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IIKurzfassungBohrdaten-Telemetrie spielt eine wihtige Rolle innerhalb der modernen Bohrtehnolo-gie. Darunter werden die Verfahren zusammengefasst, die zur Erfassung von Messinfor-mation, wie z.B. Bohrlohgeometrie, Erdformation und Rihtung der Bohrmeiÿel dienenund deren Übertragung von mehreren Sensoren an der Bohrlohsohle zu der Auswer-teeinheit an der Ober�ähe ermöglihen. Mud-Pulse Telemetrie ist eine spezielle Vari-ante der drahtlosen Telemetrie, die bei Bohrtehniken zur Unterstützung von Messungenwährend des Bohrvorgangs entwikelt wurde. Das Übertragungsmedium ist dabei Spül�üs-sigkeit, welhe durh die Spülpumpen entsteht und im Bohrstrang zirkuliert. Mit Hilfeeines Pulserventils im Bereih des Bohrkopfs werden entsprehend der TelemetriedatenDrukpulse erzeugt und für die Verarbeitung zur Ober�ähe gesendet. Aufgrund der ho-hen Zuverlässigkeit und der groÿen Reihweite ist der Gebrauh der Mud-Pulse Telemetrieweitverbreitet.Das grundlegende Problem bei den auf Mud-Pulse Telemetrie basierenden Messungenwährend des Bohrvorgangs ist, dass die Telemetriedrukpulse durh die um ein Vielfahesstärkeren Drukshwankungen des Bohrshlamms, ausgelöst durh den Pumpvorgang,überlagert werden. Dabei liegen die Pumpshwankungen und die Telemetriedaten im gle-ihen Frequenzbereih. Darüber hinaus wird, besonders für hohratige Datenübertragungim Bereih von 40 bit/se, eine Kanalentzerrung vorgenommen. Die robuste bzw. zuver-lässige Übertragung der Telemetriedaten während des regulären Betriebs stellt eine groÿeHerausforderung dar. Der Grund hierfür ist, dass kein Referenzsignal für die Pumpeninter-ferenz vorhanden ist. Hinzu kommen die instabilen Pumpendrehzahl und Mehrpumpen-betrieb bei den meisten Bohrungen. Derzeitige Telemetrieverfahren sind kostenine�zientund liefern eine moderate Performanz besonders hinsihtlih des Trakings der System-parameter. In der vorliegenden Arbeit werden weiterführende Untersuhungen für dieadaptive Shätzung des Telemetriesignals durhgeführt, um die Leistungsfähigkeit bzw.die Robustheit der Telemetrieverfahren in realitätsnahen Bohrszenarien zu steigern.Die Anwendungsmöglihkeit der auf bestimmten Eigenshaften der Interferenz- sowie desTelemetriesignals basierenden semi-blinden Verfahren werden untersuht und hinsihtlihderen Einshränkungen und Trakingansätze diskutiert.Untershiedlihe Empfängerstrukturen, bei denen die Nutzung der Mehrempfängersys-teme sowie einer Trainingssequenz vorliegt, werden vorgestellt. Vielversprehend ist dasadaptive Diversitätsverfahren mit Optimal-Kombinierung, wobei die sogenannte Co-Channel Interferenzdiversität zur Interferenzunterdrükung eingesetzt wird. Die Beson-derheit dieser Tehnik liegt in dem einfahen und robusten Trakingverhalten.Durh Einsatz der Transform-Domain-Median-Filterung wird die Pumpeninterferenzblind entfernt und damit das Traking automatish gewährleistet. Diese Methode istniht nur von wirtshaftlihem Interesse, sondern ermögliht sowohl nützlihe Kenntnisseüber das Übertragungsmedium zu erhalten als auh signi�kante Verbesserung der Syn-hronisationszuverlässigkeit zu erzeugen. Shlieÿlih werden hybride Empfängeransätzeeingeführt. Hierbei handelt es sih um eine Kombination der Transform-Domain-Median-Filterung und der adaptiven Diversitätsverfahren. Solhe hybride Empfängerstrukturenermöglihen sowohl eine Verbesserung der Bitfehlerrate auh als ein e�zientes und zuver-lässiges Traking der Systemparameter.Zum Shluss wurden alle Verfahren Hinsiht ihrer E�zienz in realistishen Anwendungender Mud-Pulse Telemetrie eingehend untersuht. Mit Hilfe der Messdaten von unter-



IIIshiedlihen Bohranlagen wurde die Tauglihkeit der oben genannten Verfahren bewiesenund das optimale Empfängersystem für Mud-Pulse Telemetrie-Anwendungen spezi�ziert.ShlagwörterMud-Pulse Telemetrie, Semi-blinde und trainingsbasierende Signalverarbeitung, Charak-terisierung von Pumpinterferenz und Kanal, Transform-Domain Interferenzunterdrük-ung, Mehrkanal Diversitätsverfahren, Hybride Empfänger



IVAbstratTelemetry is an important feature of reent drilling tehnologies. It is a proess of gath-ering information on the wellbore geometry, formation properties and the diretion of thedrill bit from multiple sensors loated at the bottom of the borehole and transmittingthem to the surfae evaluation units. Mud pulse telemetry is a speial type of wirelessdata telemetry, developed to support Measurement-While-Drilling operations in drillingtehnologies. The transmission medium is mud, whih is generated by pumps and iru-lated in the drill string. The telemetry information is formed to the telemetry pressurewaves by a valve pulser near the drill bit and transmitted to the proessing unit at thesurfae. Due to the high reliability and great reah in mud-�lled boreholes, mud pulsetelemetry has been widely applied in drilling operations.In the appliation of Measurement-While-Drilling based on mud pulse telemetry, the om-mon problem is that the telemetry signal pressure is subjet to the muh stronger pumpinterferene pressures in the whole operation frequeny of mud pulse telemetry. Moreover,the distortions aused by the mud ommuniation hannel need to be equalized espeiallyfor high data rate telemetry appliations. The absene of a referene signal for the pumpinterferene, instable behavior and the need for multiple pumps in the drilling tasks makereliable and robust data telemetry muh more hallenging during the regular operations.The urrent tehnologies su�er from shortomings in terms of the installation osts andthe limited performane espeially in terms of system parameters traking and BER athigh data rates. Conerning these issues, further studies on the adaptive telemetry signalestimation are performed to develop reliable and feasible tehniques for real-world drillingsenarios.The appliation of semi-blind signal proessing shemes, where the data reovery is solelybased on the speial features of both interferene and telemetry signals, is proposed anddisussed in terms of feasibility onstraints and traking issue.Di�erent reeiver arhitetures whih rely on multihannel reeivers and the training se-quene failities in the MPT system are demonstrated. An e�etive method of interfer-ene rejetion termed as the optimal adaptive diversity ombining is presented, wherethe o-hannel interferene diversity is needed to reonstrut the telemetry data. Of greatimportane is the simple and straightforward traking apabilities of this sheme.In order to ful�ll the MPT requirements on adaptive interferene suppression withoutrequiring any kind of knowledge on system signals, the onept of transform domain me-dian �ltering is introdued. The appliation of transform domain median �ltering turnedout to be not only of eonomial interest but also allows providing knowledge on themud hannel behavior and ahieves signi�ant improvement in terms of reliable synhro-nization. In addition, hybrid reeiver-strutures are proposed, where the ombination oftransform domain median �ltering and adaptive diversity ombing shemes are investi-gated. Suh hybrid reeiver-systems not only improve the performane in terms of BERbut also provide simple and reliable traking of system parameters.Finally, a omparison between all proposed tehniques is provided to reveal theirpratiability and e�ieny in real MPT appliations. With the help of �eld-test datameasurements, the apability of the above-mentioned shemes and the optimal MPTreeiver-system have been found and validated.
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Chapter 1IntrodutionAs a basis of this work, an introdution to drilling tehnology used in the oil and gasindustry and telemetry systems will be given in this hapter. Spei�ally, the harater-istis of the environment used for telemetry appliation is reviewed. The major problemstatement, state of the art and motivation of this researh will be presented. Finally theoverview of the dissertation is illustrated.1.1 Drilling tehnologySupplying reliable energy is a life prerequisite. Fossil fuels suh as oil and natural gasprodue most of the world's energy and therefore there is an appreiable market forpetroleum oil. Petroleum deposits referred to as reservoirs are trapped in earth layerswith di�erent stone harateristis, therefore they have to be reovered e�iently bydrilling oil holes known as boreholes. The term drilling tehnology denotes tehniques andrelated systems for exavating oil or gas from the reservoir. General priniples of drillingtehnology are desribed brie�y [78℄.The primary system of oil platforms used to �nd geologi reservoirs as well as to reateborehole in the ground is Drilling rig. The drilling rig refers to as all the drilling mahineryand devies that are used to exavate and extrat oil from the ground [24℄. There are manytypes of drilling rigs apable of applying di�erent drilling tehnologies and exavatingof thousand meters boreholes. The equipment assoiated with a rig is to some extentdependent on the type of rig but typially inludes at least some of the omponentsillustrated in Fig. 1.1 and explained subsequently.A rig is basially a rane, on the hook of whih the drill string is mounted, and togetherwith travelling blok and drilling line onstitutes the hoisting system, whih failitatesthe lowering and lifting of the drill string into and out of the wellbore. The drill stringis referred to as a olumn of drill pipes, in whih drilling �uid an be pumped via themud pumps down through it and irulated bak up the annulus. A steel tower knownas derrik is used for lifting and positioning the drill string and pipe laying above thewellbore and ontaining the mahinery for turning the drilling bit around in the borehole.As the drill string goes deeper into the ground, new piping has to be srewed on the topof the drill string to keep the whole system working. At the end of the drill string, drillingbit is plaed that breaks apart and rushes the rok formations. To provide the drill bitworking at an optimum rate, it has to be pushed with a ertain degree of pressure relative1
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Fig. 1.1: Drilling rigto the stone under it. Heavy, thik-walled drill pipes known as drill ollars are used toapply weight to the drill bit [7, 24℄. To drill a borehole, a mehanial devie on a drillingrig provides torque whih is needed to rotate the drill string. The axial motion of drillstring and thus the weight on bit is ontrolled by the position of travelling blok on thesurfae. The form of the drives is dependent on the system design and an be a rotarytable, loated under the working platform, or a top drive, suspended in the hook. A motoralled mud motor loated lose to the drill bit is used for fast drilling. Large mud pumpsirulate mud through the drill string and up the asing annulus, for ooling, removing theuttings and lubriating the drill bit during the drilling task. Depending on the boreholedepth, large quantities of mud are required for the drilling proess. Therefore a rig hasusually more than one �uid pump (three pumps are usual). In addition, diretly above thedrill bit and the optional motor, there are the down hole tools whih allow us espeially toontrol the drill bit and send up the borehole geometry and formation properties. Togetherwith the drill bit and ollars, they onstitute the Bottom Hole Assembly (BHA) [7, 78℄.The suess of wellbore drilling operations highly depends on various real-time informationabout formation properties, wellbore geometry, drilling system orientation and mehanialproperties of the drilling proess, obtained by multiple sensors plaed lose to the drillbit. Therefore, in drilling tehnology, real-time telemetry is an important requirement toanalyze and explore the well, operate the rig and redue the osts. UtilizingMeasurement-While-Drilling (MWD) system responds to this demand and serves as a spei� feature ofurrent tehniques for drilling oil and gas wells to optimize the drilling proess. The termMWD denotes the proess of up-linking information between the surfae and downhole.For example, the operator requires feedbak from sensors loated at the bottom of thehole in order to ontrol the diretion of the drill bit and ensure that the drilling proeeds



Chapter 1. Introdution 3in a orret way [47℄.There are several data telemetry methods developed for MWD operations, e.g. eletro-magneti waves transmitted through the earth, aousti waves travelling in the drill string,eletri urrent transmitted through ables mounted in the pipes and pressure waves trav-elling in the mud olumn. The di�erene between these methods an be expressed in termsof the telemetry hannel they use, the volume of information they an handle per unittime, and the distane the information an be transmitted. The latter method is generallyknown as Mud Pulse Telemetry (MPT) and due to its high reliability is by far the mostapplied tehnology in drilling operations. Ahieved data rates by MPT are relative low;in return, MPT o�ers great reah in mud-�lled boreholes. This work is arried out for theMPT systems, whih is investigated in the next setion [47, 24℄.1.2 MPT systemThe onept of telemetry is understood to be a proess of gathering and transmitting datafrom downhole tools in the BHA to surfae evaluation tools or omputers.
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Fig. 1.2: The �gure to the left depits the general onept of MPT system. The �gure tothe right shows idealized MPT system model used to analyze the performaneof mud pulse telemetryAs mentioned, the MPT is the most suessful among the telemetry systems. Its basipriniples are desribed preisely next.Fig. 1.2 shows the general onept of an MPT system and idealized MPT system modelused in the analysis of the mud pulse telemetry performane. The mud typially irulates



Chapter 1. Introdution 4through the borehole to lubriate the drill and removes uttings as well. Pumps generateand irulate the drilling �uid (mud) in the drill string through the nozzles in the drillbit and upwards in the annulus towards the surfae. The long arrows indiate the �ow ofthe drilling �uid. A valve pulser is loated near to the drill bit, whih generates pressurewaves aording to the information to be transmitted. There are two kinds of valve pulser,namely poppet and the shear valves whih hange the mud pressure by opening andlosing the valve. The di�erene between these valves lies in the diretion of the valvemotion [25℄. The telemetry pressure waves travelling in the drill string are depited bytwo adjaent small arrows. The surfae reeiver system onsists of sensors, whih measurethe pressure �utuations, and signal proessing unit. On the surfae, the telemetry signalis measured by pressure transduers and proessed by the signal proessing unit to reoverthe telemetry signal and thereby information from downhole. In this regard, MPT systemis a typial ommuniation system (see Fig. 1.2).The transmitter of the MPT system inludes ompression, enoding and modulation units.First of all, the amount of data to be transmitted is redued by data ompression. After-wards, the ompressed data are enoded so that the pulser an generate pulses representingthese data. The enoding an be performed in the form of either pulse ode modulation(PCM) or pulse position modulation (PPM). The enoded data are referred to as thebaseband data. Finally the baseband data are modulated by a arrier to arry the trans-mission in higher frequenies. There are several modulation shemes suh as amplitudeshift keying (ASK), frequeny shift keying (FSK), phase shift keying (PSK) and also on-tinuous phase modulation (CPM) [11, 24℄. After the modulation, the data or telemetrysignal is ready to be transmitted.At the surfae reeiver, the transmitted data through the hannel is measured by pres-sure transduers and onverted in eletri signals, whih an be proessed to reonstrutthe transmitted signal. For this, the surfae reeiver requires demodulator, deoder anddeompression units. Similar to any kind of ommuniation system, the ommon prob-lem in data transmission in MPT is that besides the telemetry signal, various interferingsignals suh as the pressure �utuations generated by the mud pumps and being referredto as the pump signal in this work1, the exitation noise aused by the rotation of drillstring and mud motors or the drilling dynamis aused by torsional osillation of the drillstring are also reeived at the pressure transduers. Beause the pump signal pressure anbe muh higher than the telemetry signal pressure and pump frequenies are distributedover the entire telemetry spetrum, the pump signal is a key fator to deteriorate theommuniation quality in MPT [24℄.The transmission bandwidth is limited up to 100 Hz due to the strong attenuation of higherfrequenies by the mud and 40 bit/s is the highest data rate, whih an be ahieved fordata transmission through the mud. The distortion aused by the ommuniation hannelis another problem to be dealt with; espeially for high data rate transmission there willbe severe Inter-Symbol Interferenes (ISI). Therefore, high data rate and robust mud pulsetelemetry is a hallenging task due to the di�ulty in haraterizing the mud hannel andthe strong interferene inherent to the mud pulse telemetry system. A reliable estimationof the hannels for suh kind of system, in whih the training sequene is immersed instrong interferene, seems to be a big hallenge. This problem and other related issueswill be disussed in the sequent hapters.Sample measured data from test boreholes as well as ommerial ones, alled �eld-test1 In bore tehnique, the pump interferene is also known as pump noise.
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Chapter 1. Introdution 6data, failitate analyzing the interfering signals, espeially the pump signal, the behaviorof the transmission hannel, and reliable performane evaluation of developed algorithms.Fig. 1.3 shows the time-frequeny representation of a �eld-test data reorded at a testborehole.The data telemetry in real ommerial boreholes beomes more hallenging due to highernumber of pumps involved in drilling task and �utuations of the pump signal aused byinstable behavior of the pumps. In addition, the signal strength is muh weaker and otherinterferene soures an appear as well. Fig. 1.4 shows the time-frequeny representationof a �eld-test data reorded at a ommerial borehole, whih on�rms this statement.
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Fig. 1.4: �eld-test data reorded at a ommerial borehole (horizontal lines showharmoni pump signal and labeled areas bandpass data signal)
1.3 Motivation and sopeObservation of the �eld-test data in the preeding setion on�rms that major distortionsof the telemetry signal in an MPT system are aused by the mud pump, whih alled pumpsignal. The power of the pump signal is muh stronger than the telemetry signal and is astrong interferer in the operation frequeny of the MPT system. Moreover the pump signalexhibits multiple harmonis harateristi. The shape and period of the pump signal areunknown and an vary with time. The pump signal hanges with the required �ow rate



Chapter 1. Introdution 7at the borehole, whih is unpreditable 2. Considering this fat to assume that the pumpsignal is known is not realisti. The pump signal an be regarded as an ergodi proess inthe presribed appliation. Also the pump signal an be treated as o-hannel interferene,arising from frequeny reuse, for the telemetry signal. Considering that usually more thanone pump is involved in drilling operation, dealing with the pump signal poses a greathallenge in MPT.In MPT systems, the ommuniation hannel (mud �ow in drill string) is some-what unusual. The drilling �uid is oil- or water-based and has the property of beingthixotropi3[95℄. Charaterization of the hannel has, up to now, been very di�ult. Thedrill well an be quite long (12-14 km). Therefore the pressure pulse is strongly attenu-ated. Due to the re�etions in the drill string and at the surfae, the pulse signal su�ersfrom multipath distortions as well. ISI arisen due to delay spread is a major limitation inMPT system and has to be also dealt for telemetry signal reovery. Another problem isthe fat that the underlying pressure level varies with time as the ontrol system on themud pumps regulates the �ow rate. The operator ontrolling the drilling an also adjustthe �ow rate as the drilling proess requires it. The hannel properties might be subjet tosome variations beause of hanges in mud harateristis and underlying pressure level.Due to the fat that the drilling veloity is very low, the mud hannel an be onsid-ered as time-invariant. Therefore the e�et of Doppler shift and Doppler spread in thetransmitted signal is not signi�ant and an be negleted.Conerning the abovementioned e�ets, the reeived signals by two sensors are a mixtureof di�erent signals (telemetry and pump signals). The mixture is weighted and delayedorresponding to the multiple paths through whih a mud pulse propagates to the reeivers(see Fig. 1.2). Suh a kind of mixture is alled onvolutive mixture and modeled as
y1(k) = h11(k) ∗ x1(k) + h12(k) ∗ x2(k) + v1(k)
y2(k) = h21(k) ∗ x1(k) + h22(k) ∗ x2(k) + v2(k) ,

(1.1)where xi(k), i ∈ {1, 2} are the pump and telemetry signals respetively. yi(k) are theorrupted reeived signals and vi(k) is zero-mean additive white Gaussian noise (AWGN).
hi1(k) represent the pump hannels and hi2(k) the telemetry hannels. To reover thetelemetry signal, the signal to interferene ratio (SIR) of the reeived signal has to beinreased. This an be ahieved by interferene suppression. Several tehniques have beeninvestigated to suppress the pump signal, as disussed later.In short, the ommon problem in the MPT appliations is that the telemetry signal pres-sure is subjet to the muh stronger pump interferene pressures in the whole operationfrequeny of the system. Additionally, distortions aused by the telemetry hannel arerequired to be equalized, partiularly in high data rate telemetry senarios. The abseneof a referene signal for the pump interferene, instable behavior and the need for multiplepumps in most drilling tasks make e�ient and robust data telemetry more hallengingduring the regular operations. Conerning these matters, developing reliable and feasibledata reovery tehniques for real-world drilling environments are dealt throughout thisdissertation.2 Flow rate is typially fairly onstant over long periods of time but may hanges at any time due to therequirements of the drilling proess.3 Thixotropy is the property of ertain �uids whih form a gelled struture under normal ondition, but�ow over time when agitated or stressed [34℄.



