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Abstract

The coupled problem for a generalized Newtonian Stokes flow in one domain and a gener-
alized Newtonian Darcy flow in a porous medium is studied in this work. Both flows are
treated as a first order system in a stress-velocity formulation for the Stokes problem and
a volumetric flux-hydraulic potential formulation for the Darcy problem. The coupling
along an interface is done by using the well known Beavers-Joseph-Saffman interface con-
dition. A least-squares finite element method is used for the numerical approximation of
the solution. It is shown that under some assumptions on the viscosity the least-squares
functional corresponding to the nonlinear first order system is an efficient and reliable
error estimator which allows for adaptive refinement of the triangulations. The adap-
tive refinement is examined in several numerical examples where boundary singularities
are present. Due to the nonlinearity of the problem a Gaufi-Newton method is used to
iteratively solve the problem. It is shown that the variational problems arising in the
Gaufs-Newton method are well-posed. The performance of the Gauk-Newton method is
analyzed for several examples.

Keywords: Least-Squares finite element method, non-Newtonian fluids, Beavers-Joseph-Saffman
condition, a-posteriori error estimator, adaptive refinement, Gauk-Newton method






Kurzzusammenfassung

In dieser Arbeit wird ein gekoppeltes Problem fiir eine generalized Newtonian Stokes
Stromung und eine generalized Newtonian Darcy Stromung in einem pordsen Medium
betrachtet. Beide Probleme werden als System erster Ordnung in einer Spannungs-
Geschwindigkeitsformulierung fiir das Stokes Problem und einer volumetrischer Fluss-
hydraulisches Potential Formulierung fiir das Darcy Problem betrachtet. Die Kopplung
iiber das Interface erfolgt {iber die Beavers-Joseph-Saffman Bedingung. Es wird eine
Least-Squares Finite-Elemente-Methode zur numerischen Approximation der Lésung ver-
wendet. In dieser Arbeit wird, unter Annahmen an die Viskositdt, gezeigt, dass das
zu dem nichtlinearen Problem gehorende Least-Squares-Funktional ein effizienter und
verlasslicher Fehlerschitzer ist. Dies erlaubt die Verwendung von Verfahren zur adap-
tiven Verfeinerung der Triangulierungen. Die adaptive Verfeinerung wird in mehreren
Beispielen untersucht bei denen Randsingularititen auftreten. Wegen der Nichtlinear-
itdt des Problems wird ein Gaul-Newton Verfahren zur iterativen Losung des Problems
verwendet. Es wird gezeigt, dass die Variationsprobleme, die bei dem Gauf-Newton
Verfahren auftreten, wohlgestellt sind. Das Verhalten des Gaufi-Newton Verfahrens wird
fiir mehrere Beispiele untersucht.

Schlagworte: Least-Squares Finite-Element-Methode, nichtnewtonsche Fluide, Beavers-Joseph-
Saffman Bedingung, a-posteriori Fehlerschétzer, adaptive Verfeinerung, Gaufs-Newton Verfahren
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Chapter 1

Introduction

This work is about the numerical analysis of a fluid flow coupled with a porous media flow. The
mathematical formulation of these problems is given by a Stokes formulation for the fluid flow and a
Darcy formulation for the flow through the porous medium coupled along an interface. The interface
is assumed to be non-moving.

There are several applications for coupled Stokes/Darcy flows. Considering Newtonian flows
these models can be used to simulate groundwater flow in karst aquifers [CGH™10| or the inter-
action between surface and groundwater flows [LSY02]. The coupling of generalized Newtonian
Stokes/Darcy flows arises in industrial filtration processes |[EJS09, HWNWO6| where the lifespan
of the filters is determined by the hydrostatic pressure gradient. Further examples include the
simulation of blood flow through arteries and the transport of plasma through the artery walls
ISWH™ 06, [CBBHOS]. Though the flow is often approximated as a Newtonian fluid blood exhibits a
non-Newtonian behavior which is studied in [CB05, IMK10].

The coupling along the interface is done by assuming continuity of flux and balance of forces.
Another component of the coupling is given by the Beavers-Joseph-Saffman condition, which de-
scribes the proportionality of tangential velocity and shear rate of the Stokes flow. This condition
assures the well-posedness of the coupled problem and is a more realistic approach for interface con-
ditions than a vanishing tangential component of the velocity [DQ09]. The Beavers-Joseph condition
was formulated in 1967 by Beavers/Joseph [BJ67]. In 1971 Saffman [Saf71] examined this interface
condition and discovered that the seepage velocity can be neglected. The Beavers-Joseph-Saffman
condition was mathematically justified in [JMO0].

For the numerical analysis a least-squares mixed finite element method is used. A comprehensive
description of these methods can be found in [BG09|. For the coupled Stokes/Darcy problem all
variables of interest are approximated which allows a straightforward treatment of the coupling con-
ditions. Least-squares mixed finite element methods have several advantages compared to standard
mixed finite element methods. A compatibility condition as the inf-sup condition for saddle point
problems is not necessary and the linear equation systems of the discrete problem is typically positive
definite for well-posed problems. Moreover we show in this work that the least-squares functional is
an efficient and reliable error estimator. This allows for effective adaptive refinement.

Applications of least-squares finite element methods are widespread and include (Navier-)Stokes
flow [CTVWI10, BLO12, [CWQ9|, linear elasticity [CS03|, nonlinear elasto-plasticity [Sta07| and
porous media flow [BMMS05].

Mixed finite element methods for the coupled Stokes / Darcy equations by using the Beavers-
Joseph-Saffman condition have been analyzed in numerous works. Under the assumption of constant
viscosity mixed finite element methods involving Lagrange multipliers have been used in early works
[IDQMO02, ILSY02]. The use of discontinuous Galerkin methods can be found in [Riv05, RY05].

9



10 CHAPTER 1. INTRODUCTION

The coupling of Navier-Stokes and Darcy equations can be found in [DQ09]. A least-squares finite
element method for the coupled Stokes / Darcy problem was analyzed in [MS11] where it was shown
that the least-squares functional is an efficient and reliable error estimator. An adaptive refinement
strategy that achieved optimal convergence rates was used.

The present work deals with non-Newtonian fluids. We restrict ourselves to the case of generalized
Newtonian fluids where the viscosity depends on the shear rate / absolute value of the volumetric
flux. Many works deal with these kinds of fluids for Stokes flows as for example [BS08a), [BLI3|
GMS11), BS94]. The models for the coupled Stokes / Darcy problem and a corresponding mixed
finite element method can be found in [EJS09]. We draw on the used models in this work and
analogously to [MS1I] derive a least-squares finite element method to solve the nonlinear problem.
The treatment of the nonlinearity is similar to [Sta07|. We take advantage of the least-squares
functional being an error estimator to make use of adaptive refinement strategies.

The first part of this work introduces the least-squares finite element method and gives a short
overview of the necessary inequalities to prove the main results. A very short introduction to the
used finite element spaces is given at the end of the chapter.

In the second part we take a closer look at the separate problems. The main results of the
least-squares functional being an efficient and reliable error estimator for the Stokes and Darcy
problems is proven under assumptions on the viscosity. Furthermore we use a Gaufs-Newton method
to solve the nonlinear problem. This method has been used with success in several works dealing
with least-squares finite element methods. Examples include the shallow water equations [Sta05],
variably saturated subsurface flows [Sta00], shallow water equations coupled with ground water flows
[Miin08| and elasto-plasticity [Sta07|. Furthermore we prove that the linear problems are well posed
independent of the starting point. We present some numerical examples to illustrate the behavior
of an adaptive refinement strategy compared to uniform refinements.

The third part of this work deals with the coupled problem. The main result of the least-squares
functional being an efficient and reliable error estimator is proven. We show again that the linear
problems arising in the Gauf-Newton method are well posed. At the end of the chapter several
numerical examples are presented and the performance of the Gauk-Newton method is examined.

The last part consists of a short outlook considering several open questions that arose in the
course of this work and have to be addressed in further research. A short conclusion finishes this
thesis.



Chapter 2

Basics of LSFEM

2.1 Least-Squares Finite Element Methods

A comprehensive introduction to least-squares finite element methods can be found in [BG09|]. This
section only gives a short introduction of these methods.
Let the following nonlinear partial differential equation be given:

R(u)=f in Q

(2.1)
u=gp auf 90

In this case R is an operator from the Hilbert space V to a Hilbert space W. The space W is
commonly a tensor product of L?(Q)-spaces. Considering first order systems typical representatives
for V are given by products of the spaces H'(2) and H%(Q).

Let up € V satisfy up|sq = gp in the sense of traces. For simplicity we introduce u:

a:=u-—up
with @]gn = 0. Therefore we introduce the space:
Vo=9{ veV | vjpo=0 }

Remark: The expression -|so = 0 has to be understood in the sense of traces and is not meant
to be pointwise satisfied.
The least-squares functional is defined by

F(u) = [R(w) — £y (2.2)

The least-squares finite element method is based on minimizing the W norm of the residual:
Find u € V), such that
Fup+1a) < Flup+v) YWely (2.3)

holds.
The first variation of the minimization problem is given by:

af(uD +a+ 99)
00

0 . N
lo—o0 = %HR(UD + 10+ 09) — f|f5ylo=0
(2.4)

0 . . . .
= %(R(UD +0u+60v)—f,R(up +a+6v) —f)wle=o

=2(R(up + 1), J(up + @)[V))w — 2(f, T (up + 0)[v])w

11



12 CHAPTER 2. BASICS OF LSFEM

with J(u)[v] denoting the Gateaux derivative of R(u) in u in direction of v. For this section
we assume R to be differentiable. If a minimum u of (2.3)) exists we therefore have the following
necessary condition:

(R(up + 1), J(up +a)[v])w = (f,T(up + @)[V])y YV €Wy (2.5)
Instead of solving the minimization problem ({2.3]) we can solve the following:

Find & € Vy such that (2.5) holds. (2.6)

Before we introduce a method for approximately solving the nonlinear PDE we shortly present
the finite element method.

Let a triangulation 7p of the domain 2 be given. Here h denotes the maximal diameter of
the triangles in 7,. Using a variational formulation, like in , the problem is solved in finite
dimensional subspaces. Let V), C Vy be such a finite dimensional subspace. An example would be
the space of functions that are continuous in 2 and linear on every triangle T; € 7;,. The discrete
problem is then given by: Find uy € V} such that

(R(up +1p), J(up + @) [Vr))w = (£, T (up + @) [Vr]))w V¥ € Vg (2.7)

holds.

This is a nonlinear equation system with dim(V},) unknowns and equations. One can use standard
procedures such as Newton’s method to solve this equation system.

Remark: It has to be noted that one can solve the minimization problem as well.
Restricted to finite dimensional subspaces V}, one has to solve a minimization problem in R™ with a
nonlinear objective function, which can be solved with standard procedures:

Find 0y € V}, such that

Fup+ap) < Flup +Vp) Vv, €V (2.8)

holds.

Problem is a minimization problem in least-squares form. A standard procedure for solving
these kinds of problems is the Gauk-Newton method (see [NWO0] for details). For a least-squares
FEM it can be found in [Sta00, [Sta05] for example.

Let u® be an approximation of u with u(k)]ag = gp. Let the next approximation uktD) pe
defined by

u D = u®) 4 su

We use a linear approximation of R around u(*)
Ru*) ~ R(M) + 7 (u")[5u]
The quadratic LSF has the form:
Fpuaa(6u) = [|[R@®) + 7 (a®) (5] - £ (2.9)
This results in the minimization problem: Find du € V, such that
Fouaa(u® + 1) < Fruaa(u® +6v) Vév € Wy (2.10)
holds. As before we can set the first variation to 0 and get the necessary condition:

(J (¥ [ou], 7 (@) [5v])yw = (F = R(u®), 7(u®)[6v])y Vév e Vg (2.11)
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Instead of solving the minimization problem ([2.3)) one can solve the variational problem:
Find u € V such that (2.11) holds. (2.12)

Setting

a(du,v) = (J (™) [gul, 7 (@) [5v])w
F(ov) = (f = RW), 7 (@) [5v])w

we can write (2.11)) in the usual form: Find du € V, such that
a(du,év) = F(év) Yovey (2.13)

holds.

Here a(-,-) is a bilinear form and F'(-) is a linear functional. The reduction to finite dimensional
problems is analog to the non-quadratic functional.

A major advantage of the LSFEM is the usage of the LSF as an efficient and reliable a-posteriori
error estimator. That means that for a solution u = up + u of and with v = up + v the
following holds:

Cullu—vI} < F(v) < Csllu— v} (2.14)

for all v € V. Inequality (2.14)) has to be proven for the specific problem.

The consequences of (2.14) are important for the numerical part. The estimate provides a
measure for the error and therefore a local a-posteriori error estimator and allows the usage of
effective adaptive algorithms.

Another advantage in the case of FEM is the use of an a-priori error estimator. For the approx-

imate solution of the FEM for (2.8]) it holds:

Flup) < F(Zp(w) < Cslu—Zy(u)|;

for an arbitrary operator Zy(u) : V — V.
If we assume that under the assumption u € Y such an operator Zp,(-) exists with

[u—Zyp(u)[ly < Czh%|ully

for > 0. Then it follows by (2.14)):

Cyg o
o —uply <4/ @Czh ully

That means that the FEM converges (with a convergence rate «) to the solution u. Such interpo-
lation operators are known for standard FE-spaces and are stated in the next section.
For the last part of this section we take a closer look at the special case of linear PDEs. We set

R(u) = Lu
with a linear operator £. The necessary condition [2.5]is then given by:
a@,%) = (L(R), L)) = (£ — Lup), L&) = F&) ¥ €V
Here estimate has some additional consequences. It holds:

Celwl} = Cellu—v|3 < |If - ['VZH%/V < Csllu—v[} = Cs|wli
=[ILwll5y



14 CHAPTER 2. BASICS OF LSFEM

with w:=u—v € V.
That means
Cpllw(3 < a(w,w) < Cs|wl}, Ywe Wy

and (if f e W)
F(w) = (f = L(up), L(W))y
< |If = L(ap)|wll£(w)l[w
< Cull£(w)llw
< CiCsllwlly

The consequence of this is that the prerequisites of the lemma of Lax-Milgram are satisfied. Therefore
the variational problem ([2.6|) (and the minimization problem ({2.3)) has a unique solution if R(u) =
L(ua).

2.2 The Hilbert Spaces H%(Q)) and H'(Q)

In this section we take a closer look at the special case
-V =H¥Q) or H(Q)
- W=L%*Q)

These are the used solution spaces in chapter 3. The coupled problem is different and is discussed
in chapter 4. Nonetheless the results of this section are used there as well.

Before stating important inequalities we need a formal definition for the solution spaces. The
following spaces

- H¥(Q) = {v e (L2(Q)¢ | divv e L*(Q)}
- HY(Q)={pe L*(Q) | Vpe (L*(Q)}
are Hilbert spaces with the inner products:

(V,u)gin = (Vv,u)p.0 + (divv,divu)gn
P, D12 = @, Moo+ (Vp, Va)oo

Here (-, -)o,o denotes the standard L?(€2) inner product. Here and in the further course we drop the
subscript if the L?(€2) inner product is used. The induced norms are given by

Il o = lIpll5. + IVPIG o
[ullfi0 = l[ull§ o + [[divullg o

Analog to chapter 2.1 we make use of the following spaces:

Hfﬂ%’(Q) = closurey. . {V € H®@Q) N (C*®(Q)? |v-n=0onTy}
Hflg’(Q) = closurey. |, {p € HY Q) NC®(Q) |p=0onTp}

Remark: H%(Q) and H'(Q) can be defined in a similar way.
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2.2.1 Important Inequalities

First we recapitulate the Poincare-Friedrichs inequality (see [EGO04]):

Theorem 2.1 [Poincare-Friedrichs inequality/

Let Q C R? be a bounded domain with Lipschitz boundary and let f be a linear form on H(Q)
whose restriction on constant functions is not zero. Then for all p € H'(Q) there exists a constant
Cp= CD(Q) > 0 with

Il < Co(lf @) + [Velie) (2.15)

proof: See [EG04, Lemma B.63| combined with [EG04, Theorem B.37].
For our coupled problem of chapter 4 we use f(p) = [rpds (see [EG04, Example B.64] with
I' € 00 with positive measure and therefore get the following inequality

2
lpliq < Cp <</de8) + HVPHg,Q) (2.16)

This inequality includes the well known variants as well (as found in [Mat08] for example):
- Il o < CollVel3 g for all p € Hy (Q) with Aq-1(T'p) > 0
- Il o < Cpl|Vpl3 g for all p € HY(Q) with [, pdz =0

Ad—1 denotes the d — 1 dimensional Lebesgue measure.
The next theorem is the well known second inequality of Korn:

Theorem 2.2 [Korn’s second inequality]
Let Q be an open and bounded subset of R? with Lipschitz boundary. Furthermore let Ag(To) > 0
with Tg C 0Q. Then there exists a Cx = Cx(2,To) > 0 with

/ e(v):e(v)dx > CKHVH% Vv € H%O(Q)d
Q

proof: See [Bra92] for the case of d = 3 or [KOS87]| for the general case d < 3.

The next lemma is needed for the deviatoric formulation of the Stokes flow. It can be found
in [MS11] (for the three dimensional case in [CTVWI0]) and in the case of linear elasticity for
compressible materials in [CS03]. This lemma goes back to [ADG84].

Lemma 2.3 Let Q be an open and bounded subset of R® with Lipschitz boundary. There exists a
constant C's such that
Itr 718 .05 < Cs (Ildev 7[5 o4 + I div T o)

holds for all T € (HY(Qg))? with Jo,tr T dz=0.

Next we introduce the well known trace theorems that are necessary for the analysis in chapter
3/4.

The following theorem can be found in [NecI2l chapter 2,:Theorem 5.5].

Theorem 2.4 Let Q be a bounded open subset of R with a Lipschitz-Continuous boundary 0S). Let
u € HY () then the following inequality holds:

lullz oo < Crlluflia
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proof: This is special case of Theorem 5.5 in [Nec12].
The next theorem is a consequence of [GR86, chapter 2: Theorem 2.5].

