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 Kurzfassung 

 

Die Nutzung von mesenchymalen Stammzellen (MSC) für zelltherapeutische 

Verfahren und die Gewebezüchtung ist vielversprechend. MSC, aus einer Vielzahl an 

Geweben isoliert, werden bereits in zahlreichen klinischen Untersuchungen eingesetzt. Die 

Nabelschnurmatrix stellt eine bedeutende Quelle für MSC dar. Aus Nabelschnur (umbilical 

cord – UC) isolierte MSC haben kurze Verdopplungszeiten und ihre Gewinnung und ihr 

Einsatz werden nicht durch ethische Probleme eingeschränkt. Des Weiteren gibt es bislang 

keine gesetzlichen Beschränkungen in der Anwendung von UC-MSC im Vergleich zu 

Embryonalen Stammzellen. Da für therapeutische Anwendungen in der Regel mehrere 

Millionen MSC pro Patient erforderlich sind, müssen optimierte Kultivierungsprotokolle 

entwickelt werden.  

In dieser Arbeit wurden zwei verschieden Strategien zur Optimierung der 

Expansionsausbeute sowie der Qualität der MSC untersucht: 1.) der Einfluss der Sauerstoff-

Konzentration auf die statische Kultivierung von UC-MSC, 2.) der Einfluss der dynamischen 

Kultivierung von UC-MSC in einem Bioreaktor, dem Einweg Z
®

RP 2000 H.  

Die Ergebnisse der vorliegenden Arbeit zeigten, dass sich UC-MSC unter Hypoxie an 

die natürliche in vivo Mikroumgebung dieser Zellen anpassten. Im Hinblick auf die Fähigkeit 

in einem nahrungsbeschränkten Milieu nach der Transplantation zu überleben, bietet die 

hypoxische Kultivierung Vorteile. Kultivierungen von UC-MSC unter hypoxischen 

Bedingungen wurden sowohl über kurze Zeiträume von 3 Tagen, als auch über längere 

Perioden von 3 Monaten mit Sauerstoffkonzentrationen zwischen 1,5 % und 5% O2 

durchgeführt. Dabei wurden Einflüsse auf die Zellproliferation, die metabolische Aktivität, 

die Differenzierungskapazität und mögliche in vitro Transformationen der Zellen untersucht. 

Kultivierungen unter hypoxischen Bedingungen (2,5% und 5% O2) resultierten in einer 

Zunahme der Proliferationsaktivität. Die UC-MSC passten ihren Sauerstoffverbrauch und 

ihren Metabolismus der jeweiligen hypoxischen Umgebung an. Bei Kultivierung unter 

hypoxischen Bedingungen bei 2,5% O2 wurden im Vergleich zur Kultivierung bei 21% O2-

Gehalt 300 Gene unterschiedlich exprimiert.  

Die Kultivierung der UC-MSC im Einweg Z
®

RP 2000 H Bioreaktor resultierte in 

einer 8-fachen Zunahme der Zellzahl nach 5-tägiger Kultivierung.   
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Abstract 

 

The use of mesenchymal stem cells (MSC) in the field of tissue engineering and cell 

therapy is a promising development, since these cells can be expanded ex vivo to clinically 

relevant numbers. Moreover, these cells retain their ability to differentiate into different cell 

lineages after expansion. MSC, isolated from various tissues, are already used in hundreds of 

running clinical trials as cell suspensions or as part of tissue engineered constructs. The 

umbilical cord (UC) matrix represents a very promising MSC source, since cells from the UC 

can be easily obtained and have short doubling-times. Furthermore, their harvest is not 

ethically restricted and there are no medico-legal limitations in their application.  

Millions of MSC are required for each treatment. In this regard, the use of optimized 

culturing protocols may result in better defined cell populations and reduced patient response 

variability. In order to optimize the yield and quality of in vitro expanded MSC, two different 

strategies were investigated in this work. First of all, the influence of oxygen concentration on 

the static cultivation of UC-MSC was explored. And second, a dynamic cultivation in a 

disposable Z
®

RP 2000 H bioreactor was performed. 

Cultivation of UC-MSC in hypoxic conditions may help to: (I) further adapt cells to 

their natural in vivo microenvironment and (II) test the capability of MSC to survive in a 

nutrition-limited milieu after transplantation, as well as to function according to the local 

tissue requirements. Short-term (3 days) and long-term (3 month) cultivation of UC-MSC in 

hypoxic conditions (between 1.5% to 5% oxygen (O2)) was performed and cell proliferation, 

metabolic activity, differentiational capacity and possible spontaneous malignant in vitro 

transformation of the cells were studied. Hypoxic conditions (2.5% and 5% O2) caused an 

increase in the proliferational activity of the UC-MSC. MSC adapted their oxygen 

consumption and metabolism according to the appropriate hypoxic environment. Almost 300 

genes were regulated differently under hypoxia (2.5% O2) as compared to normoxia (21% 

O2). 

 Dynamic cultivation in bioreactors provides active nutrient transport, better on-line 

control, documentation and also allows expansion of the cells without subcultivation. 

Cultivation of the UC-MSC in a disposable Z
®

RP 2000 H bioreactor resulted in an 8-fold 

increase of cell numbers after 5 days of cultivation. 

 



Contents 

6 

 

 

1 Contents 

 

Kurzfassung ............................................................................................................................................. 4 

Abstract ................................................................................................................................................... 5 

1 Contents ........................................................................................................................................... 6 

List of abbreviations ................................................................................................................................ 9 

2 Introduction ................................................................................................................................... 12 

3 Theoretical background ................................................................................................................. 15 

3.1 Mesenchymal stem cells: sources and capacities .................................................................. 15 

3.2 MSC applications in clinical trials ........................................................................................ 17 

3.3 MSC cell numbers and introduction methods used in clinical trials ..................................... 19 

3.4 Safety aspects during treatment with MSC ........................................................................... 20 

3.4.1 Spontaneous transformation of MSC ............................................................................ 21 

3.4.2 Interactions between MSC and tumors .......................................................................... 22 

3.5 Strategies in MSC expansion ................................................................................................. 24 

3.5.1 Conventional static cultivation ...................................................................................... 24 

3.5.2 Cultivation on microcarriers (static and dynamic) ........................................................ 24 

3.5.3 Dynamic cultivation in bioreactors ............................................................................... 26 

3.6 Influence of oxygen concentration on the cultivation of MSC ............................................. 28 

3.6.1 Hypoxia-inducible factors ............................................................................................. 28 

3.6.2 Role of oxygen in cell metabolism ................................................................................ 29 

3.6.3 Oxygen concentrations in vivo ...................................................................................... 32 

3.6.4 Influence of oxygen concentration on MSC .................................................................. 34 

4 Experimental part .......................................................................................................................... 37 

4.1 Static cultivation .................................................................................................................... 37 

4.1.1 Online measurements of oxygen concentration during short-term culture in hypoxic and 

normoxic conditions ...................................................................................................................... 37 

4.1.2 Online measurements of pH during short-term culture under different oxygen tensions

 40 

4.1.3 Cell proliferation under different oxygen tensions ........................................................ 41 

4.1.4 Metabolic activity of MSC under hypoxia .................................................................... 43 

4.1.5 Expression of glucose-metabolism associated genes under hypoxia ............................ 45 

4.1.6 Cytokine expression profile under hypoxia and normoxia ............................................ 47 

4.1.6.1 Gene expression profile of UC-MSC under hypoxia and normoxia – whole genome 

cDNA microarray ...................................................................................................................... 47 



                                                                                                               Contents 

7 

 

4.1.6.2 Cytokine gene expression .......................................................................................... 49 

4.1.6.3 Cytokine expression on the protein level .................................................................. 52 

4.1.7 Cell migration assay (wound healing assay) ................................................................. 54 

4.1.8 Long-term UC-MSC cultivation under different oxygen concentrations ...................... 56 

4.1.9 Cell senescence after long-term cultivation ................................................................... 57 

4.1.10 Expression of oncogenes, hTERT and tumor suppressors during long-term cultivation 

of UC-MSC under normoxic and hypoxic conditions ................................................................... 59 

4.1.11 Surface immunophenotype characterization of UC-MSC during long-term cultivation 61 

4.1.12 Mitochondrial biogenesis in hypoxic conditions ........................................................... 67 

4.1.13 Differentiation potential after long-term cultivation in hypoxic and normoxic conditions

 68 

4.2 Dynamic cultivation .............................................................................................................. 72 

4.2.1 Expansion of UC-MSC in the Z®RP 2000 H bioreactor ............................................... 72 

4.2.1.1 Cell growth in the Z®RP 2000 H bioreactor .............................................................. 73 

4.2.1.2 Cellular senescence after expansion in Z®RP 2000 H bioreactor .............................. 74 

4.2.1.3 Surface immunophenotype characterization of UC-MSC after expansion in the Z®RP 

2000 H bioreactor ...................................................................................................................... 75 

5 Conclusions and outlook ............................................................................................................... 78 

6 References ..................................................................................................................................... 81 

7 Materials ........................................................................................................................................ 97 

7.1 Materials ................................................................................................................................ 97 

7.2 Equipment ............................................................................................................................. 98 

7.3 Chemicals .............................................................................................................................. 99 

7.4 Solutions and buffers ........................................................................................................... 101 

7.5 Kits ...................................................................................................................................... 102 

7.6 Differentiation Media .......................................................................................................... 102 

7.7 Primers................................................................................................................................. 103 

8 Methods ....................................................................................................................................... 104 

8.1 Cell culture .......................................................................................................................... 104 

8.2 Hypoxic cell culture ............................................................................................................ 105 

8.3 Cell thawing ........................................................................................................................ 106 

8.4 Cell number, apoptosis and necrosis ................................................................................... 106 

8.5 Cumulative cell population doublings ................................................................................. 107 

8.6 O2 and pH measurements .................................................................................................... 107 

8.7 RNA isolation and cDNA synthesis .................................................................................... 108 

8.8 RT-PCR and qRT- PCR ...................................................................................................... 108 

8.8.1 RT-PCR ....................................................................................................................... 109 



Contents 

8 

 

8.8.2 q RT-PCR .................................................................................................................... 109 

8.9 Glucose and L-glutamine consumption, lactate and glutamate production (metabolic 

analysis) ........................................................................................................................................... 110 

8.10 Quantitative cytokine expression analysis ........................................................................... 110 

8.11 Whole-genome DNA-microarray ........................................................................................ 112 

8.12 Cell differentiation .............................................................................................................. 114 

8.13 Staining procedures ............................................................................................................. 114 

8.13.1 Von Kossa staining ...................................................................................................... 114 

8.13.2 Calcein staining ........................................................................................................... 115 

8.13.3 BODIPY staining ........................................................................................................ 115 

8.13.4 Alcian Blue staining .................................................................................................... 115 

8.13.5 Mitochondria staining .................................................................................................. 116 

8.13.6 Senescence-associated -galactosidase staining ......................................................... 116 

8.14 Cell migration assay (wound healing assay) ....................................................................... 116 

8.15 Flow cytometric analysis of surface antigen expression ..................................................... 117 

8.16 Cell expansion in the Z®RP 2000 H bioreactor. .................................................................. 117 

8.17 Statistical analysis ............................................................................................................... 119 

9 Supplementary materials ............................................................................................................. 120 

9.1 Functional analysis of genes, differently expressed under hypoxia (2.5% O2) ................... 120 

10 Acknowledgements ................................................................................................................. 128 

11 List of Publications .................................................................................................................. 130 

Curriculum Vitae ................................................................................................................................. 134 

 

 

 

 

 

 

 

 

  



                                                                                                               List of abbreviations 

9 

 

List of abbreviations 

 

MEM  Minimal essential medium alpha 

ALP    Alkaline phosphatise 

ATP   adenosine triphosphate 

AD   Adipose-derived 

ATM   Ataxia telangiectasia mutated 

b-FGF    Basic fibroblast growth factor 

BM    Bone marrow 

bp   Base pair 

cDNA   Complementary deoxyribonucleic acid 

CD   Cluster of differentiation 

C-MYC  V-myc myelocytomatosis viral oncogene homolog 

DKK-1  Dickkopf-1 protein 

EGF   Endothelial growth factor 

ESC    Embryonic stem cell 

FCS   Foetal calf serum 

FITC   Fluorescein isothiocyanate 

GAG   Glycosaminoglycan 

GMP   Good manufacturing practice 

GvHD    Graft-versus-host disease 

GLUT-1  Glucose transporter-1 

G6PD   Glucose-6-phosphate dehydrogenase 

h   Human 

H-RAS  v-Ha-ras Harvey rat sarcoma viral oncogene homolog 

HBEGF  Heparin-binding EGF-like growth factor 

HIF   Hypoxia-inducible factors 

HLA    Human leukozyte antigen 

HPLC   High performance liquid chromatography 

HPRT1  Hypoxanthine phosphoribosyltransferase-1 

IGFBP   Insulin-like growth factor binding protein  

ISCT    International Society for Cellular Therapy 

LDHA   Lactate dehydrogenase A 

MAPK   Mitogen-activated protein kinases 



List of abbreviations 

10 

 

MMPs   Matrix metalloproteases 

MRI   Magnetic resonance imaging 

MSC    Mesenchymal stromal cell 

NAD   Nicotinamide adenine dinucleotide 

PBMC   Peripheral blood mononuclear cells 

PGF   Plancetal growth factor 

PPP   Pentose-phosphate pathway 

iPSC   Induced pluripotent stem cells 

PBL    Peripheral blood lymphocytes 

PBS   Phosphate buffer saline 

PD   Pyruvate dehydrogenase 

PE   Phycoerythrin 

PG   Proteoglycan 

PLGA   Poly (L-lactide-co-glycolide) 

PFF   Pulsating fluid flow 

PTEN   Phosphatase and tensin homolog 

p39   Jun proto-oncogene 

p53   Tumor protein p53 

r   Rabbit 

ROS   Reactive oxygen species 

RNS   Reactive nitrogen species 

Rpm   Rotations per minute 

RT-PCR  Reverse-transcriptase polymerase chain reaction 

qRT-PCR  Quantitative reverse-transcriptase polymerase chain reaction 

RUNX2  Runt-related transcription factor 2 

SCF-R   Stem cell factor receptor 

SDF   Stromal cell-derived factor 

TCA   Tricarboxylic acid cycle 

TE    Tissue Engineering 

hTERT  Human telomerase reverse transcriptase 

TGF-   Transforming growth factor-beta 

UC    Umbilical cord 

UCB    Umbilical cord blood 

VEGFA  Vascular endothelial growth factor A  



                                                                                                               List of abbreviations 

11 

 

VHL   von Hippel–Lindau tumor suppressor protein 

WJ    Wharton’s jelly 

3D   Three-dimensional 

  



Introduction 

12 

 

Keywords: Mesenchymal stem cells, mesenchymal stromal cells, umbilical cord, hypoxia, 

oxygen tension, long-term cultivation, bioreactor cultivation 

Schlüsselwörter: Mesenchymale Stammzellen, Mesenchymale Stromazellen, Nabelschnur, 

Hypoxie, Bioreaktorkultivierung 

 

2 Introduction 

 

The field of regenerative medicine has grown dramatically over the past decades. 

Starting with simple surgical implants, nowadays it includes bone-marrow and organ 

transplants, tissue engineering and cell therapies. But independent of the technologies applied, 

the central focus of regenerative medicine remains human cells. The cell source can be 

embryonic stem cells (ESC), adult stem cells (e.g. mesenchymal stem cells (MSC)), 

reprogrammed differentiated cells (induced pluripotent stem cells (iPSC)) or adult tissue-

specific differentiated cells. Despite of the great differential potential of ESC, ethical 

limitations and accompanying risks present a great challenge in the utilisation of these cells. 

Adult tissue-specific cells, unfortunately, cannot be easily isolated and expanded in vitro, a 

fact which is making it difficult to use these cells routinely in tissue engineering and cell 

therapies. Taking these considerations into account, MSC represent a valuable compromise as 

a cell source. On one hand, there are very little or no ethical constraints using these cells. On 

the other hand, despite being isolated from adult tissues, they still retain self-renewal and 

proliferational capacity, and they can be differentiated into various cell types in a controlled 

fashion. Moreover, MSC demonstrate various immunomodulatory capacities. 

MSC, isolated from various tissues were intensively studied and characterized by 

many working groups. Umbilical cord (UC) tissue represents a very promising source of 

MSC, since cells from this source can be easily obtained and expanded. UC-derived MSC 

have a short doubling time, their harvest is not ethically restricted and there are no medico-

legal limitations in their application. 

The first animal and in vitro studies performed with MSC have given encouraging 

results. To obtain clinically relevant cell numbers or functionally active differentiated tissues, 

MSC must be intensively expanded in vitro. Hundreds of clinical trials recruiting MSC for the 

treatment of spinal cord injuries, burns, liver cirrhosis or failure, graft versus host disease, 
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diabetes mellitus, progressive multiple sclerosis and cardiac ischemia are carried out at the 

moment. For each treatment, millions of cells are required and optimal expansion methods 

can help in obtaining MSC of good quality within a short period of time, enhancing chances 

for treatment optimization and patient survival. 

Methods of cell expansion include conventional static cultivation in cell culture flasks 

and, more recently, dynamic cultivation in bioreactors under controlled conditions. Applied 

techniques include special cell culture media, addition of signaling molecules, variation of 

physical and chemical factors, as well as application of different mechanical stimulations. 

Knowledge of the different aspects that affect MSC proliferation differentiation in vivo and in 

vitro will help researches to achieve directed cell fate without addition of supraphysiological 

concentrations of growth factors. Oxygen concentration appears to be a significant factor 

which influences MSC proliferation, stemness and differentiation capacity. In vivo, tissue 

oxygen concentrations are maintained within a narrow range (perceived as “physiological 

normoxia”) minimizing the risk of oxidative damage from excess oxygen. Depending on the 

vascularization and functional state of the tissue, MSC develop in different hypoxic 

microenvironments, but are never exposed to the atmospheric oxygen concentrations in which 

traditional in vitro cell cultivations are performed. On the other hand, directly after 

transplantation in the site of injured or necrotic tissue, MSC are exposed to severe 

pathophysiological hypoxia, so that the ability of these cells to survive in such conditions can 

be a key factor in the treatment success.  

Another important factor of MSC-mediated treatments are safety aspects. MSC 

treatment of disorders should not lead to uncontrolled cell growth and subsequent 

tumorigenesis in vivo. Thus, possible malignant transformation during in vitro expansion of 

MSC must be studied in order to exclude any possible risks for the patient. 

The possibility to expand MSC under controlled conditions in bioreactors is another 

step towards processing these cells for clinical applications. MSC are anchorage-dependant 

cells which cannot be expanded as cell suspension. Several techniques were developed over 

the past few years including cultivation on microcarriers, on a three-dimensional matrix and 

on polycarbonate cell carrier slides. These techniques may allow researchers to obtain the 

necessary cell numbers without MSC subcultivation (reattachment and seeding), since 

proteases used to detach the cells not only digest the extracellular matrix, but also damage 

important cell surface markers and receptors. Moreover, the cultivation in bioreactors without 

subcultivation reduces the risk of bacterial and fungal contamination, as well as cross-
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contamination with other cell lines. Continuous on-line monitoring and control of important 

cultivation parameters like pH, temperature, oxygen, CO2 and metabolite concentrations will 

help to provide the optimal growth-conditions for the cells and assure reproducible cell 

expansion.  

 

 

Aims of the work 

The present study was designed to investigate a number of variables in order to 

optimize the processing of UC-MSC, in particular studying the role of hypoxia and the 

possibility of dynamic cell expansion. The three major aims which were defined were: 

 First of all, to study the effect of different oxygen concentrations on the short-term 

cultivation of UC-MSC in terms of  proliferation capacities and metabolic activities, oxygen 

consumption rates, gene expression profile, cytokine expression on RNA and protein level, as 

well as MSC migratory capacity. 

Secondly, to study the effect of long-term cultivation of UC-MSC in hypoxic 

conditions in terms of proliferation capacity, possible spontaneous in vitro transformation, 

surface immunophenotype marker expression and differential potential. 

Thirdly, to test the possibility of expanding UC-MSC in  a disposable Z
®

RP 2000 H 

bioreactor (Zellwerk, Germany) and to examine the yield and properties of UC-MSC after 

dynamic expansion.  
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3 Theoretical background 
 

3.1 Mesenchymal stem cells: sources and capacities 

 

Mesenchymal stem cells (MSC), often also called multipotent stromal cells are a 

population of cells with self-renewal and differentiation capacity [1]. Since their first isolation 

in 1970 from guinea pig bone marrow aspirates [2], MSC were found in almost all postnatal 

tissues (Table 3.1). The term “mesenchymal” reflects only the origin of these cells, but not 

their differentiation potential. In vivo these cells can participate in tissue regeneration via 

differentiation or paracrine rescue function. MSC isolated from different sources must fulfill 

the minimal criteria, established by the International Society for Cellular Therapy (ISCT). 

These include: (i) adherence on plastic under standard culture conditions, (ii) in vitro 

differentiation capacity towards osteogenic, chondrogenic and adipogenic lineage, and (iii) 

specific surface antigen expression positivity (CD73, CD90, CD105)  and negativity (CD45, 

CD34, HLA-DR) [3]. 

Table 3.1: Sources and differentiational potential of mesenchymal stem cells. 

Tissue Differential potential Reference 

Bone marrow Adipogenic, Chondrogenic, Osteogenic, Myogenic, Neuronal [4] 

Adipose tissue Adipogenic, Chondrogenic, Osteogenic, Myogenic [4, 5] 

Cartilage Adipogenic, Chondrogenic, Osteogenic [6] 

Dermis Adipogenic, Chondrogenic, Osteogenic, Myogenic [4] 

Dental pulp Adipogenic, Chondrogenic, Osteogenic, Myogenic, Neuronal [7] 

Breast milk Adipogenic, Chondrogenic, Osteogenic [8] 

Blood Adipogenic, Osteogenic, Osteoclastic, Fibroblastic [4, 9] 

Umbillical cord 

blood 

 

Adipogenic, Chondrogenic, Osteogenic, Neuronal, Epithelial, 

Hepatogenic, Myogenic 

 

 

[10-13] 

Urine Urothelial, Myogenic [14] 

Wharton’s jelly Adipogenic, Chondrogenic, Osteogenic, Myogenic, Neuronal, 

Endothelial, Hepatogenic, Pancreagenic 
[15-17] 

Placenta/Chorion Chondrogenic, Osteogenic, Myogenic, Neuronal [15] 

Placenta/Amnion Adipogenic, Chondrogenic, Osteogenic, Myogenic, Endothelial [15] 
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Human MSC are of great interest for cell-based therapies, tissue engineering and tissue 

replacement, since these cell populations are characterized by high proliferative activity, self-

renewal capacity, low immunogenicity and their potential to differentiate in vitro and in vivo 

toward desired lineages [18-20]. Apart from their differentiation capacity, MSC demonstrate 

various in vitro immunosuppressive effects. MSC suppress T-lymphocyte and natural killer 

proliferation and function [21, 22], inhibit differentiation and function of monocyte-derived 

dendritic cells  [23] and modulate B-cell function [24]. 

Another very important property of MSC which has been discovered recently, is their 

rescue function. Either via delivery of growth factors or through cell contact-mediated events, 

these cells demonstrate astonishing abilities to support other cells and help them to survive 

and recover after damage. MSC isolated from umbilical cord, for example, can rescue 

photoreceptors and visual functions in a rodent model of retinal disease [25]. In a mouse 

model of cerebellar ataxia bone marrow-derived MSC (BM-MSC) were able to rescue 

Purkinje cells and improve motor function [26].  In another mouse model, BM-MSC 

contributed to the recovery of the kidney during acute renal failure [27]. MSC have been also 

shown to improve motor function and prolong survival through trophic support in 

Huntington's disease mouse models [28]. In vitro MSC can rescue neuronal cells after 

ischemia via trophic support [29]. MSC-conditioned medium accelerates skin wound healing 

[30], can protect myocardium from ischemia/reperfusion injury [31], increases axon growth 

[32] and promotes neuronal survival [33]. 

However, to fulfil such local trophic rescue functions, MSC must be capable to recognize 

and reach appropriate injured tissues [34]. Indeed, these cells demonstrate the unique capacity 

to arrive into injured brain sites independent of the way they are injected into the body – 

intravenously [35], intraarterial [36] or directly into the brain [37]. Damage of cells is usually 

accompanied by the release of specific signals. Tissue damage has been associated with local 

increase in mediators, like e.g. stromal cell-derived factor-1 (SDF-1), which mediates MSC-

homing to injured myocardium [38]. Injury or trauma initiates the mobilization of MSC into 

peripheral blood [39, 40] and then these circulating MSC are suggested to arrive at the 

damaged tissues in a way similar to leukocyte recruitment to sites of inflammation.  

In comparison to other postnatal MSC sources, umbilical cord (UC) tissue (Wharton’s 

jelly) represents a very promising source MSC, since cells can be easily obtained from this 

birth-associated tissue by initial culturing of the tissue pieces. UC-derived MSC represent a 

heterogeneous population of cells with varying cell size, which have shorter doubling times if 
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compared to BM-MSC [16, 17, 41]. Their harvest is not ethically restricted and there are no 

medico-legal limitations in their application [41-43]. Accumulated studies have shown that 

UC-MSC transplantation can promote neuroprotection and locomotion recovery in 

experimental models of brain disease [44, 45]. Moreover, UC-MSC can survive after 

transplantation, migrate in the host spinal cord after transplantation and promote functional 

recovery after spinal cord injury [46]. 

 

3.2 MSC applications in clinical trials 

 

At the time of writing (February 2012) there were more than 200 global clinical trials 

using MSC registered at clinicaltrials.gov – the official website of the National Institute of 

Health, USA. Spinal cord injuries, burns, liver cirrhosis or failure, immune reconstitution in 

HIV-infected patients, diabetes mellitus, progressive multiple sclerosis, cardiac ischemia – are 

just a small selection of disorders where MSC are used for treatment.  

 

 

 

 

 

 

 

 

 

 

Figure 1: Map of geographical distribution of clinical trials performed with MSC. Source: 

www.clinicaltrials.gov 

As it can be seen in the map (fig.1), most of the clinical trials run in the USA, Europe and 

China. In Europe, the highest number of clinical trials are conducted in Spain. 

http://clinicaltrials.gov/ct2/show/NCT01213186?term=mesenchymal+AND+stem+AND+cells&cond=%22HIV+Infections%22&rank=1
http://clinicaltrials.gov/ct2/show/NCT01213186?term=mesenchymal+AND+stem+AND+cells&cond=%22HIV+Infections%22&rank=1
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The biggest groups of disorders treated with MSC are multiple sclerosis (10 trials), graft 

versus host disease (GVHD) (18 trials), diabetes mellitus (40 trials), rheumatic diseases (18 

trials), degenerative arthritis (20 trials) and ischemia (32 trials). Table 3.2 reflects the 

distribution of clinical trials depending on the conditions. The sum number of trials in the 

table greatly exceeds the number of trials reflected on the map. This happens because every 

single registered clinical trial can involve multiple disorders, for example in the case of 

diabetes, when not only diabetes itself (as a hormone related disorder), but also secondary, 

accompanying complications like retinal degeneration, neuropathic syndromes, autoimmune 

disorders and diabetic foot are treated by MSC therapy.   

Table 3.2: Numbers of clinical trials using MSC for different conditions (Source: 

www.clinicaltrials.gov) 

Condition Example Number 

of trials 

Bacterial and fungal diseases Chronic obstructive pulmonary 

disease 

4 

Behaviors and mental disorders Autism 21 

Nervous system diseases Parkinson's disease 212 

Blood and lymph conditions Aplastic anemia 119 

Cancers and other neoplasms Leukaemia 178 

Heart and blood diseases Acute myocardial infarction 250 

Digestive system diseases Crohn's disease 131 

Diseases and abnormalities at or before birth Severe bronchopulmonary dysplasia 56 

Gland and hormone related diseases Diabetes mellitus 48 

Eye diseases Retinitis pigmentosa 38 

Immune system diseases GVHD 128 

Respiratory tract (lung and bronchial) diseases Idiopathic pulmonary fibrosis 25 

Muscle, bone, and cartilage diseases Degenerative arthritis 141 

 

GVHD is a major cause of mortality after allogenic hematopoietic stem cell (HSC) 

transplantations and was historically one of the first conditions studied. Despite of the 

traditional treatment with corticosteroids, acute GVHD patients have a poor prognosis with 

less that 30% exhibiting 5-year survival [47]. Because of their immunomodulating capacities, 

MSC were first used for the treatment of GVHD in 2001 [48]. Several larger studies were 

performed later, as reviewed in 2011 by Lin and Hogan [49]. In the majority of studies it was 

shown that most GVHD patients responded to BM-MSC injection. However, larger 
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randomized trials must be performed to clarify the risks of disease relapse and infection. 

Moreover, standardization and optimization of the MSC manufacturing process may play an 

important role in the outcome and also in the better understanding of the efficiency of 

treatments.  

Application of MSC for acute myocardial infarction is another promising development in 

cell-based therapy. Several clinical studies demonstrated the beneficial role and safety of 

MSC injection in treatment of postinfarcted tissues [50, 51]. Infusion of MSC after acute 

myocardial infarction was associated with a significantly lower mortality during further 

follow-up [52]. Intracardiac transplantation of MSC led to coronary revascularization, 

improvement of ventricular geometry and function, as well as reduced myocardial scar 

proportion and heart failure symptoms [53]. 

 

3.3 MSC cell numbers and introduction methods used in clinical trials 

 

As mentioned above, the large scale production of MSC and the mode of injection play 

an important role in treatment outcome. Different cell numbers are needed to treat diverse 

disorders, but all cells injected must be expanded in vitro. Several examples of cell numbers, 

required for selected clinical trials are shown in table 3.3. As it can be seen, millions of cells 

(range 0.6x10
6 

- 2x10
6
 per kilogram of body weight) must be available for one injection. 

Moreover, some treatments consist of several injections, which increases even further the 

number of MSC required. 

Table 3.3: MSC cell number and injection methods in selected clinical trials (source: 

www.clinicaltrials.gov) 

Disorder Required number  

of MSC 

Method of injection  

Diabetic foot 5x107 per limb Intramuscular 

Ulcerative colitis 2x107 , later 1x107 Intravenous, later to mesenteric artery 

Liver cirrhosis 1x106/kg Intravenous 

Multiple sclerosis 1x106/kg Intravenous 

GVHD 1x106/kg Intravenous 

Spinal cord injury 1x106/kg Intravenous 

Parkinson’s disease 0.6x106/kg Intravenous 

Myocardial ischemia 60x106 Trans-endocardial intramyocardial injections 
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The dose and frequency of MSC injections for reaching maximal clinical efficacy are 

still intensively studied, since it is not clear what happens to most of the cells after injection. 

In the case of autologous transplantation, extensive in vitro cell expansion is required if more 

than one injection should be performed. In the case of allogenic MSC transplantation, it is still 

unclear if MSC from the same donor should be used for repeated injections, since they may 

induce an immune response even if none such occurred during the first injection. In this 

regard, it should be noted that expanded MSC from one donor can be frozen, banked and used 

later when required. It has been also discussed which factor has a higher impact on the 

treatment efficiency – the quality of injected MSC or the recipient state 

(biological/physiological parameters). In any case, the use of optimized culturing protocols 

may result in better defined cell populations and reduced patient response variability. 

 

3.4 Safety aspects during treatment with MSC 

 

Despite of the encouraging results of in vitro experiments, animal models and clinical 

trials, the question of safety of MSC for clinical use is still a point of discussion. It is essential 

to understand the advantages and disadvantages of the use of MSC in patients with regard to 

tumorigenesis. Dramatic titles of scientific review-articles  like “Mesenchymal stem cells: 

angels or demons?” [54], “Concise review: mesenchymal tumors: when stem cells go mad” 

[55], “Concise review: adult multipotent stromal cells and cancer: risk or benefit?”[56] reflect 

strongly the controversial opinions and findings regarding MSC treatment safety. There are 

three major ways which can lead to MSC-associated tumorigenesis: (1) in vitro spontaneous 

transformation of MSC due to their chromosomal instability during long-term expansion 

cultures; (2) in vivo tumor enhancing property of MSC via their ability to suppress the 

immune system and (3) direct tumor growth support in vivo by positive chemotaxis and 

release of growth factors (e.g. for tumor vascularization). 
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3.4.1 Spontaneous transformation of MSC 

 

In 2009 a working group from Israel published a case report about a 13-year-old boy 

with ataxia telangiectasia (a neurogenerative disease), who developed a brain tumor after stem 

cell treatment [57]. The boy received three fetal stem cell transplants in Russia between 2001 

and 2004 and had a MRI in 2005 because of recurrent headaches. Tumors were found in the 

brain and spinal cord. After tumor resection from the spinal cord (identified as a glioneuronal 

tumor), DNA analysis of the tumor cells revealed their origin as coming from the donor cells. 

These cells expressed XX and XY phenotype, two normal copies of the ATM gene and HLA 

typing showing that the tumor contained cells from at least two donors. Although the exact 

type of injected cells was not clear (ESC or MSC), this report raised intensive discussion if 

MSC can be safely used in patients.   

Again in the year 2009, a scientific group from Norway published alarming results of 

frequent spontaneous malignant transformation of human BM-MSC in vitro [58], although 

another working group did not reveal any transformation of these cells two years earlier [59]. 

Rubio and colleagues also reported spontaneous transformation of AD-MSC in vitro, 

indicating the importance of biosafety studies of MSC biology to efficiently exploit their full 

clinical therapeutic potential [60]. In the year 2010, however, after publication of the editorial 

letter “Identity crises” in Nature [61], where the misidentification of a tremendous amount of 

cell lines used in laboratories around the word was discussed, numerous working groups 

decided to carefully identify the origin of the cells they are working with. The results of DNA 

fingerprint analysis revealed that the above reported malignant transformation of BM-MSC 

was reflecting cross-contamination with the human HT1080 fibrosarcoma, U251 and U373 

glioma and U-2 OS osteosarcoma cell lines [62] in two independent laboratories. The working 

group that reported spontaneous transformation of AD-MSC also identified cross-

contamination of MSC with a HT1080 cell line [63]. Although these findings provide support 

for future MSC applications in patients, they also demonstrate the importance of safety 

regulations during in vitro expansion of these cells, in particular with regard to cross-

contaminations. 

There are several factors that can lead to in vitro transformation. Although life-span 

limiting antitumor pathways protect MSC from malignant transformation, massive expansion 

of MSC can lead to mutations, with some of them targeted to cancer-relevant genes [64]. It 

was demonstrated that spontaneous transformation of neuronal stem cells to cancer cells is 
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driven by genomic instability [65]. With the help of karyotype analysis, accumulated 

chromosomal abnormalities were revealed in transformed BM-MSC [66]. The major reasons 

for MSC malignant transformation include the introduction of oncogenes, as well as change in 

their activity, due to mutations or transduction with telomerase reverse transcriptase activity 

(hTERT). All these factors can lead to loss of contact inhibition, anchorage independence and 

tumor formation in vivo [56, 67]. H-RAS was shown to be an important tumor suppressor, 

since the lost of its activity leads to transformation of MSC [68]. This means that besides 

cross-contamination controls, expanded cells should be studied for the presence or absence of 

certain oncogene expression profiles. 

 

3.4.2 Interactions between MSC and tumors 

 

MSC express numerous growth factors and exhibit tropism for sites of tissue damage. 

Tumor microenvironment was shown to contain the same proinflammatory mediators as 

injured tissue, attracting MSC [69]. In this way, tumors can be described as “wounds that 

never heal”, which continuously produce a variety of chemokines and cytokines, recruiting 

corresponding cells, including MSC [70]. Numerous in vitro and in vivo studies demonstrated 

tumor-directed migration and incorporation of MSC, including homing into a wide range of  

cancer cell lines, like e.g. lung cancer, breast cancer, malignant glioma, pancreatic cancer and 

colon carcinoma [71-76]. Although the tropism of MSC for the tumor microenvironment is 

obvious, the exact mechanisms of action, fate and function inside the tumors, as well as the 

influence on tumor progression is still unclear and often the data is even paradoxical.  

On one hand, the growth of solid tumors requires supply of oxygen and nutrients to the 

tumor cells, and MSC can provide necessary growth factors (e.g. VEGF) which will support 

tumor vascularization and growth [77]. On the other hand, MSC can trigger apoptosis of 

tumor cells or inhibit tumor growth. It was demonstrated that MSC can contribute to tumor 

protection, drug resistance, growth and metastasis. MSC were shown to protect breast cancer 

cells and increase breast cancer tumor growth by immune protection of tumor cells [74]. The 

working group of Li demonstrated dual effects of MSC on tumor cells in vitro and in vivo. 

They showed that MSC suppress proliferation and cause apoptosis of lung cancer cells in 

vitro, while when injected in vivo, MSC enhanced tumor formation and growth [78]. Another 

working group demonstrated that MSC can prevent apoptosis of acute myeloid leukemia cells 

by up-regulation of antiapoptotic proteins [79]. Another effect of MSC on tumors is their 
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participation in the drug resistance of cancer cells [54, 80, 81]. Furthermore, being possibly 

advantageous for patients with immune disorders, immunomodulating properties of MSC can 

be deleterious in those patients who harbor a malignant tumor, since anti-cancer mechanisms 

can be altered by MSC injection, causing tumor growth. This “double-edged sword” must 

lead to more careful patient selection and in the case of cancer patients, the benefits of 

treatment should outweigh the risks that these cells could bring to the patient [54]. 

While some working groups report enhancing effects of MSC on tumor growth, others 

show a negative influence of MSC on tumorigenesis. Zhu and colleagues demonstrated 

inhibitory effect of MSC on proliferation of myelogenous leukemia cells via production of 

DKK-1 (dickkopf-1) protein [82]. MSC were also shown to completely inhibit outgrowth of 

colon carcinoma cells in vivo [83]. BM-MSC decrease Kaposi sarcoma tumor size via 

increased inflammatory infiltration [84], they decrease metastasis and tumor growth in Lewis 

lung carcinoma and melanoma cells [85], they decrease tumor burden and increase survival in 

non-Hodgkin lymphoma [86, 87]. AD-MSC decrease tumor size in vivo and provoke cell 

death in vitro in pancreatic cancer via G1 cell cycle arrest [88]. UCB-MSC decrease tumor 

size in gliomas via cell-cell contact and up-regulation of PTEN [89-91]. Moreover, recently 

published studies demonstrated that UC-MSC completely abolished breast carcinomas with 

no evidence of metastasis or recurrence in rats [92]. 

Although no simple paradigm can account for the conflicting findings in the studies of 

MSC, no evidence of tumor formation has been reported in over 1000 patients treated with 

MSC for a variety of indications under controlled conditions [87]. Moreover, MSC 

engineered to express tumor suicide genes can be a very useful tool for anti-cancer therapies 

because of their tumor-tropism and migratory potentials. Gene modified MSC can synthesize 

anti-tumoral molecules, usually derived from immune effectors like e.g. natural killer cells, 

making MSC “mesenkillers” [93].   

Taken together, these data show the importance of strict control and safety measures in 

MSC production. To minimize the risk of malignant transformation, MSC must be handled 

according to standardized protocols and expanded cells must be checked for possible cross-

contamination and expression/mutations of oncogenes. Moreover, careful selection of patients 

can help avoid the possible risk of tumor progression. 
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3.5 Strategies in MSC expansion 

 

 The effective and economic expansion of MSC plays an important role for their 

application in tissue engineering and cell-based therapies. There are many approaches to 

expand MSC to obtain clinically relevant cell numbers.  

 

3.5.1 Conventional static cultivation 

 

 Conventional static cultivation involves flat, two-dimensional cell cultures in plastic 

flasks. Because of the limited available surface area (maximum up to 225 cm
2
 per flask), only 

moderate amounts of cells can be produced. Therefore, if production is to be scaled-up, the 

number of units (T flasks) has to be increased, making the cultivation of cells time-consuming 

and prone to the danger of contamination. Furthermore, human errors may occur, especially 

when high cell numbers are needed and cells from one donor must be cultivated in dozens of 

flasks.  

 On the next level, cell factories, represent a special type of cell culture flask where 5, 

10 or more chambers are arranged in multi-layer stacks. This technique decreases the risk of 

contamination, is easier to handle and provides a large growth surface in limited-space areas.  

MSC expansion in cell culture flasks, however, still represents a static method and it does not 

provide any online monitoring on cell growth. It also makes it difficult to observe the cells 

under the microscope, because of the cell factory height. During conventional MSC 

expansion, cells are usually subcultivated over several passages by detachment with the help 

of various proteases. Such a treatment, however, damages cells, since proteases not only 

digest extracellular matrix proteins, but also destroy important cell surface receptors and 

markers, changing the biological properties of MSC in the process. 

 

3.5.2 Cultivation on microcarriers (static and dynamic)  

 

 Another method is the cultivation of MSC on microcarriers. The “microcarrier” 

culture system represents the cultivation of cells (anchorage-dependent or anchorage-

proffered) on small solid particles (microspheres) suspended in a growth medium. The term 
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“microcarrier” was introduced in 1967 by van Wezel [94].  First introduced for virus  

production [95] in primary adherent cells, this expansion method rapidly showed good results 

in terms of cell density.  Later, along with the development of recombinant DNA-technology 

and cell transfection methods for protein production, cultivation on microcarriers got a new 

impulse.  

 Diverse types of microcarriers were developed over the next years [96]. In general, 

microcarriers can be divided in two main groups: smooth and macroporous microcarriers. In 

the first case, cells grow on the surface of the particles without penetration into the core. In 

the case of macroporous particles, cells are trapped and grow inside of the microcarrier. 

Macroporous particles can be used for the cultivation of both, suspension and anchorage-

dependent cells. Moreover, they support high cell numbers and avoid shear-stress. There are 

several types of commercially available macroporous microcarriers made of glass (Schott, 

USA), collagen/gelatin (Percell Biolytica), cellulose (GE Healthcare) and polyethylene 

(Amersham Biosciences). Smooth microcarriers have the advantage of a better microscopic 

control of cell growth, easier cell sampling and can be used in stirred-tank bioreactors, 

developed for suspension cell culture and providing good mass-transfer characteristics, ease 

of monitoring (better control of pH, pO2, pCO2) and scale-up possibilities. Smooth 

microcarriers are available in different materials: e.g. dextran (GE Healthcare), gelatin (MP 

Biomedicals,) or polystyrene (Nunc). Besides commercially available microcarriers, a 

multitude of other microcarriers were developed in laboratories all over the world [96]. 

 In the past several years different research groups have used microcarrier-based 

expansion of MSC in glass spinner-flasks [97-99]. Frauenschuh and his group, as well as 

Schop with colleagues tested cytodex 1 (dextran) and cytodex3 (gelatin coated dextran, GE) 

for BM-MSC expansion [97, 99]. It was shown that cell type, as well as microcarrier type and 

the selected medium/serum concentration all play an important role in cell adhesion time and 

expansion efficiency. Sart with colleagues examined the influence of the MSC source, taking 

murine MSC from the bone marrow and ear conch for cultivation under the same cultivation 

conditions [98].  Despite promising results, an important issue to be considered with the 

cultivation on microcarriers, is that MSC cultivated on microcarriers or free-floating 3D 

scaffolds can be exposed to lower gravity (simulated microgravity environment), which may 

affect their differentiation capacity [100, 101]. 
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3.5.3 Dynamic cultivation in bioreactors 

 

 The expansion of MSC in bioreactors is a promising development for the future 

application of MSC in cell-based therapies and tissue engineering. The cultivation in 

bioreactors with integrated sensors provides important information about cell growth and 

nutrient consumption. It is possible to control and document numerous cultivation parameters 

like nutrient, gas and metabolite concentrations, pH, temperature, pressure, shear forces and 

cell mass growth. Moreover, automated controlling systems help maintain constant nutrition 

and gas supply, and withdraw toxic metabolites during all periods of cultivation. Furthermore, 

most of the newly developed bioreactors are disposable, which reduces the risk of cross-

contamination and provides a “one patient-one bioreactor” approach. There are numerous 

types of bioreactors used to expand adherent anchorage-dependent cells (for full review see 

[102]). Wave-bioreactors can be used to expand MSC on the above mentioned microcarriers 

in one-way cell culture bags. For example, GE Healthcare (Little Chalfont, UK) produces a 

wide spectrum of WAVE-bioreactors (fig. 2A), starting from the low-scale systems (System 

2/10 with 0.1 - 5 liter capacity) up to large-scale reactors (System500/1000 with 100 - 500 

liter capacity). Recently, GE Healthcare together with Biosciences AB (Uppsala, Sweden), 

registered a patent (US 2011/0070648 A1) for expansion of MSC to therapeutic amounts on 

Cytodex microcarriers in plastic bag bioreactors. 

 The PluriX™ 3D bioreactor, developed by Pluristem (Haifa, Israel) represents a 

bioreactor, where adherent cells grow on the 3D fibracel polyester matrix (fig. 2B). On 

September 14, 2010 Pluristem reported that data from its “first-in-man” clinical trials, which 

began in 2009, indicate that its placenta-derived cell therapy appears to be safe and improves 

objective and subjective measurements in patients with critical limb ischemia, the end-stage 

of peripheral artery disease. Several clinical trials are running or have already been performed 

with placenta-derived pluripotent stromal cells expanded in the PluriX™ 3D bioreactor. 

Pluristem used a 1-liter bioreactor for phase 1 trials and a 5-liter bioreactor for phase 2 or 3 

trials. According to the manufacturer, newly developed 75 liter bioreactors can produce 1000 

doses of cells with 300 million cells per dose. 

 

 

http://www.google.de/url?sa=t&rct=j&q=pluristem%20bioreactor&source=web&cd=1&ved=0CC4QFjAA&url=http%3A%2F%2F80.244.168.5%2F%24sitepreview%2Fpluristem.com%2FPluristem_tech.asp&ei=d2Q6T9P4A4zKtAa_7dWBBw&usg=AFQjCNHuSFrcbb2rLx0_ujmwZFBEw5zEwQ&cad=rja
http://www.google.de/url?sa=t&rct=j&q=pluristem%20bioreactor&source=web&cd=1&ved=0CC4QFjAA&url=http%3A%2F%2F80.244.168.5%2F%24sitepreview%2Fpluristem.com%2FPluristem_tech.asp&ei=d2Q6T9P4A4zKtAa_7dWBBw&usg=AFQjCNHuSFrcbb2rLx0_ujmwZFBEw5zEwQ&cad=rja
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Figure 2: Selected bioreactors used for MSC expansion; A: the WAVE Bioreactor with a  

disposable cell culture bag and control unit (GE Healthcare), B: PluriX™ 3D Bioreactor 

(Pluristem), C: Z
®
RP 2000 H bioreactor and GMP-breeder (Zellwerk) 

  

 A new approach in the expansion of adherent MSC is offered by Zellwerk GmbH 

(Berlin, Germany), where cells are cultivated on rotating stalked polycarbonate cell carrier 

slides (fig. 2C). The Z
®

RP 2000 H bioreactor is connected to the pH and pO2 sensors, which 

are integrated into the tubing system. Besides of cell culture medium mixing via rotation, 

medium is also constantly circulating via tubing system, where feed- and waste-flasks are 

connected, making it possible to cultivate cells in fed-batch or perfusion modus. Disposable 

Z
®

RP 2000 H bioreactor provides a surface of 2000 cm
2
 for cell growth, while Z

®
RP 8000 H 

offers 8000 cm
2
. Cultivation of cells is performed in a GMP-breeder under full automated 

control with documentation. According to the manufacturer’s data, MSC in a Z
®

RP 8000 H 

system can be expanded in 9 days to 400 million cells without subcultivation.  

  

http://www.google.de/url?sa=t&rct=j&q=pluristem%20bioreactor&source=web&cd=1&ved=0CC4QFjAA&url=http%3A%2F%2F80.244.168.5%2F%24sitepreview%2Fpluristem.com%2FPluristem_tech.asp&ei=d2Q6T9P4A4zKtAa_7dWBBw&usg=AFQjCNHuSFrcbb2rLx0_ujmwZFBEw5zEwQ&cad=rja
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3.6 Influence of oxygen concentration on the cultivation of MSC 

 

Many different in vitro cell culture parameters influence the proliferation and 

differentiation capacities of MSC. Cell culture media composition, type of serum, addition of 

different cytokines and supplements – all these factors have an effect on MSC cell fate and 

play a critical role in successful cell expansion. Another crucial cell cultivation parameter is 

the oxygen tension. The amount of available oxygen led to the development of different forms 

of life on our planet and its concentration in the air is a result of the balance between its 

consumption by one organism and its production by another. In aerobic organisms oxygen is 

an essential, but also toxic molecule, which leads to the formation of reactive oxygen species 

(ROS). Even aerobic organisms could not survive without defense mechanisms against 

oxidative stress and damage. Multicellular organisms developed complex mechanisms of 

oxygen sensing, delivery and homeostasis.  

 

3.6.1 Hypoxia-inducible factors 

 

The cellular response to variations in oxygen concentration is mediated by changes in 

gene expression. Alterations of gene expression are particularly important with regard to 

hypoxia-inducible factors (HIF), a family of transcription factors which bind to specific DNA 

sequences (hypoxia regulated elements, 5’-TACGTGCT-3’) in promoter or enhancer regions 

of the target gene [103]. The HIF family consists of HIF-1, HIF-1, HIF-2, HIF-2, HIF-

3 and HIF-3 proteins. HIF-1 protein, the main regulator of oxygen homeostasis, is found to 

be expressed in all animal tissues. HIF-1  is a heterodimeric transcription factor that is 

composed of a constitutively expressed HIF-1β subunit and an oxygen-regulated HIF-1α 

subunit [104]. HIF-1 is constantly translated, but rapidly degraded in cells with normal 

(depending on physiological requirements) oxygen concentration.  This degradation is 

triggered by the hydroxylation of two proline residues in the highly conserved oxygen-

dependent degradation domain. The hydroxylation is catalyzed by proline hydroxylase and 

leads to the binding of the von Hippel–Lindau tumor suppressor protein (VHL), the 

recognition component of E3 ubiquitine ligase [103, 104]. After ubiquitiniation, HIF-1 is 

targeted into the 26S proteosomes for consequent degradation. If the oxygen level decreases 
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below a certain threshold, proline hydroxylation stops and HIF-1 becomes stabilized. 

Afterwards, it enters the cell nucleus, binds to a constitutively expressed HIF-1 and then 

attaches to hypoxia regulated elements in the target gene’s enhancer. Hundreds of genes were 

found to be regulated by HIF-1[104, 105]. HIF-1, in turn is also regulated by various factors 

including oxygen concentration, pH, growth factors and hormones (fig. 3). 

 

 

 

 

 

  

 

 

Figure 3: Factors inducing HIF- activity (A) and selected HIF target genes (B); adopted from 

[105] 

 

It was shown that HIF-1α is required for mesenchymal cell survival during embryonic 

development and HIF-1α knockout leads to death of mice embryos around midgestation, 

resulting in cardiovascular malformations and open neural tube defects [106, 107]. In 

naturally hypoxic tissues (e.g. cartilage), HIF-1 is essential for normal development, 

homeostasis and functioning. In life-threatening states such as stroke, cardiovascular diseases 

and injuries HIF-1 plays a crucial role in tissue survival and regeneration [108].   

 

3.6.2 Role of oxygen in cell metabolism 

 

In animal cells there are two major glucose metabolic pathways which lead to energy 

production in form of adenosine triphosphate (ATP): anaerobic glycolysis and oxidative 

phosphorylation. The largest part of oxygen consumption by the cells is the use of oxygen as a 

terminal electron acceptor in oxidative phosphorylation. Oxidative phosphorylation takes 
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place in cell mitochondria and results in 36 molecules of ATP per one molecule of glucose, 

while glycolysis in the cytoplasm produces only 2 ATP per one glucose molecule. Figure 4 

shows schematically the mechanism of metabolic shift from oxidative phosphorylation (A) to 

glycolysis (B). After transport into the cell, glucose is converted into glucose-6-phosphate, 

then via several steps into two molecules of pyruvate. Pyruvate, in turn, is the substrate for 

two enzymes – lactate dehydrogenase (LDH) which turns it into lactate and pyruvate 

dehydrogenase (PD), converting it into acetyl-CoA, which enters the Krebs cycle 

(tricarboxylic acid cycle (TCA)) in the mitochondria. Conversion of glucose into pyruvate and 

further into lactate is called glycolysis and does not require oxygen. If oxygen is present, 

conversion of acetyl-CoA in the Krebs cycle leads to its oxidation to CO2 with simultaneous 

reduction of NAD to NADH, which is used by the electron transport chain in the production 

of ATPs via oxidative phosphorylation. If oxygen concentration in the cell drops, PD is 

immediately phosphorylated by pyruvate dehydrogenase kinase (PDK) (fig. 4B), which 

inhibits the utilization of pyruvate as a fuel for the Krebs cycle and regulates mitochondrial 

oxygen consumption, keeping intracellular oxygen concentration constant [109]. In this case, 

all pyruvate is converted into lactate.  

 

 

 

 

 

 

 

 

Figure 4: Schematic representation of glucose metabolic shift in differentiated cells. In the case 

of normoxia (A) pyruvate is converted into acetyl-CoA and enters TCA cycle in mitochondria, 

where oxidative phosphorylation takes place. In the absence/deficit of oxygen (B) all pyruvate is 

converted into lactate by lactate dehydrogenase A 

 

Cancer cells tend to ferment glucose into lactate even in the presence of sufficient 

oxygen to support mitochondrial oxidative phosphorylation. This phenomenon was first 

A               B 
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discovered by Otto Warburg, who noticed already in the year 1924 that glucose metabolism of 

cancer cells is distinct from that of normal mammalian cells [110]. The researcher postulated 

that these changes in cell metabolism may cause cancer and the metabolic shift itself was 

named the “Warburg effect”.  Nowadays, although the Warburg effect was confirmed by 

many research groups, it is still not clear if these metabolic changes are the cause of malignant 

transformation or a consequence of it, as a reaction of the cells on the hypoxic tumor 

microenvironment [111]. Moreover, the Warburg effect was also described in highly-

proliferative adult and embryonic stem cells [112, 113]. There are several explanations why 

proliferating cells use energetically disadvantaged pathways. First, proliferating mammalian 

cells are exposed to a continuous supply of glucose and other nutrients in circulating blood 

and the ATP level is easily maintained by a high rate of glucose conversion. Second, the 

utilization of O2 as a substrate for energy production is not without risks. A fraction of 

electrons escape the respiratory chain and generate reactive oxygen species, which can 

oxidize lipids, proteins and DNA, and may result in cellular dysfunction or death [114]. 

Avoiding the involvement of mitochondria decreases the risk of ROS production and possible 

damage to lipids, proteins and DNA. And last but not least, proliferating cells have important 

metabolic requirements that extend beyond ATP [111]. 

Besides ATP production, glucose is involved in NADPH and nucleotide synthesis via 

the pentose-phosphate pathway (PPP). PPP takes place in the cytosol and along with 

glycolysis is a main glucose metabolic pathway. In general, there are three major outcomes of 

PPP: production of ribose-5-phosphate for nucleotide synthesis, generation of NADPH for 

further reductive reactions like e.g. fatty acid synthesis and production of erythrose-4-

phosphate for subsequent aromatic amino acid synthesis. NADPH is used by the cells to 

prevent the oxidative stress by reduction of glutathione, a major antioxidant, which prevents 

damage to important cellular components caused by ROS such as free radicals. PPP activity 

was shown to be a sufficient indicator to indirectly determine changes of intacellular levels of 

ROS in response to increasing oxygen concentrations [115]. At low oxygen concentrations the 

activity of PPP was lower when compared to hyperoxia [115]. Although most of the enzymes 

involved in glucose metabolism are controlled by HIF-1, the data about changes in PPP under 

hypoxia are controversial. Some authors suggest that under hypoxia glucose flux through PPP 

is inhibited  by hypoxia-induced depletion of glucose-6-phosphate, the substrate for the rate-

limiting enzyme of the PPP, which then promotes accumulation of NADP+ and depletion of 

NADPH [116]. Another study showed that in e.g. cancer cells, glucose flux through PPP 

http://en.wikipedia.org/wiki/Antioxidant
http://en.wikipedia.org/wiki/Cell_%28biology%29
http://en.wikipedia.org/wiki/Free_radical


Theoretical background 

32 

 

under hypoxia is increased in order to enhance nucleotide synthesis for fast-dividing cells 

[117]. 

An alternative major energy source and metabolic precursor is glutamine, which is 

either deamidated to enter the TCA cycle or directly used for protein synthesis. The influence 

of oxygen concentration on glutaminolysis (which results in ammonia and glutamate) is also 

debated. It was reported that glutamine consumption by BM-MSC is increased under hypoxia 

[112]. On the other hand, cultivation of embryonic stem cells (ESC) under hypoxia does not 

have an impact on glutamine consumption [118]. Interestingly, it was demonstrated that in 

hyperoxia, glutamine protects cellular structures, especially mitochondria, from damage due 

to oxygen toxicity [119]. 

 

3.6.3 Oxygen concentrations in vivo 

 

 There are only few cell types in the human organism which are exposed to 

atmospheric oxygen concentration: e.g. keratinocytes and melanocytes in the epidermis, 

pneumocytes and macrophages in lung alveoli, and cells of the corneal epithelium. The 

remainder of the cells divide, grow and function under much lower oxygen tensions (fig. 5). 

The partial pressure of oxygen in various organs and tissues is measured in mmHg.  For better 

comparison, these values are presented in this work as volumetric oxygen concentrations 

(figure 5 and see also chapter 8.2). Depending on the consumption rate and tissue 

vascularization, oxygen tensions as low as 6% - 7% (48 mmHg - 54.9 mmHg) were measured 

in bone marrow and between 10% and 15% in adipose tissue (AT) [120-122]. Measured 

oxygen tension in avascularized articular cartilage ranges from 7% (53 mmHg) on the surface 

to less than 1% (7.6 mmHg) in the deep zone [123, 124]. In lung parenchyma and circulation, 

the oxygen level exceeds only16% and in the retina – its maximum is 5% [125, 126].  

The brain is one of the largest oxygen consumers in the body, accounting for 20% of 

total oxygen consumption. Despite a highly developed cerebral circulation system, the oxygen 

tension in different parts of the brain varies between 2% and 5% (23.8 mmHg at 27 mm 

below the dura to 33 mmHg at 12 mm below the dura) [127, 128]. 
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Figure 5: In vivo oxygen concentrations in different organs 

 

Oxygen tension within the mammalian female reproductive tract was shown to be low, 

about 1.5 % to 8 % (11 mmHg – 55 mmHg) which lasts throughout the fetal development 

[129, 130]. During late gestation, even after placental gas exchange is established, oxygen 

concentrations in the umbilical artery, vein, and the amniotic fluid are still constrained below 

maternal venous levels (fetal vein – 4% (29.2 mmHg), fetal artery – 2.3% (18 mmHg), 

amniotic fluid – 1.6% (12.1 mmHg)) [131-133]. The umbilical cord with its blood vessels – 

two arteries and one vein - is lacking capillaries or lymphatic channels, thus stimulating UC-

MSC cells to develop in a hypoxic atmosphere. 

Together, these data indicate that low oxygen tensions (1% - 15%) present a so-called 

“physiological hypoxia”, which is the steady state of physiological oxygenation or “in situ 

normoxia”. This means that MSC, independent of their origin, develop in oxygen 

concentrations much lower than those used in standard cell culture techniques [134]. 

Moreover, efficient respiratory chain function occurs only within a narrow range of O2 

concentrations, which is dissimilar for cells of different origins [114]. 
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3.6.4 Influence of oxygen concentration on MSC 

 

There is increasing interest in studies of the influence of oxygen concentration on 

survival, proliferation and differentiation of MSC. In vitro, hypoxic conditions are usually 

modeled in cell incubators, where required oxygen concentrations are established by 

substitution of ambient air with nitrogen (in volumetric %). Although published results are 

sometimes contradictory, most of the studies demonstrate increased proliferation of MSC 

under hypoxia (table 3.6). The effect of hypoxia on MSC is certainly dependent on several 

parameters, including the degree of experimental hypoxia, the type of MSC and the presence 

or absence of cell culture media supplements. For example, Zhu and coauthors demonstrated 

that hypoxia (3% O2) along with serum deprivation induced rat BM-MSC apoptosis [135]. On 

the other hand, cultivation of human BM-MSC in 2% O2 without serum deprivation resulted 

in increased proliferation and higher expression of stem cell genes when compared to 

normoxic conditions [136, 137].  This was supported by another study, where human BM-

MSC were also shown to proliferate faster in 2% oxygen [112]. Long-term cultivation of UC-

MSC under 2% oxygen concentration increased proliferation, while maintaining the 

immunophenotypic characteristics of these cells [138, 139]. AD-MSC cultivated in 2% 

oxygen demonstrated increased proliferation along with decreased chondrogenesis [140].  In 

addition, another study has shown that low oxygen tension can be preferential for the 

cultivation of MSC, where rat BM-MSC were cultivated in 5% oxygen resulting in increased 

proliferation and osteogenic differentiation [141].  

 

Table 3.6 : Influence of oxygen concentration on proliferation and differentiation capacity of 

MSC 

Oxygen  

concentration 
Type of cells Observed effect Reference 

≤ 1% rBM-MSC 
Increased proliferation, induced ALP activity and 

production of Col I/III 
[142] 

≤ 1% hBM-MSC Down-regulation of several osteoblastic markers [143] 

≤ 1% hBM-MSC 
Decreased osteogenesis via suppression of 

RUNX2 
[144] 

1% hBM-MSC Decreased proliferation and differentiation [145] 
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2% hBM-MSC Prolonged stemness, increased proliferation [146] 

2% hBM-MSC Increased proliferation and metabolism [112] 

 

2% 

 

hWJ-MSC 
Increased proliferation and increased expression of 

mesodermal and endothelial markers 

[147] 

 

2% hAD-MSC 
Increased proliferation, decreased chondrogenesis 

and osteogenesis 
[140] 

2% hUC-MSC Increased proliferation, stable karyotype [139] 

3% hBM-MSC Decreased osteogenesis [148] 

3% ratBM-MSC In combination with serum deprivation -apoptosis  [135] 

5% ratBM-MSC 
Increased proliferation, ALP activity and 

osteogenesis in vivo and in vitro 
[141] 

5% hAD-MSC 
Increased proliferation, collagen II synthesis and 

chondrogenesis 
[149] 

5% hAD-MSC Increased chondrogenesis, decreased osteogenesis [150] 

 

 

Hirao and colleagues showed that a hypoxic microenvironment promotes a 

chondrogenic rather than an osteogenic phenotype [151]. Other researchers showed similar 

results, concluding that hypoxic conditions promote the chondrogenesis of MSC [152-155]. 

Direct comparison of dynamic compression and low oxygen tension revealed that hypoxia is a 

more potent pro-chondrogenic stimulus than mechanical stimulation [156]. Moreover, 

expansion of BM-MSC under low oxygen tension (5%) enhanced their subsequent 

osteogenesis [155]. Cultivation under low oxygen concentrations had the same effect on AD-

MSC, namely stronger chondrogenesis and weaker osteogenesis [150]. Merceron and 

colleagues concluded that tissue engineered constructs for bone repair should contain a 

capillary network or angiogenic factors along with sufficient porosity of scaffolds. Annabi 

and coauthors demonstrated that hypoxia (1% O2) increased the migratory potential and a 

capillary-like structure formation by BM-MSC [157]. 

Besides increased proliferation, cultivation under hypoxia plays an important role in 

subsequent MSC survival after transplantation. Accordingly, Rosova and colleagues showed 

that preconditioning of MSC under hypoxia prior to transplantation resulted in increased 

motility and improved tissue regenerative potential [158]. In the hind limb ischemia injury 

model, they demonstrated that mice which received hypoxic preconditioned MSC recovered 

faster than those in a control group, who received normoxic MSC. Another working group 
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demonstrated that hypoxic preconditioning of MSC could overcome the hypoxia-related 

inhibition of osteogenic differentiation [159]. Along these lines, Peterson and colleagues 

found better survival and enhanced function of rat BM-MSC after hypoxic preconditioning 

[160]. 

Taken together, these data demonstrate that cultivation of MSC in hypoxic, yet 

physiological oxygen concentrations may be beneficial for the cells and also helps to obtain 

higher cell yields within a shorter time frame for expansion. Cultivation under hypoxia is also 

important in subsequent cell survival after transplantation in avascularized injured tissues. 
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4 Experimental part 

4.1 Static cultivation 

 

4.1.1 Online measurements of oxygen concentration during short-term culture in 

hypoxic and normoxic conditions 

 

Cultivation of MSC in hypoxic conditions which mimic the natural microenvironment 

of these cells represents an important prerequisite to study cell proliferation, differentiation, 

senescence, metabolic balance and other physiological processes [158]. Thus, a variety of 

studies for in vitro cell cultivation and subsequent clinical applications suggested MSC 

culture in hypoxic (1 % to 10 % O2) rather than normoxic (21 % O2) conditions [161, 162]. 

Moreover, implanted MSC in clinical applications without well-developed blood vessels 

would suffer from limited nutrient and oxygen supply which requires more knowledge about 

the ability of these cells to survive and adapt to the altered microenvironment. Part of the 

following work is already published in [163]. 

For online oxygen concentration measurements, 24 hours after seeding, the cell culture 

medium was changed and cells were placed on the SFR-Shake Flask Reader in an incubator 

with reduced oxygen concentration (see chapters 8.2 and 8.6). For three days, dissolved 

oxygen concentrations (in µmol/l) in the medium and pH values were measured and recorded 

online every 10 to 20 minutes (fig. 6). The measurements showed - even at 1.5% O2 - only a 

minor reduction of the available oxygen level as compared to the cell-free medium, indicating 

a faster gas diffusion into the medium than the rate of cellular oxygen consumption (fig. 6). 

The measurements showed - even at 1.5% O2 - only a minor reduction of the available oxygen 

level as compared to the cell-free medium indicating faster gas diffusion into the medium than 

the rate of cellular oxygen consumption (fig. 6). Thus, at the end of the cultivations (80% 

confluency) with 1.5 % O2, the concentration of oxygen in the cell culture supernatant was 

15.03 µmol/l as compared to 15.7 µmol/l in the control medium (fig. 6A). Likewise, 2.5 % O2 

incubation revealed 23.88 µmol/l of oxygen in the culture supernatant versus 25.10 µmol/l in 

the control medium (fig. 6B), 5 % O2 resulted in 48.85 µmol/l versus 50.05 µmol/l in the 

control medium (fig. 6C), and in normoxic conditions at 21 % O2 values were 196 µmol/l in 

the cell culture as compared to 198µmol/l in the cell-free control medium (Fig. 6D).  
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Figure 6: Results of online-measurements of dissolved oxygen concentrations in the cell culture 

supernatant at 1.5 % (A), 2.5 % (B), 5 % (C) and 21 % (D). The oxygen concentration was 

subsequently determined for 70h in the 4 different cell cultures.The dissolved oxygen 

concentrations are demonstrated for the cell culture (black solid line) and for a parallel medium 

control without cells (blue dashed line) 

 

The calculated oxygen consumption at the end of cultivation (80% confluency) was 

0.024 ± 0.002 pmol/h/cell in 1.5 % O2, 0.035 ± 0.006 pmol/h/cell in 2.5 % O2, 0.036 ± 0.006 

pmol/h/cell in 5 % O2, and 0.095 ± 0.005 pmol/h/cell in 21 % O2 (fig. 7). 
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Figure 7: Rates of oxygen consumption by UC-derived MSC from all donors (n=4) at 1.5 %, 2.5 

%, 5 % and 21 % O2. Asterisks indicate statistically significant differences in comparison to the 

normoxic (21 % O2) control (* p < 0.001) 

The results from the present study reveal that UC-derived stem cells adapt their oxygen 

consumption and the accompanying energy metabolism according to the available oxygen 

concentrations. Thus, oxygen consumption rates of MSC in hypoxic conditions were about 3 

times lower compared to a normoxic atmosphere. Similar data has been reported in hypoxic 

primary human fibroblasts [109, 164]. 

It has been found, that decreased cell respiration in hypoxic conditions is not due to lack 

of oxygen being able to act as a substrate for oxidative phosphorylation (the major oxygen 

utilization in the cell) [109].  Under such circumstances oxygen consumption by mitochondria 

is actively downregulated by hypoxia-inducible factor-1 (HIF-1). HIF-1 was found to induce 

pyruvate dehydrogenase kinase 1 (PDK 1) which in turn suppresses the utilization of pyruvate 

as a fuel for the Krebs cycle [109]. This mechanism is used by the cell to maintain 

intracellular oxygen concentration, i.e. to keep homeostasis. Non-mitochondrial oxygen 

consumption in hypoxic conditions is unaffected. Cell plasma membranes are not a barrier to 

oxygen transport into the cell. It was measured that the difference of oxygen concentration 

across the cell membrane during oxygen consumption stays in the nanomolar range [165]. In 

our experiments it can be assumed that at the concentration of 15.03 µmol/l (at 1.5 % O2), 

oxygen still easily diffuses into the cells and its intracellular concentrations correlate with the 

concentrations measured in the culture medium. 
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On-line measurements also showed that a longer time period is needed to reach desired 

low dissolved oxygen concentrations in freshly changed, not previously deoxygenated 

medium. This is equivalent to a time interval of 20-30 hours for 1.5 % O2, 15 h for 2.5 %, and 

10 h for 5 % respectively (fig. 1). It also means that in static long-time cultivation 

experiments, where medium is changed every 2-3 days, cells are still exposed to a higher 

oxygen concentration for a considerably long period of time after medium change. The use of 

hypoxic working stations would be a solution if the exposure of the cells to higher oxygen 

tension is undesirable. 

 

4.1.2 Online measurements of pH during short-term culture under different oxygen 

tensions 

 

Cultivation under lower oxygen tension suggests alterations in the metabolic activities 

of the cells. Since all cell culture media were developed for cultivation under atmospheric 

oxygen concentration, it is important to know if the buffer capacity of the medium is 

sufficient to keep pH values in a physiological range (pH 7.0-7.5).  

Parallel to the measurements of dissolved oxygen concentrations, changes of pH in the 

cell culture medium were observed online. The pH values in the cell culture supernatant 

progressively decreased during cultivation time (70h) in parallel to an increasing cell number  

and reached a difference of about 0.15 pH values compared to control medium at the end of 

the cultivation (80 % confluency) (fig. 8). Online measurements of pH values in cell culture 

supernatants in 1.5%, 2.5%, 5% and 21% oxygen, however, revealed no significant 

differences between different oxygen concentrations. This demonstrates that buffer capacity 

of the medium is sufficient to provide physiological pH values under hypoxia over short 

periods of cultivation without medium change. 
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Figure 8:  Results of online-measurements of the cell culture supernatant at 1.5 % (A), 2.5 % 

(B), 5 % (C) and 21 % (D). The pH was subsequently determined for 70h in the 4 different cell 

cultures 

 

4.1.3 Cell proliferation under different oxygen tensions 

 

The survival of MSC in hypoxic conditions is a key issue if the cells are to be 

transplanted into necrotic tissues or constitute a part of an avascular TE construct. On the 

other hand, cultivation of MSC under “physiological hypoxia” can prevent the cells from 

damage via overproduction of ROS by mitochondria. To check the influence of hypoxia on 

cell proliferation, MSC were cultivated under 1.5%, 2.5%, 5% or 21% of oxygen tensions. 
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After a 72 h exposure of UC-derived MSCs to various concentrations of oxygen, the 

proliferation, apoptosis and cell damage/necrosis in all 4 different cell populations were 

investigated.  Cell growth analysis revealed a statistically significant increase in cell 

proliferation at 2.5 % O2 as compared to normoxic 21 % O2 (fig. 9). There was a statistically 

insignificant decrease in cell proliferation at 1.5% oxygen concentration when compared to 

normoxic control.  

 

 

 

 

 

 

 

 

 

Figure 9: The effect of hypoxia on the cell growth of the UC-derived stem cells from all donors 

(n=4). Data represent the mean  SD (*p<0.05) 

 

A more detailed analysis of the hypoxic (1.5 % O2) MSC cultures revealed little if any 

increase in apoptosis in cell preparations from all four donors (fig. 10A). In contrast, 

markedly decreased cell damage or necrosis in all MSC populations became detectable in 

hypoxic conditions as evaluated by a significantly reduced LDH release in two of the four 

MSC donors (fig. 10B).  

Similar data were obtained earlier in bone marrow-derived MSC [137, 158].  The 

lower level of cell damage and/or necrosis under hypoxia as compared to the normoxic 

control suggests an adaptation to the energy requirements during hypoxia as well as reduced 

production of damaging ROS compounds in hypoxic cells [166]. 
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Figure 10: The effect of hypoxia (1.5 % O2) on apoptosis was tested by the measurement of 

caspase 3/7 activity (A) and cell damage or necrosis was tested by the measurement of LDH 

activity in the cell culture supernatant (B) of the 4 different donors of UC-derived stem cells. All 

measurements were normalized to 10,000 cells whereby the values of all measurements were 

calculated compared to the normoxic control conditions (21% O2) at 100 %. Data represent the 

mean  SD for three independent measurements of each donor 

 

 

4.1.4 Metabolic activity of MSC under hypoxia 

 

Energy metabolism is mainly represented by glucose and glutamine, two important 

molecular carbon and nutrient sources. The analysis of metabolic activities of UC-derived 

MSC in our experiments was in agreement with previously described increases in glucose 

consumption and lactate production at low oxygen tension, as a consequence of switching cell 

metabolism from oxidative phosphorylation to anaerobic glycolysis, as well as an up-

regulation of the glucose transport into the cells [137, 167].  

UC-MSC cultured at 1.5% O2 consumed significantly more glucose (22.35 ± 1.56 

pmol/day/cell) (fig. 11A) and produced significantly more lactate (30.58 ± 3.58 

pmol/day/cell) when compared to normoxic controls (12.00 ±  1.93 and 16. 36 ±  1.07 

respectively) (fig. 11B). At 2.5 % glucose consumption and lactate production rates were 

lower than at 1.5% O2 (15.10 ± 1.39 and 19.97 ± 3.08 pmol/day/cell respectively), but still 

higher than in normoxic controls (fig. 11A, B). At 5 % O2, there were no differences in 

glucose uptake and lactate production when compared to 21 % O2. 
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Figure 11: The effect of hypoxia on the glucose consumption (A) and lactate production (B) of 

the UC-derived stem cells in all donors. Data are the means SD for triplicate measurements for 

each donor, four donors per each oxygen concentration. (**p < 0.005,*** p < 0.001, *p<0.05)  

 

Consumption of glutamine was lower at 1.5% O2 (1.94 ± 0.53 pmol/day/cell) and at 2.5 

% O2 (2.65 ± 0.95 pmol/day/cell) with no detectable difference at 5% O2 (2.79 ± 0.72 

pmol/day/cell) when compared to 21 % O2 controls (2.82 ± 1.37 pmol/day/cell) (fig. 12A). 

Glutamate production was lower at 1.5%, 2.5% and 5% O2 when compared to 21% O2 (fig. 

12B). 

 

 

 

 

 

 

 

 

Figure 12: The effect of hypoxia on the glutamine consumption (A) and glutamate production 

(B) of the UC-derived stem cells. Data are the means  SD for triplicate measurements for each 

donor, four donors per each oxygen concentration 
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These results show that under normoxic conditions, UC-derived stem cells consume less 

glutamine (about 3 pmol/day/cell) than BM-derived cells, as reported previously (4 

pmol/day/cell [168] and 30 pmol/day/cell [167]). Glutamine consumption was lower at 1.5% 

and 2.5% O2 as compared to the normoxic (21%) state, also unlike data reported for BM-

derived MSC [167]. To check the possible contribution of glutamine to the production of 

lactate, cultivation at 1.5 % O2 and 21% O2 without glutamine was also performed (data are 

not shown). Without glutamine, both glucose consumption and lactate production were 

decreased. It is well known that glutamine is essential for the proliferation of many cell types 

in culture. However, at 1.5% O2, UC-derived cells did not stop to proliferate without 

glutamine, which indirectly indicates that in hypoxic conditions glutamine is not used as the 

main energy or carbon source.  

 

4.1.5 Expression of glucose-metabolism associated genes under hypoxia 

 

In the next step, the regulation of some energy metabolism pathway-associated factors 

including glucose transporter-1 (GLUT-1) (glucose transport into the cell), lactate 

dehydrogenase A (LDHA) (glycolysis), glucose-6-phosphate dehydrogenase (G6PD) (pentose 

phosphate pathway), pyruvate dehydrogenase kinase-1 (PDK-1) (glycolysis) was analyzed. 

Hypoxanthine phosphoribosyltransferase-1 (HPRT-1) expression served as an internal control. 

These genes represent some targets of the transcription factor HIF-1 Quantitative RT-PCT 

(qRT-PCR) analysis revealed a significant up-regulation of GLUT-1, LDHA and PDK-1 in 

1.5% O2, 2.5% O2 and 5% O2 as compared to normoxic (21% O2) control cells (fig. 13).  In 

contrast, no up-regulation of G6PD in hypoxic conditions was detectable (fig. 13). 

Quantitative RT-PCR confirmed the up-regulation of the metabolic activity of UC-

MSC under hypoxia. In response to lower oxygen concentrations, a metabolic shift to  

glycolysis helps the cells to produce enough energy to maintain all necessary functions. The 

PDK 1 level was up-regulated by all oxygen concentrations, when compared to 21% O2, 

supporting previous findings that induction of this enzyme suppresses the utilization of 

pyruvate as a fuel for the Krebs cycle and regulates mitochondrial oxygen consumption, 

keeping the intracellular oxygen concentration constant [109]. 
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Figure 13: The effect of hypoxia on glucose metabolism-associated gene expression which may 

also represent HIF-1 target genes. (A) The data represent the expression levels in the UC- MSC 

at 1.5 % O2 (black bars), 2.5 % O2 (dark grey bars) and 5 % O2 (light grey bars) and compared 

to the steady state expression levels of normoxic control cultures at 21 % O2 (dashed line).  Data 

represent the mean  SD of three independent experiments. (B) Schematic representation of 

glucose and glutamine metabolic pathways and involved enzymes, gene expression of which was 

analyzed by qRT-PCR 

 

Gene expression of the glucose transporter GLUT-1 was up-regulated depending on 

the oxygen concentration – the lower the O2 tension, the higher the GLUT-1 level. This 

correlates with an increased glucose consumption rate, as revealed in previous experiments 

(see chapter 3.1.1). Increased lactate production was also confirmed by the up-regulated 

expression of lactate dehydrogenase. It seems that PPP is not influenced by the oxygen 

concentration, since the key rate-limiting enzyme of this pathway (G6PD) was expressed at 

the same level (fig. 13 A, B). 
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4.1.6 Cytokine expression profile under hypoxia and normoxia 

 

Short-term (3 days) cultivation under 2.5% oxygen concentration significantly 

increased UC-MSC proliferation activity (see chapter 3.1.3). To explore further events that 

lead to increased cell proliferation, cDNA microarray of whole genome, quantitative RT-PCR 

and protein microarray analysis of cytokines were performed. Increased cell proliferation can 

be the result of lower cell apoptosis and necrosis, since the cells were cultivated in a more 

physiological microenvironment and less ROS were produced [129, 130, 169]. Another 

explanation could be that the UC-MSC produce more cytokines under hypoxia and stimulate 

their own cell growth via increased cytokine or receptor production. In further experiments, 

the cytokine expression profiles of UC-MSC in 2.5% O2 in comparison to 21% O2 were 

studied on mRNA and protein levels.  

 

4.1.6.1 Gene expression profile of UC-MSC under hypoxia and normoxia – whole genome 

cDNA microarray 

 

Whole genome cDNA microarray provides important information about general gene 

expression for more than 29,000 genes. Gene expression monitoring revealed that in hypoxic 

conditions (2.5% O2) about 300 genes were down- or up-regulated as compared to normoxic 

(21% O2) conditions (fig.14, detailed overview: supplementary material, tables 8.1 and 8.2). 

The PANTHER (Protein ANalysis THrough Evolutionary Relationships) is a system that 

classifies genes by their functions, using published scientific experimental evidence and 

evolutionary relationships to predict function even in the absence of direct experimental 

evidence. PANTHER biological function analysis tool classifies genes into 17 categories 

according to the function of proteins, which are encoded by these genes [170, 171]. According 

to the PANTHER functional analysis, the largest part of regulated genes belongs to metabolic 

processes (25%), followed by genes responsible for cellular processes (16%), cell 

communication (11%), transport (8%), immune system processes (7%), developmental and 

system processes and response to stimulus (6%). Regulated genes were responsible also for 

cell adhesion, cell cycle regulation, cellular component organization and apoptosis. 
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Figure 14: Distribution of biological functions of genes, which were up- or down-regulated in 

2.5% oxygen concentration as compared to 21%. Data are presented as percent 

 

If we consider the whole human genome, according to the PANTHER analysis, genes 

involved in metabolic functions represent the largest population (21.4 % of all genes). Indeed, 

it is pivotal for cell survival to have a complex and flexible system that helps to keep 

energetic balance and can adjust to changes in nutrition supply. This is why it is also to be 

expected, that changes in oxygen concentration result in dynamic response of the metabolic 

pathways. Data analysis with the PANTHER classification tool did not reveal any genes that 

were involved in hypoxia-induced regulation (like, e.g. HIF1 HIF3 and VHL). Indeed, it 

was shown that hypoxia does not increase the level of HIF mRNA [172]. The HIF1 protein 

is constantly expressed independently from oxygen concentration, but it is continuously 

degraded in the 26S proteosomes. Only above a certain oxygen level HIF1   is stabilized and 

functionally active [173]. The VHL protein is a E3 ubiquitin ligase that ubiquitinates HIF1 

in the presence of oxygen. Its functional activity is also regulated at the post-translational 

level. It is still unclear, what concentrations of the HIF1 protein are present in different 

tissues in vivo, since this protein has an extremely short half-life at normal (21%) oxygen 
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conditions – less than 5 minutes [174, 175]. In UC-MSC cultivated in vitro in 2.5% O2, 

HIF1 is stabilized at the protein level [163], but it is still unknown how low oxygen tension 

must be in order to turn the physiological role HIF1 plays in cells into pathophysiological 

regulation. 

Genes involved in cellular processes like cell communication, motion, cytokine 

production and signaling are significantly regulated in 2.5% oxygen concentration, indicating 

that UC-MSC actively respond to physiological or pathological hypoxia.  It is discussed that 

MSC in general can play an important role in tissue homeostasis, supporting other 

differentiated cells with protective cytokines (local paracrine rescue function) or via direction 

of blood vessel growth into hypoxic tissue in the case of too low oxygen concentration  (e.g. 

VEGF production). In this way, fast regulation of cell communication genes (like receptor 

expression and production of signaling molecules) via HIF-dependent or HIF-independent 

pathways is a key condition to fulfill these functions.  

 Although a whole genome microarray cannot provide an absolute quantitative 

analysis of gene expression, it gives a very important overview on the genes that respond to 

different cultivation conditions and offers starting points for further research. In the case of 

UC-MSC, it is clearly seen that cells cultivated in vitro in diverse oxygen concentrations have 

dissimilar gene expression and additional studies must be performed to evaluate the influence 

of culture conditions on the functional activity, treatment efficiency and post-implantation 

survival of these cells. 

 

4.1.6.2 Cytokine gene expression 

 

After 72 hours of cultivation of UC-MSC from 3 donors under 2.5% and 21% O2, 

RNA was isolated, transcribed into cDNA and qRT-PCR of selected genes was carried out. 

Vascular endothelial growth factor A (VEGFA), vascular endothelial growth factor receptor 

(VEGF-R), placental growth factor (PGF), basic fibroblast growth factor (bFGF), stem cell 

factor receptor (SCF-R), insulin-like growth factor binding protein 6 (IGFBP6), heparin-

binding EGF-like growth factor (HBEGF), transforming growth factor beta 3 (TGF3) and 

insulin-like growth factor binding protein 3 (IGFBP3) gene expression was analyzed with 

hypoxanthine phosphoribosyltransferase-1 (HPRT1) used as internal control (housekeeping 

gene) and Ct-method (fig. 15).  
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Figure 15: The effect of hypoxia (2.5% O2) on cytokine gene expression (up-regulated 

genes). Gene expression was detected by qRT-PCR with hypoxanthine 

phosphoribosyltransferase-1(HPRT1) expression as an internal control. Data represent the 

mean  SD of three independent experiments (**p<0.01, *p<0.05) 

 

Gene expression analysis revealed 3 genes that were significantly up-regulated in 

2.5% O2: IGFBP3 (13.8-fold), IGFBP6 (5.6 fold) and VEGFA (3.7-fold) (fig. 15). Although 

SCF-R was 6.6-fold up-regulated, there was a big variety in the gene expression levels 

between donors (from 13-fold to 3.3-fold). 

IGFBPs are a family of six homologous multifunctional high-affinity proteins. As can 

be derived from the name, these proteins bind intra- and extracellular IGFs in biological 

fluids, acting as carriers and prolonging the half-life of IGFs [176].  IGFs, in turn, regulate 

growth and embryonic development. Numerous data support the importance of IGFBPs for 

cell growth by both IGF-dependent and IGF-independent mechanisms. Depending on the 

cellular context and the IGFBP present, the actions of IGFs can be either enhanced or 

inhibited [177]. IGFBP6 is found to be an important tumor suppressor in nasopharyngeal 

carcinoma [178]. IGFBP3 was also found in cell nuclei of lung cancer cells, where it induced 

their apoptosis and acted as a nuclear tumor suppressor [179]. In prostate cancer cells IGFBP3 

was also found in mitochondria. The authors discussed its essential role in prostate cancer 

apoptosis [180]. On the other hand, it was also suggested that IGFBP3 can act as a shuttle to 

the nucleus for IGFs [181]. Another important function of IGFBP3 is an immunomodulatory 

property of MSC – here it was shown that IGFBPs significantly increase inhibition of PBMCs 

proliferation by MSC [182].  As expected, hypoxia enhanced the expression of VEGFA, the 
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major primer of vascularisation and cell migration [183]. Moreover, VEGF induces 

expression of anti-apoptotic proteins and demonstrates mitogenic capacity. Several working 

groups showed increased levels of VEGF in MSC in response to hypoxia [184, 185]. Notably, 

mRNA level of bFGF, PGF and TGF3 remained unchanged (fig.15). 

 

 

  

 

 

 

 

 

  
Figure 16: The effect of hypoxia (2.5% O2) on cytokine gene expression (down-regulated 

genes). Gene expression was detected by Real-Time RT-PCR with hypoxanthine 

phosphoribosyltransferase-1(HPRT1) expression as an internal control. Data represent means  

SD of three independent experiments (*p<0.05) 

  

Two of the analysed genes were down-regulated under 2.5% O2 (HBEGF statistically 

significant and VEGF-R insignificant) (Fig.16).  It can be concluded, that during hypoxia only 

ligands are increasingly produced, while expression of VEGF receptors remains constant. 

HBEGF belongs to the family of epidermal growth factors (EGF), which are important 

cytokines that induce mitosis of cultured epidermal cells, promote DNA synthesis, stimulate 

translation, and increase protein phosphorylation [186]. EGF was also shown to trigger 

neuronal differentiation in BM-MSC [187]. It was demonstrated that HBEGF protect 

epithelial cells from ROS in vitro [188]. Authors revealed higher production of HBEGF 

during oxidative stress. In the case of hypoxia, when cell metabolism is shifted to glycolysis, 

mitochondria produce less ROS and the protective function of HBEGF is not required.  
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4.1.6.3 Cytokine expression on the protein level 

 

Quantitative RT-PCR revealed increased gene expression of some cytokines on the 

mRNA level. Although mRNA levels in the cell often correlate with protein expression, 

several post-transcriptional and post-translational factors can influence the final receptor 

expression, cytokine release and their biological activity. One example of post-transcriptional 

regulation is microRNA, which consists of short chains of nucleotides that can complimentary 

bind to target mRNA and suppress translation [189]. Human MSC are strictly regulated by  

microRNA expression during development and differentiation [189]. An example of post-

translational regulation is protein degradation via ubiquitination. The HIF-1 protein is 

constantly degraded in the cell in normoxia and stabilizes only if certain oxygen concentration 

threshold is reached. To examine cytokine expression on the protein level, Quantibody 

Human Growth Factor Array I kit (see chapter 8.10) was used. After cultivation in 2.5% and 

21% O2, UC-MSC from 3 donors were disrupted and the intracellular level of 40 cytokines 

was measured.  

 

 

 

 

 

 

 

 

 

 

 

Figure 17: The effect of hypoxia (2.5% O2) on intracellular cytokine protein expression. 

Protein expression was detected with the Quantibody Human Growth Factor Array I kit and 

ratios of protein expression in 2.5% oxygen to protein expression in 21% oxygen were 

calculated. Data represent means  SD of three independent experiments (*p<0.05)   
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It was not possible to detect extracellular cytokine release from UC-MSC since they 

were cultivated in cell culture medium supplemented with human serum, which is rich in 

growth factors and soluble receptors. To avoid unspecific detection, culture medium was 

removed and cell monolayer was washed with PBS before disruption. 

 With the help of the microarray, 35 proteins were detected in the cell lysates. 

However, only 17 proteins could be quantified. Five proteins (BMP-4, EGF, IGF-1, TGF 

and VEGF R3) were not detected. BMP-4, EGF and TGF are thee homologous proteins 

which participate in cell differentiation. Absence of these proteins in the UC-MSC can 

indirectly indicate an undifferentiated state of the cells. There is no evidence that MSC 

synthesize IGF-1, but it is known that they can be regulated by IGF as a paracrine (not 

autocrine) factor. Furthermore, 18 cytokines could be detected in the cell lysates, but their 

concentrations were below quantification limit. Almost all proteins which were analyzed were 

up-regulated, but the up-regulation was statistically significant for five proteins only (fig.17).   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: Intracellular concentration of proteins in the cells, cultivated in 21% O2 (grey 

columns) and 2.5 % O2 (blue columns). Protein expression was detected with the Quantibody 

Human Growth Factor Array I kit. Data represent the means  SD of three independent 

experiments  

Confirming qRT-PCR results, the level of IGFBP6 was 2.04-fold increased under 

hypoxia when compared to cells cultivated in ambient oxygen concentrations. IGFBP2 was 
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also up-regulated, indicating that numerous proteins of this family are regulated depending on 

the oxygen tension. In contrast to qRT-PCR data, VEGV receptor 2 was significantly over-

expressed under hypoxia when compared to normoxic controls. 

FGF-7 (also known as keratinocyte growth factor) is one of the factors relevant for the 

ability of MSC to home to sites of injury. It was shown that FGF-7 plays an essential role in 

liver regeneration [190] and cell migration [191]. The up-regulated SCF receptor (known also 

as CD117) also participates in cell proliferation and survival, transducting (when binded with 

SCF) signals via phosphorylation of intracellular signalling molecules. Figure 18 shows actual 

intracellular concentrations of measured proteins in the cells under hypoxia and normoxia. 

Concentrations of different proteins vary from7 pg/ml to 47 µg/ml with the highest 

concentration for bFGF and the lowest for bNGF. It is important to note once more that the 

proteins were measured only intracellularly, although most of them are released 

extracellularly. Development of new, chemically-defined cell culture media will make it 

possible to study also the extracellular release of cytokines by UC-MSC. 

 

 

4.1.7 Cell migration assay (wound healing assay) 

 

The wound-healing assay is the simplest, most inexpensive and earliest developed 

assay to study cell migration in vitro [192]. In this method, the “wound” is created by 

scraping the cell monolayer with the pipette tip, followed by observation of cell migration into 

the scratch. 

For the wound-healing assay, UC-MSC from the same donor were cultivated for 8 

hours under 21%, 5% and 2.5% O2. As shown in figure 19, the migration rate of the cells was 

higher under hypoxia, both at 2.5% and 5% of oxygen tension.  It is important to note that 

infiltration of the MSC into the “wound”-area was a result of migration, but not cell division, 

since calculated doubling times for UC-MSC (24-30 h) are much longer then the duration  of 

the experiment (8h) (fig.19). 
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Figure 19: The effect of hypoxia (2.5% and 5% O2) on UC-MSC migration activity. Cells 

from the same donors were cultivated for 8 hours under 21% O2 (A) versus 5% O2 (B), and 

under 21% O2 (C) versus 2.5% O2 (D) 

  

Hypoxia seems to be a strong stimulator of MSC migration. It was shown previously 

that both, autocrine and paracrine effects of growth factors involved in enhanced hypoxia-

driven migratory potential of MSC [157]. MSC pre-treated by hypoxia before transplantation 

have better survival chances and can migrate into necrotic tissues [193, 194]. Hypoxic 

preconditioning also decreases post-transplantation apoptosis of MSC via stabilizing 

mitochondrial membrane potential and increasing VEGF production [195]. The observation of 

increased migratory activity of UC-MSC under hypoxia supports the findings with gene and 

protein expression, showing up-regulation of cell motility under lower oxygen tensions.  
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4.1.8 Long-term UC-MSC cultivation under different oxygen concentrations 

 

To obtain high cell numbers for clinical use, it is unavoidable to expand the cells over 

several passages. Millions of cells of good quality with regard to cell viability, paracrine 

activity and non-tumorigenesis must be obtained in the shortest possible period of time. In the 

following experiments, UC-MSC were subcultivated over 25 passages under 21%, 5% and 

2.5% O2 (3 donors per each oxygen concentration). Cell numbers, cell senescence, possible 

spontaneous transformation and the differentiation potential after long-term expansion were 

analysed. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: The effect of hypoxia (2.5% and 5% O2) on UC-MSC long-term culture. Cells 

from three donors were cultivated over 25 passages under 21% versus 5% O2 (A, B) and 21% 

versus 2.5% O2 (C, D); A, C – cumulative population doublings; B, D – total cell numbers. Data 

represent means  SD from 3 donors 

A C 

B D 
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Figure 20 shows the results of long-term cultivation of UC-MSC. As can be seen, 

hypoxic cultures resulted in increased cumulative population doublings and significantly 

higher total cell numbers in both 2.5% and 5% oxygen when compared to 21% O2. Starting 

with the same cell number at passage 1 (7.5x10
4
 cells), the yield at passage 10 was 

5.3x10
7
±0.5 x10

7
 cells with 2.5% O2, while it was only 3.3x10

7
±0.4 x10

7
 at 21% O2. 

Similarly, in the experiment where cells were cultivated in 5% O2 versus 21% O2, at passage 

10 hypoxic culture resulted in 3.97x10
7
±0.7 x10

7
 cells while at normoxia only 2.61x10

7
±0.3 

x10
7
 cells were counted.  Similar results were obtained by Nekanti and colleagues, who 

demonstrated a higher proliferative activity of UC-MSC in long-term cultivation under 2% 

oxygen tension [138].   

Another working group which studied the long-term cultivation of BM-MSC revealed 

a better support of the undifferentiated state of the cells and higher colony-forming unit 

numbers under hypoxia (5% O2) when compared to 21% O2 [196]. It should be mentioned, 

however, that the authors considered “long-term cultivation” only as cultivations of over 2 

passages. On the other hand, it is known that BM-MSC have shorter in vitro proliferative 

capacities than UC-MSC. 

The results of our study show that UC-MSC can be subcultivated in vitro for a very 

long period of time without losing their proliferative activity. On one hand this is 

advantageous since larger cell numbers can be obtained. On the other hand, safety 

considerations play an important role with regard to the clinical perspective of using such 

cells for stem cell therapy or tissue engineered constructs. Cells should not proliferate 

endlessly, turning into immortal tumorogenic cell lines. Cultivation over 25 passages showed 

that UC-MSC slow down their growth after 20 passages, both in normoxic and hypoxic 

conditions. Cultivation under lower oxygen concentrations, however, helps to achieve higher 

cell numbers in a shorter period of time.   

 

4.1.9 Cell senescence after long-term cultivation 

 

 

As it was mentioned above, UC-MSC expanded in vitro must not spontaneously 

transform into malignant immortal cells. To check if cells go into senescence, -galactosidase 

staining of UC-MSC after 25 passages under hypoxia and normoxia was performed. Cellular 
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replicative senescence in vitro was first described by Hayflick and Moorhead in 1961 as a 

phenomenon of growth arrest after a period of normal cell proliferation (Hayflick limit) [197]. 

Senescent cells stay metabolically active, but demonstrate altered cell morphology – namely 

hypertrophic cell size, flattened shape and big nuclei (sometimes several of them). One of the 

reasons of in vitro senescence is telomere shortening. In the absence of telomerase reverse 

transcriptase, telomeres become gradually shorter with each cell division. The rate of telomere 

shortening in BM-MSC was shown to be about 100 bp at every two passages [198].   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: Senescence-associated -galactosidase staining of UC-MSC cultivated for 25 

passages; 21% O2 (A) versus 5% O2 (B) and 21% O2 (C) versus 2.5% O2 (D) 

 

-galactosidase staining of the UC-MSC after 25 passages showed that most of the 

cells become senescent, with blue staining around the cell nuclei and typical morphology (fig. 

21). Replicative senescence is an important anti-cancer mechanisms in vitro [199] and in vivo 

[200], which opposes neoplastic transformation triggered by activation of oncogenic 

pathways. The fact, that UC-MSC retain this mechanism when cultivated under normoxic and 
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hypoxic conditions makes it possible to apply these cells in the clinical contest after ex vivo 

expansion, thus reducing the risk of neoplastic transformation.  

 

4.1.10 Expression of oncogenes, hTERT and tumor suppressors during long-term 

cultivation of UC-MSC under normoxic and hypoxic conditions 

 

Despite of encouraging results from in vitro experiments, animal models and first 

clinical trials, MSC are still not widely-used in practice. The major factor that will influence 

the future of clinical applications of UC-MSC is not only the degree of treatment efficiency, 

but also concern of safety aspects. The treatment cannot be applied to a patient, if it is 

hazardous by exhibitng side-effects or undesired developments. The direct or indirect 

involvement of MSC in cancer progress is still under debate. There are three mechanisms by 

which MSC can be involved in possible cancer development. The first mechanism is direct, 

via malignant transformation of the implanted MSC, the second mechanism involves the 

tumor modulatory effects of MSC and the third mechanism is via the MSC influence on the 

immune system. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: Representative electrophoresis results of RT-PCR products for the genes p53 

(tumor supressor protein 53), H-RAS (transforming protein p21), hTERT (human telomerase 

reverse transcriptase) and C-MYC (human myelocytomatosis viral oncogene homologue;. 

HPRT-1 (hypoxanthine phosphoribosyltransferase-1) served as housekeeping gene control. (A) 

UC-MSC cultivated in 2.5% versus 21% O2. (B) UC-MSC cultivated in 5% versus 21% O2 
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In order to examine the safety of long-term culturing of UC-MSC with regard to 

spontaneous in vitro transformation, cells cultivated in 2.5%, 5% and 21% O2 were studied 

after passage 5 and after passage 10 for the presence and expression profile of various tumor 

suppressors and oncogenes (fig. 22).  

The tumor suppressor protein 53 (p53) is considered the “guardian of the genome” and 

a key regulator of the intracellular anti-cancer network [201]. The number 53 in the protein’s 

name reflects its mass on the SDS-PAGE, although its real molecular mass is smaller. p53 is 

involved in anti-cancer control via several mechanisms, including initiation of apoptosis, 

activation of DNA-repair proteins and cell growth/cell cycle arrest via cell cycle checkpoints 

[202, 203]. p53 plays a central role in the biology of MSC, since the absence of p53 

implicates spontaneous transformation of MSC in long-term culture [204]. [204]. Recently, 

p53 was also shown to play an important role in glucose metabolism, increasing the level of 

oxidative phosphorylation [205]. Hypoxia has divergent effects on the p53 level, depending 

on its duration and oxygen concentration [206]. In the absence of DNA damage, p53 is 

ubiquitinated with subsequent proteasomal degradation, but it is immediately stabilized and 

activated in response to different types of stress. Therefore, it is important to know if the long-

term cultivation of MSC can lead to p53 mutations and silencing.  

RT-PCR analysis revealed a stable expression profile of p53 in long-term cultivated 

UC-MSC, both at 2.5%, 5% and 21% O2 concentrations at passage 5 and at passage 10 (fig. 

22A, B). H-RAS, also known as transforming protein 21 (analogous to p53 it is named by its 

molecular mass), is a proto-oncogene, which (if normally expressed) regulates cell growth, 

but in the case of mutation or overproduction can lead to malignant transformation. p21 is 

regulated by p53 and the p21/p53 pathway is one of the major cell-cycle arrest activators in 

the case of DNA damage. Previous studies demonstrated that over-expression of H-RAS 

protects from programmed cell death [207].  Although p21-deficiency itself is not sufficient to 

allow MSC immortalization, when coupled with p53 deficiency, MSC bypass senescence in 

vitro and generate tumors that resemble typical mesenchymal sarcomas in vivo [68]. As 

shown in figure 22, no differences in H-RAS gene expression could be detected after long-

term expansion of UC-MSC at all oxygen concentrations during all passages. 

Human telomerase reverse transcriptase (hTERT) is the catalytic subunit of 

telomerase, a RNA-dependent DNA polymerase which stabilizes telomeres and allows cells 

to avoid the senescence checkpoint [208-210]. Telomerase activity is involved in the 

immortalization of cancer cells and subsequent tumor growth. It was shown that telomerase is 
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stringently repressed in normal human somatic tissues, but it reactivates in immortal cancer 

cells [211]. RT-PCR revealed no spontaneous expression of hTERT in long-term cultivated 

UC-MSC, both in hypoxic and normoxic cell cultures (fig. 22). The positive control - lung 

and liver cancer cell lines, in turn, exhibited hTERT-expression, showing that absence of 

amplicons in UC-MSC cultures was not a result of falsely designed primers. 

The level of expression of C-MYC in 2.5% oxygen concentration remained also 

unchanged over 10 passages (fig. 22A). C-MYC is a transcription factor and also a proto-

oncogene, its protein over-expression is linked to senescence bypass and contributes to 

oncogenesis [212].   

Although a more detailed analysis should be performed to assure the safety of MSC 

applications after in vitro expansion in hypoxic conditions, our results demonstrate quite 

stable expression profiles of selected oncogenes and no spontaneous expression of hTERT.  

 

4.1.11 Surface immunophenotype characterization of UC-MSC during long-term 

cultivation 

 

No uniform surface marker protein has yet been found to characterize MSC. ISCT 

recommended a combination of surface antigens which must be positively (≥95%) or 

negatively (≤2%) expressed by MSC [3]. To identify MSC, ISCT proposed that cells should 

express CD105 (known as endoglin), CD73 (known as ecto 5’ nucleotidase) and CD90 (also 

known as Thy-1) and must not express CD34 and CD31 which mark primitive hematopoietic 

progenitors and endothelial cells.  

UC-MSC were studied for surface antigen expression during long-term cultivation 

under normoxic and hypoxic conditions by flow cytometry after staining with FITC- or PE-

conjugated antibodies against CD31,  CD34, CD44, CD73, CD90, CD105 and corresponding 

isotype control immunoglobulins.  Flow cytometric analysis showed that cells cultivated in 

5% and 21% oxygen concentration retained the specific immunophenotypic MSC markers 

(CD44, CD73, CD90 and CD105) (fig. 23, fig. 24 and table 4.1.11.1) but were negative for 

hematopoietic (CD34) and endothelial (CD31) markers. According to these data, UC-MSC 

maintained their surface immunophenotype and did not undergo spontaneous differentiation 

neither under normoxia nor under hypoxia. Identical results were obtained for UC-MSC 

cultivated at 2.5% versus 21% O2 (fig. 25, fig.26 and table 4.1.11.2). 
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It was shown previously that hypoxia (1% O2) can induce differentiation of BM-MSC 

towards endothelial cells [157]. The absence of the specific endothelial marker CD31 during 

all periods of long-term cultivation of UC-MSC in 2.5% and 5% oxygen indicated that no 

spontaneous endothelial differentiation took place under hypoxia. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23:  Flow-cytometric analysis of surface antigen expression (CD105, CD90 and 

CD31) of UC-MSC during long-term cultivation in 5% and 21% oxygen concentration. Grey 

lines represent isotype control, blue lines – specific antibodies 
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Figure 24:  Flow-cytometric analysis of surface antigen expression (CD73, CD44 and 

CD34) of UC-MSC during long-term cultivation in 5% and 21% oxygen concentration. Grey 

lines represent isotype control, blue lines – specific antibodies 
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Table 4.1.11.1: Summarized surface antigen expression during long-term cultivation in 

5% and 21% oxygen concentration 

 

 

Table 4.1.11.2: Summarized surface antigen expression during long-term cultivation in 

2.5% and 21% oxygen concentration 

 

 

 

 

 

 

Marker 

 Antigen expression 

P.5 P.10 P.15 P.20 

21% 5% 21% 5% 21% 5% 21% 5% 

CD31 0.4 % 0.1 % 0.5 % 0.4 % 0.6 % 0.2 % 0.0 % 0.4 % 

CD34 0.5 % 0.0 % 0.5 % 0.4 % 0.4 % 0.4 % 0.5 % 0.3 % 

CD44 99.9 % 99.9 % 100 % 100 % 100 % 99.9 % 99.9 % 98.3 % 

CD73 99.4 % 99.6 % 99.6 % 99.2 % 99.9 % 99.9 % 99.9 % 100 % 

CD90 98.9 % 99.5 % 99.7 % 99.9 % 98.0 % 95.2 % 98.2 % 99.6 % 

CD105 99.5 % 99.0 % 99.8 % 99.7 % 99.3 % 99.1 % 99.2 % 99.2 % 

Marker 

 Antigen expression 

P.5 P.10 P.15 P.20 

21% 2.5% 21% 2.5% 21% 2.5% 21% 2.5% 

CD31 0.3 % 0.6 % 0.2 % 0.2 % 0.3 % 0.1 % 0.2 % 1.3 % 

CD34 0.8 % 0.8 % 0.1 % 0.3 % 0.4 % 0.6 % 0.6 % 0.4 % 

CD44 99.3 % 99.9 % 100 % 100 % 100 % 100 % 99.9 % 99.8 % 

CD73 95.6 % 97.32 % 99.3 % 99.8 % 100 % 100 % 99.9 % 100 % 

CD90 99.9 % 99.8 % 99.9 % 99.7 % 99.9 % 99.6 % 97.6 % 99.8 % 

CD105 99.8 % 97.5 % 97.4 % 99.6 % 99.9 % 98.8 % 97.3 % 97.2 % 
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Figure 25:  Flow-cytometric analysis of surface antigen expression (CD105, CD90 and 

CD31) of UC-MSC during long-term cultivation in 2. 5% and 21% oxygen concentration. Grey 

lines represent isotype control, blue lines – specific antibodies 
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Figure 26:  Flow-cytometric analysis of surface antigen expression (CD73, CD44 and 

CD34) of UC-MSC during long-term cultivation in 2.5% and 21% oxygen concentration. Grey 

lines represent isotype control, blue lines – specific antibodies 
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4.1.12 Mitochondrial biogenesis in hypoxic conditions 

 

Mitochondrial biogenesis is a complex process, which is regulated by numerous 

microenvironmental parameters and which is responsible for sufficient energy supply in 

eukaryotic cells.  Mitochondria are a key component of energy generation and cell survival, 

since they regulate physiological and stress-related apoptosis via release of caspase activators, 

loss of mitochondrial transmembrane potential and an altered redox state of the cells [213]. 

Leakage of electrons during the mitochondrial oxidative phosphorylation and creation of ROS 

which can damage DNA, proteins and lipids leads to cell dysfunction and death.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27: The effect of hypoxia on mitochondrial biogenesis in UC-MSC long-term 

culture. Cells from three donors were cultivated over 15 passages under 21%, 2.5% and 5% O2 

and stained with mitotracker green. Representative micrograph of UC-MSC from 21% (A) and 

2.5% O2 (B) and flow-cytometric measurements (characterization) of mitochondrial biomass 

from cells cultivated in 2.5% (blue line) versus 21% O2 (C) and 5% (blue line) versus 21% O2 

(D) revealed no difference between hypoxic and normoxic cultures 

There are many theories how mitochondrial biogenesis is regulated in MSC. It has 

been suggested that undifferentiated MSC contain less mitochondria than differentiated ones 

C D 
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and the number of mitochondria can be taken as a characteristic of cell stemness  [214]. The 

localization of mitochondria in the cell is different in differentiated and undifferentiated cells  

[215]. Another explanation of lower mitochondria numbers in undifferentiated cells is a 

metabolic shift. MSC, like cancer cells, also exhibit the Warburg effect, which is anaerobic 

glycolytic activity in the presence of sufficient oxygen molecules (aerobic glycolysis). It has 

been speculated that this effect helps actively dividing progenitor and cancer cells to avoid 

DNA damage by mitochondrial ROS.  Mitochondrial activity is regulated by hypoxia via 

HIFs and it was shown that in ESC, iPSC and MSC hypoxia is an  “enhancer of stemness” 

[216]. On the other hand, oxygen deficiency can lead to metabolic starvation and cause 

mitochondrial autophagy under hypoxia [217]. To check if hypoxia causes alteration in 

mitochondrial mass, UC-MSC cultivated over 15 passages in hypoxia and normoxia were 

stained with mitotracker green and microscopy, as well as flow cytometry were performed 

(fig. 27). Mitotracker green binds irreversibly to the mitochondrial membrane and its binding 

is independent on mitochondrial transmembrane potential. Staining of UC-MSC from hypoxic 

and normoxic cell cultures revealed no difference in the mitochondrial biomass by 

microscopic visualization (fig. 27A, B) and flow-cytometric characterization (fig. 27C, D). 

These findings are not in agreement with data published by  Basciano et al., who showed 

decreased mitochondria biomass in hypoxic culture of BM-MSC [196]. The authors, however, 

made a wrong conclusion, since the reagent used in their case- mitotracker orange, shows 

staining intensity dependent on the mitochondrial transmembrane potential, but not on the 

mitochondrial biomass itself. Moreover, another working group demonstrated in primary 

human fibroblasts that mitochondrial changes under hypoxia are functional, but not structural 

and the quantity of mitochondria per cell is not altered at lower oxygen concentration [164].  

 

 

4.1.13 Differentiation potential after long-term cultivation in hypoxic and normoxic 

conditions 

 

The ability of MSC to respond to external differentiation factors is an important 

property of these cells. Expanded in vitro over several passages, MSC can lose their 

differentiation capacity. This phenomenon is called in vitro cell aging.  It was demonstrated 

that the differentiation potential of BM-MSC to adipocyte and osteocyte diminished with 

successive passages [198]. Bork et al. demonstrated changes in the DNA methylation pattern 
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after long-term cultivation of BM-MSC [218]. Cultivation of the cells in a physiological 

microenvironment could help to overcome this problem. To investigate the differentiation 

capacity of UC-MSC during long-term expansion, cells were cultivated under 2.5%, 5% and 

21% O2 over 15 passages and differentiation toward chodrocytes, osteocytes and adipocytes 

was induced with differentiation media. After 23 days of differentiation in 21% O2, cells were 

fixed and stained with von Kossa and calceine staining for osteogenic differentiation, 

BODIPY staining for adipogenic differentiation and Alcian Blue staining for chondrogenic 

differentiation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28: The effect of hypoxia on the osteogenic differentiation potential of UC-MSC 

after long-term cultivation under 2.5% O2 (B, E, H) and 5% O2 (C, F, I) in comparison to 21% 

O2 controls (A, D, G). A, B, C – von Kossa staining; D, E, F – calcein staining; G, H, I – von 

Kossa staining, wells overview 

The results of osteogenic differentiation are presented in figure 28. It is clearly seen 

that cells cultivated in hypoxic conditions had higher degree of differentiation towards 

G          H         I 
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osteocytes, namely a higher calcium deposition. Both, calcein and von Kossa staining were 

stronger for cells cultivated in 2.5% and 5% oxygen concentration. Indeed, previous studies 

with BM-MSC showed that expansion of BM-MSC under low oxygen tension (5% [155] and 

3% [219]) enhanced subsequent osteogenesis. 

Similar results were obtained for adipogenic differentiation (fig. 29). UC-MSC 

cultivated in 2.5% (fig. 29B) and 5% (fig. 29C) oxygen tension exhibited more lipid droplets 

when compared to the control at 21% O2 (fig. 29A). 

 

 

 

 

 

Figure 29: The effect of hypoxia on the adipogenic differentiation potential of UC-MSC 

after long-term cultivation under 2.5% (B) and 5% O2 (C) as compared to 21% O2 control (A). 

BODIPY staining 

 

In the chondrogenic differentiation experiment, cells cultivated in 2.5% oxygen 

demonstrated the best results (fig. 30, B) – Alcian Blue staining of acidic proteoglycans was 

more intense than in cells cultivated in 5% (fig. 30, C) or 21% O2 (fig. 30, A). 

 

 

 

 

 

 

Figure 30: The effect of hypoxia on the chondrogenic differentiation potential of UC-

MSC after long-term cultivation under 2.5% O2 (B) and 5% O2 (C) as compared to 21% O2 (A); 

Alcian Blue staining 

Cartilage is an avascular tissue and thus resides in a microenvironment with reduced 

oxygen concentration. Oxygen concentration in articular cartilage is  between 1% and 5% O2 

[220]. It was demonstrated by numerous working groups that hypoxic conditions promote 
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chondrogenesis of MSC [152-155]. Proliferation under lower oxygen concentration before 

differentiation can stimulate the expression of transcriptional factors that direct cell fate 

towards chondrogenesis. 

All together, these results demonstrate that lower oxygen tensions seem to be 

beneficial for the cells in the long-term cultivation and help UC-MSC to retain their ability to 

differentiate into chondrocytes, adipocytes and osteocytes at late passages (here passage 15). 
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4.2 Dynamic cultivation 

4.2.1 Expansion of UC-MSC in the Z
®
RP 2000 H bioreactor 

 

Safety requirements and the necessity to obtain high cell numbers without frequent 

subcultivation of cells raised the question of the possibility of expanding UC-MSC in one-

way (single-use) disposable bioreactors. Dynamic cultivation conditions have several 

advantages in comparison to static cell expansion. First of all, cultivation in a closed system 

without the need to change the culture medium in a clean bench significantly reduces the risk 

of possible contamination. Second, the programmed control of all parameters of cultivation 

together with continuous documentation makes it possible to assure the quality of cells and to 

avoid human errors. Third, dynamic cultivation systems like bioreactors provide active mass 

transfer, supplying MSC with gases and nutrients while removing toxic metabolites.  Last but 

not least, there is the argument of production costs - which can be a major obstacle to the 

spread of MSC clinical applications. In this part of the work, UC-MSC were expanded over 5 

days without subcultivation in the Z
®

RP 2000 H bioreactor (fig. 31) at 21% oxygen tension, 

and the yield and quality of the expanded cells was studied. 

 

 

 

 

 

 

 

Figure 31: Disposable bioreactor Z
®
RP 2000 H (Zellwerk GmbH, Oberkrämer) (A, C) 

with rotating bed consisted of  polycarbonate cell carrier slides (B), total surface area 2000 cm
2 

(reactor size 8.8 x 4.6 cm)  

 

 

 

A    B          C 
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4.2.1.1 Cell growth in the Z
®
RP 2000 H bioreactor 

 

For expansion in the bioreactor, UC-MSC were seeded at a cell density of 1500 

cells/cm
2
. Since the total surface area of the bioreactor is 2000 cm

2
, the entire cell number 

resulted in 3 x 10
6
 cells. Cells were seeded on both sides of the polycarbonate cell carrier 

slides with 24 hours attaching time for each side. After the attaching phase, dynamic 

cultivation was started and cells were expanded over 5 days in a rotating system. After 5 days, 

cells were trypsinized and total cell numbers were estimated with a haemocytometer.  The 

total cell number at the end of the dynamic cultivation was 25 x 10
6
 cells  for the first 

cultivation, 22.1 x 10
6
 cells for the second cultivation and 26.9 x 10

6
 cells for the third 

cultivation, giving together a mean value of 24.6 ± 2.4 x 10
6
 cells and 8.2 ± 0.8-fold 

expansion. Population doubling time was 39.6 ± 1.8 hours (in static cultivation 31 hours) and 

the total population doublings were 3.03 ± 0.14.  

 

 

 

 

 

 

 

 

Figure 32: Cell growth on the polycarbonate cell carrier slides after 5 days of cultivation: (A) 

after static cultivation and (B) after dynamic cultivation 

Microscopic imaging of UC-MSC cell growth on the polycarbonate cell carrier slides 

after 5 days of cultivation demonstrated that under static conditions cells were growing in a 

monolayer, reaching 90-95% of confluence. In the bioreactor, cells were partially growing in 

micromass formations composing 3D structures (fig. 32). It was, however, possible to 

separate the cells with the accutase. Collected UC-MSC also retained their differentiation 

capacity towards chondrogenic, adipogenic and osteogenic lineages (data are not shown). 
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Figure 33: Total glucose consumption and lactate production of UC-MSC cultivated in the Z
®
RP 

2000 H bioreactor 

Total glucose consumption and lactate production was increasing during cultivation, 

reaching 157.3 ± 40.7 mg per day for glucose and 133.0 ± 11.6 mg per day for lactate at day 5 

(fig. 33).  

 

4.2.1.2 Cellular senescence after expansion in Z
®
RP 2000 H bioreactor 

 

While in a long-term UC-MSC cultivation cellular senescence is a desirable outcome, 

the appearance of senescence during short-term expansion is a sign of non-optimal culture 

conditions, since senescence is also one of the responses of the cells to stress (stress-induced 

premature senescence) [221]. To check if the dynamic cultivation of UC-MSC can lead to 

stress-induced premature senescence, cells were harvested and seeded after expansion in 

Z
®

RP 2000 H at a density of 6000 cells/cm
2
 in 6-well plates. After 48 hours the cells were 

fixed and the expression level of senescence-associated -galactosidase was studied by the 

Cell Senescence Kit. No expression of -galactosidase and, consequently, no cellular 

senescence was detected. Moreover, high proportions of cells undergoing cell division 

(arrows) could be observed, indicating that UC-MSC expanded in the bioreactor did not lose 

their mitotic activity (fig. 34). 
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Figure 34: Senescence-associated -galactosidase staining of UC-MSC cultivated in the 

Z
®

RP 2000 H bioreactor: (A) -galactosidase and (B) DAPI-staining, magnification x50; (C) -

galactosidase and (D) DAPI-staining, magnification x20 

 

4.2.1.3 Surface immunophenotype characterization of UC-MSC after expansion in the 

Z
®
RP 2000 H bioreactor 

 

After expansion in the Z
®

RP 2000 H bioreactor, UC-MSC were harvested and 

analyzed by flow cytometry after staining with FITC- or PE-conjugated antibodies against 

CD31,  CD34, CD44, CD45, CD73, CD90, CD105 and isotype control immunoglobulins.  

Flow cytometric analysis of UC-MSC showed that they were negative for hematopoietic 

(CD34, CD45) and endothelial (CD31) markers and were strongly positive for specific 

immunophenotypic MSC markers (CD44, CD73, CD90 and CD105) (fig. 35)  
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Figure 35: Flow-cytometric analysis of UC-MSC expanded in the Z
®
RP 2000 H bioreactor. 

 

Taken together, the results of the dynamic cultivation show that this system is suitable 

for UC-MSC expansion. Moreover, newly developed reactors with a higher volume and 

Marker Expression, % 

CD31 0.0 % 

CD34 0.3 % 

CD44 98.3 % 

CD45 0.3 % 

CD73 99.9 % 

CD90 98.1 % 

CD105 99.8 % 

Fluorescence 
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surface area (Z
®

RP 6000 H with 6000 cm
2
) will make it possible to obtain higher cell 

numbers in one reactor run without passaging. Another development would be dynamic cell 

expansion under hypoxic conditions, which could be useful to obtain a higher yield of cell 

numbers within a shorter period of time (like in a static cultivation). To perform such a 

cultivation, however, all components of the system must be gas-tight, including connection 

tubes. Unfortunately, there are no clinically approved gas-tight tubes available on the market 

currently, but since interest in hypoxia is rising, it may soon result in the development of such 

a product. 
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5 Conclusions and outlook 

 

Two different strategies were investigated in this work in order to optimize the yield 

and quality of in vitro expanded UC-MSC. In the first approach, the influence of oxygen 

concentration on the static cultivation of UC-MSC was explored. The second method 

involved dynamic cultivations in a disposable Z
®

RP 2000 H bioreactor.  

Short-term cultivation under hypoxia (1.5%, 2.5% and 5% O2) revealed that at an 

oxygen concentration of 2.5% UC-MSC significantly increased their proliferative capacity, 

while no changes in proliferation at 1.5% O2 were observed. There was only a minor increase 

in proliferative capacity at 5% O2 when compared to the control (21% O2). Cultivation of UC-

derived human MSC at 1.5% O2 revealed little if any increase in apoptosis and no increase in 

necrosis. This means that UC-MSC can survive and proliferate at oxygen concentrations 

approaching pathological hypoxia. The results from the present study reveal that UC-derived 

stem cells adapt their oxygen consumption and the accompanying energy metabolism 

according to available oxygen concentrations. 300 genes were differently expressed under 

hypoxia (2.5% O2) when compared to 21% oxygen concentration. Gene expression analysis 

of selected cytokines revealed an up-regulation of IGFBP3, IGFBP6, SCF-R and VEGF 

mRNA expression. HBEGF was significantly down-regulated. On the protein level, 

expression of 35 cytokines and receptors was analyzed and among them 17 proteins could be 

quantified.  Almost all analysed proteins were up-regulated, but up-regulation was statistically 

significant in only five proteins (IGFBP6, IGFBP2, FGF-7, VEGF-R2 and SCF-R). These 

data suggest that under hypoxia (2.5%) paracrine and autocrine activities of UC-MSC are 

increased when compared to the normoxic (21%) control. UC-MSC also increased their 

migratory activity at 2.5% oxygen concentration. Taken together, these data demonstrate that 

MSC adapt to the microenvironmental conditions and even short-term (3 days) cultivation 

under hypoxia changes their metabolic and paracrine activity. 

Long-term cultivation (over 25 passages within 3 months) demonstrated that higher 

cell numbers can be obtained at hypoxic conditions (2.5% and 5% O2) if compared to 21% 

oxygen concentration. After 25 passages cells underwent a replicative senescence and stopped 

to divide, both in hypoxic and normoxic conditions. This finding is important, since 

replicative senescence is a significant in vivo anti-cancer mechanism and UC-MSC expanded 

ex vivo can be applied in patients with less risk of neoplastic MSC-transformation. It is 

unlikely that UC-MSC will be expanded for clinical use in vitro for more than 10 passages, 
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since expansion over 10 passages already yields up to a 1000-fold increase in cell numbers.  

UC-MSC cultivated over 10 passages were studied for their oncogene expression profiles. No 

expression of hTERT was observed after UC-MSC cultivation over 10 passages, both in 

hypoxic (2.5% and 5% O2) and normoxic (21% O2) conditions. Expression profiles of p53, H-

RAS and C-MYC remained unchanged. Surface marker expression was also unaltered during 

long-term expansion in 2.5%, 5% and 21% oxygen concentrations. Also, cultivation under 

hypoxia did not influence mitochondrial biogenesis. UC-MSC cultivated under hypoxia 

showed better retention of their adipogenic and osteogenic differentiation capacities after 15 

passages. Chondrogenic differentiation capacity was maintained only by UC-MSC cultivated 

at 2.5% oxygen concentration.  Taken together, these data demonstrate that hypoxic 

conditions are beneficial for UC-MSC expansion. Moreover, long-term cultivation under 

hypoxia did not lead to spontaneous differentiation and neoplastic transformation. 

 In the last part of this work, UC-MSC were expanded over 5 days without 

subcultivation in the Z
®

RP 2000 H bioreactor under 21% oxygen concentration. Dynamic 

cultivation in disposable bioreactors has several advantages in comparison to traditional static 

cultivation in cell culture flasks. The improved documentation process, the fully-automated 

control and the lower risk of cross-contamination makes this technique very attractive for 

future GMP-conform MSC expansion. Partial medium exchange helps in maintaining the 

homeostatic in vitro microenvironment, e.g. signal molecules and cytokines produced by the 

UC-MSC. Cultivation of UC-MSC in the bioreactor over 5 days resulted in their 8-fold 

expansion.  Although the UC-MSC in the bioreactor were partially growing in micromass-

formations composing 3D structures, it was possible to separate the cells with accutase 

treatment. Moreover, the cells retained their MSC-properties with regard to 

immunophenotype surface marker expression, differentiational and proliferational capacities. 

This study demonstrated for the first time that expansion of UC-MSC in hypoxic 

conditions can be beneficial for the cells and does not lead to their spontaneous in vitro 

transformation. The cultivation of MSC in hypoxic conditions is a new, fast-developing field 

in basic research, as well as in applied biotechnology. Since current cultivation techniques, 

chemicals and analytics were developed for atmospheric oxygen concentrations, new methods 

and protocols should be introduced for MSC cultivation under hypoxia. One example of such 

a new approach is the indirect cell proliferation analysis, since the majority of existing kits 

and methods are based on cell metabolic activities and cannot be used in unequal reduction-

oxidation states.  
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It is feasible to expand MSC under dynamic conditions in a Z
®

RP 2000 H bioreactor, 

making it possible to obtain high yield of UC-MSC without their subcultivation. Combination 

of hypoxic and dynamic cultivation in the future can lead to the improvement of the UC-MSC 

yield and quality during in vitro UC-MSC expansion, and can improve cell survival after 

transplantation. 
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7 Materials  

7.1 Materials 

 

Material  Manufacturer 

Latex gloves, Diamond Grip Plus Microflex, Reno, USA 

Nitril gloves, Rotiprotect Nitril Carl Roth GmbH & Co KG, Karlsruhe 

Serologic Pipetts (5, 25, 50, 100 ml) Sarstedt AG & Co, Numbrecht 

Syringes Becton Dickinson GmbH, Heidelberg 

Needles B. Braun Melsungen AG, Melsungen 

Cryo Pure Tubes Sarstedt AG & Co, Numbrecht 

PCR Tubes, 0.2 ml Kisker Biotech GmbH & Co. KG, Steinfurt 

PCR Plates                                                        Fisher Scienctific GmbH, Schwerte 

Reaction tubes (1.5 ml, 2 ml) Sarstedt AG & Co, Numbrecht 

Lab flasks (100 ml, 250 ml,1 l)                         VWR International GmbH, Darmstadt 

Multichannel pipette tips RAININ 200 μl Mettler Toledo GmbH, Giesen 

Syringe filter, Minisart NY25, 0.25 µl                                        Sartorius AG, Gottingen 

Pipette tips  (20, 200,1000 μl)                                              Brand GmbH & CO KG, Wertheim 

Cell culture flasks (T25, T75, T175)                  Sarstedt AG & Co, Numbrecht 

Cell culture plates (6-, 12-, 24-, 96-Wells) Sarstedt AG & Co, Numbrecht 

Cell culture plates BD BioCoat, fibronectin BD Biosciences, Bedford, USA 

Cell scraper, 13 mm Klinge, Sarstedt AG & Co, Numbrecht 

Conical tubes (15 ml, 50 ml) Greiner Bio-One GmbH, Frickenhausen 
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7.2 Equipment 

 

Equipment Manufacturer 

Analytic balances ED 224S Sartorius AG, Gottingen 

Fluoroscan Ascent microplate reader Thermo Scientific GmbH, Langenselbold 

Flow cytometer Epics XL/MCL Beckman Coulter, Krefeld 

YSI 2700 SELECT analyzer YSI Incorporated Life Sciences, Yellow Springs, USA 

Incubator Heracell 240i 

 

Thermo Scientific GmbH, Langenselbold 

 

lectrophoresis chamber Classic Thermo Fisher Scienctific, Bonn 

HPLC Fluorescence Detector RF-10AXL Shimadzu, Japan 

Microarray Scanner  GenePix 4000B 

 

Molecular Devices Germany GmbH, Ismaning 

 

Gel iX Imager 

 

Intas Science Imaging Instruments GmbH, Gottingen 

 

SFR-Shake Flask Reader Presens GmbH, Regensburg, Germany 

Magnetic stirrer MSH Basic 

 

IKA-Werke GmbH & CO KG, Staufen 

 

Multichannel pipette  
Pipet-Lite 12-chanel, Mettler Toledo GmbH, Giesen 

 

PCR-Thermocycler Doppio, VWR International GmbH, Darmstadt 

Microscope IX 50, Olympus Europa Holding GmbH, Hamburg 

Pipetting aid Easypet, Eppendorf AG, Hamburg 

Pump  Laboport, Knf-Lab Trenton, USA 

Pipette tips  VWR International GmbH, Darmstadt 

Real-Time-PCR-Station iQ5, Bio-Rad Laboratories GmbH, Munchen 

Lab rocker 

 

Stuart Mini Gyro-Rocker, Bibby Scientific Limited, 

Stone, GB 

Clean bench 

 

Technoflow 2F150-II GS, Integra Biosciences AG, 

Zurich 
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Thermomixer Thermomixer Comfort, Eppendorf AG, Hamburg 

Centrifuge Carl Roth GmbH & Co KG, Karlsruhe 

UV/Vis-Spectralphotometer 

 

Nanodrop ND-1000, PeqLab-Biotechnologie GmbH, 

Erlangen 

 

Vortex VWR International GmbH, Darmstadt 

Ultra pure water system Arium 611, Sartorius AG, Gottingen 

Water bath WNB, Memmert GmbH & Co KG, Schwabach 

Mini-centrifuge MiniSpin, Eppendorf AG, Hamburg 

Centrifuge for conical tubes Centrifuge 5702, Eppendorf AG, Hamburg 

  

 

 

7.3 Chemicals  

 

Chemicals  Manufacturer 

Accutase PAA Laboratories GmbH, Pasching 

Acetic acid AppliChem GmbH, Darmstadt 

Agarose ABGene, Hamburg 

α-Minimum Essential Medium (MEM) GIBCO Invitrogen GmbH, Darmstadt 

Alcianblue 8G Solution Sigma Aldrich Chemie GmbH, München 

BODIPY Invitrogen GmbH, Darmstadt 

BSA Sigma Aldrich Chemie GmbH, München 

Bromphenol Blue Fluka Chemie AG, Buchs 

Cell lysis buffer RayBiotech, Inc, Norcross, USA 

Calcein Sigma Aldrich Chemie GmbH, München 

Calcein-AM Promega GmbH, Mannheim  
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DAPI Roth GmbH + Co. KG, Karlsruhe 

Dithiothreitol (DTT) Invitrogen GmbH, Darmstadt 

DMSO Sigma Aldrich Chemie GmbH, München 

DNA-Polymerase GoTaq Promega GmbH, Mannheim 

dNTPs Fermentas GmbH, St. Leon-Rot 

EDTA AppliChem GmbH, Darmstadt 

Ethanol Carl Roth GmbH & Co KG, Karlsruhe 

Reaction tubes, 1.5 ml, 2 ml Sarstedt AG & Co, Numbrecht 

Ethidium bromide (EtBr) Sigma Aldrich Chemie GmbH, München 

Formamide Carl Roth GmbH & Co KG, Karlsruhe 

GeneRuler 100 bp DNA-Ladder Fermentas GmbH, St. Leon-Rot 

Gentamicin PAA Laboratories GmbH, Pasching 

Human serum 
Institut fur Transfusionsmedizin, Medizinische 

Hochschule Hannover 

Isopropanol Merck KGaA, Darmstadt 

KCl Honeywell Specialty Chemicals GmbH, Seelze 

Loading buffer Fermentas GmbH, St. Leon-Rot 

KH2PO4 AppliChem GmbH, Darmstadt 

NaCl Sigma Aldrich Chemie GmbH, München 

Protease inhibitor „Plus“ Carl Roth GmbH & Co KG, Karlsruhe 

Na2HPO4 • 2 H2O Honeywell Specialty Chemicals GmbH, Seelze 

Na2S2O3-Solution Sigma Aldrich Chemie GmbH, München 

SDS Sigma Aldrich Chemie GmbH, München 

-Mercaptoethanol Gibco, Karlsruhe 

Nitrogen Linde Gas Deutschland, Pullach 

Paraformaldehyde Sigma Aldrich Chemie GmbH, München 
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Propidium iodide Sigma Aldrich Chemie GmbH, München 

Silver nitrate solution Sigma Aldrich Chemie GmbH, München 

Tris-Base Sigma Aldrich Chemie GmbH, München 

Trypan blue Sigma Aldrich Chemie GmbH, München 

Xylene cyanol FF AppliChem GmbH, Darmstadt 

Reverse Transkriptase Superscript III Invitrogen GmbH, Darmstadt 

DNA-Polymerase iQ Supermix Bio-Rad Laboratories GmbH, Munchen 

 

 

7.4 Solutions and buffers 

 

Solutions Formation 

Agarose gel TAE running buffer with 2 % Agarose + 0.002 % Ethidium bromide 

BODIPY stock solution 10 mM in DMSO (10 mg BODIPY-powder in 3.815 ml DMSO) 

BODIPY working 

solution 
1 µl BODIPY-Stock solution in 2 ml PBS 

Blocking buffer 2% FCS in PBS 

Calcein stock solution 200 μg/ml Calcein in ddH2O 

Calcein working 

solution 
2.5 mL Calcein-Stock solution + 97.5 mL  ddH2O 

Cell disruption solution Cell lysis buffer + 1% Proteases inhibitor 

Cryomedium α-MEM Medium + 10 % Human serum + 10 % DMSO 

Agarose 

gelelectrophoresis 

loading buffer (2x) 

95 % Formamide; 0.025 % SDS; 0.025 % Bromphenol blue; 0.025 % 

Xylene cyanol FF; 0.025 % EtBr; 0.5 mM EDTA 

PBS 
 

137 mM NaCl; 2.7 mM KCl; 8.1 mM Na2HPO4 • 2 H2O; 1.8 mM KH2PO4; 

pH 7.4 

Primer solutions 1 pmol/µl forward primer + 1/µl pmol reverse primer in ddH2O 

SSC (20x) 175.3 g NaCl; 88.3 g Trinatriumcitrate-dihydrate; in 1000 ml ddH2O, pH 7 

TAE Running buffer 40 mM Tris Base; 20 mM Acetic acid; 1 mM EDTA; in ddH2O; pH 8 
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TNT-buffer 0.1M TrisHCl; 0.15M NaCl; 0.05% Tween 20; in ddH2O; pH 7.5 

Von Kossa AgNO3 

solution 
5% AgNO3 in ddH2O 

Von Kossa 

formaldehyde solution 
5%Na2CO3 + 0.2% formaldehyde in ddH2O 

Fixation solution 4% paraformaldehyde in PBS 

 

 

 

7.5 Kits 

 

Kit Manufacturer 

CellTiter-Blue® Cell Viability Assay Promega BioScience, San Luis Obispo, USA 

Quantibody Human Growth Factor Array 1 RayBiotech, Inc, Norcross, USA 

RNA-Isolation RNeasy Mini Kit Plus Qiagen GmbH, Hilden 

NEN TSA Labeling and Detection Kit 
PerkinElmer Life and Analytical Sciences, Inc, 

Rodgau 

ApoOne® Homogeneous Caspase-3/7 Assay Promega BioScience, San Luis Obispo, USA 

CytoTox-ONE™ Assay  Promega BioScience, San Luis Obispo, USA 

-Galactosidase Staining kit Cell Signalling Technologies, Danvers, USA 

  

 

 

 

7.6 Differentiation Media 

 

Differentiation Medium Manufacturer 

Osteogenic NH OsteoDiff Medium Miltenyi Biotec GmbH, Bergisch Gladbach 
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Chondrogenic NH ChondroDiff Medium Miltenyi Biotec GmbH, Bergisch Gladbach 

Adipogenic NH AdipoDiff Medium Miltenyi Biotec GmbH, Bergisch Gladbach 

Control DMEM + 5% human serum Sigma Aldrich Chemie GmbH, München 

 

 

 

7.7 Primers 

 

Gene NCBI accession 

number 

Forward  

sequence 

Reverse 

sequence 

Melting 

temperature, 

°C 

Product 

length, bp 

HPRT1 NM_000194.2 
AAGCTTGCTG 

GTGAAAAGGA 

AAGCAGATGG 

CCACAGAACT 
59.9/59.8 267 

LDHA NM_005566.3 
ACGTCAGCAA 

GAGGGAGAAA 

CGCTTCCAATA 

ACACGGTTT 
59.9/60.0 191 

PDK1 NM_002610.3 
CACGCTGGGT 

AATGAGGATT 

ACTGCATCTGT 

CCCGTAACC 
59.9/60.0 243 

GLUT1 NM_006516.2 
CTTCACTGTC 

GTGTCGCTGT 

TGAAGAGTTCA 

GCCACGATG 
60.1/59.9 230 

G6PD NM_000402.3 
GAGGCCGTGT 

ACACCAAGAT 

AATATAGGGG 

ATGGGCTTGG 
60.0/60.0 258 

VEGFA NM_001171624.1 
TGAGGAGTCC 

AACATCACCA 

TTTCTTGCGC 

TTTCGTTTTT 
60.1/60.0 181 

PGF NM_002632.4 
GTTCAGCCCA 

TCCTGTGTCT 

CTTCATCTTC 

TCCCGCAGAG 
59.4/59.4 199 

bFGF NM_002006.4 
CCGTTACCTG 

GCTATGAAGG 

TGTGGCCATTA 

AAATCAGCTC 
59.4/55.9 243 

VEGF-R NM_002019.4 
GGCTCTGTGG 

AAAGTTCAGC 

GCTCACACTG 

CTCATCCAAA 
60.0/59.9 223 
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p39 NM_002228.3 
CAGGTGGCAC 

AGCTTAAACA 

TTTTTCTCTCC 

GTCGCAACT 
59.9/59.9 180 

p53 NM_000546.4 
GTTCCGAGAG 

CTGAATGAGG 

TCTGAGTCAG 

GCCCTTCTGT 
59.9/59.9 159 

H-RAS NM_001130442.1 
CCAGCTGATC 

CAGAACCATT 

ATGGCAAACA 

CACACAGGAA 
60.0/60.0 189 

hTERT NM_001193376.1 
AGGAGCTGAC 

GTGGAAGATG 

TTGCAACTTG 

CTCCAGACAC 
60.4/60.0 239 

SCF-R NM_000222.2 
TCATGGTCGG 

ATCACAAAGA 

AGGGGCTGCT 

TCCTAAAGAG 
60.0/59.9 206 

IGFBP6 NM_002178.2   
GCTGTTGCAG 

AGGAGAATCC 

TCACAATTGG 

GCACGTAGAG 
59.9/59.7 242 

C-MYC NM_002467.4 
CCTACCCTCT 

CAACGACAGC 

CTCTGACCTT 

TTGCCAGGAG 
59.8/59.9 248 

HBEGF NM_001945.2 
GCTCTTTCTG 

GCTGCAGTTC 

GCTTGTGGCT 

TGGAGGATAA 
59.4/57.3 216 

TGFβ3 NM_003239.2 
GGAATGAGCA 

GAGGATCGAG 

ATTGGGCTGAA

AGGTGTGAC 
59.4/57.3 218 

IGFBP3 NM_000598.4 
GTCCCTGCCG 

TAGAGAAATG 

AGGCTGCCCA 

TACTTATCCA 
59.4/57.3 182 

 

 

8 Methods 

 

8.1 Cell culture 

 

Human MSC were isolated from the umbilical cords of 12 different term-deliveries (38-

40 weeks) by Cesarean section. All patients have delivered their informed consent, as 

approved by the Institutional Review Board, project #3037 on 17
th

 June, 2006 and in an 

extended permission #443 on 26
th

 February, 2009. The isolated populations have been 
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extensively characterized as mesenchymal stem cells by surface marker analysis and 

functional properties. MSC were expanded and cryopreserved until the start of the experiment 

as described. After thawing, the cells were expanded over two passages. At about 80% of 

confluency the MSCs were harvested by accutase treatment  and plated at a density of 3000 

cells/cm
2
 in 25cm

2
 cell culture flasks and in 6-well plates, respectively. Experiments were 

performed with cells of passages 3 to 7. Cells were cultivated in MEM containing 1 g/l 

glucose, 2mM L-glutamine , 10% human serum  and 50 µg/ml gentamicin  in a humidified 

atmosphere containing 5% CO2 and 21% O2 at 37°C.  

 

8.2 Hypoxic cell culture 

 

For the short-term cultivation under hypoxic conditions, cells were first plated at 

atmospheric oxygen concentrations. Twenty four hours after seeding, all non-adherent cells 

were removed by media changes and for the following 72 h the MSC were incubated at 37° C 

in a humidified atmosphere (Incubator Heracell 240i, Thermo Fisher Scientific) containing 

5% CO2 and various oxygen concentrations (1.5%, 2.5%, 5% or 21%). Desired oxygen 

concentrations were established by introduction of N2 into the incubator culturing system. In 

the present work, oxygen concentrations are expressed as volumetric percentage. The 

corresponding partial pressure (mmHg) values and concentrations are presented in the 

following table:   

 

% Vol mmHg Concentration 

21% 160 0.220 mmol O2/l 

5% 38 0.050 mmol O2/l 

2.5% 19 0.025 mmol O2/l 

1.5% 11.4 0.015 mmol O2/l 
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For long-term expansion under low oxygen tension, cells were isolated from the same 

cords as normoxic controls and cultivated over all passages under 2.5% or 5% O2. Cells were 

subcultivated 2 times per week with a seeding density of 2000 cells/cm
2
. 

 

8.3 Cell thawing 

 

After removal from the liquid nitrogen, the cryopreservation vial was transferred 

immediately into a 37° C water bath and agitated until the medium was thawed 

(approximately 2 minutes). Under a clean bench, 1 ml of cold (room temperature) medium 

was added. After 2 minutes, the cell suspension was added to 6 ml medium in a 15 ml conical 

tube (8 ml total) and centrifuged for 5 min at 300 x g.  The supernatant was discarded and the 

pellet was re-suspended in 1 ml medium. Cell number was estimated in a haemocytometer. 

After the addition of 5 ml warm (37°C) medium, the cell suspension was transferred into a 

175-cm
2
 culture flask. Another 15 ml of warm (37°C) medium were added (MEM with 10% 

human serum and 0.5% gentamicin) and the flask was placed in the incubator. Once the cells 

have been attached (overnight), the culture medium was renewed. 

 

8.4 Cell number, apoptosis and necrosis 

 

At the end of cultivation, cells were washed with PBS, detached by accutase treatment, 

sedimented by centrifugation for 5 min at 200 x g and counted using a haemocytometer 

following re-suspension in 1 ml culture medium. Cell viability was determined by trypan blue 

exclusion (n=4). Occurrence of apoptosis was measured with the ApoOne® Homogeneous 

Caspase-3/7 Assay by the amount of the fluorescent product Rhodamine 110 (Ex355/Em460) 

cleaved by caspase-3/7 from the non-fluorescent substrate Z-DEVD-R110 after cell lysis 

following a 6 h incubation at 37 °C. Cell damage or cell necrosis was evaluated by measuring 

lactate dehydrogenase (LDH) activity in the cell culture supernatant (30 min incubation time, 

25 °C) using the CytoTox-ONE™ assay, by the amount of enzymatically reduced resorufin 

according to manufacturer’s instructions and by measuring its fluorescence intensity 

(Ex355/Em460). All fluorescence measurements were performed using the Fluoroscan Ascent 

microplate reader. 
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Normoxic (21% O2) cultures of the same passage were used as control cell population 

and the results of each oxygen concentration were presented as percentage of change to the 

normoxic controls.  

 

8.5 Cumulative cell population doublings 

 

During long-term cultivation, cells were cultured over 25 passages every 3-4 days when 

a confluence of 60-80% was reached. At each passage, the cells were counted with a 

haemocytometer and the population doublings were calculated according to the following 

formula: 

 

   
   

 
  
 

   
 

 

where Nd isthe  number of population doublings during a t period of time, x0 is the 

number of living cells at time t = 0, and x is the number of living cells at time t. Population 

doubling time Td was calculated with the following formula: 

 

   
  

  
 

 

Cumulative cell population doublings were calculated as a sum of all population 

doublings from the beginning of the experiment until the time point t.  

 

8.6 O2 and pH measurements 

 

Dissolved oxygen concentration (in µmol/l) and pH values in the cell culture 

supernatant were recorded online in 25 cm
2
 cell culture flasks every 10-20 minutes by using a 



Methods 

108 

 

SFR-Shake Flask Reader with optical sensors integrated and pre-calibrated by PreSens 

GmbH. These measurements are based on the luminescence lifetime of the sensor dye, which 

depends on the oxygen partial pressure and the pH of the sample, respectively. The 

luminescence lifetime was detected non-invasively through the transparent flask bottom and 

represents oxygen equivalents and pH values according to the company’s software. Culture 

flasks with the same amount of medium (6 ml) without cells were used as a control. Oxygen 

consumption was calculated as the difference of dissolved oxygen concentration in the 

medium with and without cells, divided by the number of living cells. For each oxygen 

concentration UC-MSC from 4 donors were measured in duplets. 

 

8.7 RNA isolation and cDNA synthesis 

 

Total RNA from cells incubated at different oxygen conditions was isolated by using 

the RNeasy Mini Plus Kit (Qiagen GmbH, Hilden) according to the manufacturer’s 

instructions. The RNA concentration was measured with a Nanodrop 1000 (PeqLab-

Biotechnologie GmbH, Erlangen). Thereafter, 1 µg of total RNA was transcribed into cDNA 

using Reverse Transcriptase and a mixture of oligo(dT) primers (Roth GmbH) according to 

the manufacturer’s instructions. 

 

8.8 RT-PCR and qRT- PCR  

 

Primers for glucose transporter-1 (GLUT-1), lactate dehydrogenase A (LDHA), 

glucose-6-phosphate dehydrogenase (G6PD), pyruvate dehydrogenase kinase-1 (PDK-1), 

vascular endothelial growth factor A (VEGFA), vascular endothelial growth factor receptor 

(VEGF-R,) hypoxanthine phosphoribosyltransferase-1 (HPRT1), placental growth factor 

(PGF), basic fibroblast growth factor (bFGF), tumor protein p53 (p53), v-Ha-ras Harvey rat 

sarcoma viral oncogene homolog (H-RAS), telomerase reverse transcriptase (hTERT), stem 

cell factor receptor (SCF-R), insulin-like growth factor binding protein 6 (IGFBP6), v-myc 

myelocytomatosis viral oncogene homolog (C-MYC), heparin-binding EGF-like growth 

factor (HBEGF), transforming growth factor beta 3 (TGF3) and insulin-like growth factor 

binding protein 3 (IGFBP3) genes were designed using OligoPerfect™ Designer Software 

(Invitrogen). Designed primers were synthesised by MWG Operon (Ebersberg, Germany).  
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8.8.1 RT-PCR 

 

The PCR amplifications were performed in a 50-μl reaction mix containing ∼ 25 ng of 

cDNA, 1.25 units Taq DNA polymerase (Fermentas), 160 μM of each dNTP (Fermentas), 10 

pM of each gene specific primer (MWG), 1x GreenGo Taq Buffer (Promega GmbH) and 

35.75 μl of RNase-free water in iCycler (BioRad) with the following program: 

1. 5 min 95 °C 

2. 40×  0.5 min 95 °C 

        0.5 min 59 °C  

        0.5 min 72 °C 

3. 7 min 72 °C 

4. 4 °C 

 

PCR products (amplicons) were analyzed using agarose-gel electrophoresis. DNA-fragments 

were separated in TAE running buffer at 100 V for 30-40 min and amplicon-bands were 

visualized in ultraviolet light using the Gel iX Imager (INTAS Science Imaging Instruments 

GmbH, Gottingen). 

 

 

8.8.2 q RT-PCR 

 

 

Quantitative RT-PCR was performed using IQ™SYBR®Green Supermix and the  

IQTM5 real-time PCR Detection System. The HPRT1 gene was used as an internal control 

and a non-template control was used as a negative control. The dissociation curves were run 

for all completed SYBR Green reactions to rule out non-specific amplifications and primer-

dimers. Data were analyzed using the comparative Ct (CT) method: 
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where CT is the threshold cycle of a single PCR reaction. 

For each sample triplicate measurements were performed. 

 

8.9 Glucose and L-glutamine consumption, lactate and glutamate production 

(metabolic analysis) 

 

At the end of each cultivation, the concentration of glucose and lactate in the medium 

was measured using an YSI 2700 SELECT analyzer. L-glutamine and L-glutamate 

concentrations were measured using a gradient HPLC (column: Waters Resolve C18, 5µm, 

3.9x150mm, 30°C, flow: 1 ml/min) with a Fluorescence Detector RF-10AXL (Shimadzu, 

Japan). 

Specific metabolite consumption rates (qmet) were calculated using the following 

equation: 

 

 

 

with 

 

whereby Cx(0) and Cx(t) represent the cell numbers and Cmet(0) and Cmet(t) the 

amount of metabolite at the start (0) and the end (t) of the exponential growth phase, 

respectively, t the time (h) and µ the specific growth rate (h
-1

). 

 

8.10 Quantitative cytokine expression analysis 

 

The intracellular concentration of cytokines at different oxygen concentrations was 

measured with the help of Quantibody Human Growth Factor Array I. For the quantitative 

cytokine expression analysis, UC-MSC from 3 donors were seeded into 6-wells plates at a 

density of 3000 cells/cm
2
. Twenty four hours after seeding, all non-adherent cells were 
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removed by media changes and for the following 72 hours the MSC were incubated either at 

2.5% or at 21% oxygen concentration.  At the end of cultivation, cells were washed with PBS, 

immediately disrupted with lysis buffer and collected with a cell scraper. Cell lysates were 

homogenised via pipetting and centrifugated 5 minutes at 13.5x10
3
 g. Total protein 

concentration in the supernatant was measured with a photometer. Using the sample diluent 

provided by the kit, all samples were diluted to the final concentration of 500 µg/ml of total 

protein. Diluted cell lysates were incubated overnight at 4°C on the chip.  

 

 

 

 

 

 

 

 

 

Figure 36: Schematic representation of the Quantibody Human Growth Factor Array I slide 

 

The used microarray glass slide was spotted with 16 wells of identical cytokine antibody 

arrays. Each array consists of 168 spots, where every 4 spots represent identical capture 

antibodies, which detect the same cytokine. Along with positive controls, 40 different 

cytokines could be measured in one array (fig. 36). According to the manufacturer’s 

instructions, serial dilutions of cytokine standards were prepared and incubated on the 8 

arrays parallel to the experiment samples. After incubation, the glass slide was washed with 

the washing buffer, incubated with the detection antibody cocktail, washed again, incubated 

with the Cy3 fluorescence equivalent fluorescent dye, washed and dried with compressed air. 

Afterwards, the chip was scanned with a laser scanner at 532 nm. Multiple scans were 
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performed with a higher photo-multiplier tube (PMT) for low-signal cytokines and low PMT 

for high-signal cytokines.  

 

8.11 Whole-genome DNA-microarray 

 

The gene expression profile of UC-MSC cultivated at 21% and 2.5% oxygen 

concentration was detected using the DNA Microarray Human One Array (Phalanx Biotech 

Group, USA). After 72h of cultivation, cells were disrupted and RNA was isolated as 

described earlier (see chapter 7.6). Total RNA from each sample was reverse-transcribed in 

two different ways - one part with Cy3-labeling and another part with Cy5-labeling (dye-swap 

experiment). cDNA from the 2.5% O2 sample marked with Cy5 was hybridized on the 

microarray-slide together with Cy3-labeled cDNA from the 21% O2 sample and vice versa. 

The cDNA was labelled with biotin or fluorescein (Tyramide Signal Amplification (TSA)-

labelling) and labelled cDNA was hybridized on the microarray slide with horseradish 

peroxidise-conjugated streptavidin or anti-fluorescein antibodies. Horseradish peroxidase 

converts fluoroconjugates (Cy3-tyramid, Cy5-tyramid) performing fluorescent staining of 

cDNA.  

cDNA synthesis 

• mix 

6–8 µg RNA 

2 µl dNTPs 

1 µl Biotin- or Fluorescein nucleotides 

1 µl Hexamer primers 

1 µl Oligo-dT-primers 

ad 15 µL H2O 

• incubate for 10 min at 65°C, then add 

3 µl DTT 

5 µl RT buffer (5×) Superscript III 

2 µl Superscript III Reverse Transkriptase (200 U/µl) 

 

• incubate for 2 hours at 42°C, cool for 5 min on ice 

• add 2.5 µl 0.5 M EDTA  (pH 8.0) and 2.5 µl 1 N NaOH 

• incubate for 30 min at 65°C, cool for 5 min on ice 

• add 6.5 µl 1 M Tris-HCl (pH 7.5) 

 

 

Hybridization and detection  

 

cDNA from 21 % O2 and 2.5 % O2 samples was mixed with hybridization buffer, 

denatured for 5 min at 95°C, then 10 % of Top-Block was added and cooled on ice for 1 min. 
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cDNA was transferred on  the microarray slide and hybridized overnight at 42°C. For 

detection, the following steps were performed: 

• wash 5 min with 2xSSC, 0.1 % SDS 

• wash 5 min with 1x SSC 

• wash 5 min with 0.5 x SSC 

 

• incubate 10 min with 300 µl TNB-G blocking buffer 

• wash 1 min in TNT-Buffer 

• incubate 10 min with 200 µl Anti-Fl-HRP conjugate solution 

• wash 3×1 min in TNT-Buffer 

• incubate 10 min with 250 µl Cyanine-3 Tyramide solution 

• wash 3×5 min in TNT-Buffer 

• incubate 10 min with 200 µl HRP inactivation solution 

• wash 3×1 min in TNT-buffer 

• incubate 10 min with 200 µl Streptavidin-HRP conjugate solution 

• wash 3×1 min in TNT-buffer 

• incubate 10 min with 250 μl Cyanine-5 Tyramide solution 

• wash 2×5 min in TNT-buffer 

• wash 5 min in washing buffer 2 (1x SSC, 42°C) 

• wash 1 min in 0.05x SSC 

• dry slides by centrifugation for 2 min  

• scan slides  

 

 

Primary analysis and normalization 

 

The microarrays were scanned at the wavelengths 532 nm (Cy3-channel) and 635 nm 

(Cy5-channel) in a Microarray Scanner  GenePix 4000B. The single spots were detected and 

analyzed by Genepix Pro Software and signal intensities as well as intensity of the 

background were calculated. With the help of the software, developed in the Institute for 

Technical Chemistry [222], saturation effects were removed, gene replicates signal intensities 

were averaged and a  quality analysis of the obtained data was performed. Spots with low 

signal to noise ratio, as well as high in variety between gene replicates, were eliminated. For 

the rest of the data average values of the background intensity were subtracted from the signal 

intensities and the results were logarithmized. The obtained values were defined as “spot 

intensity”. Scanning-dependent variability was also compensated. Staining-dependent 

variability was removed with the help of a Loess-regression. Finally, all spot intensities of the 

dye-swap experiment for each gene were used to calculate the relative gene expression and its 

significance. 
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Functional analysis 

 

To perform a functional analysis of the gene expression in different oxygen 

concentrations, PANTHER (Protein ANalysis THrough Evolutionary Relationships) software 

was used. It is a system that classifies genes by their functions, using published scientific 

experimental evidence and evolutionary relationships to predict function even in the absence 

of direct experimental evidence. PANTHER biological function analysis tool classifies genes 

into 17 categories according to the role the proteins, which are encoded for by these genes 

play [170, 171]. The list of genes which are regulated differently under hypoxia when 

compared to normoxia can be found in table 9.1 of the supplementary materials. For more 

detailed information of the microarray analysis see [223]. 

 

 

8.12 Cell differentiation 

 

To evaluate cell differentiation capacities, cells were seeded into fibronectin-coated 12-

well cell culture plates at a density of 3000 cells/cm
2
.  After seeding, cells were cultivated for 

72-96 hours (until full confluence) in MEM containing 10% human serum and 50 µg/ml 

gentamicin in a humidified atmosphere containing 5% CO2 and 21% O2 at 37°C. Afterwards, 

the cell culture medium was changed to the osteogenic, chondrogenic or adipogenic 

differentiation medium, respectively. Differentiation and control media were supplemented 

with 50 µg/ml gentamicin. Medium exchange was performed every 3-4 days. Cells were 

cultured for the next 23 days and then fixed for 40 minutes in 4°C with 4% paraformaldehyde 

for  staining. 

 

8.13 Staining procedures 

 

8.13.1 Von Kossa staining  

 

To estimate cell differentiation towards the osteogenic lineage, von Kossa staining was 

performed. Fixed cell cultures were washed once with cold PBS, followed by washing twice 

with cold ddH2O. 500 µl AgNO3 solution was added in each well and cells were incubated in 
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this solution for 30 minutes in the dark. After incubation, cells were washed three times with 

ddH2O and 500 µl formaldehyde solution was added to each well. After 1-2 minutes reaction, 

formaldehyde was removed and the cells were washed three times with PBS, after which they 

were examined under a microscope. 

 

8.13.2 Calcein staining 

 

Calcium accumulation in the extracellular matrix was detected by calcein fluorescent 

stain, which has a high affinity to Ca
2+

. The fixed cell layer was washed twice with PBS, and 

covered with 1 ml of calcein solution (5 μg/ml in H2O). Samples were incubated overnight at 

4°C and thereafter washed extensively with distilled water. The fluorescence of the bounded 

calcein was detected at an excitation wavelength of 480 nm and an emission wavelength of 

530 nm. 

 

8.13.3 BODIPY staining 

 

The intracellular accumulation of lipid droplets was visualised using 

BODIPY 493/503 (4,4-difluoro-1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-indacene) stain. 

The BODIPY binds specifically to the triglycerides of lipid droplets without unspecific 

binding to the cell membrane lipids. The fixed cell layer was washed twice with PBS, 600 µl 

of BODIPY working solution (5 µM in PBS) was added per well and incubated in the dark for 

5 minutes at room temperature. After incubation, the cell layer was washed twice with PBS 

and the fluorescence of the bounded BODIPY was detected at an excitation wavelength of 

480 nm and an emission wavelength of 530 nm. 

 

8.13.4 Alcian Blue staining 

 

The accumulation of proteoglycans in the extracellular matrix was visualized by using 

Alcian Blue staining. Fixed cell layers were washed twice with PBS, incubated for 3 minutes 

in 3% acetic acid at room temperature, followed by 30 minutes incubation in Alcian Blue 

solution (1% Alcian Blue 8GX in 3% acetic acid) at room temperature. After incubation, the 
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cell layer was washed several times with 3% acetic acid and presence of the bounded Alcian 

Blue stain was detected with a microscope. 

 

8.13.5 Mitochondria staining 

 

For an evaluation of the mitochondria biomass in UC-MSC with flow cytometric 

analysis, cells were trypsinized, washed with PBS, centrifuged and  incubated for 30 min at 

37°C in 300 nM Mitotracker Green FM (Molecular Probes, Leiden, The Netherlands) diluted 

in MEM without serum supplement. After the staining was complete, the cell suspension 

was re-pelleted by centrifugation and re-suspended in PBS. The flow cytometric analysis was 

performed using a FL-2 Filter (BP 560-590 nm) with at least 100,000 counted events. For 

microscopy, adherent cells were washed with warm PBS (37°C), incubated for 30 min at 

37°C in 300 nM Mitotracker Green FM diluted in MEM without serum supplement, washed 

with PBS and photographed using the fluorescent microscope Olympus IX50. 

 

8.13.6 Senescence-associated -galactosidase staining  

 

Cell senescence was estimated with the use of the Senescence β-Galactosidase Staining 

Kit (Cell Signaling Technology, Danvers, USA) in accordance to the manufacturers' 

instructions. For the staining, cells were seeded at a density of 6,000 cells/cm
2
 for 48 h, then 

washed with PBS, fixed with the fixation solution from the kit. Senescence-associated β-

galactosidase (SA-β-gal) staining was performed overnight at 37°C. 

 

8.14 Cell migration assay (wound healing assay) 

 

For the cell migration assay, MSC were seeded on the 24-well plates with a density of 

3000 cells/cm
2 

48 hours before assay start. At the beginning of the assay (0 hours) the cell 

monolayer was manually scraped with a 200 µl pipette tip and the medium was exchanged. 

Eight hours after starting the assay, cells were photographed under a microscope using phase 

contrast or a fluorescent filter after calcein- acetoxymethyl ester (calcein-AM) staining. 
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8.15 Flow cytometric analysis of surface antigen expression 

 

UC-MSC were harvested by accutase treatment, washed twice in a cold blocking buffer 

and re-suspended to a concentration of 10
6
 cells per ml. Specific antibody-staining was 

performed by adding 20 µl of pre-diluted staining solution to 100 µl of cell suspension as 

described earlier [224]. Cells stained with matched isotype control antibodies served as a 

negative control. After 20 minutes incubation at room temperature in the dark, 400 µl of 

blocking buffer were added and cells were analyzed in an EPICS XL/MCL flow cytometer. 

At least, 10000 gated events were acquired on a LOG fluorescence scale. Generated data were 

analyzed using the program WinMDI 2.8. 

 

Antibody Manufacturer 
Antibody concentration 

per test, µg/120 µl 

Anti CD34-PE-Cy5 

Anti CD45-PE-Cy5 

BD mouse IgG1, k-PE-Cy5 

BD Bioscience 

BD Bioscience 

BD Bioscience 

0.01 

0.01 

0.01 

 

Anti CD44-PE 

Anti CD73-PE 

BD mouse IgG1, k-PE 

 

BD Bioscience 

BD Bioscience 

BD Bioscience 

 

0.03 

0.03 

0.03 

 

Anti CD105-PE 

Invitrogen mouse IgG1-R-PE 

 

Invitrogen 

Invitrogen 

 

0.05 

0.05 

 

Anti CD90-FITC 

Anti CD31-FITC 

BD mouse IgG1, k-FITC 

 

BD Bioscience 

BD Bioscience 

BD Bioscience 

 

0.10 

0.10 

0.10 

 

 

 

8.16 Cell expansion in the Z®RP 2000 H bioreactor. 

 

Before seeding, the tubing system, the bioreactor and all sensors were sterilized (in an 

autoclave or in 70% ethanol) according to the manufacturer’s instructions. After sterilization, 

the tubing system was connected to the reactor, feed-flask, waste-flask and sensors according 

to the manufacturer’s piping diagram (fig. 37). After installation, the system was filled with 
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MEM and a 24 hours-sterile run was performed. To check sterility of the system, a cell 

culture media sample was taken from the reactor after 24 hours, glucose and lactate 

concentrations were measured and a microscopic observation was performed inspecting the 

presence of bacterial or fungal contamination. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 37: Piping and instrumentation diagram of the Z®RP 2000 H bioreactor system 

 

For the expansion in the Z
®

RP 2000 H bioreactor, frozen UC-MSC were first 

revitalized, cultivated over 2 passages and seeded at a cell density of 1500 cells/cm
2
 (total cell 

number  3 x 10
6
 cells). Cells were seeded on both sides of the polycarbonate cell carrier slides 

with 24 hours attaching time for each side. For each seeding, the rotation bed was stopped so 

that the carrier slides were situated parallel to the ground. Afterwards, the bioreactor was 

filled with the cell suspension in 125 ml MEM, supplemented with 10% human serum and 

0.5% gentamicin (37°C). After attachment on both sides of the slides, bed rotation and 
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medium circulation were started. Cell culture media from the bioreactor was sampled once a 

day with the help of a syringe via a membrane installed on the bioreactor. 

 

 

 

 

 

 

 

Figure 38: Z®RP 2000 H bioreactor system with breeder and control tower 

 

Medium circulation was set on 0.1 ml/min, bed rotation – on 0.1 rpm, feeding rate 

with fresh cell culture medium was set on the intermitted mode (started with 2%) and 

increased each day depending on glucose consumption and lactate production. Breeder 

temperature was set on 37°C. The overlay gas mixture consisted of 95% air and 5% CO2. 

After 5 days of expansion, cells were harvested by treatment with accutase. First of all, 

the cell culture medium was removed from the bioreactor with the help of the pump, then the 

bioreactor was filled with warm (37°C) PBS, bed rotation was switched on and cells were 

washed for 5 minutes. After washing, PBS was removed, the bioreactor was filled with 80 ml 

accutase (37°C) and bed rotation was switched on for the next 20 minutes. After incubation 

with accutase, the harvested cells were collected in falcon-tubes and centrifuged for 15 

minutes at 300 x g. Cell pellets were re-suspended in fresh MEM and cell numbers were 

estimated by counting in a haemocytometer. 

 

8.17 Statistical analysis 

 

Data are represented as mean  SD for triplicate measurements/counts for each sample. 

Statistical significance was defined as p value of 0.05 or less. Statistic was performed using 

one way ANOVA. 
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9 Supplementary materials 

 

9.1 Functional analysis of genes, differently expressed under hypoxia (2.5% O2) 

 

Table 9.1. The list of genes, which were differently expressed in UC-MSC cultured for 72 hours 

in 2.5% O2 if compared to 21% O2. 

Biological 

function 

Number 

of genes 
List of genes 

    

Apoptosis 13 BOK 

CAPN1 

CASP10 

CASP9 

DPF2 

FKBP10 

IL10RA 

 

ILF3 

LOX 

RELA 

STAU1 

TESK2 

TNFRSF10

D 

   

 

Cell adhesion 

 

23 

 

AUP1 

BMP1 

CD63 

CD81 

COL1A2 

COL4A1 

COL5A1 

COL6A2 

COL6A3 

CRELD2 

DSC1 

EMR4P 

 

 

FBLN2 

FURIN 

GPC1 

IGFBP3 

LEPREL2 

LOX 

ODZ4 

PLOD2 

PLOD3 

SIPA1 

SMAP2 

   

 

Cell 

communication 

 

62 

 

ANXA5 

ARL4C 

AUP1 

BMP1 

CAMTA2 

CAPN1 

CD63 

CD81 

CDC42EP1 

CLIC3 

COL1A2 

COL4A1 

COL5A1 

COL6A2 

COL6A3 

CREB3L3 

CRELD2 

DSC1 

 

FABP5L3 

FBLN2 

FKBP10 

FOXP4 

FURIN 

GJA1 

GNB2 

GRK5 

IFT140 

IGFBP3 

IL10RA 

IQGAP1 

JUN 

KIR3DP1L

CN1 

LEPREL2 

LOX 

LPAR1 

 

NENF 

ODZ4 

PLXND1 

RAGE 

RAN 

RCAN3 

RELA 

S100A16 

S100A6 

SAG 

SHANK1 

SMAP2 

SPPL2B 

SSTR5 

SYT5 

TAS1R2 

TESK2 

TH 

 

TNNC1 

TRIM23 

WNK4 
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EMR4P 

ERRFI1 

 

LRRC1 

MYO19 

 

TNFRSF10

D 

 

 

Cell cycle 

 

20 

 

CCNB1 

DAZAP1 

DPF2 

DYNC1I2 

FBXL7 

FKBP10 

FOXP4 

HMGA1 

ILF3 

IQGAP1 

 

 

JUN 

MYO19 

PTP4A2 

RAGE 

RAN 

RELA 

S100A16 

S100A6 

STAU1 

TESK2 

   

 

Cellular 

component 

organization 

 

19 

 

BRD2 

COL1A2 

COL4A1 

COL5A1 

COL6A2 

COL6A3 

DYNC1I2 

FHL1 

FOXP4 

H2AFY2 

 

 

HIST3H2BB 

INO80 

MIER2 

MYO19 

NF2 

PLP1 

TESK2 

TIMM17B 

TJP2 

   

 

Cellular process 

 

88 

 

ANXA5 

ARL4C 

ARPC5 

AUP1 

BMP1 

BRD2 

CAMTA2 

CAPN1 

CCNB1 

CD63 

CD81 

CDC42EP1 

CLIC3 

COL1A2 

COL4A1 

COL5A1 

COL6A2 

COL6A3 

CREB3L3 

CRELD2 

DAZAP1 

DPF2 

DSC1 

DYNC1I2 

EMR4P 

ENC1 

ERRFI1 

FABP5L3 

 

FKBP10 

FOXP4 

FURIN 

GJA1 

GNB2 

GPC1 

GRK5 

H2AFY2 

HIST3H2BB 

HMGA1 

IFT140 

IGFBP3 

IL10RA 

ILF3 

INF2 

INO80 

IQGAP1 

JUN 

KIR3DP1 

LCN1 

LEPREL2 

LOX 

LPAR1 

LRRC1  

MIER2 

MYO19 

NENF 

NF2 

 

PLP1 

PLXND1 

PTP4A2 

RAGE 

RAN 

RCAN3 

RELA 

S100A16 

S100A6 

SAG 

SHANK1 

SIPA1 

SMAP2 

SPPL2B 

SSTR5 

STAU1 

SYT5 

TAS1R2 

TESK2 

TH 

TIMM17B 

TJP2 

TNFRSF10

D 

TNNC1 

TRIM23 

WNK4 
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FBLN2 

FBXL7 

FHL1 

 

ODZ4 

PLOD2 

PLOD3 

 

 

 

 

 

 

 

 

 

 

 

  

Developmental 

process 

 

36 

 

BMP1 

COL1A2 

COL4A1 

COL5A1 

COL6A2 

COL6A3 

CREB3L3 

CRELD2 

DAZAP1 

DDAH1 

DLX1 

DYNC1I2 

EMR4P 

 

 

ENC1 

FABP5L3 

FBLN2 

FHL1 

FOXP4 

FURIN 

HAND2 

ILF3MAPK

BP1 

MIER2 

MYO19 

NF2 

NPAS4 

 

PLP1 

POGZ 

RAGE 

RCAN3 

SFXN4 

SMPD1 

SMPDL3B 

STAU1 

TJP2 

TNFRSF10

D 

  

 

Generation of 

precursor 

metabolites and 

energy 

 

4 

 

ATPIF1 

COX6B1 

L2HGDH 

TAS1R2 

 

 

 

 

  

 

Homeostatic 

process 

 

2 

 

COL1A2 

COL6A3 

 

 

 

 

  

 

Immune system 

processes 

 

39 

 

ABHD11 

B2M 

BMP1 

CCDC8 

CD63 

CD81 

CLIC3 

COL1A2 

COL4A1 

COL5A1 

COL6A2 

COL6A3 

CREB3L3 

EMR4P 

FBLN2 

 

 

FBXL7 

FHL1 

FKBP10 

GLIPR2 

HSP90AA1 

HSPA13 

HSPA2 

IL10RA 

ILF3 

LCN1 

LRRC1 

NFE2L1 

PPIB PXDN 

RAGE 

RELA 

 

 

S100A16 

S100A6 

SLC11A1 

STAU1 

TAPBP 

TESK2 

TNFRSF10

D 

WFIKKN2 

  

 

Localization 

(RNA+Proteins) 

 

4 

 

DYNC1I2 

MAPKBP1 

RAN 

STAU1 

 

 

   

 

Metabolic 

process 

 

138 

 

ABHD11 

ACOT7 

ACYP2 

AHCY 

 

DAZAP1 

DENR 

DHX9 

DIO3 

 

HSPA2 

ILF3 

IMPDH2 

INO80 

 

PLD4 

PLOD2 

PLOD3 

PLXND1 

 

SLC5A5 

SMPD1 

SMPDL3B 

SRPR 
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ALG9 

ANXA5 

APEX2 

ATP5O 

ATPIF1 

BAHCC1 

BMP1 

BRD2 

CAMTA2 

CAPN1 

CARM1 

CASP10 

CASP9 

CHSY1 

CLIC3 

CLPP 

COL1A2 

COL4A1 

COL5A1 

COL6A2 

COL6A3 

CPT1A 

CREB3L3 

CRELD2 

DLX1 

DPF2 

DYNC1I2 

EEF1B2 

EIF3G 

EIF4E 

FABP5L3 

FBLN2 

FBXL7 

FHL1 

FKBP10 

FOXP4 

FURIN 

G6PD 

GLTPD2 

GPAA1 

GRK5 

H2AFY2 

HAND2 

HIST3H2BB 

HMGA1 

HNRNPH1 

HSP90AA1 

HSPA13 

JUN 

L2HGDH 

LAMP1 

LCN1 

LOX 

LRRC1 

MAP2K3 

MAPKBP1 

MIER2 

MPDU1 

MRPL37 

NANS 

NFE2L1 

NHP2L1 

NPAS4 

NRBP1 

NT5DC2 

NUBP2 

ODZ4 

OTUD7B 

PABPN1 

PECI 

PFKL 

PGD 

POGZ 

POLR3GL 

PPA1 

PPIB 

PRDM12 

PSAP 

PSMA2 

PSMB1 

PSMB4 

PTP4A2 

PXDN 

RABGGTB 

RAGE 

RAN 

RELA 

RPL26 

RPL5 

RPS11 

RPS12 

RPS4Y2 

RRM1 

SERPINE2 

SF3B3 

SLC38A10 

ST3GAL1 

ST6GALNA

C4 

STAU1 

TAF11 

TAF15 

TARS 

TAS1R2 

TBP 

TERT 

TESK2 

TFEB 

TGM2 

TIMP3 

TTLL12 

UTP14A 

VWA5B1 

WFIKKN2 

WNK4 

ZBTB11 

ZBTB7A 

ZNF444 

ZNF692 

 

Reproduction 

 

7 

 

CD63 

CD81 

DAZAP1 

ILF3 

LCN1 

STAU1 

TESK2 

 

 

 

 

 

 

 

 

 

Response to 

stimulus 

 

34 

 

ABHD11 

B2M 

BMP1 

CD63 

CD81 

CLIC3 

COL1A2 

COL4A1 

COL5A1 

COL6A2 

COL6A3 

CREB3L3 

EMR4P 

FHL1 

FKBP10 

HSP90AA1 

HSPA13 

HSPA2 

 

 

STAU1 

TAPBP 

TAS1R2 

TESK2 

TNFRSF10

D 

WFIKKN2 

IL10RA 

KIR3DP1 

LCN1 

LOX 

NFE2L1 

RAGE 

RELA 

S100A16 

S100A6 

SLC11A1 

 

 

 

 

 

 

 

System process 

 

31 

 

BMP1 

CD63 

CD81 

 

KCNK18 

LCN1 

LOX 
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CNN1 

COL1A2 

COL6A3 

CREB3L3 

CRELD2 

DAZAP1 

EMR4P 

FBLN2 

FKBP10 

FOXP4 

GNB2 

GRK5 

ILF3 

 

LPAR1 

MOBP 

MYO19 

PLP1 

SAG 

SSTR5 

STAU1 

SYT5 

TAF15TAS1

R2 

TNNC1 

WNK4 

 

Transport 

 

43 

 

ANXA5 

AP2A1 

ARL4C 

ATP5O 

BMP1 

CLIC3 

CLTB 

COL1A2 

COL4A1 

COL5A1 

COL6A2 

COL6A3 

COPA 

CRELD2 

DYNC1I2 

 

 

EMR4P 

FABP5L3 

GLTPD2 

IFT140 

ILF3 

KCNK18 

LAMP1 

LCN1 

LOX 

MOBP 

MYO19 

NRBP1 

ODZ4PIGU 

PPIB 

PSAP 

 

 

RAN 

RHCE 

SAG 

SFXN4 

SLC11A1 

SLC38A10 

SLC5A5 

SNX32 

SRPR 

SSR2 

TIMM17B 

TRIM23 

 

 

 

 

 

Regulation of 

bilogical 

processes 

 

0 
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PH_hs_0007549 RCAN3 RCAN family member 311123 NM_013441.2 2 -2,3897 -2 1,6685

PH_hs_0005962 CAMTA2 calmodulin binding transcription activator 223125 NM_015099.3,NM_001171167.1,NM_001171166.1,NM_001171168.12 -2,2909 -2 2,1399

PH_hs_0044118 SMPDL3B sphingomyelin phosphodiesterase, acid-like 3B27293 NM_001009568.1,NM_014474.2 2 -2,2819 -2 2,2647

PH_hs_0042750 OR6C70 olfactory receptor, family 6, subfamily C, member 70390327 NM_001005499.1 3 -2,2749 -2 0,21695

PH_hs_0049587 CTAG1A|CTAG1B|CTAG2cancer/testis antigen 1A|cancer/testis antigen 1B|cancer/testis antigen 21485|30848|246100 NM_139250.1|NM_001327.2|NM_020994.3,NM_172377.32 -2,2639 -2 1,2678

PH_hs_0026823 TGM2 transglutaminase 2 (C polypeptide, protein-glutamine-gamma-glutamyltransferase)7052 NM_004613.2 2 -2,2615 -2 2,9251

PH_hs_0030181 RPS11 ribosomal protein S116205 NM_001015.3 2 -2,2564 -2 0,85018

PH_hs_0046433 NCRNA00164 non-protein coding RNA 164554226 NR_027020.2 2 -2,2539 -2 2,4937

PH_hs_0043566 FAM54A family with sequence similarity 54, member A113115 NM_001099286.1,NM_138419.3 2 -2,2462 -2 1,7536

PH_hs_0023944 SLC38A10 solute carrier family 38, member 10124565 NM_138570.2 2 -2,243 -2 1,6636

PH_hs_0032312 POU2F3|POU3F1|POU3F3POU class 2 homeobox 3|POU class 3 homeobox 1|POU class 3 homeobox 35455|5453|25833 NM_014352.2|NM_002699.3|NM_006236.12 -2,2173 -2 1,8436

PH_hs_0044633 PTP4A2 protein tyrosine phosphatase type IVA, member 28073 NM_080392.2,NM_080391.2 2 -2,2136 -2 2,2532

PH_hs_0042367 TNNC1 troponin C type 1 (slow)7134 NM_003280.2 2 -2,2071 -2 1,0404

PH_hs_0049694 H3F3B|H3F3C H3 histone, family 3B (H3.3B)|H3 histone, family 3C440093|3021 NM_005324.3|NM_001013699.2 2 -2,2068 -2 1,4385

PH_hs_0042321 OR1I1 olfactory receptor, family 1, subfamily I, member 1126370 NM_001004713.1 2 -2,2048 -2 1,9684

PH_hs_0029772 SMCR8 Smith-Magenis syndrome chromosome region, candidate 8140775 NM_144775.2 2 -2,1918 -2 3,0898

PH_hs_0028920 HMGA1 high mobility group AT-hook 13159 NM_145905.2,NM_145901.2,NM_145902.2,NM_145899.2,NM_002131.3,NM_145903.22 -2,18625 -2 1,448945

PH_hs_0023823 GPC1 glypican 1 2817 NM_002081.2 2 -2,1591 -2 1,5715

PH_hs_0026852 ARHGAP39 Rho GTPase activating protein 3980728 NM_025251.1 2 -2,1586 -2 1,2192

PH_hs_0028357 COBRA1 cofactor of BRCA1 25920 NM_015456.3 2 -2,1526 -2 1,2751

PH_hs_0000462 MRPL37 mitochondrial ribosomal protein L3751253 NM_016491.3 2 -2,138 -2 1,9504

PH_hs_0023074 WFIKKN2 WAP, follistatin/kazal, immunoglobulin, kunitz and netrin domain containing 2124857 NM_175575.5 2 -2,1355 -2 1,0159

PH_hs_0046596 LOC100294360 hypothetical protein LOC100294360100294360 XM_002347180.1 2 -2,1348 -2 2,1244

PH_hs_0013495 ILF3 interleukin enhancer binding factor 3, 90kDa3609 NM_017620.2,NM_012218.3 2 -2,1266 -2 1,5713

PH_hs_0047850 GPAA1 glycosylphosphatidylinositol anchor attachment protein 1 homolog (yeast)8733 NM_003801.3 2 -2,1247 -2 2,1018

PH_hs_0032896 PFKL phosphofructokinase, liver5211 NM_002626.4,NR_024108.1 2 -2,1133 -2 1,9808

PH_hs_0047518 FAM26E family with sequence similarity 26, member E254228 NM_153711.2 3 -2,0919 -2 0,28982

PH_hs_0003807 FURIN furin (paired basic amino acid cleaving enzyme)5045 NM_002569.2 2 -2,0901 -2 2,3143

PH_hs_0027539 LCN1 lipocalin 1 (tear prealbumin)3933 NM_002297.2 2 -2,0791 -2 1,6456

PH_hs_0025939 SRPR signal recognition particle receptor (docking protein)6734 NM_003139.3,NM_001177842.1 2 -2,0764 -2 1,8669

PH_hs_0024266 MAPKBP1 mitogen-activated protein kinase binding protein 123005 NM_001128608.1,NM_014994.2 2 -2,068 -2 2,8887

PH_hs_0043374 B2M beta-2-microglobulin 567 NM_004048.2 2 -2,056 -2 2,1876

PH_hs_0039500 ST3GAL1 ST3 beta-galactoside alpha-2,3-sialyltransferase 16482 NM_003033.3,NM_173344.2 2 -2,0434 -2 1,7175

PH_hs_0022607 ANXA5 annexin A5 308 NM_001154.3 2 -2,0256 -2 0,8271

PH_hs_0045469 LOC100129984 similar to LOC642031 protein100129984 XR_078962.1,XR_079149.1 2 -2,02 -2 0,8028

PH_hs_0043389 SNX32 sorting nexin 32 254122 NM_152760.2 2 -2,0157 -2 2,631

PH_hs_0035739 S100A6 S100 calcium binding protein A66277 NM_014624.3 2 -2,0125 -2 0,65654

PH_hs_0000699 C16orf61 chromosome 16 open reading frame 6156942 NM_020188.3 2 -2,0062 -2 1,8346

PH_hs_0035507 MIER2 mesoderm induction early response 1, family member 254531 NM_017550.1 2 -2,0032 -2 0,69624

PH_hs_0043313 ROMO1 reactive oxygen species modulator 1140823 NM_080748.2 2 -2,0017 -2 1,8318

PH_hs_0025350 INO80E INO80 complex subunit E283899 NM_173618.1 2 2,0009 2 0,40449

PH_hs_0005831 ENC1 ectodermal-neural cortex 1 (with BTB-like domain)8507 NM_003633.2 2 2,0046 2 0,53724

PH_hs_0018551 DDAH1 dimethylarginine dimethylaminohydrolase 123576 NM_012137.3,NM_001134445.1 2 2,0146 2 0,48873

PH_hs_0023170 COL6A3 collagen, type VI, alpha 31293 NM_057167.3,NM_004369.3,NM_057166.42 2,0148 2 0,3297

PH_hs_0015263 BOK BCL2-related ovarian killer666 NM_032515.3 3 2,0163 2 0,093989

PH_hs_0032984 HIST3H2BB histone cluster 3, H2bb128312 NM_175055.2 2 2,0171 2 0,30748

PH_hs_0001955 DENR density-regulated protein8562 NM_003677.3 3 2,0217 2 0,19596

PH_hs_0033638 FABP5L3 fatty acid binding protein 5-like 3 (pseudogene)220832 NR_002935.1 2 2,0218 2 0,58445

PH_hs_0006559 PXDN peroxidasin homolog (Drosophila)7837 NM_012293.1 2 2,0287 2 0,39388

PH_hs_0040555 ZNF860 zinc finger protein 860344787 NM_001137674.1 2 2,029 2 0,36303

Phalanx_id Gene_symbol Description Entrez_gene RefSeq Regulation significance

E1 2,5 % O2 gegen 21 

% O2 

Ratio 1-3 : 11-13 Regulation SE

PH_hs_0033270 HIST1H4H|HIST1H4E histone cluster 1, H4h|histone cluster 1, H4e8365|8367 NM_003543.3|NM_003545.3 2 -9,1645 -3 8,6032

PH_hs_0044010 LOC100130856 hypothetical LOC100130856100130856 XR_078853.1,XR_079398.1,XR_078670.1 2 -9,1512 -3 11,4531

PH_hs_0023822 OTUD7B OTU domain containing 7B56957 NM_020205.2 2 -7,1337 -3 8,9546

PH_hs_0029966 RPS12 ribosomal protein S126206 NM_001016.3 2 -5,5584 -3 5,8872

PH_hs_0015581 ZBTB11 zinc finger and BTB domain containing 1127107 NM_014415.3 2 -5,36 -3 5,1097

PH_hs_0044626 POGZ pogo transposable element with ZNF domain23126 NM_145796.2 2 -5,2745 -3 7,3565

PH_hs_0030515 KRTAP20-2 keratin associated protein 20-2337976 NM_181616.1 2 -5,1938 -3 4,1255

PH_hs_0008886 CDC42EP1 CDC42 effector protein (Rho GTPase binding) 111135 NM_152243.2 2 -4,9926 -2 6,1905

PH_hs_0019545 AUP1 ancient ubiquitous protein 1550 NM_181575.3 2 -4,8547 -2 5,1556

PH_hs_0025386 POMGNT1 protein O-linked mannose beta1,2-N-acetylglucosaminyltransferase55624 NM_017739.3,NR_024332.1 2 -4,5375 -2 4,0007

PH_hs_0000093 TRIM23 tripartite motif-containing 23373 NM_001656.3 2 -4,3531 -2 4,0087

PH_hs_0047862 RANGAP1 Ran GTPase activating protein 15905 NM_002883.2 2 -4,2901 -2 5,0343

PH_hs_0027023 INO80 INO80 homolog (S. cerevisiae)54617 NM_017553.1 2 -4,1268 -2 5,8089

PH_hs_0034181 IL10RA interleukin 10 receptor, alpha3587 NM_001558.3,NR_026691.1 2 -3,9788 -2 4,6161

PH_hs_0019363 DLX1 distal-less homeobox 11745 NM_001038493.1,NM_178120.4 2 -3,5662 -2 3,6707

PH_hs_0042710 GLTPD2 glycolipid transfer protein domain containing 2388323 NM_001014985.1 2 -3,4732 -2 2,4873

PH_hs_0027566 S100A16 S100 calcium binding protein A16140576 NM_080388.1 2 -3,4619 -2 3,4025

PH_hs_0042033 RPL26 ribosomal protein L26 6154 NM_000987.3 2 -3,4398 -2 4,0003

PH_hs_0002463 EIF3G eukaryotic translation initiation factor 3, subunit G8666 NM_003755.3 2 -3,3835 -2 0,63848

PH_hs_0042155 SHANK1 SH3 and multiple ankyrin repeat domains 150944 NM_016148.2 2 -3,3242 -2 2,5584

PH_hs_0029923 DHX9 DEAH (Asp-Glu-Ala-His) box polypeptide 91660 NM_001357.4,NR_033302.1 2 -3,2277 -2 2,9983

PH_hs_0040143 VWA5B1 von Willebrand factor A domain containing 5B1127731 NM_001039500.2 2 -3,2111 -2 4,471

PH_hs_0000440 ST6GALNAC4 ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-acetylgalactosaminide alpha-2,6-sialyltransferase 427090 NM_175039.3,NM_175040.3 2 -3,1976 -2 2,6202

PH_hs_0026052 CD63 CD63 molecule 967 NM_001780.4,NM_001040034.1 2 -3,1238 -2 3,9282

PH_hs_0030503 RPL5 ribosomal protein L5 6125 NM_000969.3 2 -3,1023 -2 2,9992

PH_hs_0027643 FPGT fucose-1-phosphate guanylyltransferase8790 NM_003838.2 2 -2,9345 -2 2,6158

PH_hs_0029874 HNRNPA1|LOC645691|LOC644037heterogeneous nuclear ribonucleoprotein A1|similar to heterogeneous nuclear ribonucleoprotein A1|similar to heterogeneous nuclear ribonucleoprotein A13178|644037|645691 NM_002136.2,NM_031157.2|XR_078944.1,XR_079130.1,XR_078270.1|XR_038280.2,XR_038765.2,XR_017337.32 -2,903 -2 2,6201

PH_hs_0046469 TLX1NB TLX1 neighbor 100038246 NM_001085398.1 2 -2,9014 -2 2,4083

PH_hs_0010680 MAP2K3 mitogen-activated protein kinase kinase 35606 NM_002756.4,NM_145109.2 2 -2,8565 -2 2,1965

PH_hs_0043029 KBTBD13 kelch repeat and BTB (POZ) domain containing 13390594 NM_001101362.2 2 -2,8391 -2 3,4595

PH_hs_0043883 RELA v-rel reticuloendotheliosis viral oncogene homolog A (avian)5970 NM_021975.3,NM_001145138.1 2 -2,7973 -2 1,9772

PH_hs_0043221 GNB2 guanine nucleotide binding protein (G protein), beta polypeptide 22783 NM_005273.3 2 -2,7729 -2 2,9468

PH_hs_0035877 MYADM myeloid-associated differentiation marker91663 NM_001020821.1,NM_001020818.1,NM_001020820.1,NM_138373.3,NM_001020819.12 -2,74 -2 2,8555

PH_hs_0003564 CD81 CD81 molecule 975 NM_004356.3 2 -2,6982 -2 2,8326

PH_hs_0002191 INF2 inverted formin, FH2 and WH2 domain containing64423 NM_001031714.3,NM_022489.3 2 -2,6897 -2 2,7639

PH_hs_0024458 HAND2 heart and neural crest derivatives expressed 29464 NM_021973.2 2 -2,6873 -2 3,0247

PH_hs_0026265 KCNK18 potassium channel, subfamily K, member 18338567 NM_181840.1 2 -2,6385 -2 2,6809

PH_hs_0035093 LOC440031 hypothetical LOC440031440031 XR_040618.2,XR_017508.3 2 -2,6003 -2 2,0774

PH_hs_0010296 TROAP trophinin associated protein (tastin)10024 NM_005480.3 2 -2,5713 -2 1,7952

PH_hs_0036873 PCDHB19P|CABP4 protocadherin beta 19 pseudogene|calcium binding protein 484054|57010 NR_001282.2|NM_145200.3 2 -2,5553 -2 3,269

PH_hs_0026842 L2HGDH L-2-hydroxyglutarate dehydrogenase79944 NM_024884.2 2 -2,5535 -2 1,7566

PH_hs_0023824 CASP9 caspase 9, apoptosis-related cysteine peptidase842 NM_032996.1,NM_001229.2 2 -2,5035 -2 2,2004

PH_hs_0023994 CAPN1 calpain 1, (mu/I) large subunit823 NM_005186.2 2 -2,4907 -2 1,6949

PH_hs_0004749 TAF11 TAF11 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 28kDa6882 NM_005643.2 3 -2,4876 -2 0,2272

PH_hs_0043105 RAN RAN, member RAS oncogene family5901 NM_006325.3 2 -2,4872 -2 1,3927

PH_hs_0018539 CLTB clathrin, light chain B 1212 NM_001834.2,NM_007097.2 2 -2,4835 -2 1,5781

PH_hs_0026471 POU5F2 POU domain class 5, transcription factor 2134187 NM_153216.1 2 -2,4824 -2 1,1267

Table 8.1. The list of ratios of significanlely up- or down-regulated genes under hypoxia (2.5% O2) 
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PH_hs_0022427 LRRC1 leucine rich repeat containing 155227 NM_018214.4 3 2,0452 2 0,087192

PH_hs_0031355 LOC649395|LOC440917|YWHAEtyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, epsilon polypeptide pseudogene|similar to 14-3-3 protein epsilon (14-3-3E) (Mitochondrial import stimulation factor L subunit) (MSF L)|tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, epsilon polypeptide7531|440917|649395 NR_029404.1|XR_041291.2,XR_041290.2,XR_041289.2|NR_024058.1,NM_006761.43 2,0456 2 0,21523

PH_hs_0045793 NHP2L1 NHP2 non-histone chromosome protein 2-like 1 (S. cerevisiae)4809 NM_005008.2,NM_001003796.1 2 2,0544 2 0,43634

PH_hs_0005933 FAM5C family with sequence similarity 5, member C339479 NM_199051.1 3 2,0587 2 0,26729

PH_hs_0000946 TESK2 testis-specific kinase 210420 NM_007170.2 2 2,0603 2 0,31078

PH_hs_0011521 C1orf107 chromosome 1 open reading frame 10727042 NM_014388.5 2 2,0729 2 0,57438

PH_hs_0000798 SMAP2 small ArfGAP2 64744 NM_022733.1 3 2,0735 2 0,26563

PH_hs_0043523 WDR83 WD repeat domain 8384292 NR_029375.1,NM_032332.3,NM_001099737.23 2,0742 2 0,27602

PH_hs_0042334 MT4 metallothionein 4 84560 NM_032935.2 3 2,092 2 0,193

PH_hs_0001029 CCM2 cerebral cavernous malformation 283605 NM_001167934.1,NM_031443.3,NR_030770.1,NM_001167935.1,NM_001029835.23 2,0938 2 0,29822

PH_hs_0001423 PECI peroxisomal D3,D2-enoyl-CoA isomerase10455 NM_001166010.1,NM_006117.2,NR_028588.1,NM_206836.22 2,0965 2 0,43702

PH_hs_0045059 CPT1A carnitine palmitoyltransferase 1A (liver)1374 NM_001876.3 2 2,1001 2 0,48934

PH_hs_0029645 COTL1 coactosin-like 1 (Dictyostelium)23406 NM_021149.2 2 2,1002 2 0,3978

PH_hs_0042749 APOB48R apolipoprotein B48 receptor55911 NM_018690.2 3 2,1015 2 0,29307

PH_hs_0015252 PRR14 proline rich 14 78994 NM_024031.2 2 2,1015 2 0,48074

PH_hs_0009351 HNRNPUL1 heterogeneous nuclear ribonucleoprotein U-like 111100 NM_144732.2,NM_007040.3 2 2,1067 2 0,50926

PH_hs_0028935 CCDC85B coiled-coil domain containing 85B11007 NM_006848.2 2 2,1108 2 0,41616

PH_hs_0005949 RBM17 RNA binding motif protein 1784991 NM_001145547.1,NM_032905.4 3 2,1142 2 0,28675

PH_hs_0037874 C16orf46 chromosome 16 open reading frame 46123775 NM_001100873.1 3 2,1186 2 0,23213

PH_hs_0042240 PSMB1 proteasome (prosome, macropain) subunit, beta type, 15689 NM_002793.3 2 2,1187 2 0,40597

PH_hs_0049655 RHCE Rh blood group, CcEe antigens6006 NM_020485.3,NM_138617.2,NM_138616.23 2,1207 2 0,20736

PH_hs_0029021 TARS threonyl-tRNA synthetase6897 NM_152295.3 2 2,1502 2 0,4065

PH_hs_0045945 UTP14A UTP14, U3 small nucleolar ribonucleoprotein, homolog A (yeast)10813 NM_001166221.1,NM_006649.3 2 2,1563 2 0,36883

PH_hs_0028149 BCL7C B-cell CLL/lymphoma 7C9274 NM_004765.2 3 2,157 2 0,097649

PH_hs_0045570 TAPBP TAP binding protein (tapasin)6892 NM_172208.2 3 2,1575 2 0,15425

PH_hs_0022878 SFXN4 sideroflexin 4 119559 NM_213649.1 3 2,1625 2 0,28302

PH_hs_0025276 PGBD2 piggyBac transposable element derived 2267002 NM_001017434.1,NM_170725.2 2 2,1688 2 0,31983

PH_hs_0027589 TIMM17B translocase of inner mitochondrial membrane 17 homolog B (yeast)10245 NM_001167947.1,NM_005834.3 3 2,1726 2 0,20548

PH_hs_0045836 SIPA1 signal-induced proliferation-associated 16494 NM_153253.29,NM_006747.3 2 2,1754 2 0,31016

PH_hs_0000238 IQGAP1 IQ motif containing GTPase activating protein 18826 NM_003870.3 3 2,1786 2 0,19003

PH_hs_0048360 ARL4C ADP-ribosylation factor-like 4C10123 NM_005737.3 2 2,1799 2 0,33279

PH_hs_0032808 HSPA13 heat shock protein 70kDa family, member 136782 NM_006948.4 2 2,1909 2 0,41973

PH_hs_0000619 STAU1 staufen, RNA binding protein, homolog 1 (Drosophila)6780 NM_001037328.1,NM_017454.2,NM_017453.2,NM_017452.2,NM_004602.23 2,1934 2 0,18773

PH_hs_0019972 COX6B1 cytochrome c oxidase subunit VIb polypeptide 1 (ubiquitous)1340 NM_001863.4 2 2,2018 2 0,52886

PH_hs_0004295 BRD2 bromodomain containing 26046 NM_001113182.1,NM_005104.3 2 2,2174 2 0,31735

PH_hs_0009279 APEX2 APEX nuclease (apurinic/apyrimidinic endonuclease) 227301 NM_014481.2 3 2,2225 2 0,20853

PH_hs_0004585 EIF4E eukaryotic translation initiation factor 4E1977 NM_001130678.1,NM_001130679.1,NM_001968.32 2,2227 2 0,50923

PH_hs_0001829 CNN1 calponin 1, basic, smooth muscle1264 NM_001299.4 2 2,2257 2 0,48451

PH_hs_0033202 ATP5O ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit539 NM_001697.2 2 2,2279 2 0,54128

PH_hs_0013494 NUBP2 nucleotide binding protein 2 (MinD homolog, E. coli)10101 NM_012225.2 2 2,2314 2 0,44653

PH_hs_0004730 TTLL12 tubulin tyrosine ligase-like family, member 1223170 NM_015140.3 2 2,2368 2 0,39283

PH_hs_0045613 CASP10 caspase 10, apoptosis-related cysteine peptidase843 NM_032974.3 2 2,2453 2 0,4704

PH_hs_0046039 TMEM14C transmembrane protein 14C51522 NM_001165258.1,NM_016462.3 3 2,2491 2 0,27801

PH_hs_0046484 LOC100290317 similar to hCG2023395100290317 XM_002346903.1 3 2,2518 2 0,087802

PH_hs_0027111 SAG S-antigen; retina and pineal gland (arrestin)6295 NM_000541.4 2 2,26 2 0,3642

PH_hs_0019280 PSAP prosaposin 5660 NM_001042466.1,NM_001042465.1,NM_002778.22 2,2713 2 0,43424

PH_hs_0004521 SNAPC2 small nuclear RNA activating complex, polypeptide 2, 45kDa6618 NM_003083.3,NR_030717.1 3 2,2738 2 0,24798

PH_hs_0028961 GJA1 gap junction protein, alpha 1, 43kDa2697 NM_000165.3 3 2,2765 2 0,29542

PH_hs_0047141 BNIP3 BCL2/adenovirus E1B 19kDa interacting protein 3664 NM_004052.2 3 2,2801 2 0,071778

PH_hs_0047221 LPAR1 lysophosphatidic acid receptor 11902 NM_057159.2,NM_001401.3 2 2,2808 2 0,36861
PH_hs_0048643 ODZ4 odz, odd Oz/ten-m homolog 4 (Drosophila)26011 NM_001098816.2 2 2,2889 2 0,44381

PH_hs_0035799 PSMA2 proteasome (prosome, macropain) subunit, alpha type, 25683 NM_002787.4 2 2,2946 2 0,36339

PH_hs_0030600 C5orf13 chromosome 5 open reading frame 139315 NM_001142483.1,NM_001142480.1,NM_001142477.1,NM_001142474.1,NM_001142482.1,NM_001142479.1,NM_001142476.1,NM_004772.2,NM_001142481.1,NM_001142478.1,NM_001142475.12 2,3167 2 0,50902

PH_hs_0025029 BAHCC1 BAH domain and coiled-coil containing 157597 NM_001080519.2 3 2,3234 2 0,25815

PH_hs_0024183 CARM1 coactivator-associated arginine methyltransferase 110498 NM_199141.1 2 2,3499 2 0,4033

PH_hs_0017046 C21orf29 chromosome 21 open reading frame 2954084 NM_144991.2 3 2,3547 2 0,22668

PH_hs_0012932 ATPIF1 ATPase inhibitory factor 193974 NM_178191.1,NM_178190.1,NM_016311.33 2,3576 2 0,27825

PH_hs_0005777 RAGE renal tumor antigen 5891 NM_014226.1 2 2,358 2 0,46952

PH_hs_0024800 MOBP myelin-associated oligodendrocyte basic protein4336 NR_003090.1 2 2,3607 2 0,42671

PH_hs_0004525 JUN jun oncogene 3725 NM_002228.3 3 2,3715 2 0,24698

PH_hs_0003071 PLOD2 procollagen-lysine, 2-oxoglutarate 5-dioxygenase 25352 NM_182943.2,NM_000935.2 3 2,3812 2 0,2761

PH_hs_0030164 KRT16P3|KRT16 keratin 16 pseudogene 3|keratin 163868|644945 NR_029393.1|NM_005557.3 3 2,3883 2 0,22727

PH_hs_0025361 PPIB peptidylprolyl isomerase B (cyclophilin B)5479 NM_000942.4 2 2,4085 2 0,435

PH_hs_0015639 GLIPR2 GLI pathogenesis-related 2152007 NM_022343.2 3 2,4181 2 0,16937

PH_hs_0019840 ANAPC16 anaphase promoting complex subunit 16119504 NM_173473.2 3 2,434 2 0,163

PH_hs_0032160 C17orf49 chromosome 17 open reading frame 49124944 NM_174893.2,NM_001142799.1,NM_001142798.12 2,4534 2 0,34254

PH_hs_0000111 NF2 neurofibromin 2 (merlin)4771 NM_181830.2,NM_016418.5,NM_181833.2,NM_181832.2,NM_181829.2,NM_181828.2,NM_000268.32 2,4573 2 0,3812

PH_hs_0025750 DAZAP1 DAZ associated protein 126528 NM_018959.2,NM_170711.1 2 2,462 2 0,38845

PH_hs_0024691 PLD4 phospholipase D family, member 4122618 NM_138790.2 3 2,4643 2 0,16504

PH_hs_0009944 C16orf7 chromosome 16 open reading frame 79605 NM_004913.2 3 2,4746 2 0,27471

PH_hs_0027174 NFE2L1 nuclear factor (erythroid-derived 2)-like 14779 NM_003204.2 3 2,4964 2 0,28496

PH_hs_0035795 POLR3GL polymerase (RNA) III (DNA directed) polypeptide G (32kD)-like84265 NM_032305.1 2 2,4967 2 0,37741

PH_hs_0023612 MYO19 myosin XIX 80179 NM_001163735.1,NM_025109.5 2 2,5016 2 0,47596

PH_hs_0003290 LEPREL2 leprecan-like 2 10536 NM_014262.3 2 2,5054 2 0,3706

PH_hs_0033554 HNRNPL|LOC644390 heterogeneous nuclear ribonucleoprotein L|similar to heterogeneous nuclear ribonucleoprotein L-like3191|644390 NM_001005335.1,NM_001533.2|XR_037846.2,XR_016623.33 2,5275 2 0,28319

PH_hs_0017280 RNF187 ring finger protein 187 149603 NM_001010858.2 2 2,537 2 0,31973

PH_hs_0000144 TBP TATA box binding protein6908 NM_001172085.1,NM_003194.4 2 2,5534 2 0,4933

PH_hs_0027148 SSR2 signal sequence receptor, beta (translocon-associated protein beta)6746 NM_003145.3 2 2,5537 2 0,41309

PH_hs_0011708 FOXP4 forkhead box P4 116113 NM_001012426.1,NM_001012427.1,NM_138457.22 2,5712 2 0,3317

PH_hs_0022388 ARPC5 actin related protein 2/3 complex, subunit 5, 16kDa10092 NM_005717.2 3 2,5835 2 0,084769

PH_hs_0004430 FBXL7 F-box and leucine-rich repeat protein 723194 NM_012304.3 3 2,5854 2 0,19632

PH_hs_0005860 WNK4 WNK lysine deficient protein kinase 465266 NM_032387.4 3 2,5932 2 0,12681

PH_hs_0014083 NRBP1 nuclear receptor binding protein 129959 NM_013392.2 2 2,6075 2 0,33579

PH_hs_0027726 DYNC1I2 dynein, cytoplasmic 1, intermediate chain 21781 NM_001378.1 2 2,6143 2 0,41407

PH_hs_0000242 PLP1 proteolipid protein 1 5354 NM_199478.1,NM_000533.3,NM_001128834.13 2,6242 2 0,28135

PH_hs_0012265 GRK5 G protein-coupled receptor kinase 52869 NM_005308.2 2 2,6245 2 0,42189

PH_hs_0013484 NPAS4 neuronal PAS domain protein 4266743 NM_178864.3 3 2,6308 2 0,21204

PH_hs_0009041 LAMP1 lysosomal-associated membrane protein 13916 NM_005561.3 3 2,6449 2 0,17743

PH_hs_0002954 STRA13 stimulated by retinoic acid 13 homolog (mouse)201254 NM_144998.2 2 2,6694 2 0,34489

PH_hs_0049609 RCN1|LOC100287828reticulocalbin 1, EF-hand calcium binding domain|similar to reticulocalbin 15954|100287828 NM_002901.2|XR_079333.1,XR_078474.12 2,6742 2 0,44869

PH_hs_0047260 COL1A2 collagen, type I, alpha 21278 NM_000089.3 3 2,7099 2 0,067371

PH_hs_0030270 TERT telomerase reverse transcriptase7015 NM_198253.2,NM_198255.2 2 2,7195 2 0,37662

PH_hs_0029073 ZBTB7A zinc finger and BTB domain containing 7A51341 NM_015898.2 2 2,7294 2 0,36772

PH_hs_0003436 DIO3 deiodinase, iodothyronine, type III1735 NM_001362.3 2 2,7296 2 0,30022

PH_hs_0048010 PLEKHB2 pleckstrin homology domain containing, family B (evectins) member 255041 NM_001100623.1,NM_017958.2 3 2,7474 2 0,24079

PH_hs_0002059 TFEB transcription factor EB7942 NM_001167827.1,NM_007162.2 2 2,7602 2 0,49578

PH_hs_0023080 PDIA6 protein disulfide isomerase family A, member 610130 NM_005742.2 3 2,7717 2 0,23143

PH_hs_0005347 CCDC8 coiled-coil domain containing 883987 NM_032040.3 3 2,808 2 0,20864

PH_hs_0049125 ALG9 asparagine-linked glycosylation 9, alpha-1,2-mannosyltransferase homolog (S. cerevisiae)79796 NM_001077692.1,NM_001077691.1,NM_024740.2,NM_001077690.13 2,818 2 0,26678

PH_hs_0045348 LOC646127 similar to telomeric repeat binding factor (NIMA-interacting) 1646127 XR_037301.2,XR_037450.2,XR_037591.1 2 2,8305 2 0,34886
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PH_hs_0031935 COPA coatomer protein complex, subunit alpha1314 NM_001098398.1,NM_004371.3 2 2,8357 2 0,32912

PH_hs_0029963 PPA1 pyrophosphatase (inorganic) 15464 NM_021129.3 3 2,8938 2 0,26825

PH_hs_0015334 AP2A1 adaptor-related protein complex 2, alpha 1 subunit160 NM_130787.2,NM_014203.2 2 2,9292 2 0,32067

PH_hs_0024614 TAF15 TAF15 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 68kDa8148 NM_003487.2,NM_139215.1 2 2,9471 2 0,38257

PH_hs_0040733 HSP90AA1 heat shock protein 90kDa alpha (cytosolic), class A member 13320 NM_005348.3 2 2,9526 2 0,36683

PH_hs_0018576 GABARAP GABA(A) receptor-associated protein11337 NM_007278.1 3 2,9544 2 0,29383

PH_hs_0000700 GORASP2 golgi reassembly stacking protein 2, 55kDa26003 NM_015530.3 2 2,9816 2 0,41021

PH_hs_0001501 SPAG5 sperm associated antigen 510615 NM_006461.3 2 2,986 2 0,37836

PH_hs_0043124 FKBP10 FK506 binding protein 10, 65 kDa60681 NM_021939.3 3 2,9982 2 0,27173

PH_hs_0029475 SSTR5 somatostatin receptor 56755 NM_001172560.1,NM_001053.3 2 2,9997 2 0,33428

PH_hs_0013255 C19orf63 chromosome 19 open reading frame 63284361 NM_175063.4,NM_206538.2 3 3,0228 2 0,22922

PH_hs_0023910 DSC1 desmocollin 1 1823 NM_004948.3,NM_024421.2 3 3,0431 2 0,085343

PH_hs_0027789 ACTN1 actinin, alpha 1 87 NM_001130004.1,NM_001130005.1,NM_001102.33 3,0585 2 0,13243

PH_hs_0011293 SEC61B|LOC100287189Sec61 beta subunit|similar to Sec61 beta subunit10952|100287189 NM_006808.2|XM_002344555.1,XM_002347200.1,XM_002343060.12 3,1203 2 0,32075

PH_hs_0004492 SMPD1 sphingomyelin phosphodiesterase 1, acid lysosomal6609 NR_027400.1,NM_001007593.1,NM_000543.33 3,1229 2 0,368255

PH_hs_0001088 ERRFI1 ERBB receptor feedback inhibitor 154206 NM_018948.3 3 3,1643 2 0,18728

PH_hs_0035456 IMPDH2 IMP (inosine 5'-monophosphate) dehydrogenase 23615 NM_000884.2 3 3,2195 2 0,24141

PH_hs_0033736 TMEM119 transmembrane protein 119338773 NM_181724.2 2 3,2398 2 0,35334

PH_hs_0024442 AHCY adenosylhomocysteinase191 NM_000687.2,NM_001161766.1 3 3,2501 2 0,26759

PH_hs_0002461 CRELD2 cysteine-rich with EGF-like domains 279174 NM_001135101.1,NM_024324.3 3 3,2727 2 0,29547

PH_hs_0009226 PLOD3 procollagen-lysine, 2-oxoglutarate 5-dioxygenase 38985 NM_001084.4 2 3,2934 2 0,35407

PH_hs_0025416 TH tyrosine hydroxylase 7054 NM_199293.2,NM_199292.2,NM_000360.33 3,3139 2 0,13591

PH_hs_0019152 TAS1R2 taste receptor, type 1, member 280834 NM_152232.2 3 3,3147 2 0,2815

PH_hs_0043131 RPP40 ribonuclease P/MRP 40kDa subunit10799 NM_006638.2 3 3,3597 2 0,22692

PH_hs_0035939 COL6A2 collagen, type VI, alpha 21292 NM_058175.2,NM_058174.2 3 3,365 2 0,29128

PH_hs_0032900 KAZ kazrin 23254 NM_001017999.2,NM_001018001.2,NM_015209.2,NM_001018000.33 3,388 2 0,25798

PH_hs_0005770 SLC5A5 solute carrier family 5 (sodium iodide symporter), member 56528 NM_000453.2 3 3,4101 2 0,20619

PH_hs_0025581 COL4A1 collagen, type IV, alpha 11282 NM_001845.4 3 3,4532 2 0,23466

PH_hs_0004556 RABGGTB Rab geranylgeranyltransferase, beta subunit5876 NM_004582.2 2 3,5144 2 0,34968

PH_hs_0044737 FBLN2 fibulin 2 2199 NM_001165035.1,NM_001998.2,NM_001004019.13 3,5156 2 0,1724

PH_hs_0029086 CHSY1 chondroitin sulfate synthase 122856 NM_014918.4 3 3,5296 2 0,17441

PH_hs_0000168 BMP1 bone morphogenetic protein 1649 NM_006129.4,NR_033403.1 3 3,5755 2 0,17752

PH_hs_0004621 G6PD glucose-6-phosphate dehydrogenase2539 NM_000402.3,NM_001042351.1 3 3,5993 2 0,28911

PH_hs_0025290 COL5A1 collagen, type V, alpha 11289 NM_000093.3 3 3,6518 2 0,18098

PH_hs_0020027 HSPA2 heat shock 70kDa protein 23306 NM_021979.3 3 3,6601 2 0,11584

PH_hs_0004001 CLIC3 chloride intracellular channel 39022 NM_004669.2 3 3,6607 2 0,1424

PH_hs_0018698 RRM1 ribonucleotide reductase M16240 NM_001033.3 3 3,7652 2 0,23127

PH_hs_0043477 FHL1 four and a half LIM domains 12273 NM_001159703.1,NR_027621.1,NM_001159704.1,NM_001159700.1,NM_001159702.2,NM_001167819.1,NM_001159701.1,NM_001159699.1,NM_001449.43 3,822 2 0,045748

PH_hs_0002037 SYT5 synaptotagmin V 6861 NM_003180.2 3 3,8994 2 0,10394

PH_hs_0045424 LOC100130633 hypothetical LOC100130633100130633 XM_001723998.2,XM_001725169.2,XM_001724926.23 3,9193 2 0,24393

PH_hs_0005671 LOX lysyl oxidase 4015 NM_001178102.1,NM_002317.5 3 3,9865 2 0,23761

PH_hs_0013028 TIMP3 TIMP metallopeptidase inhibitor 37078 NM_000362.4 3 4,0595 2 0,19524

PH_hs_0001899 SERPINE2 serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), member 25270 NM_001136529.1,NM_001136530.1,NM_001136528.1,NM_006216.33 4,0824 2 0,19071

PH_hs_0031282 PIGU phosphatidylinositol glycan anchor biosynthesis, class U128869 NM_080476.4 3 4,0958 2 0,25187

PH_hs_0012781 MYL12A myosin, light chain 12A, regulatory, non-sarcomeric10627 NM_006471.2 3 4,1142 2 0,20638

PH_hs_0049537 TUBG1|LOC100133673tubulin, gamma 1|similar to Tubulin, gamma 17283|100133673 NM_001070.4|XM_001725120.2 3 4,1579 2 0,21118

PH_hs_0045419 C3orf74 chromosome 3 open reading frame 74100128378 NR_027331.1,XR_078955.1,XR_079144.1,XR_078286.13 4,2449 2 0,16246

PH_hs_0014165 NANS N-acetylneuraminic acid synthase54187 NM_018946.3 3 4,2877 2 0,2184

PH_hs_0004806 NT5DC2 5'-nucleotidase domain containing 264943 NM_022908.2,NM_001134231.1 3 4,3123 2 0,20284

PH_hs_0045643 RPS4Y2 ribosomal protein S4, Y-linked 2140032 NM_001039567.2 3 4,3183 2 0,19844

PH_hs_0001301 DPF2 D4, zinc and double PHD fingers family 25977 NM_006268.3 3 4,3335 2 0,11645

PH_hs_0047899 KDM5A lysine (K)-specific demethylase 5A5927 NM_001042603.1 3 4,3611 2 0,24067

PH_hs_0023770 CLPP ClpP caseinolytic peptidase, ATP-dependent, proteolytic subunit homolog (E. coli)8192 NM_006012.2 3 4,4058 2 0,20576

PH_hs_0014826 PRDM12 PR domain containing 1259335 NM_021619.2 3 4,4447 2 0,20631

PH_hs_0018365 ZNF692 zinc finger protein 69255657 NM_017865.2 3 4,5258 2 0,18185

PH_hs_0042616 OR4B1 olfactory receptor, family 4, subfamily B, member 1119765 NM_001005470.1 3 4,5503 2 0,20347

PH_hs_0025615 CCDC97 coiled-coil domain containing 9790324 NM_052848.1 3 4,6008 2 0,27416

PH_hs_0006930 TMEM52 transmembrane protein 52339456 NM_178545.3 3 4,6161 2 0,24638

PH_hs_0047918 SPPL2B signal peptide peptidase-like 2B56928 NM_001077238.1,NM_152988.2 3 4,6503 2 0,2061

PH_hs_0034387 METRNL meteorin, glial cell differentiation regulator-like284207 NM_001004431.1 3 4,7026 2 0,22652

PH_hs_0047958 TNFRSF10D tumor necrosis factor receptor superfamily, member 10d, decoy with truncated death domain8793 NM_003840.3 3 4,7605 2 0,18074

PH_hs_0043275 PABPN1 poly(A) binding protein, nuclear 18106 NM_004643.2 3 4,7732 2 0,16459

PH_hs_0002110 CCNB1 cyclin B1 891 NM_031966.2 3 4,7941 2 0,1859

PH_hs_0023001 HNRNPH1 heterogeneous nuclear ribonucleoprotein H1 (H)3187 NM_005520.2 3 4,7978 2 0,18385

PH_hs_0045537 KIR3DP1 killer-cell Ig-like receptor768329 NM_001015070.1 3 4,9349 2 0,20443

PH_hs_0015557 PLXND1 plexin D1 23129 NM_015103.2 3 4,9561 2 0,18407

PH_hs_0010770 ABHD11 abhydrolase domain containing 1183451 NM_148912.2,NM_001145364.1,NR_026912.1,NR_026910.1,NM_148913.23 5,2801 3 0,18725

PH_hs_0000582 MGEA5 meningioma expressed antigen 5 (hyaluronidase)10724 NM_001142434.1,NM_012215.3 3 5,3293 3 0,16621

PH_hs_0018644 TMEM145 transmembrane protein 145284339 NM_173633.2 3 5,4296 3 0,19394

PH_hs_0032261 DCTPP1 dCTP pyrophosphatase 179077 NM_024096.1 3 5,6699 3 0,19485

PH_hs_0006027 SH3BGRL3 SH3 domain binding glutamic acid-rich protein like 383442 NM_031286.3 3 5,7281 3 0,1155

PH_hs_0004359 MFSD2A major facilitator superfamily domain containing 2A84879 NM_001136493.1,NM_032793.3 3 5,7729 3 0,15892

PH_hs_0030989 RNF181 ring finger protein 181 51255 NM_016494.3 3 5,9207 3 0,18271

PH_hs_0042159 CREB3L3 cAMP responsive element binding protein 3-like 384699 NM_032607.1 3 6,0007 3 0,13685

PH_hs_0033361 ACOT7 acyl-CoA thioesterase 711332 NM_181866.2,NM_181865.2,NM_181864.2,NM_007274.33 6,1786 3 0,17567

PH_hs_0049621 LOC100290309|LOC100133944|FCGBPsimilar to Fc fragment of IgG binding protein|similar to IgGFc-binding protein precursor (FcgammaBP) (Fcgamma-binding protein antigen)|Fc fragment of IgG binding protein8857|100290309|100133944XM_002347971.1|XM_001717543.2|NM_003890.23 6,188 3 0,19184

PH_hs_0031045 RIC8A resistance to inhibitors of cholinesterase 8 homolog A (C. elegans)60626 NM_021932.4 3 6,197 3 0,13738

PH_hs_0006045 NENF neuron derived neurotrophic factor29937 NM_013349.4,NR_026598.1 3 6,3014 3 0,18674

PH_hs_0035682 SF3B3 splicing factor 3b, subunit 3, 130kDa23450 NM_012426.4 3 6,5986 3 0,14607

PH_hs_0004994 PSMB4 proteasome (prosome, macropain) subunit, beta type, 45692 NM_002796.2 3 6,7341 3 0,14176

PH_hs_0005109 H2AFY2 H2A histone family, member Y255506 NM_018649.2 3 6,839 3 0,13921

PH_hs_0027429 PGD phosphogluconate dehydrogenase5226 NM_002631.2 3 6,9222 3 0,14198

PH_hs_0004346 TJP2 tight junction protein 2 (zona occludens 2)9414 NM_001170416.1,NM_001170414.1,NM_201629.2,NM_001170415.1,NM_004817.33 7,1313 3 0,15305

PH_hs_0043380 ZNF444 zinc finger protein 44455311 NM_018337.2 3 7,1349 3 0,15784

PH_hs_0045590 EEF1B2 eukaryotic translation elongation factor 1 beta 21933 NM_001959.3 3 7,4046 3 0,16133

PH_hs_0000676 MPDU1 mannose-P-dolichol utilization defect 19526 NR_024603.1,NM_004870.3 3 7,4194 3 0,13167

PH_hs_0025312 EMR4P egf-like module containing, mucin-like, hormone receptor-like 4 pseudogene326342 NR_024075.1 3 7,458 3 0,089318

PH_hs_0024499 IFT140 intraflagellar transport 140 homolog (Chlamydomonas)9742 NM_014714.3 3 8,2498 3 0,10531

PH_hs_0030167 ACYP2 acylphosphatase 2, muscle type98 NM_138448.3 3 9,7698 3 0,11632

PH_hs_0047963 SLC11A1 solute carrier family 11 (proton-coupled divalent metal ion transporters), member 16556 NM_000578.3 3 10,976 3 0,10995

PH_hs_0047838 IGFBP3 insulin-like growth factor binding protein 33486 NM_000598.4,NM_001013398.1 3 11,1906 3 0,068361

PH_hs_0002082 PRRT2 proline-rich transmembrane protein 2112476 NM_145239.2 3 11,4025 3 0,092982

PH_hs_0047621 LOC100303728 hypothetical LOC100303728100303728 NR_028443.1 3 12,7269 3 0,076896

PH_hs_0010621 SLC32A1 solute carrier family 32 (GABA vesicular transporter), member 1140679 NM_080552.2 3 12,9034 3 0,063925

PH_hs_0029811 APOBEC3A|APOBEC3Bapolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3A|apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3B200315|9582 NM_145699.3|NM_004900.3 3 13,5521 3 0,065379
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