Chapter 1. Introdution 81.3.1 State of the art in MPT systemsIn former years, MPT systems have been further developed in terms of ommuniationprotools and signal proessing issues. The ommuniation protool has a further impaton the robustness and telemetry e�ieny. Several proposals to desribe the ommu-niation protool have been proposed, but there is no standard spei�ed for the MPTappliation. It is of great importane to onsider the pratiability and feasibility of theutilized protool in real-world drilling senarios. The data transmission protool used inthis work is spei�ed by a startup sequene and meets the demands presribed by theMPT appliation. The startup sequene inludes a valve-o� (VO) period, at whih thevalve pulser is inative and a training sequene (TS) for telemetry signal and hirp signalsproposed for synhronization.It must be noted that suh kind of training sequene is transmitted one with the exeptionof short synhronization hirps. In other words, no training sequene is available duringthe regular operation for the system related signals. The proessing tehnique developedfor data telemetry in the MPT system has been studied onsidering this matter. Themost robust and e�ient tehnologies require installing additional sensing elements atthe pumps or employing two reeiver sensors to remove the pump signal from the reeivedsignal. The onept of these tehniques is brie�y desribed as follows:
− The �rst tehnique is a pump anellation approah based on magneti detetionand requires the pump strobe sensors to be installed in ertain positions at pumps.Aording to the operational proedure reported in [24, 47℄, the suessive pumpstrobes patterns are olleted, averaged and extrated from the measured signal.To provide the pump patterns the pump strobe sensors are to be utilized at eahative pump. These sensors register the magneti hanges, when the pump pistonis moving under them. One pump strobe sensor is required for eah pump. Usuallythree pumps are involved in the drilling task. This tehnique is quite simple for asingle pump but requires high installation osts and expenses [24℄.
− The seond tehnology based on a two-reeiver struture is more attrative beauseof both eonomial reason and e�ieny. Aording to this approah [24℄, the inter-ferene anellation is performed by proessing the signals of two reeivers that areinstalled in ertain positions at the surfae of the borehole. Sine the reonstrutionof the pump signal is unwanted, to separate the telemetry signal from the pumpsignal, it is not needed to estimate the whole hannels of the mixing system in Eq.1.1. Using the priniple of superposition x̃1(k) = h11(k) ∗ x1(k) allows to estimatethe hannels between the reeiver sensors ˆ̃h21(k) during the VO phase aording to

y2(k) = h̃21(k) ∗ y1(k) . (1.2)Based on this estimation, the pump signal an be subtrated from the measured
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y2(k)− y1(k) ∗

ˆ̃
h21(k) =

(

h22(k)−
ˆ̃
h21(k) ∗ h12(k)

)

︸ ︷︷ ︸

h(k)

∗x2(k) + v2(k)−
ˆ̃
h21(k) ∗ v1(k)equivalent to

h11(k) ∗ y2(k)− y1(k) ∗ ĥ21(k) =
(

h11(k) ∗ h22(k)− ĥ21(k) ∗ h12(k)
)

︸ ︷︷ ︸

h(k)

∗x2(k)

+h11(k) ∗ v2(k)− ĥ21(k) ∗ v1(k) .

(1.3)
In the seond phase, the distortions aused by h(k) are to be equalized. The equal-izer estimation is performed during the training sequene phase. The estimation ofthe hannel equalizer is done by minimizing the di�erene between the originallytransmitted training sequene and the reeived equalized training sequene allederror. By minimizing the mean square error, the Wiener-Hopf-Equation is derived.Stable fast reursive least square (RLS) algorithm is applied for determining the o-e�ient of a Wiener �lter. Suh kind of algorithm is numerially stable and exhibitsfast onvergene harateristi. Another advantage of the algorithm is being samplebased, so the �lter oe�ient an be updated with every sample of the reeivedtraining sequene [24℄.The drawbak of this method is that the pump anellation is based on the initialestimation of ˆ̃h21(k) during valve-o�. By employing the superposition law, the pumpsignal an be removed during the regular operation. There is no possibility to updatethe initial estimation of the pump hannel for this method. There is no e�ientparameterized signal model for the pump signal. In the ase of hanges in the pumpharateristi during the normal operation, the initial estimation beomes inaurateand aordingly the detetion performane dereases. To have an update for theinitial estimation, the pulser has to be swithed o�, whih makes traking moreompliated and ost ine�etive [24℄.The onlusion is that the existing proessing tehniques are reliant on either additionalsensors of ost-intensive installation or the initial estimation during the VO phase whihresults in erroneous detetion of telemetry data during the regular operation.1.3.2 Open issuesAs the bakground has shown, several open issues remain to be solved for the telemetryproblem in the MPT system. In this ontext, the above mentioned two-reeiver sensorstruture has to be optimized for the traking purpose. Notie that no training sequeneis available for the system signals or the training sequene is only available as a part ofsystem signals. Under these irumstanes, an optimization of the ommuniation qualityin MPT is required. These requirements motivate a ouple of fundamental researh issuessummarized as follows:

− Reliable traking to maintain the system e�ieny during the regular operations
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− Optimal reeiver arrangements being of strutural e�ieny and high performanein the sheme of two-reeiver struture
− E�ient suppression of pump interferene without any need of knowledge on MPTsystem signals and requirement on installing additional sensors
− Pratially relevant estimation strategies, whih based on the hannel estimation andsubsequent equalizer identi�ation or on the straightforward equalizer estimation1.4 Dissertation overviewThe researh objetive presented in this thesis is primarily onerned with reliable sup-pression of the interferene (pump signal) during regular operation and equalization ofthe distortions aused by the multipath in the hannel. In this ontext, both blind andtraining based sequential as well as joint estimation shemes are proposed to developrobust reeiver satisfying requirements of the MPT system.

Chapter 2

Statistical

signal

analysis

Chapter 4

Reference signal-

based processing

schemes

Chapter 3

Blind and semi-

blind signal

processing

Chapter 5

Adaptive interference

avoidance techniques

via transform domain

filtering and hybrid

receiversFig. 1.5: Overview of the dissertation.The overview of this dissertation in the respetive hapters and the dependenies amongthem are illustrated in Fig. 1.5.Chapter 2 desribes statistial harateristis of system signals and methods for statistialsignal analysis, whih serves as a basis for developing reliable and relevant signal proessingalgorithms. The statistial properties of both telemetry and interferene pump signals arestudied. In the same hapter, it is also shown how an estimate of fundamental period ofthe pump signal an be obtained. This estimation provides a priori information requiredfor semi-blind estimation algorithms in subsequent hapters.In Chapter 3, the most ommon and e�ient blind signal deonvolution tehnologies areapplied to the telemetry problem for the MPT system. The advantages and drawbaks of



Chapter 1. Introdution 11suh kind of estimation methods are illustrated. The de�ienies of the algorithm workingtotally blind emphasis the neessity of exploiting some a priori knowledge for the algo-rithm design. A semi-blind soure extration approah based on the statistial propertyof the interferene is presented. In addition, a new semi-blind soure separation sheme isproposed, whih utilizes the information on modulus or envelope of both telemetry andpump interferene. Furthermore the appliability of semi-blind methods in the ontext ofreleasing the reeived signal from the interferene is disussed.In Chapter 4, di�erent training-based algorithms are investigated, whih serve as a reliableestimation approah using a training sequene. Furthermore, suh kind of algorithmsfailitates traking by applying a deision feedbak approah, where the deteted data isused in turn as a training sequene to update the estimation.Chapter 5 presents an e�etive sheme in the sense of adaptive removal of interferenewithout utilizing any a priori knowledge, alled transform domain median �ltering. Thissheme ombined with training-based as well as semi-blind algorithms is presented. Theadvantages of ombined shemes in terms of optimal ombining and equalization usingavailable reeiver diversity (two-reeiver system) are disussed. In addition, the ombina-tion of transform domain median �ltering and CLEAN algorithm to extrat the hannelimpulse response of the mud ommuniation medium is proposed.Finally, Chapter 6 provides a general onlusion with the ontributions of this thesis andsome researh issues for future work.



Chapter 2Statistial signal analysis
Statistial signal proessing has found a wide range of appliations like audio, image andarray proessing or digital ommuniations. It is onsidered as a reliable proessing ap-proah, where no training sequene for the signals exists or the training sequene is onlyavailable for a part of system signals. Furthermore, developing relevant signal proessingalgorithms demands the investigation of the statistial harateristis of MPT system sig-nals. Therefore, this hapter �rst gives a desription of underlying MPT system signalsand then investigates their statistial properties. In addition, the onept of testing thestatistial signi�ane is reviewed and utilized to derive statistial properties of the inter-ferene signal. This hapter onludes with the methods of fundamental period estimationproposed for the interferene signal, whih provides a-priori knowledge for designing thealgorithms in the subsequent hapter.2.1 Analysis of telemetry signalAs stated in Chapter 1, the modulated telemetry signal is generated by the mud pulser.Among the modulation shemes appliable in MPT, binary phase shift keying (BPSK) isseen as a promising sheme. However the transmitter namely sheering valve is not ableto open and lose the valve instantaneously and aordingly to generate disontinuousBPSK signals in pratie. To take the advantage of phase modulation, another bit-to-signal mapping sheme was developed. This modulation sheme is a modi�ed version ofBPSK modulation and an be desribed as a ontinuous phase modulation (CPM) thusalled binary ontinuous phase modulation (BCPM)[37℄.2.1.1 Digital modulation shemeAn overview of PSK and CPM modulation shemes serves as a useful bakground forbetter understanding of BCPM modulation sheme in the MPT system. The generalbaseband expression for CPM signal is given by [59, 43℄

xT (t) = ejϕT (t) , (2.1)
12
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ϕT (t) = αF

∞∑

k=−∞

dkq (t− kT ) , q(t) =

t∫

−∞

s (τ) dτ . (2.2)
T is the symbol duration, dk a omplex disrete valued tranmitted symbol and αF mod-ulation onstant. Moreover s(t) and q(t) represent respetively the the frequeny- andphase impulse. The information arried by instantaneous frequeny is given by

ωT (t) = αF

+∞∑

k=−∞

dks (t− kT ) . (2.3)The bandpass CPM signal is alulated by
x(t) = cos

(

2πfct+ αF

+∞∑

k=−∞

dkq (t− kT )

)

, (2.4)where fc is the arrier frequeny. Reall ωT (t) =
dϕT (t)

dt
, a rotation of arrier phase by ±ηπorresponds to a frequeny deviation of ηπ

T
from fc. η = ∆ϕ

π
is de�ned as modulation index[59, 43℄.The harateristis of CPM signal depend on the modulation onstant and the frequenyor phase impulse. For BCPM the modulation index equals 1. The explanations desribedas follows. The general baseband expression for PSK signal is given by [43, 11℄

xT (t) =
+∞∑

k=−∞

|dk| e
jθdks (t− kT ) . (2.5)Here dk is a omplex disrete valued tranmitted symbol and s(t) signal pulse shape. Thebandpass PSK signal is alulated by

x(t) =

+∞∑

k=−∞

|dk| s (t− kT ) cos (2πfct+ θdk) . (2.6)For BPSK θdk ∈ {−π, π} or dk ∈ {−1, 1}. For generation a BCPM signal, a transitionsignal with half the arrier frequeny fc
2
for one arrier period 1

fc
is transmitted to maintainthe phase ontinuity and at the same time to provide ∆ϕ = ±π. A binary 1 generates aphase deviation of +π from the arrier, while a 0 a phase deviation of −π. It is obviousthat the transition at the beginning of eah symbol would be dependent on the value ofthe previous symbol. In the ase of idential adjaent signals, there is no phase hangeand no need for transmission of the transition signal. Otherwise we have to transmitthe transition signal. In other words, the signal pulse shape is longer than the symbolduration T and lasts T + 1

fc
. So this onerns a partial response and ontrol ISI ase.After the �rst arrier period of a symbol the pervious symbol has no in�uene on thesignal [9, 25, 59℄. An example of BPSK and BCPM modulated signal are illustrated inthe Fig. 2.1. As mentioned, in the MPT system, a BPSK signal is modi�ed so that thegenerated signal equals a BCPM signal. This is ahieved by the speial design of thesignal pulse shape. The spetral e�ieny of modulation sheme is an important riterion
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Fig. 2.1: Example of bandpass BPSK and BCPM modulated signalto be onsidered. Sine there is no phase disontinuity, BCPM signals, similar to CPM,have better spetral harateristis namely narrowband spetrum and low out of band�utuation. Furthermore, for the ase that equalization is neessary, in ontrast to highorder CPM modulation shemes, a linear equalization an be used for BCPM. The majorharateristi of BCPM signal is desribed brie�y in the following.2.1.2 Constant modulus propertyThe applied modulation sheme for the telemetry signal is BCPM and similar to otherphase modulated signals has the onstant modulus (CM) property, also alled onstantenvelope property. Suh modulation shemes transmit a sinusoid of a onstant analytimagnitude or modulus and of these signals, only the frequeny or phase hanges over thetime. Fig. 2.2 lari�es this property. The CM property an be utilized to reonstrut thetelemetry signal in the absene of the training sequene. The main advantage of algorithmsbased on CM property lies in their simple implementation and e�ieny, thus supportthe issues of this thesis [43℄.Next to the CM property, BCPM exhibits ylostationarity, due to its impliit periodiity.This an be related to its baud rate or/and arrier frequeny [107℄. Note that stationarysignals have time-invariant seond-order statistis, whereas ylostationary signals haveperiodially time-varying seond-order statistis. Although, this feature also provides theneessary knowledge for the reonstrution in the absenes of the telemetry signals, theestimation approah is ompliated, omplex and o�ers a omparable performane withthose using CM property [5℄. Therefore, the onept of ylostationarity is not onsideredin this dissertation.
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In−PhaseFig. 2.2: Constant modulus/envelope property onstellation2.2 Analysis of interferene signalAs stated, the pump signal is the main interferene to be dealt with in MPT systems.In this ontext, the interferene signal has to be analyzed exatly to derive its impor-tant harateristis. Interferene properties are seen as a-priori knowledge, whih an beutilized to develop e�ient interferene extration and anellation algorithms. Some ex-amples of the pump signal reorded at a test borehole are illustrated in Fig. 2.3. Thepump signal is generated by mud pumps and hanges with the required �ow rate at theborehole. In other words, it is generated by some nonlinear physial mehanism and hasmore or less stable inherent periodiity. The periodi pump signal is deterministi andpreditable, but some variations, whih are not deterministi, are also observable. Consid-ering this fat, we an onlude that the pump signal belongs to a speial lass of signals,alled randomly modulated periodi signals [71, 111, 16℄.In the following the onept of randomly modulated periodiity is de�ned and the prop-erties of this lass of signals are addressed. Also the statistial analysis methods for suhkind of signals are desribed. Finally using some pump signal measurements reorded ata test borehole, randomly modulated periodiity of the pump signal is on�rmed.2.2.1 Randomly modulated periodiityThe mathematial de�nition of a randomly modulated periodi (RMP) signal x(t) ofperiod T and K harmoni frequenies fk = k
T
is given by [74, 71℄

x(t) = s0 +
1

K

K∑

k=1

[(s1k + u1k(t)) cos(2πfkt) + (s2k + u2k(t)) sin(2πfkt)] , (2.7)where s0 is the DC part, and s1k and s2k are onstant. The vetor of modulation u(t) =
{u1k(t), u2k(t) : k = 1, . . . , K} are of zero mean E [u1k(t)] = E [u2k(t)] = 0 and jointly
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Fig. 2.3: Example measurements of pump signaldependent random proesses with �nite moments, whih satisfy the following onditions[71℄:
• Periodi blok stationary: The joint distributions of {u(t1), . . . ,u(tm)} and
{u(t1 + T ), . . . ,u(tm + T )} are equal for all 0 < t1 < . . . < tm < T .

• Finite dependene: {u(t1), . . . ,u(tm)} and {u(t′1), . . . ,u(t′m)} are independent ofeah other if tm + D < t′1 for some positive D and for all t1 < . . . < tm and
t′1 < . . . < t′m.The signal an be expressed as x(t) = s(t) + u(t), where

s(t) = s0 +

K∑

k=1

[s1k cos(2πfkt) + s2k sin(2πfkt)] , (2.8)and
u(t) =

K∑

k=1

[u1k(t) cos(2πfkt) + u2k(t) sin(2πfkt)] . (2.9)The mean of x(t) de�nes the periodi part s(t) and the zero mean stohasti part u(t)is a real-valued non-stationary proess [71, 74℄. Fig. 2.4 illustrates the periodi andstohasti parts of the pump signal reorded at a test borehole. As seen, the pump signalis haraterized by both periodi and stohasti parts. In ase of having more pumps toprovide the required �ow rate in the borehole, we will have a sum of RMP signals referred
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Fig. 2.4: Illustration of periodi s(t) and stohasti u(t) omponents of a sample pumpsignal x(t)to as umulative RMP signals and desribed by
x(t) =

Np∑

p=1

xp(t) , (2.10)where
xp(t) = s0 +

1

K

K∑

k=1

[(s1k,p + u1k,p(t)) cos(2πfk,pt) + (s2k,p + u2k,p(t)) sin(2πfk,pt)] (2.11)and Np denotes the number of pumps. Fig. 2.5 illustrates a umulative RMP signal,reorded at a test borehole and generated by two pumps.Note that the �rst ondition in the above de�nition means that E [u(t1)u(t2)] =
E [u(t1 + T )u(t2 + T )] if |t1 − t2| < T , but the equality is not neessarily valid if |t1 − t2| ≥
T , in other words if t1 and t2 are in di�erent bloks. Therefore, period blok stationary isdi�erent from ylostationary or ovariane stationary [108℄. The period blok stationaryis a sublass of ylostationary proesses. It is useful to introdue the yli auto orrela-tion funtion and spetral orrelation density funtions. Realling the onditions made onRMP signals, the auto orrelation funtion of signal Rx(t, τ) = Rx(t + T, τ), |τ | < T ∀tan be represented using Fourier series as [112℄:

Rx(t, τ) =
∑

α

Rα
x(τ) exp(j2παt) , (2.12)
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T2 = 0.7734 [s]

Fig. 2.5: RMP signal generated by two pumps: a) Illustration of two pumps umulation
x1(t) + x2(t), periodi part of the �st pump s1(t) with the fundamental periodof T1 = 0.5117 s and stohasti part of the �rst pump u1(t) together with theseond pump signal x2(t), b) Illustration of stohasti part of the �rst pump
u1(t) together with the seond pump signal x2(t), periodi part of the seondpump s2(t) with the fundamental period of T2 = 0.7734 s and stohasti partsof two pumps u1(t) + u2(t)where Rα

x(τ) is the Fourier oe�ients, known as yli auto orrelation funtion and αits yli frequeny. Spetral orrelation density funtion (SCD) or yli spetrum Sα
x (f)is the Fourier Transformation of the Rα

x(τ). The spetral orrelation of a sample pumpsignal with a fundamental frequeny of f1 = 1.25 Hz is illustrated in Fig. 2.6. The spetralorrelation is plaed around the zero frequeny and yli frequeny of α = 2.5 Hz, whihequals the fundamental frequeny multiplied by two. In terms of the entral limit theorem,the seond ondition in the above de�nition guarantees that the summation of severalframes of the reeived signal an be well approximated by a Gaussian random variable.In other words, if D << T then u(t) an be approximated by a stationary proess withineah period [71, 74℄.After we introdued the onept of randomly modulated periodiity, the next step is toprovide a measure of the amount of random variation relative to the underlying pure peri-odiity. Suh a measure to quantify this variability is the signal oherene (SC) funtion.In order to de�ne the signal oherene, the observed signal is segmented into M frames,eah frame being of length T [94℄. T is the period of the periodi omponent and assumed
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Fig. 2.6: Cyli spetrum of a sample pump signal with a fundamental frequeny of
f1 = 1.25 Hz and yli frequeny of α = 2.5 Hzto be known at �rst. From now on, a time disrete disrption is used. Note that the signalbandwidth extends the highest harmoni fK due to the modulations. To avoid aliasing, thesampling frequeny must be greater than 2fK . If the sampling interval Ts =

1
2fK

, T = NTshas N disrete samples x(tn) and K = N
2
. The observed signal at time tn in the m-thframe is {x ((m− 1)T + tn) , n = 0, . . .N − 1} and the disrete Fourier transformationof this signal is given by [71, 74, 29℄