Theorem 2.5 Let Q be a bounded open subset of R% with a Lipschitz-Continuous boundary 0. Let
u € HW(Q) then the following inequality holds:

”uH_%@Q < Crllullgiv.0

proof: see [GR86, chapter 2: Theorem 2.5].

2.3 FE-Spaces

In this chapter we shortly introduce the finite element spaces we use in the numerical examples.
These are given by

- continuous piecewise polynomials of degree k
- Raviart-Thomas spaces of degree k

For the definition of triangulations / shape-regular triangulations we refer to books as [BF91} [BSOS8b,
EGO04]. The following parts can be found in [BF91].

2.3.1 Approximations of H'(f)
We use piecewise polynomials of degree k as approximations to the solutions in H'(£2). This space
is given by

Pr(K) : the space of polynomials of degree < k on triangle K

Figure 2.1: Py(K): Degrees of freedom

The dimension of Py(K) is $(k + 1)(k + 2) for d = 2. The degrees of freedom are given by the
value of the function p at given interpolation points. For the cases k£ = 1,2 these are depicted in

figure
Remark: For the general cases k > 3 we refer to books as [BF91l Bra92, [KA00| for the

definition of finite elements and the right choice of the degrees of freedom.
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For a given triangulation 7} the space of continuous piecewise polynomials can be defined by

Pi(Tw) = {p | p € H'(Q), plx € Pr(K)}
Therefore we define the functions of Pk (7y) by
- pis a polynomial of degree k on every triangle K
- p is continuous on {2

For a given triangulation 7, we ensure the first property by choosing the local basis functions to be
of

- Lagrangian type for the given degrees of freedom or
- hierarchical type

One clearly sees that every polynomial of degree k = 1,2 can be defined by the values at the points

depicted in figure [2.7] .
To ensure the continuity of p we have to assemble the local basis functions for adjacent triangles.
Therefore the dimension of Py(7},) is given by

- k=1: #P(Tp)
- k=2: #P(Th) + #E(Th)

where #P(Tp,)/#E(Tr) denotes the number of nodes / edges of the triangulation 7. Let the
diameter hg of a triangle be defined as diameter of the smallest circle that includes the triangle.
Then the variable h denotes the maximal diameter of the triangles of the triangulation 7p.

An important proposition for our numerical analysis can be found in [BF91) [EGO04]:

Proposition 2.6 Let T, be a shape-reqular triangulation. There exists an interpolation operator
rp(v) : H(Q) — Pi(Ty) such that there exists a constant c independent of h with:

[7hp — Plm,a < ch® "plsq
foro<m<sandl <s<k+1.

Remark: The mentioned interpolation operator is in fact the Clément interpolation operator
[CleTs).

2.3.2 Approximations of H(()

For the approximation of H%"(Q) we use Raviart-Thomas elements. These are given on every
triangle K € Tp, by (d=2)

1
_ _ (p(K )) 3 <93> i
RT(K) = = +pr(K) - , € Pr(K
K(K)={ala (pi(K) Pe() -\, ) Pk € Pu(E)}
For d=3 see |[BE9I]. It is easy to see that the following holds along each line s in the triangle K:

q- n|s € Pk(s)

This means that the normal component of the function q along each line is a polynomial of degree
k. The function q by itself is a polynomial of degree k + 1.
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Let the space RTy(T;,) be defined as
RT(Ty) = {vi € H""(Q) | v € RT}(K) YK € Ty}
For a function v given by piecewise polynomials it is well known (see for example [Bra92]) that
v € H"(Q) & v -n is continuous along element edges

This explains the motivation of the choice of degrees of freedom for functions in RTy(K) as
depicted in figure The arrows denote the normal component of the function along the edge at
the nodes. The other 2 degrees of freedom are given by the value of v at the midpoint of the triangle.

A local basis is typically of Lagrangian type considering the degrees of freedom.

As in the case of Pr(Tr) to ensure the property of continuous normal components along all edges
of the triangulation the local basis functions have to be assembled to get global basis functions in
Hdiv(Q)'

Therefore the dimension of RT(7,) for d = 2 is given by

- k=0: #E(T,)
- k=1: #2E(T,) + 2#T(Ty)

where #E(Ty)/#7T (Tr) denotes the number of edges / triangles of the triangulation 7y,.
An important proposition for our numerical analysis can be found in [BF91]:

Proposition 2.7 Let T, be a shape-reqular triangulation. There exists an interpolation operator
ra(v) : H¥ U (L7 ((Q)* — RT(Tp) with v > 2 fived. Let v.€ H™(Q) and divv € H*(Q). Then

there exists a constant ¢ independent of h with:
1. ||rpv = V]oo < ch™|V|ma
2. ||div (v — v)l|lo0 < ch®|div v]s o
for1<m<k+1ands<k+1.

proof: This can be found in [BF91], Proposition 3.9].

Figure 2.2: Degrees of freedom



Chapter 3

Least-Squares Formulation of the
Separate Problems

3.1 Stokes Flow

The Stokes equations are used for viscous and laminar flows. They can be derived from the Navier-
Stokes equations by dropping the advective terms and looking for a stationary solution. Some recent
works analyzing the numerical solution of non-Newtonian Stokes flows can be found in [BS08a)
EJS09| for example.

The nonlinear Stokes equations are given by:

—Vps +div (2us(le(us)*)e(us)) =f  in Qs

divug =0 in Qg (3.1)
us = gs, onlg, '

os-n=gs, onlgy,

with Qg being an open subset of R? with Lipschitz boundary. Here ug denotes the velocity and pg
denotes the pressure. Let furthermore A\yj_1(I's,,) > 0 s.t. the inequality of Korn holds. Furthermore
we assume 0fdg = I'g, UT'g, with I'g, NT's, = 0. Here and in the following parts of this work
the subscript S indicates the connection to the Stokes flow. For the least-squares FEM we have to
reformulate as a first order system. Therefore we use the stress tensor:

o5 = 2us(le(us)|*)e(us) — psI (32)
and use the following which holds for incompressible flows:
0= tr(os — 2ps(|e(us)*)e(us) + psI) = tr o5 — 2us(le(us)|*)div us + dps = tr o5 + dps

We use the trace free part of og:

1
devog =05 — g(tr os)l

An orthogonal decomposition of og is given by:

1
og =devog+ g(tr og)l

19
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resulting in
2 2 1 2
losllos = lldev asllo oz + Sltr osll.oq

We then get the nonlinear first order system:

diveg=f in Qg
dev o5 — 2us(|e(us)*)e(us) =0 in Qg
V-usg=0 in Qg
us = gs, onl'g, (3.3)
os-n=gg, onlg,

/ trog der=0 istNZ(Z)
Qg

This approach to eliminate the pressure pg is also used in the recent works (see for example [MS11]
GMS11, [CWZ10]) where the latter two works used a pseudostress-velocity formulation. In the
following parts of this work we use the expression div for the case of tensors in R%*? and the
standard notation V- in the case of vectors in R? to describe the divergence.

Remark: For the Stokes equations we use fQS tr og dx as additional condition if I'g, = 0.
This follows from

tr o = —dpg. (3.4)
Setting
/ trogde=0 ifIg, =0 (3.5)
Qg

is equivalent to setting a reference pressure py which is necessary for pure Dirichlet boundary con-
ditions.

The characterization of a non-Newtonian fluid can be found in [OP02]. Though we refer to our
case as a non-newtonian fluid flow we only look at a special case of fluids where the viscosity depends
on the shear-rate:

ps = pus(le(us)|?)
These fluids are known as generalized Newtonian fluids in the literature. There are several works
analyzing these models (see for example |[GMSI11l [EJS09| for the numerical approach and [BP07,
EMO09| for analytical works). Other models, as viscoelastic fluids, involve additional stresses. A
good example of a LSFEM for these flows can be found in [CW09|.

A distinction is drawn between shear-thinning and shear-thickening flows. The viscosity ug is
monotonous in |e(ug)|? with the following property:

- shear-thinning: ps(le(ug)[?) | if |e(ug)| 1
- shear-thickening: ps(|e(ug)|?) 1 if |e(ug)| T

There are several models to be found throughout literature. The following are used in [EJSQ09] for a
coupled generalized Newtonian Stokes-Darcy flow and can be found in [OP02] as well:

- Carreau model (|Car72|)

(NO - /~Loo)
(1+ Kle(us)[?) 7"

pu(le(ug)|?) = poo +
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- Cross model (|Cro65])

e(u 2y _ (/’LO_IU’OO)
plus)) = o 0t

- Power law model ,

ulle(us))?) = K(le(us)*) =

The constants » > 1 and K > 0 determine the characteristics of the shear-thining and shear-
thickening property. For r we have in these models:

- 1 < r < 2: shear-thinning
- r = 2: Newtonian fluid
- 2 < r: shear-thickening

For our numerical analysis we see that the power law model does not exhibit the necessary
properties to prove the main results of this work. The Carreau model can be used for shear-thinning
fluids and the Cross model does not need any further restrictions in the constants K and r.

10"

— — Cross model [
— — — Carreau model
power law

10 |- -~ TN 4

10 N -

viscosity

107 X 4
107 SN .

107 A

| | | | |
10° 10° 10" 10
shear rate

10

Figure 3.1: Example: polyacrylamide (shear thinning r=1.4)

An example for the behavior of these models is depicted in figure [3.I] Here we used the example
of polyacrylamide (see [OP02]) for the Cross model. To compare these models we used the same
constants for the power law (adequately scaled) and the Carreau model. It has to be noted that
these models behave locally (for |¢(ug)|? between 10 and 10°) similar to each other.

In figure we used the same constants and set r to 2.4 to depict a shear thickening behavior.
One can easily see that the Carreau model behaves like the power law for large shear rates. As it
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10" e

g
— Cross model [

— — — Carreau model
power law i

10° = —

10° - -7

viscosity
1
QU
T
\
\

100; -

202l i il il T VT R
10° 107 107 10° 10" 100 10° 10 10° 10° 10
shear rate

Figure 3.2: Example: shear thickening (r=2.4)

is unbounded (which holds for all 7 > 2) this model does not satisfy the assumptions of the next
section.

3.1.1 The Least-Squares Functional as an Error Estimator

As in chapter 2 we define our least-squares functional for the Stokes equations:
Fs(us,05:f) = ||div os — f[§ o, + |dev o5 — 2us(|e(us)[*)e(us)§ os + 1V - usllf o, (3:6)

A least-squares FEM for a nonlinear generalized Newtonian flow was considered recently in
[CCLT10]. The approach was different in the usage of FEM spaces and weighted least-squares
functionals. Approaches for using LSFEM for nonlinear generalized Newtonian flow go back to early
works in 1994 (|BS94]).

For our approach we make use of the following spaces

(Hf“i?jv (Qs)? = {r e (H™(Qg))? |7 -n=00onTlg, | o trr=0if I's, = 0}
(H%SD () ={ve (H(Qs)* |v=00onTg,}
As in chapter 2 we are using the following functions for the boundary conditions:
- ug, € (H'(Qs))* with ug,|rs = gsy,

- OSy € (Hdw(QS))d with USN’FSN = 9sy
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The restriction on the boundary is again meant to be in the sense of traces. If I's,, =0 / I's, =0
we set ug, =0/ og, =0.
S : : CTind (e 8 1 d div d
Our minimization problem is then given by: Find (as,6s) € (Hp, (25))" x (Hpy (€2s))7 s.t.
D N

Fs(us, +0g,05, +6s;f) < Fs(ug, +vs, o5, + 75;f)

holds for all (vg,Tg) € (H%S (2s))% x (HI@ZJ )
D N
For further analysis we need the following assumptions on pug(s).

(Als) ps(s) € CO([0,00)) N CL((0, o))

(A25) 0< Ko < ps(s) <Ky

(A35) 0 < My < ps(s) +2ps(s)s < My < oo for s >0
These assumptions can be found in [EM09] for example.

Lemma 3.1 Assume that (Alg),(A2s) and (A3s) hold. Then we have for an arbitrary constant

jts >0 :
s (le(us)?)e(us) — us(le(vs)P)e(vs) — as(e(us) —e(vs))logs
- (3.7)
< Cus - pslle(us) —e(vs)loas
which holds for all ug,vs € (H(Q2))? with a constant C,, s(fis) given by
2y _ = 2) o 2 (1€12)]€]2
Cos im0 () = sl s O6) = s + 2UUEPIEP) _ g
EE]RdXd ,UfS

Proof: A similar lemma for the case of nonlinear plasticity can be found in [Sta07]. We follow
this idea for a proof. We show that

s (le(ug)?)e(us) — ps(le(vs)Pe(vs) — fis(e(us) — e(vs))| < Cus - isle(ug) —e(vs)|  (3.9)

holds for almost every x € Qg, whereby [3.7] follows directly.
We define S(€) : R9*4 — RIxd by

S(©) = (us(€?) — as)é (3.10)

S(€) is differentiable for all & with |¢| > 0. If we show that S is Lipschitz continuous:

15(6) = S(n)| < Cp,sl§ =l

(3.9) follows immediatly. Therefore by using the mean value theorem in [OR70] we need to show
that [|.S"(€)]| is bounded for all £ # 0. C), 5 is chosen as an upper bound for ||S"(§)]|.
For the directional derivative S’(£)[x] it holds:

(€ = pm X ET0

d
= %S(f + hx)|h=0
= (us(I€1%) — ms)x + 25 (|€7) - € x - €
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Obviously we can write x as

_x:€ o x:€

with ¢ ¢
<>\<£|2 £ : (x ’f@s) =0 (3.11)
We then have:
’ s’
15/(©)) = sup 1O
x#0 ‘X‘
= sup (us(1€) — fis) 15y + 2us(1€) - €1 x5
X0 x| x|
_ 2y - v X2 € X:€ 2 §:x &
=sup (s (1€]7) )(\fl |X\§+(!x| N ‘X‘ &) + 2u5(|[*) €] - BE ‘X‘I
_ o - v X o Xz o Ceve2y, SEX &
= sup (s ([€]7) MS)(|X| |£|2|X|§)+(MS(\§|) fis + 2p5(1€]7)1€]°) GE ‘X‘I
_ 2y = 2 X Xf - 9,/ 22'§¢X.§2>%
where we used the orthogonality . If we use the following
X ox:€ 0, Eix &
R~
we get
15"l
2\ - 2y = 92/ 2\(¢12 l_ngg 53X.£2
= max{|us(I€*) — fisl, lus(€1%) — As + 205 (€)1
< Cushis
with C, g = m?XmaX{Ius(IEIZ)—ﬂsI,\usg§|2)—ﬂs+2ug(|£|2)IEIZ\}.
This Cy, s exists because of (A2)g and (A3)g.
|

Remark: To this point only the upper bound on the viscosity was needed. For the next lemma
which is crucial for further analysis the lower bound is needed as well.

Lemma 3.2 Let the assumptions of lemma hold. Then there exists a fis such that for C, g it
holds:

Cus <1

If the bounds in (A2)s and (A8)s are sharp the smallest C,, s that is valid for all { € R4 is given
by:
fis — min{ Ko, Mo}

Cus= —
: fis

)

with
K1+ Ko M+ My
2 ’ 2 }

fis = max{
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Proof: With lemma 3.1/ and (A2)g we get

A s — K K1 + K,
|MS(|§|7) fis| < |,U57 ol <1 if ug> fir o
fis fs ?
With (A3)gs we get

2 5 2 / 2 2 17 _M M M
s (€]%) = s + 25 (IR _ 1Bs = Mol _y 4 oo Mot Mo

us s 2
The second part follows immediately from (3.8]) .

|
It might be necessary to use different/more general assumptions on the viscosity. The former
assumptions are not satisfied for a viscosity that is not bounded from above/below. Furthermore
one might use a viscosity that is not continuously differentiable and the former assumptions are not
satisfied. Therefore we need weaker assumptions that can be found in [BS08al:
Let pus € C(0,00) and for a given 6 € (1,00) there exist constants o € [0, 1] and 6,Cy,C5 > 0
s.t.

(Ads) |us(s)s —pus(t)t| < Ca ((t+s)*(1+t+ 5)1_0‘)6}_2 |s — t| holds for all s, > 0
with |s/t — 1| < § and
ps(t) < Cy (t2(1 +)1=2)"2 holds for all £ > 0
(ABs) ps(t)t— ps(s)s > Cs ((t+ )7 (1+ 1 +5)17)" 7 (
The following is stated in [BS08a]: The parameter o measures the singularity /degeneracy in pg
for a given value of 6 € (1,00)\2 as if « is closer to 1 the more singular/degenrate the pg is for 6 < 2
resp. 6 > 2. For 6 = 2 the viscosity ps(s) is uniformly monotone and globally Lipschitz continuous.
Examples are:

t —s) holds for all t > s> 0

1. the power law model corresponds to o = 1 and 8 = r. For 6 = 2 the model reduces to
Newtonian flow.

