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Abstract

The precise preparation of non-classical states of light is a basic requirement for performing
quantum information tasks and quantum metrology. Depending on the assignment, the range
of required states varies from preparing and modifying squeezed states to generating bipartite
entanglement and establishing multimode entanglement networks. Every state needs special
preparation techniques and hence it is important to develop the experimental expertize to
generate all states with the desired degree of accuracy.

In this thesis, the experimental preparation of different kinds of non-classical states
of light is demonstrated. Starting with a multimode entangled state, the preparation of
an unconditionally generated bound entangled state of light of unprecedented accuracy is
shown. Its existence is of fundamental interest, since it certifies an intrinsic irreversibility
of entanglement and suggests a connection with thermodynamics. The state is created in
a network of linear optics, utilizing optical parametric amplifiers operated below threshold,
beam splitters and phase gates. The experimental platform developed here afforded the
precise and stable control of all experimental parameters.

Focusing on the aspect of quantum information networks, the generation of suitable
bipartite entangled states of light is desirable. The optical connection between atomic
transitions and light that can be transmitted via telecommunications fibers opens the
possibility to employ quantum memories within fiber networks. For this purpose, a non-
degenerate optical parametric oscillator is operated above threshold and the generation of
bright bipartite entanglement between its twin beams at the wavelengths of 810 nm and
1550 nm is demonstrated.

In the field of metrology, quantum states are used to enhance the measurement precision
of interferometric gravitational wave (GW) detectors. Recently, the sensitivity of a GW
detector operated at a wavelength of 1064 nm was increased using squeezed vacuum states. In
order to enhance the sensitivity of future GW detectors operating at a wavelength of 532 nm,
squeezed vacuum states at this wavelength are required. With this intention, a highly efficient
up-conversion of coherent states from 1550 nm to 532 nm is demonstrated. The presented
setup is suitable to convert squeezed states in frequency. The preparation of squeezed vacuum
states at 1550 nm can be realized with a standard approach using parametric down-conversion,
while the transition to 532 nm is achievable by the presented sum-frequency generation process.

Keywords: Bipartite entanglement, bound entanglement, non-degenerate optical parametric
oscillation, quantum frequency conversion.





Kurzfassung

Die präzise Erzeugung nicht-klassischen Lichts ist ein grundlegender Baustein der Quanten-
information und der Quantenmetrologie. Je nach Aufgabengebiet werden unterschiedliche
Zustände, wie zum Beispiel gequetschtes Licht, verschränkte Lichtfelder zwischen zwei Partei-
en und Verschränkungsnetzwerke mit mehreren involvierten Moden, benötigt. Jeder dieser
Zustände wird mit speziellen Methoden präpariert, deren experimentelle Realisierbarkeit es
zu entwickeln und zu optimieren gilt.

Im Rahmen dieser Arbeit wird die experimentelle Erzeugung unterschiedlicher Syste-
me nicht-klassischen Lichts demonstriert. Beginnend mit einem multimoden-verschränkten
Zustand wird die unkonditionierte, hochpräzise Erzeugung eines gebunden-verschränkten
Lichtfeldes gezeigt. Die Existenz dieses Zustandes ist von elementarer Relevanz, da sie auf
einen irreversiblen Charakter der Dekohärenz von Verschränkung schließen lässt und eine
Verbindung zwischen Quantentheorie und Thermodynamik nahelegt. Die Erzeugung des
Zustandes wurde mithilfe eines Netzwerkes linearer Komponenten durchgeführt, das aus
optischen parametrischen Verstärkern, die unterhalb der Schwellleistung betrieben wurden,
Strahlteilern und Phasengattern bestand. Die entwickelte Plattform für die Zustandsprä-
paration ermöglichte die präzise und stabile Kontrolle der großen Anzahl der benötigten
experimentellen Parameter.

Großflächige Quanteninformationsnetzwerke können mithilfe von bereits vorhandenen
Telekommunikationsfasernetzwerken ermöglicht werden. Quantenzustände, die eine optische
Verbindung zwischen den Wellenlängen der Fasernetzwerke und atomarer Übergänge herstel-
len, ermöglichen dabei die Entwicklung von Quantenspeichern innerhalb dieser Netzwerke. Zu
diesem Zweck wird im Rahmen dieser Arbeit die Erzeugung eines verschränkten Zustandes
zwischen den Wellenlängen 1550 nm und 810 nm demonstriert. Ein nicht-entarteter optischer
parametrischer Oszillator wurde hierfür oberhalb der Schwellleistung betrieben. Seine hellen
Ausgangsfelder wurden untersucht und die Verschränkung zwischen ihnen nachgewiesen.

Im Bereich der Metrologie werden nicht-klassische Zustände zur Erhöhung der Mess-
empfindlichkeit genutzt. Vor kurzem wurde der Gravitationswellendetektor GEO600 mit
gequetschtem Licht bei 1064 nm verbessert. Um zukünftige Detektoren, die bei 532 nm betrie-
ben werden, zu verbessern, werden gequetschte Vakuumfelder bei dieser Wellenlänge benötigt.
Hierfür wird im Rahmen dieser Arbeit die effiziente Quantenkonversion von 1550 nm zu
532 nm anhand kohärenter Zustände demonstriert. Die Ergebnisse zeigen, dass auch gequetsch-
te Felder effizient aus dem nahinfraroten in den sichtbaren Bereich konvertiert werden können.

Schlüsselwörter: Gebundene Verschränkung, nicht-entarteter optischer parametrischer
Oszillator, Quantenfrequenzkonversion, Zweiparteien-Verschränkung.
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CHAPTER 1

Introduction

Quantum mechanics is one of the pillars of modern physics. It has been verified by
a huge number of experimental studies and is successful in describing many physical
phenomena that cannot be explained by classical theories. Although its beginning
dates back over a century when Max Planck postulated the quantized nature of light
and gave a description of blackbody radiation in 1901 [1], its counter-intuitive behavior
still engages scientists all over the world. Possibly the most fascinating property of
quantum mechanics is the entanglement between two or more physical parties. In
contrast to classical theories, the individual (spatially separated) parties cannot be
fully described by a local theory. Correlations stronger than allowed by any classical
(local) theory can occur between the parties. Albert Einstein, Boris Podolsky and
Nathan Rosen – also known as EPR – argued in 1935 that quantum mechanics must
be incomplete, since it is contradictory to the intuitively graspable local reality [2].
They urged a theory with hidden variables to explain the possible correlations. In 1964
John Bell formulated his famous inequalities which allow an experimental distinction
between a local theory with hidden variables and a non-local theory, such as quantum
mechanics [3]. It was not until 1982, however, that Alain Aspect et al. demonstrated
polarization entanglement of photons and refuted the Bell inequalities in favor of
quantum mechanics within the realm of quantum optics [4].
The beginning of quantum optics goes back to Jeffrey Kimble et al. in 1977, who

demonstrated the first quantum effect in an optical experiment: photon antibunching
in resonance fluorescence [5]. The non-classical photon statistics were measured with
photomultiplier tubes, which could either detect a photon or could not. This discrete
type of “yes/no” measurement defined the regime of the first experiments in quantum
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optics – the regime of discrete variables (DV). It took another eight years until Richart
Slusher et al. could demonstrate a second quantum effect of light: squeezing of quantum
fluctuations [6]. Here, the nonlinear four wave mixing process was used to reshape the
quantum noise distribution of the field’s quadrature amplitudes. The measurements
were performed with balanced homodyne detection and yielded a continuous data
spectrum – this was the advent of the regime of continuous variables (CV). The
measurement apparatus defines the properties under investigation and illustrates the
particle and wave nature of light.

Great progress has been made since the discovery of the first optical quantum effects.
The insight that the counterintuitive features of quantum mechanics can be utilized
gave rise to the fields of quantum information and quantum metrology in the last
decades.
In order to implement new technological applications and to investigate novel

concepts, the precise preparation of quantum states of light is a basic requirement.
Depending on the assignment, the states must exhibit specially designed features.
Within this thesis we consider state preparation for quantum information science and
quantum metrology in the continuous variable regime.

1.1 Quantum Information Science

The field of quantum information science combines quantum physics with commu-
nication theory and computer science. Utilizing the peculiar properties of quantum
mechanics enabled novel fundamental research and the development of new applications.
After the realization of CV entanglement in 1992 by Ou et al. [7], major achievements
in the area of entanglement based quantum communication in the CV regime were
made in the last two decades: teleportation of coherent states [8–11], enhancement of
the classical channel capacity using dense coding [12–14] and quantum key distribution
(QKD) [15–18]. Long distant quantum networks came within reach with the realization
of quantum memory for light [19, 20], entanglement swapping [21, 22] and entanglement
distillation [23–25]. Satisfying CV quantum computing is still pending, although great
progress in one-way computing with cluster states has been made recently [26, 27].

The study and precise preparation of entangled states is a fundamental requirement
to further improve the existing techniques and to develop new applications. Within the
framework of quantum information the preparation of an unconditionally generated
bound entangled state of light is presented in Chapter 5 of this thesis. This multi-
mode entangled state has been realized for the first time in the CV regime with an
extraordinary significance. Its existence is of fundamental interest, since it certifies
an intrinsic irreversibility of entanglement and suggests a connection with thermody-
namics [28, 29]. Although its properties – entangled but not distillable – seem to be

2



1.2 Quantum Metrology

unattractive for applications at first glance, it can be used to “superactivate” quantum
channels with zero capacity and enables quantum communication [30, 31]. Hence, its
realization enables not only the study of fundamental entanglement properties but also
the development of new quantum communication channels. The bound entangled state
is created in a network of linear optics, utilizing optical parametric amplifiers operated
below threshold, beam splitters and phase gates. The experimental platform developed
in this work afforded the precise and stable control of all experimental parameters.

Focusing on the aspect of quantum information networks, the generation of suitable
bipartite entangled states of light is desirable. To implement quantum protocols between
remote parties, the entangled states are already nowadays distributed by existing
telecommunications fiber networks operated at a wavelength of 1550 nm [32]. Even
though standard fibers have reached very low attenuation values of about 0.17 dB/km
[33], quantum repeaters are necessary to bridge distances of several hundred kilometers
[34, 35]. Alkaline atoms having transition lines at wavelengths around 810 nm may
be used to establish quantum memories [36, 37] that are an essential requirement in
quantum repeaters. To connect these two wavelengths, entangled twin beams between
810 nm and 1550 nm could be used to transfer the quantum states from one wavelength
to the other via entanglement swapping [22]. To achieve this, the operation of a
non-degenerate optical parametric oscillator above threshold is discussed in Chapter 6.
The generation of bright bipartite entanglement between twin beams at the wavelengths
of 810 nm and 1550 nm is demonstrated.

1.2 Quantum Metrology

Quantum states can be used to obtain an improved measurement precision within
the field of metrology. In the DV regime, so called N00N states have been used in
the recent past to improve phase measurements of an Mach-Zehnder interferometer
operated with very low photon rates [38]. In the CV regime, however, Carlton Caves
proposed in 1981 the use of squeezed states to improve the sensitivity of high-power
laser interferometers [39]. It took, however, three decades until the measurement
sensitivity of large-scale laser interferometers was enhanced. It was recently realized in
the gravitational wave (GW) detector GEO600 by combining ultra-stable coherent
light with squeezed vacuum states at a laser wavelength of 1064 nm [40]. Assuming
a fixed laser power, the sensitivity of such interferometers can still be improved by
increasing the squeezing factor and by reducing the laser wavelength. The combination
of both approaches is not easy to achieve, since material properties of the nonlinear
squeezing media limit the generation of squeezed vacuum states at short, e.g. visible,
wavelengths. One solution can be the frequency up-conversion of squeezed states from
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near-infrared wavelengths, where strong squeezed states have been realized recently
[41].
The highly efficient experimental frequency up-conversion of a continuous-wave

coherent light field from 1550 nm to 532 nm is demonstrated in Chapter 7. The
possibility of generating strongly squeezed vacuum states at 532 nm with this technique
for the improvement of future GW detectors, such as DECIGO [42], is discussed.

1.3 Structure of the Thesis

The structure of the following chapters of this thesis is as follows:

• Chapters 2–4 give an overview of general theoretical and experimental concepts.
These chapters review a general quantum mechanical formalism for quantum
optics, concepts particularly useful for the description of Gaussian states, and
experimental techniques used within the thesis.

• Chapters 5–6 discuss the experiments conducted in the realm of quantum in-
formation science. They provide special theoretical background, describe the
experimental layout and present the obtained results.

• Chapter 7 presents and discusses the experiment conducted in the realm of
quantum metrology.

• Chapter 8 summarizes the obtained experimental results and gives an outlook.
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CHAPTER 2

Theoretical Description of Light

In 1865, James Clerk Maxwell set the theoretical foundation for modern electrodynamics.
In his publication “A Dynamical Theory of the Electromagnetic Field” [43] he proposed
eight equations, which describe light as oscillations of the electromagnetic field. Today,
we know a combination of these equations in a vectorized form as the four Maxwell’s
equations.

A new era in physics arose in 1901 when Max Planck described black body radiation
by quantizing its energy [1]. He formed the basis of quantum mechanics, which would
eliminate disagreements between classical theories and experiments and explain new
and counterintuitive features of nature. An extension of Planck’s idea allowed Albert
Einstein to explain the photo-electric effect in 1905 [44] and led him to introduce
the concept of photons. A couple of years later, in the 1920s, a quantum theory of
radiation had been developed by Max Born, Pascual Jordan, Werner Heisenberg and
Paul Dirac. Nevertheless, the theory could not provide a quantitative description
of physical processes until Roy Glauber developed the quantum theory of optical
decoherence in 1963 [45, 46].
In this chapter we outline the classical and quantum description of light. First, we

will derive the classical wave equation from Maxwell’s equations for nonlinear media.
This provides the basis to understand the nonlinear optical phenomena – such as
down-conversion and sum-frequency generation – used within this thesis. Then, we
will quantize the classical wave equation to obtain a quantum mechanical description
and give an overview of quantum mechanical states.



Chapter 2: Theoretical Description of Light

2.1 Classical Description of Light Fields

In order to describe optical effects occurring in nonlinear media – such as second-
harmonic generation, sum-frequency generation or down-conversion – we need to obtain
the wave equation for the propagation of light through such a medium. We follow the
approach in [47] and employ Maxwell’s equations. In SI units, they read

∇ ·D = ρ ∇ ·B = 0 (2.1a,b)

∇× E = −∂B
∂t

∇×H = ∂D
∂t

+ J (2.1c,d)

where E is the electric field, D the electric displacement field, B the magnetic field, H
the magnetizing field, J the total current density and ρ the total charge density.
In our case, we are interested in the solution of these equations in regions of space

that neither contain free charges nor free currents, i.e. where

ρ = 0 , J = 0 . (2.2a,b)

We also assume that the material is non-magnetic, which is true for common optical
nonlinear materials

B = µ0H . (2.3)

Since the material is allowed to be nonlinear, the electric displacement field D and the
electric field E are related by

D = ε0E + P , (2.4)

where ε0 depicts the permittivity of free space and the polarization vector P depends
nonlinearly upon the electric field E

P = ε0
∞∑
n=1

χ(n)En

=
∞∑
n=1

P(n) .

χ(1) is the linear optical susceptibility, while the quantities χ(2) and χ(3) are known as
the second- and third-order nonlinear optical susceptibility, respectively. The nonlinear
processes we are interested in are describable solely with the second-order susceptibility.
To obtain the wave equation, we take the curl of the Maxwell Equation (2.1c),

interchange the order of space and time derivative and use Equations (2.1d), (2.2b)
and (2.3):

∇×∇× E + 1
c2
∂2

∂t2
E = −µ0

∂2

∂t2
P .
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2.1 Classical Description of Light Fields

To simplify this expression, we can write the first term of the left-hand side as

∇×∇× E = ∇ (∇ · E)−∇2E .

In linear optics the first term on the right-hand side vanishes because the Maxwell
Equation (2.1a) implies that ∇ · E = 0. In nonlinear optics this is not true in general;
see Equation (2.4). Fortunately, the divergence term can usually be neglected. If we
consider a transverse, infinite plane wave, ∇ ·E vanishes anyway. But even if the term
does not vanish, it can often be shown to be small, especially if the slowly varying
amplitude approximation (see Section 7.1) is valid. Assuming this, we obtain the wave
equation in the form

∇2E− 1
c2
∂2

∂t2
E = µ0

∂2

∂t2
P .

It is convenient to split P and D into their linear and nonlinear parts

P = P(1) + P(NL) , (2.5a)
D = D(1) + P(NL) , (2.5b)

where the linear electric displacement is given by

D(1) = ε0E + P(1) = ε0ε
(1) · E , (2.6)

where ε(1) depicts the frequency-independent dielectric tensor, which simplifies to a
dimensionless scalar quantity ε(1) = 1 + χ(1) in the case of an isotropic medium. The
rewritten wave equation for an isotropic, dispersionless medium then reads

∇2E− ε(1)

c2
∂2

∂t2
E = µ0

∂2

∂t2
P(NL) . (2.7)

Since most χ(2)-media are dispersive, we have to treat every frequency component
separately. We write the electric field, the electric displacement field and the polarization
field as sums of their frequency components

E(r, t) =
∑
n

E′n(r, t) =
∑
n

[
En(r)e−ι̇ωnt + E∗n(r)eι̇ωnt

]
(2.8a)

D(1)(r, t) =
∑
n

D′(1)
n (r, t) =

∑
n

[
D(1)
n (r)e−ι̇ωnt + D∗(1)

n (r)eι̇ωnt
]

(2.8b)

P(NL)(r, t) =
∑
n

P′(NL)n (r, t) =
∑
n

[
P(NL)
n (r)e−ι̇ωnt + P∗(NL)n (r)eι̇ωnt

]
(2.8c)

and connect the one-frequency-mode electric displacement D′(1)
n with the one-frequency-

mode electric field E′n analogously to Equation (2.6) with a real, frequency-dependent
dielectric tensor

D′(1)
n = ε0ε

(1)(ωn) · E′n . (2.9)

7



Chapter 2: Theoretical Description of Light

If we now combine Equations (2.8) and (2.9) with the wave equation (2.7) we obtain
the final wave equation that is valid for each frequency component of the field

∇2E′n −
ε(1)(ωn)
c2

∂2

∂t2
E′n = µ0

∂2

∂t2
P′(NL)n . (2.10)

This solution has the form of a driven wave equation. The nonlinear response of
the medium behaves as a source that appears on the right-hand side. We will use
this expression in the following subsections to derive sum-frequency generation and
down-conversion processes, which are needed in Chapter 6 and Chapter 7.
Without this source (P(NL)

n = 0), the equation depicts a free propagating wave
with velocity c/n, where n is the linear index of refraction that satisfies n2 = ε(1).
For simplicity, we will quantize this expression in Section 2.2 to obtain a quantum
mechanical description of the light field.

2.1.1 Coupled Wave Equations

We now continue following [47] and sketch the derivation of the sum-frequency genera-
tion, where two optical fields with (angular) frequency ω1,2 create a new field having
ω3 = ω1 + ω2 within a nonlinear medium. This will lead to the coupled wave equations
of a lossless χ(2) medium. Equation (2.10) must hold for all involved fields. Without a
nonlinear source the plane wave solution for the sum-frequency component is

E ′3(z, t) = E3eι̇(k3z−ω3t) + E∗3e−ι̇(k3z−ω3t) , (2.11)

which assumes a propagation along the z-axis with frequency ω3, wave vector k3 = n3ω3
c

,
index of refraction n2

3 = ε(1)(ω3) and constant field amplitude E3. Taking the nonlinear
source term into account, Equation (2.8c) gives

P
′(NL)
3 (z, t) = P

(NL)
3 e−ι̇ω3t + P

∗(NL)
3 eι̇ω3t , (2.12)

with P (NL)
3 = 4ε0deffE1eι̇k1zE2eι̇k2z. deff denotes the effective nonlinear coupling constant.

Substituting Equations (2.11) and (2.12) into the Wave Equation (2.10) and replacing
∇2 by d2

dz2 yields[
d2E3

dz2 + 2ι̇k3
dE3

dz − k
2
3E3 + ε(1)(ω3)ω2

3E3

c2

]
eι̇(k3z−ω3t)

+
[
d2E∗3
dz2 − 2ι̇k3

dE∗3
dz − k

2
3E
∗
3 + ε(1)(ω3)ω2

3E
∗
3

c2

]
e−ι̇(k3z−ω3t)

= −4deffω
2
3

c2 E1E2eι̇[(k1+k2)z−ω3t] + −4deffω
2
3

c2 E∗1E
∗
2e−ι̇[(k1+k2)z−ω3t] .
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2.1 Classical Description of Light Fields

With k2
3 = ε(1)(ω3)ω2

3
c2

and dropping the complex conjugate we obtain

d2E3

dz2 + 2ι̇k3
dE3

dz = −4deffω
2
3

c2 E1E2eι̇(k1+k2−k3)z .

Since the second order derivative is usually much smaller than the first order one,∣∣∣d2E3
dz2

∣∣∣� ∣∣∣k3
dE3
dz

∣∣∣, we apply the slowly varying amplitude approximation by neglecting
the second derivative and obtain the coupled amplitude equation

dE3

dz = 2ι̇deffω
2
3

k3c2 E1E2eι̇∆kz , (2.13)

with the wave vector mismatch ∆k = k1 + k2 − k3. In general we need to take the
spatial variations of E1 and E2 into account and obtain analogously the remaining
coupled wave equations

dE1

dz = 2ι̇deffω
2
1

k1c2 E3E
∗
2e−ι̇∆kz , (2.14)

dE2

dz = 2ι̇deffω
2
2

k2c2 E3E
∗
1e−ι̇∆kz . (2.15)

2.1.2 Sum-Frequency Generation

In this thesis we are interested in the case of sum-frequency generation, where a strong
pump field ω2 is used to up-convert a weak signal field ω1, see Chapter 7. By assuming
that the pump field is not depleted by the interaction (E2 = const), the coupled
Equations (2.13) through (2.15) simplify to:

dE1

dz = K1E3e−ι̇∆kz , (2.16)

dE3

dz = K3E1e+ι̇∆kz , (2.17)

with the quantities
K1 = 2ι̇ω2

1deff

k1c2 E∗2 , K3 = 2ι̇ω2
3deff

k3c2 E2 .