Xm(k) =

N−1∑

n=0

x ((m− 1)T + tn) exp(−j2πfktn)

= sk + Um(k), sk =
1

2
(s1k + js2k) . (2.13)and

Um(k) =
N−1∑

n=0

um(tn) exp(−j2πfktn) . (2.14)The signal oherene funtion measures the variane of Xm(k) about its mean sk. Thisdepends on the variane of Um(k). By the assumption of weakly stationary um(tn), itfollows that:
σ2
u(k) = E

[
|Um(k)|

2]
. (2.15)



Chapter 2. Statistial signal analysis 20Now, the signal oherene funtion for eah Fourier frequeny an be de�ned by
γx(k) =

√

|sk|2

|sk|2 + σ2
u(k)

. (2.16)The term Um(k) is also alled modulation noise. We de�ne the signal to modulation noise(power) ratio (SMNR) as ρx(k) = |sk|
2
σ−2
u (k). Thus γ2

x(k) = ρx(k)
ρx(k)+1

is an inreasingfuntion of SMNR. The SMNR an be used to estimate signal harateristi [74, 61℄.2.2.2 Statistial signi�ane testing for randomly modulated pe-riodiityThe randomly modulated periodiity of the pump signal must be veri�ed and the oneptof statistial signi�ane testing an be used for this demand. It is supposed that anobserved data meets the null hypothesis or another alternative hypothesis here RMP.Based on probabilities spei�ed for eah hypothesis in a deision rule, the validity of thesehypotheses an be approved. The deision of rejeting the null hypothesis is referred to as astatistially signi�ant result [89, 39℄. More onvenient is to use the equivalent test statisti(e.g. χ2-, t-, and F -test) instead of alulating probabilities [85℄. Therefore the well-knowntest statisti developed for deteting hidden periodiity in data with random amplitudeand modulation is applied. This test is also feasible to verify randomly modulated orvarying periodiity existing in the observed data. First of all, it has to be ensured thatthere is no other deterministi or stohasti trend present in the data to be tested. Beforeperforming the test statisti an estimation of sk and σ2
u(k) should be done in advane. Inthis ontext, it is supposed that the fundamental period T is known and the signal over

M suh periods is onsidered, where {x ((m− 1)T + tn) , n = 0, . . . , N − 1} is the m-thperiod. The unbiased estimate of the signal ŝ(tn) an be obtained by [71, 74℄
ŝ(tn) =

1

M

M∑

m=1

x ((m− 1)T + tn) , (2.17)and
ŝk =

N−1∑

n=0

ŝ(tn) exp(−j2πfktn) (2.18)is the k-th DFT of (ŝ(0), . . . ŝ(T − 1)).From the de�nition x ((m− 1)T + tn) = s ((m− 1)T + tn) + u ((m− 1)T + tn), follows
û ((m− 1)T + tn) = x ((m− 1)T + tn)− ŝ(tn) . (2.19)The k-th DFT omponent of (u ((m− 1)T ) , . . . u ((m− 1)T + T − 1)), is given by
Ûm(k) =

N−1∑

n=0

û ((m− 1)T + tn) exp(−j2πfktn) . (2.20)



Chapter 2. Statistial signal analysis 21Aordingly, an estimation of the variane σ̂2
u(k) is derived by

σ̂2
u(k) =

1

M

M∑

m=1

∣
∣
∣Ûm(k)

∣
∣
∣

2

. (2.21)Now, the test statisti an be preeded by evaluating these estimations. In terms of ŝkand σ̂2
u(k) estimates, three kinds of proesses are identi�able aordingly [73, 26℄:

− if ŝk = 0 and σ̂2
u(k) 6= 0, then the proess is random with no periodi struture.

− if ŝk 6= 0 and σ̂2
u(k) = 0, then the proess is periodi (deterministi) plus stationaryand ergodi noise.

− if ŝk 6= 0 and σ̂2
u(k) 6= 0, then the proess is a randomly modulated periodi proess.This means that some variation in the periodi struture about ŝk will remain,re�eting variation in the phase and amplitude of the spetral density funtion.Randomly modulated periodiity hypothesis is veri�ed by applying the test statisti onmany measurements of the pump signal obtained from a test borehole. For example, theresult of randomly modulated periodiity test is demonstrated in Fig. 2.7.
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u(k), the signal oherene funtion an be alsoobtained by

γ̂x(k) =

√

|ŝk|
2

|ŝk|
2 + σ̂2

u(k)
, (2.22)



Chapter 2. Statistial signal analysis 22whih again on�rms the varying periodiity present in the pump signal as seen inFig. 2.8.
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Z(k) =

M

N

|ŝk|
2

σ̂2
u(k)

(2.23)
=

M

N
ρ̂x(k) ,provides the neessary statistial measure to perform test statisti for the stohasti partof pump signal. We preede by evaluating the distribution of Z(k). If the stohastiterm, modulation noise, is stationary, then the distribution of eah Z(k) is approximatelydistributed as Chi-Square χ2

2(λk), where λk = M
N
ρ̂2x(k). A sample measurement of thepump signal is used to analyze the distribution of eah Z(k). The result in Fig. 2.9illustrates an estimate of the distribution for a sample Ẑ(k) and veri�es the stationarymodulation noise hypothesis.Sine χ2

2(λk) are asymptotially independently distributed over the frequeny band, thedistribution of the sum statistis given by [73, 86℄
Ŝ =

K∑

k=1

M

N
ρ̂x(k) . (2.24)
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Fig. 2.9: Illustration of the modulation noise stationarity veri�ed by the Chi-Squaredistribution of a sample Ẑ(k)is approximately Chi-squared χ2
K(λ) for large values of M , where λ =

K∑

k=1

λk. Note that
Ŝ provide not only the statistial measure for the above mentioned test statisti, but alsoan be used to detet the periodiity present in the signal [72℄. This issue is disussed inmore detail in the following.2.2.3 Methods of estimating fundamental period in randomlymodulated periodi signalsSo far, it is assumed that the fundamental frequeny or period of RMP signal is known,whih does not hold in pratie. Whereas many methods exist to estimate the fundamentalperiod, only a few of them an be used for speial lass of signals onsidered in this thesis.In this ontext, two shemes are proposed to obtain the fundamental period of RMPsignals.The priniples that some a-priori knowledge an be used to perform blind adaptationby maximizing some relevant orrelation funtion [57, 41℄ is used here but in a di�erentway. The �rst of these is to �nd the maximum orrelation between two signals, withonstraints, by applying the least mean square (LMS) sheme. These two signals are thereeived signal x(t) and a delayed version of it, used to alulate the mean square error(MSE) as follow:

e = E
[
|x(t)− x(t− τ)|2

]
. (2.25)The range of delays depends on the pump type applied in the �eld and is doumented



Chapter 2. Statistial signal analysis 24in the instrutions manual. An estimate of the fundamental period an be obtained byalulating ei for eah delay τi and �nding the least mean square error (LMSE) aordingto
T̂ = argmin

i

ei . (2.26)The performane of this approah is tested on measurements produed by one pump withvariable �ow rate (see Fig. 2.10). Fig. 2.11 demonstrates apability of the algorithmto estimate and trak the fundamental period of the pump in Fig. 2.10. The estimatione�ieny depends on the auray of onstraints in speifying the range of delays orthe length of estimation window. Long sized estimation windows not only inrease theproessing time but also result in false detetion of the fundamental period.
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Fig. 2.10: A sample pump signal measurement with variable �ow rateThe seond priniple is to apply the Chi-squared statistis for deteting the presene ofa hidden periodiity in the signal [73℄. Traditionally, for the estimation a sweep of trialfundamental frequenies is made over the frequeny band to �nd the maximum value ofsum of modulation noise in frequeny domain Ŝ. The frequeny, at whih the maximumyields, delivers the estimate of the fundamental period. Here, a range of trial fundamentalperiods Ti ∈ {Tmin, Tmax} instead of a sweep of trial fundamental frequenies, is used forthe straightforward estimation. Now, the estimation proess an be done by estimating
Ŝi for eah trial period Ti and �nding the maximum as desribed by

T̂ = argmax
i

Ŝi . (2.27)
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Fig. 2.11: Estimation/traking results of fundamental period for a sample pump signalmeasurement with variable �ow rateThe estimation result an be approved by alulating the p-value1 tail probability of themaximum. If the p-value of the maximum S is small enough, then we an laim that thesignal is RMP and its fundamental frequeny is deteted orretly.All desribed methods have their own advantages and drawbaks. Whereas the seondapproah promises suessful detetion of single and multiple pump fundamental periodseven in the presene of the telemetry signal and other noise signals, the �rst sheme o�erssimple implementation and omparable e�ieny, but its appliability is limited to thedetetion of the fundamental period of a single pump signal.The estimation performane of the approah based on Chi-squared statistis is testedusing some pump signal measurements. Note that the measurements are performed witha onstant �ow rate. At �rst, the fundamental period is obtained for sample measurementsonsisting of the pump signal and measurement noise (AWGN). The estimation results interms of frequeny/ounts of the maximum illustrated in Fig. 2.12 verify the preseneof periodiity giving an estimate of fundamental period. Also the estimation is performedfor sample measurements of the pump signal generated by two pumps plus measurementnoise. Aording to the estimation results shown in Fig. 2.13 the periodiity is ausedby two RMP proesses giving an estimate of their fundamental periods.Finally Fig. 2.14 shows the estimation result of the fundamental period for the ase thatthe measured signal is a onvolutive mixture of the telemetry and pump signals. For thisexperiment the telemetry to pump signal ratio is -10 dB and the arrier frequeny and1 The p-value measures, how muh statistial evidene exists. For example, the p-value of a test ofhypothesis is the smallest value that might lead to rejet the null hypothesis or to support the alternativehypothesis [31℄.
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Fig. 2.14: Estimation of the fundamental periods for a sample measurement of the pumpsignal from the onvolutive mixture of telemetry and pump signals
2.2.4 SummaryThe modulation sheme and statistial property of the telemetry signal is reviewed in thishapter. It has been shown that the interferene pump signal is a RMP signal and hasdeterministi periodi and stohasti random parts. Based on this investigation the esti-mation methods of fundamental period of RMP pump signal are proposed and evaluated.Whereas the measurements evaluation has shown the e�etiveness of proposed methodsin providing a reliable estimation, both shemes have an estimation delay of at least 10s. Therefore it is a hallenging task to provide a ontinuous estimate of the fundamentalperiod as well as to trak its fast �utuations. Although both shemes an be applied forestimating the pump fundamental period, the trade-o� between estimation auray andestimation delay has to be taken are of.The estimate of the interferene fundamental period and the knowledge on importantharateristis of both telemetry and interferene signal provides some basis for developingsignal extration and separation algorithms in Chapter 3. This inludes the algorithmdesign based on the single and/or two-reeiver strutures.



Chapter 3Blind and semi-blind signal proessing
As stated, little or no priori information on the MPT system and related signals is avail-able. When starting the projet related with this dissertation the utilized protool wasspei�ed by a startup sequene, inluding no training sequene for the telemetry signal.Even though suh kind of faility is meanwhile embedded in the startup sequene, it isnot supported during the regular operation. Moreover by using a blind approah, there isno need for training sequene, and thus the transmission data rate an be inreased. Fromthe signal proessing point of view, blind soure separation and extration algorithms areseen as the enabling tehnology needed to solve the underlying signal detetion problem.Therefore, this hapter gives at �rst a brief introdution on the onept of blind signal pro-essing and demonstrates its feasibility onstraints in the MPT appliation. Apart fromthat, the investigations in Chapter 2 lead to the development of semi-blind methods, whihwill be dealt with in this hapter. In this ontext, two onseutive strategies are proposed,in whih both telemetry and interferene harateristis are utilized. Consequently, viameasurements obtained from test boreholes, the performane and pratiability potentialof the proposed shemes for telemetry signal estimation purposes in the MPT senario isdemonstrated and ompared.3.1 Blind signal proessing methods and restrited ap-pliabilityBlind tehniques whih follow a separation or extration1 proedure �nd appliation inthe senario, where eah reeived signal at a sensor array ontains a mixture of signalsfrom di�erent soures and is proessed to reover the soure signals from the mixed ob-servation. The term blind refers to that the harateristis of the transmission mediumand the soure signals are not known a priori. There are various areas, where blind pro-essing tehnology is utilized, e.g. biomedial signal proessing, speeh proessing, dataommuniations, and sonar and radar tehnology. In many ases, it is desired to reoverall soure signals or at least one from the reeived mixtures. Moreover, it may be desiredto �nd out how the soure signals are mixed to obtain information about the transmissionmedium [68℄. As mentioned in Chapter 1, an MPT system an be onsidered as a on-volutive mixture of telemetry and pump signal. Therefore the problem of separating and1 Parallel or serial signal reovery 28



Chapter 3. Blind and semi-blind signal proessing 29extrating a onvolutive mixture is onsidered. Note that estimating the mixing proess ingeneral introdues not only the ill-posed estimation problem2 but also the instable matrixinversion problem [79℄. Therefore, reovery of the signals based on blind estimation ofthe mixing proess is not advantageous espeially in pratial appliation. In the MPTsenario, sine the main objetive is to reover the telemetry signal, it is su�ient toestimate the separation or extration �lters. In general, there are two estimation riteriabased on seond-order statistis (SOS) and higher-order statistis (HOS) [17℄. The esti-mation task requires some assumption on the soure signals. The general assumption isthat the soure signals are independent of eah other or at least unorrelated, in additionto the assumption on the spatial diversity required in onvolutive mixtures [62, 28, 106℄.The estimation methods based on HOS minimize seond and fourth-order dependeneamong the soure signals and additionally require the ondition of non-Gaussianity forsuessful separation of the underlying signals [79, 2, 3℄. Among several HOS estimationmethods kurtosis is a popular measure of non-Gaussianity.Several blind estimation methods based on SOS and HOS have been developed and appliedto audio separation tasks [96, 50, 83℄. Among them a frequeny-domain SOS-based shemeemploying non-stationarity and a time-domain HOS-based method using least squarekurtosis �ts also to the MPT system [17, 18℄. It is useful to note that the SOS-basedestimation using ylostationary belongs also to relevant shemes but the performaneis poor [79℄. The key onepts of these methods are desribed in [17, 18℄. Main issuessuh as performane evaluation of the proposed algorithms in terms of SIR, the hoieof optimal separation �lter length and onvergene are studied. The results are shownthat the SOS-based sheme is stable, but su�ers from slow onvergene. In ontrast, theHOS-based sheme onverges very fast, but is instable and thus not suitable for pratialappliations. More important is the poor performane of both shemes in very low SIRsenarios of MPT, where the estimation of telemetry signals inludes some residual pumpsignal [17, 18℄.Therefore, blind estimation tehnologies using either SOS or HOS are not feasible forreliable signal reovery in the MPT appliations. It is reasonable to apply algorithmsutilizing additional a priori information about the harateristi of the system signals,whih will be disussed in more detail in the following.3.2 Semi-blind signal proessing methods using speialproperties of system signalsThe ine�ieny and moderate performane of totally blind shemes provide the motivationto further investigate semi-blind signal proessing issues in MPT appliation senarios.The term semi-blind denotes that a priori information about the transmitted signal isavailable and an be utilized for signal reovery. Suh a kind of algorithm omes fromthe �eld of mobile ommuniations, where the transmitted signal is modulated and thushas some speial features in ontrast to audio signals. Based on the speial properties ofMPT system signals investigated in Chapter 2, semi-blind estimation methods are pro-posed in this hapter. The onstant envelope property of the telemetry signal motivates2 Ill-posed problems refer to as problems whih solution either is not unique or does not depend on-tinuously on the data. If a problem is ill-posed, then it is hallenging to obtain a numerial solution[77℄.



Chapter 3. Blind and semi-blind signal proessing 30investigation of onstant modulus algorithm (CMA). Aording to the ability of CMAof orreting the multipath and o-hannel distortions on onstant modulus (envelope)signals, their appliation in the mud pulse environment is investigated. Aording to theMulti-Input Multi-Output MIMO struture of MPT system, this hapter gives an intro-dution on onstant modulus (CM) array �ltering. Aordingly a MIMO deorrelationCM array �ltering, whih utilize both CM telemetry property and knowledge about thepump fundamental period, is proposed and its e�ieny in terms of joint soure separa-tion and hannel equalization is demonstrated. Based on the investigation in Chapter 2,it is possible to provide an estimation for fundamental period of the pump signal. Hav-ing suh knowledge, leads to the development of a semi-blind signal extration approah.Afterwards, the e�ieny and pratiability of this approah in the ontext of MPT ap-pliations is demonstrated. This hapter onludes with a performane omparison of thesemi-blind signal proessing methods.3.2.1 Constant modulus algorithm: a telemetry-based propertyrestoration shemeOne of the most famous algorithms for semi-blind signal reonstrution is the lass ofonstant modulus algorithms (CMA's). One issue would be to apply the CMA for adjust-ing a �nite impulse response (FIR) �lter adaptively in suh a manner that the output ofthe �lter provides a orreted reeived signal. Another issue would be the appliation ofCMA for separation of o-hannel signals by an adaptive array [52, 32℄. Sine distortionsof the telemetry signal is mainly aused by the o-hannel pump signal, the �rst issue isbrie�y reviewed, whih serves as a bakground for the main investigation of the seondissue in this setion. In this ontext, the key onept of CMA is desribed. Afterwardsthe algorithm performane in terms of onvergene and stability is investigated via bothsimulations and �eld-test data.3.2.1.1 Key oneptThe lass of CMA is usually based on an instantaneous gradient-searh routine for mini-mizing a stohasti ost funtion, whih penalizes the modulus deviation of the reeivedsignal y(k) with respet to the known modulus of the transmitted signal x(k), whih isassumed to be saled so that |x(k)| = 1. The blok diagram of Fig. 3.1 shows the generalstruture of the CMA.Referring to the notation in Fig. 3.1, the ost funtion is de�ned by [69, 52℄
J =

1

4
E
[(
|z(k)|2 − 1

)2
]

. (3.1)Here E denotes statistial expetation and the �lter output z(k) (omplex in general) isexpressed by z(k) = Y T (k)w(k), where Y (k) = [y(k) y(k − 1) · · · y(k − L+ 1)]T , (.)Tdenotes transpose and w(k) is a L × 1 vetor inluding the �lter oe�ients at the timeinstant k. The �lter oe�ients are adjusted so as to minimize the ost funtion using astohasti gradient deent method:w(k + 1) = w(k)− µ∇wJ (3.2)



Chapter 3. Blind and semi-blind signal proessing 31
Complex FIR filter

Filter

input signal

Coefficient vector

update

Filter

output signal

CM error

determination

Hilbert transformer

to form analytic

signal

Real distorted

input signal

y(k)

w

z(k)yr(k)

Fig. 3.1: General struture of the onstant modulus adaptive algorithmwith
∇wJ = 1

2
E
[(
|z(k)|2 − 1

)
∇w (w(k)HY ∗(k)Y T (k)w(k)

)]

= E
[(
|z(k)|2 − 1

)
Y ∗(k)Y T (k)w(k)

]

= E
[(
|z(k)|2 − 1

)
z(k)Y ∗(k)

]
.

