |= g(α[1/t], t, q). Moreover, either Φ′ or Φ′ \ {t} is minimal with this
property. Indeed, suppose that there exists a ψ′ ∈ Φ′ with ψ′ = ψ[1/t] for
some ψ ∈ Φ such that Φ′\{ψ′} |= g(α[1/t], t, q). Then Φ′\{ψ′} |= α[1/t]∧t
as q does not occur in Φ′, and hence Φ \ {ψ} |= α, contradictory to the
minimality of Φ.

Conversely, with similar arguments it is easy to see that if Φ′ is an
argument for α′ in ∆′, then Φ := {ψ[t/1] | ψ ∈ Φ′, ψ 6= t} is an argument
for α in ∆: as q does not occur in Φ′, Φ′ |= α′ implies that Φ′ |= α[1/t]∧ t.

3.4. THE COMPLEXITY OF ARGUMENTATION 63

This proves correctness of the reduction fromArg(B∪{1}) toArg(B).
The analogous result for Arg-Rel follows from the same arguments as
above, mapping the additional component ϕ to ϕ′ := ϕ[1/t].

Observe that the reduction of Lemma 3.4.2 will not work forArg-Check:
one would have to decide whether to map Φ to Φ′ or to Φ′ \ {t} to ensure
minimality, which requires the ability to decide whether Φ′ \ {t} |= t in
Logspace. Further observe that an analogous statement of Lemma 3.4.1
for the constant 0 cannot be obtained in the obvious way. Replacing every
formula ψ by ψ[0/f]∨ f for a fresh variable f fails since such a reduction
does not preserve consistency.

We will give once more an example that shows how these lemmas
reduce the number of cases to study. We will show hardness results for
Arg-Rel(B) (Theorem 3.4.9) in the same three cases as in the example
we gave in Section 3.2.1 for abduction:

1. S00 ⊆ [B]

2. D2 ⊆ [B]

3. S10 ⊆ [B]

Since we have this time only the constant 1 and not the constant 0, we
cannot reduce these three cases to the case M ⊆ [B] but to the case
S00 ⊆ [B]:

Since in cases 2 and 3 either D2 ⊆ [B] or E2 ⊆ [B], according to Lem-
mas 3.4.1 and 3.4.2 we haveArg-Rel(B∪{1}) ≤log

m Arg-Rel(B). There-
fore, it is su�cient to prove hardness for Arg-Rel(B ∪ {1}). Observe
that if D2 ⊆ [B] then S2

01 = [D2 ∪ {1}] ⊆ [[B] ∪ {1}] = [B ∪ {1}] and
if S10 ⊆ [B] then M1 = [S10 ∪ {1}] ⊆ [B ∪ {1}]. Since S00 ⊆ S2

01 and
S00 ⊆ M1, we have in both cases S00 ⊆ [B ∪ {1}]. So, �nally in order to
prove that Arg-Rel(B) is hard in the case where S00 ⊆ [B] or D2 ⊆ [B]
or S10 ⊆ [B] it is su�cient to prove that the hardness holds for B such
that S00 ⊆ [B].

3.4.2 The complexity of the Existence Problem

We commence our study of the introduced argumentation problems with
the argument-existence problem Arg(B).

64 CHAPTER 3. CLASSIFICATIONS IN POST'S FRAMEWORK

Problem: Arg(B)

Instance: I = (∆, α), where ∆ ⊆ L(B) and α ∈ L(B).

Question: Does there exist Φ such that (Φ, α) is an argument in
∆?

The following classi�cation is visualized in Figure 3.4 on page 77.

Theorem 3.4.3. Let B be a �nite set of Boolean functions. Then the
argument-existence problem for propositional B-formulæ, Arg(B), is

1. Σp
2-complete if D ⊆ [B] or S1 ⊆ [B],

2. coNP-complete if X ⊆ [B] ⊆ Y with X ∈ {S00,S10,D2} and Y ∈
{M,R1},

3. in NP if [B] ∈ {L, L0, L3},

4. in P if [B] ∈ {L1, L2}, and

5. in Logspace if [B] ⊆ V or [B] ⊆ E or [B] ⊆ N.

The same classi�cation holds for Arg-Disp(B).

Proof. The general argumentation problem has been shown to be Σp
2-

complete by [PWA03] via a reduction from Qsat∃,2. An instance of
this problem is a quanti�ed formula ∃X∀Y β, and one may assume that
the formula β is in 3DNF, i.e., β =

∨p
j=1 tj with exactly three literals

by term. The authors map such an instance ∃X∀Y β to (∆, α), where
∆ := {x ↔ 0, x ↔ 1 | x ∈ X}, and α := β. We use this reduction to
obtain Σp

2-completeness for Arg(B) if [B] = BF. We insert parenthe-
ses in β and obtain a formula of logarithmic parentheses-depth only. We
can now substitute all occurring connectives with their B-representations
and obtain this way in logarithmic space an instance of Arg(B) which is
equivalent to the original (∆, α).

As ∧ ∈ S1 and [S1 ∪ {1}] = BF, we obtain Σp
2-completeness for the

case S1 ⊆ [B] according to Lemma 3.4.1. For the case D ⊆ [B], we obtain
Σp

2-completeness by Lemma 3.4.2, since D2 ⊆ D and [D ∪ {1}] = BF.
For X ⊆ [B] ⊆ Y with X ∈ {S00,S10,D2} and Y ∈ {M,R1}, member-

ship in coNP follows from the facts that satis�ability is in P ([Lew79]), that
∆ (or, in the case of M, ∆ restricted to its satis�able elements) is the only
candidate to be checked, and that entailment is in coNP ([BMTV09a]).
To prove the coNP-hardness of Arg(B), we give a reduction from the

3.4. THE COMPLEXITY OF ARGUMENTATION 65

implication problem for B-formulæ, which is coNP-hard if [B] contains
one of the clones S00, S10, D2. Let (ψ, α) be a pair of B-formulæ. We
map this instance to ({ψ}, α) if ψ is satis�able (which is easy to decide)
and to a trivial positive instance otherwise.

For [B] ∈ {L, L0, L3}, membership in NP follows from the fact that
in this case Arg-Check is in P. Due to the trivial satis�ability of B-
formulæ for [B] ∈ {L1, L2} (1-valid formulæ are always satis�able, hence
once again ∆ is the only candidate to be checked), we can improve the
upper bound for Arg(B) with [B] ∈ {L1, L2} to membership in P.

In all other cases, Logspace-membership follows from the fact that
both problems, satis�ability and entailment, are contained in Logspace
(see [BMTV09a]) for B-formulæ.

We will see in Section 3.4.4 that the argument-dispensability problem
Arg-Disp obeys the same classi�cation as Arg.

3.4.3 The complexity of the Veri�cation Problem

Our next problem under consideration is the argument-validity problem.

Problem: Arg-Check(B)

Instance: I = (Φ, α), where Φ ⊆ L(B) and α ∈ L(B).

Question: Is (Φ, α) an argument?

The argument-validity problem is in DP. To see this, consider the follow-
ing languages A,B.

A = {(∆,Φ, α) | Φ is satis�able,∀ϕ ∈ Φ : Φ \ {ϕ} 6|= α};
B = {(∆,Φ, α) | Φ |= α}.

It holds A ∈ NP and B ∈ coNP and Arg-Check = A ∩B.

The next two propositions give the central cases where we have a matching
lower bound, i.e., we provide those B for which DP-hardness holds.

Proposition 3.4.4. Let S00 ⊆ [B]. Then Arg-Check(B) is DP-complete.

Proof. To prove DP-hardness we establish a reduction fromCritical-3Sat.
Let ψ =

∧m
j=1 Cj be an instance of Critical-3Sat, and Vars(ψ) =

{x1, . . . , xn}. Let u, x′1, . . . , x
′
n be fresh, pairwise distinct variables. Let

further C ′j := Cj [¬xi/x′i | 1 ≤ i ≤ n] for 1 ≤ j ≤ m and ψ′ :=
∧m
j=1 C

′
j .

We map ψ to (Φ, α), where we de�ne

66 CHAPTER 3. CLASSIFICATIONS IN POST'S FRAMEWORK

Φ = {C ′j | 1 ≤ j ≤ m} and

α =

n∨
i=1

u ∨ (xi ∧ x′i).

Since x ∨ y and x ∨ (y ∧ z) are functions of S00, α and all C ′j 's are
S00-formulæ. These are by de�nition 1-reproducing. Therefore, Φ and α
are satis�able. For 1 ≤ k ≤ m, let Φk, ψk, ψ

′
k denote the respective set

of clauses where we deleted the kth clause. Note that always Φ ≡ ψ′ and
Φk ≡ ψ′k.

We may assume that each variable of ψ appears both as positive and as
negative literal and further that each literal has at least two occurrences
in two di�erent clauses (this can easily be derived from the proof of DP-
hardness in [PW88]). These two properties will assure that we have for
all k ∈ {1, . . . ,m}

Vars(ψ′) = Vars(ψ′k) = {xi, x′i | 1 ≤ i ≤ n}, (3.5)

Vars(Φ) = Vars(Φk) = {xi, x′i | 1 ≤ i ≤ n} ∪ {u}. (3.6)

Suppose now that ψ ∈ Critical-3Sat, i.e., ψ is unsatis�able and ψk
is satis�able for all k ∈ {1, . . . ,m}. We show that Φ entails α. Since
ψ ∧

∧n
i=1(xi ⊕ x′i) ≡ ψ′ ∧

∧n
i=1(xi ⊕ x′i) is unsatis�able, and ψ′ ≡ Φ is

monotonic, all models of Φ have to set both xi and x′i to 1 for at least
one i ∈ {1, . . . , n}. Since α[u/0] ≡

∨n
i=1(xi ∧ x′i), we therefore have

Φ |= α[u/0]. Obviously also Φ |= α[u/1], thus we have Φ |= α.
It remains to prove that Φ is minimal. Since for each k ∈ {1, . . . ,m}

ψk ∧
∧n
i=1(xi⊕ x′i) ≡ ψ′k ∧

∧n
i=1(xi⊕ x′i) is satis�able, no ψ′k ≡ Φk entails

α[u/0] ≡
∨n
i=1(xi ∧ x′i). A fortiori no Φk entails α.

Conversely suppose that (Φ, α) ∈ Arg-Check. Then Φ entails α and,
since u does not occur in Φ, we have also that Φ entails α[u/0]. Thus we
have ψ′ |=

∨n
i=1(xi ∧ x′i), which implies that ψ is unsatis�able. By the

minimality of Φ we know that no Φk entails α. Since Φk |= α[u/1], we
conclude that Φk 6|= α[u/0], which implies that ψ′k ∧

∧n
i=1(¬xi ∨ ¬x′i) is

satis�able. As ψ′k is monotonic, we obtain that also ψ′k ∧
∧n
i=1(xi ⊕ x′i)

and hence ψk itself is satis�able.
We �nally transform (Φ, α) into a B-instance for all B such that

S00 ⊆ [B] by replacing every connective by its B-representation. This
transformation works in logarithmic space for Φ since it consists in clauses

3.4. THE COMPLEXITY OF ARGUMENTATION 67

of size 3. It also does for α if we �rst represent it as an ∨-tree of depth
logarithmic in n.

Proposition 3.4.5. Let B be a �nite set of Boolean functions such that
D2 ⊆ [B]. Then Arg-Check(B) is DP-complete.

Proof. We give a reduction fromCritical-3Sat similar to Proposition 3.4.4.
For k ∈ N, we de�ne gk as the (k + 1)-ary function verifying

(a) gk(z1, . . . , zk, 0) ≡
∧k
i=1 zi and

(b) gk(z1, . . . , zk, 1) ≡
∨k
i=1 zi.

Note that for every k ∈ N, gk is monotonic and self-dual, and thus con-
tained in D2. By abuse of notation, given a positive clause C = (c1∨c2∨c3)
and a variable x, g3(C, x) stands for g3(c1, c2, c3, x). Let ψ =

∧m
j=1 Cj be

an instance of Critical-3Sat with Cj = (l1j ∨ l2j ∨ l3j) and Vars(ψ) =
{x1, . . . , xn}. Let further u, v, x′1, . . . , x

′
n be fresh, pairwise distinct vari-

ables and C ′j := Cj [¬xi/x′i | 1 ≤ i ≤ n] for 1 ≤ j ≤ m.

We map ψ to (Φ, α), where we de�ne

Φ = {g3(C ′j , u) | 1 ≤ j ≤ m}, and
α = gn

(
(g2(xi, x

′
i, v))1≤i≤n, u

)
.

Obviously α and the formulæ in Φ are D2-formulæ and thus satis�able.
Let ψ′ :=

∧m
j=1 C

′
j and for 1 ≤ k ≤ m, let Φk, ψk, ψ

′
k denote the respective

set of formulæ (clauses) where we deleted the kth formula (clause).

As in the previous proposition, we may assume that each variable of
ψ appears both as positive and as negative literal and that further each
literal has at least two occurrences in two di�erent clauses. These two
properties will assure that we have for all k ∈ {1, . . . ,m}

Vars(ψ′) = Vars(ψ′k) = {xi, x′i | 1 ≤ i ≤ n}, (3.7)

Vars(Φ) = Vars(Φk) = {xi, x′i | 1 ≤ i ≤ n} ∪ {u}. (3.8)

Suppose now that ψ ∈ Critical-3Sat, i.e., ψ is unsatis�able and ψk is
satis�able for all k ∈ {1, . . . ,m}. We show that Φ entails α for all possible
values of u, v, where we consider in detail only the case where v = 0. The
case v = 1 is analogous.

68 CHAPTER 3. CLASSIFICATIONS IN POST'S FRAMEWORK

(i) (u, v) = (1, 0): Φ[u/1] ≡ ψ′ and α[u/1, v/0] ≡
∨n
i=1(xi ∧ x′i). Since

ψ ∧
∧n
i=1(xi ⊕ x′i) ≡ ψ′ ∧

∧n
i=1(xi ⊕ x′i) is unsatis�able and ψ′ is

monotonic, all models of ψ′ have to set both xi and x
′
i to 1 for at

least one i ∈ {1, . . . , n}. Therefore, Φ[u/1] |= α[u/1, v/0].

(ii) (u, v) = (0, 0): Φ[u/0] ≡
∧n
i=1(xi ∧ x′i) and α[u/0, v/0] ≡

∧n
i=1(xi ∧

x′i). Obviously Φ[u/0] |= α[u/0, v/0].

It remains to prove that Φ is minimal. Since ψ ∈ Critical-3Sat,
ψk∧

∧n
i=1(xi⊕x′i) ≡ ψ′k∧

∧n
i=1(xi⊕x′i) is satis�able and hence Φk[u/1] ≡

ψ′k does not entail α[u/1, v/0] ≡
∨n
i=1(xi ∧ x′i), i.e., Φk 6|= α.

