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Abstract

Zeta Functions of Pseudodifferential Operators
and

Fourier Integral Operators on Manifolds with Boundary

The aim of the first part of the thesis is the study of the asymptotic behavior
of the eigenvalue counting function of selfadjoint operators in three different
settings: SG-operators onRn and on manifolds with cylindrical ends; bisingular
operators defined on M1 × M2, product of two closed manifolds; bisingular
operators on Euclidean spaces. A precise formula for the first term in the
asymptotic expansion is given and, in a particular case, the second term is
determined as well. The results are achieved by the study of the complex
powers of operators and of the spectral ζ-function. This analysis, in the case
of SG-operators, leads also to the definition of non-commutative residue both
in the case of Rn and of manifolds with cylindrical ends. Moreover, in the
case of Rn, endowed with a suitable metric, by mean of a regularized integral,
a connection between the non-commutative residue and the Einstein-Hilbert
action is showed.

The second part of the thesis treats an extension of Fourier Integral Operators
(FIO) in the half spaceRn

+. As in Boutet de Monvel’s calculus, we define a matrix
of operators (

r+Opψ(a)e+Gψ∂ Kψ∂

Tψ∂ Sψ∂

)
where Opψ(a) is a Fourier Integral Operator defined by a symplectomorphism
χ : T∗Rn

+ \ {0} → T∗Rn
+ \ {0}, represented in a neighborhood of the boundary

by the phase function ψ, and by a principal symbol a; r+ is the restriction
operator, e+ is the extension operator. In order to have nice continuity results
in the scale of the Hs(Rn

+) Sobolev spaces, we need to impose conditions on
the symplectomorphism. Essentially, we require that the symplectomorphism
preserves the boundary and that all the components satisfy the transmission
property. If χ fulfills these properties, then it induces a symplectomorphism
χ∂ : T∗Rn−1

→ T∗Rn−1, represented by the phase function ψ∂. The operator Gψ∂

is a FIO with phase ψ∂ on ∂Rn
+ and a singular Green symbol. The operator Kψ∂

is a FIO defined on ∂Rn
+ with phase ψ∂ and with a potential symbol, Tψ∂ is a

FIO defined on ∂Rn
+ with a trace symbol, Sψ∂ is a usual FIO defined on ∂Rn

+ with
phase ψ∂.

It is the goal of the thesis to show continuity results for such operators in
the scale of Hs(Rn

+) spaces and to establish results similar to those of Boutet de
Monvel.

Keywords: Spectral zeta function, Fourier Integral Operators, Boutet de
Monvel’s Calculus
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Zusammenfassung

Ziel des ersten Teils dieser Dissertation ist die Untersuchung des asympto-
tischen Verhaltens der Zählfunktion der Eigenwerte selbstadjungierter Opera-
toren in drei verschiedenen Situationen: Für SG-Operatoren auf Rn und Man-
nigfaltigkeiten mit zylindrischen Enden, für bisinguläre Operatoren, die auf
dem kartesischen Produkt M1 ×M2 zweier geschlossener Mannigfaltigkeiten
definiert sind, sowie für bisinguläre Operatoren auf dem euklidischen Raum.

Eine genaue Formel für den ersten Term in der asymptotischen Entwicklung
wird angegeben; in Spezialfällen wird auch der zweite Term bestimmt. Die
Ergebnisse werden mit Hilfe einer Untersuchung komplexer Operatorpotenzen
und der spektralen Zetafunktion erzielt.

Im Fall von SG-Operatoren führt diese Analyse weiterhin zur Definition
eines nichtkommutativen Residuums sowohl auf Rn als auch auf Mannig-
faltigkeiten mit zylindrischen Enden. Darüber hinaus wird für den Fall, dass
Rn mit einer geeigneten Metrik versehen ist, mit Hilfe eines regularisierten In-
tegrals ein Zusammenhang zwischen dem nichtkommutativem Residuum und
der Einstein-Hilbert-Wirkung gezeigt.

Im zweiten Teil der Dissertation wird eine Erweiterung des Kalküls der
Fourierintegraloperatoren (FIO) auf den Halbraum Rn

+ behandelt. Wie in dem
Kalkül von Boutet de Monvel definieren wir eine Matrix von Operatoren(

r+Aψe+Gψ∂ Kψ∂

Tψ∂ Sψ∂

)
. (1)

Dabei ist Aψ ein Fourierintegraloperator, gegeben durch einen Symplektomor-
phismus χ : T∗Rn

+ \ {0} → T∗Rn
+ \ {0}, der wiederum in einer Umgebung des

Randes durch die Phasenfunktion ψ bestimmt ist, und ein Hauptsymbol a.
Ferner ist r+ der Restriktionsoperator und e+ der Fortsetzungsoperator durch
Null. Um gute Stetigkeitsresultate in der Skala der Sobolevräume Hs(Rn

+) zu
erzielen, müssen wir Bedingungen an den Symplektomorphismus stellen. Im
Wesentlichen fordern wir, dass der Symplektomorphismus den Rand erhält
und alle Komponenten die Transmissionseigenschaft haben.

Besitzt χ diese Eigenschaften, so induziert es einen Symplektomorphismus
χ∂ : T∗Rn−1

→ T∗Rn−1, dargestellt durch die Phasenfunktion ψ∂. Der Operator
Gψ∂ ist ein FIO mit Phase ψ∂ auf ∂M und einem singulären Greenschen Symbol.
Der Operator Kψ∂ ist ein FIO auf ∂M mit Phase ψ∂ und einem Potentialsymbol
k, Tψ∂ ist ein FIO definiert auf ∂M mit einem Spursymbol, Sψ∂ ist ein üblicher
FIO auf ∂M mit Phase ψ∂.

Hier ist das Ziel, die Stetigkeit dieser Operatoren auf der Sobolevraum-
Skala Hs(Rn

+) zu zeigen und Resultate analog zu denen von Boutet de Monvel
zu beweisen.

Schlagwörter: Spektrale Zetafunktion, Fourierintegraloperatoren, Kalkül
von Boutet de Monvel
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Introduction

It is the aim of this thesis to show how microlocal techniques can be applied
successfully to problems in analysis, geometry and spectral theory. In the
first part we are mainly interested in eigenvalue asymptotics and geometric
invariants. Specifically, we consider four situations where the manifold is
either Rn, a manifold with cylindrical ends, the product M1 ×M2 of two closed
manifolds, or Rn1 × Rn2 . For each case, we use a specific pseudodifferential
calculus, clarify the notion of ellipticity, define the complex powers and then
study their properties. This leads to information about the non-commutative
residue on manifolds with cylindrical ends and to connections with the Einstein-
Hilbert action. We find then new results for the counting functions of selfadjoint
operators belonging to the calculi described above. In a particular case, we
determine not only the leading term, but also the second one. The result is
obtained combining the study of the meromorphic extension of the spectral
ζ-function and a Tauberian Theorem, due to J. Aramaki, [7].

Let us briefly present the various pseudodifferential calculi involved; more
details are given in Chapter 1. SG-calculus was first introduced on Rn by H.
O. Cordes [25] and C. Parenti [82], see also R. Melrose [71]. For an introduction
to SG-calculus and, more generally to global calculus on Rn, see F. Nicola and L.
Rodino [81]. An SG-operator A = a(x,D) = Op (a) acting on Rn can be defined
via the usual left-quantization

Au(x) =
1

(2π)n

∫
eix·ξa(x, ξ)û(ξ)dξ, u ∈ S(Rn),

starting from symbols a(x, ξ) ∈ C∞(Rn
×Rn) with the property that, for arbitrary

multi-indices α, β, there exist constants Cαβ ≥ 0 such that the estimates

|Dα
ξDβ

xa(x, ξ)| ≤ Cαβ〈ξ〉m1−|α|〈x〉m2−|β|

hold for fixed m1,m2 ∈ R and all (x, ξ) ∈ Rn
×Rn, where 〈y〉 =

√
|y|2 + 1, y ∈ Rn.

The set of such symbols is denoted by SGm1,m2 (Rn). The model example of an
SG-operator is (−∆ + 1)(1 + |x|)2. In 1987, E. Schrohe [91] introduced a class of
non-compact manifolds, the so-called SG-manifolds, on which it is possible to
transfer from Rn the whole SG-calculus: in short, these are manifolds which
admit a finite atlas whose changes of coordinates behave like symbols of order
(0, 1) (see [91] for details and additional technical hypotheses). The manifolds
with cylindrical ends are a special case of SG-manifolds, on which also the
concept of SG-classical operator makes sense. Moreover, the principal symbol
of an SG-classical operator A on a manifold with cylindrical ends M, has an
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invariant meaning, see Yu. V. Egorov and B.-W. Schulze [29], T. Hirschmann
[45], L. Maniccia and P. Panarese [64], R. Melrose [71].

In [90], L. Rodino introduced bisingular operators: pseudodifferential op-
erators defined on the product of two closed manifolds M1 × M2. A main
motivation of that paper was the multiplicative property of the Atiyah-Singer
index, see [11]. A simple example of an operator in this class is the tensorial
product A1 ⊗ A2, where A1 ∈ Lm1 (M1), A2 ∈ Lm2 (M2) are pseudodifferential op-
erators. Another example, studied in [90], is the vector-tensor product A1 �A2.
It is easy to verify that, if A1 and A2 are both differential operators, then A1 ⊗A2
is a differential operator on M1 × M2, but if A1 or A2 are pseudodifferential
operators then A1 ⊗ A2 is not, in general, a pseudodifferential operator on the
closed manifold M1×M2. Nevertheless, operators of this type arise naturally in
different contexts. Bisingular calculus embeds this example into a wider theory.
The class of bisingular operators is denoted by Lm1,m2 (M1,M2). We will study,
in particular, the subclass Lm1,m2

pr (M1 ×M2) of operators which have a principal
symbol. This calculus belongs to the framework of pseudodifferential operators
with operator-valued symbols (see, e.g., Yu. V. Egorov and B.-W. Schulze [29],
S. Rempel and B.-W. Schulze [88], B.-W. Schulze [96, 97], E. Schrohe [94] and
the references therein for other examples). Namely, the principal symbol of an
operator A ∈ Lm1,m2

pr (M1 ×M2) is a triple (σm1
1 (A), σm2

2 (A), σm1,m2 (A)), where σm1
1 (A)

is a function on T∗M1 \ 0 which takes values in Lm2 (M2), σm2
2 (A) is a function on

T∗M2 \ 0 which takes values in Lm1 (M1) and σm1,m2 (A) is a function defined on
(T∗M1 \ 0) × (T∗M2 \ 0). In [80], F. Nicola and L. Rodino introduced classical
bisingular operators and proved an index formula, see also V. S. Pilidi [85].

Bisingular calculus on Euclidean spaces, recently introduced by U. Battisti,
T. Gramchev, S. Pilipović and L. Rodino in [16], is a variant of bisingular calculus
adapted to Shubin’s calculus on Rn. The simplest example of a bisingular
operator on Rn1+n2 is A1 ⊗ A2 where A1 ∈ Gm1 (Rn1 ) and A2 ∈ Gm2 (Rn2 ) are
operators of Shubin type, see M. A. Shubin [100, 101] for more details. As in
the case of bisingular operators, the principal symbols in this setting is a triple
and is operator-valued.

In Chapter 2 we describe complex powers and spectral ζ-functions of el-
liptic operators belonging to the pseudodifferential calculi described above.
Complex powers of elliptic operators, in the case of closed manifolds, were first
introduced by R. Seeley in [98]. Then, the theory has been extended to different
settings, see, e.g, B. Ammann, R. Lauter, V. Nistor and A. Vasy [6], P. Boggiatto
and F. Nicola [20], G. Dore and A. Venni [27], G. Grubb [35, 36], G. Grubb and
L. Hansen [37], P. Loya [62, 63], L. Maniccia, E. Schrohe and J. Seiler [66], E.
Schrohe [92]. In [92], E. Schrohe first developed a theory of complex powers
in a setting close to SG-calculus; then L. Maniccia, E. Schrohe and J. Seiler in
[66] described precisely the symbol of complex powers of SG-operators and
investigated the case of classical SG-operators. In Section 2.1, we study the
spectral ζ-function in the setting of SG-calculus on Rn and on manifolds with
cylindrical ends, following the construction of L. Maniccia, E. Schrohe and J.
Seiler [66] and of U. Battisti and S. Coriasco [15]. We restrict ourselves to the
case of classical SG-symbols. Dealing with classical operators, we can prove
that the spectral ζ-function can be extended as a meromorphic function to the
whole of C. In this way, following the original approach of M. Wodzicki [109],
we introduce the non-commutative residue in the SG-setting, via ζ-functions.
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The non-commutative residue was first considered by M. Wodzicki in 1984
[109], in the setting of pseudodifferential operators on closed manifolds, while
studying the meromorphic continuation of the zeta function of elliptic opera-
tors. The non-commutative residue turns out to be a trace on the algebra of
classical operators modulo smoothing operators. Moreover, if the dimension
of the closed manifold is larger than one, it is the unique trace on this algebra,
up to multiplication by a constant (the situation in dimension one is different,
as a consequence of the fact that, in this case, S∗M is not connected, cf. C.
Kassel [55]). In 1985, V. Guillemin [41] independently defined the so-called
symplectic residue, equivalent to the non-commutative residue, with the aim
of “finding a soft proof of Weyl formula”. The non-commutative residue, some-
times called Wodzicki residue, gained a growing interest in the years, also in
view of the links with non-commutative geometry and the Dixmier trace, see,
e.g., A. Connes [24], B. Ammann and C. Bär [5], W. Kalau and M. Walze [54], D.
Kastler [56]. The concept has been extended to different situations: manifolds
with boundary by B. V. Fedosov, F. Golse, E. Leichtnam and E. Schrohe [31]
and Y. Wang [106, 107], conic manifolds by E. Schrohe [93] and J.B. Gil and
P.A. Loya [32], anisotropic operators on Rn by P. Boggiatto and F. Nicola [17],
CR-manifolds by R. Ponge [86], [87]. Notice that the non-commutative residue
was already defined by F. Nicola in [79] for SG-calculus on Rn, by means of
holomorphic families. We follow here a different approach, which leads to an
invariant definition in the case of manifolds with cylindrical ends.