(3.3)Here µ is the step size, (.)∗ and (.)H are omplex onjugate and omplex onjugate trans-pose operators. The adaptation algorithm whih minimize the ost funtion mentionedabove with respet to w is obtained by replaing the true gradient ∇wJ with an instan-taneous gradient estimate ∇̂wJ =
(
|z(k)|2 − 1

)
z(k)Y ∗(k) as follows [52, 12℄:w(k + 1) = w(k)− µ

(
|z(k)|2 − 1

)
z(k)Y ∗(k) . (3.4)The CMA is typially applied on the equivalent baseband signal (after demodulation),or with omplex �lter oe�ients before demodulation. Under real system onsiderationpresribed by the appliation senario, it is desirable that the CMA aepts real data inputand real �lter oe�ients. On this aount, a version of CMA employing real arithmetiis also onsidered, whereas the analytial reeived signal is generated and used for theupdating of the �lter oe�ients. In the ontext of real CMA, the onstant modulusrefers as the onstant envelope. The ost funtion for the real CMA ase an be writtenas [69℄

J =
1

4
E
[(
|z+(k)|

2 − 1
)2
]

; z+(k) = z(k) + jẑ(k) , (3.5)where z+(k) denotes the analytial desription of the reeived signal and is generated bymeans of Hilbert Transformation [63℄. The update equation for real CMA is expressed byw(k + 1) = w(k)− µ
(
|z+(k)|

2 − 1
)
z(k)Y (k) . (3.6)Sine some modulation shemes e.g. BPSK modulated signals have the onstant envelopeproperty at least at the baud intervals, envelope is measured only at the baud intervals,known at the reeiver [33, 53℄. In other words, a ognitive onstant envelope orretionis onduted, due to the fat that some information available at the reeiver, namelytransmission data rate and sampling rate, are used in the adaptation proess.
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Fig. 3.2: Error ourse in MSE and ost funtion of CMAUsually mean square error (MSE) between the transmitted signal and the estimated ver-sion is used as the measure of the performane. This is impossible in real appliationsenarios, where the transmitted signal is unknown. Thus the ost funtion in Eq. 3.5serves as a measure of CMA performane [23℄. In ase of global onvergene, the ourseof error in MSE equals to the one in CMA ost funtion (see Fig. 3.2).3.2.1.2 CMA Performane in terms of onvergene and stabilityIn this setion a brief summary of CMA performane to ompensate the disrupted signalby multipath and additive interferene is presented.Multipath The ability of CMA to orret multipath distortions aused by the an-nel has been addressed in many papers [51, 14, 75℄, in whih the senario where thehannel mostly onsists of only a few paths is onsidered. The performane of CMA ishannel-dependent. To verify this, the algorithm is simulated for frequeny-�at and sele-tive fading ases and the performane funtion J is plotted as a funtion of adaptationtime in Fig. 3.3. As seen, the algorithm annot e�etively ompensate the e�et of mul-tipath for di�erent fading ases. The algorithm requires a few number of equalizer tapsand indiates high onvergene rate in frequeny �at fading hannels. In ontrast, in fre-queny seletive multipath hannels, a higher number of equalizer taps is required andthe onvergene speed is low [52, 75℄.More evaluation of the algorithm property is performed on a set of low data rate �eld-test measurements. The bit error rate (BER) results are analyzed in some ases. First,the CMA performane ompared with the equalization method using a fat-hirp of 2 s
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Fig. 3.3: Error ourse as a funtion of J vs. adaptation time for di�erent fadingsduration as a referene signal to on�rm whether or not CMA atually ompensates forthe hannel e�ets. From the results in Fig. 3.4 it is seen that the CMA algorithmdelivers the same BER performane as the hirp-based one and even better for some �eld-test data. The reason for the poor performane of hirp-based equalization sheme is theinsu�ient hirp duration used for the training [98℄. The seond step in evaluating theCMA performane is to show how adaptation onstant µ and �lter length L adjustmenta�et the performane of CMA. The examination results are illustrated in Fig. 3.4. Itan be observed that the algorithm is stable for very small step size/adaptation onstantand it is unknown for what values of step size and equalizer length the algorithm beomesunstable [52, 75℄.The advantages of CMA are the adaptive traking and simple implementation. The draw-baks of CMA are the phase roll3 problem and appropriate hoie of adaptation onstant,whih is a big hallenge to pratial appliations.Additive interferene The onept of onstant modulus approah an be usedto deal with some kinds of interferenes as well [52, 98℄. Of partiular interest are in-terferenes aused by additive white Gaussian noise (AWGN) and pump signals. At �rstthe behavior of CMA in the presene of AWGN at di�erent SNRs is examined and illus-trated in Fig. 3.5. As seen, the initial onvergene performane is not a�eted severelyby AWGN at the reeiver, but the amount of modulus variation whih an be redued islimited. In other words, the residual error is inreased at lower SNRs [52℄.Examination of CMA's properties in the presene of pump signal (Fig. 3.6) shows that3 The onstant modulus proessor an introdue an arbitrary phase shift to the signal of whih theonstant modulus riterion is still satis�ed [52℄.
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Fig. 3.4: Overall performane evaluation of CMA algorithm (a) BER omparisonbetween the hirp-based equalization and CMA , b) , ) and d) the e�et of stepsize and �lter length adjustment on the BER performane)not only the redution amount of modulus variation, but also the initial onvergeneperformane is a�eted at di�erent SIRs [52, 54, 98℄.The reason is that the underlying pump interferene as shown in Chapter 2 onsists ofmultiple sinusoidal interferers. Generally, for suh interferers the CMA performane isonstrained by signal apture e�ets due to the nonlinear nature of the algorithm. If theinterferer beomes stronger than the desired signal, the algorithm tends to apture theinterferer and rejet the desired signal [52℄. Therefore, applying CMA in realisti systemsenarios like MPT with strong interferers requires external ontrol and additional utili-ties, e.g. a prior information about the interferene or multiple reeiver struture to mergethe CM onept with the spatial diversity sheme [109, 92, 54℄. Another phenomenon tobe notied in this ontext is the nothing ompromise, where the algorithm avoids toompletely noth out the interferer and attempts to ompromise between redution inmodulus variation aused by the interferer and distortion of desired signal due to thenothing [52℄.Sine the main target in MPT systems is to suppress the strong pump interferene signal,in the following the issue of CM array �ltering is addressed brie�y and extended usingadditional knowledge of the pump signal.
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Chapter 3. Blind and semi-blind signal proessing 363.2.2 A multihannel semi-blind soure separation method usingenvelope property of telemetry and interfereneAs the bakground has shown, both multipath propagation and additive interferene dis-rupt the onstant envelope property of the reeived signal. In addition, the apability ofCMA in apturing telemetry or suppression of the interferer depends on SIR, the �lterinitial ondition and the adaptation onstant. Of partiular importane is the tendenyof the algorithm in apturing the strongest signal. Based on the motivation in Subsetion
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Fig. 3.7: Coneptual sheme: a) CM array �ltering, b) Extended MIMO deorrelation �ltering3.2.1.2, an extended version of CMA is proposed by utilizing a two-reeiver struture andspeifying a new ost funtion [46, 52, 84℄. As shown in Chapter 2 the main part of thepump signal namely deterministi part an be estimated. The details on the estimationproedure will be demonstrated in the sequel. Aordingly, we have an estimate of thepump signal envelope. The basi idea is introdued by a ombined ost funtion, whihon one hand penalizes the deviation from the onstant modulus of the telemetry signalas well as known modulus (KM) of the pump signal and on the other hand minimizesthe ross orrelation between the reonstruted telemetry and pump signals [56, 53℄. Theproposed semi-blind soure separation (BSS) approah an be seen as the extension ofonstant modulus array �ltering and onsidered as a kind of joint interferene rejetionand signal reonstrution sheme [109, 23℄. Multiple reeiver array appliations aim to�nd methods of training the array to have high gain towards the signal of interest, whihis done blindly based on CM property of the signal of interest and where the array isadapted to minimize the deviation from the onstant modulus [46, 4℄. The onept ofboth CM array �ltering and the extended MIMO deorrelation sheme is illustrated inFig. 3.7.



Chapter 3. Blind and semi-blind signal proessing 37For better understanding the mathematial desription of the proposed sheme, the re-eiver struture is modeled as a linear 2× 2 MIMO-system (see Fig. 3.8). We denote by
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Fig. 3.8: linear 2× 2 MIMO-system model of the extended MIMO deorrelation sheme
xj(k), j ∈ {1, 2} the j-th transmitted signal. yi(k), i ∈ {1, 2} are the orrupted signalsat hannel output i and vi(k) is zero-mean additive white Gaussian noise at the i-th re-eiver. zj(k) is the j-th equalizer output at time instant k. hij , j ∈ {1, 2} , i ∈ {1, 2}are N × 1 vetors standing for the hannel of length N from the input j to the output i.wij, j ∈ {1, 2} , i ∈ {1, 2} are L × 1 vetors ontaining the equalizer oe�ients of the
i-th reeiver to j-th equalizer output. The disrete-time signal reeived at the i-th reeiverand the j-th equalizer output an be expressed as below respetively [56, 38, 20℄:

yi(k) =

N∑

n=1

2∑

j=1

hij,nxj(k − n) + vi(k) ,hij = [hij,1, . . . , hij,N ]
T
, i ∈ {1, 2} , (3.7)and

zj(k) =
L∑

l=1

2∑

i=1

wij,lyi(k − l) ,wij = [wij,1, . . . , wij,L]
T
, j ∈ {1, 2} . (3.8)Sine the telemetry signal has the onstant envelope and the envelope of the pump signal

|A(k)| an be estimated, the ost funtion to be minimized an be expressed as [56, 38, 20℄
J = E

[(
|z1(k)|

2 − |A(k)|2
)2
]

+ E
[(
|z2(k)|

2 − 1
)2
]

+ 2

2∑

l,n=1,n 6=l

τ2∑

τ=τ1

|Rln(τ)|
2

, (3.9)where Rln(τ) is the ross-orrelation between the reonstruted telemetry signal z2(k)and the pump signal z1(k), de�ned as Rln(τ) = E [zl(k)z
∗
n(k − τ)]. τ1 and τ2 are integersto inlude the available delays between the two signals. The �rst two terms of the ostfuntion penalize the deviation from the modulus, while the last term penalizes the or-relation between the reonstruted signals. The ost funtion J an be minimized usinga stohasti gradient desent method as follows [12℄:W(k + 1) =W(k)− µ∇WJ , (3.10)



Chapter 3. Blind and semi-blind signal proessing 38where µ is a positive step size and ∇ is the gradient operator. W represents the matrixof equalizer oe�ients given by W =

[ w11 w12w21 w22

]W whih minimize the ost funtion an be obtained by alulating
∇WJ =

[
∂J

∂w11

∂J
∂w12

∂J
∂w21

∂J
∂w22

]

as follows, whereof a simpli�ed desription of zj(k) =
2∑

i=1

Y T
i (k)wij with Yi(k) =

[y(k) y(k − 1) · · · y(k − L+ 1)]T is used [56, 38, 20℄ (see Appendix. A):
∂J

∂wi1
= 4E

[(
|z1(k)|

2 − |A(k)|2
)
z1(k)Y

∗
i (k)

]
+ 4

2∑

n=1,n 6=j

τ2∑

τ=τ1

Rjn(τ)E [zn(k − τ)Y ∗
i (k)](3.11)and

∂J

∂wi2

= 4E
[(
|z2(k)|

2 − 1
)
z2(k)Y

∗
i (k)

]
+ 4

2∑

n=1,n 6=j

τ2∑

τ=τ1

Rjn(τ)E [zn(k − τ)Y ∗
i (k)] (3.12)The step size should be small; otherwise the algorithm might be instable. Note that, ifmore than one pump signal is involved in drilling proess, the ost funtion has to berevised to onsider sum pump signal envelopes.The performane of both CM array �ltering and the extended MIMO deorralation ap-proah in apturing the telemetry signal and rejeting the pump interferene signal isexamined on low data rate �eld-test measurements. Two ases onsidered here: the �rst,shown in Fig. 3.9 is to examine a �eld-test data of high SIR and has demonstrated om-parable performane of both shemes; the seond is the evaluation of a �eld-test datahaving low SIR. As seen in Fig. 3.10 the extended MIMO approah delivers an estimateof the telemetry signal, while CM array �ltering apture the pump signal, whih has ahigher power.Moreover the algorithm property in terms of onvergene time is examined on �eld-testdata of both high and low SIR. Here the detetion performane is plotted as a funtionof time. As seen in Fig. 3.11, the onvergene rate for the data with higher SIR is faster.Further examination of the algorithm is arried out on high data rate �eld-test data. Thefrequeny-domain presentation of the exemplary reeived and proessed data in Fig. 3.12shows that the separation task is not ahieved ompletely and residual pump signal isobservable in the estimated telemetry signal.Consequently, despite robustness and e�etiveness of the proposed approah in in-terferene rejeting over the onventional CM beamforming sheme, the ill onver-gene/divergene problem in high data rate senarios is not solved. Availability of somea priori knowledge about the interferene signal and its assoiation in CM array �lteringmotivate the investigation in the next setion.
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Fig. 3.9: Performane omparison of the CM array �ltering and MIMO-CM methods inthe present of the pump signal for high SIR ase (both methods apture thetelemetry signal)3.2.3 A single hannel semi-blind soure extration method basedon interferene propertiesRMP harateristi of the pump signal motivates the development of an interferene an-elling sheme alled time-domain averaging and subtrating (TD-AS). The observationsof the pump signal have shown that the main part of distortions in the telemetry signalis aused by the periodi omponent of the pump signal. The idea is to estimate theperiodi part of the interferene for a ertain observation time and extrat it from thereeived signal. Afterwards either linear or nonlinear equalization methods (e.g. CMA)an be applied to equalize the inter-symbol interferene introdued by the transmissionhannel. The �rst step is to determine the fundamental period of the pump signal knownas averaging period T using one of two methods presented in Subsetion 2.2.3. The se-ond step is to selet the duration of the reeived signal to be averaged, alled averaginglength M . The averaging length has to be seleted orretly. If averaging length is tooshort, a part of the telemetry signal might be removed after the proessing. Otherwise,the interferene might not be removed e�etively. So the e�etiveness of the averagingdepends on the signal to interferene ratio (SIR) and the algorithm an be optimized bya oarse estimation of SIR. After determining the averaging period and averaging length,the observed signal is divided into M frames, eah having the length of averaging period
T = NTs, Ts = 1. Fig. 3.13 desribes the system struture of TD-AS approah. An
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Fig. 3.10: Performane omparison of the CM array �ltering and MIMO-CM methods inthe present of the pump signal for low SIR ase (CM-based array �lteringaptures the pump signal)estimate of the deterministi part of the interferene ŝ(k) is obtained as follows
ŝ(k) =

1

M

M∑

m=1

y(k + (m− 1)N), k = 0, . . . , N − 1 . (3.13)where y(k) denotes the reeived signal at time instant k. By subtrating ŝ(k) from y(k),we an remove the main part of the interferene and z(k) = y(k) − ŝ(k) inludes thetelemetry signal a�eted by the mud hannel and residual stohasti part of the pumpsignal. By equalizing z(k) we an ompensate the possible distortions of the signal ausedby the transmission hannel as well and detet the signal orretly. The best averagingsheme shown in Fig. 3.14 is to build up the averaging from the previous and inomingneighborhood frames. In this way, the signal disontinuity aused by the time-domainsubtration an be eliminated or redued. The semi-blind soure extration (BSE) shemebased on TD-AS is analyzed in some respets. The �rst step is to investigate how theaveraging length a�ets the detetion of the telemetry signal in the ase of low SIR. Theexaminations are arried out on �eld-test data as well as simulated data. The evaluationresult of a set of �eld-test data is illustrated in Fig. 3.15. It is seen that if the averagingis performed over M = 21 frames, the residual stohasti term of the pump signal isstrong enough to ause the erroneous detetion of the telemetry signal as shown in thelabeled area of the �gure. To demonstrate the performane dependeny on SIR, the BERis plotted as a funtion of SIR for averaging lengths of di�erent value. The results in Fig.3.16 show that the averaging length a�ets the algorithm performane at very low or veryhigh SIRs. Besides, the averaging length spei�es the width of area to be nothed out. In
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¡ŝ(k)y(k)

v(n)

z(k)+

+
+

Fig. 3.13: TD-AS Conept
Averaging . . .

. . .

. . .

y(k) T̂
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Fig. 3.16: E�et of averaging length on the simulative detetion performane as afuntion of BER vs. SIRThe seond step in examining of the algorithm's performane is to demonstrate whetheror not the algorithm atually suppresses the pump interferene signal. This is performedby testing the algorithm on a �eld-test data of a arrier frequeny fc = 30 Hz and datarate R = 5 bit/s. The estimated fundamental period is N̂ = 585 samples and M = 21frames.The frequeny-domain baseband presentation of the reeived and proessed signals illus-trated in Fig. 3.17 shows that the algorithm nothes the main part of the interferene.From the time-domain baseband presentation of the reeived and proessed signals inFig. 3.18 it is seen that an apparent redution in the amount of erroneous data detetionan be ahieved by the TD-AS method.3.3 Pratiability and performane evaluation of semi-blind shemesTo illustrate the performane of proposed algorithms in Subsetions 3.2.2 and 3.2.3, weanalyze both simulative and �eld-test data from test boreholes. These investigations alsoinlude evaluating the method using pump strobe sensors to get an assessment of theappliability of proposed methods in the MPT system. This setion ends up by omparingthe simulated results with the measured ones. However it is impossible to estimate the SIRduring the regular operation, a rough estimate of SIR an be obtained during the startupsequene. The power of the pump signal an be measured during the valve-o� period.Afterwards, the SIR an be alulated during a time slot equal to valve-o� duration,
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Fig. 3.17: Spetrum of the reeived sensor signal y(k), the estimated periodi pumpsignal ŝ(k) and the proessed signal z(k) in basebandwhere a training sequene for the telemetry signal is transmitted as follows
ˆSIR = 10 log10

E [y2(k)]− E [y2V O(k)]

E [y2V O(k)]
. (3.14)The SIR estimation shown in Fig. 3.19 is performed for �eld-test data sets to be analyzedand provides some information about the frequeny and amount of SIRs enountered inreal MPT appliations. Moreover, suh information an be used for more realisti on�g-uration of simulation parameters. As stated in Subsetions 3.2.2 and 3.2.3 an estimate ofthe fundamental period of the pump signal is required by the proposed shemes. In thisregard, the estimation method based on orrelation maximization in 2.2.3 is applied toestimate the fundamental period for eah �eld-test data set to be analyzed. The estima-tion is arried out during both valve-o� and regular operation time. The results in Fig.3.20 provide not only an estimate of fundamental period but also illustrate the apabilityof the estimation method during regular operation. It an be seen that the estimationresults are similar, exept of trivial variation in sample.In the �rst step, the simulative evaluation based on the MPT-system in Eq. 1.1 is per-formed. Time-invariant frequeny-�at fading hannels are onsidered to model the han-nels of the MPT-system. AWGN and the pump signal represents the additive systeminterferenes, whih disrupt the telemetry signal at most and ause erroneous data dete-tion. The aim of this simulation is to determine the e�ieny of the proposed shemesin deteting a BCPM modulated telemetry signal with the arrier frequeny of 40 Hzand a data rate of 40 bit/s for the ase when the reeived signal is a�eted by randomlygenerated �at fading hannels, Gaussian noise and interferene pump signal. Thereforewe perform for di�erent media noise with the same SNR 100000 Monte-Carlo trials. The
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Fig. 3.20: Estmation results of fundamental period during valve o� and regular operationrange of SNRs is from 0 dB to 30 dB. The pump signal reorded at the test borehole isused to model the interferene, thus the simulations orrespond with the real situations.Using the statistis on the value of SIR provided in Fig. 3.19, SIR of -15 dB is onsideredin the simulation and the results are thus related to a moderate situation.The parameter setup for the proposed shemes are summarized in Table 3.1.Sampling rate fs = 1024 [Hz℄Filter length L = 31 [ms℄Range of delays τ1 = −20 [ms℄ and τ2 = −τ1Step size µ = 10−4Adaptation time 20 [s℄Averaging length M = 21, 5Table 3.1: Simualtion parameter setup for the proposed semi-blind proessing shemesThe simulations results are provided in Fig. 3.21 as BER vs. SNRs and ompared tothe situation where no proessing is performed as well as to the situation where theproessing is arried out by the pump anellation method based on pump strobe sensors.As expeted, MIMO semi-blind soure separation sheme yields best performane andhelps not only in suppressing the pump interferene signal but also in hannel equalizingand de-noising the reeived signal from the Gaussian noise. Obviously, the BER resultsare improved as the SNR inreases. From the BER results, no signi�ant di�erenes are
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Fig. 3.21: Simulative performane analysis of the proposed semi-blind proessingshemes in terms of BER vs. SNR at SIR = −15 dBnotied between the TD-AS sheme withM = 21 and the approah based on pump strobesensors.In the seond step, �eld-test data sets are analyzed to experimentally verify the perfor-mane of the algorithms as well as the appliability of the simulations regarding realsituations. In this part, the BER ount or frequeny is used as the performane measure.
84 �eld-test data sets orresponding to 60000 bits are involved in the evaluation. A sum-mary on evaluated �eld-test data is given in Table 3.2 and the parameter on�gurationis the same as in Table 3.1.Low data rate senario R = 5 [bps℄ 30000 bitsHigh data rate senario R = 20, 25, 30, 35, 40 [bps℄ 30000 bitsTable 3.2: Field-test data setup involved in the evaluation of semi-blind shemesThe evaluation results illustrated in Fig. 3.22 are in aordane to the simulation ones.The performane is not signi�antly di�erent from eah other for all the disussed algo-rithms and all methods deliver almost omparable performane. Further �eld-test databased evaluations shown in Fig. 3.23 indiates that a signi�ant performane improve-ment an be ahieved by ombining single hannel TD-AS and CMA shemes. The blokdiagram of Fig. 3.24 demonstrates the struture of ombining single hannel semi-BSEbased on the TD-AS and semi-blind CMA.
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Fig. 3.22: Field-test data based performane analysis of the proposed semi-blindproessing shemes
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CMAFig. 3.24: Conept blok diagram of ombining single hannel semi-BSE based on theTD-AS and CMA3.4 Summary and onlusionIn this hapter, two semi-blind estimation shemes based on telemetry and/or interfer-ene properties were proposed mainly to support interferene suppression enounteredin MPT appliations: one uses modulus/envelope properties of both telemetry and in-terferene signals, and the other expliitly speial properties of RMP interferene signal.The appliation of both algorithms requires a-priori information about the fundamentalperiod of the pump interferene signal. Depending on the applied data rate, we an pro-eed from the narrowband or wideband system assumption. Aordingly, the amount ofinterferene being taken in the transmission bandwidth is also varied. Both approahesare analyzed using simulation as well as �eld-test data measurements and ompared toone that utilized pump strobe sensors installed at pumps to remove the pump signal. Inthe simulation part, the analysis was for a high data and AWGN system senario usingreal pump measurements and �at-fading hannels. In the seond part, the measurementsfrom the test boreholes inlude �eld-test data of di�erent data rates possibly a�eted bythe multipath mainly at high data rates. The results indiate that although MIMO semi-blind soure separation method using envelope property of telemetry and interfereneyields best performane, it is less robust than the semi-blind soure extration methoddue to the possible divergene phenomenon espeially for the wideband/high data ratetransmission ase. Another reason for hoosing extration sheme over the separation one,is its simple single reeiver struture and signi�ant performane improvement ahievedby CMA post-proessing. Next to this, additional researh ould further examine thelatter in the ontext of two-reeiver struture. Even though these methods work in realenvironments, estimating and speially traking of required a-priori information about theinterferene signal not only introdues a big hallenge to pratial appliations but alsoinreases system omplexity. Based on this investigation, an extension proposal apable ofextrating interferene without employing any a priori knowledge about the interfereneshould be studied. Furthermore, the two reeiver struture available in the MPT systemarhiteture o�ers further researh aspets to be dealt with in this dissertation.



Chapter 4Referene signal-based proessingshemes
The semi-blind signal proessing shemes proposed in Chapter 3 demand a-priori in-formation and show moderate performane. These derease their usefulness in pratialappliations. Therefore, the training sequene faility embedded in the startup sequene isutilized for algorithm development. Sine available tehnology based on the two-reeiverstruture is of eonomial and e�ieny interests, this hapter onentrates on onep-tualizing estimation shemes based on a referene signal ombined with the two-reeiverstruture available in MPT. In this ontext, the reliability and e�ieny of hannel esti-mation is disussed. Afterwards, di�erent reeiver strutures and estimation onepts areproposed to provide e�ient estimation and traking faility to update the estimation dur-ing the regular operation. Consequently, the e�ieny and pratiability of the proposedalgorithms in estimating the telemetry signal is tested and ompared using �eld-tests dataaquired from di�erent rigs.4.1 Inferior hannel estimationIt is di�ult to reliably estimate the hannel beause of substantial strong pump inter-ferene inherent to the MPT system. However, for high signal to interferene ratios itis still possible to ahieve good hannel estimation, but reliable hannel estimation inMPT system, in whih the referene signal is almost immersed in strong interferene, ishallenging.The problem of reliable hannel estimation an be dealt with either by removing theinterferene in advane and preeding the hannel estimation or estimating the hannelin the presene of interferene [49℄. The �rst approah is ine�ient beause of the on-omitant distortion of the transmitted signal, whih indues an inaurate hannel esti-mation/equalization as well. Di�erent estimation methods based on the seond shemeare also investigated and ompared in [99℄. Results reported in [99℄ demonstrate the lim-ited and SIR-dependent performane of these methods as well. Moreover, due to the lakof a training sequene for the pump signal, it is not possible to exploit the strutureproperty of MIMO hannel o�ered by the MPT system arhiteture and aordingly thereeiver struture is redued to a Single-Input Multi-Output (SIMO) system. In addition,it is shown in [99, 49℄ that a layered equalization sheme, where the o-hannel pump50



Chapter 4. Referene signal-based proessing shemes 51interferene is subtrated out from all reeived data and eah reeived data is equalizedthereafter, is muh more e�ient.It should be notied that, in the subsequent hapter a reliable method of hannel esti-mation is developed to extrat hannel impulse responses (CIR), supporting simulationstudies of this work. In this hapter a di�erent estimation and detetion approah for theMPT system with the two-reeiver struture is proposed, where the fous is on anellingthe interferene while simultaneously deteting the desired telemetry signal.4.2 Straightforward signal estimationConventional interferene anellation is performed by feeding a referene of interferer toa reeiver having struture as shown in Fig. 4.2 [40℄. Sine no referene signal is avail-able for the pump interferene, the two-reeiver struture of MPT system is utilized toful�ll the task of anelling interferene [24℄. Two-reeiver based interferene anellationtehnique presented in [24℄ was shown to be highly e�etive in suppressing the inter-ferene, working without any knowledge of the interfering signal and any pump strobesensors. The major drawbak of this sheme is the inability of adaptation. Therefore, thereeiver struture has to be optimized to inlude both adaptive interferene anellationand hannel equalization features. To this end, two kinds of adaptive reeivers have beenproposed. The �rst, alled here asade interferene anellation and equalization, has the
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signalFig. 4.1: Coneptual diagram of onventional interferene anellation in aommuniation systemsame reeiver struture as presented in [24, 80℄. The seond sheme, termed joint interfer-ene anellation and equalization, involves a multihannel adaptive reeiver algorithm.Both of these reeiver algorithms utilize a referene signal to adaptively noth out theinterferer and extrat the telemetry signal. The adaptive proessing an be aomplishedby applying the well-known adaptive weighting shemes suh as sample matrix inversion(SMI), least mean square (LMS), and reursive least square (RLS) [100℄. The referenesignal is usually provided by transmitting a training sequene known a priori to reeiver.Suh kind of signal is also referred to as temporal referene and an be a data signal orother appropriate signal suh as hirps proposed for the synhronization [67, 42℄ 1.1 Knowledge on signal arrival diretion is alled spatial referene.



Chapter 4. Referene signal-based proessing shemes 52The urrent MPT system provides training sequene faility in the form of data signal aswell as synhronization hirp. Providing a referene signal during the regular operationposes a great hallenge. One possibility to form a referene signal after terminating thetraining sequene is the re-modulation of the demodulator deision i.e., the so-alled dei-sion feedbak (DF) operational mode [67℄. Provided deision error rates lower than 10−2,the obtained referene signal is still of su�ient quality to allow e�ient traking [67℄.An alternative approah to avoiding suh errors is to deploy periodi training sequenee.g. synhronization hirp [67℄. Thus both shemes proposed in this setion are apable oftraking using the referene signal generation approahes.In the next two setions, the disussion and the realization of both approahes are basedon realisti MPT environment and ommuniation hannels.4.2.1 Casade interferene anellation/equalizationIn this setion, the two-reeiver struture available in the MPT system and the speialfeature of startup sequene is utilized to perform traditional interferene anellationbased on a referene signal [40℄. As shown in Fig. 4.2, this sheme onsists of a asadearrangement of interferene anellation and equalization setions.
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Fig. 4.2: Blok diagram of the asade interferene aneller/equalizerThe interferene anellation algorithm is initially adjusted during the VO period of thestartup sequene to noth out the interferene. Residual signal distortions mostly ausedby the ommuniation hannels are to be ompensated at the equalization setion. Theequalizer initial adjustment is ahieved using the training sequene of the startup sequene[24℄. However, the asade interferene anellation/equalization o�ers simple reeiver ar-hiteture and low omputational e�orts, but su�ers from two important problems [40, 70℄.The �rst one is the interferene adaptation. In other words, the adjustment of the inter-ferene anellation setion presribes VO phase, whih is not supported by the systemduring the regular operation. The seond one, whih limits the performane of the as-ade interferene anellation/equalization during the regular operation, is the preseneof the telemetry signal in both reeivers [40℄. In this ase, not only the interferene butalso parts of the telemetry signal an be removed by the interferene aneller and ausedperformane redution of the system.



Chapter 4. Referene signal-based proessing shemes 53An alternative estimation sheme, alled here joint adjustment of interferene and equal-ization setions, is proposed to deal with traking problems of the asade struture.The initial adjustment of both interferene and equalization setions is performed in thetraining phase, whih in turn failitates traking during regular operation.Realling the mathematial desription of the interferene removal sheme based on two-reeiver struture inEq. 1.3 the orresponding equations for the asade reeiver strutureand adaptive joint estimation approah are derived as follow:
y2(k)− h̃1(k) ∗ y1(k) = h̃2(k) ∗ x2(k) + ṽ(k) , (4.1)or
y2(k) = h̃1(k) ∗ y1(k) + h̃2(k) ∗ x2(k) + ṽ(k) , (4.2)where h̃1(k) = h̃21(k), h̃2(k) = h22(k)− h̃21(k) ∗ h12(k), ṽ(k) = v2(k)− h̃21(k) ∗ v1(k), and

y1(k), y2(k) and x2(k) are the reeived and training signals respetively. v1(k) and v2(k)are zero-mean additive white Gaussian noise. It should be noted that Eq. 4.1 is used todeliver the estimation for the telemetry signal, whereas Eq. 4.2 an be used to estimatethe parameters required by Eq. 4.1.
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Fig. 4.3: Coneptual diagram of joint estimation for the asade reeiver strutureA simpli�ed blok diagram for the estimation strategy is illustrated in Fig. 4.3, where
ŷ2(k) is the output of the adaptive �lter and the di�erene e(k) = ŷ2(k)− y2(k), betweenthe reeived and �lter output signals is applied to the adaptation algorithm. The vetorrepresentation is suited to demonstrate the adaptation proedure. Assuming that the �lterlength equals to L, the vetor representation of ŷ2(k) at time index k is given by

ŷ2(k) =

L−1∑

l=0

h̃1(l)y1(k − l) + h̃2(l)x2(k − l)

= h̃T
φ(k) , (4.3)where h̃ =

[

h̃1,0, h̃1,1, · · · , h̃1,L−1, h̃2,0, h̃2,1, · · · , h̃2,L−1

]T and φ(k) =

[y1(k), · · · , y1(k − L+ 1), x2(k) · · · , x2(k − L+ 1)]T .



Chapter 4. Referene signal-based proessing shemes 54The �lter oe�ient are adjusted so as to minimize the performane funtion, whih willbe de�ned in the sequel, by employing simple adaptation algorithms suh as standardRLS, whih has good numerial stability [10℄. Sine the signal as well as environmentharateristis ould be time-variant, the use of an adaptive proessing sheme is preferred.Reursive least square algorithm is a lass of adaptive algorithms based on the leastsquares (LS) riterion, in whih the ost funtion to minimize is a sum of squared errorsgiven by [10, 110℄
JLS(k) =

k∑

i

ρi |e(k − i)|2 , for 1 ≤ i ≤ k . (4.4)Sine both urrent and all past inputs samples are involved in the estimation, the algo-rithm o�ers fast onvergene at the ost of inreased omplexity. The forgetting fator ρis purposed to assign di�erent weighting for the urrent and previous errors in the ostfuntion. The minimization of the the LS ost funtion is ahieved by setting its gradientto zero (∇h̃JLS(k) = 0) [110, 70℄.
∇h̃JLS(k) = ∇h̃ k∑

i

ρi
∣
∣
∣y2(k − i)− h̃T

φ(k − i)
∣
∣
∣

2

= ∇h̃ k∑

i

ρi
[

y2(k − i)− h̃T
φ(k − i)

] [

y2(k − i)− h̃T
φ(k − i)

]∗

= ∇h̃ k∑

i

ρi
[

|y2(k − i)|2 − 2h̃T
φ(k − i)y∗2(k − i) + h̃T

φ(k − i)φH(k − i)h̃∗
]

=

k∑

i

ρi
[

−2φ(k − i)y∗2(k − i) + 2φ(k − i)φH(k − i)h̃]
= −2p(k) + 2Rφφ(k)h̃ , (4.5)where

Rφφ(k) =

k∑

i

ρiφ(k − i)φH(k − i)

p(k) =

k∑

i

ρiφ(k − i)y∗2(k − i) .The minimum of the LS ost funtion is obtained byh̃(k) = R−1
φφ(k)p(k) . (4.6)The LS solution an be obtained by rewriting Eq. 4.4 in a reursive manner as follows:

JLS(k) = JLS(k − 1) + |e(k)|2 . (4.7)Aordingly Rφφ(k) and p(k) an be alulated reursively by:
Rφφ(k) = ρRφφ(k − 1) + φ(k)φH(k)
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p(k) = ρp(k − 1) + φ(k)y∗2(k) . (4.8)The oe�ient vetor h̃ an be aulated with a matrix inversion of Rφφ(k) by solvingEq. 4.6. To avoid the time onsuming matrix inversion operation, the matrix inversionlemma (Haykin, 1996)

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1is used [110, 24℄. By replaing A = ρRφφ(k − 1), B = φ(k), C = 1 and D = φ(k)H ,
Rφφ(k)

−1 an be aulated with Eq. 4.7 diretly.
R−1

φφ(k) = ρ−1
(
R−1

φφ (k − 1)−G(k)φH(k)R−1
φφ(k − 1)

)
, (4.9)where G(k), also known as Kalman gain vetor or adaptation gain vetor, is de�ned by

G(k) =
R−1

φφ(k − 1)φ(k)

ρ+ φH(k)R−1
φφ(k − 1)φ(k)

. (4.10)The adaption equations is derived by inserting Eq. 4.9 and Eq. 4.8 into Eq. 4.6 asbelow: h̃(k) = ρR−1
φφ (k)p(k − 1) +R−1

φφ (k)φ(k)y
∗
2(k)

= h̃(k − 1)−G(k)φH(k)h̃(k − 1) +G(k)y∗2(k)

= h̃(k − 1)−G(k)
(

φH(k)h̃(k − 1)− y∗2(k)
)

= h̃(k − 1)−G(k)e∗(k) (4.11)An estimate of h̃ delivers required update for interferene anellation as well as equalizersetions of the asade system. Whereas the estimation for the interferene anellationsetion is fed diretly to the system, the estimation for the equalization setion has to beinversed to obtain the equalizer oe�ient. This an be performed by a time- or frequeny-domain approah. It must be notied that di�erent struture of detetion and estimationproedures introdues a proessing delay to the system as well.On omparing the VO-based and training-based (TB) estimation shemes, the impulseresponse of the interferene aneller and the equalizer output are onsidered. Fig. 4.4shows the interferene aneller estimate based on both VO and training sequene atdi�erent data rates. It is seen that TB sheme delivers the same estimation result of thehannel impulse response as the VO-based approah. Aordingly, the estimation aurayof the interferene aneller setion is a�rmed.The e�ieny of the equalizer setion in reonstruting the distorted signal at di�erentdata rates is illustrated in Fig. 4.5. It is observed that the equalized signal exhibits fewerdistortions, whih is also a veri�ation of the estimation auray for the equalizer setion.The spetrogram of the reeived and proessed signals in Fig. 4.6 and Fig. 4.7 show thefat that despite of the joint estimation the algorithm still attempts to remove the desiredtelemetry signal. Under this irumstane the joint estimation sheme might also delivererroneous results [40℄. In other words, the solution is not unique.
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Fig. 4.6: Spetogram of the unproessed reeived signals
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Fig. 4.7: Spetogram of the proessed signal using asade interferene aneller/equalizerproper and faster onvergene. To inrease the estimation trustfulness a reursive shemean be followed, where a part of training sequene is used to obtain an estimate of theequalizer and the equivalent hannel impulse response. This estimation serves as a param-eter initialization and assists to provide an update for interferene aneller using anotherpart of the training sequene. The idea is borrowed from turbo oding and is promisingprovided that the hannels do not hange rapidly. Aordingly, a reursive hannel iden-ti�ation and telemetry signal estimation an be used to solve the hannel identi�ationwith regular operation.Another shortome of the asade sheme is that the performane of this method is highlydependent on the �lter length. Thus a priori knowledge on the hannel length is neessaryfor e�ient work of this sheme.



Chapter 4. Referene signal-based proessing shemes 584.2.2 Joint interferene anellation/equalizationThe main issue to be disussed in this setion is to mitigate signal distortion subjet tohannel and interfering signals jointly. The problems inherent in the asade interfereneanellation/equalization provide the motivation to reonsider the reeiver arhiteture.An alternative is to use a joint interferene anellation/equalization struture [40, 81℄.Suh reeiver arrangement does not exhibit basially the de�ienies of the previous stru-ture. In this sheme both reeived signals are fed to the so-alled multihannel adaptive
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Fig. 4.8: Blok diagram of the joint interferene aneller/equalizerequalizer and proessed jointly to reover the desired telemetry signal. In other words, thespae diversity reeption available in the system o�ers deploying spatial signal proessingtehnologies, where the signal of di�erent reeivers are ombined to ombat the hannele�ets due to multipath and redue the potential interferenes [55, 60, 48, 82℄. To thisend, two well-known shemes are proposed: diversity ombining and adaptive arrays, alsoknown as smart arrays. In this regard, the onept of optimal ombining is introduedaiming to maximize the signal-to-interferene-noise-ratio (SINR) at the reeiver outputs[67, 55℄.Traditionally adaptive arrays are deployed in environments featuring no fading and ableto suppress an interfering signal, provided the angular separation between the interfererand signal of interest is large enough [55℄. However in the MPT system similar to mobileradio systems due to the multipath the phase of signals is independent of eah other, ifthe distane between the reeivers/transmitters is greater than half of a wavelength [55℄.Sine the interferene soure (pump signal) is at the surfae and the telemetry signalat the down hole, the aforementioned ondition on the distane among the transmittersholds true in the MPT system. Thus, although the MPT environment di�ers from thatof typial adaptive arrays system, appliation of adaptive arrays or optimal ombiningtehnologies is yet of distint advantages [67, 55℄.An extensive performane evaluation of optimal ombining shemes for oherent dete-tion of PSK signals subjet to �at fading (Rayleigh hannels) is given in [55℄. The re-sults reported in [55℄ inlude both analytial and simulative evaluations and illustratethe superior BER performane of the optimal ombining over the traditional diversityombining shemes e.g. maximum ratio ombining (MRC) with o-hannel interferenes.Aordingly the performane gain ahieved by optimal ombining is a fator of 5-10 [dB℄[55, 87, 40℄. Sine the statisti of mud hannels is not yet spei�ed, it is extremely di�ultto provide an analytial performane evaluation for optimal ombining shemes in MPT



Chapter 4. Referene signal-based proessing shemes 59systems. Therefore, the performane evaluation is based upon simulation and �eld-testsdata measurements obtained from di�erent boreholes. The joint interferene anellationand equalization is referred to as the optimal ombining sheme proposed in this work.The straight forward signal reovery of the joint sheme provides simpliity and diretnessfor the traking task. Similarly, the multihannel adaptive equalizer is initially adjustedduring the training proedure. The multihannel adaptive equalizer an be traked eitherby a deision feedbak approah or using periodially transmitted signals (e.g. synhro-nization hirps). A blok diagram of the proposed reeiver is depited in Fig. 4.8. Theproposed sheme proesses the reeived signals so as the telemetry signal omponentsorrelated with the temporal referene are enhaned and unorrelated ones are removed.Therefore interferene and noise an be suppressed in this way. Furthermore the proposedoptimal ombining sheme is able to redue the e�ets of dispersive or frequeny seletivehannels. This relies on the assumption that the autoorrelation funtions of telemetrydata and referene signals are lose to eah other [67℄.Equalizer optimization based on adaptation riteria is a tradeo� between the struturalomplexity and the measure of ommuniation quality generally in terms of BER. Con-erning this matter, the MSE riterion in spite of simple adaptation struture results ininferior BER performane and aordingly is not quali�ed [87, 36℄. To this end, the adap-tation algorithm based on RLS riterion is also applied here to adjust the oe�ient ofmultihannel adaptive equalizer. By speifying the error signal as e(k) = x̂2(k) − x2(k)with x̂2(k) = w̃Tφ(k), φ(k) = [y1(k), · · · , y1(k − L+ 1), y2(k) · · · , y2(k − L+ 1)]T theequalizer update equation is obtained as follow:w̃(k) = w̃(k − 1)−G(k)e(k)∗ , (4.12)where w̃ = [w̃1,0, w̃1,1, · · · , w̃1,L−1, w̃2,0, w̃2,1, · · · , w̃2,L−1]
T . Similarly G(k) is de�nied byEq. 4.10.It should be notied that the multihannel equalizer is a simpli�ed version of the jointinterferene anellation/equalization struture proposed in [40℄ and solely onsists of feedforward transversal �lters. The most important issue to be emphasized is that the pro-essing proedure is idential for the involved signals in the joint sheme. To this end,the onept of reeivers splitting into the referene and reeived signals in the asadestruture is abstrated in the joint struture [40℄. The spei�ation to be implied is thatthe multihannels have to provide new information about the interferene or/and teleme-try signals. The multihannel adaptive equalizer has the ability of rejeting narrowbandinterferenes without any requirement on having referene for the interfering signals. Suhequalization sheme employs available diversity in systems with parallel fading hannelsto redue the e�et of interferene orrelated from hannel to hannel [87℄. In other words,available diversity required for fading protetion is sari�ed in order to suppress the in-terferene. Sine the ommuniation quality is mainly degraded by the pump interferene,the arisen diversity loss is of less importane in the ontext of MPT multi-signal system.A better performane an be ahieved by inreasing the number of reeivers to attainadditional hannels at the ost of omputational e�ort [55, 40℄. However, providing therequired diversity in the MPT system might be restrited. In one hand, due to ertainhousing of rigs, reeiver plaing is spatially limited. In the other hand, installing additionalreeivers results in additional osts and is �nanially less attrative.The spetrogram presentation of the reeived signals in Fig. 4.6 and the proessed ones
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Fig. 4.9: Spetogram of the proessed signal applying optimum ombining jointinterferene aneller/equalizerin Fig. 4.7 and Fig. 4.9 shows the improvement of the signal strength and veri�es thesuperior performane of the optimal ombining sheme promised by the theory.The onvergene behavior of the joint multihannel sheme at di�erent SIRs is analyzed.The results in Fig. 4.10 show that the initial onvergene performane is not a�etedseriously by SIR at the reeiver, but the residual error is inreased at poorer SIRs. Inthis regard, the amount of training sequene required for the estimation with a onstant�lter length an be redued. This means less redundany, higher data rate as well as fasttraking.E�ient suppression of interferenes whose power is muh greater than that of the teleme-try signals and/or those of large numbers might require applying larger �lter lengths andaordingly larger amounts of referene signal. Fig. 4.11 shows the onvergene rate orthe amount of training sequene required by the algorithm at di�erent �lter lengths.As stated in previous hapters, more than one pump is involved in the drilling proess. Theonsequene is twofold: inreasing the number and the bandwidth of in-band interferene.Thus examining the ability of the algorithm in rejeting multiple pump interfering signalsis of great interest. On this aount �eld-test data from a borehole running two pumps isonsidered. The spetrogram of the reeived and proessed data in Fig. 4.12 and Fig.4.13 shows that a distint improvement of the signal strength (SINR) an be ahieved.
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Fig. 4.10: Convergene evaluation of the joint multihannel sheme for di�erent SIRs regimes
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Fig. 4.11: Convergene evaluation of the joint multihannel sheme for di�erent setup of�lter lengths4.3 Pratiability and performane evaluationThe performane evaluations enlose both simulative as well as �eld-test data measure-ments.
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Fig. 4.12: Spetrogram of the unproessed reeived signal distorted by a widebandtwo-pump interferene
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Fig. 4.13: Spetrogram presenting the ability of optimum ombining joint interfereneaneller/equalizer in rejeting wideband two-pump interferene



Chapter 4. Referene signal-based proessing shemes 63The �rst step in analyzing proposed algorithms in Setions 4.2.1 and 4.2.2 is to providea omparative study on their stability and robustness. The aim of this study is to showwhether a parameter readjustment is required for every measurement and/or rig envi-ronments. Suh requirement makes the algorithms, even with a promising performane,unattrative for real MPT appliations. Sine the performane of the algorithms dependson the �lter length setup, the BER vs. the �lter length L is used to show the stabilityanalysis. To evaluate the stability, sample �eld-test data of di�erent data rates (R =5,20bit/s) are onsidered.
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Fig. 4.14: Stability study of asade and joint reeiver struture on low data rate�eld-test measurementsThe evaluation results are illustrated in Fig. 4.14 and Fig. 4.15. The optimal �lterlength is spei�ed by that given the lowest BER on the �gures. It an be seen that theBER performane of the joint interferene anelation and equalization sheme for bothhigh and low data rate ases is almost not a�eted by the �lter length setup. However,the asade interferene anelation and equalization sheme requires ertain �lter lengthadjustment to deliver best performane. Therefore, the results of stability analysis showthe bene�t of the joint sheme in MPT appliations.Initial performane study is arried out in a simulation environment, whih o�ers more�exibility and preise algorithm study. The simulation environment is arranged aordingto the MPT system model presented in Chapter 1, with extrated CIRs from both testand ommerial boreholes (see Appendix. B.1 and Appendix. B.2). The related issuesto CIR extrat will be disussed in depth in the following hapter.The aim of the simulations is to provide a quantitative/qualitative omparison of proposed



Chapter 4. Referene signal-based proessing shemes 64
0 100 200 300 400 500 600

0

0.2

0.4

 

 

B
E

R

R = 20 [bit/s]

L [sample]

Cascade structure

0 100 200 300 400 500 600
−1

0

1

2

3
x 10

−3

 

 

B
E

R

L [sample]

Joint multichannel structure

Fig. 4.15: Stability study of asade and joint reeiver struture on high data rate�eld-test measurementsalgorithms in deteting a BCPM of fc = 40 Hz and R = 40 bit/s at ertain SIRs andSNRs. For di�erent media noise (AWGN) with the same SNR, 100000 Monte-Carlo trailsare performed. The range of SNR is from 0 dB to 35 dB. The pump signal measured ata test borehole is used to model the interferene. Based on the investigation in Chapter3.3, a SIR of -15 dB is onsidered. The training sequene and �lters are of 13 s and 0.25s duration respetively. The simulation results are provided in Fig. 4.16 and Fig. 4.17as a funtion of BER vs. SNRs and ompared with the situation where no proessing isperformed. Additionally the results are ompared with the existing methods based on two-reeiver as well as single hannel and equal gain ombining (EGC) equalization based onRLS. In EGC sheme the reeived signals are proessed individually and then ombined.It an be seen that the joint sheme has a superior BER performane and o�ers a gainof about 10 dB over the other shemes, for both test and ommerial boreholes senarios.On omparing the joint sheme with the asade one, it an be onluded that in thepresene of noise the joint strategy is superior to that of asade.In addition to the simulations, �eld-test data aquired from di�erent rigs are analyzed toexamine the performane of the algorithms experimentally and to verify the simulationresults. Here the BER frequeny/ounts is used as the measure of performane. 60 �led-test data sets are involved in the evaluations. The evaluation results illustrated in Fig.4.18 are in agreement with the simulation results and verify the superior performane ofthe joint multihannel sheme. It should be noted that the �lter length of TB asadesheme has to be adjusted for eah data set and aordingly is of less pratiability.Aording to theoretial analysis inreasing the number of reeivers an lead to a on-siderable performane improvement. To verify performane gain ahieved by additional
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Fig. 4.16: Simulative performane analysis in terms of BER vs. SNR using CIRsobtained from a test borehole
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Fig. 4.17: Simulative performane analysis in terms of BER vs. SNR using CIRsobtained from a ommerial borehole
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Fig. 4.18: Field-test data based performane analysis of the referene signal-based shemesreeiver installation in MPT appliations a simulation environment of a three-reeiverstruture is arranged. The hannel impulse responses are obtained from a ommerialborehole with three-reeiver struture (Appendix. B.3). Suh simulations enable to de-liver a performane omparison in a quantitative point of view. It should be noted that allevaluations are arried out with the same simulation setup. The evaluation is twofold: InFig. 4.19 the BER performane is plotted versus SNR and Fig. 4.20 shows the perfor-mane gain in terms of BER vs. SIR. In both ase a performane improvement of almost6 dB an be ahieved. Sine there are not su�ient �eld-test reords of three-reeiverstrutures, the real data analysis is limited to a data set of di�erent arrier frequeniesand data rates. The evaluation results in terms of BER [%℄ and alulated SNR [dB℄ isgiven in Table 4.1. As seen the three-reeiver struture outperforms any other optionaltwo-reeiver strutures. The explanation for the inferior performane of three-reeiverstruture at fc = 40 Hz and R = 40 bit/s is the higher ISI to be ombated.The �nal step in examining the joint multihannel sheme, so far the most promisingsheme, is to evaluate the e�ieny with di�erent types of referene signals available inthe MPT system. In the previous evaluations, the referene signal used in the evaluation isa training sequene of data symbols having the same arrier and data rate as the telemetrysignal. Another possibility is to use the synhronization hirps so-alled fat-hirps (FC)as the referene signal. The analysis is performed for �eld-test data reorded at di�erentrigs and plotted in Fig. 4.21 as a funtion of BER ounts. The BER performane offat-hirp-based sheme at higher data rates is lower than that of training-based (TB) asre�eted in the results. The reason is twofold: First the available 0-40 Hz fat-hirp doesnot over the whole spetrum at a higher data rate and as a referene signal is of lesspower omparing to the TB alternative. Seond the autoorrelation funtion of FC is notas lose to that of a telemetry signal and thus the assumption required to redue the
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Fig. 4.19: BER vs. SNR for di�erent spatial diversity in the presene of AWGN andpump interferene with SIR = −15 [dB℄
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Fig. 4.20: BER vs. SIR for di�erent spatial diversity in the presene of pump interfereneand a noise free hannel
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fc [Hz℄, R [bit/s℄ Rx {1, 2, 3} Rx {1, 2} Rx {1, 3} Rx {2, 3}BER SNR BER SNR BER SNR BER SNR

9, 3 0 19.29 0 15.04 0 17.33 0 15.96
10, 5 0 15.33 0 12.64 0 15.24 1.84 5.85
15, 5 0 18.70 0 16.06 0 19.55 0 14.76
30, 10 0 20.79 0 17.66 0 20.80 0 17.27
20, 20 0 11.52 0.19 9.63 0.09 8.99 4.45 5.77
40, 40 12.59 4.10 13.54 3.58 6.91 4.43 12.88 3.57Table 4.1: Performane gain due to spatial diversity in �eld-test data based evalutiondelay spread of the dispersive hannel is not ful�lled. However a omparable performanean be still ahieved with alternative referene signals. Moreover, a larger referene signallength an be o�ered utilizing both TB and FC possibilities.
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Fig. 4.21: Field-test data based performane evaluation of joint multihannel shemewith alternative referene signals
4.4 Summary and onlusionIn this hapter, the asade and joint reeiver arhitetures are presented and analyzedfrom di�erent perspetives. Both approahes deploy a training sequene, transmitted forthe telemetry data at the beginning of drilling operation, to adjust the reeiver parameters



Chapter 4. Referene signal-based proessing shemes 69initially. Suh reeiver strutures failitate the parameter readjustment or the trakingtask during the regular operation using the estimated signal as a new training sequene.The main ahievement is to anel the pump interferene without requiring any kind ofknowledge about the interferene. The interferene rejetion ability is provided by themultihannel reeiver struture. A simulative and real-data omparison of the proposedmethods is onduted. It is shown that the joint interferene and anellation sheme hasthe best performane in terms of BER as well as stability. Based on this investigation,alternative interferene avoidane algorithms will be presented in the next hapter, whereneither multihannel reeiver struture nor knowledge on the pump signal is required.Hene, the system performane an be improved by utilizing the multihannel reeiverstruture to perform hannel equalization expliitly. In addition, it might be interestingto ombine the algorithms proposed in this hapter and semi-blind shemes to improvethe system performane as well as to support the traking task.



Chapter 5Interferene avoidane tehniques viatransform domain �ltering
The proposed approahes in the previous hapters prinipally aim the signal reonstru-tion without expliit onsidering the ause of distortions. This hapter fouses on individ-ual investigation and proessing of signal distortions. As disussed, the pump interfereneof non-stationary harater damages the telemetry data at most. Therefore, �rst of allthe interferene aused by the pumps is to be removed. Afterwards, ISI indued by themud hannel at high data rate transmission is to be equalized. The requirement to beful�lled is that the interferene rejetion has to be performed without any information onpump and telemetry signals and thus should be adjustable. Further investigations of thishapter onern di�erent proposals on hybrid algorithm development to ahieve e�ient,robust and simple data reovery in MPT appliations. The above-mentioned issues aredisussed in depth in the following setions.5.1 A review on transform domain �ltering issuesThe pump signal analysis in Setion 2.2 demonstrates that the pump signal is a kind ofnon-stationary narrowband interferene relative to the mud pulse telemetry signal. Similarinterferene signals are enountered in di�erent �eld of appliations suh as ommuniationsystems, digital synthesis of musial sound and biomedial signal proessing. There aremany publiations about the suppression of suh narrowband interferenes espeially indiret-sequene spread spetrum ommuniation systems [1, 30, 44, 6, 45, 64℄.An e�etive and widely applied sheme to suppress narrowband interferenes in a wide-band system is noth �ltering. Traditionally suh kind of �lters is realized in time domainand fund out to be infeasible onerning aspets suh as tunability, e�ieny, et. [102℄.Reent appliation of this approah is performed diretly in frequeny domain by meansof Fourier transforms. Suh transformations usually require additional preproessing suhas segmentation and windowing to avoid spetral leakage [102℄. Frequeny domain noth�ltering does not exhibit de�ienies and is of several advantages onerning ompliatedproessing issues [102℄. E�ient interferene suppression applying noth �lters relies onthe assumption of known interferene. The onept of adaptive nothing investigated in[103, 6℄ is a promising sheme. However, the noth �ltering enounters di�ulties in thepresene of multiple-tone interferenes if only one noth �lter is used. On the other hand,70



Chapter 5. Interferene avoidane tehniques via transform domain filtering71the desired signal might be distorted in the absene of the interferene. Besides, the noth�ltering usually does not work well if the interferene is of non-stationary nature [6, 103℄.
Original picture Salt and pepper noise Median filtered picture

Fig. 5.1: Image restoration using median �lterThe problem enountered in MPT is that, the non-stationary pump signal is strong, im-pulsive, of multiple tones in the frequeny domain, while the telemetry signal is very weakand of wide bandwidth. Thus, the traditional noth �ltering fails to work e�iently. Inimage proessing, the median �lter (MF) is widely used to suppress impulsive noises suhas �salt and pepper� noise in a orrupted image in Fig. 5.1, while preserving the �nedetails of the image by smoothing relevant signals [35℄. Similarly, reent ommuniationsystems based on diret-sequene spread spetrum pro�t from the median �lters to rejetnon-stationary narrowband interferenes. Utilizing median �lters for interferene suppres-sion is motivated by the fat that in the transform domain narrowband interfering signalsexhibit large and impulsive omplements ompared to the data signal [93℄. On this a-ount, the problem disussed in this thesis is similar to that exposed in image proessingand thus the idea of median �ltering will be investigated in this hapter [97℄.5.2 Appliation of transform domain median �lteringLinear �lter have been widely used in signal and image proessing. However, linear �ltersare often ine�ient in the presene of non-additive or signal dependent noise, in systemsexposing non-linearities and non-Gaussian statistis [8℄. The de�ienies an be overomesomehow by utilizing various types of non-linear �lters. Median �lter (MF), a non-linear�lter proposed by Tukey (1977) [13℄ is deployed in several areas of digital signal proessing.The major appliation �eld of median �ltering is to enhane and de-noise the orruptedimage information. The MF has the ability to remove narrowband and impulsive noisefrom orrupted pixels, whereas the image details are retained. Along with the superiorperformane of MF over linear smoothing approahes, MFs might result in additionalsignal distortions, espeially if the applied �lter length is large. Moreover, impulse likeimage information an be removed as well [35, 104℄. In past deades, the MFs have beenextended and improved in terms of apability and e�ieny. Max/median, multistagemedian, weighted median and median �lters with ontinuously adjustable �lter lengthhave been developed [104, 76℄. Additionally, in physiologial monitoring e.g. heart rateand blood pressure monitoring, the appliation of a hybrid MF is reommended by [88℄



Chapter 5. Interferene avoidane tehniques via transform domain filtering72to �lter out the measurement artifats. The proposed method utilizes both temporal andspatial diversities (Fig. 5.2) to align the artifats. Aording to [88℄ the spatial median�lter requires at least three-reeiver struture and is able to suppress artifats if themeasurements of one reeiver is orrupted. However the proposed temporal-spatial hybridsheme in [88℄ works with two-reeiver struture, but is apable to remove speial typesof artifats present in more than one reeiver.
y1(t)

y2(t)

y3(t)

(a) Temporal median filter (b) Spatial median filter

median fy(t¡ 2) y(t¡ 1) y(t)g medianfy3(t) y2(t) y1(t)g

Fig. 5.2: Di�erent realizations of median �lteringThe median �lter is a loal proessor, in whih the input sequene is slotted by the �lterlength of Nf and at eah position the output is the median value of the samples withinthe slot as
zi = median {yj|j = i− k, · · · , i+ k} .As mentioned, the non-linear median �ltering is of twofold e�ets: �rst the signal withsmoother transitions is retained, seond the signals elements narrower than k =

Nf−1

2
areremoved [102, 104℄.Conerning the MPT problem desription, the onept of median �lter is realized inthe frequeny domain and simpli�es suppression of the narrowband interferenes. Thesuppression proedure as demonstrated in Fig. 5.3 inludes the following steps:

FFT
Transform 

domain

MF

IFFT

y(k) Y (fk) z(k)Z(fk) = medianfY (fk)gFig. 5.3: Conept diagram of transform domain median �ltering- The reeived signal y(k) is transformed to the frequeny domain using Fast FourierTransformation (FFT)



Chapter 5. Interferene avoidane tehniques via transform domain filtering73- Fourier magnitude transform of the reeived signal Y (fk) is proessed by MF- M(fk) is the MF output of an odd sized �ltering window with the length Nf- The output of median �lter is transformed to the time domain using Inverse FastFourier Transformation (IFFT)It should be notied that overlap add preproessing is a part of suppression proedure.As long as the signals to be proessed exhibits a smooth frequeny response, the above-mentioned method is an e�ient interferene removal sheme and does not indue addi-tional distortions due to the undesired smoothing of the signal of interest. However, mostof the signals, e.g. pseudo-noise (PN) random binary sequenes, used in ommuniationsystems just as in MPT systems do not satisfy the smooth spetral ondition. On thisaount, some modi�ation of MF approah is required to deal with the signals with jitter-ing or non-smooth spetrum. A onditional median �lter (CMF) is proposed in [93, 102℄,where the signal omponents having values lose to their median is not hanged and onlyimpulsive omponents of large magnitude are removed. The proessing proedure is givenby
Z(fk) =

{
M(fk) if |Y (fk)−M(fk)| > C(fk)
Y (fk) otherwisewhere Y (fk) and Z(fk) are the �lter input and output signals respetively, M(fk) is themedian value and C(fk) is a variable threshold. Large impulses will be rejeted if theirduration in transform domain is narrower than Nf−1

2
. The median �lter length Nf spei�esthe maximum bandwidth of the impulsive interferene enountered and an be removed.The minimum magnitude of the impulse an be ontrolled by the parameter C(fk). Somepartiular features of this sheme an be summarized as below [93, 102℄:- The frequeny and bandwidth of the impulsive interferene is not required- No adaptation time after the transform is inluded and thus it is suited for removingnon-stationary interferenes- Removing multiple interferenes is performed automatially- Real-time realizations of this tehnique are feasibleIt is of great importane to speify C(fk) properly to avoid possible distortions resulted bythe undesired signal smoothing. Sine C(fk) has to be set individually at eah frequeny,it is hallenging to de�ne the threshold ondition. In other words, the threshold has to beadjusted with respet to the signal strength. On this aount, the normalized onditionalmedian �lter (NCMF) is proposed, where C(fk) is substituted by a onstant thresholdvalue C in the following equation:

Z(fk) =

{

M(fk) if |Y (fk)−M(fk)|
M(fk)

> C

Y (fk) otherwiseThe self-adaptive thresholding provided here is based on the examinations of probabilitydistribution funtion (PDF) of the magnitude of the Fourier transform of the signal of
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Telemetry data sampleFig. 5.4: Illustration of Fourier magnitude transform distribution in telemetry datainterest. A method of threshold establishment an be obtained if eah sample of thesignal spetrum is respetively ompared and normalized with the expeted value of thesignal spetrum. In the ontext of NCMF, the expeted value is replaed by the medianvalue. In the MPT system a PN sequene is modulated to form the telemetry signal. Asshown in Fig. 5.4 the PDF of Fourier magnitude spetrum of the telemetry signal isapproximately Rayleigh. The mean value of Rayleigh distributed signals is roughly 1.5times of the median value re�eted in the NCMF equation [93℄. The above-mentionedthresholding onept is drained by replaing the expeted value with the median valueand for the threshold value the 1.5 fator is onsidered.
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Fig. 5.5: Frequeny-domain demonstration of NCMF ability in pump interferene rejetion



Chapter 5. Interferene avoidane tehniques via transform domain filtering75For testing the appliability of NCMF in removing pump interferene a senario is on-sidered, where a sample data of BCPM modulated telemetry signal of 1000 bits, arrierfrequeny of fc = 10 Hz and data rate of R = 5 bit/s is transmitted. The pump signalpower is 10 dB higher than that of the telemetry signal. The parameter setup of median�lter is Nf = 25 sample and FFT length of 25 s. The frequeny-domain presentation of thereeived and proessed signals in bandpass is displayed in Fig. 5.5. It is notieable thatthe signal at the frequeny orrupted by the pump is smoothed without any requirementon a-prior knowledge. A proessing gain of SIR+ = 9.5 dB is ahieved utilizing NCMFsheme. Also the time-domain representation of the reeived and median-�ltered signalsin Fig. 5.6 demonstrates the improvement of detetion performane in terms of BER.
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Fig. 5.6: Time-domain demonstration of NCMF ability in pump interferene rejetionSome results on general residual error analysis of CMF and NCMF reported in [103℄indiate superior performane of these tehniques omparing to that of the noth �lteringsheme. In the ontext of MPT, the interferene rejetion ability is examined in somerespets. In the �rst step, the proessing gain ahievable by NCMF at di�erent SIRs isdetermined. For the above-mentioned senario the SIR at the output of median �lterSIRout is plotted vs. the one at its input SIRin. The results in Fig. 5.7 submit that asSIRin dereases, the SIR+ inreases.The seond part of examinations, whih onerns the impat of parameter setup on theperformane results, is twofold: �rst the window size of overlap add pre-proessing, seondthe smoothing length Nf . The evaluations with di�erent setups of window size and �lterlength is performed on a data set obtained from a borehole. The evaluation results in termsof BER and alulated SNR vs. window size as well as �lter length Nf are displayed inFig. 5.8 and Fig. 5.9.
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Fig. 5.7: Proessing gain (SIR+ = SIRout − SIRin) ahieved by NCMF
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Chapter 5. Interferene avoidane tehniques via transform domain filtering78To get an assessment of the e�ieny of proposed sheme in MPT appliations, the methodusing pump strobe sensors is also used in the investigations. Finally the evaluation resultsare ompared and disussed. However the three-reeiver struture faility in MPT systemalso o�ers deploying the spatial NCMF, but the performane of this sheme is ratherpoor. Beause the spatial NCMF is unable to remove interfering signals, if two or allof the reeived signals are a�eted. In this regard, a Single-Input Single-Output (SISO)system struture given in Fig. 5.10 is onsidered in the evaluations.Similar to the previous hapters, an initial performane study is arried out in a simula-tion environment arranged aording to the MPT system model presented in Chapter 1.Extrated CIRs from a test borehole (see Appendix. B.1) are used in the simulations.The simulation setup is summarized in Table 5.1.Modulation type BCPMCarrier frequeny fc = 40 [Hz℄Data rate R = 40 [bps℄Sampling rate fs = 1024 [Hz℄SNR range 0− 30 [dB℄Table 5.1: Simualtion parameter setup in the evaluation of NCMFFor di�erent media noise with the same SNR 100000 Monte-Carlo trials are performedin the simulations. The parameter setup for NCMF sheme is given in Table 5.2 andapplies to all evaluations in this setion.Setioning and windowing method Overlap addWindow type HammingWindow size 25 [s℄FFT size 25 [s℄Window shift perent 40%Median �lter length (Nf) 25 [sample℄ or 1 [Hz℄Table 5.2: Parameter setup of NCMFIn the simulative part of studies, an interferene free senario is onsidered, where thetelemetry signal is a�eted expliitly by the mud hannel and AWGN. The performaneresults are provided in Fig. 5.11 as a funtion of BER vs. SNR and ompared withthe one, where no proessing is performed. It is seen that the resulting BER by NCMFapproahes the one without proessing. Similar result has been reported in [93℄ as well,where the data signal has been subjet to a Rayleigh fading. In other words, the NCMFsheme does not degrade the system performane in the presene of the mud hannel.In addition to the simulations, �eld-test data obtained from di�erent rigs are analyzedto examine the performane of the proposed algorithm experimentally and to have aomparison with the performane of proessing utilizing pump strobe sensors.
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Fig. 5.11: BER vs. SNR results in absene of the pump interfereneFirst, the e�ieny of NCMF in removing the pump interferene is ompared to that usingpump strobe sensors by means of spetrogram presentation of the reeived and proessed�eld-test sample data. Fig. 5.12 and Fig. 5.13 on�rm the narrowband interferenesuppression ability of NCMF promised by the theory. Furthermore, the spetrogram ofproessed data in Fig. 5.13 and Fig. 5.14 demonstrates an even better e�ieny of theNCMF in omparison to the sheme using pump strobe sensors.Similarly 60 �eld-test data sets are involved in the evaluations and the BER fre-queny/ounts is used as the performane measure. The evaluation results illustratedin Fig. 5.15 show the ability of NCMF proessing approah in removing the pump inter-ferene. However the BER performane (lower than 10−3) of the method based on pumpstrobe sensors is partly better than that of NCMF, but in total both shemes are of om-parable e�ieny, espeially for the BER around 10−2. This is due to the fat that, theNCMF is not able to avoid the interferene omponents with SIR ≈ 0. In other words, ifthe FFT magnitude value of the interferene omponent is omparable with that of thetelemetry data, it annot be reognized as the interferene and removed by the NCMF.This might result in erroneous data detetion.It must be notied that a better performane utilizing NCMF an be ahieved by overallparameter optimization with respet to all �eld-test data, e.g. preise knowledge on themaximum bandwidth of pump interferene enountered in MPT systems. Beause of noneed on any kind of a-priori knowledge and ost-e�ieny, NCMF attains great attrationin MPT appliations. By deploying NCMF as a preproessing funtion to inrease the SIR,not only the synhronization task but also the reliability of hannel estimation and signaldetetion an be greatly improved.On this aount, it is also of great importane to investigate the e�et of NCMF on
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Chapter 5. Interferene avoidane tehniques via transform domain filtering82FC signals, whih are used for the synhronization and CIR extration. Aordingly, theimpat of the NCMF on the signal shape and the autoorrelation property of FC isdemonstrated in Fig. 5.16. Sine the FFT magnitude of FC signal is of less osillation,as expeted the NCMF does not indue notable distortions to the FC signal, whereasthe pump interferene is removed. Espeially the auto-orrelation funtion, an importantfuntion of synhronization and hannel estimation methods, is almost una�eted byNCMF. Sine synhronization is not the sope of this work, it is not further explored.Referring to the above-mentioned disussion, a reliable preproessing sheme for removingthe strong pump signal interferene is provided by NCMF. Sine the FC signal appliedfor the hannel extration does not experiene any additional distortions, more preiseCIR estimation an be delivered. The CIR extration issue is disussed in depth in thefollowing setion.
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Fig. 5.16: The impat of NCMF on the shape and the autoorrelation harateristi ofFC signal
5.3 Hybrid shemesThe issues of this setion are motivated by the investigations of the previous hapters.The strong pump signal inherent in MPT systems is the major di�ulty in auratehannel estimation and telemetry data reonstrution. By now, it is foused mainly onthe signal reovery without distint investigation of the distortions ause. The appliationof NCMF provides the faility to explore the interferene and hannel e�ets individually.



Chapter 5. Interferene avoidane tehniques via transform domain filtering83In other respets, signal reonstrution strategies an be developed muh more e�ientlyand reasonably. This setion investigates deployment of hybrid shemes, namely NCMFin ombination with other shemes proposed in this thesis. In this regard, the followingontributions are delivered in this setion:- Suggestion of shemes based on hybrid NCMF and lean algorithm to extrat themud hannel impulse response and deliver some knowledge on harateristis of thetransmission medium.- Investigation of NCMF in ombination with adaptive diversity ombing shemes;where shemes based on a training sequene as well as semi-blind approahes areonduted.- Real-world evaluation and omparison of the proposed shemes using �eld-test dataobtained from di�erent boreholes.5.3.1 Mud CIR extrat via ombined NCMF and CLEAN algo-rithmAs stated, the MPT hannel extration in this work is performed to support the simu-lation experiments. So far, onventional hannel estimation methods alone are not suf-�ient to ful�ll aurate hannel extration and deliver reliable information on behaviorof the transmission medium. Therefore, the deployment of additional signal proessing isreasonable to inrease the reliability of hannel estimation shemes. In this regard, theombination of NCMF and lean algorithm seems to be a suitable onstrution. In gen-eral, the hannel extration an be performed by applying a time- or frequeny-domaintehnique or a sliding orrelator [105℄.In this thesis, time-domain shemes are mainly used for the signal proessing and thus thehannel extration is also based on a time-domain sheme. The CLEAN algorithm is awell-known time-domain sheme for the hannel estimation, espeially in ultra-widebandsystems. Among the algorithms proposed for the hannel estimation, the CLEAN algo-rithm due to its simpliity and high-resolution apability is seen as a promising approah[101℄. The reason is that, the CLEAN algorithm diretly ompares the ross-orrelationfuntion (CCF) and auto-orrelation funtion (ACF) of the reeived and transmitted sig-nals to extrat the CIR. As shown in Setion 5.2.1 the ACF of the FC signal is una�etedafter applying NCMF and thus is a reliable harateristi to derive the CIR.The CLEAN algorithm is basially a deonvolution method, where the CIR is providediteratively. The basi algorithm is proposed in [90℄ for the narrowband hannel assumptionand is further enhaned to be appliable in wideband hannel haraterization [91℄. Themajor feature of the CLEAN deonvolution sheme is that the estimate of CIR ĥ(τ) ismodeled as a disrete FIR �lter. To extrat the CIR, the availability of a signal knownto the reeiver, also known as the template is assumed. The ACF and CCF propertiesof the template a�et the performane of this sheme. The synhronization hirps (FCs)imbedded in the MPT system serve as a template and an be deployed to extrat theCIR.The CLEAN algorithm is desribed in many publiations [101, 19℄ and di�erent realizationof this approah are proposed. In the following, the proedure of CLEAN algorithm applied



Chapter 5. Interferene avoidane tehniques via transform domain filtering84to the MPT system is demonstrated. If xFC(k) is the template signal and yFC(k) thereeived signal, eah iteration of the CLEAN algorithm to �nd the CIR involves thefollowing steps [101℄:1. A temporary hannel impulse vetor is de�nied by ck(τ) and initialized by zeros
c0(τ) = 0.2. The auto-orrelation of the template and the ross-orrelation of the reeived signaland the template is aulated as follows:

RxFCxFC(τ) = E [xFC(k)xFC(k + τ)]

RyFCxFC(τ) = E [yFC(k)xFC(k + τ)]3. A temporary vetor dk(τ) is de�ned and initialized with the CCF as d0(τ) =
RyFCxFC(τ)4. The relative time delay τ̂k = argmax

τ

|RyFCxFC(τ)| and the normalized amplitude
α̂k = RyFCxFC(τ̂k) are alulated.5. The CIR is reovered by ck(τ) = ck−1(τ) + α̂kδ(τ − τ̂k)6. The temporary CCF vetor is updated by dk(τ) = dk−1(τ)− α̂kRxFCxFC(τ − τ̂k).7. If the orrelation peak α̂k is below a set threshold value (e.g. −20 dB in this thesis)the algorithm stops and goes to step 8, otherwise it returns to step 4.8. The CIR is ĥ(τ) = ck(τ).As stated, the above steps are repeated till the signal energy desend below a prede�nedthreshold. The threshold of the peak path strength spei�ed in many publiations is inthe range of 15 - 25 dB. It must be noted that an optimal threshold is hosen by takingthe energy apture ratio (ECR) and the relative error (RE) into aount. In the following,the de�nition of ECR and RE is given [65℄:

ECR =
‖ŷFC(k)‖2
‖yFC(k)‖2

RE =
‖ŷFC(k)− yFC(k)‖2

‖yFC(k)‖2 .In the MPT system, to extrat the CIR, measurements of the boreholes onsidered, wherein ertain intervals of around 3.5 minutes a FC transmitted. The basi hannel extrationproedure is demonstrated in Fig. 5.17. As seen, the proedure inludes three steps:�rst the pump distortions are removed utilizing NCMF, seond a oarse synhronizationis performed to �nd the reeived template, and �nally the lean algorithm is appliedto extrat the mud hannel, namely the hannel from the drill bit to the surfae. The
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Fig. 5.18: Sample CIR extrated from �eld-test measurementsthreshold amounts 20 dB and is determined using ECR and RE. A sample extrated CIRis shown in Fig. 5.18, with ECR = 0.857 and RE = 0.175.Moreover, the extrated CIRs for all FCs of the measurements provides some information,e.g. how mud hannel hanges over time. An example of extrated CIRs is illustrated inFig. 5.19. As seen, the variation of the sample hannel over the time is marginal andthus the assumption of time-invariant hannel is eligible.In the �nal step of the examinations, the hannel frequeny response (CFR) of di�erentmeasurements is explored. Based on our observations exemplary shown in Fig. 5.20, itan be onluded that the mud hannel has a similar funtion of a low pass �lter and at-tenuates higher frequeny. Also, a frequeny seletive behavior of the hannel is expeted.As observed, the maximum delay τmax or the meaningful duration of the hannel mightbe up to 1 s. If this exeeds the symbol duration of transmitted data, due to the hannel
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Fig. 5.19: Observation of hannel behavior over the timefrequeny seletivity ISI distortions are aused. Therefore, for high data rates distortionsaused by the mud hannel are of the same importane as those aused by pump inter-ferene. In this ase, the hannel equalization is neessary for error free detetion of thetelemetry data.Moreover, an estimate of some important parameters to desribe the mud hannel har-ateristis e.g. the mean delay τ̄ and the root mean square (rms) delay spread τrms anbe obtained 1. An estimate of τ̄ and τrms for sample borehole measurements are given inTable 5.3.1 τ̄ =

kτmax∑

k=1

τk|ĥ(τk)|
2

kτmax∑

k=1

|ĥ(τk)|
2

, and τrms =

kτmax∑

k=1

(τk−τ̄)2|ĥ(τk)|
2

kτmax∑

k=1

|ĥ(τk)|
2

[15℄.



Chapter 5. Interferene avoidane tehniques via transform domain filtering87borehole τ̄ [s℄ τrms [s℄Test 0.0540 0.0699Commerial 0.1584 0.1347Table 5.3: Estimated τ̄ and τrms for sample boreholes
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Frequency [Hz]Fig. 5.20: Sample CFRs extrated from �eld-test measurementsBased on the investigations within the realms of the possibility, it an be stated, that themud hannel is approximately time-invariant and exhibits frequeny seletive property. Itmust be notied that providing a hannel model for mud transmission medium requiresspeial �eld-test measurements and goes beyond the sope of this thesis.5.3.2 Combined NCMF and adaptive diversity ombiningshemesThis setion deals with hybrid shemes aiming e�ient signal reonstrution. Signal dis-tortions aused by the interferene and the hannel in MPT systems are ompensatedindividually. In other words, a two-step sequential proedure is followed; �rst the signaldistortions aused by the pump interferene are suppressed utilizing NCMF, seond thedistortions aused by the mud hannel and/or by any other soure are equalized. By thismeans, however, the automati taking of interferene avoidane setion is ensured. Butfor the equalization setion the neessity as well as the strategy of traking has to be inves-tigated. In fat, development of a robust and ost-e�ient reeiver is pursued aordingto the MPT requirements in pratial appliations.Some fusion methods for hybrid signal reonstrution shemes using NCMF and adaptivediversity ombing are suggested. These tehniques rely on the multihannel CMA semi-blind and the TB joint multihannel algorithms of Chapter 3 and Chapter 4. In thefollowing, these methods are desribed and the advantage and drawbak of eah shemeis disussed.



Chapter 5. Interferene avoidane tehniques via transform domain filtering885.3.2.1 Hybrid NCMF and multihannel blind shemesThe ombination of NCMF and multihannel semi-blind shemes has the potential ofbeing a desired fusion method for MPT appliations in terms of automati traking duringthe regular operation. Suh reeiver arhiteture provides the faility of ompensation ofboth interferene and hannel e�ets without requiring any a-priori information. A blokdiagram of the reeiver arhiteture based on hybrid NCMF and a multihannel semi-blindsheme is illustrated in Fig. 5.21. Beause no VO and/or referene signal is required bythe proposed hybrid sheme, it is of great attration in real-time MPT appliations.
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Fig. 5.21: Blok diagram of hybrid NCMF and multihannel semi-blind shemeAs shown in Chapter 3, the multihannel (MC) blind and semi-blind signal reoveryshemes are not e�ient for both hannel equalization and/or interferene anelation.After removing the interferene, the multihannel sheme an be utilized to deal withthe hannel distortions. Provided the hannels are independent from one another, blindmultihannel equalization is almost feasible with robust and aurate estimation. Themultihannel struture, also known as SIMO system, is provided whether by the spaediversity e.g. two-reeiver struture of the MPT system or/and by the time diversitye.g. oversampling. Aording to [58℄, global onvergene of HOS-based tehniques (e.g.CMA) is proved in MC systems. Also, SOS of the reeived signals is su�ient for blindequalization having MC struture [58℄. As is generally known, two estimation poliiesan be utilized: estimate the hannels and apply either a nonlinear equalizer (e.g. Viterbialgorithm) or linear FIR equalizer e.g. Zero-Foring (ZF)/ Minimum Mean Square Error(MMSE) to reover the transmitted signal, or bypass the hannel estimation step andestimate the equalizer, in other words, the signal diretly [22℄. Due to the high robustnessand advantages for low omplexity online demodulation, the diret equalizer estimationis the most preferred sheme.In general, three kinds of MC equalizer estimations methods are available [58℄; Linearpredition (LP) method, signal subspae (SS) method and mutually referened equalizer(MRE) method. The latter is of good estimation auray, moderate omputational, losedform solution, globally onvergent, adaptive implementable and robust to SNR and ill-de�ned equalizer length. Therefore it is preferred at most in pratie.MC MRE sheme is investigated omprehensively in [21, 22℄ and ompared with the MCCMA sheme. However, the performane results of MC MRE approah is omparable to