Conversely suppose that (Φ, α) ∈ Arg-Check. Then Φ |= α and,
since v does not occur in Φ, we have also Φ[u/1] |= α[u/1, v/0]. Thus we
have ψ′ |=

∨n
i=1(xi ∧ x′i), which implies that ψ is unsatis�able. By the

minimality of Φ, we obtain that no Φk entails α. One easily veri�es that
in the cases (u, v) ∈ {(0, 0), (0, 1), (1, 1)} Φk still entails α (use (3.8) for
(u,v) = (0,0)). Thus we have that Φk[u/1] 6|= α[u/1, v/0], which implies
that ψ′k ∧

∧n
i=1(¬xi ∨ ¬x′i) is satis�able. As ψ′k is monotonic, we obtain

that ψ′k ∧
∧n
i=1(xi ⊕ x′i) and hence ψk itself is satis�able, too.

Finally, we transform (Φ, α) into a B-instance for all B such that
D2 ⊆ [B] in replacing all occurrences of gk by its B-representation. This
transformation works in logarithmic space, because we may assume the
function gn to be a g2-tree of depth logarithmic in n.

The full picture for Arg-Check(B) is given in the forthcoming theo-
rem, where we also provide the results for the 'easier' clones. The classi-
�cation is visualized in Figure 3.7 on page 80.

Theorem 3.4.6. Let B be a �nite set of Boolean functions. Then the
argument-validity problem for propositional B-formulæ, Arg-Check(B),
is

1. DP-complete if S00 ⊆ [B] or S10 ⊆ [B] or D2 ⊆ [B],

2. in P if L2 ⊆ [B] ⊆ L,

3. in Logspace if [B] ⊆ V or [B] ⊆ E or [B] ⊆ N.

Proof. For DP-completeness, according to Propositions 3.4.4 and 3.4.5
it remains only to deal with the case S10 ⊆ [B]. Since D2 ⊆ M1 =
[S10 ∪ {1}] ⊆ [B ∪ {1}], we obtain that Arg-Check(B ∪ {1}) is DP-hard

3.4. THE COMPLEXITY OF ARGUMENTATION 69

by Proposition 3.4.5. As ∧ ∈ [B], we may apply Lemma 3.4.1 and obtain
the DP-hardness of Arg-Check(B).

In the case L2 ⊆ [B] ⊆ L the sets Φ, Φ ∪ {¬α}, and (Φ \ {ϕ}) ∪ {¬α}
for all ϕ ∈ Φ can be easily transformed into systems of linear equations.
Thus checking the three conditions (C1)�(C3) as given on page 29 comes
down to solving a polynomial number of systems of linear equations. This
can be done in polynomial time using Gaussian elimination. For [B] ⊆ V,
for [B] ⊆ E, and for [B] ⊆ N this check can be done in logarithmic space,
as in this case the satis�ability of sets of B-formulæ can be determined in
logarithmic space (see [Sch05] and Proposition 3.2.3).

3.4.4 The complexity of Relevance and Dispensability

Note that the argument-dispensability problem Arg-Disp,

Problem: Arg-Disp(B)

Instance: I = (∆, α, ϕ), where ∆ ⊆ L(B) and α,ϕ ∈ L(B).

Question: Does there exist an argument (Φ, α) in ∆ such that
ϕ /∈ Φ?

obeys the same classi�cation as Arg, since it is equivalent to Arg via
reductions that do not in�uence the type of the formulæ from ∆ and α:

1. Arg ≤log
m Arg-Disp: (∆, α) 7→ (∆ ∪ {t}, α, t).

2. Arg-Disp ≤log
m Arg: (∆, α, ϕ) 7→ (∆ \ {ϕ}, α).

The remaining decision problem to analyse is Arg-Rel(B) which
turns out to be the most di�cult in terms of complexity.

Problem: Arg-Rel(B)

Instance: I = (∆, α, ϕ), where ∆ ⊆ L(B) and α,ϕ ∈ L(B).

Question: Does there exist an argument (Φ, α) in ∆ such that
ϕ ∈ Φ?

Proposition 3.4.7. Let B be a �nite set of Boolean functions such that
S00 ⊆ [B]. Then Arg-Rel(B) is Σp

2-complete.

Proof. To see that Arg-Rel(B) is contained in Σp
2 , observe that, given

an instance (∆, α, ϕ), we can guess a set Φ ⊆ ∆ such that ϕ ∈ Φ and

70 CHAPTER 3. CLASSIFICATIONS IN POST'S FRAMEWORK

verify conditions (C1)�(C3) as given on page 29 in polynomial time using
an NP-oracle.

To prove Σp
2-hardness, we provide a reduction from the problemQsat∃,2.

An instance of this problem is a quanti�ed formula ∃X∀Y β where β =∨p
j=1 tj with exactly three literals by term. Let X = {x1, . . . , xn} and

Y = {y1, . . . , ym}. Let u, v, x′1, . . . , x′n, y′1, . . . , y′m be fresh variables. We
transform ∃X∀Y β to (∆, α, ϕ), where

∆ := {xi, x′i | 1 ≤ i ≤ n} ∪ {v ∧
m∧
i=1

(yi ∨ y′i)} ∪ {u},

α := β′ ∧ v ∧
(n∨
i=1

(xi ∧ x′i) ∨ u
)
,

ϕ := u,

with β′ =
∨p
j=1 t

′
j and t

′
j := tj [¬x1/x

′
1, . . . ,¬xn/x′n,¬y1/y

′
1, . . . ,¬ym/y′m]

for all 1 ≤ j ≤ p.
We show that ∃X∀Y β is valid if and only if (∆, α, ϕ) ∈ Arg-Rel({∧,∨}).

If ∃X∀Y β is valid, then there exists an assignment σ : X → {0, 1} such
that σ |= β. Consequently, for Φ := {xi | σ(xi) = 1} ∪ {x′i | σ(xi) =
0} ∪ {u, v ∧

∧m
i=1(yi ∨ y′i)}, we obtain Φ |= α. As Φ is consistent, it thus

remains to show that u is relevant, i.e., that Φ \ {u} 6|= α. This follows
from the fact that Φ \ {u} is satis�ed by any assignment σ′ extending σ
with σ′(u) := 0 and σ′(x′i) := 1 − σ(xi), while such a σ′ does not entail∨n
i=1(xi ∧ x′i) ∨ u and hence σ′ 6|= α.
For the converse direction, let Φ be a support for α such that u ∈ Φ.

Since Φ |= α we conclude that v ∧
∧m
i=1(yi ∨ y′i) ∈ Φ and hence Φ =

X ∪ {v ∧
∧m
i=1(yi ∨ y′i)} ∪ {u}, for some X ⊆ {xi, x′i | 1 ≤ i ≤ n}. From

Φ |= α also follows that Φ |= β′. From the minimality of Φ we conclude
that in particular Φ \ {u} 6|= α. And therefore Φ 6|=

∨n
i=1(xi ∧x′i). That is

Φ∧
∧n
i=1(¬xi ∨¬x′i) is satis�able and since Φ is monotonic, consequently

also Φ ∧
∧n
i=1(xi ⊕ x′i) is satis�able. Summed up, we know that γ :=

X ∧
∧n
i=1(xi ⊕ x′i) ∧

∧m
i=1(yi ∨ y′i) is satis�able and γ |= β′. Hence, a

fortiori, γ′ := X ∧
∧n
i=1(xi⊕x′i)∧

∧m
i=1(yi⊕ y′i) is satis�able and γ′ |= β′.

De�ne now σX(xi) = 1 if xi ∈ X , σX(xi) = 0 otherwise. Obviously any
extension of σX to Y satis�es β and therefore ∃X∀Y β is valid.

It remains to transform (∆, α, ϕ) into an Arg-Rel(B)-instance for
all B such that S00 ⊆ [B]. As both ∧ and ∨ are associative, we can
insert parentheses into (∆, α, ϕ) such that we can represent each formula

3.4. THE COMPLEXITY OF ARGUMENTATION 71

as binary {∧,∨}-tree of logarithmic depth. Let f be a fresh variable and
let h be the boolean function in S00 de�ned by h(f, x, y) ≡ f ∨ (x ∧ y).
We further transform our instance into (∆′, α′ ∨ f, ϕ′), where ∆′, α′, ϕ′

are obtained by replacing each occurrence of x ∧ y by h(f, x, y). One
easily veri�es that (∆′, α′ ∨ f, ϕ′) is in Arg-Rel({∨, h}) if and only if
(∆, α, ϕ) ∈ Arg-Rel({∧,∨}). We �nally replace ∨ and h by their B-
representation.

Proposition 3.4.8. Let B be a �nite set of Boolean functions such that
[B] ⊆ V or [B] ⊆ E or [B] ⊆ N. Then Arg-Rel(B) is in Logspace.

Proof. We assume the representation of V-, E-, or N-formulæ as respec-
tively positive clauses, positive terms, or literals. Let us �rst consider
Arg-Rel(B) for [B] ⊆ E. It is easy to observe that a set of positive
terms ∆ entails a positive term α if and only if Vars(α) ⊆ Vars(∆). We
claim that Algorithm 1 decides Arg-Rel(B).

Algorithm 1 Algorithm for Arg-Rel(B) with [B] ⊆ E.

Require: a set ∆ of positive terms and positive terms α, ϕ with ϕ ∈ ∆.
1: for all x ∈ Vars(ϕ) do
2: ∆x := {ϕ} ∪ {τ ∈ ∆ | x /∈ Vars(τ)}
3: if ∆x |= α then
4: accept
5: end if
6: end for
7: reject

Algorithm 1 can be implemented using only a logarithmic amount of
space if we do not construct ∆x entirely but rather check the condition
in line 3 directly: ∆x |= α holds if and only if Vars(α) ⊆ Vars(ϕ) ∪
Vars({τ ∈ ∆ | x /∈ Vars(τ)}).

To prove correctness, notice that Algorithm 1 accepts only if there
exists a ∆x ⊆ ∆ such that ∆x |= α and ∆x \ {ϕ} 6|= α. Thus ∆x

contains a support Φ such that ϕ ∈ Φ. Conversely, let Φ be a support
such that ϕ ∈ Φ. Since Φ |= α and Φ \ {ϕ} 6|= α, there is at least
one xi ∈ (Vars(ϕ) ∩ Vars(α)) \ Vars(Φ \ {ϕ}). For this xi the algorithm
constructs ∆xi

:= {ϕ} ∪ {τ ∈ ∆ | xi /∈ Vars(τ)}. Obviously Φ ⊆ ∆xi

and therefore ∆xi
|= α which causes the algorithm to accept.

Next, considerArg-Rel(B) for [B] ⊆ V. Observe that a set of positive
clauses C entails a positive clause α if and only if there is a clause c ∈ C

72 CHAPTER 3. CLASSIFICATIONS IN POST'S FRAMEWORK

such that Vars(c) ⊆ Vars(α). Thus if there is a support Φ with ϕ ∈ Φ then
it is the singleton {ϕ}. Given (∆, α, ϕ) as an instance of Arg-Rel(V), it
hence su�ces to check whether Vars(ϕ) ⊆ Vars(α), which can be done in
Logspace.

Finally Arg-Rel(B) for [B] ⊆ N is in Logspace, since each B-
formula can be transformed into a single literal.

We obtain the following complexity classi�cation for Arg-Rel. The
classi�cation is visualized in Figure 3.8 on page 81.

Theorem 3.4.9. Let B be a �nite set of Boolean functions. Then the
argument-relevance problem for propositional B-formulæ, Arg-Rel(B),
is

1. Σp
2-complete if S00 ⊆ [B] or D2 ⊆ [B] or S10 ⊆ [B],

2. in NP if L2 ⊆ [B] ⊆ L,

3. in Logspace if [B] ⊆ V or [B] ⊆ E or [B] ⊆ N.

Proof. Applying Lemma 3.4.1 and Lemma 3.4.2 as shown in Section 3.4.1,
for (1) it su�ces to show hardness for B such that S00 ⊆ [B]. This has
been done in Proposition 3.4.7. Item (2) follows from the fact that for
[B] ⊆ L, Arg-Check(B) is in P (Proposition 3.4.6) and (3) has been
shown in Proposition 3.4.8.

3.4.5 Overview of results for Argumentation

It turns out that Arg and Arg-Disp have the same complexity classi�-
cation as the positive abduction problem with a B-formula manifestation
P-Abd(B,L(B)).

The following table gives an overview of the results for the studied
argumentation problems. The small numbers on the right side in the
table cells refer to the corresponding theorem / proposition.

3.4. THE COMPLEXITY OF ARGUMENTATION 73

N∗,V∗, E∗ L1, L2 L, L0, L3
D2, S∗0 ⊆
[B] ⊆ M,R1

D, S1 ⊆
[B] ⊆ BF

Arg-Check ∈ L 3.4.6 ∈ P 3.4.6 ∈ P 3.4.6 DP-c 3.4.4,
3.4.5

DP-c
3.4.4,
3.4.5

Arg,
Arg-Disp

∈ L 3.4.3 ∈ P 3.4.3 ∈ NP 3.4.3 coNP-c 3.4.3 Σp
2 -c 3.4.3

Arg-Rel ∈ L 3.4.8 ∈ NP 3.4.9 ∈ NP 3.4.9 Σp
2 -c 3.4.7 Σp

2 -c 3.4.7

Table 3.4: The complexity of the argumentation problems. The ∗-subscripts on clones
denote all valid completions, L abbreviates Logspace, and the su�xe �-c� indicates com-
pleteness.

Our results show, for instance, that when the knowledge base's for-
mulæ are restricted to be represented as positive clauses, positive terms
or single literals (column V∗,E∗,N∗) then all considered problems are very
easy. While for a�ne formulæ (columns L1, L2 and L, L0, L3) all problems
become more involved, with P- and NP-membership.

Notably are the sets B of Boolean connectives where X ⊆ [B] ⊆ Y
with X ∈ {S00,S10,D2} and Y ∈ {M,R1}. This case typically applies
to monotonic formulæ in which no negation is involved. Such sets B
give coNP-completeness for Arg(B), while Arg-Rel(B) remains com-
plete for Σp

2 . It may come as a surprise that in these cases verifying an
argument is potentially harder than deciding the existence of an argument
(Arg-Check is DP-complete, Arg is only coNP-complete). This is due
to the fact that when verifying an argument, the minimality condition of
a support has to be checked, whereas this condition is of no importance
for the argument existence problem.

The results obtained for the L-cases are partial. This corresponds
to the case where individual formulæ are linear equations over the two-
elements �eld. The fact that Arg(B) with L2 ⊆ [B] ⊆ L1 is in P relies
on Gaussian elimination knowing that in this case we only have to check
whether Φ |= α, that is whether the linear system Φ ∧ ¬α is satis�able.
For the corresponding problems Arg-Rel(B), in which minimality plays
a role, we only have an NP upper-bound, so far. In fact, the exact classi-
�cation of the problems into tractable and intractable cases remains open
for a�ne sets of Boolean connectives in the following cases: Arg(B) with
[B] ∈ {L, L0, L3} and Arg-Rel(B) with L2 ⊆ [B] ⊆ L.

74 CHAPTER 3. CLASSIFICATIONS IN POST'S FRAMEWORK

BF

R1 R0

R2

M

M1 M0

M2

S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

D

D1

D2

E

E1 E0

E2

V

V0V1

V2

L

L0L1 L3

L2

N

N2

I

I0I1

I2

Σp
2-complete

NP-complete

∈ P

Figure 3.1: The complexity of Abd(B,PQ).

3.4. THE COMPLEXITY OF ARGUMENTATION 75

BF

R1 R0

R2

M

M1 M0

M2

S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

D

D1

D2

E

E1 E0

E2

V

V0V1

V2

L

L0L1 L3

L2

N

N2

I

I0I1

I2

Σp
2-complete

coNP-complete

∈ P

Figure 3.2: The complexity of P-Abd(B,PQ).

76 CHAPTER 3. CLASSIFICATIONS IN POST'S FRAMEWORK

BF

R1 R0

R2

M

M1 M0

M2

S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

D

D1

D2

E

E1 E0

E2

V

V0V1

V2

L

L0L1 L3

L2

N

N2

I

I0I1

I2

Σp
2-complete

∈ P

Figure 3.3: The complexity of Abd(B,L(B)).

3.4. THE COMPLEXITY OF ARGUMENTATION 77

BF

R1 R0

R2

M

M1 M0

M2

S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

D

D1

D2

E

E1 E0

E2

V

V0V1

V2

L

L0L1 L3

L2

N

N2

I

I0I1

I2

Σp
2-complete

coNP-complete

∈ NP

∈ P

Figure 3.4: The complexity of P-Abd(B,L(B)) and Arg(B).

78 CHAPTER 3. CLASSIFICATIONS IN POST'S FRAMEWORK

BF

R1 R0

R2

M

M1 M0

M2

S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

D

D1

D2

E

E1 E0

E2

V

V0V1

V2

L

L0L1 L3

L2

N

N2

I

I0I1

I2

DP-complete

∈ P

Figure 3.5: The complexity of Abd-Check(B,PQ).

3.4. THE COMPLEXITY OF ARGUMENTATION 79

BF

R1 R0

R2

M

M1 M0

M2

S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

D

D1

D2

E

E1 E0

E2

V

V0V1

V2

L

L0L1 L3

L2

N

N2

I

I0I1

I2

DP-complete

coNP-complete

∈ P

Figure 3.6: The complexity of P-Abd-Check(B,PQ).

80 CHAPTER 3. CLASSIFICATIONS IN POST'S FRAMEWORK

BF

R1 R0

R2

M

M1 M0

M2

S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

D

D1

D2

E

E1 E0

E2

V

V0V1

V2

L

L0L1 L3

L2

N

N2

I

I0I1

I2

DP-complete

P

Figure 3.7: The complexity of Arg-Check(B).

3.4. THE COMPLEXITY OF ARGUMENTATION 81

BF

R1 R0

R2

M

M1 M0

M2

S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

D

D1

D2

E

E1 E0

E2

V

V0V1

V2

L

L0L1 L3

L2

N

N2

I

I0I1

I2

Σp
2-complete

∈ NP

∈ P

Figure 3.8: The complexity of Arg-Rel(B).

82 CHAPTER 3. CLASSIFICATIONS IN POST'S FRAMEWORK

Chapter 4

Complexity Classi�cations

in Schaefer's framework

4.1 Schaefer's framework

In Schaefer's framework one considers formulæ in generalized conjunctive
normal form. That is, starting from a CNF-formula one generalizes its
clauses to applications of arbitrary Boolean relations to variables. One
obtains fragments of propositional logic by restricting the set of Boolean
relations S the clauses must be built of, leading to so-called S-formulæ.
In contrast to Post's framework, no nesting is allowed. The �rst system-
atic complexity analysis of the satis�ability problem for S-formulæ was
carried out by T.J. Schaefer in his 1978 paper The complexity of Sat-
is�ability Problems [Sch78]. Schaefer obtained a remarkable Dichotomy
Theorem: The satis�ability problem for S-formulæ, Sat(S) for short, is
either NP-complete or in P. The result was astonishing since it means that
all in�nitely many intermediate degrees between P and NP are skipped
(assuming P 6= NP). In the meanwhile Schaefer's approach has been ap-
plied to many problems from various contexts (e.g., Model checking for
circumscription [NJ04], Default Logic [Sch07b], Equivalence and Implica-
tion [BHRV02, BBC+07, SS08, Sch07a], Abduction [CZ06, NZ08]) not re-
stricted to pure decision problems but also to counting [CH96], [BBC+07],
enumeration [CH97], and optimization (e.g., [Cre95, KS96, KSW97]).

In the following we will introduce the notion of S-formulæ formally.

83

84CHAPTER 4. CLASSIFICATIONS IN SCHAEFER'S FRAMEWORK

Then we will discuss some standard tools from universal algebra that have
often been useful in order to obtain classi�cations in Schaefer's Framework
and that we will also build on.

4.1.1 Preliminaries

Constraint languages and S-formulæ A logical relation of arity k
is a relation R ⊆ {0, 1}k. In this thesis we will only consider nonempty
relations. By abuse of notation we do not make a di�erence between a
relation and its predicate symbol. We will use T and F as the two unary
constant relations T = {1} and F = {0}. A constraint, C, is a formula
C = R(x1, . . . , xk), where R is a logical relation of arity k and the xi's are
(not necessarily distinct) variables. For instance the two constraints T (x)
and F (x) stand for the two unit clauses (x) and (¬x), respectively. If u and
v are two variables, then C[v/u] denotes the constraint obtained from C in
replacing each occurrence of v by u. If V is a set of variables, then C[V/u]
denotes the result of substituting u to every occurrence of every variable
of V in C. An assignment m of truth values to the variables satis�es
the constraint C if

(
m(x1), . . . ,m(xk)

)
∈ R. A constraint language S

is a �nite set of logical relations. An S-formula ϕ is a conjunction of
constraints using only logical relations from S and is hence a quanti�er-
free �rst-order formula.

An S-formula ϕ is satis�ed by an assignmentm : Vars(ϕ)→ {0, 1} ifm
satis�es all constraints in ϕ simultaneously (such a satisfying assignment is
also called a model of ϕ). Assuming a canonical order on the variables we
can regard models as tuples in the obvious way and we do not distinguish
between a formula ϕ and the logical relation Rϕ it de�nes, i.e., the relation
consisting of all models of ϕ.

The satis�ability problem for S-formulæ is de�ned as follows.

Problem: Sat(S)

Instance: An S-formula ϕ.

Question: Is ϕ satis�able?

Let us illustrate the generalization to S-formulæ on an example. De�ne
S1 = {R0, R1, R2, R3} by the following four relations:

R0 = {0, 1}3\{(0, 0, 0)} R1 = {0, 1}3\{(1, 0, 0)}
R2 = {0, 1}3\{(1, 1, 0)} R3 = {0, 1}3\{(1, 1, 1)}

4.1. SCHAEFER'S FRAMEWORK 85

An S1-formula is given by

ϕ = R0(x1, x2, x3) ∧R2(x2, x3, x4).

A CNF-representation of ϕ is given by

ϕ = R0(x1, x2, x3) ∧R2(x2, x3, x4) ≡ (x1 ∨ x2 ∨ x3) ∧ (¬x2 ∨ ¬x3 ∨ x4).

One may observe that with the relations {R0, R1, R2, R3} one can indeed
express any clause of three variables. That is, any 3CNF-formula can be
written as an S1-formula. Therefore, the problem Sat(S1) describes noth-
ing else than the problem 3Sat. Similarly, we can describe the problem
2Sat with the three relations

R4 = {0, 1}2\{(0, 0)} R5 = {0, 1}2\{(1, 0)} R6 = {0, 1}2\{(1, 1)},
and we can describe the satis�ability problem for Horn-formuæ with clauses
of length at most three by the six relations

R2 = {0, 1}3\{(1, 1, 0)} R5 = {0, 1}2\{(1, 0)} R7 = {0}
R3 = {0, 1}3\{(1, 1, 1)} R6 = {0, 1}2\{(1, 1)} R8 = {1}.

Throughout the text we refer to di�erent types of Boolean relations fol-
lowing Schaefer's terminology [Sch78]. We say that a Boolean relation R
is

• Horn (resp. dual-Horn) if R can be de�ned by a CNF formula which
is Horn (resp. dual-Horn);

• bijunctive if it can be de�ned by a 2CNF formula;

• a�ne if it can be de�ned by an a�ne formula, i.e., conjunctions of
XOR-clauses (consisting of an XOR of some variables plus maybe
the constant 1) � such a formula may also be seen as a system of
linear equations over GF[2];

• width-2-a�ne if it can be de�ned by an a�ne formula, with XOR-
clauses of at most 2 variables;

• 0-valid (resp. 1-valid) if R(0, . . . , 0) = 1 (resp. R(1, . . . , 1) = 1);

• ε-valid if R is either 0-valid, or 1-valid or both;

• complementive if for all m ∈ R we have also m ∈ R, where m
denotes the dual assignment of m de�ned by m(x) = 1−m(x).

86CHAPTER 4. CLASSIFICATIONS IN SCHAEFER'S FRAMEWORK

Finally a constraint language S is Horn (resp. dual-Horn, bijunctive,
affine, width-2-affine, 0-valid, 1-valid, ε-valid, complementive) if every re-
lation in S is Horn (resp. dual-Horn, bijunctive, affine, width-2-affine,
0-valid, 1-valid, ε-valid, complementive). We say that a constraint lan-
guage is Schaefer if S is either Horn, dual-Horn, bijunctive, or affine.

4.1.2 Background from Universal Algebra

When investigating the computational complexity of problems parameter-
ized by S-formulæ one of the most successful techniques to obtain reduc-
tions has been the application of tools from universal algebra. A Galois
connection relates the expressive power of a constraint language S to its
set of polymorphisms pol(S) and gives a natural procedure to transform
S-formulæ into S′-formulæ if pol(S′) ⊆ pol(S). In order to introduce this
a bit more formally we �rst need the following de�nition.

De�nition 4.1.1. Let S be a constraint language. The relational clone
(or co-clone) 〈S〉 is the smallest set of Boolean relations such that

• 〈S〉 contains the equality relation and all relations in S, and

• 〈S〉 is closed under primitive positive de�nitions, i.e., if ϕ is a
〈S〉-formula and R(x1, . . . , xn) ≡ ∃y1 . . . ymϕ(x1, . . . , xn, y1, . . . ym),
then R ∈ 〈S〉.

In other words, 〈S〉 is the set of relations that can be expressed as
an S ∪ {=}-formula with existentially quanti�ed variables. Note that
while a constraint language S is �nite by de�nition, 〈S〉 is always in�nite.
The process of expressing a relation R in terms of an S-formula (or an
S ∪ {=}-formula) is also referred to as implementing R. The following
crucial observation justi�es to regard 〈S〉 as the expressive power of S.

Lemma 4.1.2. If S ⊆ 〈S′〉, then Sat(S) ≤log
m Sat(S′).

Proof. Let ϕ be an S-formula. We transform it into an S′-formula by the
following procedure:

• replace in ϕ every constraint by its equivalent S′ ∪ {=}-formula.

• delete all existential quanti�ers.

• delete all equality clauses and replace variables that were forced to
the same value by a chain of equality clauses, by a common new
variable.

4.1. SCHAEFER'S FRAMEWORK 87

One observes that this transformation preserves the satis�ability of the
formula ϕ. Note that the last and most costly step of the transformation
is essentially an instance of the undirected graph reachability problem
which is solvable in logspace [Rei05].

In other words, with respect to logspace-many-one reductions, the
complexity of Sat(S) does not change within a co-clone. As a conse-
quence, one has only to consider the co-clones when classifying the com-
plexity of Sat(S). This will hold for any problem Prob(S) parameterized
by S-formulæ that obeys this property, i.e., that Prob(S) ≤log

m Prob(S′)
if S ⊆ 〈S′〉. Fortunately, all co-clones are known. In order to reveal them
we need a last de�nition.

De�nition 4.1.3. Let f : {0, 1}m → {0, 1} be a Boolean function and let
R ⊆ {0, 1}n be a Boolean relation. The function f preserves the relation
R if for all x1, . . . , xm ∈ R, where xi = (xi[1], . . . , xi[n]) we have(

f(x1[1], . . . , xm[1]), . . . , f(x1[n], . . . , xm[n])
)
∈ R.

So f preserves R if the coordinate-wise application of f to any sequence
of m vectors in R always results in a vector that is still in R. We say in
this case also that R is invariant under f or that f is a polymorphism
of R. We denote the set of all polymorphisms of R by pol(R) and for
a set of relations S we denote pol(S) the set of all Boolean functions
that preserve all relations in S. It is not di�cult to observe that the
set pol(S) forms a Boolean clone. For a set of Boolean functions B we
denote inv(B) the set of all Boolean relations that are invariant under
all functions in B. As shown �rst in [Gei68, BKKR69], the operators
inv and pol constitute a Galois correspondence between the lattice of
sets of Boolean functions and the lattice of sets of Boolean relations.
This one-to-one correspondence between clones and co-clones gives us
automatically the full list and structure of the co-clones: It can be read
from Post's Lattice, only the inclusion relation between co-clones now
points downwards. Hence, for a Boolean clone C, inv(C) denotes the
corresponding co-clone. It holds in particular the following.

Proposition 4.1.4. Let S be a set of Boolean relations and B a set of
Boolean functions. Then it holds:

• inv(pol(S)) = 〈S〉

88CHAPTER 4. CLASSIFICATIONS IN SCHAEFER'S FRAMEWORK

• pol(inv(B)) = [B]

Thus, we have S ⊆ 〈S′〉 if and only if pol(S′) ⊆ pol(S). Hence,
Lemma 4.1.2 can equivalently be stated as follows.

Lemma 4.1.5. If pol(S′) ⊆ pol(S), then Sat(S) ≤log
m Sat(S′).

The Galois correspondence gives us useful characterizations of the prop-
erties of relations we de�ned above. Indeed they describe exactly the
properties of certain co-clones. The following characterizations are now
part of the folklore and can be found in [Hor51, Sch78].

pol(R) ⊇ V2 ⇔ R ∈ inv(V2) ⇔ R is dual-Horn
pol(R) ⊇ E2 ⇔ R ∈ inv(E2) ⇔ R is Horn
pol(R) ⊇ L2 ⇔ R ∈ inv(L2) ⇔ R is affine
pol(R) ⊇ D1 ⇔ R ∈ inv(D1) ⇔ R is width-2-affine
pol(R) ⊇ D2 ⇔ R ∈ inv(D2) ⇔ R is bijunctive
pol(R) ⊇ N2 ⇔ R ∈ inv(N2) ⇔ R is complementive
pol(R) ⊇ N ⇔ R ∈ inv(N) ⇔ R is compl., 0- and 1-valid
pol(R) ⊇ I ⇔ R ∈ inv(I) ⇔ R is 0-valid and 1-valid
pol(R) ⊇ I0 ⇔ R ∈ inv(I0) ⇔ R is 0-valid
pol(R) ⊇ I1 ⇔ R ∈ inv(I1) ⇔ R is 1-valid
pol(R) ⊇ I2 ⇔ R ∈ inv(I2) ⇔ R is any relation

4.1.3 Complexity Classi�cations in Schaefer's Frame-

work and the Galois connection

Schaefer's famous dichotomous classi�cation of the satis�ability problem
Sat(S) originally has been proved by hand. This means, he did not refer
to the existence of implementation results thanks to the Galois connection,
but explicitly gave the implementations. Later, much shorter and more
elegant proofs have been established making use of the Galois connection
[BCRV04, CV08]. Among the above mentioned problems that have been
classi�ed in Schaefer's Framework, not all allow to prove easily the crucial
property of Lemma 4.1.2, i.e., that

Prob(S) ≤log
m Prob(S′) if S ⊆ 〈S′〉 . (4.1)

The procedure in the proof of Lemma 4.1.2 of transforming S-formulæ
into S′-formulæ preserves satis�ability. But it changes the number of
models and variables in a quite unpredictable way, and therefore it will

4.1. SCHAEFER'S FRAMEWORK 89

not preserve more complicated aspects such as the weight or questions that
regard inclusions between sets of models such as implication. However,
in cases where the crucial property (4.1) could not easily be proved and
a complete classi�cation for a problem Prob was obtained by hand, it
often could be read afterwards from the complete classi�cation that (4.1)
indeed holds. In these cases it has become common to say that the Galois
connection holds a posteriori, where in the case where (4.1) can be used
to obtain the classi�cation, the Galois connection is said to hold a priori.
Of course this has not to be taken as a mathematical de�nition: in both
cases (4.1) holds.