For a non-vanishing wave vector mismatch, ∆k 6= 0, we expect solutions of the form

E1(z) =
(
F eι̇gz +Ge−ι̇gz

)
e−ι̇∆kz/2 , (2.18)

E3(z) =
(
Ceι̇gz +De−ι̇gz

)
e−ι̇∆kz/2 , (2.19)
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Chapter 2: Theoretical Description of Light

where g is the rate of the field’s spatial variation and C, D, F and G are constants
depending on the boundary conditions. Substituting Equation (2.18) and (2.19) into
Equation (2.16) gives

(
ι̇gF eι̇gz − ι̇gGe−ι̇gz

)
e− ι̇2 ∆kz − ι̇

2∆k
(
F eι̇gz +Ge−ι̇gz

)
e− ι̇2 ∆kz

=
(
K1Ceι̇gz +K1De−ι̇gz

)
e− ι̇2 ∆kz .

Since this equation has to hold for all values of z, the coefficients of e±ι̇gz must be
related by

F
(
ι̇g − ι̇

2∆k
)

= K1C , (2.20)

−G
(
ι̇g + ι̇

2∆k
)

= K1D . (2.21)

Analogously we obtain with Equation (2.17)
(
ι̇gCeι̇gz − ι̇gDe−ι̇gz

)
e ι̇2 ∆kz + ι̇

2∆k
(
Ceι̇gz +De−ι̇gz

)
e ι̇2 ∆kz

=
(
K3F eι̇gz +K3Ge−ι̇gz

)
e ι̇2 ∆kz

and hence a relation for the coefficients

C
(
ι̇g + ι̇

2∆k
)

= K3F , (2.22)

−D
(
ι̇g − ι̇

2∆k
)

= K3G .

Equations (2.20) and (2.22) restrict the solution of F and C. They read in matrix form ι̇ (g − 1
2∆k

)
−K1

−K3 ι̇
(
g + 1

2∆k
)F

C

 = 0 .

A solution exists, if the determinant vanishes, hence

g2 = κ2 + 1
4∆k2

with κ2 = −K1K3. Assuming that the fields E1(z = 0) and E3(z = 0) are known at
the input plane of the nonlinear medium, this yields from Equations (2.18) and (2.19)

E1(0) = F +G ,

E3(0) = C +D .
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Equations (2.20) and (2.21) provide two additional restrictions among the constants.
The general solutions of Equations (2.18) and (2.19) that fulfill the boundary conditions
read

E1(z) =
[
E1(0) cos (gz) +

(
K1

g
E3(0) + ι̇∆k

2g E1(0)
)

sin (gz)
]
e− ι̇2 ∆kz ,

E3(z) =
[
E3(0) cos (gz) +

(
−ι̇∆k

2g E3(0) + K3

g
E1(0)

)
sin (gz)

]
e ι̇2 ∆kz . (2.23)

Considering the case that no sum-frequency field ω3 is present at the beginning,
E3(0) = 0, Equation (2.23) simplifies to

E3(z) = K3

g
E1(0) sin (gz) e ι̇2 ∆kz .

The measurable intensity of the generated wave

|E3(z)|2 = |E1(0)|2 |K3|2

g2 sin2 (gz)

shows an oscillatory behavior. For a vanishing wave vector mismatch (∆k = 0) g
becomes minimal and the generated intensity maximal. Its reaches its maximum at a
certain penetration depth, after which the field gets back-converted, see Figure 2.1.
The degenerated case of ω1 = ω2 =: ω corresponds to second-harmonic generation
(SHG). Two photons of energy ~ω merge to one photon of energy 2~ω.

2.1.3 Difference-Frequency Generation

We will now consider the opposite case: the interaction of two optical fields at ω3
and ω1 in a lossless χ(2) medium producing an output field at the difference-frequency
ω2 = ω3 − ω1. ω3 is treated as a strong, undepleted pump field, i.e. E3 = const.
The wave vector mismatch is now given by ∆k = k3 − k1 − k2 and the coupled wave
Equations (2.13) and (2.14) transform to

dE1

dz = 2ι̇deffω
2
1

k1c2 E3E
∗
2eι̇∆kz , (2.24)

dE2

dz = 2ι̇deffω
2
2

k2c2 E3E
∗
1eι̇∆kz . (2.25)

For perfect phase matching, ∆k = 0, we differentiate Equation (2.25) and use the
complex conjugate of Equation (2.24) to obtain

d2E2

dz2 = 4d2
effω

2
1ω

2
2

k1k2c4 E3E
∗
3E2 ≡ κ2E2 .

11
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Figure 2.1 – Intensity of sum-frequency generation over penetration depth in the nonlin-
ear medium for an undepleted pump. The intensity is maximal at a certain
penetration depth and back-converted afterwards. Maximum position and
height depend on the wave vector mismatch.

The coupling constant κ is given by κ2 = 4d2
effω

2
1ω

2
2

k1k2c4
|E3|2 and a general solution reads

E2(z) = C sinh (κz) +D cosh (κz) .

Assuming the boundary conditions

E2(0) = 0 , E1(0) = const ,

yields the solutions

E1(z) = E1(0) cosh (κz) ,

E2(z) = ι̇

√
n1ω2

n2ω1

E3

|E3|
E∗1(0) sinh (κz) .

The initial signal field at ω1 gets amplified by the process and generates an idler field at
ω2 for conservation of energy. The generation of the ω1 field stimulates the generation
of the ω2 field and vice versa. Hence we do not observe an oscillatory behavior as for
sum-frequency generation and each field grows exponentially with eκz for large κz, as
shown in Figure 2.2. The difference-frequency generation, or parametric amplification,
plays a central role in the generation of entangled fields, as later discussed in Chapter 6.
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Figure 2.2 – Intensity of difference-frequency generation over penetration depth in the
nonlinear medium for an undepleted pump and zero phase mismatching.
The initial signal field at ω1 grows and generates an idler field at ω2. For
large κz each field grows exponentially as eκz.

2.2 Quantization of the Electric Field

One approach to describe a classical theory quantum mechanically is the canonical
quantization. Here, the classical theory is written in the Hamilton formalism and the
canonical position and momentum variables are replaced by operators, obeying the
quantum mechanical commutation relation.

In order to find a quantum mechanical description for light, we follow the approach
in [48, 49] and quantize the electric field. Therefore, we consider an electric field inside
a perfect cavity of length L. Due to the boundary conditions, it forms a standing
wave with frequency ωm = c (mπ/L) , m ∈ N+. We assume that it propagates in the
z-direction and is polarized along the x-axis. For reasons of readability we drop the
index m and simply write ω for the resonance frequency of all possible modes.
According to wave equation (2.10), a solution for the electric field is given by

Ex(z, t) =
√

2ω2

V ε0
Q(t) sin(kz) , (2.26)

where k = ω/c is the wave number, V = L3 the effective cavity volume and Q(t) a
time-dependent factor with the dimension of a length. According to Equations (2.1d)
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and (2.26), the magnetic field B(r, t) = eyBy(z, t) is given by

By(z, t) = µ0ε0
k

√
2ω2

V ε0
Q̇(t) cos(kz) . (2.27)

The classical energy of a single-mode field is determined by its Hamiltonian, and with
Equations (2.26) and (2.27) we can calculate that the classical field energy takes the
form of a harmonic oscillator of unit mass

H = 1
2

∫ [
ε0E2(r, t) + 1

µ0
B2(r, t)

]
dV

= 1
2
(
P 2 + ω2Q2

)
, (2.28)

where the electric and magnetic fields correspond to the canonical position Q and
momentum P = Q̇.
To carry out the quantization, we replace the canonical variables by operators,

denoted by a hat,

Q→ Q̂ ,

P → P̂

and assume that they obey the Bosonic commutation relation[
Q̂j, P̂j′

]
= ι̇~δjj′1̂→ ι̇~δjj′ , (2.29)[

Q̂j, Q̂j′

]
=
[
P̂j, P̂j′

]
= 0 .

The commutator is defined as [
Â, B̂

]
= ÂB̂ − B̂Â = Ĉ

and leads to Heisenberg’s Uncertainty Principle [50]. This states that two non-
commuting canonical variables, i.e. Ĉ 6= 0, cannot be measured simultaneously to an
arbitrary precision. The measurement of one variable is restricted by the knowledge of
the other through the product of their standard deviations

∆SÂ ·∆SB̂ ≥
1
2
∣∣∣〈Ĉ〉∣∣∣ , (2.30)

where the standard deviation ∆S is defined as the square root of the variance

∆SÂ =
√
〈(∆Â)2〉 =

√
〈Â2〉 − 〈Â〉2 . (2.31)

For the canonical position and momentum we obtain the famous deviation product

∆SQ̂ ·∆SP̂ ≥
~
2 .
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For simplicity, we drop the identity operator 1̂ in Equation (2.29) and introduce the
annihilation and creation operators

â = 1√
2~ω

(
ωQ̂+ ι̇P̂

)
, (2.32)

â† = 1√
2~ω

(
ωQ̂− ι̇P̂

)
. (2.33)

Regarding Equation (2.29), they satisfy the commutation relation[
â, â†

]
= 1 (2.34)

and the Hamiltonian of the electric field takes the form

Ĥ = ~ω
(
â†â+ 1

2

)
.

Replacing the canonical variables in Equations (2.26) and (2.27) by operators, the
electromagnetic field is described by

Êx(z, t) = E0
(
â† + â

)
sin (kz) ,

B̂y(z, t) = ι̇B0
(
â† − â

)
cos (kz) ,

where E0 =
√
~ω/ε0V and B0 = µ0/k ·

√
ε0~ω3/V represent the electric and magnetic

field amplitude, respectively.
So far we have considered the quantization of the one-mode radiation field in a finite

one-dimensional cavity. We shall now review the quantization of the multi-mode field
in a traveling-wave cavity. By the same approach, we take the classical electric and
magnetic field in its traveling-wave solution

E(r, t) =
∑

k
ekEk

(
αke−ι̇(ωkt−k·r) + α∗ke+ι̇(ωkt−k·r)

)
,

B(r, t) =
∑

k

k× ek

ωk
Ek
(
αke−ι̇(ωkt−k·r) + α∗ke+ι̇(ωkt−k·r)

)
with the dimensionless complex field amplitude αk, the wave vector k, the unit
polarization vector ek and the field constant Ek =

√
~ωk/2ε0V . They also obey

Maxwell’s Equations (2.1) and from Equation (2.1a) it follows that k · ek = 0, i.e. the
field is purely transverse and there exist two independent polarization directions of ek
for each propagation direction k.
The quantization is carried out as before: we replace the complex field amplitudes

αk and α∗k by the annihilation and creation operators â and â†, respectively. Thus, the
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quantized free electric and magnetic fields take the form

Ê(r, t) =
∑

k
ekEk

(
âke−ι̇(ωkt−k·r) + â†ke+ι̇(ωkt−k·r)

)
, (2.35)

B̂(r, t) =
∑

k

k× ek

ωk
Ek
(
âke−ι̇(ωkt−k·r) + â†ke+ι̇(ωkt−k·r)

)
.

In free space, we must replace the sum by an integral: ∑k → 1
∆ω

∫
dω and âk →

√
∆ω âω

with ∆ω = 2πc
L
→ 0.

2.3 Eigenstates of the Harmonic Oscillator

The eigenstates of the harmonic oscillator Equation (2.28) are called Fock or number
states, |n〉. They are defined by the energy eigenvalue equation

Ĥ |n〉 = ~ω
(
â†â+ 1

2

)
|n〉 = En |n〉 , (2.36)

with the eigenenergy En. The operator product â†â takes a special role and we call it
the number operator, n̂. To see why, we examine the effect of the annihilation and
creation operators from Equations (2.32) and (2.33) on Equation (2.36). Multiplying
the creation operator from the left side leads, under consideration of the commutation
relation Equation (2.34), to the expression

~ω
(
â†â+ 1

2

) (
â† |n〉

)
= (En + ~ω)

(
â† |n〉

)
. (2.37)

Thus, the creation operator “creates” an energy quantum ~ω. If we do the same for
the annihilation operator, we see that one energy quantum is destroyed. If we apply
the annihilation operator several times, we decrease the energy eigenvalues by integer
multiples of ~ω. Since the Hamiltonian is positive definite, the eigenenergies need to
be positive and we will reach the lowest energy level E0 > 0 at a point such that

Ĥ (â |0〉) = (E0 − ~ω) (â |0〉) = 0 ,

with â |0〉 = 0. The corresponding eigenstate is called the vacuum state |0〉, because it
does not contain any mode quanta. The eigenvalue relation for the vacuum state is
then

Ĥ |0〉 = ~ω
(
â†â+ 1

2

)
|0〉 = 1

2~ω |0〉 .

This lowest energy eigenvalue ~ω/2 is called the zero-point energy and defines with
Equation (2.37) all other energies of the harmonic oscillator

En = ~ω
(
n+ 1

2

)
, n ∈ N .
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Thus, the number operator n̂ = â†â returns the state’s number of quanta

n̂ |n〉 = n |n〉 .

In conclusion, the eponymous effects of the creation â† and annihilation â operators
on Fock states are

â† |n〉 =
√
n+ 1 |n+ 1〉 ,

â |n〉 =
√
n |n− 1〉 ,

â†â |n〉 = n |n〉

and hence any Fock state can be obtained by repeated application of the creation
operator to the vacuum state

|n〉 =

(
â†
)n

√
n!
|0〉 .

Since the Fock states |n〉 form a complete orthonormal basis

〈n |n′〉 = δnn′ ,
∞∑
n=0
|n〉〈n′| = 1̂ ,

every arbitrary state can be expressed in the Fock basis.

2.4 Description of States by Quadrature Operators

To describe light fields quantum mechanically, it is convenient to go back to the
position and momentum operators from Equations (2.32) and (2.33) and introduce the
dimensionless operators

x̂ = 1
2
(
â† + â

)
=
√
ω

2~ · Q̂ ,

p̂ = ι̇

2
(
â† − â

)
= 1√

2~ω
· P̂ ,

(2.38)

which represent the amplitude and phase quadrature of the electric field. They obey
the commutation relation [

x̂, p̂
]

= ι̇

2 (2.39)

and the standard deviation product gives the uncertainty

∆Sx̂ ·∆Sp̂ ≥
1
4 . (2.40)

17
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We can rewrite the Hamiltonian of the harmonic oscillator as

Ĥ = ~ω
(
n̂+ 1

2

)
= ~ω

(
x̂2 + p̂2

)
and see that the continuous quadrature operators are related to the discrete number
operator. Wave and particle properties of a quantum are described by the same
Hamiltonian.

2.4.1 Vacuum States

The vacuum state |0〉 takes a special role in quantum mechanics. If we consider an
arbitrary quadrature

x̂θ = 1
2
(
âe−iθ + â†eiθ

)
= x̂ cos θ + p̂ sin θ (2.41)

of the vacuum state, we find that although the expectation value vanishes

〈x̂θ〉 =
〈

0
∣∣∣∣12
(
âe−iθ + â†eiθ

)∣∣∣∣ 0〉 = 0 ,

the variance gives non-zero fluctuation contributions

〈(∆x̂θ)2〉0 = 〈(∆x̂)2〉0 = 〈(∆p̂)2〉0 = 1
4 . (2.42)

Individual measurements can return non-zero values of the field, despite there being
no quanta in the mode. That means even the vacuum state is subject to Heisenberg’s
Uncertainty Principle. Since the variances of amplitude and phase quadrature are
minimal according to Equation (2.40), we speak about a vacuum noise limited state.

The existence of such vacuum fluctuations has extensive consequences. For example,
spontaneous emission in atomic systems can be seen as a vacuum noise stimulated
emission. Also quantum optics experiments are limited by vacuum fluctuations, i.e.
they couple into the experiment wherever optical losses are present.

2.4.2 Coherent States

To describe laser light, it is convenient to use the concept of coherent states |α〉, which
were introduced by Roy Glauber in 1963 [46]. It utilizes a vacuum state that is displaced
by a coherent amplitude α in phase space and hence exhibits the same noise properties.
The displacement operator is given by

D̂(α) = eαâ†−α∗â

18
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and defines the coherent state in the Fock basis as

|α〉 = D̂(α) |0〉

= e− 1
2 |α|

2
∞∑
n=0

αn√
n!
|n〉

= e− 1
2 |α|

2
∞∑
n=0

αn

n!
(
â†
)n
|0〉 .

(2.43)

If we apply the annihilation operator to Equation (2.43) we see that coherent states
are eigenstates of the annihilation operator

â |α〉 = α |α〉

and describe a minimal uncertainty state, i.e. it is vacuum noise limited

〈(∆x̂)2〉α = 〈(∆p̂)2〉α = 1
4 .

This corresponds to the definition: we displace a vacuum state and maintain its noise
properties. Formally, coherent states are over-complete∫

|α〉〈α| dα
π

= 1 .

Although they are not orthogonal

〈α | β〉 = e−|α−β|
2
,

the scalar product is vanishingly small for sufficiently different coherent amplitudes
and we can regard them as being orthogonal.

The probability to detect n photons in a measurement follows the classical Poisson
distribution

Pn = |〈n |α〉|2 = e−|α|
2 |α|2n

n! ,

where the mean photon number and variance are identical:

〈n〉α = 〈(∆n̂)2〉α = |α|2 .

Furthermore the ratio of photon number fluctuation to mean photon number decreases
with growing photon number

∆n
〈n〉

= 1√
〈n〉

.

In the limit for large 〈n〉 it reaches the classical approximation ∆n
〈n〉 → 0.
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In agreement with the classical theory, the expectation value of the electric field
from Equation (2.35) returns the classical expression

〈Ê(r, t)〉α = 〈α|
∑

k
ekEk

(
âke−ι̇(ωkt−k·r) + â†ke+ι̇(ωkt−k·r)

)
|α〉

=
∑

k
ekEk

(
αke−ι̇(ωkt−k·r) + α∗ke+ι̇(ωkt−k·r)

)
.

2.4.3 Squeezed States

Vacuum and coherent states represent special cases within the class of minimal un-
certainty states, since their fluctuations are distributed equally in both quadratures
〈(∆x̂)2〉 = 〈(∆p̂)2〉 = 1

4 . More generally, however, are the so-called squeezed states.
Their fluctuations are unequally distributed in different quadratures and the noise in
one quadrature can drop below the noise of the vacuum state. To obey Heisenberg’s
Uncertainty Principle, Equation (2.30), the noise in the orthogonal quadrature must
be larger than the vacuum noise

〈(∆x̂)2〉 = 1
16 〈(∆p̂)2〉

, (2.44)

while the product of the variances still describes a state of minimal uncertainty.
To obtain a squeezed state formally, we need to introduce the squeezing operator

Ŝ(ξ) = e
1
2 [ξ∗â2−ξâ†2]

with ξ = r eiΘ. The squeezing parameter is denoted by r ≥ 0 and 0 ≤ Θ ≤ 2π defines
the squeezed quadrature angle. A squeezed vacuum state can be created by applying
the squeezing operator to the vacuum state

|ξ〉 = Ŝ(ξ) |0〉 .
The changed noise properties become obvious if we consider an amplitude squeezed
state (Θ = 0) and look at the variances of the amplitude and phase quadratures

〈(∆x̂)2〉ξ = 1
4e
−2r ,

〈(∆p̂)2〉ξ = 1
4e

+2r .

The squeezing parameter r signifies the squeezing strength. It is evident that the noise
of one quadrature decreases at the expense of the other.

However, in everyday laboratory work, it is more convenient to describe the strength
of squeezing on a logarithmic scale, normalized to the vacuum noise. Therefore, we
introduce the decibel (dB) of the variance

Var
(
x̂θ
)

[dB] = 10 log10
〈(∆x̂θ)2〉ξ
〈(∆x̂θ)2〉0

= 10 log10
〈(∆x̂θ)2〉ξ

1/4
.
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CHAPTER 3

Gaussian States

Throughout this thesis, we deal with Gaussian states of light. In this case, all coherent,
squeezed and entangled fields can be described by continuous variables (CV) with
Gaussian statistics. In this chapter we will review some useful concepts and descriptions
of Gaussian CV states.

3.1 Gaussian States Described by the Wigner Function

In classical optics the electromagnetic field is completely described by the statistics
of the classical amplitude α. We introduce a phase space distribution P (α = q + ι̇p),
which quantifies the probability of finding a particular pair of position and momentum
components. Knowing this phase space distribution enables us to predict all statistical
quantities of the electromagnetic field.

In quantum physics the situation is slightly different. Due to Heisenberg’s Uncertainty
Principle, we can neither measure position and momentum precisely at the same time
nor predict them. However, we can use a probability distribution to describe the
properties of quantum states in a classical-like fashion.
The most intuitive representation for our purpose is the Wigner function. It was

introduced by Eugene Wigner in 1932 in his paper “On the quantum correction for
thermodynamic equilibrium” [51]. Although the Wigner function can become negative,
we are able to use it to predict the statistics of quantum observations. Hence, we will
treat it as a quasi-probability distribution.
We wish to describe the quantum effects on quadrature observables. Therefore, we

consider the phase space spanned by the amplitude quadrature x and phase quadrature
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p. For simplicity, we restrict ourselves to the one-mode case and obtain the Wigner
function

W (x, p) = 1
π

∫ 〈
x− ζ

2

∣∣∣∣∣ ρ̂
∣∣∣∣∣x+ ζ

2

〉
e2ι̇pζ dζ ,

where ρ̂ describes the density matrix of an arbitrary quantum state. Treating this as a
joint probability distribution for x and p yields some useful properties. The marginal
distributions ∫

W (x, p) dp = 〈x| ρ̂ |x〉 ,∫
W (x, p) dx = 〈p| ρ̂ |p〉

(3.1)

correspond to the projection of the Wigner function onto the quadrature axes and
return the amplitude and phase probabilities, respectively. The Wigner function is real

W ∗(x, p) = W (x, p)

for Hermitian operators ρ̂ and normalized∫∫
W (x, p) dxdp = 1.