Chapter 5. Interferene avoidane tehniques via transform domain filtering89that of MC CMA, even partly better in terms of onvergene rate, but is less reliable dueto the strit assumption of independent hannels. Sine MC CMA is also supported bysignal property restoration, it is seen as a more reliable approah in MPT appliations.To explore the signal orrelation in the MPT hannel, the orrelation between the reeivedsignals an be observed. Large reeiver separation leads to spatially unorrelated hannels.As mentioned before, the reeiver spaing in MPT system is restrited and results in higherorrelation. The orrelation oe�ients obtained from an example of �eld-test data inTable 5.4 on�rm this laim.
fc [Hz℄, R [bps℄ orrelation oe�ient
9, 3 0.7455
10, 5 0.8135
15, 5 0.7831
20, 20 0.5188
30, 10 0.6055
40, 40 0.3968Table 5.4: Correlation oe�ients in a representative �eld-test measurementTherefore, the MC MRE sheme solely relying on the assumption of unorrelated hannelsis less e�ient. Moreover, usually the system is redued to a SISO system and as expeted,the MC CMA also su�ers from the existene of loal minima and poor onvergene asshown in Chapter 3.The main drawbak of the proposed fusion method lies on the multihannel CMA semi-blind equalization setion. As mentioned, instability, divergene possibility and parameter-reliant performane of semi-blind CMA inrease the BER of telemetry system and makethe algorithm ine�ient in pratie.5.3.2.2 Hybrid NCMF and TB multihannel diversity ombining adaptiveshemesA more robust and reliable hybrid estimation approah is o�ered by realizing the equal-ization setion based on a training sequene sheme. In this regard, two onseutive ar-hitetures are oneivablle, disussed within this setion.Pre-NCMF and multihannel adaptive diversity ombining post-equalizationAording to the �rst proposal for the MPT reeiver struture, interferene avoidaneby deploying NCMF on eah reeived signal is arried out �rst. Afterwards the hannele�ets are equalized by exploiting the two-reeiver struture and training sequene failityin the MPT system. Note that automati taking is provided solely in the interfereneanellation part. The equalization setion is of adaptive struture and an be trakedeither by a deision feedbak approah or using periodially transmitted signals (e.g.synhronization hirps). The blok diagram of suh reeiver arhiteture is illustrated inFig. 5.22.
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Fig. 5.22: Blok diagram of hybrid pre-NCMF and multihannel post-equalizationThe onept of diversity and multihannel proessing is quite often used together. Ina multihannel system, the situation, where multiple replias of the same signals areobserved through multiple independent hannels, is desribed as diversity. Improved signalreonstrution quality (e.g. lower BER) and inreased hannel apaity or data rate areindiated as diversity gain [58℄.As generally known, there are di�erent proessing strategies for multihannel systems asbelow [58℄:- Seletive ombining, where the equalization is based on the best hannel. Despitesimpliity, this approah enounters with the problem of best hannel de�nition inthe onvolutive systems.- Separate proessing and post-ombining, where the equalization is performed sep-arately for eah hannel and then fed into an equal gain ombiner or maximumratio ombiner. This proedure maximizes SNR of desired signal in the presene ofAWGN.- Joint proessing, where the equalization is performed by joint proessing of thereeived signals to reonstrut the desired signal. This approah provides the bestperformane gain.In MRC, eah branh is saled prior to the ombining. In diret equalizer estimation,branh gains are obtained in a di�erent way than that in onventional MRC, where knowl-edge on the hannel and the SNR is required. As shown in Fig. 5.23, in the proposedMRC sheme the proessed branhes are saled by the orresponding branh gains andombined thereafter. The output of suh separate proessing and post ombining basedon MRC is given by [66℄
zMRC(k) =

D∑

d=1

λdzd(k) ,where λd represents the branh gain of the d-th branh and D is the number of diversitybrahes. There are some alternatives to provide an estimate of branh gains. In the �rstapproah alled here MRC (Type I), the branh gains are estimated during the training
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×

zMRC(k)

z2(k)

 2Fig. 5.23: Separate proessing and post-ombining based on MRCphase by alulating the orrelation oe�ient of the proessed signals and the trainingsequene at eah branh as below:
λd =

ρ2d
D∑

d=1

ρ2d

,where d ∈ {1, 2} and
ρd =

K∑

k=1

(zd(k)− z̄d) (x2(k)− x̄2)

√
K∑

k=1

(zd(k)− z̄d)
2

√
K∑

k=1

(x2(k)− x̄2)
2stands for the orrelation oe�ient of the orresponding branh, whereas zd(k) and x2(k)are the equalized signal of the d-th branh and the training sequene respetively. z̄d and x̄2are the mean values of K samples of the equalized and training signals. Another approahproposed in [66, 27℄ and here referred to as MRC (Type II), utilizes the normalizedvariane of the proessed/equalized signal samples to obtain the branh gains given by

λd =

K−1∑

k=1

(zd(k)− z̄d)
2

Kmax (zd(k))
.Usually the branh gains are normalized prior to the ombining as follows:

λd =
λd

λmax

,where λmax is the largest branh gain. In the following setion, a omparison of proposedMRC shemes are provided by analyzing a set of �eld-test data.It should be notied that due to the relative higher orrelation observed in telemetry han-nels, both separate and joint proessing shemes might deliver omparable performane[36℄.The main ahievement is that both reeiver setions operate without any knowledge aboutthe interferene and thus traking task regarding the interferene avoidane is ful�lled.
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Schematic of sample field-test recording frames

: FC

: DataFig. 5.24: The struture of �led-test data reord to larify the proedure of trakingexaminationTo explore if the proposed reeiver arrangement requires traking and how often thishas to be arried out, the alternative referene signals, FCs, are utilized to adapt theequalization setion. In the �rst part of evaluations, the equalizer adjustment is performedfor all data of eah �eld-test reord, having the strutute as in Fig. 5.24. In the seondpart of examinations, the equalizer is adjusted only one and is used for all data of theorresponding �eld-test reord.
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Fig. 5.25: Field-test data based performane evaluation to explore the traking neessityin pre-NCMF and multihannel adaptive diversity ombining reeiver-systemThe performane loss observed in the reeiver system without regular parameter re-adaptation in omparison to that with regular traking is marginal. Therefore the proposedfusion struture is bene�ial in terms of traking. In other words, a frequent traking ofequalizer setion is not required and it would be su�ient to renew the estimation oa-sionally.



Chapter 5. Interferene avoidane tehniques via transform domain filtering93Multihannel optimal ombining and post-NCMF The suess of joint inter-ferene anelation and equalization shemes is demonstrated in Chapter 4 and termed asoptimal ombining. The MPT reeiver arrangement at the surfae of the drilling rig resultsin diversity in interferene hannels and aordingly delivers superior performane overonventional diversity ombining shemes suh as MRC with o-hannels interferenes.The e�ieny of multihannel optimal ombining with o-hannel interferenes motivatesanother alternative onept for the MPT reeiver design. Aordingly, both interfereneand hannel e�ets are removed jointly by exploiting optimal ombining, where the re-eived signals are proessed in an adaptive manner so that telemetry signal omponentsorrelated with the temporal referene are enhaned and unorrelated omponents areeliminated. Afterwards omplementary interferene rejetion is performed by NCMF toombat with residual omponents of the pump interferene. The blok diagram of suhreeiver arhiteture is illustrated in Fig. 5.26.
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Fig. 5.26: Blok diagram of hybrid multihannel adaptive diversity ombining andpost-NCMFSimilarly, sine no knowledge about the interferene is required by the optimal ombiningmethod, the traking task an be aomplished during the regular operation. As statedin Chapter 4, both interferene and hannel distortions are treated jointly by the op-timal ombiner. The telemetry hannels are approximately time-invariant and thus theequalization of these distortions requires no traking. However, due to the unpreditablehanges of pump signal, the interferene harateristis are subjet to some hanges overthe time. Therefore, a need for the traking is expeted.For traking examination, the optimal ombiner adjustment is performed using FC signalsin front of eah data. Similarly, �rst the optimal ombiner is adjusted before eah datatransmission in �eld-test reords. In other words, the data detetion is supported byregular traking. In the seond step of evaluations, the optimal ombiner is estimatedonly one and is not updated for the rest of �eld-test data.From the evaluation results in Fig. 5.27, it an be seen that, the detetion performanewith regular parameter re-adjustment is partly better than that without traking. Con-sequently, the traking is seen to be of muh more importane in the proposed fusion
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Fig. 5.27: Field-test data based performane evaluation to explore the traking neessityin multihannel optimal ombining and post-NCMF reeiver-systemmethod. In other words, it would be bene�ial in terms of BER performane to renewthe estimation of optimal ombiner in ertain periods of time. Thereon, there are twopossibilities to aomplish the traking task:- Initial adjustment of adaptive optimal ombiner using a training sequene of datatype and traking by swithing to the deision feedbak mode during the regularoperation.- Initial estimation of adaptive optimal ombiner utilizing an alternative trainingsequene suh as synhronization FC signals and updating the estimation usingperiodially transmitted synhronization signals.5.4 Overall performane evaluationThe performane evaluations of this setion are mainly based on �eld-test data. Similarly,the BER frequeny/ounts is onsidered as the performane measure.Firstly, to demonstrate that the fusion of NCMF and multihannel CMA semi-blindshemes is of less e�ieny in terms of BER, 40 �eld-test data sets are proessed toompare NCMF and hybrid NCMF and multihannel CMA semi-blind sheme. As seenin Fig. 5.28 the performane improvement of proposed hybrid sheme is not onsiderableand on�rms the statements in Subsetion 5.3.2.1.In the rest of evaluations, 60 �eld-test data sets are onsidered. The proposed methodsin Subsetion 5.3.2.2 are evaluated in some respets. First, all proposed shemes are om-
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Fig. 5.28: Field-test data based performane evaluation of hybrid NCMF andmultihannel CMA semi-blind reeiver-arrangementpared onerning their performane with the urrent estimation sheme. Finally the moste�ient reeiver struture is spei�ed and disussed onerning omplementary improve-ments.By now the best performane of MPT system is delivered by ombining the methodsbased on pump strobe sensors and two-reeiver VO-based asade sheme. As mentioned,in the �rst part of examinations, the reeiver part with interferene anellation basedon pump strobe sensors is replaed by the NCMF and ompared with the original fusionstruture. The performane results illustrated in Fig. 5.29 demonstrate the omparableperformane of both fusion shemes. Aordingly, the reeiver part utilizing expensivepump strobe sensors an be suessfully substituted by the eonomi NCMF.Next step is to examine the algorithms based on hybrid pre-NCMF and multihanneladaptive diversity ombining post-equalization. First, the fusion of NCMF and separateproessing and post-ombining shemes suh as EGC and MRC proposed in Subsetion5.3.2.2 are evaluated and ompared. The evaluation results in Fig. 5.30 show that thefusion of NCMF followed by MRC (Type II) outperform other hybrid alternatives.Seond, the separate proessing part of the proposed hybrid sheme is replaed by thejoint proesser. The performane of the most e�ient hybrid sheme based on separateproessing namely ombining based on MRC (Type II) is ompared with the one based onjoint proessing. As stated, the telemetry hannels of MPT system are highly orrelatedand o�er marginal diversity. Therefore, the performane of hybrid sheme based on MRCseparate proessing is partly better due to SNR maximization as seen in Fig. 5.31.Finally, the multihannel optimal ombining and post-NCMF sheme is evaluated andompared with all previous hybrid shemes. From the evaluation results in Fig. 5.32, it
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Fig. 5.29: Field-test data based performane omparison of the urrent VO-basedasade MPT reeiver with pump strobe sensors and NCMF
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Fig. 5.31: Field-test data based performane omparison of hybrid pre-NCMF with bothMRC (type II) separate and joint proessingis seen that the multihannel optimal ombining and post-NCMF sheme is of superiorperformane ompared to other hybrid shemes. However, the performane di�erene isnot remarkable.Consequently, among the proposed hybrid methods, the one with simple and e�ienttraking faility is of pratial interest in MPT appliations. Realling the disussion onthe e�ieny of the optimal ombining with alternative referene signal in Subsetion5.3.2.2, the results of this sheme are also valid in all hybrid strutures of this approah.Conerning the investigations on the traking issue in this setion, it seems that, despitethe superior performane of multihannel optimal ombining and post-NCMF sheme, thefusion of pre-NCMF and separate proessing based on MRC (Type II) mostly omplieswith the requirements on traking and thus is seen as a promising reeiver struture inMPT pratial appliations. Furthermore, �eld-test data observations have been shownthat the synhronization failed, provided no pump interferene suppression in advane.This implies the importane of pre-NCMF for further proessing and reliable detetion oftelemetry data.Another observation is that, unlike the urrent MPT reeiver struture all proposed re-eiver strutures an be realized in baseband as illustrated in Fig. 5.33 and provide asimple and straightforward traking.
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Fig. 5.32: Field-test data based performane analysis of the most relevant hybrid shemes
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Fig. 5.33: Blok diagram of the baseband realization of the proposed hybridreeiver-arrangements5.5 SummaryIn this hapter, the NCMF widely used to rejet the nonstationary narrowband inter-ferene in diret sequene (DS) ommuniation systems is applied for MPT appliationsand adjusted to meet the system requirements. The installation of expensive pump strobesensors is not needed by applying NCMF with omparable e�ieny. Therefore, NCMFinterferene suppression sheme is not only of eonomial interests but also provides thefaility to extrat aurate CIR of mud medium if ombined with the CLEAN algorithmand to obtain useful information on the behavior of mud hannels. This is also an en-ouragement to derive a model for mud telemetry hannels by gathering large amountsof �eld-test measurements, though this goes beyond the sope of this work.Next to this, inreasing the system reliability in terms of synhronization is seen as asigni�ant ontribution of the NCMF sheme. The synhronization e�ieny will further



Chapter 5. Interferene avoidane tehniques via transform domain filtering99progress utilizing the median �ltering sheme in both time- and frequeny-domains. TheMF removal property of impulsive shaped signals an be used to determine the noise andany kind of wideband artifats, whih interfere in the impulsive ACF of FC signal. Theproedure of the synhronization proposal as shown in Fig. 5.34 inludes three steps: �rstthe NCMF is applied in frequeny domain mainly to remove the pump interferene, seondthe ross-orrelation of the FC reeived signal and the template is obtained, and �nally atime-domain MF is applied on the ross-orrelation and the MF output is subtrated fromthe ross-orrelation signal. In this manner the detetion performane of synhronizationhirps an be greatly inreased.
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Fig. 5.34: Synhronization proedure based on time- and frequeny domain median �lteringFurthermore, the design, realization and �eld-test data evaluation of hybrid reeiver stru-tures in the MPT system are presented and the main researh goals formulated in Setion5.3 are ahieved. In this ontext, two important performane riterions have been followedto allow a realisti deployment of the hybrid shemes in MPT systems. First, the designfusion sheme is e�ient and robust. Seond, reliable traking is ahievable.It is shown that the fusion of NCMF and multihannel blind sheme is not feasible in pra-tial MPT appliations. An e�ient reeiver is introdued, where NCMF and TB adaptiveshemes are ombined. This hybrid strutures inrease not only the system performaneand robustness but also failitate simple and straightforward traking. In addition, a real-world omparison of these hybrid shemes is onduted to verify the superior performaneof them. Based on this investigation, the most e�ient hybrid struture in terms of BERperformane and reliable traking is ommitted. A more omprehensive study on the needof traking is reommendable and an be aomplished by reording long observations of�eld-test data.



Chapter 6Conlusion and outlook
In this dissertation, the telemetry signal extration problem in MPT is addressed ande�ient solutions are provided for reliable data reovery. This is a big hallenge onsider-ing the MPT system requirements and the multipath hannel of the mud ommuniationmedium. It has been shown that the urrent tehnologies su�er from serious shortomingssuh as installations expenses, ompliated and ine�ient traking failities. Through-out this dissertation, the basi struture and the MPT system on�guration have beenenhaned for pratial MPT appliation. In this ontext, the reeiver arrangement andestimation onepts are optimized under realisti system onditions to ahieve best per-formane in terms of BER and reliable traking. Therefore, the statistial harateristisof underlying MPT system signals have been investigated in Chapter 2 to develop relevantalgorithms supporting partiularly the traking task. Based on these investigations, twosemi-blind estimation shemes have been proposed in Chapter 3, whih utilize telemetryand/or pump interferene properties and mainly deal with interferene suppression. Ithas been shown that these shemes are not e�ient in pratie due to the requirement ona-priori knowledge and individual parameter adjustment in eah �eld-test measurement.To ope with the demands of real MPT appliations, the two-reeiver struture and thereferene signal faility for telemetry data available in the MPT system arhiteture areutilized. In this ontext, both asade and joint shemes based on two-reeiver strutureshave been developed in Chapter 4. It has been shown that the asade struture is de�ientin both struture and performane. The joint reeiver struture, also alled multihan-nel or optimal diversity ombining sheme, delivers best performane in anelling theinterferene without requiring any information on the interferene signal. Furthermore,the spei� multihannel struture of the joint sheme provides onvenient and simpletraking following a deision feedbak approah. Real-world �eld-test measurements haveshown that the e�ieny and robustness of the system an be greatly improved omparedto urrent relevant tehnology. Furthermore, it has been shown that inreasing the num-ber of reeivers thus by providing more diversities, leads to a onsiderable performaneimprovement at the ost of some omputational e�ort.To further inrease the BER performane and to provide automati traking espeiallyin removing the pump interferene, the onept of hybrid reeivers has been ondutedin Chapter 5. The proposed hybrid reeiver-strutures aim to deal with the distortionsaused by both the interferene and the multipath hannel. In this ontext, the NCMFhas been proposed in Chapter 5, where the interferene rejetion is performed without anyinformation on pump and/or telemetry signals and thus adjustable. In other words, the100



Chapter 6. Conlusion and outlook 101automati traking in terms of interferene rejetion has been ahieved. Real-world �eld-test measurements have shown that the appliation of NCMF is of several advantages; �rstthe investigation on the harateristis of the mud telemetry hannel has been enabled,seond the robustness and performane of MPT system has been enhaned with di�erentdevelopment of hybrid reeivers. It has been demonstrated in Chapter 5 that the fusionof NCMF and TB adaptive multihannel signal proessing not only improves the BERperformane but also provides simple and reliable traking of system parameters, andlastly signi�ant improvement of the system reliability in terms of synhronization hasbeen ahieved by NCMF. The time- and frequeny-domain median �ltering proposal o�ersfurther possibility of the synhronization task. Moreover, not only the pump interferenebut also any other interferene soures of narrowband harateristi an be remedied byusing NCMF strategies.This dissertation has ontributed to the �eld of reeiver design based on hybrid shemesunder the aspet of robustness and e�ieny in di�ult MPT appliations. The poten-tial of proposed fusion strutures has been on�rmed by the real-world �eld-test dataevaluations and aknowledged as the new tehnology of data reovery in MPT systems.Furthermore, it has been shown that the urrent ommuniation protool does not fullysatisfy the requirement of reliable and robust data transmission in the MPT system. Thus,the transmission protool is to be optimized referring to proposed reeiver strutures inthis dissertation. Sine there is no need for the valve-o� period and the long time trainingsequene, the startup sequene is to be spei�ed e�iently. Moreover, muh more systemrobustness and reliability an be o�ered by periodially transmitting short time trainingsequenes or proper synhronization hirps, at the ost of inreased redundany.From a researh viewpoint, a ouple of open issues remain, whih are the subjet of futureinvestigations in MPT systems. This inludes a omprehensive study on possibility ofinreasing the number of reeivers and their e�ient plaement, so that su�ient diversityis provided to improve the system performane. In addition, based on a large number ofspeial �eld-test measurements, a hannel model an be derived to desribe the behaviorof the mud transmission medium. Suh kind of model provides simpliity and quikness inunderstanding e�ets enountered in the MPT system and e�ient algorithm developmentbased on simulative data and diret appliation on real data. Finally, the feasibility ofthe passive vibro-aoustial �lters in the outlet of the pump deoupling the MPT systemfrom the pump interferene might be subjet to future researh.
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Appendix BSimulation hannels
The simulative studies of this work are arried out with measured hannel impulse re-sponses (CIR) attained from both test and ommerial rigs. In the following, extratedCIRs in di�erent rigs and reeiver strutures are illustrated.B.1 Simulation hannel AThe simulation hannels are provided from a test borehole with two-reeiver struture.The CIR is obtained by the layered median �ltering and lean algorithm sheme [101, 65℄.The extrat CIRs are illustrated in Fig. B.1.
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Fig. B.1: CIRs of a test rig with two-reeiver struture: (a) Pump hannels, and (b)Telemetry hannels 104



Appendix B. Simulation hannels 105B.2 Simulation hannel BThe simulation hannels are provided from a ommerial borehole. The reeiver strutureand the estimation method is the same as in B.1. The obtained CIRs are shown in Fig.B.2.
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Fig. B.2: CIRs of a ommerial rig with two-reeiver struture: (a) Pump hannels, and(b) Telemetry hannels



Appendix B. Simulation hannels 106B.3 Simulation hannel CThe simulation hannels are provided from a ommerial borehole with three-reeiverstruture. The orresponding CIRs are illustrated in Fig. B.3.
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