2. The Carreau model corresponds to o = 0 and § = r if yoo = 0 and 0 = 2 if r € (1,2] and
Uoo >0

To translate this to our problem we need the following statement from [BS08al, Lemma 3.1]:

Lemma 3.3 With ©,(t) = t*(1 + )= and assumption (A5s) to be satisfied for 6 € (1,00) and
a € [0,1] we have for all symmetric ¢,n € R and v > 0

Cs (QalC]+ 1n) 2771 = nl™7 < (s (IS = us(nh)n) = (¢ —n)
If (A4s) is satisfied for 6 € (1,00) and a € [0, 1] we have for all symmetric ¢, € R and v > 0:

s (1¢)¢ = ps(InDml < Ca (Gal(¢]+ )"~ 1¢ =)'~

Remark: For our least-squares approach some things have to be noted. As most authors use
a mixed FEM approach (for example [BL93, BS08a]) the velocity ug needs to be in (W% (Q¢))? as

,US(‘ . ’) . <L0(95>)d><d s (LOI(QS))dXd

with 1/6 + 1/ = 1 (see |[BL93|). In contrast to a mixed approach a least-squares method needs
ps(|¢)¢ € (L2)%*4. Therefore we have to assume ug € (WH#(Qg))? with () > 2 chosen s.t.

ps(IC)¢ € (L),
Using these assumptions we can prove the analog version of lemma
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Lemma 3.4 Assume that (A4s) and (A5s) hold and let ug € (WH#(Qg))%. Then we have for
arbitrary constants jig,y >0 :

s (le(us)])e(us) — ps(le(vs)|)e(vs) — ms(e(us) —e(vs))lloos

2
< g;“ﬁs (Oa(l2(us)] + [e(vs)))’ 2 |e(us) — e(vs)[ 2 g,

2C 9—2—~ 24y (312)
- T;’H (Qalle(us)| +1e(vs))) 2 fisle(us) —e(vs)| = [Faq
+ s (e(us) = e(vs)) 13 as
Setting 0 = 2 and v = 0 we get
s (le(us)])e(us) — ps(le(vs)l)e(vs) — rs(e(us) —e(vis))lloos
_ ) (3.13)
< Cusllis(e(us) —e(vs))lo.as
with
Cps <1 (3.14)
by choosing iig large enough.
proof: We have
s (le(us)e(us) — ps(le(vs)e(vs) — s(e(us) — e(vs))l[5 ag
= [lus(le(us))e(us) — us(le(vs))e(vs)l§ aq
—2(ps(le(us)e(us) — ps(le(vs)e(vs), ms(e(us) — e(vs)))
+ s (e(us) = e(vs)) 13 a4
2
< C?i||ﬂs (Oalle(us)| + e(vs))' > [e(us) —e(ve)l 5 as
- 16;5\ (Oalle(us)] + e(vs)) = Asle(us) — e(vs)| " 16,526
+[l7s(e(us) = e(vs)) 3 0s
o 2
" (14 28 -2 fatets) (vl
by choosing jig > % the proof is finished.
|

Remark: Behind these assumptions lies a more general approach to nonlinear least-squares
problems. The monoticity (A5g) and continuity (Adg) with respect to a corresponding linear prob-
lem (in our case a Newtonian flow with viscosity fig) is a sufficient assumption to prove C g < 1.

Remark: In the following we set § = 2 and v = 0 if we refer to assumptions A4dg and Ab5g
which still implies a bounded viscosity.

The next theorem is the main result for this section and states that the nonlinear least-squares
functional is an error estimator. To prove this we need lemma which only holds if fQS tr rdx = 0.
Therefore we restrict ourselves to the case I's,, = 0 if necessary. In this case we have

osy =0

(B, (@5))" = {r € (H" @) | [ tr7=0)
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For the sake of simplicity we use the following notation in the course of this work

a(§) 2 b(§) if there exists a constant C s.t. a(§) > Cb(§) V admissible £

Theorem 3.5 Let assumptions (A1)s, (A2)s and (A3)s or assumptions (A4)s and (A5)s hold.
Furthermore I's,, = 0Qg holds. We then have for the solution (us,os) = (us,,os,) + (Us,03)

with (fs,6'5) € (Hp, (Qs))? x (H{Y (Q5))? of :
Ces(llus = vsli ag + llos = TsllFiwas) < Fs(ve, 75 f) < Cos(lus — vslf ag + los — 7sll7i.as)

for all (vs,Ts) = (s, osy) + (Vs, Ts) with (s, 7s) € (Hpy (Qs))* x (H{ (Qs))? with positive
constants Ce g und Cs g.

proof: The proof is analogeous to [MS11]. The nonlinearity has to be considered which is done as
in [Sta07]. We have

Fs(vs,ms:f) = [div 75 — f[[§ o, + [dev 75 — 2(us(le(vs)[*)e(vs)) I og + IV - Vsl s

15,05
+ [|dev (o5 — T5) — 2(us(le(us)|*)e(us) — ps(le(vs)[*)e(vs))[§.x

=||div (o5 = T9)l[5.05 + 1V - (vs —us)

The upper bound follows directly from the triangle inequality and lemma [3.1] :

Fs(vs,ms;f) < |div (o5 — 75)[§ 05 + 2lldev (a5 — 75) [ 05 + IV - (vs — us)[[§ oy
+ 8| (us(le(us)*)e(us) — ps(le(vs)P)e(vs)) — as(e(us) — (vs))|[§ o
+ 8l s (e(us) — e(vs))llg o
< Css(div (a5 = 75)[[5.0s + (s = T5) 5 05 + lle(us) — e(vs)[§ o)

< Css(llus — vsli gq + llos — 7sll7iw.as)
where we used

ldev (o5 — T5) 505 < Cllos — 75§ s

IV (vs = us)llg o5 < Clle(us) — e(vs)ll§ o

For the lower bound we need

Jos ¢ = llas (¢ = 500 T = 20 PeCa) + 2ullew) P ) o

= llas (dev ¢ — 2us(le(2)*)e(2) + 2ps(|le(w)[*)e(w)) llo.0s
< |ldev ¢ = 2us(le(2)[*)e(2) + 2us (e (W) [*)e(w)llo.0s

(3.15)

which holds for all ¢ € (H(div,Qs))? and z, w € (H*(Qg))%.

For convenience we use the following abbreviations:

CSIZUS—TS
Ng = Vs —Uug
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We then have the following:

Cs € (H ()"
ns € (HY, (9s))

To prove the lower bound we use:

Fs(vs,msif) = [ldiv (05 — T5)[f0s + IV - (vs — us)[§ og

+ [ldev (s — 75) — 2(us(le(us)*)e(us) — ps(le(vs)*)e(ve))15.as

> 2C||div ¢gll§ . + ldev ¢ — 2(us(le(ug)[Pe(us) — us(le(vs)*)e(vs))
+C|IV - nsllhas + Cllas Csllo.s

> 2C||div CSH%,QS + (1 —p)lldev ¢ — 2fise(ms) 505 + CIV - 156,05

1 _

- (; —D))2((us(le(us)P)e(us) — ps(le(vs)P)e(vs)) — as(e(us) — £(vs)))|
+ C|las CSH(%,QS

> 20|div ¢sll.aq + (1= p)lldev ¢s — 2se(ms) 5,05 + CIV - 1151130

1 _
+Cllas ¢sllg0s — Cﬁ,s(; — D|27se(n9)I5 0

2
0,025

2
07QS

20 _ c
=(1- P)(prle Csllgas + Idev Cs — 2ise(ns) |3 as + prV 15l5.0s

CQS
+t1z pHaS Cslidas — 2= 02mse(ms)15.05)
> 2% div ¢slR g + ldev Cs — 2se(ns) 3o + —— IV - g3
~1-, 510,95 S KsE\Ms)llo,0g 1—p MNsllo,Qg
C 2 CEL,S — 2
Tz pHaS Cslloas — THQMSE(WS)HO,QS
=2C||div {gl§.0s + ldev Cs — 2fis2(ms) 5,05 + CIV - 051605

2
CM,S

+Cllas ¢sllf.as —

127is2(ms) 16,04

where we used (3.15) and lemma and p € (0,1) arbitrary. To keep the proof free of unnecessary
constants we set

which is then still free to be chosen for a given p € (0,1).
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partial integration and the use of Korns inequality (theorem [2.2)) and lemma leads to:

Fs(vs, ms: ) 2 20| div ¢gll§ o4 + lldev Cg
) 2
+ Cllas ¢sllp0g — %H?ﬂﬁ(ns)ﬂg,gs —4ps(dev €g,e(ng))

= 2C||div ¢gll5.0, + lldev ¢

2
CmS

3,95 + [12fi52(ng)| (2),93 +C|V- 775”(2),95

S0 + 125213 0s + CIV - nsllS 0s

+ Cllas ¢sllg0q — 125e(ns) 15,05 — 40s(Cs,e(ng)) + 4fis(tr {5,V - ng)

= 2C||div CSH%,QS + [|dev CSH%,QS + [12se(ng)| (2),95 +C|V- 775”(2),95

2
CMS

+Cllas ¢sl3 05 — 127ise(ns) 13 05 — 4i5(Csy Vig) + 4fis(as g, a8 Vng)

+4ps(tr Cg, V- ng)

= 20|div ¢l o + lldev ¢

2
Cu,S

p
+ 4/15(131‘ CS’ V . 'l']s)
> 2C|\div ¢sllf.aq + Idev ¢sllgaq + 1256 (Ms)1I5 .05 + CIV - 05l 00
~ 2 C;QL,S _ 2 0140 2 Afig 2
+ Cllas Csllgags — p 12ise(Ms)llo.0s — Clldiv Csllg.0s — FH”SHO,QS

3,95 + [12fi52(ng)| (2),93 +C|V- 775”(2),95

+ Cllas ¢sll5.0s — 127358 (Ms)|1F 05 + 4s(div Cs,mg) + 4fis(as (g, as Vng)

~ 2 4% 2 Ang 2 ~ 2
— Cllas CSHO,QS - 7”35 Vﬂs”o,gs - FHH Cs”o,gs -C|V- 775||O,QS

> C|ldiv ¢slg.as + ldev ¢sllgas + 127s2(ns)

2
_ CH,S

2
O»QS

_ Afig Afig Aji2
127252 ()15 .05 — 75\“75“%,95 - 75\\&5 Vnslloas — 75”’51" ¢sllb.ag

> Cldiv ¢sll3 0 + dev Csllf g + 12752 (n15)
2

2
0,25

— 22156 (ng) 15 08 — 75‘“75“%,95 - ?SHVWSH?J,QS
405ﬁ2 .
— = (ldev Csllg a5 + lldiv sl o)
ACsfig ACsi%

= . 2 2
> (€ = =2 div Cslifag + (1= =Z)lldev CsliBa

C2 s 4%
+<4u%(1— ‘; )Cx — —=2 | |Ins]

2Q
17
C S

With lemma we can choose fig such that C,, ¢ < 1. By setting p € (C/iS’ 1) it follows

2
CM,S

p

<1

Finally one can choose C' large enough to show:

Fs(vs,Tg;f) > Ce s(|lus — vs

Tas +llos = Tslias)
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by using the fact that lemma [2.3| implies:

1 .
o Ziv0s < lldev ¢sllg 0 + g”tr Csligas + 1div ¢sllas

Cs Cs.\ .
<(1+ 7)”(16" Csllgas + (1+ 7)”le CSH(%,QS

|
Theorem [3.5] gives us an efficient and reliable a-posteriori error estimator for the nonlinear Stokes
problem. This allows us to use efficient adaptive algorithms for the numerical treatment of this
problem.
Let a triangulation 7;, and the conforming FEM-spaces Vj, C (ug, + (H%S (Qg))%) and Qy, €
. D
(osy + (HI@’S” (25))%) of chapter 2.3 be given. For the sake of simplicity we assume for both spaces
N

(piecewise polynomials / Raviart-Thomas) the same degree of k. Assume that (vg,,Ts,) C Vi X Qp.
In practical applications one uses this error estimator as a local indicator. We define the following
local estimator:

7, = ||div s, —£§ 7, + [dev 75, — 2(us(le(vs,)P)e(vs )5z + IV - vs,[IE.r,
Then the global version of this error estimator is given by:
772 = Fs(vs,: Ts,) = Z 77%
T:€Th

Therefore we can look at the local contribution 77, to the error for our approximated solution and
can refine the triangles where the error is large.

Another consequence of theorem are the a priori estimates given in chapter 2.1. Let us
assume that for the solution holds

us € (H'*(Qg))?
o5 € (H™(Qs)) ™
diveg € (HS(Qs))d

with s > 0, m > 1 and ¢t > 0 and S, = min{t, m, s, k}. With the interpolation operators of chapter
2.3 and the remark about the general case in chapter 2.1 we get:

1
lus — us, [} 0 + llos — o5, [T 0. < TSFS(USM as,)

€,
< CS,S O} 25min 2 2 di 2
=Cs (lusllie.0s + loslimag + Idiv oslls o)
e

)

S C~’h25min

Therefore by refining the triangulation (with A — 0) we get if sp,in > 0

[us — ug, | %,QS +[los — ‘TS;LH%,QS =0

with convergence rate s,ip.
Another consequence of theorem is given by the following corollary

Corollary 3.6 Let the assumptions of theorem hold. If system has a solution (ug,og) =
(us,,o5y) + (Ug,05) with (4g,d5) € (H%SD (Q5))% x (Hl‘igv (25))? the solution is unique.
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proof:  This is a direct consequence of theorem Assume (vg,Tg) to be another solution.
Inserting these two solutions in theorem [3.5] one gets:

Cs,5(llus — vsllias +llos — TsllFivas) < Fs(vs, 7s:f) =0

which implies the uniqueness of the solution.
|
The following lemma is important if one wants to use the Cross- and Carreau model. We can,
under assumptions on r in case of the Carreau model, show that the assumptions (Al)g, (A2)g
and (A3)g hold. Furthermore some numbers on C), s are given if 1 < r < 2 for the Carreau model
and 1 < r < 3 for the Cross model. If 3 < r for the Cross model we give a not necessarily sharp
upper bound..

Lemma 3.7 Assumptions (A1)s,(A2)s and (A3)s hold for
- the Carreau model if 1 <r <2
- the Cross model for all r > 1

Furthermore for fis and C,, s in lemma it holds:

. — HO—HMoo ; o — MotHoo
- Carreau: Cy 5 = T with ig = 257 and 1 <r < 2

. — Moo o i +OO
- Cross: CMS:ZSJFZOO,wzth,ug:% and 1 <r <3

r—1

(Bo—poo) . 22 (10— poo ) +2400
- Cross: Cp 5 < Tgl(iaofuoo)wuoo’ with fig = —2 , and 3 <r

proof: It is clear that (A1l)g holds for both models with the choice of ig as above as for both
models it holds: ~
s (z) — fis| _ po — poo
max - =
220 s Ho + oo
due to pup and ps being upper and lower bound for the viscosity.
Carreau model

Let 1 < r < 2 which means we have a shear-thinning flow / Newtonian flow. It holds:

2) = (HO - /~Loo)
s 2) Hoo K
(NO - MOO)K(r B 2)

214 Kz2)* 2

ws(z) =

It is clear that
Ko = pioo < ps(2%) < po = K1

which indicates (A2)g.
If we show that

holds, we get (A3)g with
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as well as the statement for C), 5 from lemma if we look at the cases z — 0 and z — oco. To
proof this we use:

1 (52)22 = (10 — f1oo) (po — poo) K (1 — 2)22
&) Hoo (1—|—Kz2)% * (1+ K22)*"2
L o = o) (14 K (r = 1)2?)

- Moo 4—r
2

(1+ Kz2?)

> Moo
At the same time it holds:

/ (10 = proo) (1 + K (r —1)27)
(%) + 2 (2%) " = pog + = (1+K22)"%"

— oo ) (1 + K 22
SMOOJF(MO froo)( tfﬁz)
(1+Kz%) =

(NO - Moo)

2—r

(1+Kz%)™2

< 1o

Cross model
For the Cross model we have

(10 — fioo)

1 +K22%T

(to — pioo) K (r —2)z2
2(1+ KZ%P

MS(Z) = Moo +

ps(2) =
and hence
Ko = pios < p(2%) < pio = K3
which implies (A2)g. For (A3)g we get:

2 12 2 2 (lu“o - IU’OO) (IU’O - /‘I’OO)K(T — 2)22_r
NS(Z ) + QMS(Z )Z = Hoo + 14+ Kz2-r (1 + KZ277")2

1+ K(r—1)22"
(1+ Kz%277)2

= floo + (H0 — foo) > floo

Furthermore it holds

2 ’ 2.2 (MO - ,uoo) (,UO - NOO)K(T B 2)Z2_r
NS(Z ) + QMS(Z )Z = oo + 14+ K227 (1 + KZ277")2

1+ 2K2%
< oo + (po — Mm)m

14+ 2K2277 4 K242
(1+ Kz%27)2

< oo + (,UJO - Hoo)
if 1 <r < 3. This implies (A3)g with
My = po
My = peo
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as well as the statement for C, g from lemma if we take z — 0 and z — oo.
For 3 < r it holds

— oo — poo) K (1 — 2)2%77
HS(22)+2M{5‘(22)Z2:N00+ (MO 1% ) (IU’O 2 ) ( )

1+ K227 (1+ K2277)2

e ( )1+(r—1)K22_T

- IU’OO IU’O MOO (1 + KzQ_’")Q

_ r—1 731 + 2KZ2—7“ + K224—2r
r—11+4+2K227" + K247

< _
r—1

= Hoo + (Ho = proo) —5—

r—1 r—1
= 1—
With Lemma [3.2] and
— r—1
M, < fo + floo(1 — 5 )
MO Z Moo

and M7 > up (z — oo) the proof is finished.

|

Remark: For the Carreau model it is only possible to show this lemma for < 2. If r > 2 the
assumptions (A3)g and (A2)g (see figure [3.2)) can not be satisfied. Furthermore we see that for
the Cross model there is no sharp bound. To find this we have to find the maximum of a nonlinear
equation. Though an analytical solution is not known to us one can easily find a numerical solution.