The purity tr (ρ̂2) – as a measure of the state’s mixedness which ranges between zero
and unity (pure state) – is expressed through the Wigner function by

tr
(
ρ̂2
)

= π
∫∫

(W (x, p))2 dxdp. (3.2)

Further details can be found in many quantum optics text books. The description in
this section is based upon [52, 53].

Multimode Gaussian States

Since any Gaussian state can be described by its mean value and its variance, it is
convenient to express the Wigner function by these properties. According to [14] for a
multimode state it reads

W (ξ) = 1
(2π)N

√
det γ(N)

exp
{
−1

2 (ξ − µ)
[
γ(N)

]−1
(ξ − µ)T

}
,

where ξ and µ are 2N -dimensional vectors. ξ contains the quadrature pairs xi, pi of all
N modes and µ contains the corresponding mean values, which describe the state’s
displacement:

ξ = (x1, p1, x2, p2, . . . , xN , pN) ,
µ = (x1,0, p1,0, x2,0, p2,0, . . . , xN,0, pN,0) .
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3.1 Gaussian States Described by the Wigner Function

The 2N×2N matrix γ(N) represents the covariance matrix. It describes the correlations
between the state’s modes. Its elements are the symmetrized second moments according
to the Weyl correspondence [52]

tr
[
ρ̂ (∆ξ̂i∆ξ̂j + ∆ξ̂j∆ξ̂i)/2

]
= 〈(ξ̂iξ̂j + ξ̂j ξ̂i)/2〉

=
∫
W (ξ) ξiξj d2Nξ

= γ
(N)
ij , (3.3)

where ∆ξ̂i = ξ̂i − 〈ξ̂i〉 = ξ̂i because we extracted the mean value into the vector µ. For
Gaussian states the noise properties and correlations are completely determined by
the second-order covariance matrix γ(N)

ij . It is real, symmetric and its eigenvalues are
non-negative

γ(N) =
(
γ(N)

)∗
, γ(N) =

(
γ(N)

)T
, eig

(
γ(N)

)
≥ 0 .

The normalization is in agreement with Equation (2.42), such that the covariance
matrix of a vacuum state is given by γ(N)

ij = 1/4 δij , with δij the Kronecker delta. Since
its entries are the quadrature operators, they must obey their commutation relation,
Equation (2.39). For the 2N -dimensional case we can write it compactly as [54][

ξ̂k, ξ̂l
]

= ι̇

2Λkl ,

where the 2N × 2N matrix Λ consists of the 2× 2 matrix σ as diagonal elements for
each quadrature pair

Λ :=
N⊕
k=1

σ =

σ . . .
σ

 , σ :=
(

0 1
−1 0

)
.

As for the one-mode case, the N -mode state is subject to an uncertainty relation.
The compact notation of Heisenberg’s Uncertainty Relation for N modes reads [54]

B(γ) = min eig
(
γ(N) + ι̇

4Λ
)
≥ 0 . (3.4)

For a state of minimal uncertainty, B(γ) is zero. If it is negative, the covariance matrix
does not represent a physical state – it is not bona fide.
Since γ is real, the complex conjugate is an equivalent description. In a common

abbreviated notation, the positive semi-definiteness (minimum eigenvalue) is implied
and it reads

B(γ) = γ(N) ± ι̇

4Λ ≥ 0 .

To avoid confusion we will stick to the long version throughout this thesis.
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3.1.1 Examples of Wigner Functions

We consider the case of the two-dimensional phase space, N = 1. The quadrature
operator reduces to ξ̂ = (x̂, p̂) and the Wigner function becomes

W (x, p) = 1
2π
√

det γ
exp

−1
2

(
x− x0
p− p0

)T (
γ11 γ12
γ21 γ22

)−1 (
x− x0
p− p0

) .

The Coherent State

A coherent state corresponds to a displaced vacuum state. Hence, the covariance
matrix is equivalent to γij = 1/4 δij and the vector µ = (x0, p0) defines the displacement.
Keeping in mind that

γ−1 = 1
det γ

(
γ22 −γ12
−γ21 γ11

)
= 4

(
1 0
0 1

)
,

gives the Wigner function for a coherent state

W (x, p) = 2
π

exp
{
−2

(
(x− x0)2 + (p− p0)2

)}
.

Figure 3.1 shows an example with displacement µ = (3, 0). The red traces depict
the marginal distributions. They are projections of the Wigner function onto the x
and p axes and correspond to the amplitude and phase probabilities, according to
Equation (3.1). Their variances are 1/4 for the coherent state.

The Squeezed State

According to Equation (3.3), the entries of the covariance matrix for an amplitude
squeezed state are the squeezed and anti-squeezed variances of both quadratures
on its main diagonal. The secondary diagonal vanishes due to the anti-symmetric
commutator of x̂ and p̂, see Equation (2.39). For the amplitude squeezed state we get
〈(∆x̂)2〉 = 1

4e
−2r ≡ VS and 〈(∆p̂)2〉 = 1

4e
+2r ≡ VA and hence

γ =
(
VS 0
0 VA

)
, γ−1 =

(
1/VS 0

0 1/VA

)
.

The resulting Wigner function for a displaced, amplitude squeezed state then reads

W (x, p) = 1
2π
√
VSVA

exp
{
−(x− x0)2

2VS
− (p− p0)2

2VA

}
.

Figure 3.2 shows an example of a displaced amplitude squeezed state with a squeezing
factor of −6 dB.
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3.1 Gaussian States Described by the Wigner Function

Figure 3.1 – Wigner function of a coherent state with displacement µ = (3, 0). The red
traces depict the marginal distributions.

Figure 3.2 – Wigner function of a −6 dB amplitude squeezed state with coherent dis-
placement µ = (3, 0). The red traces depict the marginal distributions.
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3.2 Description of Linear Optics

In order to describe the preparation of a non-classical state we need not only the
covariance matrix of the initial (squeezed) state but we must also describe the state’s
propagation through a set of linear optics. The most important linear optical compo-
nents for (multimode) quantum networks are the phase shifter and the beam splitter.
We will use them to generate particular quantum states.

3.2.1 The Phase Shifter

The phase shift has no physical meaning for a single mode on its own. It is usually
defined with respect to a local oscillator, e.g. for homodyne detection (see Section 4.1),
or with respect to another non-classical mode. A phase shift acting on a squeezed
mode rotates its squeezing ellipse in phase space. Experimentally, this can be realized
by simply changing the optical path length of the beam. The quadrature pair of the
shifted mode transforms via the symplectic map ξ̂ → R̂(θ) ξ̂, while the covariance
matrix transforms as γ(1) → R̂ γ(1)R̂T with

R̂(θ) =
(

cos θ sin θ
− sin θ cos θ

)
.

The phase shift angle θ defines the state’s rotation in phase space.
Introducing a phase shift to the covariance matrix of a −5 dB amplitude squeezed

field
γ

(1)
A =

(
0.08 0

0 0.8

)
(3.5)

such that the ellipse is rotated by 45° leads to the following covariance matrix

γ
(1)
π/4 = R̂ (π/4) γ(1)

A R̂T (π/4)

=
(

0.44 0.36
0.36 0.44

)
.

Phase Shift of an N -mode State

To shift the phase of the Kth mode in an N -mode state, the matrix is the direct sum
of identities for the unchanged modes and the phase shift operation of the Kth mode:

R̂
(N)
K (θ) = 11 ⊕ . . .⊕ R̂K(θ)⊕ . . .⊕ 1N .
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3.2.2 The Beam Splitter

A common approach to generate entangled states is to interfere two squeezed beams
with a phase shift of 90° at a beam splitter. The symplectic map of a beam splitter
with power transmissivity τ ∈ [0, 1] reads [55]

B̂(τ) =


√

1− τ 0
√
τ 0

0
√

1− τ 0
√
τ

−
√
τ 0

√
1− τ 0

0 −
√
τ 0

√
1− τ

 . (3.6)

The quadrature pairs become ξ̂ → B̂(τ) ξ̂ and the covariance matrix transforms as
γ(2) → B̂(τ) γ(2)B̂T (τ).
Interfering the −5 dB amplitude squeezed state γ(1)

A (Equation (3.5)) with a −5 dB
phase squeezed state γ(1)

B = R̂(π/2) γ(1)
A R̂T (π/2) at a 50/50 beam splitter (τ = 0.5)

leads to the covariance matrix of a two-mode squeezed (TMS) state:

γ
(2)
TMS = B̂(0.5)

(
γ

(1)
A ⊕ γ

(1)
B

)
B̂T (0.5)

=


1√
2 0 1√

2 0
0 1√

2 0 1√
2

− 1√
2 0 1√

2 0
0 − 1√

2 0 1√
2




0.08 0 0 0

0 0.8 0 0
0 0 0.8 0
0 0 0 0.08




1√
2 0 − 1√

2 0
0 1√

2 0 − 1√
2

1√
2 0 1√

2 0
0 1√

2 0 1√
2



=


0.44 0 0.36 0

0 0.44 0 −0.36
0.36 0 0.44 0

0 −0.36 0 0.44

 .

In Section 5.1.1 we will see that such an entangled state is called inseparable, since we
cannot write the covariance matrix as the direct sum of its two subsystems γ(2)

TMS 6=
γ

(1)
A ⊕ γ

(1)
B .

Mixing Two Modes of an N -mode State

If we want to overlap the two modes K and L of an N -mode state at a beam splitter,
the matrix generalizes to:

(
B̂

(N)
K,L

)
i,j

=


√

1− τ δi,j +
√
τ δ2K−i,2L−j −

√
τ δ2L−i,2K−j i, j ∈M

1 δi,j i, j ∈ [1, 2N ] \M
.

The set M = {2K − 1, 2K, 2L− 1, 2L} defines the matrix entries that are affected by
the mixing. The other entries i, j ∈ [1, 2N ] \M correspond to the non-involved modes
which remain unchanged.
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Optical Losses

Optical loss in quantum optics does not only mean a loss of signal amplitude but
also an injection of vacuum noise into the system. This degrades the quality of the
light’s non-classical properties. Hence, any optical loss acts on the considered state as
a mixture with the vacuum noise. This can be modeled by the beam splitter matrix
from Equation (3.6). The transmissivity τ corresponds to the optical loss and the
second input mode is the vacuum state. Based on the complete two-mode relation

γ
(2)
mixed = B̂(τ)

(
γ

(1)
state ⊕ γ(1)

vacuum

)
B̂T (τ)

we obtain the expression for the lossy signal state by just considering the state’s mode

γ
(1)
lossy = (1− τ) γ(1)

state + τ γ(1)
vacuum . (3.7)

We will use this to manufacture squeezed states with well-defined quadrature noise,
since the state’s purity from Equation (3.2) is affected by optical losses. Hence, different
squeezing and anti-squeezing values can be obtained.

To describe the total state preparation we simply multiply all occurring transforma-
tion matrices and apply them to the initial state.

3.3 Reconstruction of a State’s Covariance Matrix

To characterize an experimentally generated Gaussian quantum state, it is convenient
to reconstruct the state’s covariance matrix. Its entries consist of the variance of
each mode (∗), the covariance of the same quadrature of different modes (◦), the
covariance of different quadratures of different modes (•) and the covariance of different
quadratures of the same mode (×), as depicted in Equation (3.8) for the two-mode
case:

γ(2) =


∗ × ◦ •
∗ • ◦
∗ ×
∗

 . (3.8)

Since the covariance matrix is symmetric, we simply need to consider the upper
triangular matrix. By recording data sets from different quadrature measurements,
we are able to calculate the variances (∗) and the covariances of different modes (◦, •)
directly. Since we cannot measure different quadratures of the same mode (×) at the
same time due to Heisenberg’s Uncertainty Relation, we need to reconstruct it by time
correlation independent measurements.
The covariance matrix is fully determined by the state’s second moments â2, â†2

and â†â; so too are the correlations of different quadratures of the same mode (×).
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Although we cannot measure the moments directly, we can reconstruct them by
measuring quadrature variances. We choose three different quadratures, obtaining

4 〈(∆x̂(0))2〉 = 〈â2〉+ 〈â†2〉+ 2〈n̂〉+ 1 , (3.9)
4 〈(∆x̂(π/2))2〉 = −〈â2〉 − 〈â†2〉+ 2〈n̂〉+ 1 , (3.10)
4 〈(∆x̂(π/4))2〉 = −ι̇〈â2〉+ ι̇〈â†2〉+ 2〈n̂〉+ 1 (3.11)

from Equations (2.41), (2.31) and (2.34) and extract the second moments by linear
combination of Equations (3.9), (3.10) and (3.11):

(3.9) + (3.10)
2 = 2〈n̂〉+ 1 ,

(3.9)− (3.10)
2 = 〈â2〉+ 〈â†2〉 ,

(3.11)− (3.9) + (3.10)
2 = −ι̇〈â2〉+ ι̇〈â†2〉 . (3.12)

Using the Weyl correspondence from Equation (3.3) allows us to express the entries of
the covariance matrix of different quadratures of the same mode (×) as

γ
(N)
i,i+1 = 〈(ξ̂iξ̂i+1 + ξ̂i+1ξ̂i)/2〉 , ∀i odd . (3.13)

As an example we calculate the case for (ξ̂1 = x̂1, ξ̂2 = p̂1):

γ
(N)
1,2 = 〈(ξ̂1ξ̂2 + ξ̂2ξ̂1)/2〉

= 1
2

〈1
2
(
â† + â

) ι̇

2
(
â† − â

)
+ ι̇

2
(
â† − â

) 1
2
(
â† + â

)〉

= 1
4
(
ι̇〈â†2〉 − ι̇〈â2〉

)
.

Thus, the correlations between a mode’s amplitude and phase quadrature (×) can
be expressed through a measurement of three quadrature variances, according to
Equation (3.12). Provided that the prepared state does not vary in time, we are
able to reconstruct its covariance matrix. In Chapter 5 we will discuss the required
measurements and reconstruct the 8× 8 covariance matrix of a bound entangled state
of light.

3.4 Verifying Gaussianity

Some criteria used within this thesis are valid only for Gaussian states. Although
the physical mechanisms of the setups used are solely based on Gaussian operations,
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unstable control loops or beam fluctuations could introduce phase noise. This would
lead to a non-Gaussian statistic. Therefore, we discuss some methods to confirm the
Gaussianity of the considered states.

In the experiment the raw data of the homodyne detectors are recorded and analyzed.
Here, we use simulated raw data, drawn from a Gaussian distribution and apply phase
noise that is normally distributed. It is hence describable by its standard deviation σ:

Φ(θ) = 1
σ
√

2π
e−

θ2
2σ2 .

The state’s Wigner function is affected by the phase jitter in the form [56]

WΦ(ξ′) =
∫
W (ξ′)Φ(θ)dθ ,

where the elements of ξ′ are rotated randomly

x′i = xi cos (θi) + pi sin (θi) ,
p′i = pi cos (θi)− xi sin (θi) .

The projection of the Wigner function onto one quadrature axis (see Equation (3.1))
corresponds to the data that is measured by the homodyne detector; it exhibits the
phase noise.

By building a histogram of the raw data, a first estimate of the underlying statistics
can be made. Figure 3.3 shows two histograms of simulated data: one pure Gaussian
and one Gaussian with a phase noise of σ = 0.1. No significant deviation from a
Gaussian is visible for small phase noise.
The cumulative distribution function (CDF) allows a closer look at the difference

between the data and a perfect distribution. It cumulates the area under the probability
distribution, i.e. the histogram:

CDF(x) =
∫ x

−∞
f(t) dt .

The CDFs of the simulated data (black curves in Figure 3.4) appear to be identical
with the CDF of a Gaussian distribution (red curve, left side). The difference of both
(red curve, right side) unveils deviations. In the case without phase noise, the deviation
occurs due to the limited sample size (4×106) and numerical errors. With the presence
of phase noise, a clear signature becomes visible. Interestingly, this appears at the
CDF’s biggest slope, where numerical errors are more likely. To ensure that no other
numerical artifacts spoil the analysis, another graphical test is used: the QQ-plot.
The QQ-plot compares a measured distribution to a Gaussian one. The sample

quantiles of the measured data are plotted against the theoretical quantiles of a perfect
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Figure 3.3 – Histograms of simulated data without (a) and with (b) phase noise (σ =
0.1). No significant deviation from a Gaussian fit (red) is visible.

Gaussian distribution. A perfect Gaussian distribution results in a straight line, while
random numbers with a Gaussian statistic are distributed along that line, as shown for
example in Figure 3.5a. Figure 3.5b shows the QQ-plot of the data with a phase noise
of σ = 0.1. A clear deviation is visible and indicates a non-Gaussian statistic.

Small phase fluctuations can hence be unveiled by using graphical tests such as the
CDF’s residual or the QQ-plot.
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×10−3

(a) Simulated data drawn from a Normal distribution. No phase noise was introduced.

×10−3

(b) Simulated data drawn from a Normal distribution with phase noise of σ = 0.1.

Figure 3.4 – Cumulative distribution function (CDF) of simulated data without phase
noise (left, black) and a perfect Gaussian CDF (left, red). The residuals
(right) do not vanish due to limited sample size (4× 106) and numerical
errors (a). The deviation becomes significant with introduced phase noise
(σ = 0.1) (b).
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(a) (b)

Figure 3.5 – QQ-Plots of simulated data without (a) and with (b) phase noise (σ = 0.1).
A clear deviation from a Gaussian distribution (black line) is visible for
the latter.
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CHAPTER 4

Experimental Techniques

In this chapter we will review some experimental techniques that were used for con-
ducting the experiments.

4.1 Homodyne Detection

Homodyne detection is used to analyze the field fluctuation of a (quantum) state. With
a balanced homodyne detector an arbitrary quadrature of the state is accessible. A
simplified version is the self homodyne detector, which only allows observation of the
fluctuations in the amplitude quadrature of a bright field.

Balanced Homodyne Detection

The principle of optical balanced homodyne detection was developed by Horace Yuen
and Jeffrey Shapiro [57] in 1980: the signal field of interest (âsig) is superimposed with a
much stronger (at least an order of magnitude in intensity) optical local oscillator (âLO)
at a 50/50 beam splitter. The output fields (â1, 2) are detected with photo-detectors
that measure the difference current, as shown in Figure 4.1. The observed quadrature
is determined by the phase θ between the two input fields.
According to the input/output relation of a beam splitter (Equation (C.1)), we
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aLO
ϕ

asig
a2

a1

6.4 MHz

15 MHz

400 kHz

eLO

Figure 4.1 – Schematic of a balanced homodyne detector, as used for analyzing the
bound entangled states. It includes a phase control loop operating at a
sideband frequency of 15MHz and data acquisition at 6.4MHz. The phase
control loop is described in Section 4.2.

obtain for the output fields of the 50/50 beam splitter

â1 = 1√
2
(
âsig + eiθâLO

)
,

â2 = 1√
2
(
âsig − eiθâLO

)
.

Writing the operators as a sum of their coherent amplitude and quantum fluctuations
(â = α+ δâ), neglecting second order fluctuation products (δâ · δb̂ ≈ 0) and assuming a
perfect quantum efficiency of the photo-diodes (ηpd = 1) we obtain the photo-currents

î1, 2 ∝ â†1, 2 · â1, 2

= 1
2
[
â†sig ± e−iθâ†LO

] [
âsig ± eiθâLO

]
≈ 1

2

{
|αsig|2 + |αLO|2 ± 2αsigαLO cos θ

+ αsig
(
δx̂sig ± δx̂−θLO

)
+ αLO

(
δx̂LO ± δx̂θsig

)}
.

(4.1)

If we assume |αLO| � |αsig| we can neglect products containing only αsig. The difference
of the photo-currents reads

î− ∝ 2αsigαLO cos θ + αsigδx̂
−θ
LO + αLOδx̂

θ
sig

≈ 2αsigαLO cos θ + αLOδx̂
θ
sig .
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Considering the radio frequency (RF) spectrum

i−(ω, θ) ∝ αLO〈δx̂θsig(ω)〉

we see that the signal is proportional to the quantum noise of quadrature x̂θsig, scaled
by the coherent amplitude of the LO. The phase θ between the signal field and LO
determines the observed quadrature. By stabilizing the phase to a certain value (as
described in Section 4.2), the quantum noise of the desired quadrature can be recorded
constantly.

Self Homodyne Detection

Self homodyne detection is a simple scheme to analyze the amplitude fluctuations of
a bright beam. By removing the local oscillator of a balanced homodyne detector,
i.e. replacing it by a vacuum field, we obtain from Equation (4.1) for the single
photo-detector currents

î1, 2 ∝ â†1, 2 · â1, 2

≈ 1
2

[
|αsig|2 + αsig (δx̂sig ± δx̂vac)

]
.

The sum of the photo-detector currents gives information about the fluctuations in
the amplitude quadrature, while the difference results in the reference vacuum noise
depending on the coherent amplitude αsig:

î+ = |αsig|2 + αsigδx̂sig ,

î− = αsigδx̂vac .