There exist re�ned Galois connections established by Schnoor [SS08]
avoiding the introduction of existential quanti�ers (or even equality con-
straints) considering partial clones and partial polymorphisms. Such a
connection is thus suited to preserve more complicated properties than
satis�ability. When such a re�ned connection is usually easily shown to
hold even a priori, the di�culties of the successful application lie here in
the fact that partial clones are much less understood than usual clones:
Post's Lattice draws a complete picture of the structure of usual clones,
where the lattice of partial clones is not completely known.

The Galois connection has successfully been applied to abduction
[NZ08] which compromises implication. Though only on variants where
the manifestation (i.e., the conclusion of an implication) has a �xed form,
i.e., the manifestation does not depend on the constraint language S. In
this case the transformation of Lemma 4.1.2 applies only to the premise
of the implication and works out well, delivering the Galois connection
even a priori. To the authors knowledge, classi�cations of the variant of
abduction where also the manifestation is an S-formula have not yet been
attacked. In this case the Galois connection seems not to hold a priori,
though it might hold a posteriori.

We will classify in Section 4.2 the argumentation problems Arg and
Arg-Check in Schaefer' Framework. For these problems the Galois con-
nection seems not to hold a priori since here we require the claim (i.e.,
the conclusion of an implication) to be an S-formula which lets fail the
transformation of Lemma 4.1.2. Though, as we will see, it will hold a
posteriori. In Section 4.3 we will consider the problem of enumerating
all models of an S-formula by non-decreasing weight. For the hardness
results we will establish in this context, we will have to show hardness of
problems involving the weight of models, and therefore here neither the
Galois connection seems not to hold a priori.

90CHAPTER 4. CLASSIFICATIONS IN SCHAEFER'S FRAMEWORK

In our complexity classi�cations we will obtain hardness results ei-
ther by hand (Arg and enumeration) or we will establish in the case of
Arg-Check a Galois connection of an intermediate problem (where the
claim's formula type is independent from the knowledge base's one) for
constraint languages that are not Schaefer (here equality constraints may
be expressed). We will state in the following section important imple-
mentation results. That is, we give conditions stating when certain key
relations can be expressed by a constraint language without the introduc-
tion of existential quanti�ers and equality constraints. These results will
be crucial in order to obtain reductions.

Before this, we brie�y state the classi�cations for the satis�ability
problem Sat, its variant of nontrivial satis�ability

Problem: Sat∗(S)

Instance: An S-formula ϕ.

Question: Does there exist a nontrivial model of ϕ, i.e., a model
m such that m 6= ~0 and m 6= ~1?

the implication problem

Problem: Imp(S)

Instance: Two S-formulæ ϕ,ψ.

Question: Does hold ϕ |= ψ?

and the positive abduction problem with a positive literal manifestation

Problem: P-Abd(S,PQ)

Instance: I = (ϕ,A, q), where ϕ an S-formula, A ⊆ Vars(ϕ) and
q a variable

Question: Does there exist an explanation E ⊆ A?

Our classi�cations will be built on these results.

Theorem 4.1.6. ([Sch78]) Let S be a constraint language. The satis�a-
bility problem for S-formulæ, Sat(S), is

1. in P if S is Schaefer, 0-valid or 1-valid,

2. NP-complete otherwise.

Theorem 4.1.7. ([CH97]) Let S be a constraint language. The nontrivial
satis�ability problem for S-formulæ, Sat∗(S), is

4.1. SCHAEFER'S FRAMEWORK 91

1. in P if S is Schaefer,

2. NP-complete otherwise.

Theorem 4.1.8. ([SS08]) Let S be a constraint language. The implica-
tion problem for S-formulæ, Imp(S), is

1. in P if S is Schaefer,

2. NP-complete otherwise.

Theorem 4.1.9. ([NZ08]) Let S be a constraint language. The posi-
tive abduction problem for S-formulæ with a positive literal manifestation,
P-Abd(S,PQ), is

1. Σp
2-complete if inv(I0) ⊆ 〈S〉 ⊆ inv(I2) or inv(N2) ⊆ 〈S〉 ⊆ inv(I2),

2. coNP-complete if inv(N) ⊆ 〈S〉 ⊆ inv(I1),

3. NP-complete if inv(E0) ⊆ 〈S〉 ⊆ inv(E2),

4. in P otherwise.

From the last theorem we will use in particular the Σp
2-complete case when

inv(N2) ⊆ 〈S〉 ⊆ inv(I2). Equivalently stated, this is when S is neither
Schaefer, nor 1-valid, nor 0-valid. The complexity of P-Abd(S,PQ) is
visualized in Figure 4.3 on page 117.

4.1.4 Implementation results

We concentrate here important implementation results that will be of
technical but crucial use in this chapter. In the proofs R (resp. R′)
will denote a relation of arity k (resp. k′) and V = {x1, . . . , xk} (resp.
V ′ = {y1, . . . , yk′}) a set of k (resp. k′) distinct variables. We denote by
C the {R}-constraint C = R(x1, . . . , xk) and by C ′ the {R′}-constraint
C ′ = R′(y1, . . . , yk′). The �rst four items of the following lemma can
certainly be found in the literature as folklore.

Lemma 4.1.10. Let S be a set of relations.

1. If S is 0-valid and not 1-valid (resp. 1-valid and not 0-valid), then
there exists an S-formula equivalent to F (x) (resp. T (x)).

92CHAPTER 4. CLASSIFICATIONS IN SCHAEFER'S FRAMEWORK

2. If S is complementive, but neither 1-valid, nor 0-valid, then there
exists an S-formula equivalent to (x 6= y).

3. If S is not complementive, but 1-valid and 0-valid, then there exists
an S-formula equivalent to (x→ y).

4. If S is neither complementive, nor 1-valid, nor 0-valid, then there
exists an S-formula equivalent to (x ∧ ¬y).

5. If S is 0-valid and affine but neither Horn nor 1-valid, then there
exists an S-formula equivalent to ¬w ∧ (x⊕ y ⊕ z = 0).

6. If S is 0-valid, 1-valid, affine but not Horn, then there exists an
S-formula equivalent to (w ⊕ x⊕ y ⊕ z = 0).

7. If S is 0-valid, dual-Horn but neither affine nor 1-valid, then there
exists an S-formula equivalent to ¬t ∧ (u→ v).

Proof. 1. Let R ∈ S be a relation that is 0-valid and not 1-valid (resp.
1-valid and not 0-valid). Obviously C[V/x] is equivalent to F (x)
(resp. T (x)).

2. Let R ∈ S be a relation which is complementive, but neither 1-valid
nor 0-valid. Choose any m ∈ R. Let V1 = {x | x ∈ V, m(x) = 1}
and V0 = {x | x ∈ V, m(x) = 0}. Observe that both sets are
nonempty. Consider the {R}-constraint M(x, y) = C[V1/x, V0/y].
Its set of models is {01, 10}, therefore it is equivalent to (x 6= y).

3. Let R ∈ S be a relation which is not complementive, but 1-valid
and 0-valid. Since R is not complementive there exists an m ∈ R
such that m /∈ R. Let V1 = {x | x ∈ V, m(x) = 1} and V0 = {x |
x ∈ V, m(x) = 0}. Observe that both sets are nonempty. Consider
the {R}-constraint M(x, y) = C[V0/x, V1/y]. Its set of models is
{00, 11, 01}, therefore it is equivalent to (x→ y).

4. We know that in S there is at least one relation that is not 1-valid
and at least one relation that is not 0-valid.

Suppose �rst that there is a relation R0 which is not 1-valid but
0-valid and a relation R1 which is not 0-valid but 1-valid. With these
constraints one can express respectively T(x) and F(y), according
to the �rst item. Their conjunction provides the desired formula.

4.1. SCHAEFER'S FRAMEWORK 93

Otherwise we know that there is a relation R ∈ S that is neither
0-valid nor 1-valid. Let m ∈ R, V1 = {x | x ∈ V, m(x) = 1} and
V0 = {x | x ∈ V, m(x) = 0}. Observe that both sets are nonempty.
Consider the {R}-constraint N(x, y) = C[V1/x, V0/y]. Its set of
models is nonempty and contained in {01, 10}. If its set of models
is {01} or {10}, we are done. Therefore, suppose in the following
that mod(N(x, y)) = {01, 10}, that is N(x, y) ≡ (x 6= y).

Further we know that there exists a relation R′ ∈ S which is not
complementive. Since R′ is not complementive there exists an m′ ∈
R′ such that m′ /∈ R′. Let V ′1 = {x | x ∈ V ′, m′(x) = 1} and
V ′0 = {x | x ∈ V ′, m′(x) = 0}. Consider the {R′}-constraint
M(x, y) = C ′[V ′1/x, V

′
0/y]. Its set of models contains 10 and is

included in {10, 00, 11}. Finally it is easy to see that the {R,R′}-
formula M(x, y) ∧N(x, y) is equivalent to (x ∧ ¬y).

5. Let R ∈ S be a relation which is 0-valid, affine and not Horn. Since
R is not Horn there exist m1 and m2 in R such that m1 ∧m2 /∈ R.
Since R is 0-valid and affine, we have m1⊕m2 ∈ R. For i, j ∈ {0, 1},
set Vi,j = {x | x ∈ V,m1(x) = i∧m2(x) = j}. Observe that V0,1 6= ∅
(respectively, V1,0 6= ∅), otherwise m1 ∧ m2 = m2 (respectively,
m1∧m2 = m1), contradicting the fact that m1∧m2 /∈ R. Moreover
V1,1 6= ∅, otherwise m1 ∧ m2 = ~0, a contradiction. Consider the
{R}-constraint

M(w, x, y, z) = C[V0,0/w, V0,1/x, V1,0/y, V1,1/z].

According to the above remark the three variables x, y and z e�ec-
tively occur in this constraint. Let us examine the set of models of
M assigning 0 to w: it contains 0011 (since m1 ∈ R), 0101 (since
m2 ∈ R), 0110 (since m1 ⊕m2 ∈ R) and 0000 (since R is 0-valid).
But it does not contain 0001 (since by assumption m1 ∧m2 /∈ R).
Thus it does not contain 0111 either. Indeed, otherwise it would
contain 0011 ⊕ 0101 ⊕ 0111 (since R is affine), which is equiva-
lent to 0001, a contradiction. From this one can prove that it con-
tains neither 0010 nor 0100 (since 0000 ⊕ 0011 ⊕ 0010 = 0001 and
0110⊕ 0101⊕ 0100 = 0111). Let us consider

φ(w, x, y, z) = F (w) ∧M(w, x, y, z).

The {R,F}-formula φ is equivalent to ¬w ∧ (x⊕ y ⊕ z = 0) and by
the �rst item expressible by an S-formula.

94CHAPTER 4. CLASSIFICATIONS IN SCHAEFER'S FRAMEWORK

6. Let R ∈ S a relation that is not Horn. Observe that R, which is
0-valid, 1-valid and affine, is necessarily complementive, i.e., for all
m ∈ R we have also ~1 ⊕m ∈ R. We can mimic the analysis made
in the previous item and consider

M(w, x, y, z) = C[V0,0/w, V0,1/x, V1,0/y, V1,1/z].

Thus, the formula φ(w, x, y, z) = M(w, x, y, z) veri�es φ(w, x, y, z) ≡
(w ⊕ x⊕ y ⊕ z = 0).

7. Note that by the �rst item F (·) is expressible by an S-formula.
Let R ∈ S a relation which is 0-valid, dual-Horn and not affine.
Since R is 0-valid and not affine there exist two distinct tuples m1

and m2 in R such that m1 ⊕ m2 /∈ R. Since R is dual-Horn, we
have m1 ∨m2 ∈ R. For i, j ∈ {0, 1}, let Vi,j = {x | x ∈ V,m1(x) =
i∧m2(x) = j}. Observe that V1,1 6= ∅, otherwisem1∨m2 = m1⊕m2,
a contradiction. Moreover, since m1 6= m2 either V0,1 or V1,0 is
nonempty. Suppose �rst that they are both nonempty. Consider
the {R}-constraint

M(w, x, y, z) = C[V0,0/w, V0,1/x, V1,0/y, V1,1/z].

The three variables x, y and z e�ectively appear in this constraint.
Let us examine the set of models of M assigning 0 to w: it contains
0011 (sincem1 ∈ R), 0101 (sincem2 ∈ R), 0111 (sincem1∨m2 ∈ R)
and 0000 (since R is 0-valid), but does not contain 0110 (since by
assumption m1 ⊕m2 /∈ R). The membership of 0100, 0010, 0001 is
open:

• If it does not contain 0100, then consider the formula φ(t, u, v) :=
F (t) ∧ M(t, u, v, v). Its set of models is {001, 011, 000} and
therefore, φ(t, u, v) ≡ ¬t ∧ (u→ v).

• If it contains 0100, then it does not contain 0010. Indeed
otherwise, since R is dual-Horn it would also contain 0110,
which provides a contradiction. Thus consider the formula
φ(t, u, v) := F (t)∧M(t, v, u, v). Its set of models is {001, 011, 000}
and therefore, φ(t, u, v) ≡ ¬t ∧ (u→ v).

If for instance V0,1 = ∅, then one has to consider

M(w, y, z) = C[V0,0/w, V1,0/y, V1,1/z].

4.1. SCHAEFER'S FRAMEWORK 95

In this case φ(t, u, v) := F (t)∧M(t, u, v) is equivalent to ¬t∧(u→ v).

We have now a lemma stating that in the non-Schaefer case the equality
constraint can be expressed using existentially quanti�ed variables. This
result will be an important tool when classifying the problemArg-Check.

Lemma 4.1.11. Let S be a constraint language. If S is not Schaefer, then
there exists an S-formula ϕ(x, y, ~z) such that ∃~zϕ(x, y, ~z) is equivalent to
(x = y).

Proof. We make a case distinction according to whether S is 0-valid
and / or 1-valid.

First let S be 0-valid and 1-valid. Since S is not Schaefer it contains
at least one nontrivial relation R, that is a 0-valid and 1-valid relation
R ∈ S such that there is an m /∈ R. Let V1 = {x | x ∈ V,m(x) = 1}
and V0 = {x | x ∈ V,m(x) = 0}. Observe that both sets are nonempty.
Consider the {R}-constraint M(x, y) = C[V0/x, V1/y]. Its set of models
contains {00, 11} and does not contain {01}. ThereforeM(x, y)∧M(y, x)
is equivalent to (x = y).

Second let S be 0-valid but not 1-valid (the case 1-valid but not 0-valid
can be treated analogously). Since S is not Schaefer there exists a rela-
tion R ∈ S that is not Horn. Thus there exist m1 and m2 in R such
that m1 ∧ m2 /∈ R. For i, j ∈ {0, 1}, set Vi,j = {x | x ∈ V, m1(x) =
i ∧ m2(x) = j}. Observe that the sets V0,1, V1,0, V1,1 are not empty
since otherwise m1 ∧ m2 = m2 ∈ R or m1 ∧ m2 = m1 ∈ R or m1 ∧
m2 = ~0 ∈ R, respectively. Consider the {R}-constraint M(u, v, x, y) =
C[V0,0/u, V0,1/v, V1,0/x, V1,1/y]. It contains {0011, 0101, 0000} (since R
contains m1 and m2 and is 0-valid) but it does not contain 0001 (since
m1 ∧m2 /∈ R). Consider the {R,F}-formula

M ′(x, y, f) = M(f, f, x, y) ∧M(f, f, y, x) ∧ F (f).

One veri�es that it is equivalent to F (f)∧(x = y) and hence ∃f M ′(x, y, f) ≡
(x = y). Note that by the �rst item of Lemma 4.1.10 F (·) is expressible
by an S-formula and therefore so is M ′.

At last let S be neither 0-valid nor 1-valid. It su�ces here to show
that we are able to express disequality, (x 6= y), since (x = y) ≡ ∃z(x 6=
z)∧(z 6= y). If S is complementive we conclude with Lemma 4.1.10, second
item. Therefore suppose now that S is not complementive. Let R ∈ S be a
relation that is not Horn. Thus there are m1,m2 ∈ R such that m1∧m2 /∈

96CHAPTER 4. CLASSIFICATIONS IN SCHAEFER'S FRAMEWORK

R. We de�ne Vi,j as in the previous case and conclude analogously that
M1(u, x, y, v) = C[V0,0/u, V0,1/x, V1,0/y, V1,1/v] contains {0011, 0101}
but not 0001. Further, letR′ ∈ S be a relation that is not dual-Horn. Thus
there are m3,m4 ∈ R′ such that m3∨m4 /∈ R′. For i, j ∈ {0, 1}, set V ′i,j =
{x | x ∈ V ′, m3(x) = i ∧ m4(x) = j}. Observe that the sets V ′0,1 and
V ′1,0 are nonempty. SetM2(u, x, y, v) = C ′[V ′0,0/u, V

′
0,1/x, V

′
1,0/y, V

′
1,1/v].

It contains {0011, 0101} (since m3,m4 ∈ R′) but it does not contain 0111
(since m3 ∨m4 /∈ R′). Finally consider the {R,R′, (t ∧ ¬f)}-formula

M(x, y, f, t) = M1(f, x, y, t) ∧M2(f, x, y, t) ∧ (t ∧ ¬f).

One veri�es that it is equivalent to (x 6= y) ∧ (t ∧ ¬f). Due to the fourth
item of Lemma 4.1.10 (t∧¬f) is expressible as an S-formula, and therefore
so is M(x, y, f, t). Finally observe that ∃t, f M(x, y, f, t) is equivalent to
(x 6= y).

4.2 The complexity of Argumentation

We will now consider the argumentation problems Arg and Arg-Check
with a parameter S indicating the constraint language the formulæ must
be built of. The resulting parameterized problems are as follows.

Problem: Arg(S)

Instance: I = (∆, α), where ∆ a set of S-formulæ and α an S-
formula.

Question: Does there exist Φ such that (Φ, α) is an argument in
∆?

Problem: Arg-Check(S)

Instance: I = (Φ, α), where Φ a set of S-formulæ and α an S-
formula.

Question: Is (Φ, α) an argument?

4.2.1 Complexity of the Existence Problem

Recall that the argument-existence problemArg in general is Σp
2-complete.

In Post's Framework we identi�ed, besides polynomial cases, coNP-complete
cases. The existence of NP-complete cases is not clear since we only could
prove NP-membership for some a�ne cases, without a lower bound. In

4.2. THE COMPLEXITY OF ARGUMENTATION 97

Schaefer's Framework we obtain a complete classi�cation which is clearly
tetrachotomous.

Proposition 4.2.1. Let S be a constraint language which is Schaefer, but
neither 1-valid, nor 0-valid. Then Arg(S) is NP-complete.

Proof. The NP-membership follows from the fact that since S is Schaefer
Sat(S) and Imp(S) are in P and thus a guessed argument can be veri�ed
in polynomial time. For the hardness proof we make a case distinction
according to whether S is complementive or not. Suppose �rst that ev-
ery relation in S is complementive. We prove the following sequence of
reductions:

3Sat ≤log
m Arg({x 6= y}) ≤log

m Arg(S).

The last reduction holds following Lemma 4.1.10, second item. For the
�rst reduction let ϕ =

∧k
i=1 Ci be an instance of 3Sat where Vars(ϕ) =

{x1, . . . , xn}. Let c1, . . . , ck, x
′
1, . . . , x

′
n, f be fresh variables. We map ϕ

to (∆, α) where

∆ =
⋃n
j=1{xj 6= f, x′j 6= f} ∪

{
∧n
j=1(xj 6= x′j)} ∪⋃
i,j{xj 6= ci | ¬xj ∈ Ci} ∪

{x′j 6= ci | xj ∈ Ci},

α =
∧k
i=1(ci 6= f) ∧

∧n
j=1(xj 6= x′j).

One can check that ϕ is satis�able if and only if there exists a Φ ⊆ ∆
such that (Φ, α) is an argument. Intuitively, x′j plays the role of ¬xj , for
every j at most one of the constraints xj 6= f and x′j 6= f can appear in
the support of an argument, thus allowing to identify true literals, while
for every i the constraints xj 6= ci and x

′
j 6= ci are used to certify that the

clause Ci is satis�ed.
Second, let us suppose that S is not complementive. We prove the

following:

Pos-2in3-Sat ≤log
m Arg({x ∧ ¬y}) ≤log

m Arg(S).

The last reduction follows by Lemma 4.1.10, fourth item. For the �rst
one we start from the NP-complete problem Pos-2in3-Sat in which the
instance is a set of positive 3-clauses and the question is to decide whether
there exists a truth assignment such that each clause contains exactly two

98CHAPTER 4. CLASSIFICATIONS IN SCHAEFER'S FRAMEWORK

true variables. Let ϕ =
∧k
i=1(xi ∨ yi ∨ zi) be an instance of the �rst

problem and let c1, . . . , ck, f be fresh variables. We map ϕ to (∆, α)
where

∆ =
⋃k
i=1{ci ∧ xi ∧ yi ∧ ¬zi ∧ ¬f} ∪⋃k
i=1{ci ∧ xi ∧ ¬yi ∧ zi ∧ ¬f} ∪⋃k
i=1{ci ∧ ¬xi ∧ yi ∧ zi ∧ ¬f},

α = (c1 ∧ ¬f) ∧ · · · ∧ (ck ∧ ¬f).

Observe that every formula in ∆ can be written as {x ∧ ¬y}-formula.
One can check that there is a truth assignment such that each clause Ci
contains exactly two variables set to true if and only if (∆, α) admits an
argument. Observe that for every i such an argument contains exactly
one of the three formulæ involving ci, thus providing a desired satisfying
assignment.

Proposition 4.2.2. Let S be a constraint language which is neither
Schaefer, nor 1-valid, nor 0-valid. Then Arg(S) is Σp

2-complete.

Proof. We give a reduction from P-Abd(S,PQ) which is Σp
2-complete ac-

cording to [NZ08]. We make a case distinction according to whether S is
complementive or not.

Suppose �rst that every relation in S is complementive. We show:

P-Abd(S,PQ) ≤log
m Arg(S ∪ {x 6= y}) ≤log

m Arg(S).

The last reduction follows by Lemma 4.1.10, second item. For the �rst
one we map (ϕ,A, q) an instance of P-Abd(S,PQ) to (∆, α), where we
introduce a fresh variable f and de�ne

∆ = {ϕ} ∪ {(h 6= f) | h ∈ A},
α = (q 6= f).

To see that P-Abd(S,PQ) has solutions if and only if Arg(S ∪ {x 6=
y}) has solutions observe that all formulæ occurring in the transformed
instance are complementive: it su�ces therefore to observe correctness
for (∆[f/0], α[f/0]).

In the case where S is not complementive we show

P-Abd(S,PQ) ≤log
m Arg(S ∪ {x ∧ ¬y}) ≤log

m Arg(S).

4.2. THE COMPLEXITY OF ARGUMENTATION 99

The last reduction follows by Lemma 4.1.10, fourth item. For the �rst
one we map (ϕ,A, q) an instance of the �rst problem to (∆, α), where we
introduce two fresh variables t, f and de�ne

∆ = {ϕ} ∪ {h ∧ ¬f | h ∈ A} ∪ {t ∧ ¬f},
α = (q ∧ ¬f) ∧ (t ∧ ¬f).

Observe that ∆ is made of S- and {x ∧ ¬y}-formulæ. It is easy to check
that (ϕ,A, q) is a positive instance of the abduction problem if and only
if there exists a support for α in ∆: If E is an explanation for (ϕ,A, q),
de�ne Φ := {ϕ} ∪ {h∧¬f | h ∈ E} ∪ {t∧¬f} to get a (not necessarily
minimal) support for α. Conversely, if Φ ⊆ ∆ is a support for α, de�ne
E := {h ∈ A | (h ∧ ¬f) ∈ Φ} to get an explanation for (ϕ,A, q).

We are now in a position to state the classi�cation. It is visualized in
Figure 4.2 on page 116.

Theorem 4.2.3. Let S be a constraint language. The argument-existence
problem Arg(S) is

1. Σp
2-complete if S is not Schaefer and not ε-valid,

2. coNP-complete if S is not Schaefer and ε-valid,

3. NP-complete if S is Schaefer and not ε-valid,

4. in P if S is Schaefer and ε-valid.

The same classi�cation holds for the argument-dispensability problem,
Arg-Disp.

Proof. 1. Follows from Proposition 4.2.2.

2. One easily observes that, due to the fact that S is 1-valid or 0-valid,
an instance (∆, α) of Arg(S) has a solution if and only if ∆ implies
α. This condition can be checked in coNP since Imp(S) is in coNP.

To prove coNP-hardness we give a reduction from the coNP-complete
problem Imp(S). We map (ϕ,ψ) an instance of the �rst problem to
({ϕ}, ψ).

3. Follows from Proposition 4.2.1.

100CHAPTER 4. CLASSIFICATIONS IN SCHAEFER'S FRAMEWORK

4. One easily observes that, due to the fact that S is 1-valid or 0-valid,
an instance (∆, α) of Arg(S) has a solution if and only if ∆ implies
α. This condition can be checked in polynomial time since S is
Schaefer and thus Imp(S) is in P.

Note that Arg-Disp obeys the same classi�cation as Arg since the
translations we gave in Post's Framework on page 69 still apply (the trans-
lations do not change the type of the formulæ from ∆ or α).

4.2.2 Complexity of the Veri�cation Problem

As mentioned previously, in order to completely classify the veri�ca-
tion problem Arg-Check(S), we will now introduce a technical variant,
Arg-Check(S1, S2), in which we can di�erentiate the restrictions put on
the knowledge base from the ones put on the claim. Thus an instance
(∆, α) of Arg-Check(S1, S2) is made of ∆ a set of S1-formulæ and α an
S2-formula. This way we may apply a Galois connection (the transforma-
tion of Lemma 4.1.2) to the knowledge base ∆ without applying it to the
claim, where existential quanti�ers cause problems. Note that in the case
of the veri�cation of an argument, where we are given (Φ, α) with Φ ⊆ ∆,
identifying variables that are connected by equality constraints does not
necessarily preserve minimality of the support. It is therefore not clear
how to get rid of equality constraints in the knowledge base.

As a consequence the Galois connection can be of use, but only if
applied to the knowledge base (and not the claim), and in the non-
Schaefer case in which equality constraints can be expressed according
to Lemma 4.1.11. We state this formally in the following Lemma.

Lemma 4.2.4. Let S′, S be two constraint languages. If S is not Schaefer
and S′ ⊆ 〈S〉 then

Arg-Check(S′, S) ≤log
m Arg-Check(S).

Proof. Let (∆, α) be an instance of the �rst problem, where ∆ = {δi |
i ∈ I}. The claim α remains unchanged. In ∆ replace each δi by its
equivalent S ∪ {=}-formula with existential quanti�ers. Since S is not
Schaefer the equality relation is expressible as an S-formula with existen-
tial quanti�ers according to Lemma 4.1.11. So in a second step replace the
equality constraints by their S-representations. Finally drop all existential
quanti�ers.

4.2. THE COMPLEXITY OF ARGUMENTATION 101

We will apply this tool together with the following expressibility results
we get from the Galois correspondence.

Lemma 4.2.5. Let S be a constraint language which is neither Schaefer
nor complementive (that is, S 6⊆ inv(L2), S 6⊆ inv(E2), S 6⊆ inv(V2),
S 6⊆ inv(D2), and S 6⊆ inv(N2), or, equivalently, inv(I) ⊆ 〈S〉).

• If S is both 0-valid and 1-valid (i.e., S ⊆ inv(I)), then 〈S〉 contains
all relations that are both 0-valid and 1-valid (since 〈S〉 = inv(I)),

• else, if S is 0-valid (i.e., S ⊆ inv(I0)), then 〈S〉 contains all relations
that are 0-valid (since 〈S〉 = inv(I0)),

• else, if S is 1-valid (i.e., S ⊆ inv(I1)), then 〈S〉 contains all relations
that are 1-valid (since 〈S〉 = inv(I1)),

• else 〈S〉 contains all relations (since 〈S〉 = inv(I2)).

Our main theorem for Arg-Check(S) is as follows. The classi�cation is
visualized in Figure 4.1 on page 115.

Theorem 4.2.6. Let S be a constraint language. The argument-validity
problem Arg-Check(S) is

1. in P if S is Schaefer,

2. DP-complete if S is not Schaefer.

Recall that the argument veri�cation problem is in DP since there are
are languages A,B with A ∈ NP and B ∈ coNP such that Arg-Check =
A ∩B.

A = {(∆,Φ, α) | Φ is satis�able,∀ϕ ∈ Φ : Φ \ {ϕ} 6|= α};
B = {(∆,Φ, α) | Φ |= α}.

We split the proof of Theorem 4.2.6 into three propositions.

Proposition 4.2.7. Let S be a constraint language that is Schaefer. Then
Arg-Check(S) is in P.