3.1.2 The Linearized Problem

As our nonlinear functional has the typical least-squares form we use a Gaufl-Newton method.
Therefore it is necessary to linearize the partial differential equation: Let

us, + ﬁgk) _ ugk)
o5y + &gk) O'Eqk)
(k) (k)

be given. The functions (tig”, g") lie in (H%SD (Q5))%x (Hff?;v (25))?%. We look for an approximation

given by
u(SkH) _ [usp + ﬁgﬁl) _ u(sk) n dug
ngﬂ) osy + &Egkﬂ) agk) dog

. k k i
with (Juy”,do'y) € (AL, (@) x (HE (Qs))
The idea of the Gauss-Newton method is to minimize the following quadratic functional given
by
fquad,S((suS7 5057 ugk)a R(ugk)a ng)a f))

instead of minimizing the nonlinear functional

fS(uSaUS;f)‘
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The general case for a nonlinear least-squares functional was briefly discussed in chapter 2.1. Our
quadratic functional is given by:

R(ugc),a'(sk),f)

A

div el —f
S
]:quad,S((suSa 605; ufgk)7 R(u,(s‘k)a o-fs‘k)7 f)) = H div ugk) +
dev o' — 2pg(|e(uf”)?)=(ul)
div do g
div 5ug ||g Qg
dev dos — 2ps(Je(ul))P)e(Sus) — p(e(ul”)?) (e(uf) : e(dug))e(uy’)
L(&us,éas;ugc))
The variational formulation of the minimization problem is given by:
Find (dug,dos) € (H%SD (Qs))d X (Hg?N (QS))d such that
(5(51157505;u(sk))yﬁ(5vs,57's;u£qk))> =- (R(ugk)7G(sk),f),ﬁ(5vs,575;ufgk))) (3.16)

for all (5V5, 57'5) S (H%SD (Qs))d X (Hfl?;\] (QS))d

For theorem we used that the nonlinear Stokes problem has a solution and therefore the
least-squares functional constitutes an error estimator. It has to be noted that for the corresponding
linearized pde-problem there might not exist a solution (dug,dog) s.t.

fquad,S((SuSv 50'5'; ugk)7 R(ug'k)7 ng)7 f)) =0

This is neither important nor necessary as we are only interested in the nonlinear problem. Nonethe-
less we are able to prove that there exists a unique minimum of F,4q,5.

As we want to mimick the proof of theorem [3.5] we need the following lemma which is similar to
lemma 3.1:

Lemma 3.8 Assume that (Alg),(A2s) and (A3s) hold. Then we have for an arbitrary constant

pts >0 :
s (le(uis”) P)e(ous) + 2pis(le(us) ) e(ul) : elous)eus”) = pse@usloas o)
< 0,3?5‘1 - s lle(0us)llo.0g
which holds for all Sus € (H'(Q25))? with a constant C, s(fis) given by
k _ k _ k k
coat max{| s (e(ug”) ) = sl Ins((us”)P) = s + 2 (=P @ENPY g g

fis

proof: This lemma is basicly a consequence of lemma [3.I] In the proof we used the following
operator

S(€) = (us(l€1*) = is)é. (3.19)
Setting
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We got for the directional derivative

S (] = ftim S0,
= |56+ hlamol
)~ o+ 2506) - (€0

Inserting ¢ and x as above we get the left hand side of .17} We then only have to prove that
d
SOl < Cg“hsIx]

which was already done in lemma for the more general case of arbitrary £. Using the C), s from
lemma [3.1] the proof is completed.
|

As for the nonlinear case we get the following lemma:

Lemma 3.9 Let the assumptions of lemma|3.8 hold. Then there exists a fis such that for C’Zu;d 1t
holds:

el <1
proof: Analog to lemma

Now we are able to proof that the linearized minimization problem has a unique solution.

Theorem 3.10 Let assumptions (A1)s, (A2)s and (A3)s hold. Furthermore I's, = 0Qs holds.
For the quadratic approxzimation of the least-squares functional the following holds:

d d
Cle(vs I3 as + 178l 0s) < Fauads(vs, Tsiugd’,0) < CL4(|lvsl? g + I75]3m.05)

forall (vs,Ts) € (HE, (Qs))x (H{ (Qg))® with positive constants Cquad und C’;ﬂgad. Furthermore
D N ’
the variational problem[3.16 has a unique solution.

proof: The proof is more or less identical to the proof of theorem [3:5] Though we shortly sketch
the difference:

For the upper bound we use

Fouad,s(Vs, Ts; u(gk), 0)
< [ldiv 752 05 + ldev 75| as + [V - vs[2.0g
+8llus(le(ui))Pe(vs) + 25 (i) P) e(uy) : e(ve))e(uy) — fise(vs) 3 s
+2)2752(vs)) 2.0
< Y (||div sl o + sl o + (V)[R o)

d
< G (Ivslli o + I7slZ0s)
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using lemma [3.8] and the same arguments as in theorem For the lower bound we start with

Fouads(Vs,msiug’,0) = [div 7|2 o, + |V - vslZa.
k k k
+[ldev 75 — 2ps(|e (i) P)e(vs) — ds(je(E)?) (e() : e(vs))e ()2 o0
> 2C||div 7|2 o, + CIIV - vs |2, + [ldev 75 — 2jise(v s>ums + Cllas ¢sllo.os
—;||2us<|s<us’>|2>e<vS>—4us<re<us>>12><e<ug> e(vs))e(ul) — 256 (ve) |2 0.
> 20||div T2 g, + CIIV - vs[P o, + [dev 75 — 27se(vs) |20y + Cllas Csllons
(Cquad)Q

S _
P ||2ase(vs)I[6 g

where we used lemma [3.8 and the constants analog to theorem [3.5]. The rest of the proof for the
lower bound follows by mimicking the proof of theorem
The last part of having a unique solution follows by noting

Fouad,s(Vs, Ts; ufgk)7 0) = (ﬁ(VS, Ts; ufgk)), L(vs,Ts; ufgk)))
— ||£(vs, Ts;ul)| 20,

Therefore Fyyaa,5(vs, Ts; ugk), 0) is elliptic and continuous. As a result for the associated bilinear
form it holds (compare chapter 2.1):

k d
(£vs, msiug)). Livs, rsiul?)) = CEEUIvsIB oy + 175 1i.0,)

k d 1 1
<£(vs,7's; usg))7 (ZS,CS,US))) < Cqua (”VSH%,QS + ||TS||3iv,QS)2(HZS”%,QS + ||CS||c2liv,Qs)2

which holds for all (vg,Tg) € (H%SD (Q9))% x (Hflgv (Q9))Y, (zs,¢s) € (H%SD (Q9))% x (Hlﬂl’;;v (Q5))?

Furthermore we have

(R(u(s),agk),f),ﬁ(vs,fg,u(S))> < IRWP, 6® £)[l0.0sl1L0Vs, o7s;ul)
ua 1
< IR, 0% £)llo.0s (CLL(Ivs |3 g + I175l1200:)) 2

1
< C(Ivsli ag + I175lliw05)?

as ||R(us ,0'5 ,)|lo,0s is bounded due to R(ugk),agk),f) being in L?(Qg). Therefore the right
hand side of the variational problem is continuous. So the requirements of Lax-Milgram are satisfied
and ((3.16) has a unique solution.

[ |

For the directional derivative of the nonlinear least-squares functional we have:
Fsd, ol 1) m =2(Rl, o, 6), £(vs, Tsiul))

Inserting the unique solution of the linearized problem (3.16]) we get

5
Fy® o® ) [ 5:2] =2 (ﬁ(éug,éag;ugk)),L(éus,éag;ugk)))

d
< =202 (llous|lf og + 1005130 05)
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and therefore we have always a reduction of the nonlinear least-squares functional by using the
direction defined by the solution for the linearized problem.
Finally we are able to prove a corollary for our approach for the numerical solution:

Corollary 3.11 [t holds
- for the Cross model: 1 < r < oo
- for the Carreau model: 1 <r <2
and I's,, = 0Qg. We then have for the solution (ug,os) = (us,,osy) + (4s, 6s) with (4g,6s) €
(Hp, Q)" x (H{ ()" of (3.9 -
Ce,s(llus = vsllf o5 + los = Tslldiwas) < Fs(vs, 7sif) < Css(llus = vslliog + los = 7sllGw.as)

for all (vs,Ts) = (s, osy) + (Vs, Ts) with (Vs, Ts) € (Hpy () x (H{ (Qg))? with positive

constants Ce g und Cs g.
ufe+) _ u® v (00
(k‘—i—l) a_gk) 50_5 :

Furthermore the sequence
with (dog,dug) from solving problem is well defined for all o > 0. By choosing a > 0 small
enough it holds:
Fsuyt™, a0if) < Fs(ul, aP); £)

if (ugk), O'gk)) is not a stationary point of Fg.

proof: This is a direct consequence of lemma[3.7] theorem [3.5] and [3.10] combined with the remark
of the descendent direction (do g, dug) of fg(uS ,o'g), f).
|
The implication of Corollary [3.11] is interesting for our numerical results. We can use the Cross
model for arbitrary r and the Carreau model for shear-thinning flows. The use of the least-squares
functional as an a-posteriori error estimator is then justified by Corollary [3.11} Furthermore we only
have to solve symmetric positive equation systems by using a conforming method. Furthermore the
consequences of the a priori estimates hold if the solution is regular enough.

3.1.3 Numerical Examples

Let a triangulation 7T, of g be given. In this section we always use the space of piecewise quadratic
and continuous functions (see chapter 2.3) (P2(75))? C (H*(Qs))? for the velocity:

ug, € (Pa(Th))* C (H'(Qs))”

For the stress o g we use the space of Raviart-Thomas functions (RT}(7))? consisting of piecewise
quadratic polynomials on each triangle (see chapter 2.3):

as, € (RTy(T))* € (H™(Qs))?

In this part we discuss several numerical examples for a shear thinning and shear thickening case.
For the plots in chapter 3 and 4 we made use of the pde toolbox of matlab. Additionally we
used the following tools
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- distmesh2d as mesh generator [PS04]: Initial triangulations

- The LS-MFE toolbox [KS|: local/global representation of basis functions, basic tools for tri-
angulations

for the above mentioned functionality.

3.1.3.1 Example I

We start with a regular example. For this example we use a slightly altered example given in [DQ09]
for the case of linear Stokes flow. We have to adapt this problem for our non Newtonian flows which
results in a more complicated forcing term f to ensure that the unique solution is known. Let

Ns=(0x1)x(1x2)
Ip, =00

The unique solution shall be given by:
—sin(ZExq) - g
us = 7rsrn(QLrl)ﬁcos(QacQ) in Qs
cos(gx1) - sin(§xz) — 1421

tro = —2pg =1 — 2z,

—mcos(Z cos(Z 1 1/1-2 0
o= ps(letus)?) (TEER) S zan) F 3 (0 1 )

7 cos(5w1) cos(Gx2) 1— 22

We therefore have to construct an appropriate forcing term f dependant on ug, the viscosity

ps(le(us))?) 52 (le(us)[?). With
7'('2 e T
le(ug)|” = 5 cos2(§1:1) cosQ(EmQ) T %
ug)? 3 - - _
W _ (8;:’ E(us)‘2>> (2 003(2371)Sin(2x1)cos2(2x2))
ug)|? 3 . - _
W =" <a;as(5( )|2)) (2 COS(§562) Sin(ExQ) cos2(2$1)>
we get

p (el cos(5a) cos(5aa) + ps(le(us) )Y sin(Far) cos(Fry) — 14 2=l
- 6#5(‘5(Us)| ) + BMS’(le( )| )

2%
o mTC ( x1) cos(§:v2) — u5(|5(us)\2)%2 cos(%:rl) sin(%xg)

using this f as forcing term results in solutions ug € (C*(Qg))? and o5 € (C®(Qs))?*? as given
above. For our problem we set the boundary conditions to

—sin(§x1) - cos(Fw2)
= F
s (cos(gxl) -sin(§x2) — 1421 on TSp

and the forcing term f as stated before. Our necessary normalization of the reference pressure given

by
/ trogde =0
Qg

is satisfied by the solution as well.
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The behavior of the Newtonian case is easily predictable to be optimal in the sense of convergence
rates. For this first example we want to compare it to the non-Newtonian case though we expect
optimal convergence rates due to corollary This corresponds to S,,;, = 2 in the remark after
theorem The plot of the velocity ug and |e(ug)|? can be found in It has to be noted that
we can easily get the pressure by post-processing (see ):

1
ps;, = —§tr s,

By approximating o, in (H%'(Qg))? we approximate pg by ps, € L?(Qs). We will see that we
achieve optimal convergence rates of 2 for the error ||ps — ps, [|§ o, as well.

AR RA R
AL TSNS
WY AR
VY

(a) us (b) le(us)[*

Figure 3.3: Plots of ug / |e(ug)|?

The linear case

For this case we set the viscosity to ug = 0.5005 which is the mean value of po and pg for the
following nonlinear cases. As stated before we expect the solution of the discrete problem to con-
verge with a convergence rate of 2. For the LSF in theorem [3.5] this means that the reduction of
Fs(ug,,0s,) by halving h which means a quadruplication of #71'(75) happens by a factor of 1—16.
This behavior of the convergence rates is visible in figure [3.5] and the values of the LSF and the
actual error are given in table [3.I] We see optimal convergence rates for the least-squares functional
as well as for the errors as expected. Very small variations might be due to boundary conditions
/ quadrature errors. The norm of the stress can be observed in This constructed problem is
mainly of theoretical interest to observe the convergence rates for regular solutions. We take a closer
look at more interesting/diffcult problems later in this section.
We won’t use an adaptive algorithm as it is not expected to deliver better results.
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level | # triangles | # dofs Fs los —oas,ll%, | lus —us, |

0 47 744 | 1.8633e-04 1.6353e-04 1.5939¢-04

1 188 2802 | 1.2058e-05 9.8556¢-06 9.8165e-06

2 752 10866 | 7.6980e-07 6.0240e-07 5.9640e-07

3 3008 42786 | 4.8662e-08 3.7174e-08 3.6513e-08

4 12032 169794 | 3.0589¢-09 2.3080e-09 2.2562¢-09
Table 3.1: LSF and errors (example 1): Newtonian flow

(a) Stress

(b) Triangulation

Figure 3.4: Plots of |og,| and the triangulation: Newtonian flow

—+—Unifarm Refinement: Least Squares Functional
—— —Optimal Convergence Rates (Linear)
— — - Optimal Convergence Rates (Quatratic)

(a) Least-squares functional

#Trangles

Figure 3.5: Convergence Rates :

T
—+—me—ua i
—+— Vg - Vug, [
—+—los - oallf
leinos — din o, |}

——lps-ralll

— = = Optimal Convergence Rates (Quadratic) ||

—+ — - Optimsl Convergence Rates (Cubic)

(b) Squares of errors

Newtonian flow
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The shear thinning case

For this example we take a closer look at the Cross model and the Carreau model and observe how
these models behave in this highly regular case. The forcing term f is set as before with respect to
the different viscosities. As for the constants we set

K=1
Moo:lo—S
po =1
r=1.5

It has to be noted that the constants of the Cross model and Carreau model are not the same despite
the same usage. Therefore these constants to do not describe the same flow problems. There are
major differences in the magnitude of stress and viscosity.

Corollary states that the least-squares functional is an efficient and reliable error estimator
for this case. As stated before we can expect in this case optimal convergence rates as in the linear

case. These can be observed in figure [3.6] with the LSF and errors given in table

level | # triangles | # dofs Fs los —oas,ll%, | lus —us, |
0 47 744 3.2549e-04 3.0270e-04 1.6573e-04
1 188 2802 | 2.2645e-05 2.0508e-05 1.0228e-05
2 752 10866 | 1.4432e-06 1.2802e-06 6.1327e-07
3 3008 42786 | 9.0979e-08 7.9744e-08 3.7087e-08
4 12032 169794 | 5.7083e-09 4.9724e-09 2.2748e-09

Table 3.2: LSF and errors (example 1): Cross / shear thinning

—+— Uniform Refinement: Least Squares Functional
———Optimal Comvergence Rates (Lineai)
-t | — — - Optimal Convergence Rates (Quadratic)

#Triangles #Triangles
(a) Least-squares functional (b) Squares of errors

Figure 3.6: Convergence Rates : Cross / shear thinning
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i
7
t
1.4
4
12
1
i
1
0 01 02 03 04 05 06 07 08 09 1

(a) Stress

(b) Viscosity

Figure 3.7: Plots of |og,| and the viscosity pgs(e(ug,)): Cross / shear thinning

Though as we have a shear thinning case we expect the stress and the viscosity to be different.
The approximated values |og,| and us(|e(ug,)|?) can be observed in figure Obviously the
stress looks just slightly different to the linear case in its distribution. The main difference lies
in the maximal value: The stress tends to be big where the shear rate is large. This is close to
(z1,22) = (0,2). As we have a thinning behaviour the decreasing viscosity is apparent and therefore
the stress is smaller as for the linear case in regions of large shear rates.

For the Carreau model the convergence rates can be observed in figure whereas the LSF and
the error is given in table [3.:3] Again the least-squares approximation delivers optimal convergence
rates as predicted by Corollary B:I1] The stress and the viscosity can be observed in figure [3.9
Again the same argument as for the Cross model applies for the stress. As the minimal viscosity for
this model is & 0.65 the stress tends to be higher due to the high viscosity.

level | # triangles | # dofs Fs los —oas,ll%, | lus —us,||%
0 47 744 8.2555e-04 8.1923e-04 1.5208e-04
1 188 2802 | 5.3443e-05 5.1357e-05 9.5098e-06
2 752 10866 | 3.3769e-06 3.1903e-06 5.8530e-07
3 3008 42786 | 2.1208e-07 1.9861e-07 3.6161e-08
4 12032 169794 | 1.3285-08 1.2386e-08 2.2453e-09

Table 3.3: LSF and errors (example 1): Carreau / shear thinning

The shear thickening case

For this case we set

r=2.5

and the other constants as in the shear thinning case.
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Figure 3.8: Convergence Rates
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(a) Stress

Figure 3.9: Plots of |og,| and the viscosity ps(e(ug,)): Carreau / shear thinning
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(b) Squares of errors

: Carreau / shear thinning

(b) Viscosity
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For the case of shear thickening flow we are taking again a closer look at the Cross- and Carreau-
model. The shear thickening case for the Carreau model is not covered by the theory as the assump-
tions (A2)s and (A3)s do not hold. We still see that the convergence behavior depicted in figure
with actual values of the Isf and error given in table is exactly the same as for the other
models. Though we do not know that the least-squares functional is an error estimator it behaves
like one. It has to be noted that problematic behavior of solutions occurs if the shear rate tends to
oo leading to unbounded viscosities which is not the case for this solution. Using the Carreau model
for problems with bounded shear rates seems to work fine.

The convergence rates for the Cross model are optimal as well and depicted in figure with
the LSF and errors given in table

level | # triangles | # dofs Fsg los —os, Hflw |lus — ug, ||%
0 47 744 3.8781e-04 3.7248e-04 1.5666¢e-04
1 188 2802 | 2.6569e-05 2.4693e-05 9.6463¢e-06
2 752 10866 | 1.6942¢-06 1.5436¢e-06 5.8994e-07
3 3008 42786 | 1.0672e-08 9.6189¢-08 3.6301e-08
4 12032 169794 | 6.6921e-09 5.9986e-09 2.2495e-09

Table 3.4: LSF and errors (example 1): Cross / shear thickening
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(a) Least-squares functional (b) Squares of errors

Figure 3.10: Convergence Rates : Cross / shear thickening

The approximated stress/viscosity for the Cross model can be found in figure and for the
Carreau model in figure . For the Cross model we get a higher viscosity near (0,2) where we
have high shear rates. The high viscosity results in a higher stress than for the shear thinning /
Newtonian case. One can observe a very high stress/viscosity near (0,2) in the Carreau model. This
is due to the fact that the Carreau model for this constants is bounded by 1 from below and not
bounded from above.
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Figure 3.11: Convergence Rates : Carreau / shear thickening

level | # triangles | # dofs Fs los — 05,05, | lus —us,|I?
0 47 744 2.2839¢-03 2.3926e-03 1.4815e-04
1 188 2802 | 1.4697e-04 1.4806e-04 9.2150e-06
2 752 10866 | 9.2736e-06 9.1955e-06 5.7358e-07
3 3008 42786 | 5.8174e-07 5.7266e-07 3.5761e-08
4 12032 169794 | 3.6416e-08 3.5721e-08 2.2323e-09

Table 3.5: LSF and errors (example 1):

Figure 3.12: Plots of |og, | and the viscosity pug(e(ug,)): Cross / shear thickening

(a) Stress

Carreau / shear thickening

(b) Viscosity
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(a) Stress (b) Viscosity

Figure 3.13: Plots of |og, | and the viscosity pus(e(ug,)): Carreau / shear thickening
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3.1.3.2 Example II

In this second example we take a closer look at an example where we expect the solution to have a
singularity. To treat singularities an adaptive refinement for the triangulation is necessary to keep
convergence rates reasonable. For the adaptive method we use two basic refinement strategies:

1. Mark 4% of the triangles for refinement and collect hanging nodes afterwards

2. Mark 10% of the triangles for refinement and collect hanging nodes afterwards

Afterwards adjacent triangles are refined to keep the triangulation conforming. To keep the quality
of the triangulation we try to prevent the angles of the triangle to get too small. Therefore a triangle
which was bisected before by the refinement strategy is not bisected again but refined regularly. This
results in more triangles to be refined but keep angles larger than without this strategy.

Additionally to the two refinement strategies from above we used a uniform refinement as well
to compare the results.

Remark: It has to be noted that this strategy is very basic. One might use more sophisticated
approaches for the refinement. Numerical examples using the refinement strategy of [Doe95| did not
show a significant difference in the behavior.

It has to be noted that the a priori estimates as a consequence of corollary might depend on
a very large constant. Therefore optimal convergence rates might only be visible in the asymptotic
case. This is indicated in figures and These models behave locally like the power law which
tends to weaken / strengthen singularities where the shear rate tends to go to co. Therefore optimal
convergence rates or the same convergence rates as in the Newtonian case might only be visible for
cases where the viscosity almost approached its minimum / maximum.

We also give the following approximated convergence rates:

(fs(k+1))
Fs(k)
#T(1),

Ok +1) =
—log ("7

o (Hdiv (Os—0sk+1l5 0,
& dv (05— 5003 oy

—loa(*Z7i7)

Gimp(k =+ 1) =

where k denotes the level of refinement and #7(k) is the number of triangles. The approximated
convergence rates for the different levels are given in the respective tables. We expect the error
|div (s — Ush)H%,QD to converge faster than Fg as typically visible in numerical examples for f
being a piecewise polynomial of degree k.

The computational domain is depicted in This domain will be met again in chapter 4 and
was also used in [MST11].

The boundary conditions for a shear flow are given by:

1

1
<_1 + 50‘1‘2> on FSD.

—1+ &0

ug = 0 on FSDW

0
0) on I'sy,
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Is
71 (100, 100)

FSDin / N\ FSDout

(0,50)

Lsp,

Figure 3.14: Domain for Example 11

Furthermore we set f = 0. Especially the upper boundary part together with the re-entrant corner
leads to very low convergence rates. Therefore this example is chosen to show the advantage of
adaptive refinement in difficult problems.

The linear case

For the linear case we set the viscosity to
ws = 0.5005

as being the mean of the maximal /minimal viscosity for the following cases where we used the Cross
model. First off we start by comparing the results of the three mentioned refinement strategies. The
results are shown in table [3.6] It is clear that uniform refinement results in the smallest Fg for a
set level. This is bought by a high number of triangles/degrees of freedom (dofs). By comparing
the dofs of the different refinement strategies the most efficient is clearly the strong local refinement
(4%). This is observable in the plot of the convergence rates in figure

The comparison of the triangulations of the 2 adaptive refinement strategies is shown in figure
Refinement strategy 2 tends to refine outer parts of the domain as well. This is mainly done at
step 6 and 7. Though the focus is still close to the re-entrant corner. The very high convergence rates
of strategy 1 might drop down at later steps where outer parts might need some minor refinement
as well. Nonetheless a very strong local refinement is advised for these kinds of problems where a
singularity is present. Both strategies refine triangles close to the upper boundary as well indicating
higher errors due to the boundary condition.

For all strategies we see the proposed improved convergence rate of ||div (og — Ush)”%7QD being
double the convergence rate for uniform refinement / strategy 2. Strategy 1 tends to perform similar
for early steps but drops down to be only better by a factor of h. This is the asymptotic behavior
one would expect for this combination of FE-spaces and a LSFEM.

The approximated velocity ug, and the absolute value of ug, is plotted in figure The
solution for this problem looks as one would expect for this kind of shear flow with a contraction.
The absolute value of ug, being larger than 1 is due to the imposed boundary condition at x5 = 100.

For the absolute value of the stress that is depicted in figure the singularity is clearly visible.
The more refinements we apply the higher the absolute value of the stress gets. Same can be said
about the shear rate which is not depicted here but is of interest in the shear-thinning / shear-
thickening case. We used a logarithmic scale for this plot as the large differences make it hard to
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depict it on a linear scale. For the pressure we see a large gradient close to the re-entrant corner
indicating a major effect of the pressure on the flow there.

level | # triangles | # dofs Fs Orsf [|divog —divog, |2 | Oimp
0 389 5708 | 9.2645e-003 5.4277e-003
1 453 6612 | 6.6225e-003 | 2.2041 3.0594e-003 3.7638
2 517 7516 | 4.3459e-003 | 3.1876 1.3128e-003 6.4026
3 633 9148 | 2.5320e-003 | 2.6688 4.3605e-004 5.4445
4 807 11600 | 1.3953e-003 | 2.4537 1.3410e-004 4.8556
5 1031 14768 | 7.4285e-004 | 2.5733 3.9582e-005 4.9811
6 1477 21052 | 3.8523e-004 | 1.8266 1.3685e-005 2.9544
7 1870 26622 | 2.0630e-004 | 2.6471 5.4925e-006 3.8696

0—7 2.4231 4.392

(a) refinement strategy: 4% marked

level | # triangles | # dofs Fs O1sf |div os —div og, |3 | Gimp
0 389 5708 9.2645e-003 5.4277e-003
1 537 7788 6.5766e-003 | 1.0628 3.0517e-003 1.7859
2 815 11688 | 4.2586e-003 | 1.0417 1.2892e-003 2.0654
3 1355 19272 | 2.4422e-003 | 1.0938 4.1890e-004 2.2113
4 2362 33422 | 1.2736e-003 | 1.1715 1.1383e-004 2.3447
5 3756 53042 | 6.2484e-004 | 1.5353 2.8243e-005 3.0049
6 6422 90526 | 2.9908e-004 | 1.3736 6.5061e-006 2.7371
7 10846 152646 | 1.5060e-004 | 1.3091 1.6542e-006 2.6131

0—-7 1.2378 2.4327

(b) refinement strategy: 10% marked

level | # triangles | # dofs Fs O1sf |div og —div og, H% Oimp
0 389 5708 | 9.2645e-003 5.4277¢-003
1 1556 22306 | 6.4735e-003 | 0.2586 3.0666e-003 0.4118
2 6224 88178 | 4.1644e-003 | 0.3182 1.2811e-003 0.6296
3 24896 350626 | 2.3670e-003 | 0.4075 4.0984e-004 0.8221
0-3 0.3281 0.6212

(¢) uniform refinement

Table 3.6: LSF (example 2): Newtonian flow

the shear thinning case
for the constants we set
K =
oo = 1073

Mo =
r=1.5
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Figure 3.15: Plots of ug, and |ug, |: Newtonian flow
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Figure 3.16: Plot of |og,| and pg,: Newtonian flow
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We only take a closer look at the Cross model. The Carreau model behaves, considering conver-
gence rates and refinement strategies, very similar. We used the same refinement strategies as for
the constant case and table [3.7|shows the actual values of the LSF and the number of triangles/dofs.
The convergence rates can be observed in figure [3.19] We see that the convergence rates are slightly
better which is an effect of the singularity as stated before. They will at some point show the same
asymptotic behavior as indicated by corollary We again see the better convergence rates for
|div &g — div &g, ||2 which indicates that this feature carries over to the nonlinear case.

We won’t depict the velocity here as it looks similar to the constant case and therefore refer
to the case before. Slight differences can be seen close to the upper boundary due to the different
model for viscosity. The stress, pressure and viscosity is depicted in figure [3:20] The absolute value
of the stress tends to be slightly higher than for the constant case but the characteristic looks very
similar. The distribution of viscosity shows a strong decrease of viscosity close to the re-entrant
corner where the absolute value of the stress is very high. Higher viscosities can be seen where the
stress is low. This is visible right above the re-entrant corner. The different characteristic of the
stress and viscosity can especially close to the lower boundary is due to the higher/lower pressures
left /right from the singularity that are contributing a major part to |og,|. Due to the very high
variations in viscosity a problem with that kind of viscosity won’t be well approximated by a linear
model.

The refined triangles are depicted figure[3:21] These look only slightly different from the constant
case, so it can be said that more or less the same triangles are refined.

T T T T
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Figure 3.19: Convergence rates: Cross / shear thinning

shear thickening case

For the shear thickening case we again take a closer look only at the Cross model. The Carreau
model behaves again quite similar with respect to convergence rates though the property of being
an error estimator is not established. We set » = 2.5 and the rest of the constants as in the shear
thinning case. The errors are depicted in table 3.8 and the convergence rates can be found in figure
The convergence rates are considerably lower than for the constant/shear thinning case. This
is the opposite behavior to the shear thinning case as the viscosity strongly increases close to the
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level | # triangles | # dofs Fs Orsf [|divog —divog, |2 | Oimp
0 389 5708 | 2.4163e-002 1.3213e-002
1 451 6584 | 1.6859e-002 | 2.4337 6.9626¢-003 4.3319
2 525 7628 | 1.0566e-002 | 3.0756 2.6790e-003 6.2864
3 633 9148 | 5.9614e-003 | 3.0593 8.3574e-004 6.227
4 765 11012 | 3.1556e-003 | 3.3586 2.4319e-004 6.5175
5 979 14040 | 1.6246e-003 | 2.6916 7.3744e-005 4.8378
6 1336 19066 | 8.2628e-004 | 2.1746 2.8087e-005 3.1048
7 1754 24990 | 4.4337e-004 | 2.2869 1.2237e-005 3.0522

0-7 2.6547 4.6375

(a) refinement strategy: 4% marked

level | # triangles | # dofs Fs Oisf |div og —div ag, |5 | Gimp
0 389 5708 | 2.4163e-002 1.3213e-002
1 537 7788 | 1.6785e-002 | 1.13 6.9489¢-003 1.9931
2 847 12136 | 1.0383e-002 | 1.0539 2.6307¢e-003 2.1315
3 1397 19868 | 5.6498e-003 | 1.2163 7.4982e-004 2.5084
4 2274 32214 | 2.8085e-003 | 1.4346 1.8334e-004 2.8909
5 3744 52890 | 1.3212e-003 | 1.5124 4.1029e-005 3.0025
6 6354 89638 | 6.0437e-004 | 1.4787 8.3877¢-006 3.0014
7 10682 150422 | 2.9072e-004 | 1.4087 1.9585e-006 2.8001

0-—-7 1.3343 2.6615

(b) refinement strategy: 10% marked

level | # triangles | # dofs Fs O1sf |div og —div og, H% Oimp
0 389 5708 | 2.4163e-002 1.3213e-002
1 1556 22306 | 1.6579e-002 | 0.2717 6.9656¢e-003 0.4618
2 6224 88178 | 1.0189e-002 | 0.3512 2.6002e-003 0.7108
3 24896 350626 | 5.4964e-003 | 0.4452 7.3302e-004 0.9134

0-3 0.356 0.6953

(¢) uniform refinement

Table 3.7: LSF (example 2): Cross / shear thinning

93
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Figure 3.20: Plots of |og, |, ps, and viscosity: Cross / shear thinning
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Figure 3.21: Plots of triangulation after 7 refinements: Cross / shear thinning

singularity. The effect is again visible in all refinement strategies. This holds true for the least-
squares functional and the error ||div og — div o, |3. Nonetheless the improved convergence rate
is still visible in all 3 strategies.

The behavior of the pressure, absolute value of stress and the viscosity is depicted in figure
Again the absolute value of the stress looks considerably different close to the singularity. For the
viscosity we see the expected increase close to the re-entrant corner. The parts where the viscosity
(and the shear-rate) tends to be very low are the same where the shear-thinning flow tends to have
high viscosities. The pressure gradient is again very high close to the re-entrant corner.

The triangulations after 7 refinement steps are depicted in figure Though again the areas
close to the re-entrant corner are refined the refinement close to the upper boundary is considerably
different to the other 2 cases. It can be stated that the error distribution, aside from close to the
re-entrant corner, seems to be different from the other two cases. Therefore having an a-posteriori
error estimator at hand is important for an efficient refinement strategy.



56

CHAPTER 3. LEAST-SQUARES FORMULATION OF THE SEPARATE PROBLEMS

level | # triangles | # dofs Fs Orsf [|divog —divog, |2 | Oimp
0 389 5708 | 1.1635e-003 7.2465e-004
1 457 6668 | 8.3273e-004 | 2.0761 4.4909e-004 2.9699
2 521 7572 6.0684e-004 | 2.4143 2.4409e-004 4.6516
3 667 9624 | 4.1220e-004 | 1.5656 1.1210e-004 3.1501
4 881 12628 | 2.5526e-004 | 1.7222 4.2319¢-005 3.5007
5 1054 15078 | 1.4939e-004 | 2.9882 1.6673e-005 5.1953
6 1422 20294 | 8.3561e-005 | 1.9399 5.8282¢-006 3.5097
7 2118 30070 | 4.6356e-005 | 1.4789 2.1328e-006 2.5232

0—7 1.9018 3.4392

(a) refinement strategy: 4% marked

level | # triangles | # dofs Fs Oisf |div og —div ag, |5 | Gimp
0 389 5708 | 1.1635e-003 7.2465e-004
1 533 7732 | 8.1361e-004 | 1.1357 4.5131e-004 1.5036
2 795 11408 | 5.8109e-004 | 0.8418 2.4464¢-004 1.5316
3 1191 16968 | 3.7688e-004 | 1.0712 1.0981e-004 1.9817
4 2197 31116 | 2.2088e-004 | 0.8726 3.9761e-005 1.6591
5 3742 52798 | 1.1909e-004 | 1.16 1.2152e-005 2.2259
6 6708 94442 | 6.1798e-005 | 1.124 3.3820e-006 2.1913
7 11405 160364 | 3.2861e-005 | 1.19 9.5911e-007 2.3744

0-—-7 1.0558 1.9618

(b) refinement strategy: 10% marked

level | # triangles | # dofs Fs O1sf |div og —div og, H% Oimp
0 389 5708 | 1.1635e-003 7.2465e-004
1 1556 22306 | 7.6355e-004 | 0.3038 4.5427e-004 0.3369
2 6224 88178 | 5.3855e-004 | 0.2518 2.4713e-004 0.4391
3 24896 350626 | 3.5147e-004 | 0.3078 1.0833e-004 0.5949

0-3 0.2878 0.457

(¢) uniform refinement

Table 3.8: LSF(example 2): Cross / shear thickening
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Figure 3.22: Convergence rates: Cross / shear thickening
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Figure 3.24: Plots of |og, |, ps, and viscosity: Cross / shear thickening
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3.2 Darcy Flow

The nonlinear Darcy-flow is given by

K
o (lupl?)
V-up=f inQp (3.20)

pp =¢gp, onlp,

up -n=gp, onlp,

up + Vpp=0 inQp

with
- up: volumetric flux
- pp: hydraulic potential
- K(x): Permeability

This formulation was used in [EJS09|. For this section we again assume the domain Qp to have
a Lipschitz boundary with 0Qp =T'p, UT'p, and I'p, NT'p, = 0. Therefore we are able to use
the inequalities of section 2.

The permeability k(x) € L>®(2p) is assumed to be a function from Qp to R-o bounded from
below by Kpin and bounded from above by Kpaz -

For the viscosity in the Darcy domain we have analog to the Stokes case:

pp = up(lupl?)
Models for the viscosity include the following [EJS09]:

- Cross model
pllup2) = o + —L0 1)
1+ K(|(up)[?) 2

- Power law model
lup|? 52

2
K2

w(lupl?) = K(

with m. being a constant dependent on the internal structure of the porous medium. For the Cross
model we have

- oo < p(le(up)[?) < po

The upper/lower bound for the viscosity is a crucial part of the proof for the LSF being an error
estimator. Therefore the following numerical anaylsis is only valid for the Cross model.
As in the Stokes case we need an additional condition if Ay(I'p,,) = 0 which is the following

/ ppdx = 0.
Qp
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3.2.1 The Least-Squares Functional as an Error Estimator

In this section we show that the LSF is an efficient and reliable error estimator for the nonlinear
Darcy-problem.
the first equation of the Darcy-problem is scaled differently compared to (3.20)).

" up(up)®up + &2 Vpp =0 € Qp (3.21)

which leads to the following least-squares functional

Fp(up,pp; f) = Ik~ up(lup|*)up + £ Vopllg o)) + IV - up = fl3 0, (3.22)
For our approach we make use of the following spaces
Hflg’N (Qp)={ve H*™(Qp) |v-n=00onTp,}
H%DD(QD) ={q¢€ H'(Qp) lg=0onTp, |/QDq:O if 'p, =0}
As for the Stokes case we need to define the functions that satisfy the boundary conditions:
- up, € (H¥™(Qp))? with upylrp, = 9oy
- ppp, € (H'(2p))? with ppylr,, = 9o,
If T'p,, = 0 we use the natural choice of pp, = 0 which lies in H%DD (Qp).
Our minimization problem is then given by: Find (Gp,pp) € Hg’;’N (Qp) x H%DD (Qp) s.t.
Fp(upy +Up,ppy, + pp; f) < Fp(upy + Vp,ppy + 4p; f)

holds for all (¥p,dp) € nggN (Qp) x H%DD (Qp).

Again we need the following assumptions on the viscosity up(s):
(Alp) pp(s) € CO([0,00)) N C((0,00))
(A2p) 0< Ko < pup(s) <Ky
(A3p) 0 < My < pp(s)+2pp(s)s < My < oo for s >0

As in the section before we need the following lemmas:

Lemma 3.12 Let assumptions (A1lp),(A2p) and (A3p) hold. Then for arbitrary ip > 0 it holds:

I~ (up(Jup|*)up = up(Vol*)vp) = &~ an(ap = vo)loos (3.23)

< Cup - Epls™"*(up — vp)lloos

with a constant dependant on ip:

Cop = maz % {luo(Iw[?) — fin|, |MDqW|2) — iip + 2pp(Iw]?) |w|?|} e
weRd D
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proof: Analog to the proof of lemma [3.I] The main difference is that we only have to consider
first-order tensors and the permeability has to be taken into account. Therefore we sketch the
beginning of the proof: We show that

™2 (up(lup*)up — pup(Ivo|*)vp) — k™ 2fp(up — vp)| < Cup - fipls™*(up — vp)|  (3.24)

holds for almost every x € Qp, whereby (3.23) follows directly. As k"2 is bounded and only

dependent on x we can as well show

|(up(Jupl*)up — pp(Ivpl*)vp) — ip(up — vp)| < Cpp - fip|(up — vp)| (3.25)

which we get by following the proof of lemma (3.1}
[ |
Remark: Assumptions (A2p) and (A3p) do not hold for the power law. Therefore the
following theorems are not proven for the power law.
An analog version of lemma [3.2] holds as well:

Lemma 3.13 Let the assumptions of lemma[3.19 hold. Then there exists a fip s.t. for Cy p we
have:

C“’D <1

If the bounds in (A2)p and (A3)p are sharp the smallest C,, p is given by:

_ nwp — min{Ko, Mo}

Cub
: “D

)

with
K1+ Ko M+ My
2 ’ 2

}

fip = max{

proof: Analog to lemma [3.2]
|

Remark: One might as well assume x to be a positive definite matrix. Lemma[3.12]and lemma
3-13] can be proven if we assume & to be orthogonal. If & is not orthogonal the Cy, p of lemma [3.12]
looks different and one might not be able to prove lemma [3.13] without altering the assumption
(A3p) and taking k into account.

Remark: Analog to the Stokes flow we are able to formulate alternative assumptions on the
viscosity. We use the version of lemma [3.3] and restrict ourselves to the cases that can be used for
our least-squares approach. For general viscosity functions we refer to the Stokes case.

(A4p) Cslzp — vp|* < (up(lzp|*)zp — pp(|vD|*)VvD) : (2D — VD)
(A5p) |up(|zpl*)zp — po([vpl*)vp| < Cilzp — vp|

An analog version of lemma [3.4 holds with the remark about the permeability in the proof of lemma
5,12

Now we can prove that the nonlinear least-squares functional is an efficient and reliable error
estimator:
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Theorem 3.14 Let assumptions (Alp),(A2p) and (A3p) or (A4p) and (A5p) hold. Then we
have for the solution (up,pp) = (up,,pp,) + (Ap,pp) with (Ap,pp) € Hﬁg’ (Qp) x H%D (Qp)

of [F20): ’ ’

Cep(|lup = vpllZina, + llpp — aplli o))
< Fp(vD,qp)

< Csp(llup — VD||§Z‘U,QD + llpp — (IDH%,QD)

for all (vp,qp) = (up,,pp,) + (Vp,qp) with (Vp,{p) € Hf“lng (Qp) x H%DD (Qp) with positive
constants Ce p and Cs p.

proof: the proof can be found in [MS1I] for the linear case. The nonlinearity is treated as in the
proof of theorem in the Stokes case.

For the least-squares functional we have:

Fo(vp,ap) = ||~ 2up(vpl)vp + £VaplE o, + IV v = fli3a,

= ||~ "up(lup|®up + &7*Vpp — & up(|vp|?)vp — £*Vap 3 o,
+V-up—V-vplha,

< 2)k™""*(up(lup*)up — pp([vp|*)vp — fin(up — vp))l§ o,
+ 2|k~ p(up — vp) + £7*(Vpp — Vap)l.a, + IV -up — V- vl q,

<2C, plle™"*(ap(up —vp))3.qa, + 21k *ap(up — vp) + £7*(Vpp — Vap) g o,
+V-up =V -vplia,

< 2(1 4 Cy,p)fipkmaz||(up — vD)ll§ap + IV -up = V- vpliq,
+ 2Rmax‘|va - VQD

S maX{L 2(1 + CM,D)ﬂDﬁmax}Hu - VHdiv,QD + 2"€ma$HpD — 4D

‘2
0,22p

‘LQD

Using Cy p := max{1, (1 + Cy p)fikmaz, 2Kmaz } the upper bound is proven.

For the lower bound we need the Poincare-Friedrichs inequality (theorem . As in the case of
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the Stokes flow we use an arbitrary p € (0,1).

Fo(vp.ap) = l&=up(vp*)vp + £*Vap|3 o, + IV - voliéa,
> ||~ up(lup|®up + &7"*Vpp — &~ 2up(|vpl?)vp + 72 Vap 3 o,
+2C|V-up =V -vplia,

1—p, _ _
> —THH "(up(lup*)up — up([vp*)vp — Ep(up — vp))|3q,

+ (1= p)||6"*(Vpp — Vap) + &~ Pfp(ap — vp)lida, +2C|V -up =V -vplia,
2
2 —%Dllf‘fwﬂfj(u]) ~vp)lR o, + 157 (Vpp — Vap) + £~ *ap(up — vp)|3.q,
2C

2
+ EHV ~up = V-vpllga,

2
Dy /s
= ||V (pp — ap)|}q, + (1 - i; )& ap(ap — vp)llaa,

2C _
t1 p||V (up = vp)li§.a, +2(V(pp — ap), in(up — vp))ogop
C2D
1 , —1/g
= |2V (pp — ap) |} 0, + (1 — “T)HH ”ip(ap —vp)l3 q,

2C _
+ prV (up — VD)H%,QD —2(pp —qp,ipV - (up —vDp))o,0p
_9 2
Fmin _ JiH(1—p) Cupy 1 -
> ( g;n e C )lpp —aplifq, + (1 - MT)’QmﬁzHND(uD —vo)lga,
C
+ EHV “(up — VD)||(2),QD
> Ce,p(|lup — VDHZZ'U,QD + llpp — QD||%,QD)
with )
) 2. (1 — C C
Ce,D = min{ Fmin - MD( p) ) (1 - D )K’;n}zzﬂ%)? f}
Cp C 1

Again setting p € (Cz,Dv 1) the constant C, p is positive if one chooses C' large enough.
|
Remark: As for the Stokes flow it is easy to see that we have again uniqueness of the solution
and a-priori / a-posteriori error estimates.
As for the Stokes problem we can show that the Cross model satisfies assumptions (A1) p,(A2)p
and (A3)p:

Lemma 3.15 Assumptions (A1)p,(A2)p and (A3)p hold for the Cross-model. Furthermore we
have for the constants from lemma[3.13

—C’M,D:Zglzz,withﬂpzuo'g“w and 1 <r <3
r—1 — Moo . — r—1 —HMoo 200
S Cup < 5 (Ho—f1oo) with fig = 2 (ko g )20 and 3 < r

TT_l (MO _ltoo)+2lioo ¢

proof: See lemma [3.7]
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3.2.2 The Linearized Problem

As in the case of Stokes flow our nonlinear functional has the typical least-squares form and we use
a Gaul-Newton method for the linearization. All propositions of the Stokes case are valid for the
Darcy flow as well. Therefore there won’t be any proofs given for the theorems in this section and
the reader might refer to section 3.1.2.

As usual for Gau-Newton methods the partial differential equation needs to be linearized: Let

up, + ﬁ%) _ ug)
Ppp + 13([';) p%“)

be given. Here (uDN,pDD) € H¥(Qp) x H'(Qp) satisfy the boundary conditions and (i},
lies in Hdg’ (Qp) x Hf (2p). We look for an approximation
N

u(DI:-ll)) _ +ﬁ(:+11) u([]):) N su,, .
Y pop + P oPp

of the solution. The quadratic functional which is minimized is given by:

(k) A(k))

R(ul® p®) 1)

div ul™ — £
Fors p(0up, 6 ;u(k)7R u(k)’ 7 _ D +
quad,D(0Up, dpp;up’, R(up, pD )=l ﬁ_l/QﬂDﬂu%f)’z)u%f) + 51/2Vp§§)

div dup H2
Y2 (up ([0 12)sup + 205 (02 @B - sup)u)) + w2vopp ) 1000

-~

((SUD :EPD, ( ))

The variational formulation of the minimization problem is given by:

Find (dup, dpp) € Hff?;v (Qp) x H%S(QD) such that

(c(éuD,5pD;u§§)),£(5vD,5qD;u(g))) S (mugy, 1), ﬁ(évD,an;ug@)) (3.26)

holds for all (6vp,dqp) € Hﬁg’ (Qp) x Hf, (2p).
N D
With the same argument as in the section before we show that the quadratic Approximation has
a unique solution. An analog version of lemma [3.8| holds:

Lemma 3.16 Assume that (Alp),(A2p) and (A3p) holds. Then we have for an arbitrary con-
stant fip >0 :

|57 (up(lup’[*)dup + 2uip(jup)) ) (u dup)uly’ — ipdup)

i (3.27)
< C8 - fip|| " 6up o,
which holds for all Sup € H(Qp) with a constant C,, p(fip) given by
_ k k)
g _ max{lpn(lup’P) = fipl bup(95'P) = fip + 2up (W5 PIG' P _ g0

155)

Furthermore by choosing fip large enough it holds Cquad < 1.
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Proof: The proof is analog to lemma |3.8 and lemma [3.9| with the remark about the permeability
of lemma
|
Analog to the case of Stokes flow one gets the following theorem:

Theorem 3.17 Let assumptions (A1)p, (A2)p and (A3)p hold. For the quadratic approximation
of the least-squares functional the following holds:

Cquad (k) 0) <

d
(IvDldiwap + lanll¥ 05) < Fouad.n(vD,apiup’,0) < CLE (VDG 0, + lanlias)

for all (vp,qp) € H{™ (Qp) x H%D (Qp) with positive constants Cquad und C1%% . Furthermore
the variational problem has a unique solution.

proof: As in theorem [3.10| we have to follow the proof of theorem [3.14]
As before by inserting the unique solution of the linearized problem (3.26)) we get

k) (k dup d
Fou ol £) 3o | < ~2CHEI0un I, + 19nola,)
and therefore we have always a reduction in the nonlinear least-squares problem by using the direction
defined by the solution of the linearized problem.

Remark: An analog version to corollary can be proven as well.

3.2.3 Numerical Examples

As for the Stokes flow we choose

Pp;, € PQ(E)
up, € RT1(771)

In this section we take a closer look at a numerical example for a Darcy flow. The problem is
chosen to benefit from adaptive refinement. We have already seen in the Stokes case that we achieve
optimal convergence rates for smooth solutions by using uniform refinement. For the Darcy case
we expect the same as the theory is basically identical. Therefore we focus on a more complicated
problem /example.

In this subsection we take a closer look at the local mass conservation of the least-squares finite
element method. Brandts et al. showed in [BCY06] that under some assumptions on the permeability
/ regularity of the solution the error in local mass conservation converges faster to 0 by a factor of
h. For our case this means: ||div (up —up,)|o.a, = Ch®. Standard analysis involving interpolation
operators would only provide ||div (up — up, )|l0.o, ~ Ch%.

Remark: It has to be noted that the assumptions on the permeability in [BCY06] are very
strict and the faster convergence is still visible in cases where these assumptions are not met.

The question is if this faster convergence can be observed in generalized Newtonian flows as well.
To confirm this we are using the following approximated convergence rate given by:

1Og(J-'D(k+1))

Fp(k)

lef(k' + 1) Ty AR
log( (k(Jr)l))

[|div (up— UD,k+1H(2),QD

||div (uD*uD,k”(Q),QD)

— log( #i(Tk(Z)l) )

log(

emass(k + 1) -
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where k denotes the level of refinement and #7'(k) is the number of triangles. The approximated
convergence rates for the different levels are given in the respective tables. We are giving the overall
convergence rate which is computed by comparing the error/#Triangles of the first and last level of
the uniform/adaptive algorithm as well.

3.2.3.1 Example

For this example we take a closer look at a problem with several singularities where an adaptive
refinement strategy should refine several regions of the domain. The computational domain is
depicted in The problematic regions are around the re-entrant corners.

T'p,

wm

(50, 100)

(0,0)

FDout

Figure 3.25: Domain for Example

The boundary conditions for this problem are given by

up-n=-1 onlp,,

up-n=0 on FD():FD\(FD UFDM)

out

up-n=1 onlp_,

Therefore we have a forced inflow/outflow with non-permeable walls. We use the same marking
strategy as in the Stokes case for adaptive refinement with the exception of refining 5% instead of

4%.
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Newtonian flow

For the Newtonian flow we choose
up = 0.5005
k=1

The viscosity is chosen to the mean of minimal/maximal viscosity for the following cases. The
actual errors for the uniform/adaptive refinement strategy is given in table The solution lacks
regularity due to the re-entrant corners and therefore we can not expect optimal convergence rates
for the least-squares functional. As mentioned before optimal convergence rates would be 2 for the
least-squares functional and 3 for the error in local mass conservation. For the uniform refinement
the suboptimal convergence rates are clearly visible. As expected they are below 1 for the least-
squares functional which is an error estimator for the overall error. The error in the local mass
conservation goes faster to zero (where the convergence rate is twice as the one mentioned before)
but not by a whole factor of h. This is again due to the lack of regularity of the solution and is
visible in many examples.

For the adaptive algorithm the convergence rate varies. Starting with high convergence rates
that are lower for later refinement steps. This is because our strategy starts with refining very
few triangles with high errors in the beginning. Later on the error decreases slower and there are
more triangles refined to keep the quality of the triangulation. Therefore the convergence rate drops
though still being just slightly below optimal convergence rates for refinement strategy 2. The
overall convergence rates are optimal for refinement strategy 2 and above optimal for strategy 1.
The adaptive refinement strategies seems to keep the factor of h for the local mass conservation.

It has to be noted that our refinement strategy refines triangles where the least-squares functional
tends to be large. If the regions where the error in local mass conservation differs it might happen
that the convergence rate for ||div (up — uDh)HaQD decreases as it might not the dominant part of
the least-squares functional. This will be observed in the next section. The plot of the convergence
rate is depicted in figure [3.26

T T T T
+— Adaptive Refinement (5 percent): Convergence Rates #— Adaptive Refinement (5 percent): Convergence Rates
—+— Adaptive Ry (10 percent): C Rates | —#— Adaptive i (10 percent): C Rates
—#— Uniform Refinement: Convergence Rates 10 F —#— Uniform Refinement: Convergence Rates
0L Uniform Refinement: Optimal Convergence Rates (lnear) || | ====- Uniform R Optimal C Rates
———- Uniform i Optimal C Rates i o ———— Uniform Refinement: Optimal Convergence Rates (cubic)

1 10" ¢

Least Squares Functional
g,
P
S K
/ Kx /
S /
. I |
||div (up—ups)|3
3

# Triangles # Triangles

(a) least-squares functional (b) local mass conservation

Figure 3.26: Plots of the convergence rates: Newtonian flow

The approximate solution for the volumetric flux and the hydraulic potential can be found in
figure [3:27] The approximate solution looks as expected.
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level | # triangles | # dofs Fb Orsr |div (up — uDh)H%,QD O mass
0 425 3106 3.0499¢-01 4.5236e-02
1 516 3773 1.0605e-01 | 5.4448 5.8689e-03 10.5260
2 641 4682 3.9293e-02 | 4.5770 1.1553e-03 7.4926
3 815 9936 1.6915e-02 | 3.5095 4.1736e-04 4.2396
4 1163 8408 7.3929e-03 | 2.3278 1.5776e-04 2.7362
5 1691 12152 | 3.4917e-03 | 2.0040 7.3769¢-05 2.0307
6 2452 17541 | 1.7710e-03 | 1.8269 2.9162e-05 2.4976
7 3770 26839 | 8.4548e-04 | 1.7189 1.1481e-05 2.1671

0-7 2.6976 3.7929

(a) refinement strategy: 5 % marked

level | # triangles | # dofs Fb Orsf |div (up — lth)H(Q) ap | Omass
0 425 3106 3.0499¢-01 4.5236¢-02
1 596 4341 9.9191e-02 | 3.3217 5.0400e-03 6.4897
2 943 6812 3.1476e-02 | 2.5016 6.0334e-04 4.6263
3 1705 12202 | 1.0050e-02 | 1.9277 9.5040e-05 3.1206
4 3169 22526 | 3.1792¢-03 | 1.8568 1.6668¢-05 2.8084
5) 6087 43084 | 9.6577¢-04 | 1.8253 2.7881e-06 2.7395
6 11155 78700 | 3.0890e-04 | 1.8819 6.2054¢-07 2.4805
7 20161 141938 | 9.9371e-05 | 1.9162 1.3497e-07 2.5775
0-7 2.0804 3.2964

(b) refinement strategy: 10 % marked

level | # triangles | # dofs Fp O1s5 |div (up —up,)|; ap | Omass
0 425 3106 | 3.0499¢-01 4.5236e-02
1 1700 12161 | 9.5028e-02 | 0.8412 4.5267e-03 1.6605
2 6800 48121 | 2.8017e-02 | 0.8810 3.9431e-04 1.7605
3 27200 191441 | 8.1867e-03 | 0.8875 3.3393e-05 1.7809
0-3 0.8699 1.7340

(¢) uniform refinement

Table 3.9: LSF and error in mass conservation: Newtonian flow
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(a) volumetric flux (b) hydraulic potential

Figure 3.27: Volumetric flux and hydraulic potential: Newtonian flow

Cross model: r=1.5

For this example we set

Loo = 1073
po =1
r=1.5
K=

As r = 1.5 the viscosity decreases as |up| increases. The actual errors and convergence rates
can be found in The behavior is similar to the Newtonian case as the error in local mass
conservation decreases faster in the same way as before. The faster convergence by a factor h for
the adaptive refinement strategies are observable as well. The actual convergence rates are slightly
higher for this case for the uniform and adaptive refinement which indicates that the varying viscosity
has a small effect on the least-squares functional. As our assumptions on the viscosity are satisfied
both problems tend to the same convergence rate if h — 0. As in the Newtonian case an adaptive

refinement is highly advisable to keep computational costs reasonable. The convergence rates are
depicted in figure

The approximate solution for the volumetric flux and the hydraulic potential can be found in
figure [3:29 and looks similar to the Newtonian case.

Another important plot for the non-Newtonian case is the viscosity and the absolute value of
up,. These can be found in figure For the viscosity we see that we have a strong thinning
property close to the re-entrant corners. This is due to the very high absolute value of the volumetric
flux which tends to oo for the solution up. Vice versa the viscosity tends to be high close to the
corners where the absolute value of the volumetric flux is small due to the boundary conditions.
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level | # triangles | # dofs Fb Orsr |div (up — uDh)H%,QD O mass
0 425 3106 | 2.6757e-01 2.3506e-02
1 516 3773 8.6253e-02 | 5.8350 2.5373e-03 11.4739
2 647 4724 3.0293e-02 | 4.6250 5.1668e-04 7.0343
3 833 6062 1.2720e-02 | 3.4341 1.9597e-04 3.8365
4 1153 8350 5.7190e-03 | 2.4589 9.4728e-05 2.2362
5! 1759 12636 | 2.7458e-03 | 1.7371 4.4210e-05 1.8042
6 2600 18593 | 1.3176e-03 | 1.8791 1.9687¢e-05 2.0703
7 3961 28190 | 6.1451e-04 | 1.8118 5.9561e-06 2.8399

0-7 2.7222 3.7097

(a) refinement strategy: 5 % marked

level | # triangles | # dofs Fb Orsf |div (up — lth)H(Q) ap | Omass
0 425 3106 2.6757e-01 2.3506e-02
1 590 4299 7.9796e-02 | 3.6883 2.0821e-03 7.3891
2 964 6961 2.4104e-02 | 2.4382 2.4695e-04 4.3424
3 1725 12354 | 7.5280e-03 | 2.0000 5.1564e-05 2.6919
4 2973 21162 | 2.3279¢-03 | 2.1561 8.8184e-06 3.2442
5) 5732 40613 | 7.0203¢-04 | 1.8260 1.8634¢-06 2.3678
6 10228 72221 | 2.2280e-04 | 1.9820 4.3532e-07 2.5111
7 18362 129371 | 7.1897¢-05 | 1.9329 9.6832e-08 2.5687
0-7 2.1832 3.2926

(b) refinement strategy: 10 % marked

level | # triangles | # dofs Fp O1s5 |div (up —up,)|; ap | Omass
0 425 3106 | 2.6757e-01 2.3506e-02
1 1700 12161 | 7.6488e-02 | 0.9033 1.8343e-03 1.8399
2 6800 48121 | 2.1340e-02 | 0.9208 1.3648e-04 1.8743
3 27200 191441 | 5.9660e-03 | 0.9194 1.0204e-05 1.8707
0-3 0.9145 1.8616

(¢) uniform refinement

Table 3.10: LSF and error in mass conservation: Cross model with r=1.5
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Figure 3.28: Plots of the convergence rates: Cross model with r=1.5
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Figure 3.29: Volumetric flux and hydraulic potential: Cross model with r=1.5
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Figure 3.30: |up, | and viscosity: Cross model with r=1.5

Cross model: r=2.5

For this example we set

poo:10_3
po =1
r=2.5
k=1

As r = 2.5 the viscosity increases as |up| increases. The errors and convergence rates can be
found in table Again the behavior is similar to the Newtonian case as the error in local mass
conservation decreases faster in the same way as for the two examples before. We have a slight
decrease in convergence rates due to the effect of the increasing viscosity close to the singularities.

The convergence rates are depicted in [3.31]

The approximate solution for the volumetric flux and the hydraulic potential can be found in
figure [3.32] They look similar to the plots for the other two flows with a small difference in the
maximal /minimal values of py,

The plot of the viscosity and the absolute value of up, can be found in figure For the
viscosity we see that we have the opposite behavior to the case before. The high absolute value of
the volumetric flux results in higher viscosity close to the re-entrant corners. Vice versa the viscosity
tends to be small close to the corners where the absolute value of the volumetric flux is small due to
the boundary conditions. The maximal value of |up, | tends to be lower than for the case of r = 1.5,
which is because of the higher viscosity in the relevant regions. Therefore we see again the necessity
to use appropriate models for different types of flows as in contrast to the similarity of the overall
flow the solution might differ in local regions considerably.

As in the two examples before an adaptive refinement is advisable.
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level | # triangles | # dofs Fb Os¢ | ||div (up — uDh)Hg,QD Omass
0 425 3106 | 3.3684e-01 7.1534e-02
1 511 3736 | 1.2798¢-01 | 5.2514 1.1349¢-02 9.9905
2 639 4664 | 4.9643e-02 | 4.2365 2.2973e-03 7.1461
3 856 6217 | 2.0784e-02 | 2.9781 7.2246e-04 3.9567
4 1212 8749 | 9.0846e-03 | 2.3798 2.6735e-04 2.8587
5 1843 13216 | 4.1059e-03 | 1.8948 9.9896e-05 2.3488
6 2869 20466 | 1.8640e-03 | 1.7844 3.8145e-05 2.1753
7 4299 30548 | 8.7576e-04 | 1.8679 1.4263¢-05 2.4324

0-7 2.5722 3.6820

(a) refinement strategy: 5 % marked

level | # triangles | # dofs Fb Orsf |div (up — lth)H(Q) ap | Omass
0 425 3106 | 3.3684e-01 7.1534e-02
1 603 4388 | 1.1787¢-01 | 3.0016 9.6053¢-03 5.7396
2 994 7179 | 3.8827e-02 | 2.2217 1.2005e-03 4.1606
3 1671 11964 | 1.2607e-02 | 2.1655 1.7230e-04 3.7373
4 3054 21723 | 4.0574e-03 | 1.8800 2.7315e-05 3.0542
5 5713 40458 | 1.2747e-03 | 1.8488 4.9290e-06 2.7341
6 10624 74969 | 4.0129¢-04 | 1.8630 8.9206e-07 2.7554
7 19355 136284 | 1.3008¢-04 | 1.8781 2.2405e-07 2.3034

0-7 2.0581 3.3190

(b) refinement strategy: 10 % marked

level | # triangles | # dofs Fp O1s5 |div (up —up,)|; ap | Omass
0 425 3106 | 3.3684¢-01 7.1534¢-02
1 1700 12161 | 1.1352¢-01 | 0.7846 8.8160e-03 1.5102
2 6800 48121 | 3.4998e-02 | 0.8488 8.5831e-04 1.6803
3 27200 191441 | 1.0525e-02 | 0.8667 7.7618e-05 1.7335

0-3 0.8334 1.6413

(¢) uniform refinement

Table 3.11: LSF and error in mass conservation: Cross model with r=2.5
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Figure 3.31: Plots of the convergence rates: Cross model with r=2.5
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Figure 3.32: Volumetric flux and hydraulic potential: Cross model with r=2.5
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Figure 3.33: |up, | and viscosity: Cross model with r=2.5
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Chapter 4

The Coupled Problem

For the following section we assume £ C R% bounded and to be composed of two domains Qg,Q2p C
RY with Lipschitz-continuous boundary. For the boundary /interface we assume 9(2g N Q) = T'g,
d(Qp N Q) =T'p. Furthermore the interface is given by I'; = Qg N Np # 0.

Two examples are depicted in figure for the case d = 2. This is a typical example of two fluid
domains. The first domain has a regular interface whereas the second domain has some re-entrant
corners that might result in singularities/decrease of convergence rates as shown in the section before.

We note that a regular interface might still be problematic as we have two different types of flow
coupled along an interface. Therefore boundary conditions that at a first glance seem to fit might
cause problems as we see in an example later in this chapter.

I's

I'p

I's

I'p

(a) regular interface

I's

I'p

Is
I'g I's
/N
FD FD

I'p

(b) re-entrant corners

Figure 4.1: examples

We solve the Stokes equations in the fluid domain and the Darcy equations in the porous medium.
Again we use a first order system least-squares finite element method to find a numerical solution.

7
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The following interface/coupling conditions are commonly used along the interface:

up-n—ug-n=20,
n-(oc-n)+p=0, (4.1)
flo-n)xn+ugxn=>0
with n being the unit normal pointing from g to 2p along the interface.
These interface conditions are known as Beavers-Joseph-Saffman conditions [Saf71]. The positive
constant 8 depending on the shape of Qg and 2p has to be evaluated by experiment.
The coupled problem is given by:
divog=1fs in Qg
dev o5 — 2(us(|e(us)*)e(us)) =0 in Qg
V-usg=0 in Qg
us = gs, onlg,
os-n=gs, onlgy,
& up(lup?)up + £/*Vpp =0 in Qp
V'UD:fD in QD (4.2)
p=g9gpp, onlp,
up-n=gp, onlpy
up-n—ug-n=>0 on I'y
n-(c-n)+p=0 onI'y
Blo-n)xn+ugxn=0 on I’y

/ trog dr =0 if'sy =0and 'p, =0
Qg

A similar system can be found in [EJS09].

4.1 The Least-Squares Functional

In the following section we introduce the least-squares functional. The notation is the same as in
chapter 3. First we need the two functionals introduced in the the sections before:

Fs(us,o5;fs) = ||div o5 — f5]|§ o, + [ldev o5 — 2(us(le(us)*)e(us)) 505 + IV - usll§ o
Fp(up,pp; fp) = &~ "up(lup*)up + £*Vpplg.a, + IV - up = fol.a)
we define the following norm:
[vlaivo,0 = IVldiv,0 + [V - nllor,
Let the following space be given
HU'dv(Q) .= {ve H®™(@Q,) | v-ne LX)}
For our approach we make use of the following spaces:

ﬁg;ji”(gs) = Closure of (CF5,_(Qs))* N H'""(Qs) with respect to || - [ldiv0,0

ﬁrl’di”(QD) := Closure of (Cﬁ‘l’)N (Qp))? N H' 4% (Qp) with respect to || - ||givo.0

I'py



4.1. THE LEAST-SQUARES FUNCTIONAL 79

Again we need to address the case of I's, = () and I'p,, = 0. Therefore we define the space

(Hlyé’div(ﬁs))d in this case as:
N

(HE () = {v € (H™4(Qg))" | / tr o do — 0}
Qs

SN

Remark: As we approximate the velocity and the volumetric flux in different spaces we need
to make sure that expressions like up -n / ag-n are in L(T;) / (L?(I';))?. Therefore we need the
spaces mentioned before. For the solution of this holds as ug - n is especially in L*(T';) due to
us € (H%(aﬁg))d. The same argument holds for g - n as ug € (H%(ﬁﬁg))d and p € H%(ﬁQD).

Therefore we can write the least-squares functional for the interface terms as

Fi(us,o5,up,pp) := |lup -n—us-n|ir, +|n-(gs-n) +pplir, +8(gs-n) xn+us x 0|,
The least-squares functional of the coupled problem is given by

FC(uS)057uDapD;f57fD) = fS(uS’US;fS) +‘FD(uD7pD7 fD) + ‘FI(uS7o-SuuDapD) (43)
For convenience we define the following solution spaces

X = (HY(Qg))? x (H' 13 (Qg))? x A1 (Qp) x HY(Qp)
Xo = (Hi,, (2s))" x (Hp L™ (Qs)* x Hp LM (Qp) x Ht,, (Qp)

4.1.1 The Least-Squares Functional as an Error Estimator

In this section we show that the least-squares functional Fo(ug, s, up,pp;fs, fp) can be used as
an error estimator. For the linear case of Newtonian flows this was already shown in [MSTI].

First we note that this chapter only consists of the proof of the two main theorems similar to
chapter 3. Therefore we restrict our boundary conditions to be able to prove the desired results.
First we set

I's,=Tg

D

with the same argument and natural choice of o5, = 0 as in chapter 3 for the whole of chapter 4.
We have not imposed any compatibility conditions so far as the assumed existence of a solution of
the partial differential equation implies these. For the coupled problem though it has to be noted
that aside from typical conditions as inflow=outflow if fp = 0 one has to be careful as the choice
of I'p, # 0 is already adequate to set a reference pressure and therefore our additional condition
fQS tr g dr = 0 can not be used. Therefore we set

I'py=TIp

with the natural choice of pp,, = 0 for the whole of chapter 4.
Now we define the following norm on X:

I(us, o5, up, po)lllEa = luslias + lloslliw as + Iupldo.o, + 12017,

To show that the least-squares functional is an error estimator we need the following lemma from
[MS11]:
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Lemma 4.1 There exists an arbitrary constant p € (0,1) such that for all sufficiently small o > 0,

2
~Fi(z,7,v,q) +a(lz-nlr, + g r,)

>2(v-n,q)or; +2(7-n,z)or,

(= (f ) =52 ([ nerma))

holds for all (z,T,v,q) € X

proof: see [MS11] for details with the slight alteration in the proof:

((t-n)xn,vxn)r, =(7-n,2z)or, —(n-7-n,z-n)yr,

|
Analog to the Stokes/Darcy case we have the following continuity estimate (see [MS11]):
Lemma 4.2 For the boundary functional Fr the following continuity estimate
Fi(z,7,v,q) < 207|z|i o5 + 2max{1, 5*}|I7 - n[F,
+207llgll0p + 2]V - 05,
holds for all (z,7,v,q) € X.
proof: For the boundary functional we have by using |r x n|?> = |r|> —r - n for all r € R? :
Fi(z,7.v,q) = |[v-n—z-n|ir, +[n-(r-n)+qlfr, +6(r n) xn+zxnlf,
<2|v-nlgr, +2llz 0§, +2[n- (7-0)5r, +2l4llEr,
+26%||(7 - n) x 0§, + 2]z x n|§p,
<2|v-n|gr, +2llzl§r, +2max{1, 2}|7 - n|§r, + 2ll4lldr,
< 2wy, +20al? yo + 2max(L 2 nlr, + 2l o,
< 2|lv-nl§r, + 2072l o + 2max{1, 2}|7 - n|§r, +2Cr|4llf o,
where for the last inequality theorem [2.4) was used.
|

Now we prove the important theorem that the least-squares functional is an error estimator.
This theorem is based on the corresponding theorems of chapter 3.

Remark: For the following proof it is necessary to scale the least-squares functionals appro-
priately to keep the proof simple. This can be done in 2 ways:

1. Scaling the second term of by 4 /2}%5 and the sixth term of by 4/ ;’%D beforehand.

2. Using the following easy inequality: ||a|| + ||b]| 2 ||a|| + s||b]| with an arbitrary s as it was used
before in Theorems and for example .

For our case we use the second approach for scaling the corresponding terms in the least-squares
functional. The second approach takes into account that the property of being an error estimator is
independent of scaling (by constants) individual parts of the least-squares functional.
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Theorem 4.3 Let assumptions
- (A1)s,(A2)s and (A83)s or (A4)s and (AS5)s

- (Al)D,(AQ)D and (A3)D or (A4)D and (A5)D

hold.

Let Fo(ug,o5,up,pp) be the least-squares functional given by . Let (ug,o5,up,pp) =
(Usy, sy, Upy,PDp) + (05,65, Up, pp) with (As,6s,up, pp) € Xo be the solution of[4.4 Then
there exist positive constants Ce.c and Cs ¢ s.t.

Ceclll(us —vs, o058 —Ts,up — vp,pp — qp)llle0
< Fe(vs,Ts,Vvp,ap;fs, fp) (4.4)
< Cscll|(usg —vs, 08 —Tg,up — Vp,pp — qD)]

c,Q2
holds f07" all (v57T5'7VDaQD) = (uSD7US]\MuDNapDD)—i_(‘A,Sv%S?‘A/Dv(jD) with (osa’f-Sa‘A’Dv(jD) € XO-

proof: This proof is be based on the corresponding theorems in chapter 3 and the proof for the
linear case in [MS1I].