Hence, no mode matching of the signal field and a local oscillator and no phase control
loop is needed to compare the signal’s amplitude noise with the vacuum fluctuation.
This method was used in Chapter 6 to analyze the amplitude correlations of two bright
twin beams.

4.2 Single Sideband Modulation – A Phase-Locking Scheme

To analyze a quantum state, it is necessary to stabilize the phase of a balanced
homodyne detector to any quadrature at will. A convenient way to achieve this is to
add a single sideband (outside the measurement band) to the signal field. This can
either be achieved by amplitude and phase modulating the signal field or overlapping
the signal field with a frequency-shifted field, e.g. introduced by an acousto-optical
modulator (AOM) or by a second offset phase-locked laser. This corresponds to a
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Figure 4.2 – Error signal for balanced homodyne detectors and phase gates. (a) Correct
error signal obtained from the difference of two photo-detectors. The eLO
phase ϕ corresponds to the zero crossing at the desired quadrature angle.
(b) Error signal obtained from only one photo-detector. The zero crossings
do not correspond to the desired quadrature angles.

modulation of the amplitude and phase quadrature and can be described as the coherent
addition of both:

1
2 âsig

[
1 + m

2
(
eι̇ωkt + e−ι̇ωkt

) ]
+ 1

2 âsig

[
1 + m

2
(
eι̇ωkt − e−ι̇ωkt

) ]
= âsig

[
1 +meι̇ωkt

]
,

where m denotes the modulation strength and ωk the modulation frequency. Since
we are interested in stabilizing the relative phase θ between local oscillator âLO and
signal beam âsig we drop the quantum fluctuations and simply consider the classical
amplitudes as

âsig(ωk)→ αsig ·
[
1 +meι̇ωkt

]
,

âLO(θ)→ αLO · eι̇θ .

According to the input/output beam splitter relation (Equation (C.1)), the interference
of these beams at a 50/50 beam splitter yields the output fields

α1 = 1√
2

[
αsig

(
1 +meι̇ωkt

)
+ αLOeι̇θ

]
,

α2 = 1√
2

[
αsig

(
1 +meι̇ωkt

)
− αLOeι̇θ

]
.

By detecting the photo-currents ij ∝ αjα
∗
j , taking their difference and considering the

alternating current (AC) part, we obtain the expression

∆iAC = 2αsigαLOm cos (ωkt− θ) .
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from SQZ1

from SQZ2

ϕ

Figure 4.3 – The phase stabilization at a phase gate works in the same manner as at
a balanced homodyne detector, but only a small fraction of the beam
splitter’s output ports is tapped off behind mirrors and is detected. Hence,
the quantum states are barely attenuated.

Mixing this signal electronically with sin (ωkt− ϕ) and low-pass filtering the output
gives us the error signal

∆iAC,es ∝ αsigαLOm sin (θ − ϕ) ,

where ϕ denotes the phase of the electronic local oscillator (eLO). Setting ϕ to an
arbitrary angle θ gives a zero crossing in the error signal at that angle and allows
stabilization of the homodyne detector to an arbitrary quadrature x̂θ.

Phase Gates

The stabilization of the phase between two signal fields can be treated in almost the
same manner. The phase gates, as used in Chapter 5 to superimpose two quantum
states under a specific angle, consist of a 50/50 beam splitter and a piezo actuated
mirror (see Figure 4.3). In order not to attenuate the quantum states, only a small
fraction of the output ports is tapped off at the mirrors and is detected. The photo-
detectors’ signals yield the same error signal as for the balanced homodyne detector.
Figure 4.2 shows the obtained error signal and an error signal produced with only one
photo-detector. Although it is tempting to use only one photo-detector and hence
introduce less optical loss, the latter is useless, since the error signal contains an offset
term proportional to the sine of the electronic local oscillator phase ϕ:

iAC,es ∝ αsigαLOm sin (θ − ϕ)− |αsig|2m sin(ϕ) .
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4.3 Variable Attenuation for Specific Squeezing Settings

To prepare some quantum states, in particular bound entangled states, pairs of specific
squeezing and anti-squeezing values are required. To set these parameters experimen-
tally, a variable optical attenuator is introduced to the squeezed beam; it consists of a
λ/2-wave plate and a polarizing beam splitter (PBS), compare with 7 in Figure 5.2
(a). Considering a squeezing cavity without losses, the variances of squeezing and
anti-squeezing are related via VS · VA = 1/16, as given by Equation (2.44). According
to Equation (3.7), the attenuated variances, in the following denoted by a prime, are
given by

V ′S = (1− τ) · 1
16 · VA

+ τ

4 , (4.2)

V ′A = (1− τ) · VA + τ

4 , (4.3)

where τ denotes the optical loss (0 ≤ τ ≤ 1). Dividing Equation (4.3) by Equation (4.2)
shows that the ratio of initially produced squeezing and anti-squeezing is equal to the
ratio of the attenuated pair:

V ′A − 1
4

V ′S − 1
4

=
VA − 1

4
1

16·VA
− 1

4
≡ κ .

Solving this equation for the variance of the anti-squeezing gives

VA = 1− κ
8

−
(+)

1 + κ

8 = −κ4 , (4.4)

which is necessary to obtain the attenuated values. Subtracting Equation (4.2) from
Equation (4.3) leads to the required attenuation to obtain the desired squeezing and
anti-squeezing values

τ = 1− V ′A − V ′S
VA − 1

16·VA

. (4.5)

In the case of a non-ideal squeezed light source we need to measure squeezing and
anti-squeezing values and use Equation (4.4) to determine the initial squeezing value,
i.e. before any cavity losses apply. Equation (4.5) gives the intrinsic loss τi of the
squeezing generation and detection, where V ′ now denotes the measured values. This
loss enables us to determine how much anti-squeezing we need to produce by adjusting
the optical pump field, see Equation (4.3). Since the optical efficiency is linear in τ
(η(τ) = 1− τ), we obtain the additionally required loss as

τadd = 1− 1− τ
1− τi

. (4.6)
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Example

For the preparation of bound entanglement, one of the squeezers requires −2.7 dB
squeezing and +7.1 dB anti-squeezing. Considering a lossless squeezing cavity, we need
to start with +9.5 dB anti-squeezing and introduce an attenuation of τ = 47.8%.

Figure 5.3 shows the measured squeezing and anti-squeezing values. Since the state
is not pure, we find an intrinsic loss of 19.5% for the set of (−5.7 dB, +9.5 dB) at
the measurement frequency 6.4MHz; this corresponds to an initial squeezing value of
−10.3 dB. According to Equation (4.3) we need to reduce the optical pump power until
we obtain +8.7 dB anti-squeezing and introduce 35.2% additional loss to achieve the
desired attenuation, see Equation (4.6). Alternatively, we can reduce the attenuation
manually until we obtain the correct value.
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CHAPTER 5

Bound Entanglement

The preparation of complex multimode entangled states of light is the basis of applica-
tions in quantum information processing and fundamental research in quantum physics.
A prominent example of the latter is the preparation of bound entanglement.

Bound entanglement, which only exists in multimode quantum states, is of fun-
damental interest since it cannot be distilled, i.e. one is not able to extract fewer
copies of more strongly entangled states by local operations and classical communi-
cation (LOCC) [58]. In contrast, “free” entanglement is distillable [24, 59, 60]. This
irreversible character has triggered entire theoretical research programs [61], which
try to link entanglement theory to a thermodynamical picture [28, 29]. Since bound
entanglement is indistillable and seems to be unattractive for applications at first
glance, it can – so far in theory – be activated and helps to improve the transmission
of quantum information [30, 31]. In order to study such connections, new theoretical
and experimental means of constructing multimode states must be investigated .
This chapter demonstrates the continuous unconditional preparation of one of the

rarest types of multimode entanglement in the CV regime – a four-mode bipartite
(2× 2) bound entangled state.

5.1 Theoretical Description of Bound Entanglement

As stated above, bound entanglement represents entangled states which cannot be
distilled. In order to identify them, we need to introduce criteria of entanglement and
distillability in the CV regime.
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5.1.1 Inseparability – An Entanglement Measure

A bipartite quantum state is said to be separable – not entangled – if we can describe
the covariance matrix of the state as a direct sum of the state’s subsystems γA and γB.
Their covariance matrices need to be physical according to Heisenberg’s Uncertainty
Relation (Equation (3.4)) and have to obey the inequality [62]:

γ ≥ γA ⊕ γB

≥
(
γA 0
0 γB

)
.

(5.1)

It is common to assume matrix ordering in such formulations: the matrix inequality
A ≥ B implies that A−B is a positive semidefinite matrix: eig (A−B) ≥ 0.
If we cannot find any physical covariance matrix of the subsystems A and B with

γA,B ≥ −
ι̇

4Λ ⇔ eig
(
γA,B + ι̇

4Λ
)
≥ 0 (5.2)

that fulfill Equation (5.1), the state is entangled; compare this with Equation (3.4).
Its subsystems are therefore correlated more strongly than any classical state could be;
as described by the direct sum of the covariance matrices.
This suggests a natural entanglement measure for Gaussian states by calculating

“how far” the state is away from being separable [63]. By introducing a factor x ∈ R+

in Equation (5.2)

eig
(
γA,B + ι̇x

4 Λ
)
≥ 0 ,

we can determine for which x Equation (5.1) is fulfilled. The largest possible x gives the
margin “how far” the state is away from being separable. Separable states have x ≥ 1
and Heisenberg’s Uncertainty Relation is satisfied. For inseparable states Equation (5.1)
cannot be fulfilled with physical states – Heisenberg’s Uncertainty Relation is violated
and x is smaller than one. We thus introduce the entanglement measure [64]

E(γ) = 1− max
γA,γB

x (5.3)

with the constraints

eig
(
γ − (γA ⊕ γB)

)
≥ 0, eig

(
γA,B + ι̇x

4 Λ
)
≥ 0 .

E(γ) > 0 implies that the state is entangled. The problem of solving these equations
is known as a convex optimization problem that can be efficiently solved numerically;
see Appendix A.
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5.1.2 Partial Transposition – A Measure for Distillability

To obtain a measure for distillability, we consider a criterion that is commonly used as
an entanglement measure for bipartite two-mode entangled states: the partial transpo-
sition of the state’s density matrix [65]. In the CV regime, the partial transposition
corresponds to a mirror reflection or a “local time reversal” which only affects the pB
coordinate. The Wigner function transforms as

W (xA, pA, xB, pB)→ W (xA, pA, xB,−pB) .

Expressed in covariances, the condition for separable states reads [54]

eig
(
γΓ + ι̇

4Λ
)
≥ 0 , γΓ = MγM , M = diag (1, 1, 1,−1) .

If the state remains physical under partial transposition, we obtain positive eigenvalues
and the state is said to be PPT (positive partial transposition). The local subsystems
can be modified individually – the state is separable. If we obtain at least one negative
eigenvalue of the partial transposition (NPT) the subsystems cannot be modified locally
without changing the whole state – the state is entangled.

However, this is only true for systems with 1×N modes. For higher dimensional
states, such as the bound entangled state with 2 × 2 modes under discussion, the
partial transposition provides only information about the state’s distillability. NPT
entangled states can be distilled while PPT entangled states cannot [62]. For our bound
entangled state we obtain the local time reversal by changing the sign of all momentum
coordinates belonging to mode B and introduce M = diag (1, 1, 1, 1, 1,−1, 1,−1). As
a quantitative measure for the state’s distillability, we take the minimum eigenvalue of
the partially transposed covariance matrix

P (γ) = min eig
(
γΓ + ι̇

4Λ
)
. (5.4)

A positive value of P (γ) attests that the state is not distillable.
In order to demonstrate that a state is bound entangled, we need to reconstruct the

state’s covariance matrix and verify that it is entangled (E(γ) > 0) and not distillable
(P (γ) > 0).

5.2 The Search for Bound Entangled States

The class of CV bipartite entangled states is in general NPT entangled and therefore
distillable. Bound entangled states only exist in very small regions in phase space. In
order to hit these tiny regions in phase space experimentally, we must find suitable
states theoretically. This search was performed by colleagues in Potsdam and Mexico;
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see the supplemental material of [66]. We will briefly sketch the techniques used to
identify the regions of robust bound entanglement.
With the local unitary operations of squeezing and phase shifting (see Section 3.2)

we are able to convert a covariance matrix to its bipartite normal form [67]. The
advantage of rearranging the covariance matrix is a reduction from 36 to just 16 free
parameters. The general bipartite normal form of the four-mode covariance matrix
reads

γ =



λ1 0 0 0 λ5 0 λ9 λ10
0 λ1 0 0 0 λ6 λ11 λ12
0 0 λ2 0 λ13 λ14 λ7 0
0 0 0 λ2 λ15 λ16 0 λ8
λ5 0 λ13 λ15 λ3 0 0 0
0 λ6 λ14 λ16 0 λ3 0 0
λ9 λ11 λ7 0 0 0 λ4 0
λ10 λ12 0 λ8 0 0 0 λ4


.

In order to obtain a bound entangled state, we vary the 16 parameters. We arbitrarily
restrict them to the boundary of ±1/2 and sample the hypercube [−1/2, 1/2]×16

uniformly. Once we find a covariance matrix describing a bound entangled state,
determined by the inseparability and distillability criteria in Equations (5.3) and (5.4),
respectively, we construct a random walk to improve the robustness. This is based
on the 16× 15/2 two-dimensional planes, spanned by the R16 parameter space. We
either perform a rotation of an arbitrary plane – thus increasing one parameter and
decreasing another by the same amount – or we perform a small displacement along a
plane’s normal. After each step, we check whether the state is more bound entangled
and repeat the procedure until no variation yields an improvement.
The theoretically most bound entangled state was found to be characterized by

an inseparability value E(γ) = 0.054 and a distillability value P (γ) = 0.132. In
the experiment, however, it is too complex to engineer any arbitrary quantum state.
Therefore the experimental layout and its restrictions were taken into account, as
discussed in Section 5.3. We modeled the optical components directly and filtered the
results allowing only covariance matrices corresponding to achievable experimental
parameters.

5.3 Experimental Realization

In this section we discuss the experimental setup used to generate unconditional bound
entangled states of light in the CV regime. Since bound entanglement only occurs in
multimode quantum states, we constructed a four-mode bipartite state, i.e. two parties
(Alice and Bob) possess two modes each.
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Squeezed modes Vacuum modeSQZ 1
SQZ

2 SQZ 3

Alice 1 Alice 2

PG1

PG3 PG2

Bob 1 Bob 2

Figure 5.1 – Overview of the experimental setup: Three squeezed-light sources (SQZ1−3)
and three phase gates (PG1−3) are utilized to generate bound entanglement.
Four homodyne detectors are needed to verify the state’s properties. We
prepared a four-mode bipartite bound entangled state, i.e. two parties
(Alice and Bob) possess two modes each.

For this purpose we used three squeezed-light fields and a vacuum mode as input
states. They were superimposed on three phase gates, each of which consists of a
beam splitter and a piezo mounted controllable mirror. Figure 5.1 shows a schematic
overview. The four homodyne detectors are not needed for the state preparation but
are necessary for its characterization.

Figure 5.2 shows the complete optical setup. In the following sections we discuss all
components required to generate a bipartite bound entangled state.

5.3.1 Laser and Squeezer

The main laser source was a Neodymium-doped Yttrium Aluminum Garnet (Nd:YAG)
solid state laser. The device used – model Diabolo by Inno-Light [68] – provided two
single-mode output fields at 1064 nm and 532 nm with an optical power of 350mW
and 800mW, respectively. They were used as control and pump fields for the squeezed
light sources and served as a local oscillator for the homodyne detection.
The squeezing was generated by type I optical parametric down-conversion in a

standing-wave cavity built around a nonlinear χ(2) medium. Appendix B provides a
theoretical description. The χ(2) medium was a 7% Magnesium oxide doped Lithium
Niobate (MgO:LiNbO3) crystal with a size of 2.5× 5× 6.5mm3. The crystal’s back 1

is highly reflective (R > 99.96%) for 1064 nm and 532 nm light, whereas the flat front
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800 mW @ 532 nm &
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Figure 5.2 (a) – Experimental setup: Squeezing generation.
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Figure 5.2 (b) – Experimental setup: Entanglement generation and detection.
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Figure 5.3 – Squeezing spectrum of Squeezer 3. The anti-squeezing and squeezing
values of +9.5 dB and -5.7 dB at 6.4MHz were obtained with 115mW
optical pump power. This is sufficient to generate the initial squeezing
parameters, see Table 5.1 and Section 4.3.

2 has an anti-reflective coating (R < 0.05%) for both wavelengths (for numbers see
Figure 5.2). The front mirror 3 is mounted on a piezo-electric transducer (PZT) and
has a reflectance of R1064 = 94% and R532 = 25%. This yielded a finesse of F1064 = 100
and F532 = 4.3, respectively. The length of the cavity determined its free spectral
range (FSR) to about 4GHz. Phase matching of the fundamental and second harmonic
field was achieved at a temperature of about 60°C, to which the crystal was actively
stabilized. To control the length of the cavity, the control field was phase modulated
at 30MHz with an electro-optical modulator (EOM) 4 and coupled into the cavity
from the back 1 . The reflected field experienced a 90° polarization change at the
λ/2-Faraday rotator combination 5 and passed the polarizing beam splitter (PBS).
The photo-detector signal was demodulated at the modulation frequency to obtain a
Pound-Drever-Hall (PDH) error signal [69] to control the cavity’s length. More detailed
descriptions of the squeezed-light sources can be found in [70, 71].
Figure 5.3 shows an example of the squeezing level produced by Squeezer 3 as a

function of sideband frequency. The frequency used later on is highlighted. To generate
a bound entangled state, specific pairs of squeezing and anti-squeezing values are
required. Therefore, the anti-squeezing level is first set to the desired value by adjusting
the pump power with a λ/2-PBS combination 6 . Since squeezing is more degraded by
optical loss than anti-squeezing (see Equation (3.7)) an additional variable attenuator
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in the squeezing path 7 decreased the squeezing to the required value. The procedure
to set the required values is described in Section 4.3.
To verify that the values are set correctly, they were checked at the homodyne

detectors. Since further losses were introduced by several beam splitters, they were
measured and included in the optical layout’s model, see Section 3.2. The measured
optical losses from the squeezers to the homodyne detectors read about 78%.

5.3.2 Generation of Hot Squeezing

Among conventional squeezing, the generation of bound entanglement requires hot
squeezing. The term hot squeezing denotes the case when a state’s quadrature noise dis-
tribution does not fall below the vacuum noise level for any quadrature. It corresponds
to a classical (thermal) state with an unequal noise distribution.
There are several ways to generate a hot squeezed state. One approach is to su-

perimpose two amplitude-squeezed modes with a relative phase of 90° and different
anti-squeezing values on a 50/50 beam splitter. This corresponds to producing an
entangled two-mode squeezed state, but in this case one mode is discarded. A more clas-
sical approach is to displace a coherent state by an amplitude and a phase modulation
with a true random noise distribution of unequal strength at the desired frequency.

We chose a hybrid way to generate a hot squeezed state by applying a random phase
modulation with a second EOM 8 to the control field of Squeezer 1. By locking
the squeezer to the amplification mode we produce a phase squeezed state. The
anti-squeezing gives the noise in the amplitude quadrature, which can be controlled
by the optical pump power 9 . The strength of the random phase modulation at
the measurement frequency of 6.4MHz sets the required phase noise. To obtain a
random phase modulation, the EOM is driven with the amplified output of a homodyne
detector that measures vacuum noise 10 . Pseudo-random numbers are insufficient
since they could introduce unintended correlations into the final state.

5.3.3 Locking Scheme

In order to lock the phase gates and homodyne detectors to specific angles and quadra-
tures, a single sideband was introduced to the squeezed output beam of Squeezer 1. For
this purpose we overlapped the output of a second laser with the transmitted control
field of Squeezer 1 at a dichroic beam splitter (DBS) 11 , which reflects at 1064 nm
and transmits at 532 nm. Due to imperfect coatings, about 0.5% of the infrared fields
was transmitted. This was sufficient to generate a beat-note between the transmitted
control field and the reflected field of the second laser. We separated the beat note
from the pump field with another DBS 12 and detected the beat with a photo-detector
13 . This provided an error signal for the phase-lock loop (PLL) and we locked the two
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(a) Arbitrary input states of first phase
gate with interference angle ϕ. The
carriers are aligned with the principle
axes χ and χ′ of the quantum states.

ξ2
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α

(b) State after interference at the beam
splitter. The carriers are added co-
herently and the new principal axes ξ
are no longer aligned with the carrier.

Figure 5.4 – Interference at the phase gates. The angle α between the carrier and the
principal axis of the quantum noise depends on the phase difference ϕ,
the coherent amplitudes and the squeezing / anti-squeezing values. Since
only the carrier can be used to verify the angle between quantum noises,
special care must be taken.

beams at an offset frequency of 15MHz. A fraction of the additional laser beam was
transmitted by the first DBS 11 and acted as a single sideband on the squeezed beam.
Since the single sideband was present at every phase gate and homodyne detector, it
was used to stabilize each device independently to an arbitrary angle by setting the
electronic local oscillator (eLO) phase; see Section 4.2 for details.

5.3.4 Phase Gates

The phase gates (PG) were used to introduce a specific phase shift between the squeezed
(PG1) and entangled fields (PG2&3). They consist of a 50/50 beam splitter 14 , an
actively controlled piezo mounted mirror 15 , and a signal tap-off in each output port
behind a highly-reflective (HR) mirror and a mirror with 1% reflectivity 16 . The
detected signals are subtracted and the obtained error signal provides a control signal
that is fed back to the controllable mirror, see Section 4.2.

We are interested in a precisely set interference angle of the quantum noise distribu-
tion. Since the photo-detectors can only detect the classical carrier fields, we need to
pay special attention here. Figure 5.4 depicts the problem. If we interfere two arbitrary
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Table 5.1 – Initial parameters of the experimentally realized bound entangled state.

(a) Squeezing variances

Squeezer Squeezing Anti-Squeezing

1 0.50 (+3.0 dB) 0.87 (+5.4 dB)
2 0.16 (−2.0 dB) 0.64 (+4.0 dB)
3 0.14 (−2.7 dB) 1.29 (+7.1 dB)

(b) Phase gate settings

Phase gate Angle

1 90°
2 41°
3 140°

squeezed states with a relative phase of ϕ at the first phase gate – e.g. an amplitude
and a phase squeezed state as in Figure 5.4a – the carriers of the input fields are
aligned with the principal axis χ and χ′ of the quantum noise distribution. Depending
on the interference angle ϕ, the carriers’ coherent amplitudes and the squeezing /
anti-squeezing strengths, the principal axes of the quantum noise distribution get
rotated by the angle α as shown in Figure 5.4b and are no longer aligned with the
carrier. Proceeding with this state at the subsequent phase gates requires a precise
knowledge of these parameters, since a small deviation can easily lead to a large error.

5.3.5 Measurement Process

To reconstruct the state’s covariance matrix, we measured the noise of different
quadratures of the four-mode state, as described in Section 3.3. Therefore, we used a
balanced homodyne detector for each mode, see Section 4.1. They consist of a 50/50
beam splitter (BS) 17 where the signal field and a strong local oscillator (LO) are
interfered. The spatial beam profile of the LO is cleaned with a three mirror ring cavity
18 ; its linewidth of 55 kHz ensured a vacuum noise limited field at the measurement
frequency of 6.4MHz. The phase between both beams is controlled with a piezo
mounted mirror 19 . With the single sideband modulation all homodyne detectors
were stabilized independently; for details see Section 4.2. The detected signals were
subtracted, electronically mixed with a 6.4MHz electronic local oscillator (eLO) and
low-pass filtered with a sixth order anti-alias filter with corner frequency of 400 kHz, see
[71] for details. The measured homodyne data were sampled with an analog-to-digital
converter (ADC). This was a 14 bit ADC PCI-6133 from National Instruments with
a sampling rate of 2.5MS/s, and was controlled by a Labview script.

According to Section 3.3, we need to measure the noise of the amplitude, phase and
45° quadratures in order to reconstruct the covariance matrix. Since entanglement
is invariant under local unitary transformations, we could choose any two arbitrary
orthogonal quadratures as amplitude and phase quadratures. For experimental con-
venience, each mode’s quadrature parallel to the carrier field was considered as the
amplitude quadrature. The detectors’ direct current (DC) outputs are used to identify
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Table 5.2 – Angle sign permutations of the phase gates. The angles of the phase gates
need to be set to the same direction in order to preserve the entanglement
properties.

Angle PG2 Angle PG3 E (γ) P (γ) Bound?

41° 140° 0.011 0.0097 !

−41° 140° 0.184 −0.160 %

−41° −140° 0.011 0.0097 !

41° −140° 0.184 −0.160 %

these angles. Another Labview script was used to save and recall the required eLO
phases experimentally.
For each detector and quadrature measurement, 4× 106 data points were recorded

to analyze the state.

5.3.6 Experimental Parameters

The theoretical search for bound entangled states in Section 5.2 produced a variety of
possible parameters. To simplify the experimental complexity, we restricted the angle
of the first phase gate to be 90°. Thus we could ensure that the principle axes of the
quantum noise distribution are still aligned with the carrier fields at phase gates 2 and
3. Their angle settings were hence simplified drastically.

Table 5.1 shows the final set of the experimental parameters. The initial squeezing
variances were verified at the homodyne detectors by modeling the setup’s losses, as
described in Section 3.2. The first squeezer needs to produce a hot squeezed state.
Without hot squeezing, no parameter set was found that produces a four-mode bipartite
bound entangled state.
The phase gate angles were set using the homodyne detector’s DC voltages, which

depend on the beam’s carrier fields. Special care needed to be taken, since 41° and
-41° will not yield the same result but cannot be distinguished experimentally without
reconstruction of the covariance matrix. Table 5.2 shows simulation results of sign
permutations for the phase gates. As long as both phase gates are set in the same
direction, the entanglement properties are preserved. Figures 5.5 and 5.6 show the full
phase space of the state’s distillability and inseparability spanned by phase gates 2
and 3. Figures 5.7 and 5.8 illustrate the phase space of the product P (γ) ·E(γ), which
corresponds to a natural measure of bound entanglement. We set E(γ) < 0 to zero to
ensure that only areas of bound entanglement have a positive product. We see that
the possible areas to obtain bound entanglement are rather rare and tiny.
Small variations of the parameters will result in completely different entanglement
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Figure 5.5 – Phase space of distillability spanned by phase gates 2 and 3. The squeezing
parameters are kept constant. The z-axis depicts the distillability P (γ).
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Figure 5.6 – Phase space of inseparability spanned by phase gates 2 and 3. The squeez-
ing parameters are kept constant. The z-axis depicts the inseparability
E(γ). Values for E(γ) < 0 are set to zero.
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Angle of phase gate 2 [deg]

Angle of phase gate 3 [deg]
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Figure 5.7 – Phase space of bound entanglement spanned by phase gates 2 and 3, while
the squeezing parameters are kept constant. The z-axis depicts the product
of P (γ) · E(γ). Values for E(γ) < 0 are set to zero to ensure that only
bound entangled states have a positive product. At first, it appears that
all values are smaller than zero and hence no bound entanglement occurs.
Figure 5.8, however, shows only positive values and unveils tiny regions of
bound entanglement.

properties. Figure 5.9 shows an example of varying one parameter, namely the phase
of phase gate 3. Only in a small region (the white area) does bound entanglement
occur and slight angle deviations immediately alter the separability and distillability.
The properties of a generated bound entangled state can therefore not be predicted
with a high accuracy. Further investigations to control and verify the initial squeezing
values and phase gate settings are desirable. The results in Section 5.6 were obtained
by carefully setting the initial parameters and then walking through phase space by
slightly varying some parameters, reconstructing the covariance matrix and checking
for bound entanglement.

5.4 Gaussianity of the Prepared States

The criteria for bound entanglement – distillability and inseparability – are strictly
speaking valid only for Gaussian states. Although the physical mechanisms of the setup
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Figure 5.8 – Zoom of Figure 5.7. Only positive values are plotted. We see that bound
entanglement occurs only in a fraction of the entire phase space.
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Figure 5.9 – Occurrence of bound entanglement, depending on the angle of phase gate 3.
For P (γ), E(γ) > 0 (white area) bound entanglement occurs. The other
parameters are kept constant as stated in Table 5.1. Additionally, at 175°
we find a single point where bound entanglement could occur. However,
this point is not experimentally accessible.
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are solely Gaussian operations – vacuum squeezing, superposition on beam splitters,
time-independent linear losses, phase shifts and balanced homodyne detection – phase
noise could introduce a non-Gaussian statistic. To rule this out we need to verify
the statistics of the prepared states. For this purpose, we take the raw data of the
homodyne detectors and check their distribution for Gaussianity.

First, we analyze the raw data of a vacuum state, i.e. the signal field at the homodyne
detector is blocked and hence replaced by a vacuum field. The cumulative distribution
function (CDF) of the measured data looks Gaussian (Figure 5.10a). Looking at the
difference between the measured and a theoretical Gaussian CDF small variations appear
in the middle region, as shown by the red curve in Figure 5.10b. Since a vacuum state
is per definition Gaussian, the deviation must result either from artifacts introduced
by the data acquisition or from numerical errors. Since the measured quadratures of
the signal fields exhibit the same behavior (the blue curve in Figure 5.10b shows, for
example, the p-quadrature of Bob’s first detector) we can neglect this phenomenon.
To ensure that the observed deviations from an ideal Gaussian CDF are negligible,

we analyze the data with a QQ-plot. The QQ-plot of a perfect Gaussian distribution is
a straight line, while random numbers drawn from a Gaussian statistic are distributed
along that line (cf. Figure 3.5a). Figure 5.11 shows in red, as an example, the
distribution of a p-measurement of Bob’s second homodyne detector. For comparison,
quasi-random numbers with a perfect Gaussian distribution are shown in black. The
dots are aligned along a straight line and strongly indicate a Gaussian distribution.

To analyze the data numerically, statistical hypothesis tests were used. A test with a
strong significance is the Shapiro-Wilk-Test [72]. Since it can only handle 5000 samples,
the total number of 4×106 data points were randomly split into 800 blocks. Each block
was confirmed by the test to follow a Gaussian distribution. The Kolmogorow-Smirnow
(KS) Test [73], however, did not confirm Gaussianity for the total number of data points.
Fortunately, this is obvious, because the test assumes a continuous distribution of the
measured data. Since an analog-to-digital converter was used during data acquisition,
the Gaussian distribution is quantized due to the resolution of the ADC. For a small
sample size this does not matter but for a large sample size the test expects the values
to lie closer together than experimentally possible.

In summary, no significant contribution of phase noise could be found in the measured
data and hence the prepared states are Gaussian.

5.5 Reconstructing the 8×8 Covariance Matrix

According to Section 3.3 we need the raw data of each homodyne detector to reconstruct
the covariance matrix. In order to directly calculate the variances (∗), the covari-
ances of the same quadrature of different modes (◦) and the covariances of different
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(a) Cumulative distribution function (CDF) of measured vacuum noise (blue)
compared with a Gaussian curve (red). The curves seem to be identical.
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(b) Difference of measured vacuum noise and Gaussian CDF (red). Small
unexpected variations are observed. The blue curve shows the difference
between a measured signal in the p-quadrature of Bob’s first detector and
a Gaussian CDF. Vacuum noise and signal show the same structure.

Figure 5.10 – Comparison of the measured cumulative distribution functions (CDF)
and the differences between theoretical and measured curves. Variations
in the signal distribution show the same behavior as vacuum noise.

59



Chapter 5: Bound Entanglement

Figure 5.11 – QQ-plot of the raw data of a typical measurement with 4 × 106 data
points (red dots). The measurement data follows a Gaussian statistic,
since the points are aligned along the straight line. For comparison
quasi-random numbers from a perfect Gaussian distribution are shown
(black dots).

quadratures of different modes (•), we need to measure a set of different quadrature
settings. Table 5.3 summarizes the eight different homodyne detector settings needed.
Equation (5.5) shows the entries of the 8× 8 covariance matrix. The numbers indicate
which measurement, according to Table 5.3, is needed for the given entry. More than
one number indicates that the value can be calculated via multiple measurements and
hence averaged:

γ(4) =



∗2, 6, 7, 8 × ◦2, 7, 8 •6 ◦2, 6, 8 •7 ◦2, 6, 7 •8

∗4, 5 •5 ◦4 •5 ◦4 •5 ◦4

∗2, 5, 7, 8 × ◦2, 5, 8 •7 ◦2, 6, 7 •8

∗4, 6 •6 ◦4 •6 ◦4

∗2, 5, 6, 8 × ◦2, 5, 6 •8

∗4, 7 •7 ◦4

∗2, 5, 6, 7 ×
∗4, 8


. (5.5)

We express the covariances of different quadratures of the same mode (×) by the
Weyl correspondence from Equation (3.13). The linear combination of the x, p
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Table 5.3 – Required quadrature measurements to reconstruct the 8 × 8 covariance
matrix.

# Alice 1 Alice 2 Bob 1 Bob 2

1 vacuum noise
2 x

3 45°
4 p

5 p x x x

6 x p x x

7 x x p x

8 x x x p

and 45° quadrature variances of the considered mode yield the desired entry; from
Equation (3.12) we have

γ
(4)
i,i+1 = 〈(∆x̂45◦)2〉 − 〈(∆x̂)2〉+ 〈(∆p̂)2〉

2 , i ∈ {1, 3, 5, 7} .

Since the covariance matrix is symmetric we are able to reconstruct it by eight
measurements, including one vacuum noise reference for normalization.

5.6 Experimental Results

To obtain the experimental results, we set the initial squeezing, anti-squeezing and
phase gate settings from Table 5.1 as accurately as possible. Then, we recorded the
raw data of the eight different balanced homodyne detector settings and reconstructed
the covariance matrix with a Matlab script, as described in Section 5.5. Finally, we
applied the criteria of Section 5.1 to the covariance matrix. Since we did not hit the
region of bound entanglement immediately, we walked through phase space by slightly
varying some parameters and repeating the procedure. The best obtained covariance
matrix γ∗ is shown in Table 5.4. Its entanglement properties are P (γ∗) = 0.0235 and
E(γ∗) = 0.0072. The state is strongly bound entangled: P (γ∗) · E(γ∗) = 1.69× 10−4.

In order to obtain information about the statistical error, we used the bootstrapping
method: we randomly selected 20,000 different samples from the initial 4× 106 data
points, reconstructed the covariance matrix, calculated distillability and inseparability
and repeated this procedure 10,000 times. These results are plotted in Figure 5.12.
The histograms of distillability and inseparability are depicted in Figure 5.12a while
the individual bootstrapping results are represented by the black points in Figure 5.12b.
The red cross shows the average calculated from the total data set. Figure 5.12a
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Table 5.4 – Covariance matrix of the best obtained bound entangled state. Its entan-
glement properties are P (γ∗) = 0.0235 and E(γ∗) = 0.0072.

γ∗ =



0.4827 -0.0400 0.1445 -0.1799 -0.0207 -0.0700 -0.0006 -0.1203
-0.0400 0.3202 -0.1706 0.0338 -0.0841 0.0306 0.0636 0.0511
0.1445 -0.1706 0.4220 -0.0628 0.0436 -0.0430 -0.0427 -0.1790
-0.1799 0.0338 -0.0628 0.6216 -0.0276 0.2237 -0.1419 -0.0027
-0.0207 -0.0841 0.0436 -0.0276 0.2510 -0.0078 -0.0735 -0.0872
-0.0700 0.0306 -0.0430 0.2237 -0.0078 0.6633 -0.2895 0.1707
-0.0006 0.0636 -0.0427 -0.1419 -0.0735 -0.2895 0.4470 -0.1021
-0.1203 0.0511 -0.1790 -0.0027 -0.0872 0.1707 -0.1021 0.4925



illustrates the significance of the measurement: the state is 46σ away from being
distillable (P (γ) ≤ 0) and 16σ away from being separable (E(γ) ≤ 0). Checking
Heisenberg’s Uncertainty Relation (Equation (3.4)) also confirms the physicality of the
measured state: B(γ) = 0.0303± 0.00057. It is 53σ away from being unphysical, i.e.
the setup was stable over the entire measurement time and constantly produced the
same quantum state with little statistical uncertainty.
Based on this result, we optimized the parameters and found a region where we

could set all three possible entanglement types by tuning phase gate 3, see Figure 5.13.
At the angle setting of 205° the state was NPT entangled, i.e. the state was distillable
(Figure 5.13a). By adding 5° we entered the bound entangled region (Figure 5.13b).
With P (γ) = 0.0233± 0.00066 and E(γ) = 0.00168± 0.00048, we were 35σ and 3.5σ
away from distillability and inseparability, respectively. B(γ) = 0.0215 ± 0.00056
also confirms Heisenberg’s Uncertainty Relation: the state is 38σ away from being
unphysical. Adding another 5° the state became separable and hence indistillable
(Figure 5.13c). Table 5.5 summarizes the obtained results.

5.7 Discussion

The results presented in this chapter demonstrated for the first time the unconditional
preparation of bound entangled states of light with high significance. The preparation
of the four-mode bipartite state is independent of any postselection and can hence easily
be distributed. Downstream applications could utilize the states and perform tests on
their decoherence and (in-)distillability. The connection between thermodynamics and
entanglement can now be studied experimentally.
The experiments presented here improved upon preparatory work conducted in

cooperation with James DiGuglielmo, which unfortunately suffered from some critical
issues and hence could not reconstruct a bona fide bound entangled state [74]. Not

62



5.7 Discussion

P(γ)

 0

 200

 400

 600

 800

−0.02  0  0.02  0.04

E(γ)

 0

 200

 400

 600

 800

−0.02  0  0.02  0.04

(a) Histograms of the measurement. The state is clearly bound entangled. The values of
distillability and inseparability are P (γ∗) = 0.0235±0.0005 and E(γ∗) = 0.0072±0.00046,
respectively. The state is 46σ away from being distillable and 16σ away from being
separable (P (γ), E(γ) ≤ 0, red area).
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(b) 2D illustration of the measurement. The 104 black points represent the individual
bootstrapping results. The red cross depicts the average value, calculated from
the total data set.

Figure 5.12 – Measurement results of the best bound entangled state obtained.
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(a) Phase gate 3 at 205°. NPT entangled state. The state is inseparable, E(γ) > 0, but
also distillable, P (γ) < 0.
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(b) Phase gate 3 at 210°. Bound entangled state. The state is inseparable, E(γ) > 0, and
not distillable, P (γ) > 0.
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(c) Phase gate 3 at 215°. Separable state. The state is separable, E(γ) < 0, and hence not
distillable, P (γ) > 0.

Figure 5.13 – Mapping the phase space of phase gate 3. By tuning the angle of phase
gate 3 we can tune the entanglement properties of the state.
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Table 5.5 – Experimental results. All three entanglement properties can be obtained
by tuning the angle of phase gate 3.

Angle Type P (γ) E (γ) B (γ)

205° NPT −0.0216± 0.00067 0.0326± 0.00071 0.0236± 0.00059
210° BE 0.0233± 0.00066 0.00168± 0.00048 0.0215± 0.00056
215° Sep 0.0279± 0.00066 −0.00838± 0.00046 0.0277± 0.00054

only were we able to correct these issues, but we also achieved a high degree of
experimental control in multimode quantum state preparation. Hence, it is shown that
the unconditional continuous variable regime is appropriate for fundamental research
in quantum information science.

65





CHAPTER 6

Twin Beams – Entanglement between 810 nm and 1550 nm

Entangled states of light are the fundamental resource of many quantum communication
and information protocols [75]. To use these protocols between remote parties, the
entangled states are usually distributed by existing telecommunications fiber networks
operated at a wavelength of 1550 nm. Even though standard telecommunications fibers
have reached very low attenuation values [33], quantum repeaters are necessary to
bridge distances of several hundred kilometers. Alkaline atoms having transition lines
at wavelengths around 810 nm may be used to establish quantum memories [36, 37] that
are an essential requirement in quantum repeaters. To connect these two wavelengths,
entangled twin beams between 810 nm and 1550 nm could be used to transfer the
quantum states from one wavelength to the other via entanglement swapping.

In this chapter we discuss the operation of a non-degenerate optical parametric oscil-
lator above threshold and demonstrate the generation of bright bipartite entanglement
between its twin beams at the wavelengths of 810 nm and 1550 nm.

6.1 Theory of Optical Parametric Oscillation above Threshold

In order to describe the effects of an optical parametric oscillator above threshold,
we consider the process of difference-frequency generation. This process leads to an
amplification of the signal input field and generates an idler field due to conservation
of energy (Section 2.1.3). Hence, it is also known as optical parametric amplification.
With the coupled wave equations (2.24) and (2.25) we obtain, analogously to

Section 2.1.3, the evolution of the field amplitude for the difference-frequency generation
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(see [47] for details):

E1(z) =
[
E1(0)

(
cosh (gz)− ι̇∆k

2g sinh (gz)
)

+ κ1

g
E∗2(0) sinh (gz)

]
eι̇∆kz/2 ,

E2(z) =
[
E2(0)

(
cosh (gz)− ι̇∆k

2g sinh (gz)
)

+ κ2

g
E∗1(0) sinh (gz)

]
eι̇∆kz/2 .

The wave vector mismatch is given by ∆k = k3−k1−k2 and we have used the quantities

g =
√
κ1κ∗2 − (∆k/2)2 and κi = 2ι̇ω2

i deffE3

kic2 .

If the nonlinear medium is placed inside a cavity, which provides suitable optical
feedback, the gain of this amplification can lead to an oscillatory behavior: an optical
parametric oscillation (OPO). The threshold condition for such an OPO can be obtained
from the constraint that signal and idler fields must replicate themselves after each
cavity round trip. For intensity reflectivities R1 and R2 of signal and idler field,
respectively, and perfect wave vector matching, ∆k = 0, we obtain

E1(0) !=
[
E1(0) cosh (gL) + κ1

g
E∗2(0) sinh (gL)

]
(1− l1) ,

E∗2(0) !=
[
E∗2(0) cosh (gL) + κ∗2

g
E1(0) sinh (gL)

]
(1− l2) ,

(6.1)

where li = 1−Rie−βiL is the amplitude loss per round trip and βi the crystal’s intensity
absorption coefficient at frequency ωi. Since both equations must be satisfied we find

cosh (gL) = 1 + l1l2
2− l1 − l2

.

For high reflectivities and low absorption, i.e. li � 1, we obtain the approximation

g2L2 = l1l2 .

Taking a non-perfect wave vector matching into account, ∆k 6= 0, we replace g2 by
g2 sinc (∆kL/2) [47]. Knowing all these parameters, we can calculate the threshold
pump power

Pthr = πw2
0

2 · cε0n2 |E3|2 ,

where the cavity’s waist w0 determines the intensity of the light field.
Figure 6.1 shows the Airy functions of a doubly resonant cavity for two twin beams

at 810 nm (yellow) and 1550 nm (red) and the gain profile of the wave vector matching
(black, dashed). A simultaneous resonance of both fields is only given at specific
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ω
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ω
1

oscillation

∆k = 0

810nm

1550nm

Figure 6.1 – The cavity’s amplitude transmittances at 810 nm (yellow) and 1550 nm
(red) and the wave vector matching profile (black, dashed). The axes of
the frequencies ω1 and ω2 increase in opposite directions. Thus, the sum
of all frequencies lying upon each other is constant and given by the pump
field ω3 = ω1 + ω2 due to conservation of energy. An oscillation can only
occur if both wavelengths are on resonance and lie within the amplification
region of proper wave vector matching.

frequencies. Only one simultaneous resonance occurs inside the gain profile due to
the non-integer frequency spacing of the fields. The frequencies ω1 and ω2 increase in
opposite directions, since the sum of two frequencies lying upon each other is given
by the pump field ω3 = ω1 + ω2. An optical parametric oscillation can only occur if
both wavelengths are on resonance and within the amplification region of proper wave
vector matching. Figure 6.2 shows the product of both Airy functions and the gain
profile. The better the overlap between all three factors, the higher the probability
that the OPO will oscillate at that specific frequency. To tune the resonance condition
experimentally, we controlled the cavity’s length. The experimental setup is discussed
in Section 6.3.3. Figure 6.3 visualizes the occurrence of mode hops and cluster jumps
of a doubly resonant OPO [76].
As stated in Equations (6.1), the OPO needs an initial signal field (seed) to start

the oscillation. If no external field is present, spontaneous fluorescence is sufficient
to provide this trigger. A fraction of about 10−9 of the pump photons spontaneously
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∆k = 0
ω2ω1 highest overlap = oscillation

overlap

810nm
1550nm

Figure 6.2 – Product (blue) of the cavity’s amplitude transmittances (yellow and red)
and amplification profile (black, dashed). The blue curve shows the
frequencies at which the OPO will most likely oscillate.

decay and create pairs of signal and idler photons [77]. Some of these photons are
emitted into the cavity mode and can serve as the required seed.

6.2 Quantum Correlations between the Twin Beams

The quantum correlations produced by an OPO can be understood intuitively: the
nonlinear crystal emits pairs of photons, according to the interaction Hamiltonian

Ĥint = ι̇~deff
(
â†3â1â2 − â3â

†
1â
†
2

)
.

Each time a pump photon ω3 is annihilated two twin photons are created which have
the same photon statistics; hence, there is no noise in the intensity difference. The
energy conservation ω1 +ω2 = ω3 (depicted in Figure 6.4a), leads to an anti-correlation
in the frequency (phase): if the frequency of one twin fluctuates, the frequency of the
other must fluctuate in the opposite direction. The cavity around the nonlinear crystal
introduces decoherence between the twin beams. The number of photons in the output
beams is expected to be nearly equal only when they are counted during a long time
compared to the cavity storage time, i.e. the quantum noise reduction only occurs
within the cavity bandwidth.
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ω2ω1

overlap

oscillation
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ω2ω1

overlap

(b)

ω2ω1

overlap

(c)

ω2ω1

overlap

(d)

ω2ω1

overlap

(e)

Figure 6.3 – Visualization of mode hops and cluster jumps. At the initial resonance
condition, the OPO oscillates at high ω1 (red) and low ω2 (yellow) fre-
quencies (a). Altering the resonance condition, e.g. by tuning the cavity’s
length, lets adjacent longitudinal cavity modes become resonant simulta-
neously: a mode hop occurs. The oscillation frequency ω1 decreases and
ω2 increases, (b) → (d). Further tuning (e) leads to a cluster jump. Two
distant longitudinal cavity modes become resonant simultaneously and the
oscillation frequencies jump back.
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ω1
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3 αout

1,2

αin
1,2

βin
1,2,3

(b)

Figure 6.4 – Energy level diagram of difference-frequency generation (a) and an optical
parametric oscillator cavity with the fields involved (b). αin/out0,1,2 are the
incoming / outgoing pump and signal fields. βi are the incoupling vacuum
fields, associated with the internal losses of each mode. The pump photons
at ω3 are down-converted in a χ(2) medium and amplify a potential input
field at ω2. An idler field at ω1 is created, due to conservation of energy.

The quantum correlations of an OPO have been calculated in a fully quantum
mechanical treatment [78]. Nevertheless, a semi-classical treatment yields the same
results [79, 80], which we will sketch here. We start with the equations of motion of a
cavity (see Appendix B for a derivation):

τδα̇1 + (γ1 + µ1)α1 = 2deffα3α
∗
2 +
√

2γ1 α
in
1 +
√

2µ1 β
in
1 ,

τδα̇2 + (γ2 + µ2)α2 = 2deffα3α
∗
1 +
√

2γ2 α
in
2 +
√

2µ2 β
in
2 ,

τδα̇3 + (γ3 + µ3)α3 = −2deffα1α2 +
√

2γ3 α
in
3 +
√

2µ3 β
in
3 ,

with cavity round trip time τ = 1
FSR , field amplitudes αi = ᾱi + δαi, one pass losses

γi and µi associated with the output mirror and the remaining loss mechanisms,
respectively. The linewidth reads ∆ω = 2γ′i

τ
with γ′i = γi + µi. The input fields αin

and βin are the incoupling vacuum fields related to the coupling mirror and the losses,
respectively.
Assuming high mirror reflectivities, we can write ri ≈ 1 − γi and ti ≈

√
2γi for

γ � 1. The fluctuations of the field amplitudes δαi are coupled via

τδα̇1 + γ′1δα1 =
√
γ′1γ

′
2 δα

∗
2 +

√
γ′3γ

′
1 (σ − 1) δα3 +

√
2γ1 δα

in
1 +
√

2µ1 δβ
in
1 ,

τδα̇2 + γ′2δα2 =
√
γ′2γ

′
1 δα

∗
1 +

√
γ′3γ

′
2 (σ − 1) δα3 +

√
2γ2 δα

in
2 +
√

2µ2 δβ
in
2 ,

τδα̇3 + γ′3δα3 = −
√
γ′3γ

′
2 (σ − 1) δα2 −

√
γ′3γ

′
2 (σ − 1) δα1 +

√
2γ2 δα

in
3 +
√

2µ3 δβ
in
3 ,
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0
∆ω

1

0

S0

SX

ω
ηe

Figure 6.5 – Variance of the twin beams’ amplitude difference, as a function of sideband
frequency ω and escape efficiency ηe. For symmetric cavity parameters
of signal and idler field the noise spectrum of the amplitude difference is
permanently below the vacuum noise variance S0. The effect is independent
of the pump power and perfect correlation can theoretically be obtained
at sideband frequency ω = 0.

where σ =
√

P
Pthr

contains the nonlinear coupling within the optical threshold power
Pthr. The output field is given by Equation (B.4)

αout
i =

√
2γi αi − αin

i .

The noise spectra of the amplitude and phase quadratures are directly given by the
variances of the output field fluctuations (compare with Equation (2.38))

Sxi(ω) = 〈(δxouti )2〉 , Spi(ω) = 〈(δpouti )2〉 .

For the amplitude difference X = (x1 − x2) /
√

2 the cavity equation of motion is
independent of pump fluctuations, which cancel in the difference. In the symmetric
case, i.e. signal and idler cavity are identical (γ = γi, µ = µi), the amplitude difference
noise spectrum reads

SX(ω)/S0 = 4µγ′ + ω2τ 2

4γ′2 + ω2τ 2 = 1− ηe

1 +
(
ω

∆ω

)2 , (6.2)

where ηe = 1−R
1−R+L is the cavity escape efficiency, ∆ω the linewidth and S0 the vacuum

noise reference. In Figure 6.5 the amplitude difference is depicted as a function of
sideband frequency ω and escape efficiency ηe.
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Figure 6.6 – Variance of the phase sum in the symmetric case, as a function of sideband
frequency ω and pump power σ. For the same cavity parameters of signal
and idler field the noise spectrum of the phase difference drops below
vacuum noise variance S0. The escape efficiency is set to ηe = 0.91.

The phase sum, given by P = (p1 + p2) /
√

2 , is sensitive to pump fluctuations and
depends on the pump power ratio σ

SP (ω)/S0 = 1 + 4γγ′
ω2τ 2 + 4γ′2σ2 = 1− ηe(

ω
∆ω

)2
+ σ2

. (6.3)

Thus, we expect the best correlation at threshold.
An interesting feature occurs for single beams at high pump powers. The intensity

fluctuation spectrum of a single beam is given by

Sx1(ω) = S0

2

1− 8γγ′3σ (σ − 2)(
ω2τ 2 + 4γ′2

) [
ω2τ 2 + 4γ′2 (σ − 1)2

]


= S0

2

1− ηe · σ (σ − 2)

2
[
1 +

(
ω

∆ω

)2
] [

(σ − 1)2 +
(
ω

∆ω

)2
]
 .

Hence, each beam of the twins is separately squeezed in its amplitude for pump powers
higher than four times the threshold power. Figure 6.7 shows the spectrum over
sideband frequency and pump power. S0/2 denotes the vacuum noise limit for a single
beam. At pump powers σ > 2 the noise spectrum falls below the vacuum reference.
The maximum obtainable noise reduction is a factor of two, i.e. −3 dB, for σ → ∞
and ηe = 1.
For unequal signal and idler cavities, we obtain a noise enhancement for low fre-

quencies. Figure 6.8 shows the amplitude difference noise of the twin beams in the
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Figure 6.7 – Amplitude noise spectrum of a single twin beam. At pump powers higher
than four times the threshold (σ > 2) the noise falls below the vacuum
reference of a single beam S0/2 (red area).

asymmetric case, plotted as a function of sideband frequency ω and difference factor
between the cavities linewidth δ∆ω = ∆ω1

∆ω2
. The more the cavities differ, the higher

the noise at small frequencies. For equal cavity parameters (δ∆ω = 1), we obtain the
result of the symmetric case. For the sake of completeness we state the asymmetric
intensity difference spectrum

SI(ω) = 1 + N

D
, (6.4)

with the abbreviation N and D given as

N = 8γ′1γ′2
{ [
ω2τ 2 + (1 + b)2 (γ′1 + γ′2)2] [

g2
d − b2g2

s − ω2τ 2γ1γ2
]

+ Φ (Φ− bΦ3)
[
ω2τ 2 (1 + 2b) (γ1γ2)

(
γ1γ

′
2

2 − γ2γ
′
1

2)
+ g2

d (γ′1 − γ′2)2 + (1 + 2b) (γ′1 + γ′2)2
g2
d

]
+ bΦ3 (bΦ3 − Φ)

[
ω2τ 2

(
g2
s + γ1γ2 (γ′1 + γ′2)2)− 2b (1 + b) g2

s (γ′1 + γ′2)2 − 4γ′1γ′2g2
d

]
+ (Φ− bΦ3)2

[
(γ′1 − γ′2)2

g2
dΦ2 − (γ′1 + γ′2)2

g2
sΦ2

3b
2
] }

,

D = gs

{
ω2τ 2

[
ω2τ 2 − 4bγ′1γ′2 − (γ′1 + γ′2)2 [(1 + b)2 + (Φ− bΦ3)2

]
+ 4γ′1γ′2Φ (Φ− bΦ3)

]2

+ 4 (γ′1 + γ′2)2 [(
ω2τ 2 − 2bγ′1γ′2

)
(1 + b) + 2γ′1γ′2bΦ3 (Φ− bΦ3)

]2 }
,

with b =
√
γ′1γ

′
2 (σ − 1) / (1 + Φ2

3), gs = γ1γ
′
2 + γ2γ

′
1, gd = γ1γ

′
2 − γ2γ

′
1 and the pump

and signal field resonance detunings Φ3 = ϕ3/γ
′
3 and Φ = ϕ1/γ

′
1 = ϕ2/γ

′
2.
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Figure 6.8 – Variance of the amplitude difference in the asymmetric case, as a function
of sideband frequency ω and difference factor between the cavities linewidth
δ∆ω. The more the cavities differ, the higher the noise at small frequencies.
For the same cavity parameters (δ∆ω = 1), we obtain the result of the
symmetric case. The escape efficiency is set to ηe = 0.66.

In the case of two unequal cavities, the resonance condition of signal, idler and
pump field is important. An operation of the signal and idler cavities not exactly
on-resonance worsens the effect, as depicted in Figure 6.9.

6.2.1 A Bipartite Entanglement Criterion

The presence of quantum correlations in the amplitude and phase quadrature of the
twin beams also imply the presence of entanglement. In order to verify this, we use a
necessary and sufficient entanglement criterion suitable for bipartite Gaussian states
that was introduced by L.M. Duan et al. in 2000 [81]. They considered the EPR-like
operators

û = |a| x̂A + 1
a
x̂B ,

v̂ = |a| p̂A −
1
a
p̂B

for the two parties Alice (A) and Bob (B) and proved that the sum of the variances of
these operators must be larger than a specific bound for separable states

〈(∆û)2〉+ 〈(∆v̂)2〉 ≥ 1
2

(
a2 + 1

a2

)
.

For a = 1 we obtain the criterion in its strongest and most intuitive form

I = 〈(∆ (x̂A + x̂B))2〉+ 〈(∆ (p̂A − p̂B))2〉 ≥ 1 . (6.5)
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Figure 6.9 – Variance of the amplitude difference in the asymmetric case, where the
cavities are not on-resonance (Φ = 0.1). A strong degradation is visible;
compare with Figure 6.8. Again, the resonance condition is not important
for the same cavity parameters (δ∆ω = 1).

Introducing uncorrelated vacuum noise with individual variances 〈(∆x̂θvac)2〉 = 1/4 gives
a bound value of I = 1. Entangled states are more strongly correlated than vacuum
noise and lead to an inseparability value I < 1.

6.3 Experimental Components

In this section we will review the experimental components used to generate amplitude
correlations and bipartite entanglement between the bright twin beams at 810 nm and
1550 nm.

6.3.1 Laser

1064nm

EOM

Nd:YAG

Laser preparation

MC1

The main laser source was a Neodymium-doped Yttrium Alu-
minum Garnet (Nd:YAG) solid state laser. The device used –
model Mephisto by Inno-Light – provided a single-mode output
field at 1064 nm with an optical power of 2.1W. The laser beam
was first sent through a three-mirror ring cavity (MC1) with a
finesse of F = 260, corresponding to a linewidth of 2.7MHz.
Reduction of mode distortions of the laser’s TEM00 spatial mode
profile and technical noise at frequencies much higher than the
cavity’s linewidth were ensured. The cavity length was controlled
using the Pound-Drever-Hall (PDH) locking scheme [69] with
a phase modulation at a sideband frequency of 15MHz. The

output of 1.6W was sent directly to the second-harmonic generation (SHG) cavity.
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6.3.2 Second-Harmonic Generation (SHG)

532nm

EOM

SHG

MC2

The SHG was made of a 7% doped MgO:LiNbO3 crystal. The
curved back surface of the crystal had a high-reflection coating
(R = 99.96%) whereas the flat surface had an anti-reflection
coating (R < 0.05%) for both wavelengths. The SHG had an out-
coupling mirror with power reflectivities of R1064 nm = 90% and
R532 nm < 4%. The modulation sidebands transmitted through
MC1 at 15MHz were used to control the cavity length with the
PDH locking scheme. The second-harmonic field thus generated
had a power of 1W.
A second filter cavity (MC2) was used to ensure a TEM00

spatial mode profile and to suppress technical noise of the pump beam. The finesse
was F = 560, corresponding to a linewidth of 1.3MHz. An EOM was used to provide a
phase modulation at either 29.5MHz or 1.36MHz to generate error signals to stabilize
the length of MC2 and subsequent cavities, again using the PDH locking scheme.

6.3.3 Optical Parametric Oscillator

The entanglement between 810 nm and 1550 nm was generated in a monolithic standing
wave nonlinear cavity. The nonlinear medium inside the cavity was a periodically poled
Potassium Titanyl Phosphate (PPKTP) crystal. The wave vector matching was given
at a temperature of 68◦C, to which the crystal was stabilized actively. The length of
the crystal was 8.9mm and the coatings were chosen to form a cavity with a finesse
of F = 100 for the twin beams. The linewidth of both modes was hence 91MHz and
the free spectral range was 9.15GHz. The radii of curvature of 8mm led to a waist
size of 24 µm for the 532 nm pump beam, which simply double-passed the crystal. The
threshold power varied between 70mW and 130mW, depending on the spatial mode
matching, longitudinal mode and wave vector matching, i.e. crystal temperature. The
bright output fields were co-propagating and spatially separated with a dichroic beam
splitter (DBS). Figure 6.10 shows a measurement of one output wavelength produced by
the OPO. The cavity’s length was changed by constantly heating the nonlinear crystal.
Wavelengths from 808 nm (1557 nm) up to 817 nm (1525 nm) could be produced in
a reasonable temperature range from 35°C to 80°C. The wavelength was measured
with the spectrometer AVA AvaSpec-3648-USB2 by Avantes. The grating had 300
lines/mm and could resolve light from 360 nm to 1100 nm. The 10 µm slit allowed a
resolution of 0.5 nm. At first, it seems that Figure 6.10 describes a linear relationship
with wavelength λ(T ) = −0.22 · T nm

◦C + 825 nm, T measured in °C. Looking closer,
however, the temperature dependence uncovers the occurrence of several mode hops
and cluster jumps, as shown in Figure 6.11.
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Figure 6.10 – Measurement of one output wavelength produced by the OPO. The
cavity’s length was changed by constantly heating the nonlinear crystal.
At first, this seems to be a linear relationship.
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Figure 6.11 – Measurement of one output wavelength produced by the OPO. The
cavity’s length was changed by tuning its temperature. As illustrated in
Figure 6.3, several mode hops and cluster jumps occur. Each cluster is
marked with a solid black line. The spacings between the red measurement
points within one cluster represent mode hops.
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Figure 6.12 depicts the output power of the twin beams at 810 nm over input pump
power at 532 nm. Special care was taken to avoid mode hops during pump power
increase. The two traces depict measurements at different crystal temperatures, i.e. at
different longitudinal modes. The resulting conversion efficiency, given by the ratio of
output over input photons

ηc = n810

n532
= P810 · 810
P532 · 532 ,

is shown in Figure 6.13. Depending on the mode and pump power, conversion efficiencies
greater than 74% were obtained.

6.4 Amplitude Correlation Measurement

6.4.1 Experimental Setup

1550nm532 nm

810 nm

SA

OPO

SHD Alice SHD Bob

DBS

The amplitude correlations of the twin beams
were measured with the adjoining setup. The co-
propagating fields were separated with a dichroic
beam splitter (DBS), which reflects 810 nm (yellow,
signal) and transmits 1550 nm (red, idler). The
noise was measured with a self homodyne detector
(SHD) at each party. The SHD consists of a 50/50
beam splitter and two photo-detectors. Subtracting

the detector’s signals yields the vacuum noise, adding them yields to the amplitude
fluctuations of the considered field, as described in Section 4.1. Silicon PIN diodes
S5971 from Hamamatsu and Indium Gallium Arsenide diodes FCI-InGaAs-300 from
OSI Optoelectronics were used for detecting the signal and idler field, respectively.
The electrical difference and sum signals were obtained with the passive power combiner
PMT-1+ from Mini-Circuits. Passive variable voltage dividers were implemented to
equalize the electrical gain of each detector. The electronic signals were analyzed and
recorded with the spectrum analyzer (SA) FSP from Rohde & Schwarz. The common
mode rejection ratio of the difference was measured to be greater than 40 dB.

6.4.2 Results

Figure 6.14 shows the measurement results of the best obtained amplitude correlation.
The output power of the signal field was slightly above threshold (P810 = 2.4mW)
and the measurement frequency was chosen as 20MHz. The traces are normalized to
the vacuum noise (black, dashed), which was obtained from the detectors’ difference
signals. The detectors’ dark noise is different for the difference (grey, dashed) and the
sum (grey, dotted) signal due to the power combiner. Taking both into account and
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Figure 6.12 – OPO output power at 810 nm over 532 nm pump power. Special attention
was paid to avoid mode hops during pump power increase. The two traces
depict measurements at different crystal temperatures, i.e. at different
longitudinal modes.
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Figure 6.14 – Zero span measurement of the amplitude difference (red) with signal
power P810 = 2.4mW at 20MHz. The measured signal is averaged 20
times. The vacuum noise (black, dashed) is obtained from the detectors’
difference signals. The dark noise is different for the difference (grey,
dashed) and the sum (grey, dotted) signal due to the power combiner.

correcting the obtained signals for the dark noise contribution, the amplitude difference
falls approximately 3 dB below the vacuum noise reference (see Figure 6.15). Due to
fluctuations of the OPO cavity it was impossible to obtain a constant output below
2.4mW signal power. Since a constant level is needed to obtain a reliable vacuum noise
reference, noise properties closer to threshold could not be analyzed. Furthermore, the
dark noise clearance decreases for smaller light powers and impairs the measurement
quality.

The correlation’s dependence on the signal field power is shown in Figure 6.16. The
higher the signal field power, the smaller the quantum correlation. The amplitude
correlation of a perfect system should be independent of the threshold ratio σ (Equa-
tion (6.2)). As soon as the cavity parameters differ and the fields are not exactly
on-resonance of the cavity modes, however, the fluctuation spectrum depends on the
threshold ratio σ, see Section 6.2. The measurements have not been averaged but were
dark noise corrected.
A spectrum of the amplitude difference is shown in Figure 6.17. It was recorded

with a signal power of P810 = 4.8mW and is dark noise corrected. At frequencies above
12MHz the amplitude fluctuations fall below the vacuum noise reference. This seems
surprising since the correlations should get stronger at smaller sideband frequencies
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Figure 6.15 – Dark noise corrected result from Figure 6.14. Taking the different dark
noise contributions into account yields an amplitude difference of about
3 dB below the vacuum noise reference.
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higher the signal field power the smaller the quantum correlation. The
data is not averaged but corrected for dark noise.
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Figure 6.17 – Spectrum of the amplitude difference with P810 = 4.8mW. The measured
data (red, solid) is in good agreement with the theory (red, dashed) for
frequencies below 20MHz. Above 20MHz the frequency-dependent power
combiners and the photo-detectors’ bandwidth cause a noise increase.
The peak at 29.5MHz originates from a phase modulation.