Proof. Use that Sat(S) and Imp(S) are in P.

Proposition 4.2.8. Let S be a constraint language which is neither
Schaefer nor complementive. Then Arg-Check(S) is DP-complete.

102CHAPTER 4. CLASSIFICATIONS IN SCHAEFER'S FRAMEWORK

Proof. For the hardness we give a reduction from Critical-3Sat, a DP-
complete problem according to [PW88]. We we make a case distinction
according to whether S is 0-valid and/or 1-valid. Throughout the proof
we denote by ϕ =

∧
j∈J Cj an instance of Critical-3Sat.

Suppose �rst that S is both 0-valid and 1-valid. We prove for some
well-chosen constraint language S′ ⊆ 〈S〉 the following sequence of reduc-
tions:

Critical-3Sat ≤log
m Arg-Check(S′, {x→ y})
≤log

m Arg-Check(S′, S)

≤log
m Arg-Check(S).

For the �rst reduction we associate with ϕ the instance (Φ, α) where
Φ = {Cj ∨ (f → t) | j ∈ J} and α = (f → t) with f, t fresh variables.
It is easy to see that ϕ is a critical instance if and only if (Φ, α) is an
argument. The second reduction follows by Lemma 4.1.10, third item.
The third one follows from Lemma 4.2.4, observing that the formulæ in
Φ are constraints built upon a �nite set S′ of relations which are 1-valid
and 0-valid and thus S′ ⊆ 〈S〉 according to Lemma 4.2.5.

Suppose now that S is 1-valid and not 0-valid. The other case (0-valid
and not 1-valid) can be treated analogously. We show for some well-chosen
constraint language S′ ⊆ 〈S〉 that

Critical-3Sat ≤log
m Arg-Check(S′, {T})
≤log

m Arg-Check(S′, S)

≤log
m Arg-Check(S).

For the �rst reduction we associate with ϕ the instance (Φ, α) where
Φ = {Cj ∨ u | j ∈ J} and α = u, where u is a fresh variable. It is easy to
see that ϕ is a critical instance if and only if (Φ, α) is an argument. The
second reduction follows by Lemma 4.1.10, �rst item. The third reduction
follows from Lemma 4.2.4, observing that the formulæ in Φ are constraints
built upon a �nite set S′ of relations which are 1-valid and thus S′ ⊆ 〈S〉
according to Lemma 4.2.5.

Finally suppose that S is neither 1-valid nor 0-valid. We show for

4.2. THE COMPLEXITY OF ARGUMENTATION 103

some well-chosen constraint language S′ ⊆ 〈S〉 that

Critical-3Sat ≤log
m Arg-Check(S′, {x ∧ ¬y})
≤log

m Arg-Check(S′, S)

≤log
m Arg-Check(S).

For the �rst reduction we associate with ϕ the instance (Φ, α) where
Φ = {(Cj ∨ u) ∧ ¬v | j ∈ J} and α = u ∧ ¬v for u, v fresh variables.
It is easy to see that ϕ is a critical instance if and only if (Φ, α) is an
argument. The second reduction follows by Lemma 4.1.10, fourth item.
The third one follows from Lemma 4.2.4, observing that the formulæ in
Φ are constraints built upon a �nite set of relations S′ and thus S′ ⊆ 〈S〉
according to Lemma 4.2.5.

To �nish the proof of Theorem 4.2.6 it remains to deal with constraint
languages that are not Schaefer but complementive.

Proposition 4.2.9. Let S be a constraint language which is not Schaefer
but is complementive. Then Arg-Check(S) is DP-complete.

Proof. We prove that Arg-Check(S ∪ {T}) ≤p
m Arg-Check(S). This

will prove hardness for Arg-Check(S) since S ∪ {T} is neither Schaefer
nor complementive (because of T) and therefore Arg-Check(S ∪{T}) is
a DP-complete problem according to Proposition 4.2.8

So, let (Φ, α) be an instance of Arg-Check(S ∪ {T}). In all for-
mulæ replace variables occurring in a T -constraint by t and delete all T -
constraints. Thus we obtain (Φ′, α′) an instance of Arg-Check(S). The
key to observe that this reduction is correct is that S is complementive: it
su�ces thus to observe correctness for the case t = 1 which is obvious.

4.2.3 Overview of results for Argumentation

Our results show that the frontier between hard and easy problems for
Arg-Check is the same as for the implication problem Imp. As a conse-
quence, the classical tractable fragments of the satis�ability problem, i.e.,
Horn-, dual-Horn-, affine- and 2CNF-formulæ, render also tractable the
argument-validity problemArg-Check. Though, the argument-existence
problem Arg remains intractable in these cases (NP-complete). We have
to add the property of ε-validity to get to the tractable fragments of Arg.

104CHAPTER 4. CLASSIFICATIONS IN SCHAEFER'S FRAMEWORK

The classi�cation for Arg illustrates very clearly which conditions
cause the complexity to drop. The coNP-complete cases occur when there
is a natural candidate to form a support, the remaining complexity comes
from the implication problem. The NP-complete cases occur when sat-
is�ability and implication is easy, but we have still to guess a candidate
support. Finally, the P-membership occurs when both conditions are true.

As in Post's Framework there are fragments (for instance in the case of
0-valid-non-Schaefer relations) for which verifying an argument is poten-
tially harder than deciding the existence of an argument (Arg-Check is
DP-complete, Arg is only coNP-complete). This is due to the minimality
condition which is relevant for the veri�cation but not for the existence
of an argument.

Note �nally that stating the obtained classi�cations for Arg and
Arg-Check in terms of co-clone inclusions, we observe that the Galois
connection holds with respect to polynomial many-one reductions, i.e.,
the complexity does not change within co-clones.

4.3. ENUMERATION OF MODELS 105

4.3 Enumeration of Models

4.3.1 Complexity of Enumeration

Enumeration requires generating all solutions of a problem instance with-
out duplicates. We will study in this section the complexity of enumerating
the models of an S-formula.

Problem: EnumSat(S)

Instance: An S-formula ϕ

Question: enumerate all models of ϕ

In order to do so, we �rst have to introduce appropriate notions for
measuring the complexity of enumeration. The classical notion of e�-
ciency, namely polynomial time, seems not appropriate for enumeration:
as in the case of EnumSat(S), the number of solutions to be enumerated
is usually exponential in the size of the input instance.

Therefore new notions of e�ciency have been developed for enumera-
tion. The �rst general complexity notions for enumeration problems are
stated by Johnson et al. in [JPY88]. The authors present three basic no-
tions of e�ciency. The �rst one is called output polynomial - the total run-
ning time is polynomial in the input and the output. A slightly stronger
notion is incremental polynomial - for each new solution the time is poly-
nomial in the input and the output so far. The third and even stronger
notion is polynomial delay - the time between two successive solutions is
polynomial in the input. In addition one can demand the space to be
polynomial. A restriction of di�erent nature is that we can prescribe the
order in which we want the solutions to be output. This is a fundamental
new aspect of enumeration. It turns out that the order a�ects heavily
the complexity. Johnson et al. demonstrate this fact with the problem
of enumerating all maximal independent sets of a graph: They show that
all maximal independent sets can be enumerated in lexicographical order
with polynomial delay, but that there is no polynomial delay algorithm
for the reverse lexicographical order, unless P = NP.

The complexity of EnumSat(S) has already been classi�ed in the
case where no speci�c order is imposed. Creignou and Hébrard [CH97]
obtained a dichotomous classi�cation theorem: there is a polynomial de-
lay algorithm if and only if the constraint language S is Schaefer, unless
P = NP. The algorithms underlying this result are based on the so-called
self-reducibility property of the satis�ability problem. In the case of the

106CHAPTER 4. CLASSIFICATIONS IN SCHAEFER'S FRAMEWORK

satis�ability problem this means that one may construct the models re-
cursively determining the value of a variable xi by a call to the decision
problem Sat that is reduced by the value of xi. As a consequence the
algorithms developed by Creignou and Hébrard are able to enumerate in
lexicographic order (or the reverse) and require polynomial space.

We will consider here a variant, EnumSatw(S), where we want to enu-
merate the models of an S-formula by non-decreasing weight, the weight
of a model being the number of variables assigned to 1.

Problem: EnumSatw(S)

Instance: An S-formula ϕ

Question: enumerate all models of ϕ by non-decreasing weight
δ(m), where δ(m) = |{x ∈ Vars(ϕ) | m(x) = 1}|

The order of non-decreasing weight requires di�erent algorithmic tech-
niques than the ones used by Creignou and Hébrard. Further, we will see
that this order increases the complexity: several previously tractable cases
become intractable. In fact, we will establish two di�erent polynomial de-
lay algorithms for constraint languages that are Horn or width-2-affine.
We will show that for all other constraint languages there is no polyno-
mial delay algorithm, unless P = NP. In the following we �rst treat the
tractable cases and then treat the hard cases.

4.3.2 Polynomial Delay Algorithms

We will develop in this section two polynomial delay algorithms. The �rst
one for the width-2-affine case is based on a reduction to the SubSetSum
problem for which we develop a polynomial delay algorithm based on
dynamic programming and self-reducibility.

Proposition 4.3.1. If S is width-2-affine, then there is a polynomial-
space polynomial-delay algorithm that generates all models of an S-formula
by non-decreasing weight.

Proof. Let S be width-2-affine and let ϕ be an S-formula. Without loss of
generality we can suppose that ϕ does not contain unitary clauses. Then
each clause of ϕ expresses either the equality or the inequality between
two variables. Using the transitivity of the equality relation and the fact
that in the Boolean case a 6= b 6= c implies a = c, we can identify equiva-
lence classes of variables such that each two classes are either independent

4.3. ENUMERATION OF MODELS 107

or they must have contrary truth values. We call a pair (A,B) of classes
with contrary truth values cluster, B may be empty. It follows easily that
any two clusters are independent and thus to obtain a model of ϕ, we
choose for each cluster (A,B) either A = 1, B = 0 or A = 0, B = 1. We
suppose in the following that ϕ is satis�able (otherwise, we will detect a
contradiction while constructing the clusters). Let n ≥ 1 be the number
of clusters, then the number of models will be 2n. The weight contribu-
tion of each cluster to a model is either |A| or |B|, where |A| = |B| may
occur. We represent a model by an n-tuple s ∈ {0, 1}n, indicating for each
cluster which of the two assignments is taken. In the case |A| 6= |B| we
indicate by 0 the light assignment and by 1 the heavy assignment. Surely
(0, 0, . . . , 0) will represent a model of minimal weight, and (1, 1, . . . , 1)
will represent a model of maximal weight. For enumeration we may con-
sider only the weight di�erence

∣∣|A| − |B|∣∣ of each cluster, since we can
subtract the weight of a minimal model. Setting (w1, . . . , wn) to these
weight di�erences of the clusters, we reduce our problem to the following
enumeration problem:

Problem: SubSetSum

Instance: A sequence of non-negative integers (w1, . . . , wn) ∈ Nn
Question: generate all n-tuples s ∈ {0, 1}n by non-decreasing

weight δ(s), where δ(s) = Σni=1si · wi

To solve this enumeration problem we make use of the fact that in
our case the sum of the weights W := Σni=1wi is linearly bounded by
the number of variables of the original formula ϕ. This allows a strategy
of dynamic programming to compute in polynomial time a matrix A ∈
{0, 1}(n+1, W+1) such that A(i, k) = 1 if and only if with the weights
w1, . . . , wi one can construct the sum k, where 0 ≤ i ≤ n, 0 ≤ k ≤ W .
The matrix A is constructed by �rst setting A(0, 0) = 1 and A(0, k) = 0
for all k ≥ 1, and then �lling the other �elds row by row according to the
rule A(i, k) = 1 if and only if A(i−1, k) = 1 or A(i−1, k−wi) = 1. Thus
the computation of A takes time O(n ·W). After this precomputation, for
each k for which there is at least one solution of weight k we enumerate
all such solutions by constructing the solution strings from ε (the empty
string) recursively (we use here in fact the self-reducibility of the decision
problem is there a solution of weight k?).

The reader may convince himself or herself that Algorithm 2 enumer-
ates all solutions s of the SubSetSum problem by non-decreasing weight

108CHAPTER 4. CLASSIFICATIONS IN SCHAEFER'S FRAMEWORK

Algorithm 2 Algorithm for SubSetSum.

main(w1, . . . , wn)

1: compute A ∈ {0, 1}(n+1, W+1)

2: for k = 0 to W do
3: if A(n, k) = 1 then
4: ConstructSolutions(n, k, ε) /* enumerate all solutions of

weight k */
5: end if
6: end for

ConstructSolutions(i, j, s)

1: if i = 0 then
2: output s
3: else
4: if A(i− 1, j − wi) = 1 then
5: ConstructSolutions(i− 1, j − wi, 1 ◦ s) /* ◦ stands for the

concatenation operator */
6: end if
7: if A(i− 1, j) = 1 then
8: ConstructSolutions(i− 1, j, 0 ◦ s)
9: end if
10: end if

δ(s), implementing the above described method. Since both n and W
are linearly bounded by the number of variables of ϕ, Algorithm 2 has a
quadratic precomputation time and a linear delay thereafter. The transla-
tions between our original problem and SubSetSum can be performed in
polynomial time. We �nally observe that the quadratic space requirement
can be improved to linear space, since for each column k of the matrix A,
we have only to store at which row i we pass from 0 to 1.

Our second algorithm for Horn-formulæ is of di�erent nature. It is
based on a technique �rst introduced by Johnson et al. in [JPY88] that
uses a priority queue to control the output of the solutions.

Proposition 4.3.2. If S is Horn, then there is a polynomial delay algo-
rithm that generates all models of an S-formula by non-decreasing weight.

Proof. Let S be Horn and let ϕ be an S-formula. Then ϕ is equivalent
to a conjunction of Horn clauses. We will use a priority queue Q to

4.3. ENUMERATION OF MODELS 109

respect the order of non-decreasing weight and to avoid duplicates. The
command Q.enqueue(s, k) enqueues an element s with an integer key-
value k (a weight). The queue sorts by non-decreasing key-value and
inserts an element s only if it is not yet present in the queue.

For notational convenience we represent a model by the set of vari-
ables it sets to 1. We use the well-known fact that for Horn formulæ the
intersection of all models is the unique minimal model which is polyno-
mial time computable. For a satis�able Horn formula ϕ we indicate the
minimal model by mm(ϕ). Note that for a set of variables V ⊆ Vars(ϕ)
the formula ϕ ∧ V := ϕ ∧

∧
v∈V v is still representable as a Horn formula

and thus, if ϕ ∧ V is satis�able, also mm(ϕ ∧ V) can be computed in
polynomial time.

Algorithm 3 Algorithm for Horn− Sat.

Require: ϕ a Horn formula
1: if ϕ unsatis�able then
2: return 'no'
3: end if
4: Q = newPriorityQueue
5: m := mm(ϕ)
6: Q.enqueue(m, |m|)
7: while Q not empty do
8: m := Q.dequeue
9: output m
10: for all x ∈ Vars(ϕ) \ m do
11: if ϕ ∧m ∧ x satis�able then
12: m′ := mm(ϕ ∧m ∧ x)
13: Q.enqueue(m′, |m′|)
14: end if
15: end for
16: end while

We claim that Algorithm 3 enumerates the models of a given Horn for-
mula with polynomial delay, by non-decreasing weight. The polynomial
delay is easily seen. By de�nition of the priority queue and by the fact that
the models m′ generated out of m in line 11 are always of bigger weight
than m itself, it is also easily seen that the models are output in the right
order and that no model is output twice. To prove that no model is omit-
ted, it su�ces to show that for every model m′ 6= mm(ϕ) there exists a

110CHAPTER 4. CLASSIFICATIONS IN SCHAEFER'S FRAMEWORK

submodelm (m′ such that in line 11 the algorithm generatesm′ out ofm.
That is, there must be an x ∈ m′\m such that m′ = mm(ϕ∧m∧x). Con-
sider for this the set H := {m | m a model of ϕ and m (m′}. The set H
is not empty since it contains at least the minimal modelmm(ϕ). A maxi-
mal elementm ofH ful�lls our needs, since it satis�esm′ = mm(ϕ∧m∧x)
for any x ∈ m′ \m.

Let us �nally stress that in contrast to Algorithm 2, Algorithm 3
potentially runs in exponential space.

4.3.3 Hardness Results

In this section we investigate the case where our constraint language S is
neither Horn nor width-2-affine. Clearly, in order to enumerate the models
of an S-formula by non-decreasing weight, it is a necessary condition to
be able to �nd the lightest model e�ciently. As we will prove, this is
not a su�cient condition, we need also to be able to �nd the second one
e�ciently. So let us introduce the following problems.

Problem: Min-Ones(S)

Instance: an S-formula ϕ, an integer W

Question: Is there a model of ϕ of weight ≤W?

Problem: Min-Ones∗(S)

Instance: an S-formula ϕ, an integer W

Question: Is there a model of ϕ, di�erent from all-0, of weight
≤W?

From the classi�cation obtained in [KSW97] for the corresponding
optimization problem, one can deduce the following.

Proposition 4.3.3. (Minimum ones satis�ability [KSW97]) If S is 0-valid
or Horn or width-2-affine, then the problem Min-Ones(S) is in P, oth-
erwise Min-Ones(S) is NP-complete.

Our main contribution in this section is the following hardness result,
which obviously proves that when S is neither Horn nor width-2-affine,
there is no polynomial delay algorithm that enumerates all models of an
S-formula in order of non-decreasing weight, unless P = NP.

Proposition 4.3.4. Let S be a set of relations which is neither Horn nor
width-2-affine. Then Min-Ones∗(S) is NP-complete.

4.3. ENUMERATION OF MODELS 111

Proof. If S is not Schaefer, then Sat∗(S) is NP-complete [Sch78] and
hence so is the problem Min-Ones∗(S). If S is not 0-valid, then, since
it is neither Horn nor width-2-affine, the result follows from the NP-
completeness of Min-Ones(S) (Proposition 4.3.3). Therefore, it remains
to study sets S that are Schaefer and 0-valid but that are neither Horn
nor width-2-affine. There are three cases to analyze.

• S is bijunctive and 0-valid but neither Horn nor width-2-affine.

• S is affine and 0-valid but neither Horn nor width-2-affine.

• S is dual-Horn and 0-valid but neither Horn nor width-2-affine.

Observe that a 2CNF formula which is 0-valid is also Horn. So the �rst
case does not occur. Besides, one can easily prove that a 0-valid affine
relation which is not Horn cannot be width-2-affine (this can also be read
from Post's lattice using the Galois correspondence between clones and
co-clones). Therefore the proof of the proposition will be completed when
we successively prove the NP-completeness of Min-Ones∗(S) for any set
S such that:

1. S is affine and 0-valid but not Horn, or

2. S is dual-Horn and 0-valid but neither affine nor Horn.

The NP-completness of Min-Ones∗(S) for any set S ful�lling the de-
scription 1 or 2 above is settled, respectively, by the forthcoming Propo-
sition 4.3.6 and Proposition 4.3.7. For the reader's convenience, a scheme
of the proof is displayed in Figure 4.4 on page 118.

Case 1: a�ne, 0-valid, not horn

We treat in this section constraint languages that are 0-valid and affine
but not Horn. We will prove that for such a constraint language S, �nding
a non-all-0 model of minimal weight of an S-formula is NP-hard. In order
to do so, we �rst prove the following basic hardness result and then derive
the desired result using the implementation results of Lemma 4.1.10.

Lemma 4.3.5. Min-Ones∗(x⊕y⊕z = 0) andMin-Ones∗(w⊕x⊕y⊕z =
0) are NP-complete.

112CHAPTER 4. CLASSIFICATIONS IN SCHAEFER'S FRAMEWORK

Proof. Consider a homogeneous linear system over the �nite �eld GF(2).
Finding the non-all-0 solution with minimum weight of such a system is
known to be NP-hard (see [Bar97, Theorem 4.1]). In order to prove the
lemma we have to show that this problem remains hard when restricted
to systems that have three (resp. four) variables by equation. Let S be a
homogeneous linear system over GF(2). Suppose that S has n variables,
x1, . . . , xn. In order to reduce the number of variables in each equation we
introduce auxiliary variables. If there is an equation xi1⊕xi2⊕· · ·⊕xik = 0
for some k ≥ 4, we introduce a new variable yi1,i2 and replace the original
equation by the two equations yi1,i2 ⊕xi1 ⊕xi2 = 0 and yi1,i2 ⊕xi3 ⊕ . . .⊕
xik = 0. We repeat this process until all equations have three variables.
The satis�ability is preserved during this transformation. The number of
auxiliary variables is bounded from above by the number of occurrences of
variables in the original system. In order to keep the information on the
weight of the solutions we need to introduce enough copies of the original
variables, which make the auxiliary variables neglectable. Let N be the
number of occurrences of variables in S. Let f be a fresh variable that
will play the role of the constant 0. For each i = 1, . . . , n, we introduce N
copy-variables x1

i , . . . , x
N
i of xi and add the equations xi ⊕ xji ⊕ f = 0 for

j = 1, . . . N . Finally we add the equation f ⊕ f ⊕ f = 0, i.e., f = 0 (this
will ensure that xi = xji for all j). There is a one-to-one correspondence
between the non-trivial solutions of S and the non-trivial solutions of the
so-obtained system S′. Moreover S has a non-trivial solution of weight
at most W if and only if S′ has a non-trivial solution of weight at most
W (N+1)+N . Since the system S′ can be seen as an (x⊕y⊕z = 0)-formula
we have thus proved the NP-hardness of Min-Ones∗(x⊕ y ⊕ z = 0).

Let us now reduce Min-Ones∗(x ⊕ y ⊕ z = 0) to Min-Ones∗(w ⊕
x ⊕ y ⊕ z = 0). Let S be a homogeneous linear system over n variables
such that each equation has exactly three variables. Let w and wi for i =
1, . . . , n+ 1 be fresh variables. Transform S into S′ as follows: transform
every equation x ⊕ y ⊕ z = 0 into w ⊕ x ⊕ y ⊕ z = 0 and add the n + 1
equations w ⊕ w ⊕ w ⊕ wi = 0 for i = 1, . . . , n + 1. Solutions of S′

assigning 0 to w coincide with the solutions of S. Moreover any solution
of S′ assigning 1 to w has weight at least n + 1. Therefore, S has a
non-trivial solution of weight at most W (W ≤ n) if and only if S′ has a
non-trivial solution of weight at most W . This completes the proof.

Proposition 4.3.6. If S is 0-valid and affine but not Horn, then the
problem Min-Ones∗(S) is NP-complete.

4.3. ENUMERATION OF MODELS 113

Proof. If S is not 1-valid, then the �fth item of Lemma 4.1.10 allows a
reduction fromMin-Ones∗(x⊕y⊕z = 0) toMin-Ones∗(S) (replace each
constraint (x⊕y⊕z = 0) by the S-formula equivalent to ¬w∧(x⊕y⊕z =
0), where w is a fresh variable). If S is 1-valid, then the sixth item of
Lemma 4.1.10 allows a reduction from Min-Ones∗(w⊕ x⊕ y⊕ z = 0) to
Min-Ones∗(S). In both cases one can conclude with Lemma 4.3.5.

Case 2 : dual-Horn, 0-valid, not a�ne, not Horn

In this section we deal with constraint languages that are 0-valid and
dual-Horn but neither affine nor Horn. The method of proof is not
the same as in the previous section. We base here on the hardness of
Min-Ones(S ∪ {T}). The clue is to get rid of the T -constraints and to
pass to Min-Ones∗(S).

Proposition 4.3.7. If S is 0-valid and dual-Horn but neither affine nor
Horn, then the problem Min-Ones∗(S) is NP-complete.

Proof. According to Proposition 4.3.3, the problem Min-Ones(S ∪ {T})
is NP-complete. We reduce Min-Ones(S ∪ {T}) to Min-Ones∗(S). Let
ϕ be an (S ∪ {T})-formula, ϕ = ψ ∧

∧
x∈V T (x) where ψ is an S-formula.

Let t be a fresh variable and consider

ϕ′ = ψ[V/t] ∧
∧

x∈Vars(ϕ)\V

x→ t.

Observe that the only solution that assigns 0 to t in ϕ′ is the all-0 one.
Therefore it is clear that ϕ has a solution of weight at most W (W ≥

|V |) if and only if ϕ′ has a non-trivial solution of weight at mostW−|V |+1.
It remains to show that ϕ′ is expressible as an S-formula which comes

down to showing that the implication is expressible. If S is 1-valid the
implication is expressible by the third item of Lemma 4.1.10. If S is not
1-valid it follows by the seventh item of Lemma 4.1.10 that we may express
the implication introducing an additional variable that will always take
the value 0, which does not further disturb.

We can �nally state the classi�cation theorem for EnumSatw(S).

Theorem 4.3.8. There is a polynomial delay algorithm to enumerate the
models of an S-formula by non-decreasing weight if and only if S is Horn
or width-2-affine, unless P = NP.

114CHAPTER 4. CLASSIFICATIONS IN SCHAEFER'S FRAMEWORK

Note that by duality we can thus enumerate the models of an S-formulae
by non-increasing weight if and only if S is dual-Horn or width-2-affine.

4.3. ENUMERATION OF MODELS 115

BF

R1 R0

R2

M

M1 M0

M2

S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

D

D1

D2

E

E1 E0

E2

V

V0V1

V2

L

L0L1 L3

L2

N

N2

I

I0I1

I2

DP-complete

∈ P

Figure 4.1: The complexity of Arg-Check(S).

116CHAPTER 4. CLASSIFICATIONS IN SCHAEFER'S FRAMEWORK

BF

R1 R0

R2

M

M1 M0

M2

S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

D

D1

D2

E

E1 E0

E2

V

V0V1

V2

L

L0L1 L3

L2

N

N2

I

I0I1

I2

Σp
2-complete

coNP-complete

NP-complete

P

Figure 4.2: The complexity of Arg(S).

4.3. ENUMERATION OF MODELS 117

BF

R1 R0

R2

M

M1 M0

M2

S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

D

D1

D2

E

E1 E0

E2

V

V0V1

V2

L

L0L1 L3

L2

N

N2

I

I0I1

I2

Σp
2-complete

coNP-complete

NP-complete

P

Figure 4.3: The complexity of P-Abd(S,PQ).

118CHAPTER 4. CLASSIFICATIONS IN SCHAEFER'S FRAMEWORK

!!!!!

aaaaa

aaaaa

!!!!!

!!!!!

aaaaa

aaaaa

aaaaa

!!!!!

!!!!!

aaaaa

!!!!!

Min-Ones
∗ is NP-hard

(Prop. 4.3.7)

∅
(cannot occur)

Min-Ones
∗ is NP-hard

(Prop. 4.3.6)

Min-Ones is NP-hard

[KSW97]

EnumSatw ∈ DelayP

(Prop. 4.3.2)

EnumSatw ∈ DelayP

(Prop. 4.3.1)

Sat
∗ is NP-hard

[CH97]

Is S Schaefer?

Is S Horn?

Is S 0-valid?

Is S width-2-affine?

Is S dual-Horn?

Is S affine?

no

no

no

no

no

no yes

yes

yes

yes

yes

yes

Figure 4.4: Scheme of the proof of Proposition 4.3.4

4.3. ENUMERATION OF MODELS 119

BF

R1 R0

R2

M

M1 M0

M2

S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

D

D1

D2

E

E1 E0

E2

V

V0V1

V2

L

L0L1 L3

L2

N

N2

I

I0I1

I2

NP-hard

polynomial (delay)

Figure 4.5: The complexity of EnumSatw(S) and Min-Ones∗(S).

120CHAPTER 4. CLASSIFICATIONS IN SCHAEFER'S FRAMEWORK

BF

R1 R0

R2

M

M1 M0

M2

S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

D

D1

D2

E

E1 E0

E2

V

V0V1

V2

L

L0L1 L3

L2

N

N2

I

I0I1

I2

NP-hard

polynomial (delay)

Figure 4.6: The complexity of EnumSat(S) and Sat∗(S).

Chapter 5

Concluding remarks

We studied in this thesis systematically the complexity of propositional
abduction and logic-based argumentation in Post's framework. In the
case of abduction we only considered the existence and validity problem.
We did not consider relevance and dispensability questions as we did for
argumentation. In order to draw a more complete picture of the com-
plexity of abduction it would thus be desirable to investigate also these
problems. In addition, as motivated in [EG95], also for abduction subset-
minimal solutions may be of interest. Demanding an explanation to be
subset-minimal may increase the complexity for validity as well as for rel-
evance and dispensability. The author estimates that classi�cations for
all these problems can be obtained with relatively little e�ort, making use
of similar tools and techniques as we used in this thesis.

We have to mention that some of the classi�cations we obtained are not
complete. For positive abduction for the a�ne fragment [B] ∈ {L3, L0, L}
when also the manifestation is a B-formula we only get NP-membership
without being able to establish NP-completeness, neither to show P-
membership. The cases of abduction where we could establish P-member-
ship for a�ne formulæ rely on Gaussian elimination. This method fails for
the mentioned case and there is no obvious alternative. Also in the case
of Arg-Rel the precise complexity of the whole a�ne fragment remains
open for similar reasons. It is worth noticing that a similar case, the cir-
cumscriptive inference of an a�ne formula from a set of a�ne formulæ,
remained unclassi�ed in [Tho09].

In Schaefer's Framework we studied the existence, validity and dis-

121

122 CHAPTER 5. CONCLUDING REMARKS

pensability problem for argumentation. A complete classi�cation for the
relevance problem appears to be much more involving and has to be let for
future work (here neither the Galois connection seems not to hold a pri-
ori). For abduction, relevance and dispensability questions have not yet
been studied in Schaefer's Framework. For manifestations such as single
literals, clauses and terms a Galois connection should hold a priori which
could render a classi�cation feasible. In the case where the manifestation
is also an S-formula, abduction has not yet been studied at all. It will be
a challenge for future work to address this variant, since here the useful
Galois connection seems not to hold a priori.

We would like to point out that the area of enumeration complexity
is an open �eld. Although there are in the meanwhile many results on
particular enumeration problems, the attempt to develop a theoretical
framework to deal with the complexity of enumeration is quite recent
(see [Bag06, Cou08, DG07, BDGO08, Str10, Sch09]). In particular there
are up to now no common notions of reductions in order to establish
completeness results. It could be an important step to identify complete
problems that might be suitable to separate complexity classes of the
hierarchy as proposed by Johnson et al. in [JPY88]. The hierarchy is
only partially known to be strict under common complexity hypotheses
from classical complexity theory.

We gave in our investigations a sort of reduction from EnumSatw(S)
to SubSetSum for width-2-affine constraint languages. However, the re-
duction is basically an isomorphism. Further, we showed that SubSetSum
is solvable in polynomial delay and polynomial space when the weights
are polynomially bounded. However, in general (i.e., without bounds on
the weights) the applied method does not work. The problem is still
solvable within polynomial delay with a similar method as we applied
to Horn-formulæ using a priority queue. Consequently, as in the Horn
case, the algorithm does not work within polynomial space. Future work
might investigate whether this exponential space can be avoided by better
algorithmic methods or whether it is inherent in these problems.

Bibliography

[AC02] L. Amgoud and C. Cayrol. A reasoning model based on
the production of acceptable arguments. Ann. Math. Artif.
Intell., 34(1-3):197�215, 2002.

[AFM02] J. Amilhastre, H. Fargier, and P. Marquis. Consistency
restoration and explanations in dynamic CSPs. Artif. In-
tell., 135(1-2):199�234, 2002.

[Bag06] G. Bagan. MSO queries on tree decomposable structures are
computable with linear delay. In Proc. of the Annual Con-
ference of the European Association for Computer Science
Logic (CSL), pages 167�181, 2006.

[Bar97] A. Barg. Complexity issues in coding theory. Electronic
Colloquium on Computational Complexity (ECCC), 4(46),
1997.

[BATJ89] T. Bylander, D. Allemang, M. C. Tanner, and J. R. Joseph-
son. Some results concerning the computational complexity
of abduction. In Proc. 1st KR, pages 44�54, 1989.

[BBC+07] M. Bauland, E. Böhler, N. Creignou, S. Reith, H. Schnoor,
and H. Vollmer. The complexity of problems for quanti�ed
constraints. Electronic Colloquium on Computational Com-
plexity (ECCC), 14(023), 2007.

[BCRV04] E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playing
with Boolean blocks, part II: Constraint satisfaction prob-
lems. SIGACT News, 35(1):22�35, 2004.

123

124 BIBLIOGRAPHY

[BDGO08] G. Bagan, A. Durand, E. Grandjean, and F. Olive. Comput-
ing the jth solution of a �rst-order query. RAIRO Theoretical
Informatics and Applications, 42:147�164, 2008.

[BH01] P. Besnard and A. Hunter. A logic-based theory of deductive
arguments. Artif. Intell., 128(1-2):203�235, 2001.

[BH08] P. Besnard and A. Hunter. Elements of Argumentation. MIT
Press, 2008.

[BHRV02] E. Böhler, E. Hemaspaandra, S. Reith, and H. Vollmer.
Equivalence and isomorphism for boolean constraint satis-
faction. In CSL, pages 412�426, 2002.

[BHSS06] M. Bauland, E. Hemaspaandra, H. Schnoor, and I. Schnoor.
Generalized modal satis�ability. In Proc. 23rd STACS, vol-
ume 3884 of LNCS, pages 500�511, 2006.

[BKKR69] V.G. Bodnarchuk, L.A. Kaluºnin, V.N. Kotov, and B.A. Ro-
mov. Galois theory for Post algebras I, II. Cybernetics,
5:243�252, 531�539, 1969.

[BL00] M. Bouzid and A. Ligeza. Temporal causal abduction. Con-
straints, 5(3):303�319, 2000.

[BMTV09a] O. Beyersdor�, A. Meier, M. Thomas, and H. Vollmer. The
complexity of propositional implication. Information Pro-
cessing Letters, 109(18):1071�1077, 2009.

[BMTV09b] O. Beyersdor�, A. Meier, M. Thomas, and H. Vollmer. The
complexity of reasoning for fragments of default logic. In
Proc. 12th SAT, volume 5584 of LNCS, pages 51�64, 2009.

[BSS+08] M. Bauland, T. Schneider, H. Schnoor, I. Schnoor, and
H. Vollmer. The complexity of generalized satis�ability for
linear temporal logic. In Logical Methods in Computer Sci-
ence, volume 5, 2008.

[Cay95] C. Cayrol. On the relation between argumentation and non-
monotonic coherence-based entailment. In Proceedings of the
14th International Joint Conference on Arti�cial Intelligence
(IJCAI 1995), pages 1443�1448. Morgan Kaufmann, 1995.

BIBLIOGRAPHY 125

[CH96] N. Creignou and M. Hermann. Complexity of generalized
satis�ability counting problems. Inf. Comput., 125(1):1�12,
1996.

[CH97] N. Creignou and J. J. Hébrard. On generating all solutions of
generalized satis�ability problems. Informatique Théorique
et Applications, 31(6):499�511, 1997.

[Coo71] S. A. Cook. The complexity of theorem proving procedures.
In Proceedings 3rd Annual ACM Symposium on Theory of
Computing, pages 151�158. ACM Press, 1971.

[COS11] N. Creignou, F. Olive, and J. Schmidt. Enumerating all solu-
tions of a Boolean CSP by non-decreasing weight. In Proc. of
14th International Conference on Theory and Applications of
Satis�ability Testing (SAT'2011), Lecture notes in computer
science, 2011.

[Cou08] B. Courcelle. Linear delay enumeration and monadic second-
order logic. Discrete Applied Mathematics, 2008.

[Cre95] N. Creignou. A dichotomy theorem for maximum generalized
satis�ability problems. J. Comput. Syst. Sci., 51(3):511�522,
1995.

[CST11] N. Creignou, J. Schmidt, and M. Thomas. Complexity clas-
si�cations for propositional abduction in Post's framework.
Journal of Logic and Computation, 2011.

[CSTW11] N. Creignou, J. Schmidt, M. Thomas, and S. Woltran. Com-
plexity of logic-based argumentation in Post's framework.
Argument & Computation, 2(2-3):107�129, 2011.

[CV08] N. Creignou and H. Vollmer. Boolean constraint satisfaction
problems: when does Post's lattice help? In N. Creignou,
Ph. G. Kolaitis, and H. Vollmer, editors, Complexity of Con-
straints, volume 5250, pages 3�37. Springer Verlag, Berlin
Heidelberg, 2008.

[CZ06] N. Creignou and B. Zanuttini. A complete classi�cation of
the complexity of propositional abduction. SIAM J. Com-
put., 36(1):207�229, 2006.

126 BIBLIOGRAPHY

[DG07] A. Durand and E. Grandjean. First-order queries on struc-
tures of bounded degree are computable with constant delay.
ACM Transactions on Computational Logic, 8(4), 2007.

[DKT06] P. M. Dung, R. Kowalski, and F. Toni. Dialectical proof
procedures for assumption-based admissible argumentation.
Artif. Intell., 170(2):114�159, 2006.

[Dun95] P. M. Dung. On the acceptability of arguments and its funda-
mental role in nonmonotonic reasoning, logic programming
and n-person games. Artif. Intell., 77(2):321�358, 1995.

[EG95] T. Eiter and G. Gottlob. The complexity of logic-based ab-
duction. J. ACM, 42(1):3�42, 1995.

[Gei68] D. Geiger. Closed Systems of Functions and Predicates. Pa-
ci�c Journal of Mathematics, 27(1):95�100, 1968.

[GS04] A. García and G. Simari. Defeasible logic programming:
An argumentative approach. Theory and Practice of Logic
Programming, 4(1):95�138, 2004.

[Hor51] A. Horn. On sentences which are true of direct unions of
algebras. Journal of Symbolic Logic, 16:14�21, 1951.

[HSAM93] J. R. Hobbs, M. E. Stickel, D. E. Appelt, and P. A. Martin.
Interpretation as abduction. Artif. Intell., 63(1-2):69�142,
1993.

[JPY88] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis.
On generating all maximal independent sets. Information
Processing Letters, 27(3):119�123, 1988.

[KS96] S. Khanna and M. Sudan. The optimization complexity of
constraint satisfaction problems. Electronic Colloquium on
Computational Complexity (ECCC), 3(28), 1996.

[KSW97] S. Khanna, M. Sudan, and D. Williamson. A complete clas-
si�cation of the approximability of maximization problems
derived from Boolean constraint satisfaction. In Proceed-
ings 29th Symposium on Theory of Computing, pages 11�20.
ACM Press, 1997.

BIBLIOGRAPHY 127

[KW88] M. Karchmer and A. Wigderson. Monotone Circuits for Con-
nectivity Require Super-logarithmic Depth. In Proceedings of
the 20th Annual ACM Symposium on Theory of Computing
(STOC 1988), pages 539�550. ACM, 1988.

[Lew79] H. Lewis. Satis�ability problems for propositional calculi.
Mathematical Systems Theory, 13:45�53, 1979.

[Moo85] R. C. Moore. Semantical considerations on modal logic. Ar-
ti�cial Intelligence, 25:75�94, 1985.

[NJ04] G. Nordh and P. Jonsson. An algebraic approach to the
complexity of propositional circumscription. In LICS, pages
367�376, 2004.

[NZ08] G. Nordh and B. Zanuttini. What makes propositional ab-
duction tractable. Artif. Intell., 172(10):1245�1284, 2008.

[Pap94] C. H. Papadimitriou. Computational Complexity. Addison-
Wesley, 1994.

[Pop73] H. E. Pople. On the mechanization of abductive logic. In
IJCAI, pages 147�152, 1973.

[Pos41] E. Post. The two-valued iterative systems of mathematical
logic. Annals of Mathematical Studies, 5:1�122, 1941.

[PW88] C. H. Papadimitriou and D. Wolfe. The complexity of facets
resolved. J. Comput. Syst. Sci., 37(1):2�13, 1988.

[PWA03] S. Parsons, M. Wooldridge, and L. Amgoud. Properties and
complexity of some formal inter-agent dialogues. J. Log.
Comput., 13(3):347�376, 2003.

[Rei80] R. Reiter. A logic for default reasoning. Arti�cial Intelli-
gence, 13:81�132, 1980.

[Rei03] S. Reith. On the complexity of some equivalence problems
for propositional calculi. In Proc. 28th MFCS, volume 2747
of LNCS, pages 632�641, 2003.

[Rei05] O. Reingold. Undirected ST-connectivity in log-space. In
STOC, pages 376�385, 2005.

[Sch78] T. J. Schaefer. The complexity of satis�ability problems. In
Proc. 10th STOC, pages 216�226, 1978.

[Sch05] H. Schnoor. The complexity of the Boolean formula value
problem. Technical report, Theoretical Computer Science,
University of Hannover, 2005.

[Sch07a] H. Schnoor. Algebraic Techniques for Satis�ability Problems.
Phd thesis, Leibniz Universität Hannover, Fakultät für Elek-
trotechnik und Informatik, 2007.

[Sch07b] I. Schnoor. The Weak Base Method for Constraint Satisfac-
tion. Phd thesis, Leibniz Universität Hannover, Fakultät für
Elektrotechnik und Informatik, 2007.

[Sch09] J. Schmidt. Enumeration: Algorithms and com-
plexity. Preprint, available at http://www.thi.uni-
hannover.de/�leadmin/forschung/arbeiten/schmidt-da.pdf,
2009.

[Spi71] P. M. Spira. On Time-Hardware Complexity Tradeo�s for
Boolean Functions. In Proceedings of the 4th Hawaii In-
ternational Symposium on System Sciences, pages 525�527,
1971.

[SS08] H. Schnoor and I. Schnoor. Partial polymorphisms and con-
straint satisfaction problems. In Complexity of Constraints,
pages 229�254, 2008.

[Str10] Y. Strozecki. Enumeration complexity and matroid decom-
position. Phd thesis, 2010.

[SW01] M. Stumptner and F. Wotawa. Diagnosing tree-structured
systems. Artif. Intell., 127(1):1�29, 2001.

[Tho09] M. Thomas. The complexity of circumscriptive inference in
Post's lattice. In Proc. 10th LPNMR, volume 5753 of Lecture
Notes in Computer Science, pages 290�302, 2009.

[Wra77] C. Wrathall. Complete sets and the polynomial-time hierar-
chy. Theoretical Computer Science, 3:23�33, 1977.

[Zan03] B. Zanuttini. New polynomial classes for logic-based abduc-
tion. J. Artif. Intell. Res., 19:1�10, 2003.

128

Lebenslauf

Persönliche Daten

Name Johannes Schmidt
Geburt 4. Juni 1984 in Hannover

Schulausbildung

1990 - 1994 Gundschule Hinter der Burg in Springe
1995 - 1996 Orientierungsstufe Süd in Springe
1997 - 2003 Otto-Hahn-Gymnasium in Springe
Juni 2003 Abitur

Studium und Promotion

2004 - 2008 Studium des Fachs "Mathematik mit der Studienrich-
tung Informatik" an der Leibniz Universität Hannover

2007 Studienarbeit, Titel Algorithms for Exact Cover prob-
lems, Entwicklung und Implementierung für bestimmte
Anwendungsfälle

2008 - 2009 Erasmusaufenthalt an der Université d'Aix-Marseille 2
zwecks Diplomarbeit, Titel Enumeration: Algorithms
and Complexity

April 2009 Abschluss des Studiums als Diplom-Mathematiker an
der Leibniz Universität Hannover

2009 - 2012 Promotion in theoretischer Informatik in co-tutelle an
der Aix-Marseille Université und an der Leibniz Univer-
sität Hannover

Auÿerberu�iches

2003 - 2004 Zivildienst beim Deutschen Roten Kreuz in Springe
10.04.2012 Hochzeit mit Annika Moscati

129

	Introduction
	Preliminaries
	Propositional Logic
	Complexity Theory
	Complexity Classes
	Reductions and complete Problems

	Abduction and Argumentation

	Classifications in Post's Framework
	Post's Framework
	Boolean clones and Post's Lattice
	Post's lattice as a Tool for Complexity Analysis
	Parameterizing by B-formulæ

	The complexity of Symmetric Abduction
	Technical results and tools
	The complexity of the Existence Problem
	The complexity of the Verification Problem

	The complexity of Positive Abduction
	Technical results and tools
	The complexity of the Existence Problem
	The complexity of the Verification Problem
	Overview of results for Abduction

	The complexity of Argumentation
	Technical results and tools
	The complexity of the Existence Problem
	The complexity of the Verification Problem
	The complexity of Relevance and Dispensability
	Overview of results for Argumentation

	Classifications in Schaefer's framework
	Schaefer's framework
	Preliminaries
	Background from Universal Algebra
	Schaefer's Framework and the Galois connection
	Implementation results

	The complexity of Argumentation
	Complexity of the Existence Problem
	Complexity of the Verification Problem
	Overview of results for Argumentation

	Enumeration of Models
	Complexity of Enumeration
	Polynomial Delay Algorithms
	Hardness Results

	Concluding remarks