The upper bound follows directly from theorems [3.5] and [3.14] combined with lemma [£:2]

For the lower bound we use the following abbreviations:

Ng =Us — Vg
(s=05—Ts
Np =uUp — VD
¢p=pD —qD

With the preceding remark in mind we get:

Fs(ug, o5 f) 2 ||div os — fs]§ o + |V - usll§ as
(4.5)

+ (le(us)Ne(us)§ o,

1
——||dev o5 — 2(us
By (
where [ig can be chosen as in Lemma

Following the proof of theorem [3.5] with the appropriately scaled least-squares functional of [4.5]
the following result is straightforward:

Cs., .. 1 Cyg
Fs(ug,o5:f) 2 (C — ?)Hdlv Cs”%,ﬂs + (72,113 - ?)Hde" CSH%,QS
B _ 4.6)
2fis(1-Chg) 1 (
+ (C’KM e HUSH%,QS —2(¢s -n,mg)or,

Here we used
—(¢s: Vng) = (div €5, m5) = (Cs -1, M5)o,r;
which is due to integration by parts. We got rid of the p which was apparent in the proof of
2

~ (&
theorem This is hidden in the constants C' and C’i g = ’;’S and was chosen accordingly with
p e (C;QL,Sv 1)

Again, we scale an individual part of Fp(up,pp):

1 1 1
Fp(up,pp) 2 [TD”H 2pup(Jup|)up + £2Vppllga, + IV -up — foll§a, (4.7)
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where fip can be chosen as in Lemma [3.13

Following the proof of theorem with (without using the Poincare-Friedrichs inequality)
we get the following:

Kmi 1 1_02D
Frlu , > vnmun \v4 2 = 2 + Hy = 2
p(u.0) 2 22 Voo, — Sleolia, + (o Ehinlmnlio, g

+CIV-nplba, —2Cp:mp - n)or,

Here we used

(VCDa nD))U,QD + (CDa % nD)O,QD = 7(CD7 Np - n)O,FI

which follows from the direction of n (outward normal of Q2g) and integration by parts. Again p is
~ C?
hidden in the constants C and CEL’ D= %D and was chosen accordingly with p € (CEL D 1).

For the interface functional the following holds:
2
f](VS,TS,VD, QD) z FI(VS7 TS7VD7 QD) + EFI(VS7T37VD7QD) (49)
For the interface functional we can prove the following estimate (with Cp > 0):

Fi1(vs,Ts,Vvp,qp) = [[np -n—1ng - n||(2),r, +n-({s-n)+ CD||3,FI

+]18(¢sn) x n+ng xn|r,

> (1= g ) Imp - nlfy, + - (€5 -y, + 19(Cs n) xnlfr)
+ (1= Cy)(llns - nl3r, + I<ollor, + Ins x nl§r,)

1- C{I))(!nD -n|3p, +max{1, 82} (¢s - m)l3r,)

+ (1= Cy)([Ins

(4.10)

> (

3,F, +1I¢p (2),F,)

If we set 6 = (1 — Cib) and restrict C, to 1 < C, < 2 (which is equivalent to 0 < § < 3) we get:

Fi1(vs,Ts,vp,qp) = 6(|np - nH%,F, +max{1, B}[|(¢s - n)Hg,FI)
- 28(Inslix, + <ol -
> 8(|lnp - 0§, +max{1, 5}(¢s - 0)llfr,) .
— 26Cr(|Inslias + <o

top)

where we used theorem 2.4]



4.1. THE LEAST-SQUARES FUNCTIONAL 83

If we combine (4.6]), (4.8), (4.11) and Lemma we get the following for a sufficiently small:
Cs., .. 1 Cs
Fc(vs,Ts,vp,ap) 2 (C — 6)||d1v CS”(Q),QS + (% - ?)Hdev CSH(Q),QS
n <2MS(1 _Ci,s) _ 1

cr ol 2(5C’T> HTISH%,QS —2(¢s-n,mg)or;

Rmin 2 1 2 2
+ D IV¢pllo.a, — EHCDHO,QD —20Cr||¢plI1 0,
ez, (412)
+C|V- "7D||3,QD —2(¢p,mp -n)or; + (TM’)FLDH’UDH&QD

max

—ol|lng - nllgr, +1<ollsr,) +2mp -0, Cplor, +2(Cs - nng)or,

b <<1 o ([ cons) - (L“'“S'“)d$>2>

+8(Inp - nllgr, +max{1, 82} (¢s - 0)[Fr,)

with arbitrary § € (0, %], C > 0 and sufficiently small «.
We can now use the following:

1 2
ﬂ (/F n-(Cg- n)ds> <|n-(g- n)HQ—é,F,

< Cr(I¢sllbas + 11divEszas)

. (4.13)
< C'T(EHtr Csllgas + I1devEsllg s + 11divEsligas)
Cs .
< Cr(1+ —7)(ldev ¢y 6. + 1div ¢slE 0g)
where we used theorem and lemma 2.3]
With theorem in mind we get:
2 2 2 2
Ims-nlr, + oI, < Insl r, + 1ol 1, -
< Or(|nsligs +l<olia,)
Merging terms in (4.12)) and using (4.13)) and (4.14)) leads to:
Cs 1—p Cs .
Folvs.rsvpan) 2 (€= G = = Len(1+ 5 ) laiv sl
1 Cs 1-p Cs 2
— = — Cr(1+—-2))|d
+ (g~ G - Lo+ ) ldev sl
2as(1 — Cﬁ s) 1 9
+ (CYK o 20Cr — aCr | [|Ins|i s
(4.15)

o
+ < R _926C — aCT> IV¢oliga,
“D
1-C?%,
+(——"=)i|npllie, + CIV 1p

max

Y /g as) = (L 42000+ ac [l
R RAV Y ¢ ' T

+6(Inp - nllgr, +max{1, 52}|(¢s - n) 3 r,)

‘2
0,Qp
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Using theorem [2.1] we get:

CS 1-— P CS .
Fc(Vs,Ts,VD,qp) 2 (C T a Cr(1+ d)> div sl s
1 Cs 1—p Cs 2
(5 - 2 - 2Len1+ S laev sl

20s(1-Chg) 1
N (CKH ~ &~ 2Cr —aCr 1517 o

Cp—1 (4.16)

KD

Kmin

+ ( — CpCra — — 25C'DCT> IV¢oligap
1-C?%,

+ (= Sivlnplli e, + CIV - npli 0,

max

+ <()z|1ﬂ(1 —p)—Cp <é+25CT+OéCT>> </Fz CDdS>2

+4([Imp - nH(Q),FI +max{1, 3%}(|({s - n)| (2),1“1)

To ensure that all of these terms are positive we have to choose p € (0,1) and « accordingly:

1
= _ 4.1
o= (4.17)
1
0= — 4.18
! (1.19
-1
1 C(1- 1
p={14+ — e PRI ) o (4.19)
4psCOP(1 + =) p 4fsCr(1+ <8)
We then get:
Cy 1
Fco(Vs, TS, VD.qp) 2 <C v 4/19) [div Csll6.04
1 CS> 2
+ | -— ——4 | ||dev
(352 = 5 ey ¢l
2s(1—-C2g)  1+3Cr 9
+ Cr e Ml 0g
_ 4.20
+ (e - EROEEED) 191 0, (420
1- ~;QL,D - 2 2
+ (W)MDHnDHO,QD +CIV-nplloa,
1 1 I|Cp(1+3C 2
B —— T
T\ C~1 +4psCr(1 + ) C I,
1
+ & lmp - 0|5, + max{1, 8*}|(¢s - m)[5r,)
Using
[dev ¢slig.as + 1divEsilias 2 1€s 6.0 (4.21)
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as a direct consequence of lemma [2.3] and theorem 2.1 we get :
Fo(vs,7s,vp,ap) 2 Coell|(us = vs, o5 — Ts,up = vp,pp — 4p)|llen (4.22)

by choosing C' large enough.
[

Remark: As for the Stokes/Darcy problem a consequence of theorem is the uniqueness of
the solution. The a-priori estimates and the choice of a local error estimator is analog to chapter 3.
Furthermore it has to be noted that we are not restricted to use the same models for the nonlinear
viscosity. They might be completely independent as long as each model satisfies the assumptions.

4.1.2 The Linearized Problem

As in chapter 3 we use a Gaul-Newton method to solve the nonlinear problem. Analog to chapter
3 the following approximation shall be given:

This approximation satisfies the boundary conditions. The next approximation shall be given by:

w1 ul® sug
USSR I o
ugcﬂ) B ug) * oup,
P s/ \opp

with (dug,dog,dup,dpp) € Xp.

For convenience we define the inner product (-, ~)07Q on
(L*(Qs))" x L*(Qs) x (L*(Qs))™ x L*(Qp) x (L*(Qp))? x L*(Ly) x L*(Ty) x (L*(T'p))*

by the sum of the L? inner products on the individual spaces. The induced norm is denoted by
- llo,0-

Again we want to minimize a quadratic functional

Fpuad.c(6us, 605, 5up, 6pp; uld) ulh R@¥ ¥ uh p® ¢o 1))
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which is given by:

fquad,C((SuSv 50'5'7 (SUD, 6pD7 ugk)7 ug:)’ R(“g'k)7 JFS’ )7 U—g))J?(D 7f57 fD))

7?,(ugk),a'(k)7 (Dk),P(Dk)vfsva)
div cr(Sk) —fs
div u(k)
k
dev o) — 2p5(e(ul)2)e(l)
I div ug) — /b

o o (ul) Pl + wewpll) |
u k) -n — u(k) n
D s
n- (ng) ) —|—p(k)
B(a'gk) ‘n) Xn-+ u(sk) X n
div do g
div dug
dev dos — 2ps(Je(uf))P)e(us) — 4p(e(ul”)?) (e(uf) : e(dug))e(uy’)
div dup H‘2
R (u)[2)oup + 2up(luiy)) ) (ufy) - Sup)uiy) + 52 Vopp o
dup -n—dug-n
n- (dosn)+ opp
B(dos -n) xn+dug X n
L(Sug,605,0up,sppiul’ u))
The variational formulation of the minimization problem is given by:
Find (dug, dog,dup,dpp) € Xp such that
(£(0us, d0s,0up, dpp; ul’ ), L(ovs, 675, 6vp, dap; ul’ ufy))
02 (4.23)

= — (R(u(s),aqu),u%),p]; s, fp), (5VS,5TS,5VD75QD;ugk),ug))>09

)

for all (0vg,dTs,0vp,dqp) € Xp.
Again we are able to prove that there exists a unique minimum of Fyyqq4,c:

Theorem 4.4 Let assumptions

- (A1)s,(A2)s and (A3)s

- (A1)p,(A2)p and (A3)p
hold.

For the quadratic approximation of the least-squares functional the following holds:

d
Cec I

vs, 75, VD, qp)| |12
_F ® ® o
quadC(VSaT57VDan7uS 7uD7 )
d
< CLE N (vs, ms, vpyap)llloe

or all (vs,Ts,VvD,qp) € Xy with positive constants 094 ynd CIY . Furthermore the variational
e,C s,C
problem has a unique solution.
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proof: Keeping the proof of theorem [3.10] in mind and using lemmas and the proof is

analog to theorem [4.3]
|

Again we can easily deduce that the directional derivative is always negative. The following
corollary is important for the numerical examples:

Corollary 4.5 It holds
- for the Cross model: 1 < r < oo
- for the Carreau model: 1 <r <2

By using either the Cross model or the the Carreau model for pus and the Cross model for up
we then have for the solution (ug,os,up,pp) = (us,,o0sy,Upy,PDy) + (Us,6s,Up,pp) with
(ﬁS7oA-SaﬁDaﬁD) € XO Of "

Cecll(ug —vs,05 —Ts,up —vp,pp — qp)|llc0
< Fc(vs,Ts,Vvp,qp;fs, fp)
< Csclll(ug —vs,08 —Ts,up — Vp,pPp — qD)

fOT all (V57T57VD7qD) = (uSDao-SNauDvaDD) + (‘A,S:%Sa‘A/quAD) with (‘A,Sa%S?‘A/DanD) € XO-
Furthermore the sequence

uf! u® Sug
Ufgk+1) (S) dog
(kD) a® [ T sy
D up D
pp " Py 5y

with (dug,d0g,,0up,dpp) from solving problem is well defined for all « > 0. By choosing
a > 0 small enough it holds:

FofF oE D bt pE 0 g0 10y < Fob o ol pW) g 1)

if (ufgk, g) u(Dk),p(D)) is not a stationary point of Fc.

proof: This is a direct consequence of lemma [3.7] lemma theorem [£.3] and [4.4] combined with

the remark of the descendent direction.
[ |

4.2 Numerical Examples

For this subsection we take a closer look at 2 numerical examples. The first one is characterized by
a regular interface. It is depicted in figure (a). In the second example there is a re-entrant corner
(see figure (b)). In the application of filtration processes these examples can be considered as
dead-end filters [HWNWO0G6]. As in section 3 we make use of corollary where we haven proven
the least-squares functional to be an error estimator. Therefore we have again an efficient way to
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treat boundary singularities by adaptive refinement. The finite element spaces we use are given by
the ones of chapter 3 in their respective domains:

us, € (Pa(Th(2s)))?
o5, € (RTy(Th(2s)))?
up, € RTl('ﬁL(QD))
pp, € P2(Th(2p))
For a priori estimates we refer to chapter 2.3 and 3. For the additional term we expect optimal

convergence rates of 2 as we have (see [MS11]) for the interpolation operator of chapter 2.3 and the

spaces RTy(Th(Q2p))/RT(Th(Qs)):
lup -0 = ry(up) - nllor, <A u- 0|,
los-n—ri(os) nlor, <A os 0k,
if v-n e H**'(T;) and o5 - n € H*1(I';).
It has to be noted that we do not need any fitting of the triangles at the interface as the the
interface condition is imposed in a weak sense. Therefore the refinement can be done independently

in both domains (see example I). For these problems we use 2 different strategies to refine the
triangles. The first one is given by:

1. the local error-estimators are computed.

2. A given percentage pg of triangles in the Stokes domain are marked for refinement (dependent
on Fgs).

3. A given percentage pp of triangles in the Darcy domain are marked for refinement (dependent
on Fp).

4. A given percentage py of triangles at the interface are marked for refinement (dependent on
Fz).

5. The hanging nodes are computed for the union of the marked triangles (red-green refinement).

6. If a triangle was bisected before and will be bisected again it is instead marked for refinement
— return to step 5.

7. Refinement.

Especially step 5 might lead to refining more triangles than necessary. This was already observed in
the previous chapters and might be visible in a major decrease of the convergence rate. Therefore
we use a slightly relaxed version of step 5 here where the property bisected before is reset after 3
refinement steps. This leads to a more local refinement strategy.

The second refinement strategy is considerably different:

1. the local error-estimators are computed. The local value of the interface functional F7 is added
to adjacent triangles in both domains.

2. A given percentage pc of all triangles in the domain Qg U Qp are marked for refinement.

3. The hanging nodes are computed for the the marked triangles (red-green refinement).
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4. If a triangle was bisected before and will be bisected again it is instead be marked for refinement
— return to step 3.

5. Refinement.

This refinement strategy takes into account that the error might be dominant in one domain and
negligible in the other. Therefore the algorithm does only refine triangles in the problematic domain
and close to the interface if necessary. For the second algorithm we used a level-dependent pc with
pc(0) = 20%,pc(1) = 17.5%, ...,pc(6) = 5%. We use the same approach for step as in refinement
strategy I.

It has to be noted that the second algorithm is more prone to badly scaled problems. Though if
scaling is done properly it addresses the problematic regions better than refinement strategy I.

4.2.1 Example I

The domain for this example is depicted in figure with = (0,100) x (0,100) similar to the
examples in [MS11]. For the boundary conditions we impose a forced inflow at the upper boundary
of the Stokes domain and a forced outflow at the lower boundary of the Darcy domain. For the rest
of the boundaries we impose no normal force in the Stokes domain and impermeable walls for the
volumetric flux:

ug = < 0 ) onl'g,
_1 m
0
og-n= <0> on I'g,
up-n=>0 on I'p,
up - n = 7/2 - sin(7z/100) onI'p,,

For the right hand side we have
fs=0and fp =0

For the constants k and [ we use

We expect the error to be dominant in the Darcy domain and maybe close to the boundary of
the interface as the flow might not fit well together due to the jump of boundary conditions (no
normal force/impermeable wall).

It has to be noted that the boundary conditions do not fit the theory of chapter 4.1 as it is
not proven that the least-squares functional is an error estimator. The lower bound needs lemma
to hold. The upper bound still holds and we can therefore analyze the behavior of the least-
squares functional with respect to convergence rates. The examples used in [MS11] have very similar
boundary conditions and the behavior of the least-squares functional was similar to problems with
I's, =T5s.



90 CHAPTER 4. THE COUPLED PROBLEM

FSin

Iy

I'p, I'p,

FDout
Figure 4.2: Domain for example 1

Newtonian flow

For the Newtonian flow we get the results shown in table We clearly see that uniform refinement
achieves almost optimal convergence rates which is due to the dominant error in the Darcy domain.
For Fg we clearly see a reduction in error but not as fast as for Fp or F;. The convergence rate for
Fg is close to 1.

As expected refinement strategy I achieves almost optimal convergence rates and refinement
strategy II even better than optimal overall convergence rates. This is due to large reductions in
the error in early refinements and was already visible in chapter 3. The convergence rates for later
refinement steps are again close to 2.

For both refinement strategies a very small reduction of Fg is visible in early refinement steps.
This is not surprising for strategy II. For strategy I this lies in the nature of the coupled problem:
Starting with a very coarse triangulation the computed flow considerably changes by refining the
problematic regions in the Darcy domain. Therefore the regions with large errors might change in
the Stokes domain due to a significant change in boundary conditions. Regions with large errors for
early refinements might be different from regions with large errors in later refinements and therefore
unnecessarily refined. When the characteristics of the flow do not change drastically (as in later
refinements) Fg is reduced in the usual way. The behavior for the uniform refinement strategy
underscores this argument.

This is another advantage of refinement strategy II as the triangles are only refined if necessary.
The refinements done in strategy II always result in a reduction of Fg as seen in table

The approximated solution for the velocity ug,, the volumetric flux up,, the stress og,, the
hydraulic potential pp, and the pressure pg, can be found in figure . These plots include the
streamlines as well. We clearly see the effect of the volumetric flux up, on the solution ug, due to
the coupling across the interface. T