(compare with Figure 6.5). According to Equation (6.4) this is, however, possible if
the cavities’ signal and idler linewidth differ by about 0.2% and the fields are thus not
exactly on-resonance but detuned by Φ = 1.02. In terms of linewidth this corresponds
to a tiny fraction of ϕ

∆ω = Φ
2FSR � 1. The threshold ratio is set to σ = 1.2 and the

quantum efficiency of the photo-detectors is estimated to be ηq = 85%. The dashed
red line shows the expected fluctuation spectrum according to Equation (6.4). At
frequencies above 20MHz the noise increases. This is caused by a frequency-dependent
behavior of the power combiners, different transfer functions of the photo-detectors at
higher frequencies and their limited bandwidth. The peak at 29.5MHz arose from the
locking phase modulation for MC2.

6.5 Entanglement Measurement

6.5.1 Experimental Setup

To measure the entanglement between the bright twin beams, balanced homodyne
detectors (BHDs, see Section 4.1 for details) were used to analyze the amplitude
and phase quadratures of the two fields. To provide local oscillators (LOs) for the

84



6.5 Entanglement Measurement
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Figure 6.18 – Schematic of the entanglement setup. The generated twin beams are sent
to filter cavities (FMCs) in order to spatially separate the sideband and
carrier fields. The latter are transmitted through the FMCs and serve
as local oscillators for the balanced homodyne detection (BHD). The
reflected sidebands of the twin beams are probed. A data acquisition
system (DAQ) is used to record and analyze the data.

BHDs, filter mode cleaners (FMCs) were introduced to separate the carrier from the
sideband fields [82]. The experimental setup is shown in Figure 6.18. The filter cavities
were triangular ring resonators with a finesse of F ≈ 400 for signal and idler modes,
respectively. The twin beams were separated by a dichroic beam splitter (DBS), sent to
their corresponding filter cavity and analyzed in a BHD. An error signal was generated
with the PDH scheme [69] using the down-converted phase modulation of the green
pump field at 1.36MHz. The transmitted beam served as optical LO. The reflected
part – containing the quantum properties of interest – and the LO were superimposed
at the 50/50 beam splitter. The detection took place with a purpose-built photo-
detector, where the photo-currents were directly subtracted and resonantly enhanced
at 63.9MHz on the circuit board. Both BHD signals were demodulated, low pass
filtered at 50 kHz and sampled with the 14 bit analog-to-digital converter PCI-6133
from National Instruments. The calculation of the variances of each signal and
the variance of the difference of the two signals were conducted by a Labview script,
without correcting the data for the contribution of electronic dark noise. To verify a
constant LO power, the DC voltages of the FMCs were monitored.
To perform the measurement, the OPO was pumped with 130mW and operated
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Figure 6.19 – Demonstration of entanglement between the twin beams at Alice’s and
Bob’s sites. Bob’s BHD phase is repeatedly ramped and Alice’s phase
is switched from x̂ (left) to p̂ (right). The dotted green and dashed red
traces correspond to the variances measured on the individual beams at
Alice’s and Bob’s site, respectively. The minima of the two blue traces
correspond to half the variances in Equation (6.5) thereby fulfilling the
inequality with I = 0.78 < 1.

slightly above threshold. 2.7mW and 1.4mW LO powers were obtained, which led to a
dark noise clearance of 4 and 6 dB for the 810 nm and 1550 nm detectors, respectively.

6.5.2 Results

Figure 6.19 presents the measurement results. Time series of Alice’s variance (dashed
yellow), Bob’s variance (dotted red), and half the variance of the two mode’s difference
(1/2 · 〈(∆(x̂ϕA− x̂θB))2〉, blue) are shown. The BHD phase θB at Bob’s site was repeatedly
ramped and Alice’s site was switched from an amplitude (left) to a phase measurement
(right). The vacuum noise levels of the detectors were measured and used to normalize
the traces. The individual variances show a non-uniform noise distribution among the
quadratures. According to Equation (6.3), the fluctuation spectrum of the phase sum
depends on the pump power ratio σ. Hence, we expect a larger noise contribution in
the phase quadrature.

In order to verify the state’s entanglement properties, the inseparability criterion from
Equation (6.5) was checked. The minima of the blue trace on the left side correspond to
measurements where Alice and Bob were set to their amplitude quadrature (yellow and
red trace, lower noise) with 1/2 · 〈(∆ (x̂A − x̂B))2〉 = 0.19. On the right side the minima
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of the blue trace correspond to measurements where Alice and Bob were set to their
phase quadrature (yellow and red trace, high noise) with 1/2 · 〈(∆ (p̂A + p̂B))2〉 = 0.2.
In both cases the mode’s difference noise (blue) drops below the vacuum noise reference.
The sum of the minima yields an inseparability value of I = 2 · (0.19 + 0.2) = 0.78 < 1;
this corresponds to a quadrature entanglement of about −1 dB.

6.6 Discussion

In this chapter, an optical parametric oscillator was operated above threshold to generate
light with non-classical properties. Quantum amplitude correlations between its twin
beams at 810 nm and 1550 nm were observed and their characteristics understood.
Furthermore, quantum phase correlations were shown and bipartite entanglement
between the bright fields was verified.
From a practical point of view, the operation above threshold holds some dis-

advantages. The correlations are largest close to threshold. Unfortunately, small
perturbations, e.g. in the temperature, crystal length or pump power, cause fluctu-
ations in the optical output power of the twin beams. This impeded the correct
acquisition of a vacuum noise reference. In the worst case the operation point of the
OPO went below threshold and no bright output beams were produced. This led to
a loss of lock of the following filter cavities and the data acquisition was interrupted.
More sophisticated stabilization schemes of pump power, crystal temperature or length
should be investigated in the future to overcome this problem. Close to threshold, op-
tical light power is quite low and the detector’s electronic dark noise plays a significant
role. Either more sensitive detection electronics is desirable or external local oscillators
are needed to probe the fields independently of their power and fluctuations. External
local oscillators also allow the operation of the OPO below threshold. This causes,
however, the problem to stabilize the local oscillators to the optical frequencies of the
dim signal and idler fields.
The diversity of the twin beams’ cavities led to a noise increase at small sideband

frequencies. An increase in the cavities’ linewidth changes this behavior dramatically
and could be used to overcome this problem.

Furthermore, the generation of bright twin beams at 810 nm and 1550 nm is useful to
implement a quantum frequency converter, which we discuss in the following chapter.
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CHAPTER 7

Quantum Frequency Conversion

In the field of metrology, the measurement sensitivity of laser interferometers can be
enhanced by employing quantum states. This was recently realized in the gravitational
wave (GW) detector GEO600 by combining ultra-stable coherent light with squeezed
vacuum states at a laser wavelength of 1064 nm [40]. Assuming a fixed laser power, the
sensitivity of such interferometers can still be improved by increasing the squeezing
factor and by reducing the laser wavelength. The combination of both approaches is
not easy to achieve, since material properties of the nonlinear squeezing media limit the
generation of squeezed vacuum states at short, e.g. visible, wavelengths. One solution
is the frequency up-conversion of squeezed states from near-infrared wavelengths.

In this chapter the experimental frequency up-conversion of a dim continuous-wave
coherent light field from 1550 nm to 532 nm is demonstrated with a high conversion
efficiency. We discuss the potential to generate strongly squeezed vacuum states at
532 nm with this technique.

7.1 Quantum Theory of Sum-Frequency Generation

In Section 2.1.2 we discussed the classical sum-frequency generation. To see that the
quantum properties of a converted state are preserved, we take the Hamiltonian of the
interaction [83]

Ĥint = ι̇~χ′
(
â†3â1â2 − â3â

†
1â
†
2

)
and consider the case of sum-frequency generation: two photons of frequency ω1 and ω2
annihilate and combine to a photon of frequency ω3. χ′ denotes the nonlinear coupling
constant and is proportional to the nonlinear susceptibility χ(2). Considering a strong



Chapter 7: Quantum Frequency Conversion

pump field ω2, which we assume not to be affected by the interaction and can therefore
be treated classically, yields the reduced Hamiltonian

Ĥint = ι̇~χ
(
â†3â1 − â3â

†
1

)
,

where the coupling constant is now proportional to the pump field χ = χ′ · 〈â2〉. The
time evolution is given by Heisenberg’s equation of motion

dâ
dt = ι̇

~
[
Ĥ, â

]
+ ∂â

∂t

and yields the coupled wave equations for â1 and â3, which do not have an explicit
time dependence (∂tâ1 = ∂tâ3 = 0),

dâ1

dt = ι̇

~
[
Ĥint, â1

]
+ ∂â1

∂t

dâ3

dt = ι̇

~
[
Ĥint, â3

]
+ ∂â3

∂t

= ι̇

~
ι̇~χ

[
â†3â1 − â3â

†
1, â1

]
= ι̇

~
ι̇~χ

[
â†3â1 − â3â

†
1, â3

]
= −χâ3 , = χâ1 .

The solution of these differential equations is given by

â1(t) = â1(0) cos (χt)− â3(0) sin (χt) ,
â3(t) = â3(0) cos (χt) + â1(0) sin (χt) .

(7.1)

This results in a complete conversion of the quantum states at time t = π
2χ

â1(t=π/2χ) = −â3(0) , â3(t=π/2χ) = â1(0) .

Depending on the interaction time and on the strength of the coupling – and hence on
the pump power’s square root – an entire energy and quantum state transfer can occur
between the interacting fields. Figure 7.1 shows the characteristic of the single pass
conversion efficiency. For a high nonlinear coupling (χ′1) the pump power P1 is needed
to reach the maximum of the conversion efficiency. Reducing the nonlinear coupling
(χ′2), e.g. by increasing the wave vector mismatch, more pump power (P2) is needed to
reach the maximum. The curve thus becomes flatter.

7.2 Frequency Conversion of a Coherent State

This section describes the experimental realization and characterization of the sum-
frequency converter. The conversion efficiency of the device was investigated by
converting a coherent light field from 1550 nm to 532 nm.
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Figure 7.1 – Conversion efficiency dependence on pump power for a single pass through
the crystal. The smaller the nonlinear coupling χ′, the more pump power
is needed to reach the conversion maximum. Hence, a flatter curve is
obtained for a larger wave vector mismatch.

7.2.1 Experimental Setup

To convert a signal field from 1550 nm to 532 nm a strong pump field at 810 nm is
needed. The pump and signal fields were produced as described in Section 6.3. The
monolithic OPO was operated far above threshold and light powers of up to 200mW
at 810 nm and 104mW at 1550 nm were available.

The pump field at 810 nm was sent through a variable attenuator (λ/2-wave plate and
polarizing beam splitter (PBS)) and coupled into the sum-frequency generator (SFG).
The SFG was built as a standing-wave two-mirror nonlinear cavity. The nonlinear
medium inside the cavity was a PPKTP crystal. The phase matching for 810 nm and
1550 nm was given at a temperature of 67◦C, to which the crystal was stabilized actively.
The length of the crystal was 9.3mm and the cavity was defined by two external mirrors
with reflectivities of Rin = (96.5± 0.5)% (left mirror) and Rtrans > 99.9% (right mirror)
for signal and pump beam, as depicted in Figure 7.2. The mirrors’ radii of curvature
of 25mm and the air gaps of 17mm between mirrors and crystal led to a waist size of
about w0 = 50 µm for the pump beam. Furthermore, the mirrors had reflectivities at
532 nm of R > 99.9% (left) and R < 0.1% (right) to ensure that all the converted light
leaves the SFG to the right. The length of the cavity was actively controlled with the
PDH scheme [69], using a frequency modulation of the pump light at 24.5MHz. The
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Figure 7.2 – Schematic of the setup. The pump beam at 810 nm (yellow) with tunable
power is sent into the sum-frequency generator (SFG). A 4mW signal
beam at 1550 nm (red) is sent through a 50/50 beam splitter (BS) to
monitor the input power with the photo-detector PD1550,in. Half of the
signal is overlapped with the pump beam at a dichroic beam splitter
(DBS) and coupled into the SFG. Half of the light power reflected off
the cavity is detected at PD1550,refl. In transmission of the SFG, the
optical fields are separated by another set of DBSs and detected with
the corresponding photo-detectors PD532,trans, PD810,trans and PD1550,trans.
All signals from the photo-detectors are recorded with a data acquisition
system and analyzed with PC software.

losses in the system are mainly due to the anti-reflective coatings of the crystal surfaces
and the absorption of the crystal itself. They can be combined to a total cavity round
trip loss that was measured to be µ810 = 0.99% and µ1550 = 0.42%.

The signal field at 1550 nm (red) was attenuated using a λ/2-wave plate and a PBS
(not shown in the figure) and its power was monitored with photo-detector PD1550,in
(see Figure 7.2). 2mW were overlapped with the pump beam at a dichroic beam
splitter (DBS) and coupled into the SFG cavity. Half of the light power reflected off
the cavity was detected at PD1550,refl. In transmission of the SFG cavity, the optical
fields were separated by a set of DBSs and detected with the corresponding photo-
detectors PD532,trans, PD810,trans and PD1550,trans. All signals from the photo-detectors
were recorded with a data acquisition system (PCI-6133 from National Instruments)
and analyzed with PC software (Labview). Figure 7.3 shows the photo-detector’s signal
of transmitted pump (yellow) and signal (red) field for two distinct resonance conditions.
On simultaneous resonance of both wavelengths (right side) conversion occurs and the
signal field collapses.
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Figure 7.3 – Airy peaks of the SFG cavity’s transmitted pump (top) and signal field
(bottom). Depending on the crystal’s temperature, consecutive (left) or
simultaneous (right) resonance is given. On both sides the cavity is scanned
over the same length. For simultaneous resonance, the signal field collapses
and is converted to 532 nm. A reduction of the pump field is not visible,
since the field is much more intense.

Cavity Properties

The cavity of the SFG was formed by two meniscal lenses with radii of curvature of
25mm at the inside and 20mm at the outside. The outside had an anti-reflective (AR)
coating, specified with a reflectivity smaller than 0.1% at a wavelength of 1550 nm.
Although the reflectivities of the AR coatings are small, parasitical cavities occur
at perpendicular incidence. Assuming 0.1% reflectivity and perfect mode overlap,
the impedance matching is affected substantially. Figure 7.4 shows a simulation
(implemented in Finesse [84]) of the impedance matching. The reflected light power is
normalized to the input power and plotted against the phase detunings (i.e. length
change) of the parasitical cavities. Depending on the length change of each mirror,
between 71% and 77% of the input light is reflected. This effect must be taken into
account when measuring the relative depletion of the signal field (see Section 7.2.2).
A calibration on maximal reflectance and transmittance is important prior to each
measurement. The simulation was performed for mirrors with reflectivities of 99.72%
and 96.31%.

Since the wavelength tunability of the OPO’s output fields exceeded several nanome-
ters, the wavelength dependence of the SFG cavity’s mirror coatings had to be taken
into account. According to the design reflectivities, the anti-reflective coating of the
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Figure 7.4 – Optical impedance of the SFG cavity with parasitical cavities due to the
mirrors’ AR coatings of 0.1%. The SFG cavity is assumed to be lossless
and the mirror reflectivities are 99.72% and 96.31%. Depending on the
phases of the parasitical cavities, between 71% and 77% of the input light
is reflected.

signal field was the most sensitive. Figure 7.5 shows design reflectivities of signal and
pump field against the wavelength detuning with respect to 810 nm. The pump field
reflectivity is rather constant, whereas the signal field reflectivity exhibits a strong
alteration. This could lead to small variations in the signal’s round trip loss and affect
the conversion efficiency.

7.2.2 Measurement Methods

To characterize the conversion efficiency, the light powers of the optical fields were
measured with the photo-detectors mentioned above; these being calibrated with power
meters. The SFG cavity’s conversion efficiency, based on the respective photon number
ratio, is given by

η = n532

n1550
= 532 · P532

1550 · P1550
= γ · 532 · Pmeas

532
1550 · Pmeas

1550
. (7.2)

The calibration factor γ compensates the errors in the absolute calibration of the power
meters and thus the actually measured power levels Pmeas

λ .
To determine γ, the depletion of the signal field at 1550 nm was measured in reflection

and in transmission of the cavity, respectively. When no pump light was coupled into
the SFG, the light reflected by the cavity far from its resonance, corresponding to
the total incident power, and the light transmitted by the cavity on resonance were
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Figure 7.5 – Design AR coatings of the SFG cavity’s coupling mirrors. Changing the
wavelength results in an alteration of the intra-cavity loss.

measured and normalized to unity. The relative depletion

δ = 1−
(
Prefl + Ptrans

Pin

)

= 1−
 Prefl

Prefl,max
+ Ptrans,max

Prefl,max︸ ︷︷ ︸
κ

· Ptrans

Ptrans,max

 (7.3)

depends on the normalized signals and on the ratio of the maximal transmitted and
reflected power κ. In low loss systems, the relative depletion is a measure for the
conversion efficiency [85] and Equation (7.3) yields the same results as Equation (7.2).
Due to the finesse of F1550 = 150 and to the round trip loss µ1550 = 0.41%, the two
differ. However, the relative depletion is used to provide a better fit to the theoretical
model and to obtain the correction factor γ from Equation (7.2). Thus, both methods
were required to obtain an accurate value for the conversion efficiency.

To measure the conversion efficiency the pump power was varied. For each pump
power, time series of all photo-detectors were recorded simultaneously and analyzed in
a Labview script.

7.2.3 Numerical Simulations

To compare the measured data with a theoretical model, the system was simulated
numerically. Therefore, the PC software nlcs, a numerical nonlinear cavity simulator
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Figure 7.6 – Measurement results. The conversion efficiency (blue) and relative deple-
tion (yellow) are shown as a function of pump power. The conversion
efficiency reaches its maximum of (84.4± 1.5)% at 71.5mW pump power.
The solid lines correspond to a numerical simulation of the system.

written by Nico Lastzka [86], was utilized. By providing the system’s parameters –
in particular the wavelengths, light powers, waist size, mirror reflectivities and the
crystal’s index of refraction, nonlinearity, absorptions and wave vector mismatch – the
expected output fields were calculated.
To fit the model to the experimental data, all these parameters needed to be

adjusted. To speed up the procedure, a Python script was written that implemented
the Nelder-Mead fitting algorithm [87]. Taking the power- or depletion-measurement
on their own, several possible parameter sets were found and no unique solution was
identifiable. Hence both measurements were fitted simultaneously. Since the depletion-
measurement depends only on relative power measurements, the power-measurement’s
calibration factor γ could be obtained and reasonable unique solutions were found for
each measurement.

7.2.4 Measurement Results

Figure 7.6 shows the first measurement result. The conversion efficiency (blue) and the
relative depletion (yellow) are plotted against the pump power. The solid lines depict
the numerical simulations of the system fitted to the data. The simulations are in
excellent agreement with the measurements and support the experimentally obtained
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Figure 7.7 – Another measurement set with phase mismatch ∆ϕ = 0.28π. The curve’s
shape is stretched and the conversion efficiency reaches its maximum of
(82.6± 1.5)% at 122mW pump power.

conversion efficiency of (84.4± 1.5)%. As predicted for sum-frequency generation,
energy is transferred back and forth between the interacting fields (Equation (7.1)).
Hence, the conversion efficiency drops after reaching its maximum at a pump power
of 71.5mW. The numerical simulation of conversion efficiency and relative depletion
determined the calibration factor of the power meters to γ = 1.03, which is within
the specified error range of the power meters. These measurements were taken with a
phase mismatch of ∆ϕ = 0.12π, where ∆ϕ = ∆kL/2 is the wave vector mismatch set
with respect to the crystal’s length L (see Section 6.1).

Changing the phase mismatch by selecting another longitudinal mode (cf. Figure 6.3)
results in the measurement depicted in Figure 7.7. The phase mismatch is ∆ϕ = 0.28π
and the conversion efficiency reaches its maximum of (82.6± 1.5)% at 122mW pump
power. The curve’s shape is stretched, since the nonlinear coupling is decreased. More
pump power was needed to obtain the conversion maximum.
The absolute conversion efficiency changes because the temperature of the SFG

crystal was tuned as well as the temperature of the monolithic OPO in order to find
an optimal operation point. Hence slightly different signal and idler wavelengths were
produced, the AR coatings exhibited different reflectivities and the total round trip loss
changed. This led to a small change in the conversion efficiency. Table 7.1 compares
the fitted parameters of the two measurements.
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Table 7.1 – Comparison of the two measurements’ fit results. The phase vector matching
∆ϕ shows the most significant difference. The steep curve shape of Figure 7.6
exhibits a better phase matching than the flat curve shape of Figure 7.7.

Parameter Steep curve shape Flat curve shape

γ 1.033 1.024
µ1550 [%] 0.42 0.45
∆ϕ [π] 0.124 0.276
η 0.844 0.826

7.3 Discussion

In this chapter, the process of sum-frequency generation was used to convert a coherent
light field from 1550 nm to 532 nm. The conversion efficiency was found to be greater
than 84% by the combination of two independent measurement methods. In order
to verify the system’s parameters, it was simulated numerically and fitted to the
measurements. Interestingly, the best fit results were obtained with mirror reflectivities
that differed from the design reflectivities. The signal field’s end mirror was supposed
to have a reflectivity of 99.97%. Instead, best fit results were obtained with an
assumed reflectivity of 99.72%. An analysis showed that the present system could reach
conversion efficiencies of more than η = 93% if a mirror with reflectivity R1550,in = 0.9
would be used for the signal field.

With the obtained results it should be possible to convert a quantum state from
1550 nm to 532 nm with a high fidelity. The conversion efficiency of η = 84.4% solely
introduces τ = 1− η = 15.6% losses, i.e. vacuum noise contribution. Considering the
conversion of a squeezed state, more than −6 dB squeezing should be obtainable at
532 nm if we use an input state at 1550 nm with a noise suppression of −10 dB [41]
(see Equation (3.7)).

Figure 7.8 depicts a possible setup to convert squeezed states from 1550 nm to
532 nm. In principle it works like the frequency conversion of a coherent state. In
order to avoid any kind of loss the beam splitter at the input needs to be removed
(cf. Figure 7.2). The 532 nm photo-detector at the output of the SFG cavity will be
replaced by a homodyne detector to analyze the amplitude and phase quadratures
of the converted state. The coherent input field at 1550 nm will be replaced by a
squeezed field generated in a separate experiment. To ensure that all involved laser
fields are set to the same frequency, a phase-lock loop (PLL) is needed. The OPO’s
bright output field at 1550 nm will be superimposed with a part of the main laser of
the squeezing generation on a 50/50 beam splitter. The beat note is detected with a
photo-detector (PD1550,PLL) and used to generate an error signal for the phase-lock.
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Figure 7.8 – Squeezing conversion setup. The core of the squeezing conversion remains
the SFG cavity. The 532 nm pump light produces bright twin beams
at 810 nm and 1550 nm within the OPO and serves as a LO for the
homodyne detection of the converted state. The generated 810 nm field
is used to pump the SFG. The required power is adjusted at a variable
attenuator (λ/2-wave plate and polarizing beam splitter (PBS)). The
generated 1550 nm field is phase-locked to the carrier field of the experiment
that produces the squeezed states by superimposing the two fields on a
beam slitter. The beat signal provides the error signal. The externally
generated squeezed field is then coupled into the SFG and the converted
field is probed with a balanced homodyne detector.

Without phase-locking the two lasers, the local oscillator at 532 nm cannot be used as
a stable phase reference for the squeezed field. As a last preparation step, the coherent
control beam of the squeezer cavity will be converted to 532 nm. Thereby, optimal
phase matching settings, i.e. crystal temperature, and the required pump power need
to be figured out. Finally, the squeezed field will be converted.
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CHAPTER 8

Summary and Outlook

Specific tasks in quantum information science and quantum metrology require the
precise preparation of different quantum states. Within this thesis, states with a
high potential for applications and fundamental research have been prepared and
experimental techniques were demonstrated. These particular states were: an un-
conditional bound entangled state of light, and a bipartite entangled state between
bright twin beams at the wavelengths of 810 nm and 1550 nm. The technique of sum-
frequency generation was shown to convert a coherent field from 1550 nm to 532 nm.
All states and techniques were performed in the CV regime with continuous-wave,
quasi-monochromatic laser fields.

Bound Entanglement

Although there were claims of the experimental generation of bound entanglement
in 2009 with a four-qubit bound entangled Smolin state [88, 89], the first convincing
experiments, conducted in the DV regime, were published in 2010: an unconditional
preparation with ions [90] and a conditional preparation with single photons [91].
Simultaneously, the generation of unconditional bound entanglement presented here
was demonstrated [66]. It was the first experimental realization in the CV regime.
The high significance of the state preparation (46σ away from being distillable, 16σ
away from being separable and 53σ away from unphysical) demonstrated the high
precision of the experimental platform, since bound entanglement in the CV regime
was shown to be a rare phenomenon [92]. All predicted entanglement properties (NPT
entangled, bound entangled and separable) were realized by moving through phase
space. Unlike conditional preparation in the DV regime, unconditional preparation
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opens the possibility to conduct further experiments with the generated state. The
“superactivation” of channels with zero quantum capacity can now be realized, although
the experimental challenge is still high [30, 31]. The experimental techniques, however,
can be used for the accurate and precise control of further quantum state preparations.
Furthermore, the investigation of general entanglement properties is of fundamental
interest: the irreversible character of bound entanglement has triggered entire theoretical
research programs [61], which try to link entanglement theory to a thermodynamical
picture [28, 29]. The experimental realization can help to verify theoretical findings.

Twin Beam Entanglement

In order to connect the optical wavelengths suitable for quantum memories and standard
telecommunications fibers, a non-degenerated OPO was set up and operated above
threshold. The quantum properties of its output fields at 810 nm and 1550 nm were
investigated. Quantum amplitude correlations between the twin beams in the order of
−3 dB with respect to vacuum noise were observed and their characteristics understood.
Furthermore, quantum phase correlations were shown and bipartite entanglement
between the bright twin beams at 810 nm and 1550 nm in the order of −1 dB was
verified. A decreasing amount in quantum correlations at small sideband frequencies
was observed. This effect was caused by the diversity of the twin beams’ cavity linewidth.
Either equalizing the cavities’ linewidth or increasing the linewidth in general leads to
an increase of quantum correlations at small frequencies. This was also demonstrated,
at almost the same time, in a similar type of experiment by Li et al. [93, 94]. In order
to improve the operation stability close to threshold, more sophisticated stabilization
schemes of pump power, crystal temperature or length should be investigated. Future
experiments could use this type of OPO to further close the gap between the DV
and CV regimes. Hybrid experiments, with single photon counting modules (SPCMs)
and homodyne detection, were used in the past to generate peculiar quantum states.
Subtracting a single photon from a squeezed vacuum state or performing homodyne
detection on number states led to the generation of Schrödinger kitten states [95, 96].
Operating the OPO below threshold, SPCMs could be used to detect single photons
at 810 nm while the output field at 1550 nm is probed with high efficient homodyne
detection. Heralded single photons at 1550 nm or single-photon-added quantum states
could be realized.

Quantum Frequency Conversion

In order to convert quantum states from one optical frequency to another, a sum-
frequency generation was experimentally realized. A coherent light field at 1550 nm
was converted to 532 nm with a conversion efficiency of more than 84%. The obtained
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measurement results were in excellent agreement with the numerical model of the
system. An analysis showed that reducing the reflectivity of the signal field’s coupling
mirror would increase the expected conversion efficiency to over 93%. Hence, the
expected quantum fidelity of a converted squeezed state is rather high. Introducing
a squeezed state with a noise suppression of −12.3 dB at 1550 nm [41] should result
in a noise suppression of over −9 dB at 532 nm. This could be used to enhance the
sensitivity of future gravitational wave detectors operating at 532 nm, such as DECIGO
[42]. The sum-frequency generation can also be used to convert arbitrary quantum
states, such as entangled states or single photons. The photon statistics of high quality
quantum states, prepared at 1550 nm, can be investigated at 532 nm or implemented
in hybrid experiments using SPCMs.

Although the field of quantum optics arose three and a half decades ago, it is
still growing rapidly. Several papers are published every day all over the world and
new theoretical ideas and proposals and experimental realizations appear. Arguably,
the first “real” application of non-classical light was implemented last year in the
gravitational wave detector GEO600 in order to improve its sensitivity for a novel
kind of astronomy [40]. When the first application suitable for daily use appears is
uncertain. This work, however, contributes a small piece in the big puzzle of how to
handle the “spooky action at a distance”.

103





APPENDIX A

Convex Optimization Problems

Convex optimization solves problems of the form

minimize f0 (x)
subject to fi (x) ≤ bi , i = 1, . . . ,m .

Let the functions f0, . . . , fm : Rn → R be convex. They therefore satisfy the condition

fi (αx+ βy) ≤ αfi (x) + βfi (y) , ∀x, y ∈ Rn, ∀α, β ∈ R

with α + β = 1, α ≥ 0, β ≥ 0.
Ref. [97] gives a detailed discussion of convex optimization and is recommended for

further reading.

Matlab Code for Calculating Inseparability

We reconstructed and analyzed the covariance matrix using the YALMIP [98] and
SeDuMi [99] toolboxes of the commercial Matlab software package (MATLAB 2009b,
The MathWorks Inc.). The following code, written by Carlos Pineda [66], was used to
calculate the inseparability of Section 5.1.1 for a given covariance matrix γ of NA×NB

modes.

1 % Ca l cu l a t i n g the Lambda matrix f o r N modes
2 function [ out ] = symplecticForm (N)
3 out = zeros (2∗N, 2∗N) ;
4 for k = 1 :N
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5 out (2∗k−1, 2∗k ) = 1 ;
6 out (2∗k , 2∗k−1) = −1;
7 end
8
9 % Ca l cu l a t i n g the i n s e p a r a b i l i t y
10 x = sdpvar (1 ) ; % Def in ing s o l u t i o n matrix
11 GammaA = sdpvar (2∗NA) ; % Def in ing symmetric 2∗N_A submatr ix
12 GammaB = sdpvar (2∗NB) ; % Def in ing symmetric 2∗N_B submatr ix
13 F = set ( [ ] ) ; % Def in ing an empty s e t
14
15 % Add cond i t i on s to the s e t
16 F = F + set (gamma − [GammaA zeros (2∗NA, 2∗NB) ;

zeros (2∗NB, 2∗NA) GammaB] > 0) ;
17 F = F + set (GammaA + i /4∗x∗ symplecticForm (NA) > 0) ;
18 F = F + set (GammaB + i /4∗x∗ symplecticForm (NB) > 0) ;
19
20 % Solve s e t
21 s o l = so lve sdp (F , −x , s dp s e t t i n g s ( ’ verbose ’ , 0 ) ) ;
22
23 % Disp lay s o l u t i o n
24 disp ( double ( xe ) )
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Cavity Equations and Nonlinearities

To be able to describe the nonlinear interaction within an optical resonator, we follow
[100] and derive the equations of motion of a cavity. Therefore, we rewrite the traveling
wave solution of the electric field, see Equation (2.35), as the product of a mode-function
uk(r) and an amplitude-function âk(t)

E(r, t) = E+(r, t) + E−(r, t)
= −ι̇

∑
k

Eωuk(r) âk − ι̇
∑
k

Eωuk(r) â†k , (B.1)

with Eω =
√
~ω/2ε0 and the time evolution of an harmonic oscillator

˙̂ak = ι̇

~
[
Ĥ, âk

]
= −ι̇ωâk .

Considering the case of a one-dimensional cavity the mode-function obeys the Helmholtz
equation (

∆ + n2(x) · k2
)
uk(x) = 0 ,

where n(x) denotes the index of refraction. The solution for a cavity with a perfect
mirror at x = 0 and a partial mirror with amplitude transmission t and reflectivity r
at x = L is given by [101]

uk(x) =


t

1+re2ι̇kL · 2ι̇ · sin (kx) 0 < x < L

1+re−2ι̇kL

1+re2ι̇kL · eι̇kx − e−ι̇kx L < x <∞
. (B.2)
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The two terms of the region outside the cavity (L < x <∞) correspond to the outgoing
and incoming wave, respectively. The cavity’s resonances are given by

T (ω) = t

1 + re2ι̇kL = t

1 + re2ι̇ωL/c

and a resonant enhancement occurs for a perfect mirror (r = 1) at 2ωL
c

= (2n+ 1) π.
For the more realistic case of r < 1 we must find a complex solution for 1+re2ι̇ΩnL/c = 0.
With r = |r| eι̇φr follows

1 + re2ι̇ΩnL/c = 0
1− |r| e2ι̇ΩnL/c−ι̇((2n+1)π−φr) = 0

e2ι̇ΩnL/c−ι̇((2n+1)π−φr) = 1
|r|

2ι̇ΩnL/c− ι̇ ((2n+ 1) π − φr) = − ln r = − ln
√

1− t2 t�1≈ +t
2

2 ,

⇒ Ωn = c

L
nπ︸ ︷︷ ︸
ωn

+ c

2L (π − φr)︸ ︷︷ ︸
δω

−ι̇ c

2L
t2

2︸ ︷︷ ︸
γ
2

. (B.3)

Expanding T (ω) around a cavity resonance ω ≈ ωn

T (ω) = t

1 + |r| e2ι̇(ω−Ωn)L/c ,

leads under the assumptions of a 180° phase flip at the mirror (φr = π y δω = 0) and
an almost ideal mirror reflectivity |r| ≈ 1 to the approximated expression

T (ω) ≈ t

1− |r| e2ι̇(ω−Ωn)L/c

= t

1− (1 + 2ι̇ (ω − Ωn)L/c)

= t

−2ι̇ (ω − Ωn)L/c

= c ι̇

2L
t

ω − Ωn

.

With Equation (B.3) the expression becomes

T (ω) ≈ c

2L
t

γ/2− ι̇ (ω − ωn)

=
√

c

2L

√
γ/2

γ/2− ι̇ (ω − ωn) .
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The absolute square |T (ω)|2 yields the cavity’s transmission profile, which is a
Lorentzian with center frequency ωn and full width at half maximum γ.

The solution of the electric field within the cavity is with Equations (B.1) and (B.2)
given for a continuous frequency distribution as

E+(x, t) = −ι̇
∑
k

Eωuk(x) âk(t)

= −ι̇
∑
k

2Eω ι̇ · sin (kx)
√
c

L

√
γ/2

γ/2− ι̇ (ω − ωn) âk(t)

=
√

2 Eωn · sin (kx)
∫

dω

√
γ/(2π)

γ/2− ι̇ (ω − ωn) âω(t)︸ ︷︷ ︸
âc(t) cavity field operator

where we used the substitution ∑k → 1
∆ω

∫
dω and âk →

√
∆ω âω with ∆ω = 2πc

L
→ 0

and defined the cavity field operator âc(t). The cavity field operator âc(t) obeys the
commutation relation [

âc, â
†
c

]
=
∫

dω γ/(2π)
(γ/2)2 + (ω − ωn)2 = 1 ,

where we used the commutation relation of the continuous field operators
[
âω, â

†
ω′

]
=

δ (ω − ω′). Taking the time evolution of âω(t) = âω(0)e−ι̇ωt into account, we obtain the
equation of motion for the cavity operator

˙̂ac =
∫

dω
√
γ/(2π) −ι̇ω

γ/2− ι̇ (ω − ωn) âω(t)

=
∫

dω
√
γ/(2π) −ι̇ω + ι̇ωn + γ/2− ι̇ωn − γ/2

γ/2− ι̇ (ω − ωn)︸ ︷︷ ︸
1− ι̇ωn+γ/2

γ/2−ι̇(ω−ωn)

âω(t)

=
∫

dω
√
γ/(2π) âω(t)− (ι̇ωn + γ/2)

∫
dω

√
γ/(2π)

γ/2− ι̇ (ω − ωn) âω(t)︸ ︷︷ ︸
âc(t)

= − (ι̇ωn + γ/2) âc(t) +√γ 1√
2π

∫
dω âω(t)︸ ︷︷ ︸

âin (vacuum)

.
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The occurring field âin has a white noise signature

〈âin(t)â†in(t′)〉 = 1
2π

∫
dω

∫
dω′ 〈âω(0)â†ω′(0)〉︸ ︷︷ ︸

δ(ω−ω′)

eι̇ωte−ι̇ωt

= 1
2π

∫
dωeι̇ω(t−t′) = δ (t− t′)

and corresponds to an in-coupling vacuum field. By moving to the rotating frame, we
obtain an expression with the cavity detuning ∆

˙̂ac = − (ι̇∆ + γ/2) âc(t) +√γ âin .

The output field âout for x > L can be obtained by looking at the outgoing electric
field component E+

out(x,t)

E+
out(x, t) = −ι̇

∑
k

Eωuk(x) âk(t)

= −ι̇
∑
k

Eω
1 + re−2ι̇kL

1 + re2ι̇kL · e
ι̇kx âk(t)

= −ι̇
∑
k

Eω
T (ω)
T ∗(ω) · e

ι̇kx âk(t)

= −ι̇
∑
k

Eω
γ/2 + ι̇ (ω − ωn)
γ/2− ι̇ (ω − ωn) · e

ι̇kx âk(t)

= −ι̇
∑
k

Eω
(
−1 + γ

γ/2− ι̇ (ω − ωn)

)
· eι̇kx âk(t)

= −ι̇Eωneι̇kx
√

L

2πc

∫
dω

(
−1 + γ

γ/2− ι̇ (ω − ωn)

)
âω(t)

= −ι̇Eωneι̇kx
√
L

c

− 1√
2π

∫
dω âω(t)︸ ︷︷ ︸

âin(t)

+√γ
∫

dω

√
γ/(2π)

γ/2− ι̇ (ω − ωn) âω(t)︸ ︷︷ ︸
âc(t)

 .

We can hence define the outgoing field operator as

âout(t) = −âin +√γ âc(t) . (B.4)

Nonlinearity

Introducing a nonlinear interaction for twin beam generation with the Hamiltonian

Ĥint = deff
(
â3â

†
1â
†
2 + â†3â1â2

)
,
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with the modes 1, 2 and 3 corresponding to signal, idler and pump field, we obtain the
cavity differential equation on resonance (∆ = 0)

˙̂a1 = −γ2 â1 −
√
γ âin + ι̇

[
Ĥint, â1

]
︸ ︷︷ ︸
−ι̇deff â3â

†
2

= −γ2 â1 − ι̇deff â3â
†
2 −
√
γ âin .

Analogously we obtain the cavity equation of motion for the idler and pump field, used
in Section 6.2. The degenerated case of squeezing production is obtained in the same
way. A detailed description can be found in [102].
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APPENDIX C

Two-Mirror-Cavity with Absorption

Cavities are widely used in quantum optics experiments. Here, the calculation of the
field properties in transmission and reflection of a two mirror cavity, including a lossy
medium, is presented.
We consider the cavity shown in Figure C.1 with amplitude reflectivities ri and

transmittances ti. If the distance d between the two mirrors contains a lossy medium,
it will be described by the absorption coefficient β, which expresses the intensity
absorption in %/cm. The relationship between the amplitudes can be described by the
ray transfer matrix formalism [103]. A mirror can be considered as a beam splitter; its
ray transfer matrix is given by(

a1
arefl

)
=
(
t1 r1
r1 −t1

)(
ain
a4

)
,

(
atrans
a3

)
=
(
t2 r2
r2 −t2

)(
a2
0

)
,

(C.1)

where the vacuum input from the back will be set to zero for classical fields. At distance
d the single-path loss is given by

γ = exp (−β/2 · d) , (C.2)

while it is important to take the amplitude absorption β/2 into account.
According to the difference between the frequency of the incident light νl and the

resonance frequency of the cavity

νres = n · c2d = n · FSR
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aref

ain a1 a2

a4 a3

atrans

d

ρ1, τ1

M1 M2

ρ2, τ2

avac

Figure C.1 – Schematic drawing of a linear cavity.

a phase shift ∆ϕ is accumulated. If the length of the cavity is a multiple of the incident
wavelength the resonance condition is fulfilled and a power build up can take place.
The distance in frequency between two resonances is called the free spectral range
(FSR). Looking at a round trip, the accumulated phase shift reads

∆ϕ = 2π (νl − νres)
2d
c

= 2π δν

FSR mod 2π .

Hence, the field propagation through distance d is described by

a2 = ei·∆ϕ/2−β/2·d · a1 ,

a4 = ei·∆ϕ/2−β/2·d · a3 .

Solving Equations (C.1) leads to expressions for the involved fields.

a3 = r2 · a2 = r2 ·

ζ︷ ︸︸ ︷
ei·∆ϕ/2−β/2·d ·a1

= r2 · ζ · (t1 · ain + r1 · a4)
= ζ · r2t1 · ain + r1r2 · ζ2 · a3

= ζ · t1r2

1− r1r2 · ζ2 · ain ,

a1 = t1 · ain + r1 · a4

= t1 · ain + r1 · ζ ·
ζ · t1r2

1− r1r2 · ζ2 · ain

=
(
t1 + r1 ·

ζ2 · t1r2

1− r1r2 · ζ2

)
· ain .
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Hence, the transmitted and reflected field amplitudes of the cavity read

atrans = t2 · a2 = t2 · ζ · a1

= t2 · ζ ·
(
t1 + r1 ·

ζ2 · t1r2

1− r1r2 · ζ2

)
· ain

= t1t2 ·
ζ

1− r1r2 · ζ2 · ain

aref = r1 · ain − t1 · a4

= r1 · ain − t1 ·
ζ2 · t1r2

1− r1r2 · ζ2 · ain

=
(
r1 − t21r1 ·

ζ2

1− r1r2 · ζ2

)
· ain

Finesse

The finesse of a cavity is defined as the ratio of the FSR to the linewidth, while the
latter corresponds to the intensity full width at half maximum (FWHM)

F = FSR
FWHM .

The maximum is given on resonance with ∆ϕ = 0. Therefore, the field propagation
through distance d is solely affected by the intensity loss β

ζ = ei·∆ϕ/2−β/2·d → e−β/2·d = γ .

Hence, the transmitted half maximum intensity reads

1/2 |atrans(∆ϕ = 0)|2 = t21t
2
2 · γ2

2 · (1− r1r2 · γ2)2 · |ain|2 .

With the substitution ζ = γe−iz, z = 2π δν
2FSR the full width 2δν yields

|atrans|2 = t1t2 · eiz · γ
1− r1r2 · γ2 (eiz)2 ·

t1t2 · e−iz · γ
1− r1r2 · γ2 (e−iz)2 · |ain|2

= t21t
2
2γ

2

1 + r2
1r

2
2γ

4 − r1r2γ2 · 2 cos (2z) · |ain|2

!= 1/2 |atrans(∆ϕ = 0)|2 = t21t
2
2 · γ2

2 (1− r1r2 · γ2)2 · |ain|2 ,
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y cos (2z) = cos
(

2π δν

FSR

)
= 4r1r2γ

2 − r2
1r

2
2γ

4 − 1
2r1r2γ2 .

The final expression for the finesse with absorption reads

F = FSR
2δν = π ·

[
arccos

(
4r1r2γ

2 − r2
1r

2
2γ

4 − 1
2r1r2γ2

)]−1

,

while γ is given by Equation (C.2).
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