In Section 2.2, we investigate ζ-functions of SG-elliptic operators in a dif-
ferent direction. Here, we do not aim at finding a trace on the algebra of
SG-classical operators, rather the goal is a regularized version of the Kastler-
Kalau-Walze Theorem on Rn, linking Dirac operators and the Einstein-Hilbert
action. The contents of this section essentially come from U. Battisti and S.
Coriasco [14]. A. Connes conjectured that the non-commutative residue could
connect Dirac operators and the Einstein-Hilbert action. In 1995, D. Kastler
[56], W. Kalau and M. Walze [54] proved this conjecture. Namely, let /D be
the classical Atiyah-Singer Dirac operator defined on a closed spin manifold
M = (M, g) of even dimension n ≥ 4. Then

wres( /D−n+2) = −
(n − 2) 2[ n

2 ]

Γ( n
2 )(4π)

n
2

∫
M

1
12

s(x) dx, (2)

where s(x) is the scalar curvature and dx the measure on M induced by the Rie-
mannian metric g (see, e.g., [5] for an overview on non-commutative residue
and non-commutative geometry). Y. Wang [105, 106, 107], suggested an exten-
sion of the result to a class of manifolds with boundary. T. Ackermann [1] gave
a proof of (2), using the relationship between heat trace and ζ-function and the
properties of the second term in the asymptotic expansion of the heat trace of
a generalized Laplacian. In Section 2.2, we follow T. Ackermann’s idea and
give a regularized version of (2), using the regularized integral introduced by
L. Maniccia, E. Schrohe and J. Seiler in [65].

Next, in Sections 2.3 and 2.4, we study the complex powers of bisingu-
lar operators on compact closed manifolds and on Euclidean spaces, respec-
tively, following U. Battisti [13] and U. Battisti, T. Gramchev, S. Pilipović and L.
Rodino[16].

In Chapter 3 we state the main result about the asymptotic behavior of the
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counting functions NA(λ). For each of the three settings described above, we
will prove that the counting function of an elliptic selfadjoint positive operator
A has the asymptotic behavior

NA(λ) ∼


C1λl log(λ) + C′1λ

l + O(λl−δ1 ) for v1
m1

= v2
m2

= l

C2λ
v2
m2 + O(λ

v2
m2
−δ2 ) for v2

m2
> v1

m1

C3λ
v1
m1 + O(λ

v2
m2
−δ3 ) for v2

m2
< v1

m1

, λ→∞, (3)

where m1,m2 are the orders of the operator A, v1, v2 are integer numbers de-
pending on the calculus we analyze, C1,C′1,C2,C3 are constants depending on
the principal symbol of A and δ1, δ2, δ3 are strictly positive real numbers. In
[79], F. Nicola expresses the leading terms of the counting function, in the case
of SG-calculus on Rn, by means of the Laurent coefficients of a suitable holo-
morphic family associated to the operator. In [64], L. Maniccia and P. Panarese
describe the leading term of NA(λ) in the setting of SG-calculus on manifolds
with cylindrical ends using heat kernel methods. The asymptotic expansion (3)
improves these results in the case of SG-calculus, giving also the second term
when v1/m1 = v2/m2. For bisingular operators, (3) has been proved in [13],
and for bisingular operators on Euclidean spaces in [16]. Notice that, when
v1/m1 = v2/m2, the asymptotic expansion of the counting function contains a
logarithmic term. This case corresponds to a pole of order 2 of the ζ-function
at the point v1/m1. Such a behavior appears in others settings: for example
manifolds with conical singularities, see P. Loya [32] and manifolds with cusps,
see S. Moroianu [73]. The approach used here is similar to the one in [73].
The exposition is completed by the analysis of an example, together with some
numerical experiments on the expected results.

In the second part, we develop a calculus of Fourier Integral Operators
(FIOs) on the half-space Rn. The basic idea is to consider, similarly as M. I.
Višik and G. I. Eskin [104] and L. Boutet de Monvel [19], a class of operators
with contains both the classical boundary value problems and their inverses,
whenever these exist. The elements of the calculus are given by matrices of
operators (

r+Opψ(a)e+ + Gψ∂ Kψ∂

Tψ∂ Sψ∂

)
,

where the entries are Fourier integral operators associated to a symplectomor-
phism χ : T∗Rn

+ \ 0 → T∗Rn
+ \ 0, positively homogeneous of order one in the

fibers, satisfying suitable conditions. Essentially, χmust preserve the boundary
of T∗Rn

+ and all the components satisfy the transmission condition (related ideas,
in a different setting, are deeply investigated in A. Hirschowitz, A. Piriou [46]).
Such a symplectomorphism induces naturally a symplectomorphism χ∂ at the
boundary. The functionψ is a phase function that represents the symplectomor-
phism χ, whileψ∂ represents the symplectomorphism induced at the boundary.
These two conditions arise naturally if one requires that r+Op(a)e+ acts contin-
uously from S (Rn

+) to itself and the same holds for r+Op(a)∗e+. Here we limit
ourselves to the case of the half-spaceRn

+: this is the first step in order to develop
in detail a calculus of Fourier Integral Operators of Boutet de Monvel type. The
theory of Fourier Integral Operators is well known in the case of manifolds with-
out boundary, see the classical paper by L. Hörmander [47]; for an overview
on the theory see L. Hörmander [48, 49], J. J. Duistermaat [28], C. Sogge [102].
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See V. Guillemin and S. Sternberg [43] for Fourier Integral operators in the
semi-classical setting. In the case of manifolds with conical singularities, R. B.
Melrose [69] introduced a notion of Fourier Integral Operator which has been
refined by V. E. Nazaı̆kinskiı̆, B.-W. Schulze and B. Yu. Sternin in [77, 78], with
the aim to get an index formula for such operators, see also V. E. Nazaı̆kinskiı̆,
A. Yu. Savin, B.-W Schulze and B. Yu. Sternin [75] and V. E. Nazaı̆kinskiı̆ and B.
Yu. Sternin [76]. The theory of FIOs we present here uses as a main ingredient
the concept of vector-valued symbols, see e.g. Yu. V. Egorov and B.-W. Schulze
[29] and B.-W. Schulze [96, 97] about their general theory. The main difference
with the theory of pseudodifferential operators of Boutet de Monvel type is
that if Opψ(a) is a FIO of order m, then, in general, the operator r+Opψn (a)e+

does not belong to Sm(Rn−1,Rn−1,Rn−1; Hs(R+),Hs−m(R+)), see (6.2.18). This is a
consequence of the global nature of FIOs. We overcome this problem proving
that r+Opψ(a)e+ belongs to Sm(Rn−1,Rn−1,Rn−1; S (R+),S (R+)). The continuity
on Sobolev spaces, by means of a splitting of the amplitude a, will be essentially
reduced to the analysis of r+Opψ(a)δ( j)

0 , where δ( j)
0 is the j-th derivative of the

Dirac’s distribution at the boundary.
In Chapter 4 we recall the basic definitions and properties of manifolds with

boundary, following closely the approaches of B. W. Boothby [18], J. M. Lee [59]
and J. R. Munkres [74]. For an introduction to manifolds with boundary, aimed
at the calculus on manifold with singularities, see also E. Schrohe and B.-W.
Schulze [95] and R. B. Melrose [70]. Then, we briefly introduce symplectic vector
spaces and the Maslov index of Lagrangian subspaces. In this part we have
used as main references A. Cannas da Silva [21], D. McDuff and D. Salamon
[67] and J. Robbin and D. Salamon [89]. Eventually, we give the definition
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Sobolev spaces, cf. B.-W Schulze [96, 97], and describe continuity properties of
pseudodifferential operator with vector-valued symbols, cf., e.g., J. Seiler [99]
and T. Hirschmann [45].

Chapter 6 is devoted to the definition of Fourier Integral Operators of Boutet
de Monvel type. First, we motivate the assumptions on the symplectomor-
phism and, consequently, on the phase function. The aim is to prove that the
operator r+Opψ(a)e+ : Hs(Rn

+)→ Hs−m(Rn
+) is continuous, where Opψ(a) is a FIO

on Rn of order m with phase function ψ, describing an admissible symplec-
tomorphism. Then, we introduce trace symbols, potential symbols and singular
Green symbols in order to define Fourier Integral Operators of Boutet de Monvel
type. Boutet de Monvel pseudodifferential operators are a particular case of
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with respect to right and left composition with a pseudodifferential operator of
Boutet de Monvel type. We also prove a version of Egorov Theorem adapted
to FIOs of Boutet de Monvel type.

We plan to complete our theory giving the global definition of FIOs of
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notions of principal symbol and ellipticity. It would be interesting to study the
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hyperbolic problems, studied, e.g., by J. Chazarain in [22] and [23]. Finally, a
natural development is the analysis of index theory for this class of operators,
following the ideas of A. Weinstein [108], C. Epstein and R. B. Melrose [30], E.
Leichtnam, R. Nest and B. Tsygan [60] and, in the case of manifolds with conical
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xii



Part I

Zeta Functions of
Pseudodifferential Operators

1





Chapter 1

Pseudodifferential Algebras

This chapter is a brief introduction to the pseudodifferential algebras we will
treat. In Section 1.1 we analyze SG-calculus, in section 1.2 Bisingular operators
and in Section 2.4 Bisingular operators on Euclidean spaces, a global version of
Bisingular operators suited to Shubin’s Global calculus on Rn.

1.1 SG-Operators

In this section we recall the basic properties of SG-calculus, first on Rn, and
then on manifold with cylindrical ends. For the details of the calculus and the
extension to SG-manifolds see, e.g., [29, 91].

1.1.1 SG-Pseudodifferential Operators on Rn

Definition 1.1.1. A function a ∈ C∞(Rn
× Rn) belongs to SGm1,m2 (Rn) if, for all

multiindices α, β ∈ Nn, there exists a constants Cαβ ≥ 0 such that

|Dα
ξDβ

xa(x, ξ)| ≤ Cαβ〈ξ〉m1−|α|〈x〉m2−|β|, (x, ξ) ∈ Rn
× Rn. (1.1)

SGm1,m2 (Rn
× Rn) is a Fréchet space, with seminorms given by {Cαβ}α,β∈Nn , the

best constant in (1.1). Moreover, SG-symbols form a graded algebra:

a ∈ SGm1,m2 (Rn
× Rn), b ∈ SGm′1,m

′

2 (Rn
× Rn) ⇒ ab ∈ SGm1+m′1,m2+m′2 (Rn

× Rn).

The set
S−∞,−∞(Rn

× Rn) =
⋂

(m1,m2)R2

SGm1,m2 (Rn
× Rn) = S (R2n)

is called the set of smoothing symbols. We define the class of SG-pseudodiffe-
rential operators via left quantization. A linear operator A : S (Rn) → S (Rn)
is an SG-operator if it can be written as

Au(x) = Op(a) =
1

(2π)n

∫
eix·ξa(x, ξ)û(ξ)dξ u ∈ S(Rn),

with a ∈ SGm1,m2 (Rn). The corresponding operators constitute the class

Lm1,m2 (Rn) = Op (SGm1,m2 (Rn)) .
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In the sequel we will often simply write SGm1,m2 and Lm1,m2 , respectively, fixing
the dimension of the base space to n. Using the classical property of composi-
tion of pseudodifferential operators, one can prove that SG-pseudodifferential
operators form a graded algebra, that is

Lm1,m2 ◦ Lm′1,m
′

2 ⊆ Lm1+m′1,m2+m′2 .

The residual elements are operators with symbols in SG−∞, that is, those having
kernel in S (R2n), continuously mappingS′(Rn) toS(Rn). Notice that the class of
SG-smoothing operators coincides with the class of smoothing global Shubin’s
operators, see [101]. The notion of ellipticity in this setting involves not only
the behavior of the symbol w.r.t. the ξ-variable, as in the classical case, but also
its decay at infinity w.r.t. the x-variable:

Definition 1.1.2. An operator A = Op(a) ∈ SGm1,m2 is SG-elliptic if there exists
a positive constant R such that

a(x, ξ)−1 = O(〈ξ〉−m1 〈x〉−m2 ),

holds for |x| + |ξ| ≥ R.

It is immediate to check that SG-operators act continuously on the S (Rn)
space and, by duality on the tempered distribution S ′(Rn). In order to obtain
Sobolev continuity results one has to introduce the weighted Sobolev spaces

Ht1,t2 (Rn) = {u ∈ S′(Rn) : ‖u‖t1,t2 = 〈x〉t2‖Op
(
〈ξ〉t1

)
u‖L2 < ∞}.

This scale of Sobolev spaces satisfies immersion property

Hs1,s2 (Rn) ↪→ Hr1,r2 (Rn), s1 ≥ r1, s2 ≥ r2.

If both inequalities are strict, the immersion is compact. Notice moreover that

S(Rn) =
⋂

(s1,s2)∈R2

Hs1,s2 (Rn) and S′(Rn) =
⋃

(s1,s2)∈R2

Hs1,s2 (Rn).

The next proposition followss by the composition properties of SG-operators

Proposition 1.1.1. If A ∈ Lm1,m2 , then it can be extended to a continuous operator

A : Hs1,s2 (Rn)→ Hs1−m1,ss−m2 (Rn).

In view of the calculus and of the Definition of ellipticity 1.1.2, the following
holds:

Proposition 1.1.2. Let A ∈ Lm1,m2 be an elliptic operator. Then, there exists an inverse
B of A modulo smoothing operators. Hence, A is a Fredholm operator.

It is possible to introduce the notion of classical symbol also in this setting.

Definition 1.1.3. i) A symbol a(x, ξ) belongs to the class SGm1,m2
cl(ξ) (Rn) if there

exist am1−i,·(x, ξ) ∈ H̃ m1−i
ξ (Rn), i = 0, 1, . . . , homogeneous functions of order

m1 − i with respect to the variable ξ, smooth with respect to the variable
x, such that, for a fixed 0-excision function ω,

a(x, ξ) −
N−1∑
i=0

ω(ξ) am1−i,·(x, ξ) ∈ SGm1−N,m2 (Rn), N = 1, 2, . . . ;
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ii) A symbol a(x, ξ) belongs to the class SGm1,m2
cl(x) (Rn) if there exist a·,m2−k(x, ξ) ∈

H̃ m2−k
x (Rn), k = 0, . . . , homogeneous functions of order m2−k with respect

to the variable x, smooth with respect to the variable ξ, such that, for a
fixed 0-excision function ω,

a(x, ξ) −
N−1∑
k=0

ω(x) a·,m2−k(x, ξ) ∈ SGm1,m2−N(Rn), N = 1, 2, . . .

Definition 1.1.4. A symbol a(x, ξ) is SG-classical, and we write a ∈ SGm1,m2
cl(x,ξ)(R

n)
= SGm1,m2

cl (Rn) = SGm1,m2
cl , if

i) there exist am1− j,·(x, ξ) ∈ H̃
m1− j
ξ (Rn) such that, for a fixed 0-excision func-

tion ω, ω(ξ) am1− j,·(x, ξ) ∈ SGm1− j,m2

cl(x) (Rn) and

a(x, ξ) −
N−1∑
j=0

ω(ξ) am1− j,·(x, ξ) ∈ SGm1−N,m2 (Rn), N = 1, 2, . . . ;

ii) there exist a·,m2−k(x, ξ) ∈ H̃ m2−k
x (Rn) such that, for a fixed 0-excision func-

tion ω, ω(x) a·,m2−k(x, ξ) ∈ SGm1,m2−k
cl(ξ) (Rn) and

a(x, ξ) −
N−1∑
k=0

ω(x) a·,m2−k ∈ SGm1,m2−N(Rn), N = 1, 2, . . .

We set Lm1,m2
cl(x,ξ)(R

n) = Lm1,m2
cl = Op

(
SGm1,m2

cl

)
.

Remark 1.1.1. The definition could be extended in a natural way from operators acting
between scalars to operators acting between (distributional sections of) vector bundles:
one should then use matrix-valued symbols whose entries satisfy the estimates (1.1)
and modify accordingly the various statements below. To simplify the presentation,
we omit everywhere any reference to vector bundles, assuming them to be trivial and
one-dimensional.

The next two results are especially useful when dealing with SG-classical sym-
bols, see, e.g, see Yu. V. Egorov and B.-W Schulze [29].

Theorem 1.1.3. Let ak ∈ SGm1−k,m2−k
cl , k = 0, 1, . . . , be a sequence of SG-classical

symbols and a ∼
∑
∞

k=0 ak its asymptotic sum in the general SG-calculus. Then,
a ∈ SGm1,m2

cl .

Theorem 1.1.4. Let Bn = {x ∈ Rn : |x| ≤ 1} and let χ be a diffeomorphism from the
interior of Bn to Rn such that

χ(x) =
x

|x|(1 − |x|)
for |x| > 2/3.

Choosing a smooth function [x] on Rn such that 1− [x] , 0 for all x in the interior of Bn

and |x| > 2/3 ⇒ [x] = |x|, for any a ∈ SGm1,m2
cl denote by (Dma)(y, η), m = (m1,m2),

the function
b(y, η) = (1 − [η])m1 (1 − [y])m2 a(χ(y), χ(η)). (1.2)

Then, Dm extends to a homeomorphism from SGm1,m2
cl to C∞(Bn

× Bn).
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Remark 1.1.2. Theorem 1.1.4 can be stated in an equivalent way using the radial
compactification map, see [68, 70]. We consider the manifold with boundary

Sn
+ = {x = (x′, xn+1) | x ∈ Sn, xn+1 ≥ 0},

and the function

RC : Rn
→ Sn

+

x→
( x
〈x〉
,

1
〈x〉

)
.

Then, a ∈ SGm1,m2
cl if and only if

[y]−m1 [η]−m2 a(RC−1(y),RC−1(η))

can be extended as a smooth function to C∞(Sn
+ × Sn

+), where [·] is a boundary defining
function of Sn

+ such that, in a neighborhood of ∂Sn
+, it is equal to the coordinate function

xn+1.

Note that the definition of SG-classical symbol implies a condition of compati-
bility for the terms of the expansions with respect to x and ξ. In fact, defining
σm1− j
ψ and σm2−i

e on SGm1,m2
cl(ξ) and SGm1,m2

cl(x) , respectively, as

σm1− j
ψ (a)(x, ξ) = am1− j,·(x, ξ), j = 0, 1, . . . ,

σm2−i
e (a)(x, ξ) = a·,m2−i(x, ξ), i = 0, 1, . . . ,

it is possible to prove that

am1− j,m2−i = σm1− j,m2−i
ψe (a) = σm1− j

ψ (σm2−i
e (a)) = σm2−i

e (σm1− j
ψ (a)),

j = 0, 1, . . . , i = 0, 1, . . .
(1.3)

Moreover, the algebra property of SG-operators and Theorem 1.1.3 implies that
the composition of two SG-classical operators is still classical. For A = Op (a) ∈
Lm1,m2

cl the triple σ(A) = (σψ(A), σe(A), σψe(A)) = (am1,· , a·,m2 , am1,m2 ) is called the
principal symbol of A. This definition keeps the usual multiplicative behavior,
that is, for any A ∈ Lr1,r2

cl , B ∈ Ls1,s2
cl , (r1, r2), (s1, s2) ∈ R2, σ(AB) = σ(A) σ(B), with

componentwise product in the right-hand side. We also set

Symp (A) (x, ξ) = Symp (a) (x, ξ) =

= am(x, ξ) = ω(ξ)am1,·(x, ξ) + ω(x)(a·,m2 (x, ξ) − ω(ξ)am1,m2 (x, ξ))

for a fixed 0-excision function ω. Theorem 1.1.5 below allows to express the
ellipticity of SG-classical operators in terms of their principal symbol:

Theorem 1.1.5. An operator A ∈ Lm1,m2
cl is elliptic if and only if each element of the

triple σ(A) is non-vanishing on its domain of definition; that is

i) am1,·(ω, ξ) , 0 for all ω ∈ Sn−1, ξ ∈ Rn;

ii) a·,m2 (x, ω′) , 0 for all x ∈ Rn, ω′ ∈ Sn−1;

iii) am1,m2 (ω,ω′) , 0 for all ω ∈ Sn−1, ω′ ∈ Sn−1.
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1.1.2 SG-Operators on Manifolds with Cylindrical Ends

We analyze now an extension of SG-calculus for manifolds with cylindrical
ends, a special case of SG-manifolds [91]. In this subsection we follow the idea
of L. Maniccia and P. Panarese [64]. For simplicity, we restrict ourselves to the
case of manifolds with one cylindrical end.

Definition 1.1.5. A manifold with a cylindrical end is a triple (M,X, [ f ]), where
M = M qC C is a n-dimensional smooth manifold and

i) M is a smooth manifold, given by M = (M0 \D)∪C with a n-dimensional
smooth compact manifold without boundary M0, D a closed disc of M0
and C ⊂ D a collar neighbourhood of ∂D in M0;

ii) C is a smooth manifold with boundary ∂C = X, with X diffeomorphic to
∂D;

iii) f : [δ f ,∞)× Sn−1
→ C , δ f > 0, is a diffeomorphism, f ({δ f } × Sn−1) = X and

f ({[δ f , δ f + ε f )} × Sn−1), ε f > 0, is diffeomorphic to C;

iv) the symbol qC means that we are gluing M and C , through the identifi-
cation of C and f ({[δ f , δ f + ε f )} × Sn−1);

v) the symbol [ f ] represents an equivalence class in the set of functions

{g : [δg,∞) × Sn−1
→ C : g is a diffeomorphism,

g({δg} × Sn−1) = X and

g([δg, δg + εg) × Sn−1), εg > 0, is diffeomorphic to C}

where f ∼ g if and only if there exists a diffeomorphism Θ ∈ Diff(Sn−1)
such that

(g−1
◦ f )(ρ,ω) = (ρ,Θ(ω)) (1.4)

for all ρ ≥ max{δ f , δg} and ω ∈ Sn−1.

We use the following notation:

• Uδ f = {x ∈ Rn : |x| > δ f };

• Cτ = f ([τ,∞) × Sn−1), where τ ≥ δ f . The equivalence condition (1.4)
implies that Cτ is well defined;

• π : Rn
\ {0} → (0,∞) × Sn−1 : x 7→ π(x) =

(
|x|,

x
|x|

)
;

• fπ = f ◦ π : Uδ f → C is a parametrisation of the end. Let us notice that,
setting F = g−1

π ◦ fπ, the equivalence condition (1.4) implies

F(x) = |x| Θ
( x
|x|

)
. (1.5)

We also denote the restriction of fπ mapping Uδ f onto ˙C = C \ X by ˙fπ.
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The couple ( ˙C , ˙f−1
π ) is called the exit chart. If A = {(Ωi, ψi)}Ni=1 is such that the

subset {(Ωi, ψi)}N−1
i=1 is a finite atlas for M and (ΩN, ψN) = ( ˙C , ˙f−1

π ), then M, with
the atlas A , is an SG-manifold (see [91]): an atlas A of such a kind is called
admissible. From now on, we restrict the choice of atlases on M to the class
of admissible ones. We introduce the following spaces, endowed with their
natural topologies:

S (Uδ) =

u ∈ C∞(Uδ) : ∀α, β ∈ Nn
∀δ′ > δ sup

x∈Uδ′

|xα∂βu(x)| < ∞

 ,
S0(Uδ) =

⋂
δ′↘δ

{u ∈ S (Rn) : supp u ⊆ Uδ′ },

S (M) = {u ∈ C∞(M) : u ◦ ˙fπ ∈ S (Uδ f ) for any exit map fπ},

S ′(M) denotes the dual space of S (M).

Definition 1.1.6. The set SGm1,m2 (Uδ f ) consists of all the symbols a ∈ C∞(Uδ f )
which fulfill (1.1) for (x, ξ) ∈ Uδ f×Rn only. Moreover, the symbol a belongs to the
subset SGm1,m2

cl (Uδ f ) if it admits expansions in asymptotic sums of homogeneous
symbols with respect to x and ξ as in Definitions 1.1.3 and 1.1.4, where the
remainders are now given by SG-symbols of the required order on Uδ f .

Note that, since Uδ f is conical, the definition of homogeneous and classical sym-
bol on Uδ f makes sense. Moreover, the elements of the asymptotic expansions
of the classical symbols can be extended by homogeneity to smooth functions
on Rn

\ {0}, which will be denoted by the same symbols. It is a fact that, given
an admissible atlas {(Ωi, ψi)}Ni=1 on M, there exists a partition of unity {ϕi} and a
set of smooth functions {χi} which are compatible with the SG-structure of M,
that is:

• suppϕi ⊂ Ωi, suppχi ⊂ Ωi, χi ϕi = ϕi, i = 1, . . . ,N;

• |∂α(ϕN ◦ ˙fπ)(x)| ≤ Cα 〈x〉−|α| and |∂α(χN ◦ ˙fπ)(x)| ≤ Cα 〈x〉−|α| for all x ∈ Uδ f .

Moreover,ϕN and χN can be chosen so thatϕN◦ ˙fπ and χN◦ ˙fπ are homogeneous
of degree 0 on Uδ. We denote by u∗ the composition of u : ψi(Ωi) ⊂ Rn

→ C with
the coordinate patches ψi, and by v∗ the composition of v : Ωi ⊂ M → C with
ψ−1

i , i = . . . ,N. It is now possible to give the definition of SG-pseudodifferential
operator on M:

Definition 1.1.7. Let M be a manifold with a cylindrical end. A linear operator
A : S ′(M) → S ′(M) is an SG-pseudodifferential operator of order (m1,m2) on
M if, for any admissible atlas {(Ωi, ψi)}Ni=1 on M with exit chart (ΩN, ψN):

1) for all i = 1, . . . ,N−1 and anyϕi, χi ∈ C∞c (Ωi), there exist symbols ai(x, ξ) ∈
Sm1 (ψi(Ωi)) such that

(χiAϕi u∗)∗(x) =

"
ei(x−y)·ξai(x, ξ)u(y)dydx, u ∈ C∞(ψi(Ωi));
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2) for anyϕN, χN of the type described above, there exists a symbol aN(x, ξ) ∈
SGm1,m2 (Uδ f ) such that

(χNAϕN u∗)∗(x) =

"
ei(x−y)·ξaN(x, ξ)u(y)dydx, u ∈ S0(Uδ f );

3) KA, the Schwartz kernel of A, is such that

KA ∈ C∞
(
(M ×M) \ ∆

)⋂
S

(
( ˙C × ˙C ) \W

)
,

where ∆ is the diagonal of M ×M and W = ( ˙fπ × ˙fπ)(V) with any conical
neighbourhood V of the diagonal of Uδ f ×Uδ f .

The most important local symbol of A is aN, which we will also denote a f , to
remind its dependence on the exit chart. Our definition of SG-classical operator
on M differs slightly from the one in [64]:

Definition 1.1.8. Let A ∈ Lm1,m2 (M). A is an SG-classical operator on M, and we
write A ∈ Lm1,m2

cl (M), if a f (x, ξ) ∈ SGm1,m2
cl (Uδ f ) and the operator A, restricted to

the manifold M , is classical in the usual sense.

The principal symbol am1,· of an SG-classical operator A ∈ Lm1,m2
cl (M) is of course

well-defined as a smooth function on T∗M \ 0. In order to give an invariant
definition of principal symbol with respect to x of an operator A ∈ Lm1,m2

cl (M),
the subbundle T∗XM = {(x, ξ) ∈ T∗M : x ∈ X, ξ ∈ T∗xM} was introduced. The
notion of ellipticity can be extended to operators on M as well:

Definition 1.1.9. Let A ∈ Lm1,m2
cl (M) and let us fix an exit map fπ. We can define

local objects am1− j,m2−k, a·,m2−k as

am1− j,m2−k(θ, ξ) = a f
m1− j,m2−k(θ, ξ), θ ∈ Sn−1, ξ ∈ Rn

\ {0},

a·,m2−k(θ, ξ) = a f
·,m2−k(θ, ξ), θ ∈ Sn−1, ξ ∈ Rn.

Definition 1.1.10. An operator A ∈ Lm1,m2
cl (M) is SG-elliptic if the principal part

of a f
∈ SGm1,m2 (Uδ f ) satisfies the SG-ellipticity conditions on Uδ f × Rn and the

operator A, restricted to the manifold M , is elliptic in the usual sense.

Proposition 1.1.6. The properties of A ∈ Lm1,m2 (M) and of A ∈ Lm1,m2
cl (M), as well as

the notion of ellipticity, do not depend on the (admissible) atlas. Moreover, the local
functions a·,m2 and am1,m2 give rise to invariantly defined elements of C∞(T∗XM) and
C∞(T∗XM \ 0), respectively.

Then, with any A ∈ Lm1,m2
cl (M), it is associated an invariantly defined principal

symbol in three components σ(A) = (am1,., a.,m2 , am1,m2 ). Finally, through local
symbols given by pi(x, ξ) = 〈ξ〉s1 , i = 1, . . . ,N − 1, and p f (x, ξ) = 〈ξ〉s1 〈x〉s2 ,
s1, s2 ∈ R, we get an SG-elliptic operator Πs1,s2 ∈ Ls1,s2

cl (M) and introduce the
(invariantly defined) weighted Sobolev spaces Hs1,s2 (M) as

Hs1,s2 (M) = {u ∈ S ′(M) : Πs1,s2 u ∈ L2(M)}.

The properties of the spaces Hs1,s2 (Rn) extend to Hs1,s2 (M) without any change,
as well as the continuous action of the SG-operators.
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1.2 Bisingular Operators

In this section we introduce the basic theory of bisingular operators. We refer
to [90] and [80] for details and proofs. Here, Ωi always denotes a bounded open
domain of Rni .

Definition 1.2.1. We define Sm1,m2 (Ω1,Ω2) as the set of functions belonging to
C∞(Ω1×Ω2×Rn1 ×Rn2 ) such that, for all multi-indices αi, βi and for all compact
subsets Ki ⊆ Ωi, i = 1, 2, there exists a positive constant Cα1,α2,β1,β2,K1,K2 such that

|∂α1
ξ1
∂α2
ξ2
∂
β1
x1
∂
β2
x2

a(x1, x2, ξ1, ξ2)| ≤ Cα1,α2,β1,β2,K1,K2〈ξ1〉
m1−|α1 |〈ξ2〉

m2−|α2 |,

for all xi ∈ Ki, ξi ∈ Rni , i = 1, 2.

S−∞,−∞(Ω1,Ω2) is the set of smoothing symbols. Following [90], we introduce
the subclass of bisingular operators with homogeneous principal symbol.

Definition 1.2.2. Let a ∈ Sm1,m2 (Ω1,Ω2); a has a homogeneous principal symbol
if

i) there exists am1,·(x1, x2, ξ1, ξ2) ∈ Sm1,m2 (Ω1,Ω2) such that

a(x1, x2, tξ1, ξ2) = tm1 a(x1, x2, ξ1, ξ2), ∀x1, x2, ξ2, ∀|ξ1| > 1, t > 0,

a − ψ1(ξ1)am1,· ∈ Sm1−1,m2 (Ω1,Ω2), ψ1 0-excision function.

Moreover, am1,·(x1, x2, ξ1,D2) ∈ Lm2
cl (Ω2), so, being a classical symbol on Ω2,

it admits an asymptotic expansion w.r.t. the ξ2 variable.

ii) there exists a·,m2 (x1, x2, ξ1, ξ2) ∈ Sm1,m2 (Ω1,Ω2) such that

a(x1, x2, ξ1, tξ2) = tm2 a(x1, x2, ξ1, ξ2), ∀x1, x2, ξ1, ∀|ξ2| > 1, t > 0,

a − ψ2(ξ2)a·,m2 ∈ Sm1,m2−1(Ω1,Ω2), ψ2 0-excision function.

Moreover, a·,m2 (x1, x2,D1, ξ2) ∈ Lm1
cl (Ω1), so, being a classical symbol on Ω1,

it admits an asymptotic expansion w.r.t. the ξ1 variable.

iii) The symbols am1,· and a·,m2 have the same leading term, so there exists
am1,m2 such that

am1,· − ψ2(ξ2)am1,m2 ∈ Sm1,m2−1(Ω1,Ω2),

a·,m2 − ψ1(ξ1)am1,m2 ∈ Sm1−1,m2 (Ω1,Ω2),

and
a − ψ1am1,· − ψ2a·,m2 + ψ1ψ2am1,m2 ∈ Sm1−1,m2−1(Ω1,Ω2).

The set of symbols with homogeneous principal symbol is denoted by Sm1,m2
pr

(Ω1,Ω2). We will shortly write that the principal symbol of a is {am1,·, a·,m2 }.

Remark 1.2.1. In [80], classical bisingular operators were introduced using an ap-
proach very similar to the one of Remark 1.1.2. The authors consider the maps

R̃Ci : T∗Ωi → S∗+Ωi = Ω1 × Sn1
+

(x, ξ)→ (x,RC(ξ)),
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and the boundary defining functions ρ1, ρ2 of the two boundary hypersurfaces, ∂Sn1
+ ×

Sn2
+ and Sn1

+ ×∂S
n2
+ , of the manifold with corners Sn1

+ ×S
n2
+ , such that ρ1(RC−1(ξ1), ω) =

〈ξ1〉, for all ξ1 ∈ Rn1 , and similarly for ρ2. Then, setting ρ̃i = π∗iρi, where πi : T∗Ωi →

Ωi is the canonical projection, i = 1, 2, one defines

Sm1,m2
cl (Ω1 ×Ω2) =

(
R̃C1 × R̃C2

)∗
ρ̃−m1

1 ρ̃−m2
2 C∞(S∗+Ω1 × S∗+Ω2),

where C∞(S∗+Ω1 × S∗+Ω2) is the set of functions which admit smooth extension up to
the boundary.

We define bisingular operators via their left quantization. A linear operator
A : C∞c (Ω1 ×Ω2) → C∞(Ω1 ×Ω2) is a bisingular operator if it can be written in
the form

A(u)(x1, x2) =Op(a)(x1, x2)

=
1

(2π)n1+n2

∫
Rn1

∫
Rn2

eix1·ξ1+ix2·ξ2 a(x1, x2, ξ1, ξ2)û(ξ1, ξ2)dξ1dξ2,

with a ∈ Sm1,m2 (Ω1,Ω2) or a ∈ Sm1,m2
pr (Ω1,Ω2). Then, we write A ∈ Lm1,m2 (Ω1,Ω2)

or A ∈ Lm1,m2
pr (Ω1,Ω2), respectively. The above definition can be extended to the

product of closed manifolds; we refer to [90] for the details of the construction
of global operators and the corresponding calculus.

Definition 1.2.2 implies that, for every operator A ∈ Lm1,m2
pr (Ω1,Ω2), we can

define principal symbol mappings, σm1 , σm2 , σm1,m2 , such that

σm1
1 (A) : T∗Ω1 \ {0} → Lm2

cl (Ω2)

(x1, ξ1) 7→ am1,·(x1, x2, ξ1,D2),
σm2

2 (A) : T∗Ω2 \ {0} → Lm1
cl (Ω1)

(x2, ξ2) 7→ a·,m2 (x1, x2,D1, ξ2),
σm1,m2 (A) : T∗Ω1 \ {0} × T∗Ω2 \ {0} → C

(x1, x2, ξ1, ξ2) 7→ am1,m2 (x1, x2, ξ1, ξ2).

(1.6)

Moreover, denoting by σ(P)(x, ξ) the principal symbol of a preudodifferential
operator P on a closed manifold, the following compatibility relation holds

σ(σm1
1 (A)(x1, ξ1))(x2, ξ2) =σ(σm2

2 (A)(x2, ξ2))(x1, ξ1)

=σm1,m2 (A)(x1, x2, ξ1, ξ2) = am1,m2 (x1, x2, ξ1, ξ2).
(1.7)

Comparing the compatibility condition (1.7) with (1.3), we observe a similar-
ity, at least formal, between bisingular symbols with homogeneous principal
symbol and SG-classical symbols.

Remark 1.2.2. If we consider the product of closed manifolds M1×M2, then the whole
symbol is a local object, in general. Nevertheless, similarly to the calculus on closed
manifolds, it is possible to give an invariant meaning to the mappings (1.6) as functions
defined on the cotangent bundle, see [90].

As in the case of the calculus on closed manifolds, it is possible to define
adapted Sobolev spaces and then prove some continuity results.
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Definition 1.2.3. Let M1,M2 be two closed manifolds. The Sobolev space
Hm1,m2 (M1 ×M2) is defined as

{u ∈ D ′(M1 ×M2) | ‖u‖Hm1 ,m2 (M1×M2) = ‖Op(〈ξ1〉
m1〈ξ2〉

m2 )(u)‖L2(M1×M2) < ∞}.

Using the formalism of tensor products, we can also write1

Hm1,m2 (M1 ×M2) = Hm1 (M1)⊗̂πHm2 (M2).

Similarly to Sobolev spaces Hs(M), we have

i) Hm1,m2 (M1×M2) ↪→ Hm′1,m
′

2 (M1×M2) is a continuous immersion if mi ≥ m′i ,
i = 1, 2.

ii) Hm1,m2 (M1 ×M2) ↪→ Hm′1,m
′

2 (M1 ×M2) is a compact immersion if mi > m′i ,
i = 1, 2.

Proposition 1.2.1. A pseudodifferential operator A ∈ Lm1,m2 (M1×M2) can be extended
to a continuous operator

A : Hs,t(M1 ×M2)→ Hs−m1,t−m2 (M1 ×M2).

Furthermore, the norm of the operator can be estimated using the seminorms
of the symbol. It is also possible to prove the following proposition:

Proposition 1.2.2. Let A ∈ Lm1,m2 (M1 ×M2) be a bisingular operator. If mi ≤ 0,
i = 1, 2, then there exists N ∈ N such that ‖A‖0,0 ≤ sup

∑
i≤N pi(a(x1, x2, ξ1, ξ2)),

where {pi(·)}i∈N are the seminorms of the Fréchet space Sm1,m2 (M1,M2).

An operator A ∈ Lm1,m2 (M1 ×M2) is elliptic if σm1
1 (A), σm2

2 (A), σm1,m2 (A), the
three components of its principal symbol, are invertible in their domain of
definition. Explicitly:

Definition 1.2.4. Let A ∈ Lm1,m2
pr (M1 ×M2). A is bisingular elliptic if

i) σm1,m2 (A)(v1, v2) , 0 for all (v1, v2) ∈ T∗M1 \ {0} × T∗M2 \ {0};

ii) σm1
1 (A)(v1) ∈ Lm2

cl (M2) is invertible for all v1 ∈ T∗M1 \ {0};

iii) σm2
2 (A)(v2) ∈ Lm1

cl (M1) is invertible for all v2 ∈ T∗M2 \ {0};

where σm1,m2 (A), σm1
1 (A), σm2

2 (A) are as in (1.6).

Remark 1.2.3. If an operator A ∈ Lm1,m2
pr satisfies condition iii) of Definition 1.2.4

then both the operators σm1 (A)(v1) ∈ Lm2 (M2) and σm2 (A)(v2) ∈ Lm1 (M1) are elliptic
operators. Moreover, if A satisfies conditions i) and ii), one can prove that both
σm1 (A)(v1) and σm2 (A)(v2) are injective Fredholm operators with zero index, therefore
invertible operators also in the scale of Hs spaces. Thus, in Definition 1.2.4, it is
equivalent to require the invertibility of the operators on the spaces of smooth functions
or on the Sobolev spaces Hs.

In [90], it is proved that, if A satisfies Definition 1.2.4. Then, A is a Fredholm
operator. This property is a corollary of the following theorem:

1For the definition of ⊗̂π, see [103].
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Theorem 1.2.3. Let A ∈ Lm1,m2
pr (M1 ×M2) be bisingular elliptic. Then, there exists an

operator B ∈ L−m1,−m2
pr (M1 ×M2) such that

AB = Id + K1,

BA = Id + K2,

where Id is the identity map and K1,K2 are compact operators. Moreover, sym(B) =
b = {σm1

1 (A)−1, σm2
2 (A)−1

}.

The proof of Theorem 1.2.3 is a consequence of the global version of the
following lemma:

Lemma 1.2.4. Let A ∈ Lm1,m2 (Ω1 ×Ω2) and B ∈ Lm′1,m
′

2 (Ω1 ×Ω2), then

{(a ◦ b)m1+m′1,·, (a ◦ b)·,m2+m′2 } = {am1,· ◦ξ2 bm′1,·, a·,m2 ◦ξ1 b·,m′2 },

where

(a ◦ξ1 b)(x1, x2,D1, ξ2)(u) = a(x1, x2,D1, ξ2) ◦ b(x1, x2,D1, ξ2)(u) ∀u ∈ C∞c (Ω1),
(a ◦ξ2 b)(x1, x2, ξ1,D2)(v) = a(x1, x2, ξ1,D2) ◦ b(x1, x2, ξ1,D2)(v) ∀v ∈ C∞c (Ω2).

In the first row the composition is in L∞(Ω1), the algebra of of pseudodifferential
operators on Ω1, in the second row, it is in L∞(Ω2).

1.3 Bisingular Operators on Euclidean Spaces

In this section we illustrate a global version of bisingular operators, adapted
to Shubin’s calculus on Rn, see [101]. This class of operators has been recently
introduced in [16].

Definition 1.3.1. We define Γm1,m2 (Rn1 ,Rn2 ), m1 ∈ R,m2 ∈ R, as the subset of
C∞(R2n1+2n2 ) functions such that for all multiindices αi, βi (i = 1, 2) there exists a
constant C so that

|∂
β1
x1
∂
β2
x2
∂α1
ξ1
∂α2
ξ2

a(x1, x2, ξ1, ξ2)| ≤ C〈x1, ξ1〉
m1−|α1 |−|β1 |〈x2, ξ2〉

m2−|α2 |−|β2 |, (1.8)

for all x1, ξ1, x2, ξ2. We also define

Γ−∞,−∞(Rn1 ,Rn2 ) =
⋂

m1,m2∈R2

Γm1,m2 (Rn1 ,Rn2 ) = S (R2n1+2n2 ),

the set of smoothing symbols in this context.

Definition 1.3.2. A linear operator A : C∞c (Rn1+n2 ) → C∞(Rn1+n2 ) is a globally
bisingular operator if it can be written as2

A(u)(x1, x2) = Op(a)(u)(x1, x2) =

"
eix1·ξ1+ix2·ξ2 a(x1, x2, ξ1, ξ2)û(ξ1, ξ2)d̄ξ1 d̄ξ2,

(1.9)
where a ∈ Γm1,m2 (Rn1 ,Rn2 ). We define Gm1,m2 (Rn1 ,Rn2 ) as the set of operators (1.9)
with symbol in Γm1,m2 (Rn1 ,Rn2 ).

2 d̄ξi = (2π)−ni dξi .
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TheS-continuity of globally bisingular operators is immediate, we just have
to check all seminorms. A continuity result on suitable Sobolev spaces can also
be proved, as stated below.

Definition 1.3.3. For positive integers s1, s2, we define Qs1,s2 (Rn1 ,Rn2 ) as the
space of all u ∈ L2(Rn1+n2 ) such that

‖u‖Qs1 ,s2 =
∑

|α1 |+|β1 |≤s1,
|α2 |+|β2 |≤s2

‖xβ1

1 xβ2

2 Dα1
x1

Dα2
x2

u‖L2 .

For general s1, s2 ∈ R we set

Qs1,s2 (Rn1 ,Rn2 ) = {u ∈ S ′(Rn1+n2 ) | ‖u‖Qs1 ,s2 = ‖{Op(〈x1, ξ1〉
s1〈x2, ξ2〉

s2 )‖L2 < ∞}.

Theorem 1.3.1. An operator A ∈ Gm1,m2 (Rn1 ,Rn2 ) can be extended, for every s1, s2 ∈

R, as a continuous operator

A : Qs1,s2 (Rn1 ,Rn2 )→ Qs1−m1,s2−m2 (Rn1 ,Rn2 ).

The proof of Theorem 1.3.1 follows observing that Γ0,0(Rn1 × Rn2 ) ⊆ Γ0
0(Rn1+n2 ),

see [101] for the definition of Γ0
0(Rn). Then, we use the well known results of

L2-continuity and the definition of Qs1,s2 (Rn1+n2 ). In order to make the notation
simpler, in the sequel we will just write Γm1,m2 and Gm1,m2 , fixing the dimensions
of the base spaces to n1, n2. We prove now that globally bisingular operators
form an algebra.

Theorem 1.3.2. Let A ∈ Gm1,m2 and B ∈ Gl1,l2 . Then, A ◦ B ∈ Gm1+l1,m2+l2 .

Proof. With a simple evaluation we obtain

(A ◦ B)u(x1, x2) =

"
eix1ξ1+ix2ξ2 c(x1, x2, ξ1, ξ2)û(ξ1, ξ2)d̄ξ1 d̄ξ2,

where

c(x1, x2, ξ1, ξ2) =

∫
e−i(µ1+µ2)a(x1, x2, η1, η2)b(y1, y2, ξ1, ξ2)dy1dy2 d̄η1 d̄η2

µ1 = 〈y1 − x1, η1 − ξ1〉, µ2 = 〈y2 − x2, η2 − ξ2〉.
(1.10)

We divide the product ab in (1.10) into four parts, for a fixed integer N > 0:

a(x1, x2, η1, η2)b(y1, y2, ξ1, ξ2) = (ab)N
1 + (ab)N

2 + (ab)N
3 + rN,

where

(ab)N
1 =

∑
|β1 |+|α1 |<2N

1
β1!α1!

(y1 − x1)β1 (η1 − ξ1)α1

∂α1
η1

a(x1, x2, ξ1, η2)∂β1
y1

b(x1, y2, ξ1, ξ2),

(ab)N
2 =

∑
|β2 |+|α2 |<2N

1
β2!α2!

(y2 − x2)β2 (η2 − ξ2)α2

∂α2
η2

a(x1, x2, η1, ξ2)∂β2
y2

b(y1, x2, ξ1, ξ2),
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(ab)N
3 = −

∑
|α1 |+|β1 |<2N
|α2 |+|β2 |<2N

1
β1!β2!α1!α2!

(y1 − x1)β1 (y2 − x2)β2 (η1 − ξ1)α1 (η2 − ξ2)β2

∂α1
η1
∂α2
η2

a(x1, x2, ξ1, ξ2)∂β1
y1
∂
β2
y2

b(x1, x2, ξ1, ξ2),

rN =
∑

|α1 |+|β1 |<2N
|α2 |+|β2 |<2N

1
β1!β2!α1!α2!

(y1 − x1)β1 (y2 − x2)β2 (η1 − ξ1)α1 (η2 − ξ2)α2

∫ 1

0

∫ 1

0
(1 − t1)N−1(1 − t2)N−1∂α1

η1
∂α2
η2

a(x1, x2, ξ1 + t1(η1 − ξ1), ξ2+

t2(η2 − ξ2))∂β1
y1
∂
β2
y2

b(x1 + t1(y1 − x1), x2 + t2(y2 − x2), ξ1, ξ2)dt1dt2.

Also, we define

cN
i =

∫
e−iµ1−iµ2 (ab)N

i dy1dy2 d̄η1 d̄η2, RN =

∫
e−iµ1−iµ2 rNdy1dy2 d̄η1 d̄η2.

Let us focus on cN
1 . Notice that

(y1 − x1)β1 e−i〈y1−x1,η1−ξ1〉 = (−i)β1 Dβ1
η1

e−i〈y1−x1,η1−ξ1〉, (1.11)

(η1 − ξ1)α1 e−i〈y1−x1,η1−ξ1〉 = (−i)α1 Dα1
y1

e−i〈y1−x1,η1−ξ1〉. (1.12)

If α1 , β1, there exists an index i such that, for example, (α1)i > (β1)i. So,
using relation (1.12) and integrating by parts, we derive (α1)i times w.r.t. y1 the
expression (y1 − x1)β1 , and, since (α1)i > (β1)i, the derivative is zero. Clearly, the
same scheme can be used if (α1)i < (β1)i, by exchanging the role of the variable
and the covariable, and by (1.11). This implies that we can restrict ourselves to
consider the case α1 = β1. Now, integrating by parts and using relation (1.12),
we get

cN
1 =

1
α!

"
e−i〈y2−x2,η2−ξ2〉

∑
|α1 |<N

∂α1
ξ1

a(x1, x2, ξ1, η2)Dα1
x1

b(x1, y2, ξ1, ξ2)dy2 d̄η2.

(1.13)
The expression (1.13) can be written in the form

cN
1 =

∑
|α1 |<N

1
α1!

∂α1
ξ1

a ◦2 Dα1
x1

b,

where the symbol ◦2 means the composition of the operators acting on Rn2 .
With the same scheme we can prove that

cN
2 =

∑
|α2 |<N

1
α2!

∂α2
ξ2

a ◦1 Dα2
x2

b.

Integrating by parts twice, we get

cN
3 = −

∑
|α1 |<N
|α2 |<N

1
α1!α2!

∂α1
ξ1
∂α2
ξ2

aDα1
x1

Dα2
x2

b.
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We have now to analyze the remainder. Consider the identity

〈y1, η1〉
2P
〈y2, η2〉

2P(1 − ∆y1 − ∆η1 )P(1 − ∆y2 − ∆η2 )Pe−i(µ1+µ2) = e−i(µ1+iµ2). (1.14)

By Peetre inequality, we have

|rN | ≤〈x1, ξ1〉
m1+l1−2P

〈x2, ξ2〉
m2+l2−2P

〈y1 − x1〉
|l1 |+2P

〈y2 − x2〉
|l2 |+2P

〈η1 − ξ1〉
|m1 |+2P

〈η2 − ξ2〉
|m2 |+2P.

Using (1.14) with P large enough and integrating by parts, we prove that RN ∈

Γm1+l2−2N,m2+l2−2N. �

Remark 1.3.1. It is useful to write c as

c ∼
∞∑
j=0

cm1+l1−2 j,m2+l2−2 j,

where

cm1+l1−2 j,m2+l2−2 j = c1
m1+l1−2 j,m2+l2−2 j + c2

m1+l1−2 j,m2+l2−2 j + c3
m1+l1−2 j,m2+l2−2 j,

and

c1
m1+l1−2 j,m2+l2−2 j =

∑
|α1 |= j

1
α1!

(
∂α1
ξ1

a ◦2 Dα1
x1

b −
∑
|α2 |≤ j

1
α2!

∂α1
x1
∂α2

x2
aDα1

x1
Dα2

x2
b
)
,

c2
m1+l1−2 j,m2+l2−2 j =

∑
|α2 |= j

1
α2!

(
∂α2
ξ2

a ◦1 Dα2
x2

b −
∑
|α1 |≤ j

1
α1!

∂α1
x1
∂α2

x2
aDα1

x1
Dα2

x2
b
)
,

c3
m1+l1−2 j,m2+l2−2 j =

∑
|α1 |=|α2 |= j

1
α1!α2!

∂α1
x1
∂α2

x2
aDα1

x1
Dα2

x2
b.

In the sequel, we will study a subclass of globally bisingular operators,
namely operators with homogeneous principal part.

Definition 1.3.4. A symbol a ∈ Γm1,m2 has homogeneous principal part if

i) there exists a function am1,·(x1, x2, ξ1, ξ2), homogeneous w.r.t. (x1, ξ1) of
order m1, such that

a − ψ1(x1, ξ1)am1,· ∈ Γm1−1,m2 (Rn1+n2 ),

ψ1 fixed 0-excision function, and the operator a(x1, x2, ξ1,D2), with (x1, ξ1)
frozen, is a classical global operator in Rn2 ;

ii) there exists a·,m2 , homogeneous w.r.t. (x2, ξ2) of order m2, such that

a − ψ2(x2, ξ2)a·,m2 ∈ Γm1,m2−1(Rn1,n2 ),

ψ2 fixed 0-excision function, and the operator a(x1, x2,D1, ξ2), with (x2, ξ2)
frozen, is a classical global operator in Rn1 ;
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iii) there exists a function am1,m2 (x1, x2, ξ1, ξ2) homogeneous w.r.t. (x1, ξ1) of
order m1 and w.r.t. (x2, ξ2) of order m2, such that am1,m2 is equal to the
principal symbol of am1,·(x1, x2, ξ1,D2) and of a·,m2 (x1, x2,D1, ξ2) and

a − ψ1(x1, ξ1)am1,· − ψ2(x2, ξ2)(a·,m2 ) + ψ1(x1, ξ1)ψ2(x2, ξ2)am1,m2

belongs to Γm1−1,m2−1(Rn1+n2 ).

In the rest of the section, the class of globally bisingular symbols with homo-
geneous principal part is denoted by Γm1,m2

pr , and the corresponding operators
with homogeneous principal symbol by Gm1,m2

pr (Rn1+n2 ). We introduce three
functions, associated with an operator A ∈ Gm1,m2

pr : 3

σm1
1 (A) : T∗(Rn1 ) \ {0} → Gm2

cl (Rn2 )

(x1, ξ1) 7→ am1,·(x1, x2, ξ1,D2),
σm2

2 (A) : T∗(Rn2 ) \ {0} → Gm1
cl (Rn1 )

(x2, ξ2) 7→ a·,m2 (x1, x2,D1, ξ2),
σm1,m2 (A) : T∗(Rn1 ) \ {0} × T∗(Rn2 ) \ {0} → Hm1,m2

ξ1,ξ2

(x1, x2, ξ1, ξ2) 7→ am1,m2 (x1, x2, ξ, ξ2).

Remark 1.3.2. Analogously to the case of bisingular operators, one can introduce
classical globally bisingular operator: this is achieved through the construction of
Remark 1.2.1 in this setting. That is, one can set

Γm1,m2
cl = (RC1 × RC2)∗ ρ−m1

1 ρ−m2
2 C∞(S2n1

+ × S2n2
+ ),

where ρ−1
1 (RC1(x1, ξ1), ω2) = 〈x1, ξ1〉 for all x1, ξ1 ∈ R2n1 andω2 ∈ S2n2

+ , and similarly
for ρ2. Here we will treat globally bisingular symbols with homogeneous principal
symbols, therefore we do not detail the construction of classical globally bisingular
operators.

Now, we introduce the notion of ellipticity. As in the case of bisingular
operators on the product of closed manifolds, we restrict ourselves to symbols
with homogeneous principal symbol.

Definition 1.3.5. Let A ∈ Gm1,m2
pr (Rn1+n2 ). A is an elliptic globally bisingular

operator if there exist constants R1,R2 such that

i) the operator σm1
1 (A)(x1, ξ1) is invertible for every (x1, ξ1) ∈ T∗Rn1 \ {0};

ii) the operator σm2
2 (A)(x2, ξ2) is invertible for every (x2, ξ2) ∈ T∗Rn2 \ {0};

iii) for (x1, ξ1) ∈ T∗Rn1 \ {0}, (x2, ξ2) ∈ T∗Rn2 \ {0}

|σm1,m2 (A)(x1, xx, ξ1, ξ2)| , 0. (1.15)

Remark 1.3.3. As in Remark 1.2.3, we notice that, if an operator A ∈ Gm1,m2
pr satisfies

condition iii) of Definition 1.3.5, then both the operators σm1
1 (x1, ξ1) ∈ Gm2 (Rn2 ) and

σm2
2 (x2, ξ2) ∈ Gm1 (Rn1 ) are elliptic Shubin-type operators. Furthermore, if A satisfies

conditions i) and ii), one can prove that both σm1
1 (A)(x2, ξ2) and σm2

2 (A)(x1, ξ1) are
injective Fredholm operator with zero index, therefore invertible operators also in the
scale of Qs spaces. Thus, in Definition 1.3.5, it is equivalent to require the invertibility
of the operators on the Schwartz spaces or on the Sobolev spaces Qs.

3
H

m1 ,m2
ξ1 ,ξ2

is the set of homogeneous function of order mi w.r.t. ξi, i = 1, 2.
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Theorem 1.3.3. If A is an elliptic globally bisingular operator then it is a Fredholm
operator.

Proof. It is a consequence of Theorem 1.3.1. From Remark 1.3.1, if A is elliptic
one can define B as the operator with symbol

b =ψ1(x1, ξ1)sym(σm1
1 (A)−1) + ψ2(x2, ξ2)sym(σm2

2 (A)−1)

− ψ1(x1, ξ1)ψ2(x2, ξ2)σm1,m2 (A)−1.

The calculus implies that B is an inverse of A modulo compact operator. �

Using a Neumann series procedure, by Theorem 1.3.3 we prove that, if
a globally bisingular operator is elliptic, then it admits an inverse modulo
smoothing operators. So we have this immediate corollary:

Corollary 1.3.4. Let A ∈ Gm1,m2
pr be elliptic. Then

i) if Au ∈ Qs1,s2 (Rn1+n2 ), then u ∈ Qs1+m1,s2+m2 ;

ii) if Au ∈ S, then u ∈ S.
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Chapter 2

Complex Powers and
ζ-Function

In this chapter we define the complex powers and the spectral ζ-function of
operators in the classes defined in Chapter 1. In Section 2.1, we study SG-
classical operators, starting with the case of operators on Rn and then switching
to the case of manifolds with cylindrical ends. In this part we follow the
construction of L. Maniccia, E. Schrohe and J. Seiler [66]. Eventually, we will
introduce the non-commutative residue via the corresponding ζ-function. The
non-commutative residue in SG-calculus on Rn was already introduced by F.
Nicola in [79] by means of the theory of holomorphic families. We compare the
two constructions onRn, and show that the approach by means of the ζ-function
is convenient for the extension of this concept to manifolds with cylindrical
ends. In Section 2.2, we define a regularized version of the non-commutative
residue, in order to prove a (regularized version) of the Kastler-Kalau-Walze
Theorem on Rn endowed with a suitable metric. In Sections 2.3 and 2.4 we
introduce complex powers of suitable operators with homogeneous principal
symbols in the setting of bisingular operators and bisingular operators on
Euclidean spaces, respectively. In both cases, we analyze the continuation of
the spectral ζ-function and we give a precise description of the corresponding
Laurent coefficients.

2.1 Complex Powers andζ-Function of SG-Operators

In this section we prove, in particular, that the complex powers of suitable SG-
classical operators are again SG-classical. Then, we study the corresponding
ζ-function. The material in this section comes mainly from [15].

Theorem 2.1.1. Given an elliptic operator A ∈ Lm1,m2 with m1,m2 > 0, only one of
the following properties holds:

i) the spectrum of A is the whole complex plane C;

ii) the spectrum of A is a countable set, without any limit point.
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Proof. If i) does not hold, there exists µ ∈ C such that (A − µI) is invertible.
Without loss of generality, we can assume µ = 0, so that

(A − λI) = A(I − λA−1),

showing that (A − λI) is not invertible if and only if λ , 0 and 1
λ belongs to

the spectrum of A−1. From the properties of elliptic operators, we have that
A−1
∈ L−m1,−m2 . Moreover, in view of the hypothesis m1,m2 > 0, of the continuity

of A−1 from L2
≡ H0,0 to Hm1,m2 and of the compact embeddings between the

weighted Sobolev spaces stated in Section 1.1, A−1 : L2
→ Hm1,m2 ↪→ L2 is a

compact operator, thus it has a countable spectrum with, at most, the origin as
a limit point. �

Remark 2.1.1. The proof of Theorem 2.1.1 also shows that the eigenfunctions of A are
the same of A−1.

For fixed θ0, θ, let Λ = {z ∈ C : θ0 − θ ≤ arg(z) ≤ θ0 + θ} be a closed sector of
the complex plane with vertex at the origin. We now recall the definition of
SG-ellipticity with respect to Λ:

Definition 2.1.1. Let Λ be a closed sector of the complex plane with vertex at the
origin. A symbol a(x, ξ) ∈ SGm1,m2 and the corresponding operator A = Op (a)
are called Λ-elliptic if there exist constants C,R > 0 such that

i) a(x, ξ) − λ , 0, for any λ ∈ Λ and (x, ξ) satisfying |x| + |ξ| ≥ R;

ii) |(a(x, ξ)−λ)−1
| ≤ C〈ξ〉−m1〈x〉−m2 for any λ ∈ Λ and (x, ξ) satisfying |x|+ |ξ| ≥

R.

Remark 2.1.2. When matrix-valued symbols are involved, condition i) above is mod-
ified, asking that the spectrum of the matrix a(x, ξ) does not intersect the sector Λ for
|x| + |ξ| ≥ R.

To define the complex powers of an elliptic operator A, we need that the re-
solvent (A − λI)−1 exists, at least, for |λ| large enough. The following Theorem
2.1.2 shows that this is always the case when m1,m2 > 0 and that the resolvent
can be well approximated by a parametrix of A − λI.

Theorem 2.1.2. Let m1,m2 > 0 and A ∈ Lm1,m2 be Λ-elliptic. Then, there exists a
constant L such that the resolvent set ρ(A) includes ΛL = {λ ∈ Λ : |λ| > L}. Moreover,
for suitable constants C,C′ > 0, we have that

‖(A − λI)−1
‖L(L2) ≤

C
λ

and
‖(A − λI)−1

− B(λ)‖L(L2) ≤
C′

λ2

where B(λ) is a parametrix of A − λI.

The next two results give estimates for the position of the eigenvalues of a
Λ-elliptic operator in the complex plane and the relation between Λ-ellipticity
and the principal symbol of a classical SG-operator, similarly to Theorem 1.1.5.
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Lemma 2.1.3. If A = Op (a) ∈ Lm1,m2 , m1,m2 > 0, is Λ-elliptic, there is a constant
c0 ≥ 1 such that, for every (x, ξ) ∈ Rn

× Rn, the spectrum of a(x, ξ) is included in the
set

Ω〈x〉,〈ξ〉 =
{
z ∈ C \Λ :

1
c0
〈ξ〉m1〈x〉m2 ≤ |z| ≤ c0〈ξ〉

m1〈x〉m2

}
and

|(λ − a(x, ξ))−1
| ≤ C(|λ| + 〈ξ〉m1〈x〉m2 )−1, ∀(x, ξ) ∈ Rn

× Rn, λ ∈ C \Ω〈x〉,〈ξ〉.

Proposition 2.1.4. For a ∈ SGm1,m2
cl , the Λ-ellipticity property is equivalent to

am1,·(x, ω) − λ , 0, for all x ∈ Rn, ω ∈ Sn−1, λ ∈ Λ,

a·,m2 (ω′, ξ) − λ , 0, for all ξ ∈ Rn, ω′ ∈ Sn−1, λ ∈ Λ,

am1,m2 (ω′, ω) − λ , 0, for all ω ∈ Sn−1, ω′ ∈ Sn−1, λ ∈ Λ,

where Sn−1 = {u ∈ Rn : |u| = 1}.

Remark 2.1.3. If a is matrix-valued, the conditions in Proposition 2.1.4 have to be
expressed in terms of the spectra of the three involved matrices, analogously to Remark
2.1.2.

We can now give the definition of Az, z ∈ C. The following assumptions on
A are natural:

Assumptions 1. 1. A ∈ Lm1,m2
cl , with m1 and m2 positive integers;

2. A is Λ-elliptic with respect to a closed sector Λ of the complex plane with vertex
at the origin, therefore A is invertible;

3. The spectrum of A does not intersect the real interval (−∞, 0).

Theorem 2.1.1 implies that, if A satisfies Assumptions 1, it has a discrete spec-
trum. In view of this, it is possible to find θ ∈ (0, π) so that (A − λ)−1 exists for
all λ ∈ Λ = Λ(θ) = {z ∈ C : π − θ ≤ arg(z) ≤ π + θ}.

Definition 2.1.2. Let A be an SG-operator that satisfies Assumptions 1. Let us
define Az, z ∈ C, Re z < 0, as

Az =
1

2πi

∫
Γ

λz(A − λI)−1dλ, (2.1)

where Γ = ∂+Λ is the path in the Figure 2.1:

The operator Az, Re z < 0, is well defined since, from Theorem 2.1.2, ‖(A −
λI)−1

‖L(L2) ≤
1
λ and this gives the absolute convergence of the integral. The

definition can be extended to arbitrary z ∈ C:

Definition 2.1.3. Let A be an SG-operator that satisfies Assumptions 1. Define

Az =

Az for Re z < 0
Az−lAl for Re z ≥ 0, with l = 1, 2, . . . , Re z − l < 0.
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Figure 2.1:

arg z = π − θ

arg z = −π + θ

Re z

Im z

Λ

Proposition 2.1.5. i) The Definition of Az for Re z ≥ 0 does not depend on the
integer l.

ii) AzAs = Az+s for all z, s ∈ C.

iii) Ak = A ◦ . . . ◦ A︸      ︷︷      ︸
k times

when z coincides with the positive integer k.

iv) If A ∈ Lm1,m2 then Az
∈ Lm1z,m2z.

The proof can be found, e.g., in [92] and [101]. Note that the definition and
properties of SG-symbols and operators with complex double order (z1, z2) are
analogous to those given above, with Re z1,Re z2 in place of m1,m2, respectively.

Remark 2.1.4. An application of Lemma 2.1.3 implies that the symbol of the operator
Az has the form

sym(Az) =
1

2πi

∫
∂+Ω〈x〉,〈ξ〉

λz sym((A − λI)−1)dλ.

It is a fact that, given an SG-classical operator A satisfying Assumptions 1, Az is
still classical. L. Maniccia, E. Schrohe and J. Seiler proved this in [66] by direct
computation, finding the SG-classical expansion of sym(Az). We prove here
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the same result by a different technique, which makes use of the identification
between SG-classical symbols and C∞(Bn

× Bn) given in Theorem 1.1.4, see Yu.
V. Egorov and B.-W Schulze [29].

Theorem 2.1.6. Let A ∈ Lm1,m2
cl be an operator satisfying Assumptions 1. Then Az,

Re z < 0, is SG-classical of order (m1z,m2z).

Proof. In this proof we use vector notation for the orders, setting m = (m1,m2),
e = (1, 1). By Lemma 2.1.3 and Remark 2.1.4 we know that

az = sym(Az) =
1

2πi

∫
∂+Ω〈x〉,〈ξ〉

λz sym((A − λI)−1)dλ.

We have to prove that az
∈ SGmz

cl . To begin, we claim that

bmz(x, ξ) =
1

2πi

∫
∂+Ω〈x〉,〈ξ〉

λz(am(x, ξ) − λ)−1dλ = [am(x, ξ)]z
∈ SGmz

cl , Re z < 0.

In view of Theorem 1.1.4, it is enough to show that (Dmzbmz)(y, η) ∈ C∞(Bn
×Bn).

For t = (t1, t2), set wt(y, η) = (1 − [η])t1 (1 − [y])t2 . By the change of variable
λ = w−m(y, η)µ, we get

(Dmzbmz)(y, η) =
1

2πi

∫
∂+Ω
〈χ(y)〉,〈χ(η)〉

λz wmz(y, η)
am(χ(y), χ(η)) − λ

dλ

=
1

2πi

∫
∂+Ω̃y,η

µz w−m(y, η)
am(χ(y), χ(η)) − µw−m(y, η)

dµ

=
1

2πi

∫
∂+Ω̃y,η

µz

(Dmam)(y, η) − µ
dµ

By Lemma 2.1.3, |am(x, ξ)−λ| ≥ c(〈ξ〉m1 〈x〉m2 + |λ|), which implies |(Dmam)(y, η)−
µ| ≥ c(1 + |µ|), so that Dmzbmz ∈ C∞(Bn

× Bn), as claimed.
By the parametrix construction in the SG-calculus, and in view of the Λ-
ellipticity of A, we have

(A − λI)−1 = Op((a − λ)−1) + Op(c) + Op(q),

where q ∈ SG−∞, c = sym((A − λI)−1
−Op((a − λ)−1)) ∼

∑
∞

j=1 c j, c j = r j (a − λ)−1,

r j ∈ SG− je
cl , j ≥ 1, see [66]. We can then write

az =
1

2πi

∫
∂+Ω〈x〉,〈ξ〉

λzsym((A − λI)−1)dλ

∼
1

2πi

∫
∂+Ω〈x〉,〈ξ〉

λz(a − λ)−1dλ +
1

2πi

∞∑
j=1

∫
∂+Ω〈x〉,〈ξ〉

λzr j(a − λ)−1dλ

+
1

2πi

∫
∂+Ω〈x〉,〈ξ〉

λzq dλ.

(2.2)

Let us consider the first term. The operator A is SG-classical so a = am + r,
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r ∈ SGm−e
cl . We have, for all N ∈ N,

(a − λ)−1 = (am + r − λ)−1

= (am − λ)−1(1 + (am − λ)−1r)−1

= (am − λ)−1

 N∑
k=0

(−1)k(am − λ)−krk

+ (−1)N+1(1 + (am − λ)−1r)−1(am − λ)−(N+1)rN+1

 ,
and then

b =
1

2πi

∫
∂Ω〈x〉,〈ξ〉

λz(a − λ)−1dλ

=
1

2πi

∫
∂Ω〈x〉,〈ξ〉

λz(am − λ)−1dλ︸                             ︷︷                             ︸
bmz

+

N∑
k=1

(−1)k

2πi

∫
∂Ω〈x〉,〈ξ〉

λzrk(am − λ)−k−1dλ︸                                     ︷︷                                     ︸
bk

+RN,

where

RN =
(−1)N+1

2πi

∫
∂Ω〈x〉,〈ξ〉

λz(1 + (am − λ)−1r)−1(am − λ)−(N+2)rN+1dλ.

By the calculus and the hypotheses, it turns out that RN ∈ SGm−(N+1)e. Moreover,
bk ∈ SGmz−ke

cl , k ≥ 1. Indeed, as above,

(Dmz−kebk)(y, η) =
(−1)k

2πi

∫
∂+Ω
〈χ(y)〉,〈χ(η)〉

λz wmz−ke(y, η) rk(χ(y), χ(η))
(am(χ(y), χ(η)) − λ)k+1

dλ

=
(−1)k

2πi

∫
∂+Ω̃y,η

µz w−mz(y, η) wmz−ke(y, η) rk(χ(y), χ(η))
wm(y, η) (am(χ(y), χ(η)) − µw−m(y, η))k+1

dµ

=
(−1)k

2πi

∫
∂+Ω̃y,η

µz ((Dm−er)(y, η))k

((Dmam)(y, η) − µ)k+1
dµ ∈ C∞(Bn

× Bn).

(2.3)

Theorem 1.1.3 then gives b ∈ SGmz
cl with b − bmz ∈ SGmz−e

cl . In a completely
similar fashion, it is possible to prove that the asymptotic sum in (2.2) gives
a symbol in SGmz−e

cl , since D− jer j is smooth and uniformly bounded, together
with its derivatives, with respect to µ (see [66] for more details). Finally, it is
easy to see that the third term in (2.2) gives a smoothing operator. Again by
Theorem 1.1.3, az

∈ SGmz
cl , with az = [am(x, ξ)]z mod SGmz−e

cl . �

Remark 2.1.5. By Definition 2.1.3,

Az = Al
◦ Az−l, Re(z − l) < 0,

and, by Theorem 2.1.6, we obtain that Az is an SG-classical operator for all z ∈ C.
So, denoting al

m1l− j,·(x, ξ), j = 0, 1, . . ., the terms of the homogeneous expansion with

respect to ξ of Al, the SG-calculus implies

az
m1z− j,·(x, ξ) =

1
α!

∑
|α|+i+k= j

∂αξal
m1l−i,·D

α
x az−l

m1(z−l)−k,·. (2.4)
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The same holds for the x-expansion

az
·,m2z−k =

1
α!

∑
|α|+i+ j=k

∂αξal
·,m2l−iD

α
x az−l
·,m2(z−l)− j. (2.5)

The following Proposition is immediate, in view of the proof of Theorem 2.1.6:

Proposition 2.1.7. The top order terms in the expansions (2.4), (2.5) are such that

az
m1z,· = (am1,·)

z,

az
·,m2z = (a·,m2 )z,

az
m1z,m2z = (am1,m2 )z.

(2.6)

Remark 2.1.6. In order to define Az we do not need m1,m2 integer numbers. Anyway,
this hypothesis is essential in the definition of the non-commutative residue given below,
so we included it from the very beginning in Assumptions 1.

In [92], E. Schrohe noticed that, for A ∈ Lm1,m2 such that Re z m1 < −n and
Re z m2 < −n, Az is trace class, so he defined

ζ(A, z) = Sp(Az) =

∫
KAz (x, x)dx, (2.7)

where Sp is the spur of Az, i.e., a trace on the algebra of trace class operators.
Assuming that A is SG-classical and elliptic, we want to study the meromorphic
extension of ζ(A, z): this will allow to define trace operators, in connection with
the residues of ζ(A, z). We first consider the kernel KAz (x, y) of the operator
Az defined in 2.1.3. The information provided by the knowledge of the ho-
mogeneous expansions of the symbol of Az allows to investigate in detail the
properties of KAz (x, y) on the diagonal (x, x).

Theorem 2.1.8. Let A be an elliptic operator that satisfies Assumptions 1. Then,
KAz (x, x) is a holomorphic function for Re z < − n

m1
and admits, at most, simple poles

at the points z j =
j−n
m1

, j = 0, 1, . . ..

Proof. Let us consider the kernel KAz (x, y) on the diagonal (x, x), given by

KAz (x, x) =
1

(2π)n

∫
Rn

sym(Az)(x, ξ)dξ

=
1

(2π)n

∫
|ξ|<1

az(x, ξ)dξ +
1

(2π)n

∫
|ξ|≥1

az(x, ξ)dξ.

Clearly, the first integral converges, and the resulting function is holomorphic,
so we can focus on∫

|ξ|≥1
az(x, ξ)dξ =

∫
|ξ|≥1

p−1∑
j=0

az
m1z− j,·

(
x,
ξ
|ξ|

)
|ξ|m1z− jdξ

+

∫
|ξ|≥1

rm1z−p,·(x, ξ)dξ.
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The number p can be chosen such that m1 Re z − p < −n: this means that we
have to deal with the terms appearing in the sum for j = 0, . . . , p− 1. Switching
to polar coordinates ξ = ρω, ρ ∈ [1,∞), ω ∈ Sn−1,

∫
|ξ|≥1

az(x, ξ)dξ =

p−1∑
j=0

∫
∞

1
ρm1z− j+n−1dρ

∫
Sn−1

az
m1z− j(x, θ)dθ

+

∫
|ξ|≥1

rm1z−p,·(x, ξ)dξ.

To have convergence in the first integral, we must impose m1 Re z + n < 0, i.e.,
Re z < − n

m1
. Evaluating the integral, we find

∫
|ξ|≥1

az(x, ξ)dξ = −

p−1∑
j=0

1
m1z − j + n

∫
Sn−1

az
m1z− j,·(x, θ)dθ

+

∫
|ξ|≥1

rz
m1z−p(x, ξ)dξ.

This proves that KAz (x, x) is holomorphic for Re z < − n
m1

, and that it can be
extended as a meromorphic function on the whole complex plane with, at
most, simple poles at the points z j =

j−n
m1

, j = 0, 1, . . . �

Remark 2.1.7. As in the case of a compact manifold, see [98], we can prove that the
kernel KAz (x, x) is regular for z = 0 and, if A is a differential operator, KAz (x, x) is also
regular for all integer.

Now we proceed to examine the properties of ζ(A, z):

Theorem 2.1.9. Let A be an elliptic operator that satisfies Assumptions 1, and define

ζ(A, z) =

∫
Rn

KAz (x, x)dx =
1

(2π)n

∫
Rn

∫
Rn

sym(Az)(x, ξ)dξdx. (2.8)

The function ζ(A, z) is holomorphic for Re z < min{− n
m1
,− n

m2
}. Moreover, it can be

extended as a meromorphic function with, at most, poles at the points

z1
j =

j − n
m1

, j = 0, 1, . . . , z2
k =

k − n
m2

, k = 0, 1, . . .

Such poles can be of order two if and only if there exist integers j, k such that

z1
j =

j − n
m1

=
k − n
m2

= z2
k . (2.9)

Proof. We divide R2n into the four regions

{(x, ξ) : |x| ≤ 1, |ξ| ≤ 1}, {(x, ξ) : |x| < 1, |ξ| > 1},
{(x, ξ) : |x| > 1, |ξ| < 1}, {(x, ξ) : |x| ≥ 1, |ξ| ≥ 1}.
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Setting, as above, az = sym(Az), we can write

ζ1(A, z) =
1

(2π)n

∫
|x|≤1

∫
|ξ|≤1

az(x, ξ)dξdx,

ζ2(A, z) =
1

(2π)n

∫
|x|<1

∫
|ξ|>1

az(x, ξ)dξdx,

ζ3(A, z) =
1

(2π)n

∫
|x|>1

∫
|ξ|<1

az(x, ξ)dξdx,

ζ4(A, z) =
1

(2π)n

∫
|x|≥1

∫
|ξ|≥1

az(x, ξ)dξdx,

ζ(A, z) =

4∑
i=1

ζi(A, z),

and examine each term of the sum separately.

1) The analysis of this term is straightforward. Since we integrate az, holo-
morphic function in z and smooth with respect to (x, ξ), on a bounded set
with respect to (x, ξ), ζ1(A, z) is holomorphic.

2) Using the asymptotic expansion of az with respect to ξ, we can write

ζ2(A, z) = −
1

(2π)n

p−1∑
j=0

1
m1z + n − j

∫
|x|<1

∫
Sn−1

az
m1z− j,·(x, θ)dθdx

+
1

(2π)n

∫
|x|<1

∫
Rn

rz
m1z−p,·(x, ξ)dξdx.

Choosing p > m1 Re z + n, the last integral is convergent. For the sum, we
can argue as in the proof of the Theorem 2.1.8. So ζ2(A, z) is holomorphic
for Re z < − n

m1
and has, at most, poles at the points z1

j =
j−n
m1

.

3) To discuss this term we need the asymptotic expansion of az with respect
to x. Using Proposition 2.1.3, we can write

az(x, ξ) =

q−1∑
k=0

az
·,m2z−k(x, ξ) + tz

·,m2z−q(x, ξ),

which implies

ζ3(A, z) =
1

(2π)n

∫
|x|>1

∫
|ξ|<1

q−1∑
k=0

az
·,m2z−k

( x
|x|
, ξ

)
|x|m2z−kdξdx

+
1

(2π)n

∫
|x|>1

∫
|ξ|<1

tz
·,m2z−q(x, ξ)dξdx.

Now, switching to polar coordinates, we can write

ζ3(A, z) =
1

(2π)n

q−1∑
k=0

∫
∞

1
ρm2z+n−1−k

∫
Sn−1

∫
|ξ|<1

az
·,m2z−k(θ, ξ)dξdθdρ

+
1

(2π)n

∫
|x|>1

∫
|ξ|<1

tz
·,m2z−q(x, ξ)dξdx.
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Arguing as in point (2), it turns out that ζ3(A, z) is holomorphic for
Re z < − n

m2
and can be extended as a meromorphic function on the whole

complex plane with, at most, poles at the points z2
k = k−n

m2
.

4) To treat the last term we need to use both the expansions with respect to
x and with respect to ξ. We first expand az with respect to ξ

ζ4(A, z) =
1

(2π)n

p−1∑
j=0

∫
|x|≥1

∫
|ξ|≥1

az
m1z− j,·(x, ξ)dξdx

+
1

(2π)n

∫
|x|≥1

∫
|ξ|≥1

rz
m1z− j,·(x, ξ)dξdx.

In order to integrate over |ξ| ≥ 1, we assume Re z < − n
m1

. Now, switching
to polar coordinates and integrating the radial part, we can write

ζ4(A, z) = −
1

(2π)n

p−1∑
j=0

∫
|x|≥1

1
m1z + n − j

∫
Sn−1

az
m1z− j,·(x, θ)dθdx

+
1

(2π)n

∫
|x|≥1

∫
|ξ|≥1

rz
m1z−p,·(x, ξ)dξdx.

Now, in order to integrate over |x| ≥ 1, we expand with respect to x

ζ4(A, z) = −
1

(2π)n

q−1∑
k=0

p−1∑
j=0

∫
|x|≥1

1
m1z + n − j

∫
Sn−1

az
m1z− j,m2z−k(x, θ)dθdx

−
1

(2π)n

p−1∑
j=0

1
m1z + n − j

∫
|x|≥1

∫
Sn−1

tz
m1z− j,m2z−q(x, θ)dxdθ

+
1

(2π)n

q−1∑
k=0

∫
|x|≥1

∫
|ξ|≥1

rz
m1z−p,m2z−k(x, ξ)dξdθ

+
1

(2π)n

∫
|x|≥1

∫
|ξ|≥1

rz
m1z−p,m2z−q(x, ξ)dxdξ.

Imposing Re z < − n
m2

, and integrating the radial part with respect to the
x, we obtain

ζ4(A, z) =
1

(2π)n

q−1∑
k=0

p−1∑
j=0

1
m2z + n − k

1
m1z + n − j

Im2z−k
m1z− j

−
1

(2π)n

p−1∑
j=0

1
m1z + n − j

R j,q(z)

−
1

(2π)n

q−1∑
k=0

1
m2z + n − k

Rp,k(z) + Rp,q(z)

where

Im2z−k
m1z− j =

∫
Sn−1

∫
Sn−1

az
m1z− j,m2z−k(θ′, θ)dθdθ′. (2.10)
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R j,k,Rp,k,Rp,q are holomorphic for Re z < min{− n
m1
,− n

m2
}, since p, q are

arbitrary. Therefore, we obtain that ζ4(A, z) is holomorphic for Re z <
min{− n

m1
,− n

m2
} and can be extended as a meromorphic function on the

whole complex plane with, at most, poles at the points z1
j =

j−n
m1
, z2

k = k−n
m2

.
Clearly these poles can be of order two when the conditions (2.9) in the
statement are fulfilled.

The proof is complete. �

We can now prove two Theorems which show the relation between ζ(A, z)
and the functionals introduced by F. Nicola [79], namely

Trψ,e(A) =
1

(2π)n

∫
Sn−1

∫
Sn−1

a−n,−n(θ, θ′)dθ′dθ =
1

(2π)n I−n
−n,

T̂rψ(A) =
1

(2π)n lim
τ→∞

[ ∫
|x|≤τ

∫
Sn−1

a−n,·(x, θ)dθdx

− (log τ) I−n
−n −

m2+n−1∑
k=0

τm2−k

(m2 − k)
Im2−k
−n

]
,

T̂re(A) =
1

(2π)n lim
τ→∞

[ ∫
Sn−1

∫
|ξ|≤τ

a·,−n(θ, ξ)dξdθ

− (log τ) I−n
−n −

m1+n−1∑
j=0

τm1− j

(m1 − j)
I−n
m1− j

]
,

(2.11)

where I−n
m1− j, I

m2−k
−n are integrals of the form (2.10) with am1− j,−n and a−n,m2−k in

place of az
m1z− j,m2z−k, respectively. We define the following new functional, that

we call the angular term

T̂Rθ(A) =
1

(2π)n

∫
Sn−1

∫
Sn−1

d
dz

(az
m1z−n−m1,m2z−n−m2

)
∣∣∣∣∣
z=1

(θ, θ′)dθ′dθ. (2.12)

Remark 2.1.8. In general, it is rather cumbersome to evaluate the angular term defined
in (2.12). In the case m1 = m2 = −n, the computation is easier: by Proposition 2.1.7,

d
dz

(az
−n z,−n z)

∣∣∣∣∣
z=1

= lim
z→1

az
−n z,−n z − a−n,−n

z − 1
= a−n,−n · log(a−n,−n).

Theorem 2.1.10. Let A be an operator satisfying Assumptions 1. Then, defining

TR(A) = m1m2Res2
z=1(ζ(A, z)) = m1m2 lim

z→1
(z − 1)2ζ(A, z), (2.13)

we have
TR(A) = Trψ,e(A). (2.14)

Proof. To evaluate the limit we split again ζ(A, z) into the four terms already
examined in the proof of Theorem 2.1.9. We get:

1) lim
z→1

(z − 1)2ζ1(A, z) = 0, since ζ1(A, z) is holomorphic;
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2) lim
z→1

(z − 1)2ζ2(A, z) = 0, since ζ2(A, z) has a pole of order one at z = 1;

3) Similarly, lim
z→1

(z − 1)2ζ3(A, z) = 0;

4) Finally,

lim
z→1

(z − 1)2ζ4(A, z) =
1

m1m2(2π)n

∫
Sn−1

∫
Sn−1

a1
−n,−n(θ, θ′)dθ′dθ.

Now the theorem follows from Proposition 2.1.5, which gives A1 = A, so
that a1

−n,−n = a−n,−n.

�

Theorem 2.1.11. Let A be an operator that satisfies Assumptions 1. Then, defining

T̂Rx,ξ(A) = lim
z→1

(z − 1)

ζ(A, z) −
Res2

z=1(ζ(A, z))
(z − 1)2

 , (2.15)

we have

T̂Rx,ξ(A) = −
1

m1
T̂rψ(A) −

1
m2

T̂re(A) +
1

m1m2
T̂Rθ(A). (2.16)

Proof. We notice that the function

ζ(A, z) −
Res2

z=1(ζ(A, z))
(z − 1)2

is meromorphic with a simple pole at the point z = 1, so the limit (2.15) exists
and is finite. In order to prove the assertion, we use a decomposition of R2n

into four sets defined by means of a parameter τ > 1,

D1 = {(x, ξ) : |x| ≤ τ, |ξ| ≤ τ}, D2 = {(x, ξ) : |x| < τ, |ξ| > τ},
D3 = {(x, ξ) : |x| > τ, |ξ| < τ}, D4 = {(x, ξ) : |x| ≥ τ, |ξ| ≥ τ}.

and set

ζi(A, z) =

"
Di

az(x, ξ)dξdx, i = 1, . . . , 4.

1) D1 is a compact set: ζ1(A, z) is then holomorphic, so that, for any τ ≥ 1,
L1 = lim

z→1
(z − 1)ζ1(A, z) = 0.

2) Expanding az with respect to ξ, we find

ζ2(A, z) = −
1

(2π)n

∫
|x|<τ

p−1∑
j=0

τm1z+n− j

m1z + n − j

∫
Sn−1

az
m1z− j,·(x, θ)dθdx

+
1

(2π)n

∫
|x|<τ

∫
Rn

rm1z−p,·(x, ξ)dξdx.
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For p big enough, rm1z−p,· is absolutely integrable with respect to ξ, So we
have, for q big enough, and any τ ≥ 1,

L2 = lim
z→1

(z − 1)ζ2(A, z) = −
1

m1(2π)n

∫
|x|<τ

∫
Sn−1

a1
−n,·(x, θ)dθdx,

since any term in the limit goes to zero, apart the one corresponding to
j = n + m1.

3) Similarly, using the expansion of az with respect to x,

ζ3(A, z) = −
1

(2π)n

q−1∑
k=0

τm2z+n−k

m2z + n − k

∫
Sn−1

∫
|ξ|<τ

az
·,m2z−k(θ, ξ)dξdθ

+
1

(2π)n

∫
x≥τ

∫
ξ≤τ

tz
·,m2z−q(x, ξ)dξdx,

so that, for q big enough and any τ ≥ 1,

L3 = lim
z→1

(z − 1)ζ3(A, z) = −
1

m2(2π)n

∫
Sn−1

∫
|ξ|≤τ

a1
·,−n(θ, ξ)dξdθ.

4) Expanding with respect to both the variables x and ξ,

ζ4(A, z) =
1

(2π)n

q−1∑
k=0

p−1∑
j=0

τm1z+n− j

m1z + n − j
τm2z+n−k

m2z + n − k
Im2z−k
m1z− j

−
1

(2π)n

p−1∑
j=0

τm1z+n− j

m1z + n − j

∫
|x|≥τ

∫
Sn−1

tz
m1z− j,m2z−q(x, θ)dθdx

−
1

(2π)n

q−1∑
k=0

τm2z+n−k

m2z + n − k

∫
Sn−1

∫
|ξ|≥τ

rz
m1z−p,m2z−k(θ, ξ)dξdθ

+
1

(2π)n

∫
|x|≥τ

∫
|ξ|≥τ

rz
m1z−p,m2z−q(x, ξ)dxdξ
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So, for p and q big enough, and any τ ≥ 1, we have

L4 = lim
z→1

(z − 1)

ζ4(A, z) −
Res2

z=1(ζ(A, z))
(z − 1)2

 =

lim
z→1

(z − 1)
m1m2(2π)n

τ(m1+m2)(z−1)
− 1

(z − 1)2 Im2z−n−m2
m1z−n−m1

+ lim
z→1

(z − 1)
m1m2(2π)n

Im2z−n−m2
m1z−n−m1

− I−n
−n

(z − 1)2

+
1

m2(2π)n

p−1∑
j=0, j,m1+n

τm1+n− j

m1 + n − j
I−n
m1− j

+
1

m1(2π)n

q−1∑
k=0,k,m2+k

τm2+n−k

m2 + n − k
Im2−k
−n

−
1

m1(2π)n

∫
|x|≥τ

∫
Sn−1

t1
−n,m2−q(x, θ)dθdx

−
1

m2(2π)n

∫
Sn−1

∫
|ξ|≥τ

r1
m1−p,−n(θ, ξ)dξdθ

The coefficients I−n
m1− j, Im2−k

−n , limits of corresponding integrals of the form
(2.10), are as in (2.11), while the second limit coincides with the angular
term T̂Rθ(A), defined in (2.12). Moreover, the first limit goes to

1
(2π)n I−n

−n lim
z→1

τ(m1+m2)(z−1)
− 1

m1m2(z − 1)
=

=
1

(2π)n I−n
−n

m1 + m2

m1m2
log τ =

1
(2π)n I−n

−n

( 1
m2

log τ +
1

m1
log τ

)
.

Clearly, T̂Rx,ξ(A) = lim
τ→+∞

(L1 + L2 + L3 + L4) = lim
τ→+∞

(L2 + L3 + L4). The two terms

∫
|x|≥τ

∫
Sn−1

t1
−n,m2−q(x, θ)dθdx and

∫
Sn−1

∫
|ξ|≥τ

r1
m1−p,−n(θ, ξ)dξdθ

in L4 vanish for τ → +∞, by the uniform continuity of the integral. Moreover,
the terms in L4 involving I−n

m1− j and Im2−k
−n are relevant only for m1 + n− j > 0 and
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m2 + n − k > 0, respectively. Then, finally,

lim
z→1

(z − 1)

ζ(A, z) −
Res2

z=1(ζ(A, z))
(z − 1)2

 =

=
1

(2π)n lim
τ→∞

[
−

1
m1

∫
|x|≤τ

∫
Sn−1

a−n,·(x, θ)dxdθ

+
1

m1

m2+n−1∑
k=0

τm2−k

m2 − k
Im2−k
−n +

1
m1

(log τ)I−n
−n

−
1

m2

∫
Sn−1

∫
|ξ|≤τ

a·,−n(x, θ)dxdθ

+
1

m2

m1+n−1∑
j=0

τm1− j

m1 − j
I−n
m1− j +

1
m2

(log τ)I−n
−n

]
+

1
m1m2

∫
Sn−1

∫
Sn−1

d
dz

(az
m1z−n−m1,m2z−n−m2

)
∣∣∣∣∣
z=1

(θ, θ′)dθ′dθ.

which, by (2.11), coincides with (2.16). The proof is complete. �

The functional TR can be extended to all SG-classical operators with integer
order in a standard way, cfr. [55]. Explicitely, let A ∈ Lm1,m2

cl , m1,m2 integers,
and choose an elliptic operator B of order (m′1,m

′

2), satisfying Assumptions 1
and m′1 > m1, m′2 > m2. We can define ζ(B + sA, z), s ∈ (−1, 1), and then set

TR(A) = m′1m′2
d
ds

Res2
z=1(ζ(B + sA, z))

∣∣∣∣∣
s=0

(2.17)

Using the expression of TR given in Theorem 2.1.10, it is possible to prove
that these definitions do not depend on the operator B. Moreover, with this
approach it is also possibile to prove that TR is a trace on the algebra A of all
SG-classical operators with integer order modulo operators in L−∞, see [55].

Now, we switch to the case of a manifold with a cylindrical end M, as
defined in Subsection 1.1.2. First, we restate the notion of Λ-elliptic operator in
this case.

Definition 2.1.4. