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Z U S A M M E N FA S S U N G

Eine der wichtigsten Herausforderungen für die Innovation in der drahtlosen
Industrie und Markt ist der scheinbare Mangel an Funkfrequenzspektrum durch
die traditionelle „command-and-control“ Frequenzregulierungpolitik, die auf auss-
chließlich zugewiesen Lizenzen zur Vermeidung von Störungen setzt verursacht.
Das konzept der „Cognitive Radio (CR)“ und damit verbundene „Dynamic Spec-
trum Access (DSA)“ ist eine vielversprechende Lösung für dieses Problem. Es
ermöglicht sekundäre Benutzern die nicht ausgelastete Ressourcen in das Spek-
trum lizenzfrei zu nutzen und gleichzeitig mit Hilfe der Spectrum Sensing zu
vermeiden, dass schädliche Interferenzen auf das hinterlassend lizenziert primäre
Benutzer. Außerdem wird aufgrund der laufenden Entwicklung neuer Technolo-
gien und neuer Geschäftsmodelle erwartet, dass zahlreiche heterogene Systeme
die gleichen Funkfrequenzen in der Zukunft zu teilen. Daher müssen die Koordi-
nation und die Koexistenz dieser Systeme für die Gewährleistung ihrer jeweiligen
Qualität der Dienstleistung optimiert werden. Zu diesem Zweck sollen nicht nur
die Anwesenheit von Signals der primäre Benutzer erkannt werden, sondern auch
die umfassende Kenntnisse über das Koexistenz verschiedener Systeme muss über
Spectrum Sensing, das ein schwieriges Thema wird bezogen werden. In diesem
Hintergrund wird die Doktorarbeit an die Erkundung der vielseitigen Spectrum
Sensing Techniken für den Erwerb umfassender Informationen aus anderen Netzen
oder Geräten in der gemeinsam genutzten Funkfrequenzen sollen.

Diese Doktorarbeit leistet einen Beitrag auf dem Gebiet der CR in drei Aspekten.
Erstens wurden die wichtigsten Signaldetektionstechniken zusammengefasst und
weitere vorgeschlagenen „Power Spectrum based Whiteness Detection (PSWD)“
sowie die „Dimension Cancelation (DIC)“-verfahren zur Beseitigung des „Noise
Uncertainty (NU)“ Problems vorgeschlagen. Zweitens wurde ein auf der Sig-
naldetektion basierendes Signalklassifikationframework mit dem Ziel, eine robuste
Erkennung der wichtigsten Primär-und Sekundärnutzerstandards, die im TV-
Band betrieben werden können vorgeschlagen. Drittens, wurden neue Verfahren
vorgestellt, welche die hohe Flexibilität der „Embedded Cyclostationary Signature
(ECS)“ der Mehrträgersignale ausnutzen und dadurch sowohl die Signalklassi-
fizierung als auch den Austausch beliebiger erweiterter Informationen zwischen
heterogenen Systemen ermöglichen, was die Erkenntnisse, welche das Spectrum
Sensing zur Verfügung stellt, deutlich erweitern kann.

Durch die Diskussion der Spectrum Sensing Techniken in der vorliegenden
Doktorarbeit wird ein besonderes Augenmerk auf die Robustheit in der praktischen
Implementierung gerichtet. Die Unvollkommenheiten und Beschränkungen in
Sensing Hardware wie zum Beispiel, NU, Taktfrequenzfehlanpassung, nicht-weißer
Rauschteppich, Spurious und Mehrwegeausbreitung werden dabei berücksichtigt.
Weiterhin wird zusätzlich zur Simulationsanalysis ein Testbed zur Durchführung
von experimentellen Studien mit realen Funkfrequenzsignalen verwendet. Durch
den Vergleich der experimentellen und simulierten Ergebnisse sind die Machbarkeit
und die erreichbare Leistung der vorgeschlagenen Spectrum Sensing Techniken in
realen Implementierungen gut validiert.

Schlagwörter - Cognitive Radio, Spectrum Sensing, Messungen



A B S T R A C T

One of the major challenges to the innovation in wireless industry and market is
the seeming scarcity of Radio Frequency (RF) electromagnetic spectrum caused by
the traditional “command-and-control” spectrum regulation policy which relies upon
exclusively assigned licenses for avoiding interferences. Cognitive Radio (CR) and
the Dynamic Spectrum Access (DSA) enabled by it offer a promising solution to
this problem by allowing unlicensed Secondary User (SU) to exploit the underuti-
lized spectrum resources while using spectrum sensing to avoid causing harmful
interference to the legacy licensed Primary User (PU). Besides, due to the contin-
uing development of new technologies and new business models, it is expected
that numerous heterogeneous systems will share the same spectrum resources in
the future. Therefore, the coordination and coexistence of these systems need to
be optimized for guaranteeing their respective Quality of Service (QoS). For this
purpose, not only the presence of PU’s signal should be detected, but also the
comprehensive knowledge of multiple coexisting wireless systems needs to be
obtained via spectrum sensing, which becomes a challenging issue. In this back-
ground, the thesis is aimed at exploring the versatile spectrum sensing techniques
for acquiring comprehensive information from other networks or devices in the
shared RF spectrum.

This thesis contributes to the field of CR in three aspects. First, we summarize the
major signal detection techniques and present our proposed Power Spectrum based
Whiteness Detection (PSWD) algorithms as well as the Dimension Cancelation (DIC)
method for mitigating the Noise Uncertainty (NU) problem, which is applicable
to nearly all the signal detection methods. Second, based on the investigation on
signal detection, we propose a signal classification framework with the robust
implementation aiming at the major primary and secondary standards which
coexist in TV band. Third, it is proposed in this thesis the novel schemes of utilizing
the highly flexible Embedded Cyclostationary Signature (ECS) in multicarrier signal
for achieving signal classification and exchange of arbitrary extended information
among heterogeneous systems, which can greatly enrich the knowledge acquired
via spectrum sensing.

When discussing the spectrum sensing techniques in this thesis, special focus
is addressed to the robustness in practical implementation. The constraints and
imperfections in sensing hardware, such as NU, clock mismatch, nonwhite noise
floor, spurs and multipath fading are taken into account. Further more, in addition
to simulation analysis, a testbed is built for performing experimental studies with
real-world RF signals. By comparing the experimented results with simulated
results, the feasibility and achievable performances of the proposed versatile
sensing techniques in real-world implementations are well validated.

Keywords - Cognitive Radio, Spectrum Sensing, Measurements
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1
I N T R O D U C T I O N

1.1 background and motivations

The electromagnetic spectrum is a precious natural resource. Nowa-
days, one of the key problems challenging the innovation in wireless
industry and marcket is the seeming spectrum scarcity caused by
the traditional “command-and-control” regulation policy [1], which
was shaped dating back to 1920s in the US for solving the chaotic
radio broadcasting. In this policy, the electromagnetic spectrum is
divided into different bands and assigned to various entities, which
is often license-based, exclusive and static in temporal and spatial
dimensions. The consequence is that on the one hand, some spectral
bands are significantly under-utilized (e.g. some TV bands below
800 MHz and radar bands at most of the locations), on the other
hand, some spectral bands are heavily used by data-rate-demanding
systems or over-crowded with various coexisting systems (e.g. cel-
lular bands and 2.4GHz ISM bands in densely populated areas),
which leads to the seeming spectrum scarcity. This phenomenon has
been revealed by the Federal Communications Commission (FCC)’s
study[2, 3] and the measured results from some other institutions, a
survey of them can be found in [4]. We also performed a scanning of
the TV band between 470 MHz and 862 MHz at both urban and rural
locations (Figure 1), which qualitatively confirmed the significant
under-utilization of this band, especially at the rural location.

If the under-utilized spectrum (commonly referred as white space)
is allowed to be re-exploited by other wireless applications, it is
highly expected that new services and markets will emerge. One
example is the big success of the unlicensed WiFi and Bluetooth
sharing the 2.4GHz ISM band with other technologies. In fact, since
the last decade, the effort of reforming the “command-and-control”
policy into a more efficient manner has been greatly strengthened
by some regulation bodies, which is mainly driven by the FCC. In
2007 and 2008, FCC performed two actions[5, 6] for evaluating the
prototypes of TV band White Space (TVWS) devices submitted by sev-
eral companies and research institutes, such as Microsoft, Motorola,
Philips, Adaptrum and the Institute for Infocomm Research(I2R).
The evaluations finally concluded that these prototypes had met the
burden of “proof of concept” in their ability to detect and avoid
legacy transmissions. On November 4 of 2008, the FCC voted 5-0
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Figure 1: Measured PSD from 470 MHz to 862 MHz at both urban and rural
locations using Tektronix RSA6114A realtime spectrum analyzer

to approve the unlicensed use of white space. Some detailed rules
are released ten days later in [7] and the final rules are released
in [8] on September 23, 2010. The Ofcom, the counterpart of the
FCC in UK has also progressed the plan for introducing white space
technology[9], which is released on September 1, 2011. The effort in
the similar direction is also made by European Conference of Postal
and Telecommunications Administrations (CEPT)[10].

The Dynamic Spectrum Access (DSA) is a promising solution for
improving the utilization efficiency of the spectrum resource, which
receives considerable interests from the wireless industry. It allows
secondary radio networks to access the under-utilized spectrum in a
dynamic sharing manner. There are three key factors of DSA should
be addressed.

1. The legacy licensed user, also called Primary User (PU) should
be strictly protected, thus, their Quality of Service (QoS) should
not be degraded by the interference generated by the unlicensed
Secondary User (SU).

2. Due to the expected innovations in new technologies and new
business models, numerous heterogeneous SU networks will
share the same spectrum resources. Hence, coordination and
coexistence among the heterogeneous networks are desired for
satisfying their respective QoS requirements.
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3. The wireless systems facilitating the above two requirements
should be able to aware the spectrum environment, agilely
switch frequency bands, reconfigure the parameters adaptively
or even intelligently. These abilities are well driven by the
concept of Cognitive Radio (CR) which was firstly introduced
by J. Mitola[11] in 1999.

The CR is essentially “an intelligent wireless communication system
that is aware of its environment and uses the methodology of under-standing-
by-building to learn from the environment and adapt to statistical variations
in the input stimuli[1]”. This definition indicates three key capabilities
of CR, they are awareness, learning and adaptation. Among these
capabilities, awareness plays the fundamental role since it provides
knowledge inputs to CR for further learning and adaptation. Ac-
cording to [12], the awareness capability embodies the awareness of
the transmitted waveform, RF spectrum, communication network,
geography, locally available services, user needs, language, situation,
and security policy. The awareness of the RF spectrum for getting the
knowledge of the occupying signal waveforms and vacant channels
draws most of the interests in current research and development of
CR, because this functionality directly enables the improvement of
the spectrum resource’s utilization efficiency.

Spectrum sensing is the most natural form of awareness, since
the knowledge of spectrum resource is straightforwardly obtained
via passive sensing of the RF spectrum in realtime by applying
certain signal processing techniques to the received signal. Spectrum
sensing is being widely researched in the reported literatures on
CR, especially for detecting the presence of the signal from PU at
very low SNR. This is mainly motivated by the regulators’ stringent
requirements [7] for protecting the PUs in TV band from the potential
interference produced by SUs.

In FCC’s final rules [8] for unlicensed access of TV band, it is
pointed out that the available spectrum sensing techniques are not
reliable enough to guarantee that the interference from SU is kept
at sufficient low level. Then, the requirements on spectrum sensing
ability are eliminated in this final rules. Instead, the rules require that
the TV band devices can rely only on geo-location and database for
getting available spectrum resources. However, the further research
on sensing techniques is still encouraged by FCC in the final rules.

According to the original concept of cognitive radio[1, 11], the
spectrum sensing is essentially a mean of acquiring knowledge from
the RF spectrum for achieving satisfied QoS, which is far beyond the
scope of only detecting PU’s signal. Due to the continuing innovations
in new technologies and new business models as the result of the
rapid increase of people’s demand in various wireless applications,
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it is expected that more and more heterogeneous systems will share
the same spectrum resources in the future [13, 14]. The challenge
arising is not only to protect the legacy PU, but also to optimize the
coordination and coexistence among devices and networks, especially
heterogeneous ones. In this context, spectrum sensing is still the key
to solve the challenges through realtime acquisition of comprehensive
knowledge on the RF spectrum shared by many coexisting wireless
systems.

Differing from previous studies on spectrum sensing which focus
on the detection of PU’s signal in DSA[15, 16, 17], this thesis is aimed
at exploring the larger potential of spectrum sensing for knowledge
acquisition in versatile applications which are listed as follows.

1. The classical PU signal detection is studied with further en-
hancement of the robustness for receiver with practical imper-
fections and constraints, such as Noise Uncertainty (NU), clock
mismatch, nonwhite noise floor and spurs.

2. Extended from the signal detection techniques, a signal clas-
sification framework with the implementation of a classifier
for TVWS is proposed in this thesis, which is able to robustly
classify the existing and emerging wireless standards.

3. Trying to further enrich the knowledge obtained by spectrum
sensing, a novel scheme of delivering extended information
on embedded Embedded Cyclostationary Signature (ECS) in
Orthogonal Frequency-Division Multiplexing (OFDM) signal
is proposed, which enables heterogeneous wireless systems
exchanging arbitrary type of knowledge.

In addition to simulation analysis, a testbed is built in this study
for performing experimental validation with RF signal. By comparing
the experimented results with simulated results, the feasibility and
achievable performances of the proposed versatile sensing techniques
in real-world implementations are well validated.

1.2 organization of the contents

The contents of this thesis are organized as follows. In Chapter 2, the
reported and our proposed signal detection methods are summarized
emphasizing on the formulation of detection metrics and thresholds.
Chapter 3 further presents the simulated performances of these de-
tection methods with the detailed comparisons of their advantages
and and disadvantages under the constraints and imperfections in
practical receivers. Then, extended from the studied signal detection
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methods, the proposed signal classification framework is illustrated
in Chapter 4. The novel schemes of applying ECS for signal classifi-
cation and delivering extended information are presented in Chapter
5. The experimental validation and evaluation of the key spectrum
sensing techniques proposed in this thesis are illustrated in Chapter
6. Finally, Chapter 7 draws the conclusion and points out the further
research direction.

1.3 key contributions

This thesis explores the versatile spectrum sensing for optimizing the
coordination and coexistence of heterogeneous wireless systems in
the future. The major contributions on the versatility and robustness
for practical implementation in this thesis are summarized as follows.

1. In Chapter 2, by analyzing the major reported signal detec-
tion algorithms, it is found that the problem of ambiguity in
Probability of False Alarm (PFA) caused by NU can be com-
pletely eliminated by the proposed Dimension Cancelation (DIC)
method. The simulated performances presented in Chapter 3

further show that the DIC can lead to some losses in detection
performance. However, for the autocorrelation based detection
methods, the loss is negligible. It is also shown that the auto-
correlation based detection is invulnerable to clock mismatch
and multipath channel fading.

2. Two new detection methods using frequency-domain process-
ing are proposed in Chapter 2. They are a blind detection
named PSWD-AG and a non-blind detection named PSWD-SM.
It is proved that the proposed PSWD-SM is actually equiva-
lent to the reported CVWD-EC and MFD-EG detections using
time-domain processing. However, the proposed ones have
the advantage that the imperfections of nonwhite noise floor
and spurs in practical receivers can be easily mitigated in a
straightforward manner.

3. Extended from the signal detection problem, a robust signal
classification framework is proposed in Chapter 4, which is
essentially the combination of various feature based signal
detection algorithms using predefined decision rules. Based on
this framework, a signal classifier aiming at major existing and
emerging standards in TV band is developed for the first time.
The targeted signal classes are the DVB-T, LTE, IEEE 802.22,
ECMA-392 and Wireless Microphone (WM) with their different
modes.
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4. A new scheme of generating ECS is proposed. In this scheme,
fully correlated sinusoids on Signature Sub-Carrier (SSC) is ap-
plied instead of using correlated constellations on SSC which
is common in literatures about ECS [18, 19, 20, 21, 22]. Simula-
tion shows that remarkable performance enhancement can be
achieved using the proposed scheme for ECS based signal classi-
fication at low SNR. Besides, the knowledge of Cyclic Prefix (CP)
length is not required in the proposed scheme, which makes it
more favorable to the modulations with multiple options of CP
lengths.

5. Extended from the ECS based signal detection and classifica-
tion, this thesis proposes a novel technique of using the ECS
for carrying extended information for the first time, which can
greatly enhance the knowledge acquired by spectrum sensing.
The extended information includes device or network’s iden-
tity and parameters, geo-location, spectrum allocation, etc. In
Chapter 5, the encoding and decoding methods as well as the
simulation considering clock mismatch and multipath fading
are presented which shows its feasibility.

6. A testbed is built for validating and evaluating the spectrum
sensing techniques studied in this thesis. The testbed consists
of the Agilent E4438C vector signal generator for transmitting
high quality signals used in sensing test; the USRP2+WBX SDR
frontend used as sensing device, which features the imperfec-
tions in practical low-cost receiver; a host computer with the
spectrum sensing algorithms, standard based waveform gener-
ators and controlling software implemented on it. The DVB-T
signal transmitted by real TV broadcast is also captured for
validating the detection and classification techniques. The ex-
perimented results are compared with the simulated results and
show good agreement between each other. Besides, the results
show that the receiver imperfections of spurs and nonwhite
noise floor in the sensing receiver can be mitigated in various
sensing algorithms, which leads to only minor harm to the
spectrum sensing performances. The experimental validation
and evaluation have greatly strengthened the effectiveness and
feasibility of applying the signal detection, classification and
ECS schemes proposed in this thesis to real-world applications.
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T H E B A S I C F O R M O F S P E C T R U M S E N S I N G :
S I G N A L D E T E C T I O N

In cognitive radio, signal detection is the basic form of spectrum
sensing, which is aimed at discriminating between the presence and
absence of the signal transmitted by Primary User (PU) at very low
Signal to Noise Ratio (SNR). It is the most intensively discussed prob-
lem in the research on spectrum sensing, which is mainly motivated
by the regulators’ stringent requirements [7] for protecting the PUs
in TV band from the potential interference produced by Secondary
User (SU) using Dynamic Spectrum Access (DSA).

The signal detection problem is also the basis of the signal classifi-
cation schemes presented in Chapter 4 and Chapter 5, because the
classification relies on the detection algorithms utilizing the unique
features of different signal types. Besides, the signal classifier also
needs to identify usable channels in which none of the coexisting
signals is presented, which is also the goal of signal detection.

In this Chapter, the major reported signal detection algorithms
are summarized with emphasis on the formulation of detection
metrics and thresholds. Two signal detection algorithms utilizing
frequency domain processing are proposed, which has the advan-
tage of mitigating nonwhite noise and spur more easily comparing
with the reported time-domain detection methods. The Dimension
Cancelation (DIC) method is proposed for mitigating the Noise Un-
certainty (NU) problem which is applicable to nearly all the detection
methods. The evaluation of the detection performance via computer
simulation will be further given in Chapter 3.

2.1 the formulation of signal detection problem

In the reported literatures on spectrum sensing summarized in [15,
16, 17], it is commonly defined that the goal of signal detection is to
discriminate the following two hypotheses:

H0 : y(t) = w(t)

H1 : y(t) = x(t) +w(t),
(2.1)

in which x(t) is the received signal including the effect of fading
channel and w(t) is the noise in receiver plus the interference from
some other uninterested signals. It is often assumed that w(t) is the

7



8 the basic form of spectrum sensing: signal detection

Additive White Gaussian Noise (AWGN) in the reported literatures
on spectrum sensing. For achieving the signal detection, certain
detection metric

Λ = Ft0<t<t0+Td
{
y(t)
}

(2.2)

is defined, which is the result of a processing on the received signal
y(t) within the detection’s observation time Td.

The detection of the interested signal can be achieved straightfor-
wardly by comparing the detection metric Λ with a pre-determined
threshold γ and deciding between hypotheses H1 and H0:

Λ

H1

R

H0

γ. (2.3)

The goal of signal detection is to minimize the Probability of Mis-
Detection (PMD)

PMD = Pr
{
Λ < γ

∣∣∣H1

}
=

∫γ
−∞ fΛ(λ|H1)dλ (2.4)

when the interested signal is presented while maintaining sufficiently
small Probability of False Alarm (PFA)

PFA = Pr
{
Λ > γ

∣∣∣H0

}
=

∫+∞
γ

fΛ(λ|H0)dλ (2.5)

when the interested signal is absent, in which fΛ(λ|H0) and fΛ(λ|H1)

are the the Probability Density Function (PDF) of the detection metric
Λ for hypotheses H0 and H0 respectively. The relation between PMD
and PFA is also intuitively illustrated in Figure 2.

The following important factors in signal detection problem which
should be addressed here:

1. PMD is strongly influenced by SNR

SNR =

∫t0+Td
t0

∣∣x(t)∣∣2dt∫t0+Td
t0

∣∣w(t)∣∣2dt . (2.6)

Generally, for the same PFA, lower PMD can be achieved when
SNR is higher, thus, high SNR can give rise to better detection
performance.

2. PMD and PFA is affected by the threshold γ. Larger threshold
leads to lower PFA and higher PMD. An extreme case is when
γ = +∞, PMD becomes zero, which means no signal can be
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Figure 2: Probability of false alarm (PFA) and mis-detection (PMD) in signal
detection problem

detected. On the other hand, when γ = −∞, the presence of the
interested signal can be always detected no matter how weak
the SNR is. However, the resulted PFA of one makes the channel
completely unusable since it is always reported as occupied
even when it is actually not.

3. The PFA should be known to the sensing receiver for main-
taining stable operation. Otherwise, unpredictable overhead
of reconfigurations(e.g. switching of frequency channel) may
occur due to the unknown false alarm, which can reduce the
Quality of Service (QoS) of the CR system significantly. Hence,
a predetermined PFA should be given for getting the detection
threshold γ. When fΛ(λ|H0) is known, the threshold can be cal-
culated analytically. Otherwise, the threshold can be obtained
using large number of empirically tested detection metric in
hypothesis H0. The thresholds of various detection methods
will be illustrated in the following contents of this chapter.

4. Generally, longer observation time can lead to better detection
performance thanks to the reduced ambiguity between hypothe-
ses H′ and H∞ achieved by averaging with more samples in
calculating metric Λ. Specifically, this means that for a fixed
SNR and PFA, the increase of observation time can decrease
PMD.

2.2 categorization of signal detection algorithms

This chapter summarizes the major signal detection algorithms in the
reported literatures, which are essentially the possible formulations
of the detection metric Λ = Ft0<t<t0+Td

{
·
}

presented in last section.
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Energy Detection 
(EGD, Blind)

Matched-Filter Detection 
(MFD)

Matched-Filtered Energy 
Detection (MFD-EG)

MFD with Feature 
Sequence (MFD-FS)

Whiteness Detection (WD)

Covariance Based Whiteness 
Detection (CVWD)

CVWD with Maximum-Minimum 
Eigenvalue (CVWD-MME, Blind)

CVWD with Covariance Absolute 
Value (CVWD-CAV, Blind)

CVWD with Estimator-Correlator 
(CVWD-EC)

Power Spectrum Based 
Whiteness Detection (PSWD)

Cyclostationary Detection 
(CSD)

CSD Based on Spectrum 
Correlation Density (CSD-SCD)

Auto-correlation Based 
Detection (ACD)

CP Sliding-Window (CP-SW)

CP Summation (CP-SUM)

Cyclic Prefix (CP) Based 
Detection

Feature Sequence Auto-
correlation (FSA) Detection

FSA with Summation 
(FSA-SUM)

FSA with the Second Correlation 
Detection (FSA-2C)

PSWD with  Arithmetic & 
Geometric Means 
(PSWD-AG, Blind)

PSWD with Spectrum Mask 
(PSWD-SM)

Figure 3: Categories of signal detection algorithms

In reported literatures, spectrum sensing, especially signal detec-
tion algorithms are categorized in different ways. For example, in
[16], the signal detection algorithms are categorized into energy de-
tection, matched filter detection, cyclostationarity based detection,
autocorrelation based detection and covariance matrix based de-
tection. In a more comprehensive survey study [15], the categories
are energy detector based, waveform based, cyclostationarity based,
radio identification based and matched-filter based sensing.

In order to better characterize the signal detection algorithms, they
are categorized in this thesis based on their essential signal processing
methods or utilized signal features. Figure 3 shows the categorization
with the algorithms’ abbreviated names and their relations presented.

In general, there are five main categories of detection algorithms,
they are Energy Detection (EGD), Matched-Filter Detection (MFD),
Whiteness Detection (WD), Auto-Correlation based Detection (ACD)
and Cyclostationary Detection (CSD). An overview of their principles
and relations are illustrated as follows.

• The EGD takes the power of received signal as detection metric,
which is a blind detector requiring no a priori information of
the signal.

• The MFD can be based on matching the pulse shape of the
signal or matching certain feature sequence in the signal with
known structure. The EGD can be combined with MFD by
taking the energy of the matched-filtered signal according to
the pulse shape as detection metric.
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• The WD makes use of the fact that the communication or
broadcast signals are normally nonwhite in contrast with the
white noise. The whiteness can be tested both in time domain
using the covariance matrix and in frequency domain using the
estimated Power Spectrum Density (PSD). It is proposed in this
thesis that the frequency domain processing has the advantage
that the practical imperfections of nonwhite noise floor and
spurs can be mitigated more easily. The whiteness can be tested
both blindly or non-blindly utilizing known templates of the
signal.

• Part of the wireless signals can be characterized by cyclostation-
ary processes which have statistical properties that vary cycli-
cally with time[23]. The cyclostationary property of a signal can
be revealed in Spectrum Correlation Function (SCF) which is the
extension of PSD with cyclic frequency domain. The SCF for
cyclostationary analysis is particularly useful in signal detection
and classification with embedded signatures[18, 19, 22]. It is
also utilized by the scheme of delievering extended informa-
tion on Embedded Cyclostationary Signature (ECS) proposed in
Chapter 5.

• The known time-frequency structure (e.g. cyclic prefix, pream-
ble, repeated pilot, etc) of wireless signals can be exploited in
ACD. When the utilized structure is periodically repeated, the
signal exhibits cyclostationarity which can be further used to
enhance the detection performance of ACD.

These categorized detection algorithms are illustrated in details in
following sections of this chapter. The contents are focused on the
formulation of detection metrics and thresholds as well as possible
solutions for enhancing the robustness to the constraints and imper-
fections of practical receivers, such as NU, nonwhite noise floor and
spurs.

2.3 energy detection (egd)

EGD is the most frequently mentioned method in spectrum sensing
because it can blindly detect any signal with low computational
complexity. Assume the received complex signal with in-phase and
quadrature components sampled with period Ts has the following
form:

H0 : y[n] = w[n]

H1 : y[n] = x[n] +w[n],
(2.7)
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in which w[n] is the AWGN with power σ2w and x[n] is the received
signal which has already experienced fading channel. The energy of
the received signal is straightforwardly taken as detection metric:

ΛEGD =

N−1∑
n=0

|y[n]|2 =

N−1∑
n=0

Re2(y[n]) + Im2(y[n]), (2.8)

in whichN is the total number of samples used in detection and Re(·)
and Im(·) are operations of getting real and imaginary part respec-
tively. The observation time in the detection is NTs. Since the noise
is complex AWGN, ΛEGD in hypothesis H0(denoted as ΛEGD|H0)
follows chi-squared distribution with the degree of freedom 2N[24].
When N is large, according to Central Limit Theorem (CLT), the
probability distributions of ΛEGD|H0 can be approximated by normal
distribution with expectation Nσ2w and variance Nσ4w. Then, based on
its Cumulative Distribution Function (CDF), the detection threshold
for the desired PFA can be derived as:

γEGD = σ2w
√
2Nerf−1

(
1− 2PFA

)
+Nσ2w , (2.9)

in which erf−1(·) is the inverse Gauss error function.
When the interested signal x[n] is white and independent of the

noise, the EGD satisfies the Neyman-Pearson test, which will be
further discussed in Section 2.11 which is about cooperative signal
detection.

2.4 matched filter detection (mfd)

The matched filter is the optimal linear filter for maximizing the SNR
in the presence of additive noise. In reported literatures, the MFD is
normally taken as a disadvantageous detection [25, 26] because it re-
quires perfect knowledge of the signal’s bandwidth, carrier frequency,
modulation type, pulse shaping, and frame format[15], although its
detection performance is theoretically optimal.

This section presents two partial MFD methods requiring only
part of the above knowledge which is easy to obtain in practice. The
first one named MFD-EG takes the energy after matched filtering as
detection metric, which only needs the the carrier frequency, pulse
shape or even only the bandwidth of the signal. The other type
of MFD is matched with certain known Feature Sequence (FS) of
the signal in time domain. The FS is the known preamble or pilot
structures in the signal, which is transmitted repeatedly.
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2.4.1 Matched Filtered Energy Detection (MFD-EG)

The detection metric of MFD-EG can be simply defined by the energy
of the received signal after matched filtering:

yf[n] =

M−1∑
m=0

f[m]y[n−m]

ΛMFD−EG =

N−1∑
n=0

|yf[n]|
2,

(2.10)

in which N is the total number of samples used in detection and M
is the length of the matched filter. The impulse response f[n] of the
matched filter can be taken as a known template of the signal, which
has the following relation with the signal’s pulse shape g[n]:

f[n] = g∗[M−n]. (2.11)

Similar to the detection metric of EGD (2.8), ΛMFD−EG also follows
chi-squared distribution. However, since matched filter introduces co-
herence between neighboring samples, the chi-squared distribution’s
Equivalent Degree of Freedom (EDF) is smaller than 2N in hypothesis
H0. In [27], the energy detection with matched filter is proposed,
which addressed that the EDF is two times the time-bandwidth prod-
uct. The EDF can be also estimated using the known matched filter’s
impulse response f[n]. Define matrix

G = ffH =


f0,0 f0,1 . . . f0,M−1

f1,0 f1,1 . . . f1,M−1
...

... . . . ...
fM−1,0 fM−1,1 . . . fM−1,M−1


f =

[
f[0] f[1] f[2] ... f[M− 1]

]T ,

(2.12)

in which “(·)T” and “(·)H” denote transpose and conjugate trans-
pose of matrix respectively. The EDF of ΛMFD−EG|H0’s probability
distrubution can be then calculated by

ζ =
2N
∑M−1
m=0 fm,m∑M−1

m=0

∑M−1
n=0 fm,n

. (2.13)

According to the CLT, when N is large, the probability distributions
of ΛMFD−EG|H0 can be approximated by normal distribution with
expectation ζσ2w/2 and variance ζσ4w/2. Then, based on its CDF, the
detection threshold for the desired PFA can be derived as

γMFD−EG = σ2w
√
ζerf−1

(
1− 2PFA

)
+
ζσ2w
2

. (2.14)
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2.4.2 MFD with Featured Sequence (MFD-FS)

Assume the FS in the interested signal is s[n], which is known to the
receiver. The matched filter is only matched to the FS and can be
denoted by

f[n] = s∗[M−n], (2.15)

in which M is the length of the FS and “(·)∗” denotes conjugate
operation. Then the filtered signal is the convolution of the received
signal y[n] with the impulse response f[n] of the matched filter.

yf[n] =

M−1∑
m=0

f[m]y[n−m]. (2.16)

The detection is then performed by searching the peak values in
|yf[n]|

2 where the local FS is matched with the FS in the signal:

ΛMFD−FS = max
n

|yf[n]|
2. (2.17)

If the FS appears periodically in the signal, which exhibits cyclosta-
tionarity, the peak values in yf[n] become also periodical. Hence, the
|yf[n]|

2 can be averaged according to the known period for improving
the detection performance. Then, the detection metric becomes

ΛMFD−FS,avg. = max
n

L−1∑
l=0

|yf[n+ lP]|2 n = 0, . . . ,P− 1 , (2.18)

in which P is the length of period and L is the number of periods
within the observation time.

2.5 covariance based whiteness detection (cvwd)

When the noise in receiver is AWGN, the nonwhiteness property of
wireless signal can be utilized for detecting its presence. The widely
discussed Covariance based Whiteness Detections (CVWD) [28, 29, 30,
31, 32] are in essence testing the signal’s whiteness by analyzing the
properties of the Covariance Matrix (CM) which is derived from the
signal’s autocorrelation in time domain.

There are several types of CVWD, the common key step of them is
to estimate the statistical covariance matrix R̂y of the received signal
y[n]:

R̂y =
1

N−Nc + 1

N−Nc+1∑
i=1

yiyHi , (2.19)
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in which N is the number of signal samples used in detection and yi
is a vector consisting of Nc successive samples:

yi =
[
y[i],y[i+ 1], ...,y[i+Nc − 1]

]T . (2.20)

When the matched filter’s impulse response f[m] of the interested
signal x[n] is known, its covariance matrix Rx can be derived as [33]:

H =


f[0] f[1] . . . f[M− 1] 0 . . . 0

0 f[0] f[1] . . . f[M− 1] . . . 0
...

... . . . . . . ... . . . ...
0 . . . . . . f[0] f[1] . . . f[M− 1]

 ,

Rx = HHH.

(2.21)

Obviously, when the noise w[n] is AWGN,

H0 : R̂y = σ2wI

H1 : R̂y = Rx + σ2wI,
(2.22)

in which σ2w is the power of noise w[n]. The Rx can be regarded as a
known template of the interested signal in the estimator-correlator (EC)
detection which will be presented in Section 2.5.3.

2.5.1 Equalization of Nonwhite Noise Floor

The noise in a practical receiver is normally not perfectly white
due to the unflat frequency responses of filters in receiver, such as
anti-aliasing filter before analog-to-digital converter and Cascaded
Integrator-Comb (CIC) filter for sampling rate conversion. The non-
white noise leads to non-zero values among the non-diagonal ele-
ments of the covariance matrix R̂y in hypothesis H0. In Section 3.2.3,
it will show that this phenomenon in practical receiver can degrade
detection performance notably. In [33], a method is proposed to solve
this problem. Assuming the impulse response of receiver is v[i], simi-
lar to (2.21), the covariance matrix of the nonwhite noise Rw can be
derived as

V =


v[0] v[1] . . . v[K− 1] 0 . . . 0

0 v[0] v[1] . . . v[K− 1] . . . 0
...

... . . . . . . ... . . . ...
0 . . . . . . v[0] v[1] . . . v[K− 1]

 ,

Rw = VVH.

(2.23)

The Rw can also be obtained through applying statistical method in
(2.19) to the receiver’s noise in hypothesis H0. Then, Rw is Cholesky



16 the basic form of spectrum sensing: signal detection

decomposed into Rw = QHQ. The matrix Q is used to equalize the
estimated covariance matrix R̂y as

R̂
′
y = (QH)−1R̂yQ−1. (2.24)

Then, the equalized covariance matrix R̂
′
y can be used in all the

CVWD detection algorithms for correcting the nonwhiteness of the
noise in receiver.

2.5.2 Blind Detection with Maximum-Minimum Eigenvalue (CVWD-
MME) and Covariance Absolute Value (CVWD-CAV)

When the detector is blind, which means Rx is completely unknown,
the detection can be achieved only by analyzing the statically esti-
mated R̂y. It is proposed in [34] that a detection method utilizing the
Maximum-Minimum Eigenvalues (MME) of R̂y has optimal perfor-
mance, which is presented as follows. First, eigenvalue decomposition
is performed on R̂y:

R̂y = ΦyΨy Φ−1
y

Φy = [ϕy,1,ϕy,2, ...,ϕy,Nc]

Ψy = diag{ψy,1,ψy,2, ...,ψy,Nc},

(2.25)

in which ϕy,n are the eigenvectors and ψy,n are their corresponding
eigenvalues satisfying ψy,1 > ψy,2 > ... > ψy,Nc . Then the detection
metric of CVWD-MME is formulated by

ΛCVWD−MME =
ψy,1

ψy,Nc
. (2.26)

In [33], an alternative detection method called Covariance Absolute
Value (CAV) detection is proposed and implemented. This detection
method has the performance which is close to that of CVWD-MME.
The simulation performances in Section 3.2.2 will confirm this fact.
The detection metric of CVWD-CAV detector is formulated as

ΛCVWD−CAV =

∑Nc
m=1

∑Nc
n=1 |rm,n|∑Nc

m=1 |rm,m|
, (2.27)

in which rm,n is the elements in R̂y. The advantage of CVWD-CAV
detection over CVWD-MME detection is that the computationally
costly eigenvalue decomposition on R̂y is not required. Obviously,
since the detection metrics of CVWD-MME and CVWD-CAV require
no information on noise power, they are not affected by the NU
problem.
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2.5.3 Estimator-Correlator Detection with Known Covariance Matrix (CVWD-
EC)

In [28] and [35], an optimal Estimator-Correlator (EC) detector is
presented, which takes the noise-free signal’s covariance matrix Rx
as known template.

ΛCVWD−EC =
1

N−Nc + 1

N−Nc+1∑
i=1

yHi Rx(Rx + σ2wI)−1yi. (2.28)

Notice that the diagonal component of Rx should be equal to the
noise-free signal’s power σ2x. When the noise-free signal is white,
Rx = σ2xI, the EC detector is then reduced to

ΛCVWD−EC,white =
1

N−Nc + 1

N−Nc+1∑
i=1

yHi yi, (2.29)

which is actually equivalent to EGD.
It is impractical to assume that σ2x is known to the receiver due to

the unknown SNR of the received signal. However, when the SNR is
small, Rx+σ2wI ' σ2wI, then the EC detection in (2.28) can be reduced
to a more practical form [36]

ΛCVWD−EC,w/oSNR =
1

N−Nc + 1

N−Nc+1∑
i=1

yHi Rxyi. (2.30)

Obviously, in this detection, the knowledge of SNR is not needed
while the signal’s covariance matrix Rx is still required.

2.6 power spectrum based whiteness detection (pswd)

It is proposed in this thesis that the whiteness of received signal can
be also tested in frequency domain using the estimated PSD. In prac-
tical receiver, spurs from harmonic components and DC components
generated by the receiver itself can cause strong autocorrelation and
hence make the covariance matrix no longer equal to σ2wI in hypothe-
sis H0. It will be shown in the simulation results in Section 3.2.3 that
this phenomenon can deteriorate CVWD’s detection performance
significantly. However, since the spurs are very narrowbanded and
have fixed frequencies, when the PSD of signal is estimated, the
few frequency components with spurs can be simply excluded in
the detection algorithm. In this way, the spur’s destruction to detec-
tion performance can be straightforwardly eliminated in frequency
domain. This type of detections are named Power Spectrum based
Whiteness Detection (PSWD) in this thesis.
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The PSD of the received signal y[n] can be estimated using Welch’s
method [37]. First, the received signal samples y[n] are split into
segments with length NDFT for Discrete Fourier Transform (DFT)
operation. Each segment is shifted from previous ones by the step
of D samples and there are K segments used in detection. The DFT
operations are then performed as

Yi[m] =

NDFT−1∑
n=0

y[iD+n]v[n]e
−2πj nmNDFT m = 0, 1, ...,NDFT − 1 ,

(2.31)

in which v[n] is a smoothing window of length NDFT . Then the PSD
of y[n] can be estimated by

Ŷ[m] =

∑K−1
i=0

∣∣∣Yi[m]
∣∣∣2

K
∑NDFT−1
n=0 v2[n]

. (2.32)

From (2.31) it can be inferred that each segment of signal spans
NDFT samples and has NDFT −D samples overlapped with neighbor-
ing segments. It can be also inferred that when hypothesis H0 is true,
Ŷ[m] is the average of 2K squared gaussian variables, hence it follows
chi-squared distribution. In [37], it is pointed out that the overlap-
ping can increase the EDF in estimating Ŷ[n] and hence decrease
the variance of estimated PSD and improve detection performance,
which will be shown in the simulation results in Section 3.2.2. Based
on the analysis in [37], the variance of Ŷ[m]’s components is derived
as

Var
{
Ŷ[m]

}
=
Var
{∣∣Yi[m]

∣∣2}
K

{
1+ 2

K−1∑
k=1

K− k

K
ρ[k]

}
, (2.33)

in which

ρ[k] =

{NDFT−1∑
n=0

v[n]v[n+ kD]

NDFT−1∑
n=0

v2[n]

}2
. (2.34)

As Ŷ[m] is the average of |Yi[m]|2, based on (2.32) and (2.33), Ŷ[m]

follows chi-squared distribution with EDF of

ζ =
2Var

{∣∣Yi[m]
∣∣2}

Var
{
Ŷ[m]

} =
2K

1+ 2
∑K−1
k=1

K−k
K ρ[k]

. (2.35)
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The multiplication of two in (2.35) is because Yi[m] are complex values
with in-phase and quadrature components. When the observation
time thus the total number of samples used in detection N is fixed,
the number of segments K becomes a function of the shifting step D:

K =
⌊N−NDFT

D

⌋
+ 1. (2.36)

The K is increased by decreasing D, which leads to the improvement
of EDF as is calculated in (2.35).

2.6.1 Equalize Nonwhite Noise Floor and Remove Spurs

There are two issues in practical receiver which need to be addressed.
First, in order to eliminate the destruction of spurs, the frequency
components with them should be excluded in detection. Then it is
assumed that S ⊆ {0, 1, ...,NDFT − 1} is the index set of frequency
components without spurs. The other issues is that the noise in
receiver is not perfectly white due to the unflat frequency response of
filters, thus, the noise floor is also not flat. The shape of noise floor can
be well estimated using (2.31) and (2.32) with long observation time.
Assuming the estimated noise floor is Ŵ[m] m = 0, 1, ...,NDFT − 1,
it can be then used to equalize the estimated PSD Ŷ[m]:

Ŷeq.[m] =
Ŷ[m]

Ŵ[m]
. (2.37)

2.6.2 Blind Detection with the Ratio of Arithmetic-Geometric Means (PSWD-
AG)

In hypothesis H0, Ŷeq.[m] converge to a constant when K→∞. Since
the interested signal x[n] is not white, the Ŷeq.[m] is not a constant
in hypothesis H1, thus, the arithmetic mean of Ŷeq.[m]

∣∣H1 is always
larger than its geometric mean. Therefore, the metric of a blind
detection can be formulated using the quotient of the arithmetic
mean and geometric mean (AG):

ΛPSWD−AG =

∑
m∈S

Ŷeq.[m]

LS

( ∏
m∈S

Ŷeq.[m]
) 1
LS

, (2.38)

in which LS is the size of the set S.
It is difficult to derive the probability distribution of ΛPSWD−AG

for calculating the detection threshold in a closed form. Then, large
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number of empirically tested detection metric in hypothesis H0 can
be used to estimate the threshold. The test can be simplified by
modeling Ŷeq.[m] as N independent and identically distributed (i.i.d)
random variables following the chi-squared distribution with the
EDF calculated by (2.35). When the number of segments K is large, the
chi-squared distribution can be approximated by normal distribution.

Ŷeq.[m] ∼ N
(
σ2w,

ζσ4w
2K2

)
. (2.39)

It should be noted that the ΛPSWD−AG is a ratio value which is
irrelevant to noise power, which is similar to the detection metric of
CVWD-MME and CVWD-CAV. Therefore, the PSWD-AG is also not
affected by noise uncertainty problem.

2.6.3 Power Spectrum Whiteness Detection with Known Spectrum Mask (PSWD-
SM)

The knowledge of the interested signal’s PSD can be applied in
detection as a template, which can result better detection performance
than the blind PSWD-AG (2.38). The known PSD X̌[m] is used as a
spectrum mask (SM), which is correlated with the estimated PSD of
the received signal, resulting the following proposed detection metric

ΛPSWD−SM =
∑
m∈S

Ŷeq.[m]X̌[m]. (2.40)

The idea of using spectrum mask template in PSWD-SM is similar
to using the matched filter template in MFD-EG and the covariance
matrix template in CVWD-EC. However, thanks to the processing
in frequency domain, the destruction of nonwhite noise floor and
spurs can be easily eliminated in PSWD-SM. In the next section, it
is proved analytically that MFD-EG, CVWD-EC and PSWD-SM are
actually equivalent with each other.

2.7 the equivalence of mfd-eg , cvwd-ec and pswd-sm

It can be noticed in Section 2.4, 2.5 and 2.6 that all the three detec-
tion methods MFD-EG, CVWD-EC and PSWD-SM require certain
templates of the interested signal. They are the impulse response
of matched filter f[m], covariance matrix Rx and the PSD X̌[m] of
the interested signal respectively. Intuitively, these templates are di-
rectly related with each other: the PSD of the signal is decided by
the power-frequency response of its matched filter; the PSD is also
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the Fourier transform of the signal’s autocorrelation function which
can be denoted by the covariance matrix. In this section, it is proved
analytically that these three signal detection algorithms utilizing
different templates are actually equivalent to each other.

2.7.1 Proof of the Equivalence between MFD-EG and CVWD-EC

The convolution operation of matched filtering in (2.10) can be repre-
sented in matrix form

yf = FHy, (2.41)

in which y =
[
y[0],y[1], ...,y[N− 1]

]T is the vector of received signal’s
samples and F is the composed of the matched filter’s impulse
response f[n]:

F =


f[0] f[1] . . . f[M− 1] 0 . . . 0

0 f[0] f[1] . . . f[M− 1] . . . 0
...

... . . . . . . ... . . . ...
0 . . . . . . f[0] f[1] . . . f[M− 1]

 , (2.42)

The detection metric of MFD-EG can be then rewritten in matrix
form as

ΛMFD−EG =
1

N

N−1∑
n=0

|yf[n]|
2

= E(yHf yf)

= E(yHFFHy),

(2.43)

In which E(·) denotes the expectation of a random process. The
impulse response of the interested signal’s pulse shaping filter can
be written as g =

[
f[M− 1], f[M− 2], ..., f[0]

]H. Then, the transmitted
signal x can be modeled as an i.i.d. process z filtered by the pulse
shaping filter, if the non-random structures, such as preambles, pilot
tones and cyclic prefix are ignored. The pulse shaping filtering can
be denoted by

x = Fz∗. (2.44)

Assume the variance of z is normalized to 1, based on (2.19), the
covariance matrix of z becomes an identity matrix:

E(zzH) = E(z∗zT ) = I. (2.45)
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Then, referring (2.19), the covariance matrix of the interested signal x
can be obtained by

Rx = E(xxH)

= E(Fz∗zTFH)

= FE(z∗zT )FH

= FFH.

(2.46)

Recalling the detection metric of MFD-EG in (2.43),

ΛMFD−EG = E(yHFFHy)

= E(yHRxy)
= ΛCVWD−EC,w/oSNR.

(2.47)

This complete the proof of the equivalence of MFD-EG and CVWD-
EC(without SNR).

2.7.2 Proof of the Equivalence between CVWD-EC and PSWD-SM

The DFT operation for estimating the PSD of the interested signal
using Welch’s method can be written in the following matrix form

xF = Wx, (2.48)

in which W is the DFT matrix defined by

W =



1 1 1 . . . 1

1 w w2 . . . wNDFT−1

1 w2 w4 . . . w2(NDFT−1)

...
...

...
...

1 wNDFT−1 w2(NDFT−1) . . . w(NDFT−1)(NDFT−1)


, (2.49)

in which w = e−j2π/NDFT . The matrix W satisfies WWH = I. Define
another matrix

Sx = WRxWH

= WE(xxH)WH

= E(WxxHWH)

= E(xFxHF )

= diag{X̌[0], X̌[1], ..., X̌[NDFT − 1]},

(2.50)
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in which X̌[m] is the estimated PSD of the interested signal x. The
detection metric of PSWD-SM can be then formulated by

ΛPSWD−SM = E
(
yHF SxyF

)
= E

(
(Wy)HSx(Wy)

)
= E

(
yHWHWRxWHWy

)
= E

(
yHRxy

)
= ΛCVWD−EC,w/oSNR.

(2.51)

Then the equivalence of PSWD-SM and CVWD-EC(without SNR) is
proved.

2.8 cyclostationary detection (csd)

The communication and broadcasting signals normally exhibit non-
stationarity due to their time-varying statistical properties. However,
the statical properties of some signals are cyclical due to the peri-
odically repeated structures in the signal, such as preamble, pilot,
Cyclic Prefix (CP), sinusoid carrier and spreading code, etc. This kind
of signals are characterized by cyclostationary process which can be
examined for detecting and classifying the signal at low SNR regime.
The cyclostationary signal are often analyzed using SCF, which is
formulated as follows.

A signal x(t) is defined as wide-sense cyclostationary if its mean
and autocorrelation are periodical with period T0:

Mx(t) = E{x(t)} =Mx(t+ T0),
Rx(t, τ) = E{x(t− τ/2)x∗(t+ τ/2)}

= Rx(t+ T0, τ).
(2.52)

The period T0 in time t can lead to the expression of Rx(t, τ) using
Fourier series [38]:

Rx(t, τ) =
∑
α

Rαx (τ)e
j2παt, (2.53)

in which α = m/T0 is the cyclic frequency and m is an integer. The
Fourier coefficient can be calculated by

Rαx (τ) = lim
T→∞ 1T

∫T/2
−T/2

Rx(t, τ)e−j2παtdt. (2.54)

The cyclic Wiener relation [39] states that the SCF can be obtained
from the Fourier transform of the cyclic autocorrelation in (2.54):

Sαx (f) =

∫∞
−∞ Rαx (τ)e−j2πfτdτ. (2.55)
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In discussing the measurement of spectral correlation[38, 39], Gard-
ner showed that the SCF can be estimated in both time-smoothing
approach and frequency-smoothing approach. The Time-Smoothed
Cyclic Cross Periodogram (TS-CCP) is utilized in time-smoothing
approach, which is formulated by

Sαx (f) = lim
∆f→0

lim
T→∞ 1

∆f

∫T/2
−T/2

∆fX1/∆f(t, f+α/2)X
∗
1/∆f(t, f−α/2)dt.

(2.56)

in which X1/∆f(t, f) is the Fourier transform within time interval
1/∆f:

X1/∆f(t, f) =
∫ t+ 1

2∆f

t− 1
2∆f

x(u)e−j2πfudu. (2.57)

Gardner showed that the time-smoothing approach in (2.56) is
completely equivalent to the frequency-smoothing approach using
the Frequency-Smoothed Cyclic Cross Periodogram (FS-CCP):

Sαx (f) = lim
∆f→0

lim
T→∞ 1

∆f

∫ f+∆f/2
f−∆f/2

1

T
XT (t, v+α/2)X∗T (t, v−α/2)dv, (2.58)

in which XT (t, f) is the Fourier transform within time interval T :

XT (t, f) =
∫ t+T2
t−T2

x(u)e−j2πfudu. (2.59)

The T and ∆f are the temporal resolution and spectral resolution
respectively. The time-smoothing approach requires

T � 1

∆f
, (2.60)

while the frequency-smoothing approach requires

∆f� 1

T
. (2.61)

Hence, for both approaches the product of temporal and spectral
resolutions should greatly exceed one:

∆fT � 1. (2.62)

It is often useful to examine the spectral coherence without consid-
ering the absolute power of the signal. This can be achieved using the
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Auto-Coherence Function (ACF) which is essentially the normalized
SCF:

Cαx (f) =
|Sαx (f)|

[S0x(f+α/2)S
0
x(f−α/2)]

1/2
. (2.63)

Obviously, its value is within [0, 1]. Since the result of ACF is the di-
mensionless coherence value without considering the absolute power,
the signal detection and classification based on ACF have the big
advantage of invulnerable to noise uncertainty problem comparing
with the spectrum sensing based on SCF.

In Figure 4 and Figure 5, the ACFs of BPSK and QPSK are pre-
sented, which shows some signatures on the plain of cyclic-spectral
frequencies. It can be noticed that there is a strong and unique
signature only in the ACF of BPSK, which is due to the conjugate
symmetric property of BPSK’s spectrum density. It is shown in Figure
6 that this strong signature of BPSK can still be clearly revealed even
at the SNR as low as -16 dB. The classification of BPSK and QPSK
using cyclostationary signature is analyzed in [40].

Figure 4: ACF (normalized SCF) of noise-free QPSK signal, DFT size: 64

The SCF analysis is particularly helpful in extracting the cyclosta-
tionary signatures embedded intentionally in multi-carrier signal for
assisting signal detection and classification [19, 20, 21, 41, 42]. In this
thesis, the application of embedded cyclostationary signatures (ECS)
is further extended to the scheme of delievering arbitrary extended
information, which is illustrated in details in Chapter 5. Other than
the SCF analysis, the cyclostationarity of wireless signals can be ex-
ploited in other forms for signal detection, such as the CP-SW and
the FSA-2C detections presented in Section 2.9.1.1 and Section 2.9.2.2
respectively.
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Figure 5: ACF (normalized SCF) of noise-free BPSK signal, DFT size: 64

Figure 6: ACF (normalized SCF) of BPSK signal with noise, DFT size: 64,
SNR: -16 dB
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2.9 autocorrelation based detection (acd)

The MFD introduced in Section 2.4 is essentially based on cross-
correlating the received signal with a known sequence which is either
the pulse shaping filter or a FS in the preamble or pilot structures.
When some repeated structure such as CP and repeated FS are in the
interested signal, the autocorrelation of the signal with its delayed
version can be also used to compose the detection metrics, which
doesn’t require the knowledge of the sequence.

2.9.1 CP Based Detection

The reported sensing techniques show big interest in the CP of OFDM
signal [43, 44, 45], which is the copy of the tail part of a OFDM symbol
and placed at the beginning of a symbol. Strong autocorrelation can
be then generated at time lag of DFT size NDFT :

r[n] = y[n]y∗[n+NDFT ]. (2.64)

2.9.1.1 CP Sliding Window Detection (CP-SW)

Symbol 1CP Symbol 2CP Symbol 3CP

Symbol 1CP Symbol 2CP Symbol 3CP

Symbol 4CP

Symbol 4CP
Time Shift of 

DFT Length

Conjugate 

Multiplication

Alignment 

according to 

Symbol Period

Convolution 

with Sliding 

Window

...

CP Length

ΛCP-SW

Figure 7: Illustration of the CP-SW detection for a captured real-world
DVB-T signal (530MHz, 8K DFT, 1/4 CP ratio)

When r[n] is the correlation between samples in CP and its corre-
sponding tail part of the symbol, its expectation becomes nonzero,
thus r[n] is nonstationary. When the OFDM symbols are continuously
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and periodically transmitted, as the statistical property is repeated
every symbol period, r[n] becomes a cyclostationary process, which
can be further split into segments with symbol length NDFT +NCP
and averaged:

R[n] =

⌊
N−NDFT+1
NDFT+NCP

⌋
−1∑

l=0

r[n+ l(NDFT +NCP)]

n = 0, . . . ,NDFT +NCP − 1.

(2.65)

In this way, the time locations with correlated CPs are aligned,
which strengthens the correlation of CPs. It lead to the CP Sliding-
Window (SW) detector [43] with test statistic

ΛCP−SW = max
i

∣∣∣∣∣
i+NCP−1∑
n=i

R̃[n]

∣∣∣∣∣ i = 0, 1, ...,NDFT +NCP − 1, (2.66)

in which R̃[n] is the cyclic extension of R[n] with one CP length.
The procedure of generating the detection metric of CP-SW is also
presented in Figure 7 showing the intermediate values of processing
a captured real-world Digital Video Broadcasting-Terrestrial (DVB-T)
signal.

In hypothesis H0, the |
∑i+NCP−1
n=i R̃[n]| with different i are statisti-

cally correlated. Their real and imaginary parts can be approximated
by two identical and independent normal distributions with CLT.
Therefore, |

∑i+NCP−1
n=i R̃[n]| follows joint Rayleigh distribution which

is, still an open research problem for more than 4 variables and with
arbitrary covariance matrix[46, 47]. Hence the exact probability dis-
tribution of ΛCP−SW is hard to known and the detection threshold
cannot be directly calculated in a closed form. However, the threshold
can still be estimated through empirical method with large amount
of detection tests in hypothesis H0.

In some standards, such as the 3GPP Long Term Evolution (LTE)
and the IEEE 802.22, although the signal has the periodical frame
structure, the OFDM symbols in a frame are however not com-
pletely periodically and continuously transmitted. For example, the
Time-Division Duplex (TDD) frame of IEEE 802.22 standard has the
period of 10 ms, in each frame, the periodicity is broken by the
TTG (Transmit/Receive Transition Gap)and RTG (Receive/Transmit
Transition Gap) which are used for accommodating the transmission
delay of wireless channel. For LTE with normal CP length, the CP
of the first OFDM symbol in a time slot is longer than the CP of the
other symbols in the same time slot. These two properties of IEEE
802.22 and LTE disables the alignment and correlation strengthen
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performed in (2.65) for the autocorrelation r[n] and makes the CP-SW
detection in (2.66) unsuitable for detecting them.

In order to enable the CP-SW detection with aligned CP’s corre-
lation, a method is proposed in this thesis that the r[n] in (2.64) is
pre-aligned according to the signal’s frame period:

r ′[n] =
∑
k

r[n+ kLfrm], (2.67)

in which Lfrm is the period of a frame. For example, the period for the
LTE signal is the slot length of 0.5 ms; the period for the 802.22 signal
is the TDD frame length of 10 ms. Since most of the OFDM symbols
in a period are continuously and periodically transmitted, the further
alignment with symbol length in (2.65) and the CP-SW detection in
(2.66) are still effective to the pre-aligned r ′[n]. The performances
with and without the pre-alignment for detecting LTE and 802.22

signals will be presented in Section 3.2.8.

2.9.1.2 CP Summation Detection (CP-SUM)

For noncontinuous OFDM transmissions, such as IEEE 802.11a/g
and ECMA-392 with CSMA/CA (Carrier Sense Multiple Access with
Collision Avoidance) MAC (Medial Access Control) layer, the number
of OFDM symbols in a burst as well as the intervals between bursts
are both random. In this case r[i] is not cyclostationary anymore
and the alignment in (2.65) may have no advantage since the OFDM
symbols are not periodically transmitted. However, the signal can
still be detected ignoring the nonstationary property of r[n] using
simple summation of r[n] [48], which is named CP-SUM detector in
this thesis. The detection metric of it is formulated by

ΛCP−SUM =
1√

N−NDFT + 1

∣∣∣∣N−NDFT−1∑
n=0

r[n]

∣∣∣∣, (2.68)

in which N is the total number of samples used in detection.
Based on CLT, in hypothesis H0, the real and imaginary parts of∑N−NDFT−1
n=0 r[n] follow zero-mean normal distribution with variance

of σ4w
2 . Then ΛCP−SUM follows Rayleigh distribution which can be

used to calculate the detection threshold

γCP−SUM = σ2w
√

− lnPFA. (2.69)

2.9.2 Feature Sequence Autocorrelation (FSA) Detection

If the FS in the preamble or pilot structures are repeated, autocorre-
lation can be used to formulate detection metrics , which is named
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feature sequence autocorrelation (FSA) in this thesis. An typical ex-
ample which has this property is DVB-T. According to [49], every
transmitted OFDM symbol of DVB-T signal contains two kinds of
pilot sub-carriers, they are continued pilots and scattered pilots.
The frequency locations of continued pilots are the same for all
transmitted OFDM symbols. while the scattered pilots are inserted
every twelve sub-carriers and their frequency locations are shifted
by three sub-carriers in the next OFDM symbol. Hence the positions
of scattered pilots are repeated every four OFDM symbols, which
is depicted in Figure 8. The number of scattered pilots is also much
larger than the continued pilots, which makes the scattered pilots’
period a major issue considered in FSA detections.
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Figure 8: Periodical pilot sub-carrier pattern in DVB-T

In the studies in [50, 46], two TDSC (Time-Domain Symbol Cross-
correlation) based detection methods named TDSC-NP and TDSC-
MRC for DVB-T are proposed. The TDSC-NP is based on the deriva-
tion using Neyman-Pearson test while the TDSC-MRC utilizes Maximum
Ratio Combining (MRC). In [51], We further investigated these two
methods with more concise reformulation of the detection metrics
and considering practical issues. Since the pilots in time domain are
taken as FS for autocorrelation, the TDSC methods are actually the
FSA detections presented in this sections.

Assume y[n] is the received signal with noise, the period of the
repeated FS in the signal is L and there are totally Np periods thus
NpL samples are used in detection. Define

RLk =
1√
L

(Np−k)L−1∑
n=0

y[n]y∗[n+ kL] k = 1, 2, ...,Np − 1 (2.70)

as the autocorrelations of received signal y[n] with time lags which
are multiple of L.
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The generation of the autocorrelations RLk in FSA detections is also
exhibited illustratively in Figure 9. Besides, an example of the auto-
correlation of a captured real-world DVB-T signal is also presented
in this figure. It clearly reveals the strong peaks in the autocorrelation
generated by the periodical FS when time shift equals to kL, which
are utilized in detecting the signal. Figure 9 also shows some smaller
peaks in the autocorrelation with period of L/4, which is generated
by the continued pilot sub-carriers.

Perod 1
FS

Perod 2
FS

Perod 3
FS ...

Perod 1
FS

Perod 1
FS

Perod 1
FS ...

Conjugate Multiplication 

and Summation

Time Periods of Signal

Time Shift

Phase: θ
2θ

3θ

4θ

5θ

Figure 9: Illustration of the autocorrelation in FSA detections with an ex-
ample of the autocorrelation of a captured real-world DVB-T
signal(530MHz, 8K DFT, 1/4 CP ratio)

2.9.2.1 FSA with Summation Detection (FSA-SUM)

The absolute value of the summed autocorrelation with time shift
of length L can be taken as detection metric. In [50] and [46], it is
illustrated that this detection metric satisfies the condition of NP test
and was named TDSC-NP in the two papers. Since it is based on the
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summed autocorrelation according to FS, we renamed it FSA-SUM
in this thesis. The detection metric is formulated as

ΛFSA−SUM = |RL1 | =
√

Re2(RL1) + Im2(RL1). (2.71)

For hypothesis H0, y[n] contains the noise w[n] only, which results

RL1 |H0 =
1√
L

(Np−1)L−1∑
n=0

w[n]w[n+ L]. (2.72)

According to CLT, the Re(RLk|H0) and Im(RLk|H0) can be approxi-
mated by uncorrelated zero mean normal distributions, the variance
of which becomes

Var{Re(RLk)|H0} = Var{Im(RLk)|H0} =
(Np − k)σ

4
w

2
. (2.73)

Then, the detection metric ΛFSA−SUM follows Rayleigh distribution.
Based on its CDF, the detection threshold can be calculated by

γFSA−SUM = σ2w

√
−(Np − 1) lnPFA. (2.74)

It should be noted that the FSA-SUM detection is similar to the CP-
SUM detection in (2.68). The only difference is that the FS length of
L is taken in FSA-SUM as autocorrelation’s time lag instead of the
DFT size NDFT used in CP-SUM.

2.9.2.2 FSA with Twice Correlations (FSA-2C)

When the FS in the interested signal is repeated periodically, cyclosta-
tionarity is exhibited and can be utilized to compose detection metric
which is more sophisticated than FSA-SUM. An optimal method us-
ing MRC of the secondary correlation values is proposed in [50, 46],
which is named FSA-2C (twice correlation) in this thesis and can be
concisely denoted as

ΛFSA−2C =

∣∣∣∣ J∑
k=1

RLkR
L
k+1
∗
∣∣∣∣ J = 1, 2, ...,Np − 2, (2.75)

in which J is the number of autocorrelation values used in FSA-2C
detection. Generally, larger J can lead to better detection performance
at the cost of higher computational complexity.

Using (2.73), the variance of the real and imaginary part of RLkR
L
k+1
∗

is calculated by

Var{Re(RLkR
L
k+1
∗
)|H0} = Var{Im(RLkR

L
k+1
∗
)|H0}

=
(Np − k)(Np − k− 1)σ

8
w

2
.

(2.76)



2.10 mitigation of noise uncertainty using dimension cancelation (dic) 33

When J is large, based on CLT, ΛFSA−2C can be approximated with
Rayleigh distribution. Then the detection threshold can be derived as

γFSA−2C = σ4w

√√√√−

J∑
k=1

(Np − k)(Np − k− 1) lnPFA. (2.77)

2.10 mitigation of noise uncertainty using dimension

cancelation (dic)

2.10.1 Influence of the Noise Uncertainty

In practical receivers, the power of noise cannot be exactly known
even when the receiver is calibrated due to the following reasons [52]:

• uncertainty in thermal noise caused by changing temperature;

• uncertainty in amplifier gain caused by changing temperature;

• error in calibration;

• interference during calibration.

The lack of exact knowledge on noise power is called Noise Uncer-
tainty (NU). In some detection methods, it can lead to inaccuracy in
detection threshold resulting higher PFA and PMD than expected
values. Besides, for EGD [52] and other moment based detectors [53],
NU can cause the “SNR wall” phenomenon which makes the detec-
tion completely failed when the SNR is below certain limit, no matter
how long the observation time is.

2.10.1.1 Unlimited Detectability and the Case of EGD

In order to describe the NU’s impact to PMD, we define the unlimited
detectability, which means the successful detection at arbitrary low
SNR can be achieved as long as the observation time is long enough.
It is described mathematically by

lim
N→+∞PMD = lim

N→+∞Pr{Λ < γ|H1} = 0, (2.78)

in which N is the number of signal samples used in detection.
As was illustrated in Section 2.3, the probability distribution of the

detection metric of EGD can be approximated by normal distributions
using CLT:

ΛEGD|H0 ∼ N
(
Nσ2w,Nσ4w

)
ΛEGD|H1 ∼ N

(
N(σ2w + σ2x),N(σ2w + σ2x)

2
) (2.79)
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Based on (2.9), the threshold of EGD with known noise power σ2w is
formulated by

γEGD(σ
2
w) = σ

2
w

√
2Nerf−1

(
1− 2PFA

)
+Nσ2w , (2.80)

When the noise power σ2w is perfectly known, the PMD when N→
+∞ is

lim
N→+∞PMD = lim

N→+∞Pr{ΛEGD < γEGD(σ2w)|H1}

= lim
N→+∞ 12

[
1+ erf

(σ2w√(2N)erf−1(1− 2PFA)+Nσ
2
w−N(σ2w+σ2x)√

2N(σ2w+σ2x)

)]
= lim
N→+∞ 12

[
1+ erf

(σ2werf−1(1− 2PFA)−√N/2σ2x
(σ2w+σ2x)

)]
= 0,

(2.81)

which means that the unlimited detectability can be achieved. How-
ever, when the detector’s expected noise power σ2e differs from the
actual value σ2w, particularly, when σ2e > σ2w, the PMD whenN→ +∞
becomes

lim
N→+∞PMD = lim

N→+∞Pr{ΛEGD < γEGD(σ2e)|H1}

= lim
N→+∞ 12

[
1+ erf

(σ2w√(2N)erf−1(1− 2PFA)+Nσ
2
e−N(σ2w+σ2x)√

2N(σ2w+σ2x)

)]
= lim
N→+∞ 12

[
1+ erf

(σ2werf−1(1− 2PFA)+√N/2(σ2e−σ2w−σ2x)

(σ2w+σ2x)

)]
= 1

( σ2x
σ2w

<
σ2e
σ2w

− 1
)

,

(2.82)

in which σ2x
σ2w

is the actual SNR of the received signal. Thus, when the

SNR is smaller than the limit σ2e
σ2w

− 1, the detection can be completely
failed no matter how the N corresponding to observation time is
increased.

2.10.2 Eliminate Noise Uncertainty with DIC

In (2.9), (2.14), (2.69), (2.74) and (2.77), it can be noticed that all
the thresholds of EGD, MFD-EG, CP-SUM, FSA-SUM and FSA-2C
detections include the multiplication term σ2w or σ4w. This means
that the knowledge of noise power σ2w is required in these detection
methods. Practically, since the noise power σ2w cannot be perfectly
known due to the NU problem, the threshold calculation therefore
becomes inaccurate, which leads to unpredicted PFA and PMD.

In this section, a novel method of eliminating the destruction from
NU is proposed, which is essentially based on removing the require-
ment on noise power knowledge through canceling the dimension of
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the detection metrics. In this way, no matter how noise power varies,
the threshold as well as its corresponding PFA remain unchanged.

The power of the received signal y[n] is estimated by

σ̂2y = E(|y[n]|
2) =

1

N

N−1∑
n=0

|y[n]|2. (2.83)

In hypothesis H0, E(σ̂2y|H0) equals to the noise power σ2w. The knowl-
edge of noise power in threshold can be removed through dividing
the detection metrics by the cancellation factor E2(|y[n]|2) or E(|y[n]|2)
depending on whether the noise power term in the threshold is
squared or not.

From another point of view, it can be noticed that the dimension
of the cancellation factor should be the same as the dimension of
the detection metric and its corresponding threshold. For example,
assume the dimension of received samples is in volt (V), the detec-
tion metric of MFD-EG in (2.10) is V2, then the cancelation factor
E(|y[n]|2) with dimension V2 should be applied; the detection metric
of FSA-2C in (2.75) needs twice correlation operations resulting the
dimension of V4, hence the cancelation factor of E2(|y[n]|2) with the
same dimension is used.

Based on this idea, the DIC can be applied to nearly all the detection
metrics introduced in Chapter 2 which require the knowledge of
noise power thus have dimensions. One exception is the EGD which
has the detection metric ΛEGD = Nσ̂2y = NE(|y[n]|2), if it is divided
by the according cancelation factor E(|y[n]|2), the detection metric
becomes a constant N for both H0 and H1, which makes the signal
detection impossible.

The detection metrics of CVWD-MME, CVWD-CAV and PSWD-
AG have no dimensions inherently: ΛCVWD−MME is the ratio between
maximum and minimum eigenvalues of the estimated covariance
matrix; ΛCVWD−CAV is the ratio between the sum of all elements in
the covariance matrix and the sum of diagonal elements; ΛPSWD−AG

is the ratio between arithmetic mean and geometric mean of the
components in estimated PSD. Their detection metrics in H0 and
resulted PFA are irrelevant to noise power. Therefore, the DIC is not
needed by them.

By analyzing the dimensions of the detection metrics illustrated in
this chapter, their according DIC factors Ψmethod are summarized in
Table 1. The detection metrics after DIC can be then defined by

Λ
′
method =

Λmethod
Ψmethod

. (2.84)
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Table 1: Dimension Cancellation Factors for Various Detection Methods

Detection Methods DIC Factor Ψmethod
EGD not available

MFD-EG/FS E(|y[n]|2)

CVWD-MME/CAV not needed

CVWD-EC E(|y[n]|2)

PSWD-AG not needed

PSWD-SM E(|y[n]|2)

CSD using ACF E(|y[n]|2)

CP-SW/SUM E(|y[n]|2)

FSA-SUM E(|y[n]|2)

FSA-2C E2(|y[n]|2)

In Chapter 3 and Chapter 4, the effectiveness of applying DIC for
eliminating NU problem completely in signal detection and classifi-
cation is validated in various spectrum sensing scenarios.

2.11 cooperative signal detection

The previous parts of this chapter discuss only the local signal de-
tection methods which are applied only on single sensing node. The
reported literatures have shown that the combination of the sensing
measurements from multiple sensing nodes can effectively improve
the overall detection performance at low SNR, reduce the sensitivity
requirement on single sensing node, mitigation channel fading, shad-
owing and noise uncertainty [54, 55, 56, 17]. In this section, we briefly
review the major algorithms used in cooperative signal detection.

2.11.1 Optimal Soft Combination

Consider the spectrum sensing scenario with K cooperating sensing
nodes, each of them senses the same channel simultaneously using
the following observed signal in the two hypotheses:

H0 : yk = wk

H1 : yk = xk + wk

k = 1, 2, ...,K.
(2.85)

It is assumed that both the elements in the target signal vector xk and
the noise vector wk are all independent and normally distributed
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with zero means, thus xk ∼ N(0,η2kI) and wk ∼ N(0,σ2kI). Then the
likelihood ratio between the joint observations in both hypotheses
can be composed by

L(y1, ..., yK) =
∏K
k=1 fk(yk|H1)∏K
k=1 fk(yk|H0)

=

K∏
k=1

1
(σ2k+η

2
k)
N exp

(
−
‖yk‖2
σ2k+η

2
k

)
1
σ2Nk

exp
(
−
‖yk‖2
σ2k

)
=

K∏
k=1

σ2Nk
(σ2k + η

2
k)
N

exp
( η2k‖yk‖2

σ2k(σ
2
k + η

2
k)

)
=

K∏
k=1

σ2Nk
(σ2k + η

2
k)
N
· exp

( K∑
k=1

η2k‖yk‖2

σ2k(σ
2
k + η

2
k)

)
,

(2.86)

in which N is the number of signal samples used in EGD on each
node and η2k and σ2k are the signal power and noise power on the
node k respectively. It should be noted that ‖yk‖2 is the detection
metric of EGD on sensing node k:

‖yk‖2 =
N∑
n=1

|yk[n]|
2. (2.87)

According to the Neyman-Pearson lemma[57], the likelihood ratio
test which rejects H0 in favor of H1

L(y1, ..., yK) > ξα (2.88)

when

Pr
{
L(y1, ..., yK) > ξα|H0

}
= α (2.89)

is the most powerful test with a given size α and its corresponding
threshold ξα. The α is the probability of detecting the actual hypothe-
sis H0 mistakenly as H1, thus the PFA. Removing all the constants in
(2.86), the optimal Neyman-Pearson based detection can be expressed
as

Λopt. =

K∑
k=1

η2k‖yk‖2

σ2k(σ
2
k + η

2
k)

H1

R

H0

γopt. (2.90)

It should be noted that when K = 1, it is reduced to the signal-node
EGD, which is also Neyman-Pearson test based on the analysis in
(2.88).
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2.11.2 Hard Combination

The optimal cooperative detection requires the a priori knowledge of
the signal powers received on each sensing nodes, which is difficult to
be obtain in practical applications. A paradox arising in the optimal
detection is that if the cognitive radio network hasn’t identify whether
the interested signal is existing or not, how can it know the SNRs
of the signal on each sensing nodes? Besides, it is very difficult to
accurately estimate the SNR when the SNR itself is low[58]. Another
limitation on the optimal cooperative detection is that the complete
detection metrics from different sensing nodes need to be send to a
fusion center for combination as (2.90), which may result in a large
amount of data traffic.

A much simpler form of cooperative detection for practical ap-
plication is that each sensing node makes their own decision and
send only the one-bit result to the fusion center in which the hard
combination is performed for making the final decision. The typical
hard combination are based on the AND, OR and voting rules.

Assume Λ̄k is the local decision made by sensing node k, which is
either 1 or 0 for the result detected or not detected. The AND rule
decides the interested signal is detected, thus H1, when

K∑
k=1

Λ̄k = K. (2.91)

The OR rule decides H1 when

K∑
k=1

Λ̄k > 1. (2.92)

Both AND and OR rules are actually the special cases of the voting
rule, which decides H1 only when at least M out of the K sensing
nodes report that the interested signal is detected:

K∑
k=1

Λ̄k >M. (2.93)

2.12 concluding remarks

Signal detection is the basic form of spectrum sensing. It is also the
foundation of the signal classification and cyclostationary signature
extraction and decoding presented in later contents of this thesis.

In this chapter, the key algorithms of the major signal detection
methods are summarized with concise formulation of their detec-
tion metrics and thresholds. Besides, two new detection methods
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using frequency-domain processing are proposed. They are a blind
detection named PSWD-AG and another non-blind detection named
PSWD-SM which takes the PSD of the interested signal as a known
template. It is proved that the proposed PSWD-SM is actually equiv-
alent to CVWD-EC and MFD-EG detections which use time-domain
processing. However, the proposed ones have the advantage that the
imperfections of nonwhite noise floor and spurs in practical receivers
can be easily mitigated in a more straightforward manner.

Further more, the DIC scheme is proposed in this chapter for
eliminating the NU problem which is very harmful to spectrum
sensing. The DIC can be applied to nearly all the detection methods
introduced in this chapter, which require the knowledge of noise
power, thus have dimensions in their detection metrics.

In the next chapter, the simulation performances of these methods
for detecting different signals are evaluated and compared under
practical conditions such as noise uncertainty, nonwhite noise floor,
spurs, clock mismatch and multipath fading channel.





3
S I M U L AT I O N S O F S I G N A L D E T E C T I O N
A L G O R I T H M S

In this chapter, the signal detection algorithms illustrated in Chap-
ter 2 are further evaluated through Monte Carlo simulations. The
simulation platform are build on Matlab software with the full im-
plementation of the detection algorithms with the formulation of
detection threshold, SNR scaling and statistical testing cycles taken
into account. The major interested signal types in the spectrum
sensing issue are modeled according to their respective standard
specifications emphasizing on the features utilized by different de-
tection algorithms. The algorithms are compared under simulated
practical conditions such as Noise Uncertainty (NU), clock mismatch,
nonwhite noise floor, spurs, and multipath fading channel.

3.1 modeling of signals

Proper modeling of the target signals is very important to the cor-
rect evaluation of spectrum sensing techniques. Hence, before the
presentation of simulation performances of various signal detection
algorithms, in this section, the modeling methods of the different
types of signals are first introduced. Apart from the evaluation of
signal detection algorithms using simulation in this chapter, the mod-
eled signals are also applied for validating the signal classifier for
TVWS which is presented in Chapter 4. Besides, the modeled signals
are also adopted in the experimental tests using real-world signal
transmissions, which will be introduced in Chapter 6.

Seven types of signals are modeled for spectrum sensing, they are
DVB-T, 3GPP LTE, IEEE 802.22, ECMA-392, Wireless Microphone
(WM) and Advanced Television Systems Committee (ATSC) digital TV.
The modeling of theses signals conforms their respective standard
specifications with all the properties and parameters utilized by
spectrum sensing techniques covered, such as CP and DFT lengths
in OFDM, structure of pilots, signal bandwidth and sampling rate
etc. Reasonable simplification are donducted on other properties and
parameters which are irrelevant to the spectrum sensing techniques.

1. DVB-T
Based on the DVB-T standard defined in [49], the signal is
simulated mainly considering the CP and DFT lengths, the

41
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signal bandwidth and the time-frequency pilot structure with
the period of four OFDM symbols which is shown in Figure
8. There are two options of the DFT lengths (2048, 8192) and
four options of the CP length ratio (1/4, 1/8, 1/16, 1/32) which
result totally eight modes of the DVB-T signal. They are all
taken into account especially in the proposed signal classifier
presented in Chapter 4. The DVB-T signal from real-world TV
broadcast is also captured and stored for spectrum sensing
tests. It will be shown in Section 6.4 that the signal detection
performances for both simulated and captured DVB-T signal
are well matched.

2. 3GPP LTE
The modeling of the LTE signal is based on the 3GPP TS 36.211

standard document [59]. The signal classifier presented in Chap-
ter 4 mainly utilizes the LTE’s properties of CP/DFT lengths
and the slot period of 0.5 ms. Therefore, the modeling mainly fo-
cuses on its frame/slot structure, normal/extended CP lengths,
TDD and FDD modes, different bandwidth configurations and
their corresponding sampling rates.

3. IEEE 802.22
Referencing the IEEE 802.22-2012 standard specification [60],
the signal modeling mainly focuses on the CP/DFT lengths in
OFDM, the frame structure, different bandwidth configurations
and their corresponding sampling rate, which is similar to the
modeling of LTE signal.

4. ECMA-392
The modeling of ECMA-392 signal focuses on the CP/DFT
lengths, bandwidth configurations and the sampling rate de-
fined in [61]. Considering the random bursty behavior due to
the CSMA/CA MAC layer, a duty cycle factor is defined for
characterizing the signal’s occupancy of the channel. As was
illustrated in Section 2.9.1.2, the CP-SUM method is suitable for
detecting the ECMA-392 signal with random bursty behavior.

5. WM
There is no standard definition of WM signal. However, most
of the WM devices use analog frequency modulation (FM) and
their signal bandwidths are normally less than 200 kHz [62].
Considering the TV channel of 6 or 8 MHz, the signal power of
WM is highly concentrated in frequency domain. There are two
reported methods for modeling the WM signal. The first one
takes sinusoid tone as audio signal source for the frequency
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modulation, which is proposed by IEEE 802.22 WRAN working
group in [62]. There are three operating situations with different
input audio signal characteristics defined in this method, the si-
nusoid frequencies and the FM deviation of these situations are
listed in Table 2. In the second method, the audio signal source
is modeled more accurately using the colored noise generated
by passing white noise through a circuit described in [63]. In
this thesis, the second method is adopted. The FM deviation
of 32.6 kHz in the loud speaker situation shown in Table 2 is
mainly considered, since it characterizes the highest bandwidth
of the FM signal which leads to a worst case evaluation of
the sensing performance. This fact was previously revealed in
[64, 65].

6. ATSC The modeling of ATSC [66] signal focuses on its PSD
shape which is utilized in CVWD and PSWD investigated in
this thesis. The pilot tones at 309440.6 Hz and 328843.6 Hz from
the edge of 6 MHz TV channel and modeled which become an
unique feature of its PSD.

Table 2: Operating Situations of WM Signal

Situation Sinusoid Frequency FM Deviation

Silent 32 kHz 5 kHz

Soft Speaker 3.9 kHz 15 kHz

Loud Speaker 13.4 kHz 32.6 kHz

3.2 simulated results

3.2.1 The Noise Uncertainty Problem in MFD-EG and PSWD

As is illustrated in Section 2.10.1, due to the practical reasons, the
noise power in receiver cannot be exactly known resulting the NU
problem which is harmful to spectrum sensing. It is analyzed in Sec-
tion 2.10.1.1 that the EGD is lack of the unlimited delectability when
the NU is presented, which causes the “SNR wall” phenomenon
making the detection in lower SNR regime impossible no matter how
the observation time is increased.

In this section, the detections of the the WM and ATSC signals
with NU are evaluated. The MFD-EG detection’s performances for
WM signal is presented in Figure 10, which is essentially the energy
detection after matched filtering. The NU is modeled with the “robust
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Figure 10: Performance of MFD-EG detecting WM signal (loud speaker
mode) with NU for different observation time, signal bandwidth:
200 kHz, sampling rate: 500 k/s, passband of the matched filter:
200 kHz, PFA: 0.01, flat fading

statistic” methods presented in [52], in which the upper limit of
noise power is used to calculate the PFA while the lower limit is
used to calculate the PMD. Hence, the worst-case evaluation of the
impact of NU can be modeled. The WM is modeled in the loud
speaker mode introduced in Section 3.1. Figure 10 clearly shows
the “SNR wall” at about -6 dB which prevents the improvement of
detection performance even when observation time is increased to
tenfold. This result confirmed the reported result presented in [52].
However, when the Dimension Cancelation (DIC) is enabled, the SNR
wall phenomenon is eliminated although the detection performances
become a little worse than the detection without DIC and NU. It
should be noticed that using DIC, the detection performances with
or without NU are actually the same, which indicates the complete
mitigation of NU problem.

For detecting ATSC signal using the proposed PSWD methods,
the similar results as for detecting WM can be obtained, which is
shown in Figure 11. The PSD of ATSC signal is taken as template in
PSWD-SM. When DIC is enabled, the PSWD-SM becomes insensitive
to NU. It shows that the blind PSWD-AG is inherently insensitive to
NU and requires no a priori information, however the performance is
worse than the non-blind PSWD-SM.

3.2.2 Comparison of the PSWD and CVWD

The CVWD-CAV, CVWD-MME and PSWD-AG are all blind detec-
tions based on testing the whiteness of received signal but in different
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Figure 11: Performance of PSWD detecting ATSC signal with NU for dif-
ferent observation time, bandwidth: 6 MHz, NDFT = 64, D = 32,
PFA: 0.01, flat fading
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Figure 12: Comparison of CVWD and PSWD with different shifting steps D
for detecting DVB-T signal (any mode), bandwidth: 8 MHz, D =

16, 32, 64, NDFT = 64, CM size: 32, observation time: 0.125 ms,
PFA: 0.01, flat fading
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approaches. In Figure 12, the detection performances on DVB-T signal
using CVWDs and PSWDs are compared in several different aspects.
First, similar performances are achieved by the blind CVWD-CAV,
CVWD-MME and PSWD-AG methods. Second, when the shifting
step D is reduced to a half or a quarter of the DFT size, an obvious
performance improvement can be achieved thanks to the increase of
Equivalent Degree of Freedom (EDF) in PSD estimation illustrated
in (2.35). Third, the PSWD-SM using the PSD of the DVB-T signal
as template has better performance than the blind detections, how-
ever, it is susceptible to NU which is shown in Figure 12 and also in
Figure 11. Figure 12 shows that when DIC is enabled, the PSWD-SM
becomes unsusceptible to NU.
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Figure 13: Comparison of CVWD and PSWD with different shifting steps
for detecting ATSC signal, bandwidth: 6 MHz, NDFT = 64, D =

32, 64, CM size: 32, observation time: 0.4 ms, PFA: 0.01, flat fading

It is proved analytically in Section 2.7 that the CVWD-EC (without
SNR knowledge), PSWD-SM and MFD-EG are actually equivalent
to each other. Figure 13 confirmed this fact by showing very similar
performance of CVWD-EC and PSWD-SM for detection ATSC signal.
The PSWD-SM and MFD-EG for detecting WM signal in both “silent”
and “loud speaker” situations have also the similar performances,
which is shown in Figure 14.

It is illustrated in (2.35) and (2.36) that the estimation variance of
PSD can be reduced and the detection performance can be improved
through increasing the EDF of estimate by reducing shifting step D.
Figure 12 and Figure 13 show that when the shifting step D in PSD
estimation becomes a half of the DFT size, notable performance gain
can be obtained over the case when D = NDFT . However, the gain by
further decreasing the shifting step toD = NDFT/4 becomes marginal.
The notable performance improvement when D = NDFT/2 can be
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Figure 14: Comparison of PSWD and CVWD for detecting WM signal,
bandwidth: 8 MHz, NDFT = 64, D = 32, CM size: 32, observation
time: 1 ms, PFA: 0.01

explained by the increase of the EDF in PSD estimation by about 34%
calculated using (2.35). However, the gain by further decreasing D
becomes very limited, for example, the increase of EDF by reducing
D from NDFT/2 to NDFT/4 is only 8.5%.

3.2.3 Equalization of Nonwhite Noise Floor and Removal of Spurs
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Figure 15: PSD of WM signal with nonwhite noise floor and spurs, sampling
rate: 500 k/s, signal carrier: 125kHz, receiver impulse response
[1, 0.3], spur frequency: 100kHz & -50kHz, powers of the spurs:
0dB & 4.8dB over noise power
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As was illustrated in Section 2.6, the proposed PSWD methods has
the advantage of mitigating the nonwhite noise floor and spurs in
practical receivers straightforwardly. Simulation results of detecting
WM signal with a nonwhite noise floor and two spurs are presented
in this sections, the PSD of which is shown in Figure 15.
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Figure 16: PMD of PSWD-AG and CVWD-CAV for detecting WM sig-
nal (loud speaker mode) with nonwhite noise floor, bandwidth:
200 kHz, sampling rate: 500 k/s, NDFT = 64, D = 32, CM size:
32, observation time: 0.2 ms, PFA: 0.01, flat fading

It is illustrated in (2.37) and (2.24) that the nonwhite noise floor
can be equalized in both PSWD and CVWD methods. Figure 16

shows that in the blind PSWD-AG and CVWD-CAV detection, the
nonwhite noise floor can degrade the performance notably. However,
when equalization in time or frequency domains is applied, the
performance can be recoved to about the same level as the ideal case
when noise floor is white.

In PSWD methods, the destruction from spurs to detection per-
formance can be straightforwardly removed as illustrated in Section
2.6.1. Figure 17 shows that when the spurs are presented, the CVWD-
CAV detection becomes completely failed. With the removal of spurs
in frequency domain, the PSWD-AG’s detection performance is only
slightly worse than the ideal case when there is no spur.

3.2.4 PSWD in Multipath Channel

The detection performances of PSWD methods for detecting ATSC
and DVB-T signals in multipath channels are presented in Figure 18

and Figure 19 respectively. The channel models used here are the
IEEE 802.22 WRAN Type B channel defined in [67] and the COST
207 bad urban channel with 12 taps (COST207BUx12) defined in [68].
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Figure 17: PMD of PSWD-AG and CVWD-CAV for detecting WM sig-
nal (loud speaker mode) with spurs, bandwidth: 200 kHz, sam-
pling rate: 500 k/s, NDFT = 64, D = 32, CM size: 32, observation
time: 0.2 ms, PFA: 0.01, flat fading
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Figure 18: Performance of PSWD detecting ATSC signal in multipath chan-
nel (IEEE 802.22 WRAN Type B), bandwidth: 6 MHz, NDFT = 64,
D = 32, observation time: 0.4ms, PFA: 0.01
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Figure 19: Performance of PSWD detecting DVB-T signal in multipath chan-
nel (COST207BUx12), bandwidth: 8 MHz, NDFT = 64, D = 32,
CM size: 32, observation time: 1 ms, PFA: 0.01

It is shown that the blind PSWD-AG detection can even perform
better in multipath channel than in AWGN channel. This is because
that the nonwhiteness of the target signal is actually strengthened by
the frequency selective fading caused by multipath channel. It is also
shown in Figure 19 that the PSWD-SM and MFD-EG methods have
the same detection performances, which confirms their equivalence
proved analytically in Section 2.7.

3.2.5 FSA and CP Based Detections with Noise Uncertainty

In previous sections of this chapter, the effectiveness of using DIC
to mitigate the NU problem for the three similar template based
detections (MFD-EG, CVWD-EC and PSWD-SM) is already shown.
The simulation results of them are presented in Figure 10, Figure 11

and Figure 12.
The proposed DIC scheme is also effective to the autocorrelation

based FSA and CP detection algorithms. Their performances for
detecting DVB-T signals with DIC are simulated and presented in
this section. The NU is modeled with the “robust statistic” meth-
ods presented in [52] for giving worst-case evaluations. It is shown
in Figure 20 that without DIC, the detection performances can be
notably decreased by 1 dB NU for all the four detection methods.
The advantage of using DIC is clearly revealed in Figure 20 that
the performances of all the autocorrelation based detections become
insensitive to NU. Meanwhile, it is worth to mention that DIC causes
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nearly no degradation to detection performances comparing with the
ideal case when there is no NU.
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Figure 20: Using DIC to mitigate NU for FSA and CP based detections on
DVB-T signal (2K, 1/4 CP mode), observation time: 10 ms, PFA:
0.01

3.2.6 The Influence of CP length on FSA and CP based Detections

In Figure 21 it is shown that the performances of CP based detections
are very dependent on the length of CP. Thus, the larger the CP
length, the better detection performance can be achieved. On the
contrary, the FSA detections are not insensitive to CP ratio, which is
a favorable property that the detection performances for different CP
length are nearly identical.

3.2.7 The Influence of Multipath Channel on FSA and CP based Detec-
tions

The performances of FSA and CP detections in multipath channels
are shown in Figure 22. The channel models used here are the IEEE
802.22 WRAN Type B channel profile defined in [67] and the rayleigh
channel profile defined in DVB-T standard [49]. It shows that the
detection performances of these two types of autocorrelation based
methods are not sensitive to multipath fading.

3.2.8 Enhance CP-SW Detection with Pre-alignment

In some standards, such as the LTE and the IEEE 802.22, although
the signal has the periodical frame structure, the OFDM symbols in



52 simulations of signal detection algorithms

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SNR (dB)

PM
D

 

 
FSA-2C,DIC,CP:1/4
CP-SW,DIC,CP:1/4
CP-SUM,DIC,CP:1/4
FSA-2C,DIC,CP:1/8
CP-SW,DIC,CP:1/8
CP-SUM,DIC,CP:1/8
FSA-2C,DIC,CP:1/16
CP-SW,DIC,CP:1/16
CP-SUM,DIC,CP:1/16
FSA-2C,DIC,CP:1/32
CP-SW,DIC,CP:1/32
CP-SUM,DIC,CP:1/32

Figure 21: The influence of CP length on FSA and CP based detections of
DVB-T signal (2K, 1/4 1/32 CP modes), observation time: 10 ms,
PFA: 0.01
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Figure 22: The influence of multipath channel (DVB-T standard defined and
IEEE 802.22 WRAN Type B) on FSA and CP based detections of
DVB-T signal (2K, 1/32 CP mode), observation time: 10 ms, PFA:
0.01
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Figure 23: Performance of CP-SW method for detecting TD-LTE down-
link (5 MHz, normal CP length, uplink-downlink config: 5)
with and without pre-alignment, observation time: 20 ms, pre-
alignment length: 0.5 ms (1 slot), PFA: 0.01
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Figure 24: Performance of CP-SW method for detecting 802.22 down-
link (8 MHz, 1/16 CP length) with and without pre-alignment, ob-
servation time: 20 ms, pre-alignment length: 10 ms(1 TDD frame),
PFA: 0.01
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one frame are however not completely periodically and continuously
transmitted, which makes the CP-SW detection not applicable to
these standards. In Section 2.9.1.1, a method is proposed which can
enable the CP-SW detection by pre-aligning the autocorrelation with
frame period (2.67). The performances of detecting TD-LTE and IEEE
802.22 signals with CP based detections are simulated and presented
in Figure 23 and Figure 24 repectively. The gain of applying the
pre-alignment is clearly shown in the result, especially for detecting
the TD-LTE signal. Figure 24 shows that for the CP-SW detection of
the 802.22 signal, the gain of applying pre-alignment is limited. This
is because there are only two 10 ms TDD frames in the observation
time of 20 ms so the alignment of CP in (2.65) can still be maintained
to some extend even without the pre-alignment according to TDD
frames.

3.2.9 CP based Detections of ECMA-392 Signal

Differs from the OFDM symbols’ periodical structures in DVB-T,
LTE and IEEE 802.22, the ECMA-392 has the random bursty signal
structure due to its CSMA/CA MAC layer. Since there is no strong
periodicity in ECMA-392 signal, the CP-SW detection which relies
on the periodicity of OFDM symbols may perform worse than the
CP-SUM detection. In this simulation, the ECMA-392 signal is char-
acterized by the randomly presence of bursts with certain duty cycle.
The detection performances with different duty cycles are presented
in Figure 25. It shows that when the duty cycle is low, the perfor-
mance of CP-SUM can be even better than the CP-SW detection.
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Figure 25: Performance of CP based detections on ECMA-392 Signal (8MHz,
1/16 CP mode) with different duty cycles, observation time:
10 ms, PFA: 0.01
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3.2.10 The Influence of CFO
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Figure 26: Performances of FSA-2C, CP-SW and MFD-FS detecting DVB-T
signal (2K, 1/16 CP mode) with CFO, observation time: 4.8 ms,
PFA: 0.01

Figure 26 presents the detection performances of FSA-2C, CP-SW
and MFD-FS for DVB-T signal with Carrier Frequency Offset (CFO).
The feature sequence used in MFD-FS is the time domain response
of the pilots in DVB-T signal. It shows that the cross-correlation
based MFD-FS is very vulnerable to CFO. It can be explained by
that the phase rotation along the time caused by CFO can destruct
the cross-correlation in time domain. In frequency domain, this phe-
nomenon can be translated into the mismatch of the local filter which
is intended to match the frequency response of the feature sequence,
as the result of CFO. Figure 26 also shows that the autocorrelation
based FSA-2C and CP-SW are insensitive to CFO at all. This can
be explained by that the phase rotation along time caused by CFO
is converted into a constant phase shift after autocorrelation. Since
only the amplitude of the autocorrelation values are taken as de-
tection metrics, which is irrelevant to the phase shift, the detection
performance is not affected by CFO.

3.2.11 The Influence of SFO

Figure 27 shows that the detection performance of FSA-2C can be
degraded notably by Sampling Frequency Offset (SFO), especially
when observation time becomes longer. The CP-SW detection is not
sensitive to SFO. This can be explained by that the FSA-2C utilizes
the autocorrelation RLk with large time lag factor k in (2.70). Since
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Figure 27: Performances of FSA-2C and CP-SW methods detecting DVB-T
signal (2K, 1/16 CP mode) with SFO, PFA: 0.01

the effect of SFO is the accumulated sampling location error along
with the increase of time, when the time lag becomes large, the
autocorrelation property can be destructed obviously by this error.
The CP-SW detection utilizes the autocorrelation with time lag of
the DFT length of OFDM modulation, which is much smaller than
that of the FSA-2C detection. Therefore, the performance of it is not
sensitive to SFO.

3.3 concluding remarks

In this chapter, the signal detection algorithms illustrated in Chapter
2 are evaluated using computer simulations. The signals involved in
simulation tests are DVB-T, WM, 3GPP LTE, IEEE 802.22 and ECMA-
392, which covers the major PU and SU signals in TV band. The
conclusions regarding the performances of the evaluated detection
algorithms are drawn as follows:

• The proposed DIC method can effectively mitigate the NU
problem and can be applied to all the detection algorithms
which have dimensions in their detection metrics. Notably, for
autocorrelation based detection, such as CP-SUM, CP-SW, FSA-
SUM and FSA-2C, the DIC causes nearly no degradation to
detection performances.

• The proposed PSWD methods using frequency domain pro-
cessing have very similar performance to CVWD using time
domain processing. However, the PSWD methods can mitigate
the nonwhite noise floor and spurs in practical receivers more
easily comparing with CVWD.
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• If the time-frequency structure of the signal is known to the
detector. The FSA and CP based detections utilizing autocorrela-
tion are more favorable in terms of robustness against multipath
fading, insensitivity to clock mismatch and there is nearly no
degradation to detection performance when DIC is applied.

The simulation analysis of the detection algorithms provides impor-
tant insights for the design of the signal classification framework in
Chapter 4 and facilitates the implementation of the spectrum sensing
testbed presented in Chapter 6.





4
T H E C L A S S I F I C AT I O N F R A M E W O R K B A S E D O N
S I G N A L D E T E C T I O N

4.1 introduction

In Chapter 2 and Chapter 3, we investigated the major signal de-
tection methods and presented our proposed PSWD algorithms as
well as the Dimension Cancelation (DIC) method for mitigating the
Noise Uncertainty (NU) problem which is applicable to nearly all the
detection methods. The reported studies on spectrum sensing pay
most of the attentions to signal detection problem which is mainly
motivated by the regulators’ stringed requirements on protecting the
legacy TV broadcast users as the necessary condition of opening TV
band for secondary Dynamic Spectrum Access (DSA).

Due to the continuing innovations in new technologies and new
business models, it is expected that numerous heterogeneous sys-
tems will share the same spectrum resources in the future [13, 14].
For example, apart from the primary TV broadcast, some of the other
technologies or standards, such as IEEE 802.22[60], IEEE 802.11af[69],
ECMA-392[61], LTE[59] and cognitive Programme Making and Spe-
cial Events (PMSE)[70] are targeted at exploiting the TV band White
Space (TVWS) for providing new services. As a result, the challenge
arising is not only to protect the legacy PU, but also to optimize the
coordination and coexistence among different devices and networks,
especially heterogeneous ones. In this context, in addition to the
detection of PU’s signal, it is also desired to use spectrum sensing for
acquiring knowledge on other coexisting networks or devices. For
this purpose, based on the study on signal detection in Chapter 2

and Chapter 3, we propose a signal classification framework with the
robust implementation aiming at the major primary and secondary
standards coexisting in TV band.

We first review the representative signal classification schemes for
spectrum sensing reported in literatures. In [71, 72, 73], the authors
mainly focus on the classification based on signal’s PSD shape. The
Guard Interval (GI) with CP is taken into account for classifying
OFDM signals with similar PSD shapes. Most of the targeted signals
are actually not coexisting in the same frequency band, such as
UMTS, DVB-S, HiperLAN and IS-95. In [40, 74, 75, 76], classification
schemes for OFDM signals are proposed which are based on the
analysis of their cyclostationarity. Only the general signal models are
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discussed in these studies and the classification of standard-specific
signals is not considered. In [77], a classifier for LTE and WiMax is
proposed based on detailed analysis of the cyclostationary features
from both CP and pilot sub-carriers.

The reported studies on signal classification for CR have shown
great interest in OFDM since it is becoming the dominant modulation
scheme in today’s communication and broadcast standards. Most
of the standards in TV band are based on OFDM, such as DVB-T,
IEEE 802.22, IEEE 802.11af, ECMA-392 and LTE. Comparing with
the reported studies, the classification scheme proposed in this thesis
covers the major standard in TV band for the first time. Besides, the
robustness in real-world implementation is emphasized in the design
of the classifier and further validated in real-world experiment which
will be presented in Chapter 6.

4.2 problem formulation
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Figure 28: Transmission probability matrix from actual hypotheses to classi-
fication results in signal classification

The signal classification is essentially based on and extended from
the signal detection algorithms which are presented in Chapter 2

and Chapter 3. Assume there are M classes of interested signal types
which need to be classified and only one type of signal is presented
in the measured channel. The goal of the classification is to decide
correctly which type of signal is actually presented in the channel. We
define the hypothesis H0 being the case when no signal is presented,
which is the same as in the signal detection problem. The hypotheses
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Hm (m = 1, 2, ...,M) are defined for the cases when the signal type m
is presented. The transition probabilities from the actual hypotheses
to the classification results can be denoted in matrix form as shown
in Figure 28. The row numbers of the matrix denote the actual
presented signal’s types while the column numbers of the matrix
denote the resulted signal types by classification. Obviously, the
matrix of transition probability for ideal signal classification should
be an identity matrix I.

The following probabilities and the specific requirements on them
in signal classification problem are defined based on the matrix of
transmission probability:

• Probability of False Alarm (PFA):

PFA =

M∑
m=1

p0,m. (4.1)

The PFA is predefined according to the user’s requirement. It
should be insensitive to NU, which can be achieved using the
DIC method proposed in Section 2.10 for signal detection.

• Probability of Correct Classification (PCC) of signal type n:

PnCC = pn,n n > 0. (4.2)

The PnCC should be as large as possible for achieving accurate
classification. Particularly, the Primary User (PU) signals such as
DVB-T normally needs to be more stringently protected. Thus,
they need to be detected and correctly classified at lower SNR
comparing with other secondary unlicensed signals. Therefore,
more robust detection methods should be taken into account
for them.

• Probability of False Classification (PFC) of signal type n:

PnFC =
∑

m>0,m 6=n
pn,m n > 0. (4.3)

The PnFC characterizes the ambiguity of falsely classifying signal
type n as other types, which should be minimized. It is worth
to mention that although the classification of the signal is false,
it still means that the presence of the signal is detected.

• Probability of Mis-Detection (PMD) of signal type n:

PnMD = pn,0 = 1− P
n
CC − PnFC n > 0. (4.4)
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When the presented signal is neither correctly nor falsely classi-
fied, the mis-detection occurs, which should also be minimized,
especially for PU’s signal at low SNR.

• Probability of Correct Classification when Detected (PCCD) of
signal n:

PnCCD =
pn,n∑

m>0

pn,m
=

PnCC
PnCC + PnFC

=
PnCC

1− PMD
,n > 0. (4.5)

The PCCD is the probability of correct classification of the sig-
nal on condition that the signal is already detected. Comparing
with PCC, PCCD only characterizes the accuracy of differen-
tiating among the interested signals without considering the
hypothesis H0.

4.3 target signals in tvws and their unique features

The unique and signal-specific features are utilized by different de-
tection algorithms which makes unmatched signal appears to be
like noise. In this way, the classification is achieved by matching
the detection algorithms to received signal with properly designed
decision rules.

Since the goal of the signal classification is to identify the types or
standards of target signals, the signal-specific features are essential
to the success of classification. Therefore, the blind detections such
as EGD, CVWD-MME/CAV and PSWD-AG, which don’t require
the known features of the target signals are not applicable to the
signal classification. Instead, the detection algorithms utilizing certain
unique features of the target signals should be employed. The features
of different signals utilized by the detection algorithms illustrated in
Section 2 and Section 3 are summarized in Table 3.

Table 3: Signal Features Utilized by the Detection Algorithms

Detection Methods Utilized Features

PSWD-SM the shape of PSD

CVWD-EC the Covariance Matrix (CM)

MFD the pulse shaping filter or feature sequence

CP-SUM/SW the CP and DFT length of OFDM signal

FSA-SUM/2C the repeating period of feature sequence

CSD the features in spectral-cyclic frequency domain

The major systems operating or will potentially operate in TVWS
are considered in the proposed classification scheme. They are:
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• DVB-T: digital TV broadcast, licensed PU;

• IEEE 802.22 Wireless Regional Area Network (WRAN): bring
low-cost broadband access to hard-to-reach, low population
density areas instead of wireline accesses (e.g. DSL, optical
fiber);

• ECMA-392: for communications of personal/portable devices,
e.g. delivering high-defination (HD) video, campus-wide wire-
less coverage and interactive TV broadcasting services;

• 3GPP LTE: the 4G cellular and mobile communication standard,
may potentially operate in TV white space[78, 79];

• Wireless Microphone (WM): normally analog FM with band-
width which is less than 200 kHz.

It can be noticed that all the target signals listed above are OFDM-
based except the WM signal. These OFDM based standards have
similar bandwidths which lead to the similar flat-top PSD shapes.
It is shown in Table 4 that DVB-T, IEEE 802.22 and ECMA-392 in
8 MHz mode have almost the same bandwidth of more than 7 MHz,
while the LTE has several bandwidth configurations ranging from
1.25 MHz to 20 MHz and the 5 MHz mode suits one TV channel well.
The narrowband WM signal has the bandwidth of less than 200 kHz.
Therefore, the PSD shape is not a feature which is sufficiently unique
for classifying these signal types. Hence, the standard classification
scheme proposed in [71, 72] based on PSD shape is not applicable
here. The similar conclusion is also drawn in [73] and a more robust
classifier utilizing the difference in the guard interval (GI) with CP
is proposed in that paper. It is proved in Section 2.7 that the covari-
ance matrix utilized by the CVWD-EC and the pulse shaping filter
response utilized by MFD-EG are features similar to PSD, which are
therefore also not sufficiently unique for differentiating the OFDM
standards.

Table 4: Useful Parameters of the OFDM Based TVWS Standards for Classi-
fication

Standards Bandwidth Sampling Rate DFT Size CP ratio

DVB-T 7.612 MHz 64/7 MS/s 8192, 2048 1/4, 1/8, 1/16, 1/32

802.22 (8MHz mode) 7.178 MHz 9.136 MS/s 2048 1/4, 1/8, 1/16, 1/32

ECMA-392 (8MHz mode) 7.357 MHz 64/7 MS/s 128 1/8, 1/16, 1/32

LTE (5MHz mode) 4.5 MHz 7.68 MS/s 512

long: 1/4;

normal: 9/128×6

10/128×1

WM < 200 kHz N/A N/A N/A
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Inspired by the studies in [73, 75, 76, 77], we further explore some
other unique features for signal classification in addition to CP. The
cross-correlation based MFD-FS detection is very sensitive to CFO as
is shown in Figure 26, which is impractical for robust implementation
with low-cost hardware. According to the CSD based on SCF analysis,
if the OFDM symbols are continuously and periodically transmitted
exhibiting cyclostationarity, the CP can generate signatures in SCF
at cyclic frequencies n/Ts[18, 19]. The Ts is the length of the OFDM
symbol. Apart from this, the listed signals in Table 4 don’t have
features which can be revealed easily in the estimated SCF. Besides,
the CP feature can be more straightforwardly exploited using the
time-domain autocorrelation based methods, such as CP-SUM and
CP-SW illustrated in Section 2.9.1. The DVB-T signal also has the
unique periodical pilot tone structure which is utilized in the FSA
detections introduced in Section 2.9.2. It is concluded in Chapter
3 that the autocorrelation based detection has the advantages of
insensitivity to clock mismatch and multipath channel. Based on
the above analysis, the proposed signal classification scheme mainly
adopts the detections based on autocorrelation as the foundation.
Some basic parameters of these OFDM standards are listed in Table
4 showing their unique sampling rates, DFT length, CP length, etc.,
which decides the features at different time lags in autocorrelation.

The other special type of signal is the narrowband WM signal.
There is no standard-defined parameters of WM signal. Normally,
the signal is Frequency Modulated (FM) with bandwidth which is
less than 200 kHz and the carrier frequencies are allocated from
channel edge in the step of 25 kHz [80]. Since the narrowband WM
signals are normally sparsely distributed in the TV channels, if the
signal in the whole channel is received by a wideband receiver, the
Peak-to-Average Ratio (PAR) of the estimated PSD is generally larger
than the PAR of other OFDM signals’ flat-top PSD. For example,
considering a 8 MHz TV channel, Figure 29 shows that the PAR of
WM’s PSD is much larger than the PAR of DVB-T’s PSD, when the
SNRs of both signal are the same. This property of WM signal can
be taken as an unique feature in signal classification.

4.4 the classification framework

The proposed classification framework is based the combination of
the detection algorithms presented in Section 2. For OFDM based
standards, it is concluded in Section 4.3 that the autocorrelation-based
CP and FSA detections together with DIC are more robustness against
receiver’s practical imperfections such as NU, clock mismatching
and multipath channel. Besides, Reported studies in [73, 75, 76, 77]
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Figure 29: PSDs of WM signal and DVB-T signal showing large difference
in PAR, bandwidth; 8 MHz, SNR: 3 dB

shows good uniqueness of CP and Feature Sequence (FS) for signal
classification. For the sparsely distributed narrowband WM signal,
there is no deterministic features in autocorrelation, however, the PAR
of its PSD is generally larger than the flat-top PSDs of the wideband
OFDM signals, which can be utilized to classify it.

y[n]

H0  or H1

...

H0  or HOFDM,k  or  HWM

Signal Classification

Detection Algorithm 

for OFDM Sig. 1

Decision Rules

Detection Algorithm 
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Algorithm
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Λ = F(y[n]) Λ ≶ γ?y[n]

Λ1 /  γ1 Λ2 /  γ2 ΛWM

Figure 30: Classification framework based on parallel detection algorithms
combined with decision rules

In the proposed classification framework, various feature-based
signal detection algorithms are selected based on previous charac-
terization of the signal detection algorithms in terms of robustness,
uniqueness and feasibility. These detection algorithms are performed
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in parallel on the received signal with deterministic observation time.
The resulted detection metrics from different algorithms are analyzed
and compared using certain logic rules to decide which standard
or type of signal is actually received in the measured channel. The
classification framework is depicted intuitively in Figure 30.

Assume Λi is the metric of the detection algorithm which matches
OFDM signal class i:

Λi = Fi(y[n]) i = 1, 2, ...,K. (4.6)

The effective classification of the OFDM signals that identifies signal
type i from other signal types accurately should satisfy the following
condition:

Pr{Λi|Hi > Λi|Hj} = 1 (j 6= i i, j = 1, 2, ...,K)
and

Λi|Hi > 1.
(4.7)

If the featured time lags in OFDM signals’ autocorrelation are unique
for different signals, the above condition is expected to be well satis-
fied.

Specially, for classifying WM signal, we utilize its narrowband (<
200 KHz) feature which exhibits sparse distribution and high PAR
in estimated power spectrum density (PSD) of the signal in one TV
channel. The PAR of the estimated PSD Ŷ[m] from (2.32) is calculated
as

Φ = max(Ŷ[m])
/

Ŷ, (4.8)

in which Ŷ denotes the mean value of the estimated PSD Ŷ[m]. This
method for detection and classification of narrowband transmissions
is also applied in our previous development of the Cognitive Agile
Spectrum Testbed (COAST)[81].

Since the targeted OFDM signals may also exhibit high PAR in their
PSD if they experience frequency-selective fading, another property
called the Degree of Sparsity (DS) is also used together with PAR to
classify the WM signal:

Ψ =
∑

Ŷ[m]>(1+ρ)Ŷ

m
/
M (4.9)

The detection metric for WM signal is the logic result of if Φ and Ψ
are both larger than their respective thresholds:

ΛWM = (Φ > φ AND Ψ 6 ψ), (4.10)

which is either 0 or 1.
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After the received signal are processed by the detection algo-
rithms resulting detection metrics Λi for OFDM class i and ΛWM
for WM, the rules in (4.11) are used for deciding which signal oc-
cupies the channel (hypotheses ĤOFDM,k, ĤWM) or the channel is
vacant (hypothesis Ĥ0). It should be noted that the WM signal is
classified as long as the PAR and DS satisfies the condition. Since
the different OFDM detection algorithms has different threshold γi,
we take Λi/γi as unified metrics with common threshold of 1 for
finding the matched algorithm. Because each algorithms is specific
to certain standards and mode, one signal can be classified as long
as its corresponding algorithm is matched.

ĤOFDM,k :k = argmax
i

(Λi/γi), ΛWM = 0 and max
i

(Λi/γi) > 1

ĤWM :ΛWM = 1

Ĥ0 :max
i

(Λi/γi) < 1 and ΛWM = 0

(4.11)

4.5 simulation performances

Table 5: Signal Features and Detection Algorithms Used in Classification

Standards/Types Algorithms Utilized Feature

DVB-T FSA-2C periodical pilot tone structure in time domain

LTE (5 MHz mode) CP-SW (pre-align.) CP and DFT length, slot length

802.22 (8 MHz mode) CP-SUM DFT length, indifferent to CP length

ECMA-392 (8 MHz mode) CP-SUM DFT length, indifferent to CP length

WM PAR and DS of PSD high PAR & low DS in PSD due to narrowband

Table 6: The Target Signals and Modes for Performance Evaluation

Standards/Types Modes

DVB-T 8 modes: all the CP and DFT lengths

LTE DL (5 MHz mode) 2 modes: TD-LTE (UL/DL conf. 2), long CP and normal CP

802.22 DL (8 MHz mode) 1 mode: 8 MHz, 1/16 CP

ECMA-392 (8 MHz mode) 1 mode: 8 MHz, 1/16 CP, duty cycle: 0.5

WM 1 mode: FM, loud speaker

The selected target signals and their different modes involved in
performance evaluation are listed in Table 6, which are fully covered
by the selected detection algorithms show in Table 5. For the eight
modes of DVB-T signal, the configurations of FSA-2C are different
due to the various lengths of CP and DFT. Therefore, eight mode-
specific FSA-2C detectors are applied in the implemented classifier.
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Similarly, the CP-SW detection also relies on the two different CP
length of the LTE signal. Hence, two mode-specific CP-SW detectors
are applied. The CP-SUM detection for IEEE 802.22 and ECMA-392

signal rely only on the DFT length and are indifferent to their dif-
ferent CP lengths. Hence, the CP-SUM with one configuration can
be applied to all the modes with the same DFT length. It should be
noted that the longer the CP length, the better the detection perfor-
mance can be achieved by CP-SUM and CP-SW as was presented in
Section 3.2.6.

Table 7: Transition Probabilities for Classification of DVB-T Signal Using
FSA-2C, Observation Time: 20 ms, PFA: 0.0064, SNR: -12 dB
H1,2,3,4: 8K, 1/4, 1/8, 1/16, 1/32 CP modes,
Ĥ5,6,7,8: 2K, 1/4, 1/8, 1/16, 1/32 CP modes

Ĥ1 Ĥ2 Ĥ3 Ĥ4 Ĥ5 Ĥ6 Ĥ7 Ĥ8

H1 0.980 0 0 0 0.02 0 0 0

H2 0 0.966 0 0 0 0.034 0 0

H3 0 0 0.984 0 0 0 0.016 0

H4 0 0 0 0.976 0 0 0 0.024

H5 0 0 0 0 1 0 0 0

H6 0 0 0 0 0 1 0 0

H7 0 0 0 0 0 0 1 0

H8 0 0 0 0 0 0 0 1

The transition probability matrix in Table 7 shows that for classi-
fying different modes of DVB-T, there are some small ambiguities
among the modes with different DFT lengths but the same CP length
ratio. This can be explained by that when the CP length ratios are
the same, the FS length of the signal in 8K mode is just four times
of the signal in 2K mode. Thus the FSA-2C configured for the 8K
mode can also detect the signal in 2K mode. However, this ambiguity
doesn’t affect the classification of DVB-T from other standards. Since
the main goal of classification is to recognize the standards of the
signal, the different modes of DVB-T are combined into one class in
the simulation. Similarly, the TD-LTE signal in both normal CP mode
and long CP mode are also combined into one class. Therefore, there
are totally five targeted classes of signals as listed in Table 6.

The simulation performances of signal classification are presented
in Figure 31 and Figure 32. For each SNR, the actually appeared
signal is randomly chosen from the standards and modes listed in
Table 6 with equal probabilities. Then the classification is performed
following the rules in (4.11) which concludes which class of signal is
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received or none is received, thus H0. Figure 31 presents the overall
classification performances of all the signal types, which shows that
the PCCD is always higher than PCC and for most of the simulated
SNRs, the PCCD are one. This means that as long as the existence of
the signal is successfully detected, it can be nearly always correctly
classified. This is a favorable result showing very small ambiguity
among different standards in classification. Figure 32 presents the
PCC of each type of signals. It shows that when the SNR is large
enough, each class of signal can be perfectly detected and classified.
It should be noted that higher robustness at low SNR for classifying
the primary signal DVB-T is also achieved.

The signal classification scheme will be further validated using the
experiments carried on our spectrum sensing testbed. Good match
between the simulated results and experimented results is achieved
which will be presented in Section 6.5.
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Figure 31: The overall signal classification performances, target signals
listed in Table 6, detection algorithms listed in Table 5, observa-
tion time: 20 ms, PFA: 0.01

4.6 concluding remarks

Based on the signal detection algorithms and their performance
evaluation using simulation presented in Chapter 2 and Chapter 3, a
classifier for the signals in TV band is proposed in this chapter.

Section 4.1 illustrates the motivation and application of designing
the signal classifier. Due to the continuous emerging of new stan-
dards in TV band, the coexistence among heterogeneous networks
becomes more and more complex. Then the goal of spectrum sens-
ing is not limited to the detection of the primary TV signal at low
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Figure 32: The classification performances of specific signals, target signals:
Table 6, detection algorithms: Table 5, observation time: 20 ms,
PFA: 0.01

SNR. Meanwhile, the knowledge on other coexisting networks and
devices should be also obtained for optimizing the coordination and
coexistence among heterogeneous wireless systems. This leads to
the demand of developing a versatile signal classifier which is more
capable than the single-purposed signal detector.

In Section 4.2, the signal classification problem is clearly formulated
based on the transition probability matrix from actual hypotheses to
classification results. Extended from the PMD and PFA in the signal
detection problem, several other performance indicators are defined.
They are the PFC, PCC and PCCD.

Section 4.3 specifies the target signals of DVB-T, TD-LTE, IEEE
802.22, ECMA-392 and WM and summarizes their features which
can be utilized in classification. It is concluded that CP and FSA
based detections utilizing the unique time lags in autocorrelation are
most suitable for classifying the different OFDM-based standards,
which are caused by the unique FFT and CP lengths as well as the
pilot structure. The WM signal can be classified using the property
of higher PAR in the estimated PSD.

The proposed classification framework is illustrated in Section
4.4, which is essentially the combination of various feature based
detection algorithms together with a properly designed decision
rules. Using this framework, in Section 4.5, simulation tests are
performed for classifying the five classes of signals with different
modes. The results shows that the proposed scheme can achieve
robust classification with small ambiguity among different standards.

In Chapter 6, the further evaluation of the signal classifier with
real-world implementation on our sensing testbed will be presented.
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E N H A N C E D S P E C T R U M S E N S I N G W I T H
E M B E D D E D C Y C L O S TAT I O N A RY S I G N AT U R E S

5.1 introduction

Part of the communication and broadcast signals exhibit inherent
cyclostationarity due to their periodical structures, such as preamble,
pilot, CP, sinusoid carrier and spreading code, etc. In Section 2.8,
the Spectrum Correlation Function (SCF) and its normalized version
Auto-Coherence Function (ACF) are introduced which are taken as
the tools for analyzing signal’s cyclostationarity. The examples of the
inherent cyclostationary signatures of BPSK and QPSK modulated
signals revealed by ACF are shown in Figure 4, Figure 5 and Figure
6 respectively. In Gardner’s work [82, 83], the different signatures of
BPSK and QPSK are also presented.

If the OFDM symbols are continuously and periodically transmit-
ted, cyclostationary signatures generated from CP can be revealed
in SCF and ACF at cyclic frequencies n/Ts[19, 18], in which Ts is the
length of the OFDM symbol including the CP segment. Illustrated in
Section 2.9.1 and Section 4.3, the feature of CP can be also explored
using CP-SUM and CP-MAX detections based on time-domain auto-
correlation for detecting or classifying the OFDM based standards.
Apart from the inherent signatures from CP, it was proposed in
[18, 19, 20, 21] that Embedded Cyclostationary Signature (ECS) can
be artificially generated by manipulating the correlation among part
of the sub-carriers (SC). As an example, Figure 33 shows the SCF of
an OFDM signal exhibiting both of its inherent signatures from CP
and an ECS generated by two correlated Signature Sub-Carrier (SSC).

The artificially generated ECS provides much higher flexibility
than the signal’s inherent signature. As a result, it can open wide
possibilities for enhancing the information which can be obtained
via spectrum sensing. Extending further from the signal detection
and classification with inherent standard-specific features discussed
in previous contents, in this chapter, the novel spectrum sensing
schemes utilizing the flexible ECS for signal classification and deliv-
ering arbitrary extended information are proposed.

According to the multi-carrier signals such as CP-OFDM and
OFDM-OQAM, the information bits are coded and modulated on
sub-carriers which are orthogonally and compactly allocated in fre-
quency domain. It was proposed in [18, 19, 20, 21] by Sutton and his

71
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Figure 33: Embedded and inherent cyclostationary signatures of OFDM
signal revealed in SCF, OFDM DFT size: 64, OFDM CP size: 16

colleagues that the flexible ECS can be created by manipulating the
correlation among SSCs in OFDM waveform, which doesn’t interfere
with the normal data transmission on other sub-carriers. In this way,
signal detection, device/network identification, frequency acquisition
and spectrum rendezvous can be achieved by extracting the ECS at
receiver side. This approach is essentially a mean of enriching the
knowledge which can be obtained via spectrum sensing. Based on
their pioneering work, it is proposed by us in [42] and [41] that a
stand-alone beacon signal utilizing the cyclostationary signature can
be further applied for indicating spectrum allocations for enhancing
Dynamic Spectrum Access (DSA).

In the traditional DSA scenarios, it is challenging for devices or
networks, especially heterogeneous ones to obtain comprehensive
knowledge on each other for optimizing their coordination and
coexistence:

1. In classical signal detection problem of spectrum sensing, SU
can only sense the presence or absence of certain type or stan-
dard of signal in the interested bands.

2. Moving one step forward, using signal classification and identi-
fication, SU can further recognize the types or standards and
may extract minor parameters of unknown signals.

3. In the geo-location database approach, abundant information of
other devices or networks can possibly be obtained. The access
to a remote database is required which is not always available
in all the applications. Besides, in a very dynamic spectrum
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Figure 34: Extended information carried on cyclostationary signatures of
multi-carrier signal

sharing scenario, frequent update of database is needed which
may become difficult. The current development of the geo-
location database is aimed at protecting Primary User (PU)s [84],
such as TV broadcasting and PMSE users, other coexisting
Secondary User (SU)s are mostly ignored. Hence, this approach
is not adequate for improving the coordination and coexistence
among dynamic SUs.

Trying to solve these challenges, a scheme of delivering extended
information using ECS for multi-carrier signal is proposed in this
thesis, which enables the heterogeneous systems to get much more
knowledge on each other via spectrum sensing than the traditional
signal detection and classification approaches. Some examples of the
potential applications of the extended information and their benefits
are listed as follows.

1. Device/Network’s Identity and Parameters
The identity and parameter information can assist users to
quickly discover available services, recognize and synchronize
to peer devices in spectrum rendezvous [19, 18].

2. Geo-location
With this information, networks can estimate and optimize their
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mutual interference levels through calculation of their relative
locations. When positioning via GPS, cellular network or WiFi
network is not possible, users can make use of nearby networks’
geo-location information.

3. Spectrum Allocation
Networks can declare their spectrum allocations to each other,
which facilitates their coordination of spectrum usages. The
knowledge of each other’s geo-location can be also involved in
the optimization of their coordination.

4. Shared Knowledge
The knowledge obtained by spectrum sensing or access of
database can be shared among heterogeneous networks or de-
vices to reduce the overhead of redundant sensing and database
inquiries. Besides, it can help to mitigate the hidden-node prob-
lem for devices which are blind to some other networks due to
deep shadow fading.

It should be noted that the decoding of the extended information
carried on ECS requires only the proposed cyclostationary detection
techniques which will be illustrated later. The much more compli-
cated procedures in normal digital receivers including synchroniza-
tion, channel estimation/equalization and demodulation/decoding
are avoided. Thus, the decoding of the extended information is uni-
fied in one framework which is much more cost-efficient than the
integration of multiple standard-specific receivers. In the proposed
scheme, only a small part of sub-carriers are taken as SSC for gener-
ating ECS resulting small increase of overhead.

In the following contents of this chapter, we first introduce the
generation and extraction of ECS with an improved scheme presented.
Then, the ECS based signal classification is introduced showing the
advantage of the improved ECS generation scheme. The novel scheme
of using ECS for delivering extended information is further presented
in Section 5.4 with detailed illustration on the amount of information,
encoding and decoding as well as some simulation results in practical
conditions. The proposed spectrum sensing based on ECS in this
chapter is further validated using real-world experiments with RF
signal which is further presented in Chapter 6.
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5.2 generation and extraction of ecs

5.2.1 Scheme 1: Generating ECS with Correlated Constellations on Signa-
ture Sub-Carriers (SSC)

The OFDM signal is essentially a set of statistically independent
streams of modulated constellations which are transmitted on parallel
sub-carriers. Assuming the set includes all the effective sub-carriers
is A, the OFDM signal can be then represented by

x[p] =
∑
k

∑
n∈A

xk,ne
2πjnpM q[p− kNs], (5.1)

in which xk,n is the modulated QAM or PSK constellation on the nth
sub-carrier of the kth OFDM symbol, q[p] is the pulse shaping win-
dow and Ns is the period of OFDM symbol. The generation of OFDM
symbols is essentially an Inverse Discrete Fourier Transform (IDFT)
operation and is usually implemented with the more efficient Inverse
Fast Fourier Transform (IFFT). Normally, an OFDM symbol period
include a segment of CP for relaxing channel equalization, which
leads to a symbol length which larger than the actually DFT size:

Ns = NCP +NDFT . (5.2)

Since in multi-carrier signal, the modulated constellations are car-
ried independently on many narrowband sub-carriers, which give
rise to the possibility of manipulating the spectral correlation in fre-
quency domain with small granularity. Part of the sub-carriers are
taken for embedding special signal with intended correlation pattern,
which are name signature sub-carrier (SSC) in this thesis. The SSCs
are grouped into several mutually exclusive sets G1, G2, ..., GR and
the constellations on the SSCs in the same group are correlated with
each other:

xk,n1 = xk,n2 n1,n2 ∈ Gi,n1 6= n2, (5.3)

and the constellations on SSCs belonging to different groups are
statistically independent:

lim
K→∞

K∑
k=1

xk,n1x
∗
k,n3 = 0 n1 ∈ Gu,n3 ∈ Gv, Gu 6= Gv. (5.4)

Thanks to the orthogonality among different sub-carriers, the SSCs
don’t interfere the normal data transmissions on other sub-carriers.
The signatures in estimated SCF are generated by the correlation
of each of the two SSCs within one group. Thus, for the group Gi
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having gi number of SSCs, the total number of signatures from the
group in SCF is(

gi
2

)
=

gi!
2(gi − 2)!

gi > 2. (5.5)

This scheme is adopted in all the literatures about applying ECS in
multi-carrier signal and is named Scheme 1 in this thesis. An example
of assigning signatures into two groups for an OFDM signal is given
in Figure 35. In Group 1, there are 3 SSCs assigned resulting

(
3
2

)
= 3

ECSs in SCF. And in Group 2, there are 4 SSCs resulting
(
4
2

)
= 6

ECSs.
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Figure 35: Example of two groups of ECS in OFDM signal revealed by ACF,
OFDM DFT length: 64, OFDM CP length: 16, Group 1: 3 SSCs,
Group 2: 4 SSCs

5.2.2 Scheme 2: Generating ECS with Sinusoids on SSCs

Another scheme is proposed in this thesis that the SSCs with corre-
lated constellations can be replaced by sinusoid tones when there is
only one group of SSCs for embedding signature in the signal. As
a result, there is no need to consider the statistical independence
among the SSCs in different groups, which enables the use of the fully
correlated sinusoids. In this scheme, the normal data transmitted on
other sub-carriers are modulated by

xdata[p] =
∑
k

∑
n∈A−G

xk,ne
2πjnpM q[p− kNs], (5.6)

which can be implemented using DFT. The G is the set of SSCs with
sinusoids for generating signature signal

xSSC[p] =
∑
n∈G

e2πj
np
M . (5.7)
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Then the OFDM signal with ECS becomes the summation of the data
signals and the signature signals.

x[p] = xdata[p] + xSSC[p]. (5.8)

This proposed scheme is called Scheme 2 in this thesis and rooted
from our previous work in [41].

5.2.3 SCF Estimator for Extracting ECS

In Section 2.8, the analysis of cyclostationarity using SCF estimated
by both Time-Smoothed Cyclic Cross Periodogram (TS-CCP) and
Frequency-Smoothed Cyclic Cross Periodogram (FS-CCP) is presented.
The TS-CCP has lower complexity since the constraint (2.60) can be
satisfied with shorter DFT length [19, 18]. Therefore, the TS-CCP
is adopted in our implementation of SCF estimator using digital
processing.

DFT Z
 -m

PSD 

(Periodogram)

SCF

(TS-CCP)

ACF

Figure 36: Digital implementation of SCF and ACF estimator

The digital TS-CCP estimator is formulated as:

S[n,m] =
1

L

L−1∑
l=0

Yl[n]Y
∗
l [n−m] m,n = 0, 1, ...,NDFT − 1, (5.9)

in which

Yl[n] =

NDFT−1∑
i=0

y[lD+ i]v[i]e
−2πj ni

NDFT n = 0, 1, ...,NDFT − 1 (5.10)

is the NDFT -point DFT of the received signal y[p]. Since the smallest
granularity of the cyclostationary signatures in frequency domain
is the sub-carrier’s spacing, the inherent OFDM signal’s DFT length
is also used here for ACF estimation, which provides sufficient fre-
quency resolution. The v[i] is the smoothing window of length NDFT .
We use rectangular window featuring high freqeuncy resolution
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which can differentiate adjacent signatures well. The spectral frequen-
cies and the cyclic frequencies are indexed by n and m respectively.
The ACF can be further estimated by normalizing the SCF:

C[n,m] =
|S[n,m]|√

(S[n, 0]S[n−m, 0])

=
|
∑L−1
l=0 Yl[n]Y

∗
l [n−m]|√∑L−1

l=0 |Yl[n]|
2
∑L−1
l=0 |Yl[n−m]|2

.
(5.11)

It should be noted that the shifting step D in (5.10) for calculating
the TS-CCP is different in Scheme 1 and Scheme 2. In Scheme 1, D = Ns,
because the cyclic period of the SSCs with correlated constellations
is the same as the OFDM symbol period Ns. In Scheme 2, D = NDFT
which is shorter than the OFDM symbol period, because the cyclic
period of the SSCs carrying sinusoids with continuous phase is the
same as the DFT length. For the same observation time, since the
cyclic period of Scheme 2 is shorter, more number of averaging is
performed in estimating SCF, which can lead to some performance
improvement in detecting the signatures. The other advantage of
Scheme 2 is that only the knowledge of DFT length is needed while
the CP length is not needed by the detector, which is particularly
favorable for detecting the OFDM signal which has multiple options
of CP lengths.

5.3 ecs for signal classification with improvement

The signature generations reported in [18, 19, 22] are essentially the
manipulation of M SSC groups, each group has only two correlated SSCs
which has the same frequency separation. There is no SSC shared by differ-
ent groups. In this way, all the signatures have the same cyclic frequency
which is equal to the frequency separation of the two SSCs in a group. This
method is actually a specific configuration of the Scheme 1 presented in
Section 5.2.1 and the correlation among SSCs are only partially explored.
The amount of signatures Nsig. in estimated SCF or ACF is equal to the
amount of groups M. The generation of the signature using this method as
well as the estimated ACF is presented in Figure 37.

It is expected that the classification performance can be improved by
further exploiting the spectral correlations of all the SSCs. An example
showing the method placing all six SSCs in one group and its resulted
ACF are presented in Figure 38. When sinusoids are placed on the SSCs,
this assignment of signatures becomes actually the Scheme 2 introduced in
Section 5.2.2. For fair comparison with the reported signature assignment
for signal classification in [18, 19], the total number of sub-carriers 2M and
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signal classification proposed in this thesis, 6 fully correlated
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their assignment patterns are kept the same. Then, the number of signatures
revealed in the proposed method becomes Nsig. =

(
2M
2

)
=M(2M− 1).

In the ECS based signal classification, a group of templates are correlated
with the estimated ACF and the one with maximum correlation value
is taken as the classification result. A template {(nk,i,mk,i)} is essentially
the spectral and cyclic frequencies pair of the signature for class k. The
correlations of the estimated ACF with the templates are taken as the
detection metrics:

Λk =

∑Nsig.,k
i=1 C[nk,i,mk,i]

Nsig.,k
. (5.12)

The hypothesis H0 when there is actually no signal received should
also be detected using a threshold γ according to a desired PFA. However,
this issue is not taken into account in the classifier reported in [19, 18].
Define hypothesis Hk,k > 0 being the situation when signal of class k
is transmitted, which is under the same signal classification framework
illustrated in Section 4.4. The classification is performed as

Ĥk :k̂ = argmax
k

(Λk), max
k

(Λk) > γ

Ĥ0 :max
k

(Λk) < γ
(5.13)
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Figure 39: PCC of ECS based signal classification, OFDM DFT size: 64,
OFDM CP size: 16, number of sub-carriers: 52, number of SSCs:
6, number of OFDM symbols: 30, 3 groups for partial correlation,
number of classes: 4, PFA: 0.01

The performance of signal classification using ECS with different schemes
are simulated and presented in Figure 39. The “partial” case is the way in
[18, 19] that the six SSCs are divided into three groups, each of them has
two correlated SSCs, which can generate three ECSs as presented in Figure
37. The “full” case is that all the six SSCs are in one group, thus they are
fully correlated resulting 15 ECSs as shown in Figure 38. These two cases



5.4 extended information carried on ecs 81

are actually specific configurations of Scheme 1 illustrated in Section 5.2.1.
In Scheme 2, the six SSCs are fully correlated sinusoids which generates
the same ECS pattern as the “full” case in Scheme 1(Figure 38). Figure 39

shows that the Scheme 2 and the “full” case of Scheme 1 have remarkable
gain over the “partial” case of Scheme 1, which is caused by the increased
number of ECS due to full correlation among SSCs. The performance of
Scheme 2 is slightly better than the “full” case of Scheme 1, which is due to
the increased times of averaging L in (5.9) as the result of using smaller
shifting step D = NDFT instead of using D = Ns.

5.4 extended information carried on ecs

The proposed scheme of carrying extended information on multi-carrier
signal is based on the abundant ECS patterns generated by different combi-
nations of SSCs’ frequency locations. The Scheme 2 using fully correlated
sinusoids as SSCs are adopted thanks to its favorable properties such as
indifferent to CP lengths and more times of averaging in estimating ACF,
which are already presented in previous sections of this chapter.

5.4.1 The Potential Amount of Information

It can be noticed in Figure 37 and Figure 38 that on the spectral-cyclic
frequency plain of ACF, the spectral frequency of an ECS is equal to the
larger one of its two corresponding SSCs’ frequencies while the cyclic
frequency of an ECS is equal to the difference of its two corresponding SSCs.
Based on this relation, the frequency locations of the SSCs can be detected
by the coordinates of ECSs on the spectral-cyclic frequency plain of ACF.

Assume an OFDM system has NC effective sub-carriers which belong
to the set A, among which there are totally NSSC sub-carriers are taken
as SSCs for generating ECSs in ACF. The information is encoded in the
combinations of the SSCs. There are totally

K1 =

(
NC
NSSC

)
(5.14)

combinations can be achieved for the given number of effective sub-carriers
and SSCs. All these combinations are indexed using unique numbers, which
result the total number of encoded information bits:

Nbit =
⌊

log2 K1
⌋
=

⌊
log2

NC!
NSSC!(NC −NSSC)!

⌋
. (5.15)

For example, according to a multi-carrier system with 200 effective sub-
carriers, if 10% thus 20 sub-carriers are taken as SSCs, the number of
information can be encoded is

⌊(
200
20

)⌋
= 90 bits. The amount of bits can be

carried on ECS with different overhead ratios is further presented in Figure
41. It shows that when the overhead ratio of SSC is fixed, the potential
number of encoded bits increases linearly along with the increase of the
effective sub-carriers.
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5.4.2 Encoding and Decoding of Extended Information on ECS

5.4.2.1 Encoding

According to the Scheme 2 illustrated in Section 5.2.1,the information is
carried only on the frequency locations of SSCs. Recalling the notations
from pervious sections of this chapter, A denotes the set of all the NC
effective sub-carriers, G is the set of all the NSSC fully correlated SSCs with
sinusoids. The encoding of extended information on ECS using Scheme 2 is
depicted in Figure 42

An important issue which needs to be addressed in encoding is how to
detect the hypothesis H0 when the interested signal is not presented and
how to identify the situation when the decoded information is error. Hence,
we define another set S with size NS for limiting the frequency locations
of the SSCs and it should satisfy G ⊂ S ⊂ A and NC > NS > NSSC. When
the detected set of SSCs Ĝ doesn’t belong to S, hypothesis H0 or wrong
decoding is concluded and another sensing test may need to be conducted
again.

Since there are NS possible frequencies for the NSSC SSCs, the amount
of information can be carried becomes

Nbit =

⌊
log2

(
NS
NSSC

)⌋
=

⌊
log2

NS!
NSSC!(NC −NSSC)!

⌋
(5.16)

bits. For example, assume an OFDM system has NC = 200 effective SCs,
NS = 100 of them are allowed for placing SSCs, in which only NSSC = 20

sub-carriers are actually SSCs. The overhead ratio is 20÷ 200 = 10% and
the number of bits can be denoted by the combinations of SSCs’ frequencies
is
⌊(
100
20

)⌋
= 68, which is large enough to accommodate some extended

information described in Section 5.1. Some examples are listed as follows:

1. The BSSID (Basic Service Set Identity) of IEEE 802.11 WLAN is 48 bit.
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Figure 43: 3D view of the ACF for an OFDM signal with ECS, DFT size: 64,
CP length: 16, effective SCs: 52, number of SSCs: 10

2. The metric of longitude or latitude which is accurate to 30.8 me-
ters in distance can be denoted by dlog2(360× 60× 60)e = 21 bits
respectively.

3. The channel numbers in TV band, 2.4 GHz band and 5 GHz are less
than 100. The status of each channel can be simply denoted by one
bit for available or not unavailable.

A question arising here is how to map the binary information bits to the
different combinations of SSCs’ frequency set G. In [85], an algorithm is
proposed for generating a vector with certain combination from a lexico-
graphical index and the programming implementation of this algorithm is
contributed in [86]. The information bit word can be translated to the lexico-
graphical index value using the binary to decimal conversion and mapped
to the SSCs’ frequency set G using the algorithm. Then the multi-carrier
signal with ECS can be generated following (5.7) and (5.6) in Scheme 2.

5.4.2.2 Decoding

At the receiver side, in order to decode the extended information carried
on ECS, the ACF C[n,m] which is essentially the normalized SCF should
be estimated using the method presented in Section 5.2.3. In Figure 43,
an example of the estimated ACF for an OFDM signal with embedded
signatures is presented. It shows unique ECS pikes at some spectral-cyclic
frequency pairs, which are generated by the coherence between the SSCs.
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Path of Signature’s 
Coherence (PSC)

Figure 44: Top view of the ACF for an OFDM signal with ECS showing PSC
of one SSC, DFT size: 64, CP length: 16, effective SCs: 52, number
of SSCs: 10

A method is proposed in this thesis for translating the ECS pikes to the
detected frequency set of SSCs Ĝ. Since every two SSCs can generate an ECS
pike in ACF, a path showing the coherence of one SSC with all other SSCs
can be found in the plain of spectral-cyclic frequencies, which is named the
Path of Signature’s Coherence (PSC) and depicted in Figure 44.

Assume Cm,m ∈ A is the set of all the values along the PSC belonging
to the SC with index m. The maximum value of Cm’s elements are then
found by:

c̃[m] = max(Cm). (5.17)

Then the frequency set of SSCs Ĝ can be detected by finding out the indexes
of the NSSC largest items among c̃[m]:

Ĝ =
{
m
∣∣∀i : c̃[i] < c̃[m], i 6∈ Ĝ

}
. (5.18)

There are two situations when Ĝ could be invalid and these situations
should be discovered by the receiver:

• In hypothesis H0 when there is actually no interested signal in the
channel, a random set Ĝ is detected. This situation can be discovered
by checking wether Ĝ ⊆ S. The probability of failing to discover this
situation, thus false alarm when there is no signal, can be calculated
by

PFA =

(
NS
NSSC

)/(
NC
NSSC

)
=

NS!(NC −NSSC)!
NSSC!(NS −NSSC)!

, (5.19)
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in which NSSC, NS and NC are the numbers of elements in set G, S
and A respectively. Taking the example in Section 5.4.2.1, according
to an OFDM signal with NSSC = 20, NS = 100 and NC = 200, the
PFA is as low as 3.32× 10−7.

• When the detected SSC set Ĝ differs from the transmitted SSC set G
due to the destruction from noise or frequency-selective fading, this
situation can be also discovered by checking wether Ĝ ⊆ S. However,
when the wrong frequencies in Ĝ still fall into S, they cannot be
discovered. Assume there are L wrong SSCs in Ĝ, the Probability of
Discovering the Wrong SSCs (PDW) can be calculated by

PDW = 1−

(
NS−NSSC

L

)(
Nc−NSSC

L

)
= 1−

(NS −NSSC)!(NC −NSSC − L)!
(NC −NSSC)!(NS −NSSC − L)!

.

(5.20)

It shows that the more the wrong SSCs, the more probable they can
be discovered. Taking the above example, for one wrong SSC in Ĝ,
PDW = 0.56; for two, PDW = 0.80.

After the frequencies of SSCs are detected and their correctness is vali-
dated using set S, the bits of extended information can be decoded from
Ĝ using the algorithm proposed in [86]. The algorithm converts the com-
bination vector Ĝ back to lexicographical index, which is essentially the
reverse algorithms of [85]. The binary form of lexicographical index value
is actually the extended information bit word.

5.4.3 Simulation Performances

This section presents the simulation performances of decoding the extended
information carried on ECS under practical conditions such as Carrier
Frequency Offset (CFO) and frequency-selective channel fading.

Since the decoding relies on the locations of the ECS on the spectral-cyclic
frequency plain, the frequency shift of SSCs caused by CFO can lead to
some performance degradation. Fig.45 shows the destruction from CFO
to the decoding performance. However, when the CFO is less than 0.2
sub-carrier spacing, the degradation is insignificant.

The multipath fading of wireless channel in time domain can be translated
into the frequency selective fading which may greatly attenuates part of the
SSCs and degrade the decoding performance. Fig.46 presents the impact
of frequency-selective fading on decoding. The 3GPP typical urban (TUx)
and rural area (RAx) channel models are applied, which features higher
and lower frequency selectivity respectively. The results show that high
frequency selectivity can lead to severe performance degradation.
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Figure 45: Probability of erroneous decoding of the extended information
with CFO, DFT size: 256, CP length: 32, number of OFDM sym-
bols: 30, effective SCs(size of A): 200, size of S: 50, number of
SSC: 10

-2 0 2 4 6 8 10 12 14 16 18 20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SNR (dB)

Pr
ob

ab
ili

ty
 o

f E
rr

on
eo

us
 D

ec
od

in
g

 

 
AWGN
3GPP TUx
3GPP RAx

Figure 46: Probability of erroneous decoding of the extended information
with frequency-selective fading channel, DFT size: 256, CP length:
32, number of OFDM symbols: 30, effective SCs(size of A): 200,
size of S: 50, number of SSC(size of G): 10
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5.5 concluding remarks

This chapter presents two novel techniques of embedding cyclostationary
signatures in multi-carrier signal for enhancing spectrum sensing. The first
one presented in Section 5.2.3 is to utilize the different patterns of ECS for
signal detection and classification, which is similar to the spectrum sensing
techniques illustrated in Chapter 2 and Chapter 4. However, instead of
using the inherent features in the signal, the ECS is intentionally created
with flexible patterns, which can enable some new applications, such as the
network identification and rendezvous in DSA.

The ECS-assisted signal detection and classification was originally pro-
posed by P. D. Sutton and his colleagues in [18, 19, 20, 21]. Based on their
work, in this thesis, a new scheme (Scheme 2) of using fully correlated sinu-
soids on SSCs for generating ECS is proposed, which can give improved
classification performance over the reported original scheme (Scheme 1) in
which the ECS is generated using correlated constellations on SSCs. Besides,
the knowledge of CP length is not needed by the sensing receiver in the
(Scheme 2), which is more favorable to the OFDM signal with multiple
options of CP lengths.

Another novel technique proposed in this chapter is to use the ECS for
carrying extended information, which can greatly enhance the knowledge
gathered by spectrum sensing. The extended information can be device
or network’s identity and parameters, geo-location, spectrum allocation
and spectrum sensing results etc. The encoding and decoding methods for
the extended information are illustrated in Section 5.4.2. The simulated
decoding performances considering practical constraints such as CFO and
multipath fading are presented in Section 5.4.3, which shows its feasibility.

The two techniques using ECS are further implemented and validated
using the sensing testbed with real-world signal transmissions, which will
be presented in Chapter 6.
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6.1 introduction

In Chapter 3, the simulation performances of various signal detection meth-
ods for different types of signals are presented and compared considering
some hardware imperfections. It is concluded by the simulations that the
autocorrelation based detection methods, such as Feature Sequence Auto-
correlation (FSA) based detections and Cyclic Prefix (CP) based detections,
are more favorable due to their robustness against hardware imperfections
and low complexities. Meanwhile, the autocorrelation based detections
strongly rely on the unique features of different OFDM based standards
and hence can be well applied to the classification of all these standards,
which is illustrated in Chapter 4 with simulation performance presented.
Chapter 5 presents the novel schemes of using ECS in multi-carrier signal
for signal classification and delivering extended information.
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Figure 47: The structure of the spectrum sensing testbed

Computer simulations of these spectrum sensing techniques are per-
formed, which effectivly evaluate the sensing performance in idea situation
or with part of the hardware effects modeled. However, not all of the real-
world conditions can be taken into account in simulation. For example,
the noise in simulations are often modeled as Additive White Gaussian
Noise (AWGN) in reported literatures on spectrum sensing, but in practices,
the noise is not perfectly white due to the filters’ responses in receiver.
Besides, spurs are often presented in the received signal which is harmful to
sensing performances, especially for autocorrelation based signal detections.

89
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The insufficiency of computer simulations draws the necessity of im-
plementing the spectrum sensing scheme on real-world devices for exper-
imental studies, which can further validate the feasibility and evaluate
the performance in practical conditions. For this purpose, an experimental
platform is built which consists of the following main components:

• Host Computer The host computer is a normal desktop PC with Win-
dows operating system running on it. The digital waveform genera-
tors for signals of different standards or types as well as the various
spectrum sensing algorithms are implemented in Matlab software on
the host computer. Another task of the host computer is to configure
the parameters and control the procedures and timing of spectrum
sensing measurement.

• Agilent E4438C Vector Signal Generator [87]
The E4438C can generate and transmit arbitrary waveforms into the
air. It support maximum bandwidth of 80 MS/s, carrier frequency
range from 250kHz to 6GHz and adjustable transmit power range
of -136 to +17dBm with level accuracy of ±0.5dB. The transmitted
signal is downloaded from the host computer to the generator via
Ethernet connection, which is supported by the Waveform Download
Assistant software implemented in Matlab.

• Ettus Research USRP2 + WBX RF Daughter-board SDR Platform [88]
The Universal Software Radio Peripheral (USRP) is a series of cost-
effective Software Defined Radio (SDR) platforms which enable the
user to transmit and receive arbitrary signal within a wide frequency
range. It provides the options of signal processing on host computer,
onboard FPGA, DSP or embedded systems. In our configuration, the
USRP2 motherboard performs analog-to-digital and digital-to-analog
conversions (ADC/DAC) and is interfaced with the host computer by
Gigabit Ethernet. The maximum supported sampling rate is 25MS/s
which is enough to accommodate one TV channel. The WBX daughter-
board is essentially a RF transceiver supporting the carrier frequency
range of 50MHz to 2.2GHz which well covers the TVWS. Unlike the
E4438C signal generator which has large internal memory for storing
signal waveforms, the transmitted and received signal is streamed
lively between USRP2 and the host computer. The USRP Hardware
Driver (UHD) software is used for supporting the streaming of sig-
nal samples and configuring parameters, such as carrier frequency,
sampling rate and amplifier gain.

Although the USRP2+WBX has the capability of signal transmission,
we select the E4438C as the transmitter thanks to its high quality of sig-
nal generation and particularly the ability of adjusting the transmitting
power accurately, which enable the measurement of spectrum sensing per-
formances at deterministic SNR levels. The licence for signal transmission
in the laboratory at 560 MHz, 625 MHz and 750 MHz is applied from the
local spectrum regulator.
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Using this platform, the key spectrum sensing methods studied in this
thesis are validated with real-world signal transmissions and sensing re-
ceiver. This chapter first introduces the methodology for comprehensive
evaluation of sensing performances. Then, the measurement of the noise
power in the sensing receiver USRP2+WBX is presented which reveals no-
table Noise Uncertainty (NU) problem. The spectrum sensing tests start with
the investigation of the FSA-2C introduced in Section 2.9.2.2 for detecting
DVB-T signal at very low SNR levels. Then the experimental evaluation
of the signal classifier introduced in Chapter 4 is given, which shows its
effectiveness of classifying the major signals in TV band, they are DVB-T,
LTE, IEEE 802.22, ECMA-392 and WM. Finally, the novel schemes of using
ECS for assisting signal classification and delivering extended information
are experimented on the platform showing their feasibility.

6.2 methodology

Table 8: Methodologies of Performance Analysis

Methods Signal Source Noise SNR Control

Method 1 simulated signal simulated AWGN scaling in simulation

Method 2 captured signal (high SNR) captured receiver noise scaling in simulation

Method 3 received signal with noise the noise in received signal adjust Tx power

Matlab
Spectrum 

Sensing 

Algorithms
+

Matlab

Power 

Scaling

Simulated 

Signal

Simulated 

Noise

SNR

Sensing 

Results

Figure 48: Method 1: sensing performance evaluation with simulated signal
and noise

The evaluation of the spectrum sensing performances in this thesis are
performed using three methods.

• In Method 1, the purely simulated signal and AWGN are used in
sensing tests which was already presented in Chapter 3. In some
of the simulations, the hardware imperfections such as spurs and
nonwhite noise are taken into account.
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Figure 49: Method 2: sensing performance evaluation with separately cap-
tured signal and noise
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Figure 50: Method 3: sensing performance evaluation with received signal
plus noise

• Going one step forward, in Method 2, the tested signal is directly cap-
tured by USRP2+WBX from the over-the-air transmission by E4338C
or TV broadcast. The SNR of the captured signal is set to larger than
20 dB. In this way, when the signal is further scaled to very low power
in sensing test, the influence of its inherent noise becomes ignor-
able. The noise used in Method 2 is also directly captured from the
USRP2+WBX sensing receiver with its RF input sealed by matched
resistor and the transmitter turned off, which characterizes the hy-
pothesis H0. After a large amount of samples of the interested signals
and the receiver noise are captured separately, the signal and noise
are scaled according to the desired SNR levels. Then the summation
of them is tested using the spectrum sensing algorithms.

• Finally, in Method 3, the performance of the real-world spectrum
sensing device is measured, which takes only the received signal with
inherent receiver noise as input. Unlike the method in Method 2, the
artificial combination of the separated signal and noise is avoided in
this method, thus, the SNR cannot be obtained by straightforward
power scaling and summation. Therefore, the power estimation is
utilized for achieving the desired SNR. First, the noise power σ̂20 is
estimated in hypothesis H0, thus with transmitter turned off and the
receiver’s RF input sealed by matched resistor. In hypothesis H1, the
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transmitter is turned on and set to a relative high transmitting power
pref. resulting high SNR which is larger than 20 dB. The power of
signal with noise is then estimated as σ̂21. The reason why a high SNR
is required is because the error in estimated SNR can be significantly
reduced as the SNR itself is sufficiently large[58]. Then the SNR for
the transmitting power pref. can be accurately estimated by

ξref. = 10 log10
( σ̂21
σ̂20

− 1
)

. (6.1)

The transmitting power pref. and its corresponding SNR ξref. in
receiver are taken as the reference for obtaining arbitrary SNR by
further adjusting the transmitting power. For example, assuming
pref. = −50 dBm can result the SNR of ξref. = 20 dB, a desired SNR
of −8 dB can then be achieved by simply changing the transmit power
to −78 dB. Thanks to the high accuracy of E4438C in adjusting its
transmitting power level, the obtained SNR levels of received signal
are believed to be also accurate.

6.3 noise uncertainty measurement

In Section 2.10.1, the NU problem in practical receivers and the solution
to it using Dimension Cancelation (DIC) are introduced. The destruction of
NU to the signal detection algorithms are also presented in the simulation
results in Chapter 3. In this part, the measurements of NU in the signal
from the sensing receiver USRP2+WBX are performed.

Since only the noise from the receiver is interested in this measurement,
the two RF ports of the WBX daughter-board are sealed with matched
filters. Besides, the frequency band of 750 MHz is selected, in which there
is no interfering signal observed in our laboratory environment. There are
some spurs generated by the receiver itself in the noise and their power
ambiguity may affect the measured results. These spurs can be removed
conveniently from the PSD Ŷ[m] estimated by (2.32). Then the noise power
can be estimated by

σ̂2 =
1

LS

∑
m∈S

Ŷ[m], (6.2)

in which S is the set of frequency components without spurs and LS is the
size of the set.

We performed two measurements with different observation times and
sampling rates. In the first measurement, the sampling rate of the USRP2

is set to 12.5 MS/s which results about 10 MHz effective bandwidth con-
sidering the cut-off frequency of the anti-aliasing filter in the device. The
observation time of 1 ms resulting 12.5MS/sms = 12500 samples are em-
ployed in measuring one noise power values. In the second measurement,
the sampling rate is set to 25 MS/s and the observation time of 40 ms re-
sulting 1 M samples are captured for calculating one noise power value. In
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Figure 51: PDF of measured noise power from USRP2+WBX and simulated
AWGN, sampling rate: 12.5 MS/s, observation time: 1 ms, carrier
frequency: 750 MHz, number of measurements: 12000, duration:
12 hours

each measurement, totally 12000 measured noise power values are gathered
within about 12 hours.

The Probability Density Function (PDF) of the estimated noise in both
measurements are plotted in Figure 51 and Figure 52 respectively. In ad-
dition to the measured noise from the real receiver, the AWGN with the
same mean power as the measured noise is simulated in computer, the PDF
of which is also plotted in the two figures. Since all the simulated noise
samples follows the same distribution, there is no uncertainty in it. The
means and the standard variances of both measured and simulated noise’s
power values in the two measurements are listed in Table 9.

Interestingly, the standard variances of the measured noise power are
much larger than that of the simulated AWGN powers. Besides, it is shown
in Figure 51 and Figure 52 that the probability distribution of the measured
noise’s power values obviously differs from the normal distribution with
the same mean and variance. Since the noise power values are obtained by
averaging a large amount of samples (6.2), based on Central Limit Theorem
(CLT), they should follows normal distribution with deterministic variance
when there is no power uncertainty in the noise. The much larger variance
and the non-normal distribution of the measured noise power can be only
explained by the noise uncertainty problem in the sensing receiver.
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Figure 52: PDF of measured noise power from USRP2+WBX and simulated
AWGN, sampling rate: 25 MS/s, observation time: 40 ms, carrier
frequency: 750 MHz, number of measurements: 12000, duration:
12 hours

Table 9: Standard Variances of the Measured and Simulated Noise Power

Parameters Measurement 1 Measurement 2

Sampling Rate 12.5 MS/s 25 MS/s

Observation Time 1 ms 40 ms

Mean 32.93 34.81

Std. Var. (measured) 1.151 0.6713

Std. Var. (simulated) 0.2950 0.0359

Maximum NU 0.445 dB 0.28 dB
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6.4 signal detection

The DVB-T signal is the Primary User (PU) in TV band, which brings
about the challenges of detecting it at very low SNR regime for protection.
Therefore, the effective detection of the DVB-T signal is the foundation of
the signal classification proposed in this thesis. It is shown in the simulation
results in Chapter 3 that the autocorrelation based FSA-2C can effectively
detect the DVB-T signal of different modes. Besides, when the DIC is applied,
the FSA-2C detection becomes immune to NU problem at nearly no cost of
performance loss. These benefits makes the FSA-2C an attractive option for
detecting DVB-T signal, which is validated in the detection and classification
experiments introduced in this chapter.
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Figure 53: PSD of received signal of USRP2+WBX in hypothesis H0,
which shows nonwhite noise floor and spurs, carrier frequency:
560 MHz, sampling rate: 12.5 MS/s

All of the three methods introduced in Section 6.2 are applied in validat-
ing the FSA-2C detections. In Method 2 and Method 3 involving real-world
signal transmitting and receiving, the sampling rate of USRP2 is set to
12.5 MS/s, which is achieved through a decimation ratio of 8 according
the onboard ADC sampling at 100 MS/s. This sampling rate is enough to
accommodate the signal in one TV channel of 8 MHz considering the signal
loss at band edge due to the anti-aliasing filter.

In the 12.5 MHz band centered at the carrier frequency 560 MHz, three
strong spurs can be observed, which is shown in Figure 53. These spurs
generate strong component with non-zero mean in autocorrelation, which
can degrade the detection performance significantly. Band-stop filters are
used for eliminate the spurs in the signal before applying the detection
algorithm.

The performances of using FSA-2C for detecting DVB-T signals in dif-
ferent modes are presented in Figure 54. It clearly shows that the results
from the three evaluation methods agreed with each other very well. It
is worth pointing out that in Method 2, the captured DVB-T signal with
8K DFT length is from the real TV broadcast in channel 28 centered at
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530 MHz. Since the performance of detecting this real TV signal source is
very coherence to the performances of detecting the modeled signal, both
the effectiveness of the FSA-2C and the fidelity of the modeling of DVB-T
are well validated.
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Figure 54: Performances of detecting DVB-T signals using FSA-2C with DIC,
carrier frequency: 560 MHz, receiving sampling rate: 12.5 MS/s,
observation time: 20 ms, PFA: 0.01

Particularly, the detection performances for DVB-T signal at low SNR
using longer observation time of 100 ms is evaluated, which is presented in
Figure 55. It shows that the signal can be reliably detected at SNR as low as
-20 dB.
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Figure 55: Performance of detecting DVB-T signal (2K, 1/32 CP mode) us-
ing FSA-2C with DIC at low SNR, carrier frequency: 560 MHz,
receiving sampling rate: 12.5 MS/s, observation time: 20 ms, PFA:
0.01
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The signal detection for WM signal using the PAR feature based method
proposed in (4.8) is also validated using the three evaluation methods.
The spurs are narrowband signals exhibiting also high PAR in the PSD
of received wideband signal, which may be falsely detected as WM. An
easy solution is to exclude the components around the frequencies of spurs
in the estimated PSD before detection. The cost is, when the WM signal
happens to appear at one of the spur’s frequency, it may be ignored by the
detector.

The performances of detecting WM signal based on the PAR of estimated
PSD(4.8) are evaluated using the three methods, which is presented in
Figure 56. The bandwidth of one TV channel, thus 8 MHz around the center
560 MHz is taken into account for detecting the WM signal. Besides, the
frequency components with spurs in the interested band shown in Figure 53

should also be excluded from the detection algorithm. The PAR threshold
is set to 3.6 which is larger than the PAR of all other OFDM signals in TV
band. In this way, the false classification of the other OFDM signals to WM
signal is avoided in the signal classification tests introduced later. Figure 56

shows that the performances evaluated using the three methods are closed
to each other. The WM signal can be reliably detected at about -16 dB SNR
with an observation time of 20 ms.
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Figure 56: Performance of detecting WM signal by testing PAR of esti-
mated PSD, carrier frequency: 558 MHz, receiving sampling rate:
12.5 MS/s, observation time: 20 ms, PAR threshold: 3.6

6.5 signal classification for tvws

In Chapter 5, the signal classifier for TV band White Space (TVWS) is pre-
sented, which is essentially the combination of several signal detection
methods utilzing the unique features of different standards based on prop-
erly designed decision rule. In Section 6.4, the detection of DVB-T signal
using FSA-2C and the detection of WM signal utilizing its high PAR prop-
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erty in PSD are validated with real-world experiment using Method 2 and
Method 3, which show good agreement to the simulated result using Method
1. Based on the success of validating the signal detection algorithms, the
signal classification framework for TVWS presented in Chapter 4 is also
implemented on the spectrum sensing testbed and validated with experi-
ments.

The selection of signal detection algorithms listed in Table 5 is also
adopted in the experimental validations. Thus, the DVB-T signal is detected
using FSA-2C method, the LTE signal is detected using CP-SW with pre-
alignment, the CP-SUM is used to detect ECMA-392 and IEEE 802.22

signals while the WM signal is detected utilizing the high PAR property
of its PSD. The procedure of signal classification is shown in Figure 57,
which follows the decision rule in (4.11) and considers some practical issues
in implementation, such as filtering, sampling rate conversion and spur
removal.
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Figure 57: Signal classification procedures implemented on the spectrum
sensing testbed

The target signal categories listed Table 6 are adopted here, which have
the full coverage of the classifiable signals types and modes in the detection
algorithm’s configuration in Table 5. During the classification tests, they are
selected randomly with equal probability and tested by the classifier which
then concludes which signal class is actually transmitted. In Method 2, the
captured high-SNR signals samples by the testbed are first collected and
combined with captured receiver noise according to the desired SNR in
the simulation. In Method 3, all these signals with different modes are first
downloaded into the internal memory of E4438C signal generator for speed-
ing up the measurement procedures. The host computer sends commands
to the E4438C for selecting the transmitted waveform, set the sampling rate
according the standards and modes, as well as set the transmitting power
according to the desired SNR using the reference power pref. and reference
SNR ξref.. Then the host computer receive signal with sensing receiver
USRP2+WBX and perform classification test lively.

The sensing receiver USRP2+WBX samples the signals at fixed rate of
12.5 MS/s resulting a higher effective bandwidth than the various OFDM
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signals’ standard-specified sampling rate and bandwidth which are listed in
Table 4. The higher receiving bandwidth can involve some unwanted signal
and noise from neighboring band and can degrade detection performance
or even lead to false classification. Besides, the mismatch of the sampling
rate can lead to the ambiguities in the time lags used in the autocorrelation
based detections. In order to solve these two problems, the received signal is
firstly low-pass filtered and re-sampled according to the standard-specified
sampling rate before being processed by the signal detection algorithms for
in the classifier.
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Figure 58: The overall signal classification performance, target signals in Ta-
ble 6, detection algorithms in Table 5, carrier frequency: 560 MHz,
receiving sampling rate: 12.5 MS/s, observation time: 20 ms, PFA:
0.01

As illustrated in Section 4.5, the different modes of DVB-T are combined
into one class. Similarly, the TD-LTE signal in both normal CP mode and
long CP mode are also combined into one class. Hence, there are totally
five targeted classes of signals as is listed in Table 6.

The overall classification performance of all the signals are presented in
Figure 58 showing good match of the results from Method 1 using simulated
ideal signal/noise and Method 2 using real-world captured signal/noise.
Besides, it confirms that the Probability of Correct Classification when
Detected (PCCD) is close to one for most of the simulated SNRs. This is a
favorable property that as long as the existence of the signal is successfully
detected, it can be nearly always correctly classified, which can be also
translated into a very small ambiguity in classification.

The Probability of Correct Classification (PCC) for the five specific signal
classes are presented in Figure 59 to Figure 63 respectively.Generally, these
results exhibit good agreement between the evaluation using Method 1,
Method 2 and the Method 3 of real-world measurement. It should be noted
that in the classification performances of ECMA-392 shown in Figure 62,
the measured performance using Method 3 differs obviously from the result
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Figure 59: The PCC for DVB-T signal, target signals in Table 6, detection
algorithms in Table 5, carrier frequency: 560 MHz, receiving
sampling rate: 12.5 MS/s, observation time: 20 ms, PFA: 0.01
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Figure 60: The PCC for DVB-T signal, target signals in Table 6, detection
algorithms in Table 5, carrier frequency: 560 MHz, receiving
sampling rate: 12.5 MS/s, observation time: 20 ms, PFA: 0.01
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Figure 61: The PCC for DVB-T signal, target signals in Table 6, detection
algorithms in Table 5, carrier frequency: 560 MHz, receiving
sampling rate: 12.5 MS/s, observation time: 20 ms, PFA: 0.01
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Figure 62: The PCC for DVB-T signal, target signals in Table 6, detection
algorithms in Table 5, carrier frequency: 560 MHz, receiving
sampling rate: 12.5 MS/s, observation time: 20 ms, PFA: 0.01



6.6 ecs for signal classification 103

-8 -7 -6 -5 -4 -3 -2 -1 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR (dB)

PC
C

 

 
WM, M1:sim.
WM, M2:cap.
WM, M3:meas.

Figure 63: The PCC for DVB-T signal, target signals in Table 6, detection
algorithms in Table 5, carrier frequency: 560 MHz, receiving
sampling rate: 12.5 MS/s, observation time: 20 ms, PFA: 0.01

of Method 1 and 2. This can be explained by the random bursty nature of
ECMA-392 signal that in some observation windows, the actual duty cycles
of the signal are less than the mean value 0.5 resulting lower PCC while in
some other observation windows, the duty cycles become larger than 0.5
resulting higher PCC.

6.6 ecs for signal classification

In Section 5.2.3, two schemes of using ECS for signal classification is pre-
sented. One scheme is to generate ECS with correlated constellations on
SSCs which was widely adopted in the reported works on ECS for cogni-
tive radio [18, 19, 20, 21]. The other scheme is to generate ECS with fully
correlated sinusoids on SSCs. In the simulation results in Figure 39, it is
shown that the signal classification performance can be improved using
the Scheme 2, which is confirmed by both simulation and the real-world
validation with the sensing testbed.

The experimented OFDM signal with ECS has the DFT length of 128

and CP length of 16 and 80 effective sub-carriers, among which 2, 6 or 10

sub-carriers are taken as SSCs. There are four signal classes with different
ECS patterns for classification. The Auto-Coherence Function (ACF) showing
these patterns are presented in Figure 64, which are generated from the
signal received by USRP2+WBX. Since the USRP2+WBX has a strong spur
near the DC which is harmful to the classification, the sub-carriers around
the DC are excluded in the assignment of SSCs.

The classification performances with Scheme 1 and Scheme 2 are compared
in Figure 65 which clearly shows the performance gain from the extra ECS
generated in Scheme 2 and confirms the result in Figure 39.
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Class 1 Class 2

Class 3 Class 4

Figure 64: The ACFs of the OFDM signals with four ECS patterns, number
of SSC: 6, number of effective SC: 80, DFT length: 128, CP length:
16, number of OFDM symbols: 30, carrier frequency: 750 MHz,
receiving sampling rate: 12.5 MS/s
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Figure 65: The performances of ECS based signal classifications using
Scheme 1 and Scheme 2, number of classes: 4, number of SSC:
6, number of effective SC: 80, DFT length: 128, CP length: 16,
number of OFDM symbols: 30, carrier frequency: 750 MHz, re-
ceiving sampling rate: 12.5 MS/s, PFA: 0.01
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Figure 66: The performances of ECS based signal classifications, number
of classes: 4, number of SSC: 2, number of effective SC: 80, DFT
length: 128, CP length: 16, number of OFDM symbols: 30, carrier
frequency: 750 MHz, receiving sampling rate: 12.5 MS/s, PFA:
0.01
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Figure 67: The performances of ECS based signal classifications, number
of classes: 4, number of SSC: 6, number of effective SC: 80, DFT
length: 128, CP length: 16, number of OFDM symbols: 30, carrier
frequency: 750 MHz, receiving sampling rate: 12.5 MS/s, PFA:
0.01
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The classification performances using Scheme 2 with different num-
bers of SSCs are further examined with simulation(Method 1) and experi-
ment(Method 3). The results of using two, six and ten SSCs are presented in
Figure 66, Figure 67 and Figure 68 respectively. It shows that the PCC can
be improved by increasing the number of SSCs, especially for increasing
from two SSCs to six, remarkable gain of about 6 dB can be obtained. The
results further shows that the PCCD can be also improved by increasing
the number of SSCs. When 6 or 10 SSCs are used, the PCCD approaches
one for most of the SNRs, which exhibits a favorable property that as long
as the signal is detected, it can be correctly classified with high probability.
It is also shown that the good agreement of the measured results in the
experiment with the simulated results is achieved.
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Figure 68: The performances of ECS based signal classifications, number of
classes: 4, number of SSC: 10, number of effective SC: 80, DFT
length: 128, CP length: 16, number of OFDM symbols: 30, carrier
frequency: 750 MHz, receiving sampling rate: 12.5 MS/s, PFA:
0.01

6.7 ecs for carrying extended information

The last experiment is for validating the feasibility of using ECS for deliev-
ering extended information. The experimented signal has the DFT length of
256, CP length of 64. The sizes of the effective SCs’ set A, the possible SSC
locations’ set S and the SSCs’ set G are 160, 78 and 16 respectively, resulting
an overhead ratio of 16÷ 160 = 10%. These sets are defined in Section
5.4.2.1. Based on the above configuration, there are totally

⌊
log2

(
78
16

)⌋
= 53

information bits can be carried on the ECS. In the simulation and experi-
ment, the ECS patterns are generated with random bits using the algorithm
in [86]. The patterns are recognized using the method in Section 5.4.2.2
and can be later mapped to the information bits with the algorithm in [86].
Since the ECS pattern and the bit string have one-to-one correspondence,
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the successful detection of the ECS pattern results directly to the correct
decoding of the extended information carried on ECS.

The experimented Probability of Erroneous Detection (PED) performances
presented in Figure 69 validates the the feasibility of carrying extended
information on ECS successfully. It also shows that the experimented re-
sults using Method 3 matches the simulated results well. The decoding
performance can be improved by using more OFDM symbols, thus longer
observation time.
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Figure 69: The probability of erroneous decoding (PED) for extended infor-
mation carried on ECS, DFT length: 256, CP length: 64, effective
SCs(size of A): 160, size of S: 78, number of SSC(size of G): 16,
carrier frequency: 750 MHz, receiving sampling rate: 12.5 MS/s

6.8 concluding remarks

This chapter presents the validation and performance evaluation of the spec-
trum sensing techniques with real-world experiments. In Section 6.1, the
spectrum sensing testbed used for experiment is introduced. The testbed
consists of three major components: a host computer with controlling
software, waveform generator of different types/standards and various
sensing algorithms implemented; the Agilent E4438C vector signal gener-
ator for transmitting target signals with accurately controlled power; the
USRP2+WBX SDR frontend as a low-cost sensing receiver with practical
hardware imperfections such as nonwhite noise floor and spurs. Based on
the implementation of the sensing testbed, three methods for evaluating
sensing performances are adopted and introduced in Section 6.2. They are
the test of the simulated ideal signal with AWGN (Method 1), simulation
test of the separately captured signal and receiver noise (Method 2) and the
real-world spectrum sensing tests with SNR controlled by the transmitting
power of the signal generator. Section 6.3 analyzes the noise power of the
sensing receiver USRP2+WBX using two measurements with different ob-
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servation time. By comparing the measured PDF to that of ideal AWGN,
notable noise uncertainty in the sensing receiver is observed.

The spectrum sensing evaluation starts with the detection of DVB-T
signal using the optimal FSA-2C algorithm and the detection of WM signal
using the PAR feature in the estimated PSD, which are presented in Section
6.4. Since the spurs in the sensing receiver is harmful for both detections,
they are removed by the band-stop filter or excluding the their frequency
components in estimated PSD. The detection performances are successfully
validated with both simulation and experimental measurement. It is worth
mentioning that the reliable detection of DVB-T signal is achieved at SNR
as low as -20 dB in the experiment using Method 3. The detection algorithms
for both DVB-T and WM are further integrated in the signal classification
framework previously proposed in Chapter 4 which is validated in Section
6.5 of this chapter. The signals of DVB-T, TD-LTE, IEEE 802.22, ECMA-392

and WM with different modes are targeted in the classifier implementation.
The classification performances in both simulation and measurement agree
with each other well and show very small ambiguity among different signal
classes.

The novel scheme of using ECS for signal classification and carrying ex-
tended information is also validated with experiments, which are presented
in Section 6.6 and Section 6.7 respectively. For signal classification using
ECS, it is confirmed by both simulation and measurement that the proposed
scheme of using sinusoid as SSCs with full correlations (Scheme 1) has
better performance than the reported scheme of using SSCS with partially
correlated constellations (Scheme 2). It also shows that the classification
performance can be also improved by increasing the number of SSCs. The
feasibility of decoding the extended information carried on ECS is also well
validated by the experiment using the sensing testbed. It shows that the
decoding performance at lower SNR can be improved by increasing the
observation time.

The experimental validation and evaluation have greatly strengthened the
feasibility and prospect of applying the the signal detection, classification
and ECS schemes proposed in this thesis to real-world applications.



7
C O N C L U S I O N S A N D F U T U R E W O R K S

7.1 conclusions

In this thesis, spectrum sensing, the key functionality of the future cogni-
tive radio systems is studied with special focus on the versatility and the
robustness which are very important to its success.

The versatility here means that various kinds of information can be
obtained via spectrum sensing according to the radio environment and
user’s requirement. Three types of spectrum sensing techniques for obtain-
ing different information are discussed in this thesis, which are listed as
follows.

• Detection of Primary User (PU) Signal
Detection of PU signal in order to find usable channels for Secondary
User (SU) is the basic form of spectrum sensing, which is discussed
most frequently. In Chapter 2, the key algorithms of the major re-
ported signal detection algorithms and our proposed algorithms are
summarized with concise formulation of their detection metrics and
thresholds.

• Signal Classification of Coexisting Wireless Systems
Based on the investigation of signal detection methods, Chapter 4

proposes a robust signal classification framework and its implemen-
tation for classifying the existing and emerging signal standards in
TV band. Another signal classification scheme utilizing Embedded
Cyclostationary Signature (ECS) in multi-carrier modulation are also
illustrated, which can lead to more flexible applications.

• Delivering Extended Information using ECS

A novel technique of carrying extended information on the ECS for
multicarrier signal is proposed in this thesis, which enables the spec-
trum sensing device to obtain much richer information than using the
conventional signal detection and classification techniques. Instead
of using the standard-specific procedures of synchronization, chan-
nel estimation/equalization and demodulation/decoding in normal
communication systems, the more general cyclostationary analysis
technique can be used for decoding the extended information. This
scheme is illustrated in Chapter 5.

In the study of the spectrum sensing techniques, the robustness in prac-
tical conditions is focused on in this thesis. The major imperfections of
practical receiver which are harmful to the robustness of spectrum sens-
ing are taken into account. They are Noise Uncertainty (NU), nonwhite
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noise floor, spurs and clock mismatch. The Dimension Cancelation (DIC)
method is proposed for completely mitigating the NU problem, which can
be applied to nearly all the detection algorithms. A testbed is built and a
series of experiments with real-world wireless signals are performed. The
experimented performances and simulated performances agree with each
other well, which strengthens the effectiveness and feasibility of applying
the proposed spectrum sensing techniques to real-world applications.

The specific conclusions on various spectrum sensing techniques are
drawn in the last sections of Chapter 2 to Chapter 6. Summarizing all the
work in this thesis, it is concluded that the spectrum sensing has great
potentials in exploiting the information versatilely and robustly from the
radio environment. At the current stage of the developing cognitive radio,
the regulation bodies are more tend to use the approach of combining geo-
location and spectrum database for giving strict protection to PU. However,
the works presented in this thesis have strengthened the belief that the spec-
trum sensing techniques is promising and irreplaceable for solving many
foreseeable challenges in future cognitive radio systems. Some examples
are listed as follows.

• The schemes of signal classification and delivering extended informa-
tion using ECS studied in this thesis can provide realtime and useful
knowledge for optimizing the coordination and coexistence among
different devices or networks, especially for heterogeneous systems.

• For the situations in emergency or public safety, the spectrum sensing
is particularly helpful for avoiding interferences and maintaining the
reliability of communications[89, 90].

• The spectrum sensing techniques can be used to monitor the ra-
dio spectrum and provide continuously updated information to the
spectrum database.

• When the access to the database (e.g. via internet) is not available or
the geo-location cannot be obtained, spectrum sensing can provide
another mean of protecting the primary users and optimizing the
coexistence of different wireless systems.

7.2 future works

The works performed in this thesis open multiple directions of further
research. Some of the most interesting unsolved issues are outlined as
follows.

• The proposed classifier for signal in TV band focuses on recognizing
the standard or type of signal in one channel. However, in a coexisting
scenario, there may be multiple networks of different standards shar-
ing the same channel. Hence, a classifier which is able to recognize
multiple coexisting standards is desired. Besides, other knowledge
such as the interference power and the duty cycle of the target system
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are also important for optimizing the coexistence with them, which
also need to be extracted.

• Cooperative spectrum sensing with multiple sensing receivers and
multi-antenna sensing can effectively improve the overall sensing
performance at low SNR, reduce the sensitivity requirement on sin-
gle sensing node, mitigation channel fading, shadowing and noise
uncertainty [54, 56, 17]. This issue is not comprehensively discussed
in the thesis and can be further studied, especially considering the
cooperative signal classification.

• The spectrum sensing techniques presented in this thesis consider
only a single channel in one observation period. This approach may
result in high consumption of time and power for sensing large
amount of spectrum. The recently proposed compressed spectrum
sensing [91, 92] can sense much wider bandwidth swiftly using sub-
Nyquist sampling based on the sparse nature of the signals’ dis-
tribution in radio spectrum. It would be an interesting topic that
further combining the novel sensing techniques in this thesis with the
compressed sensing for enhancing the agility of cognitive radio.
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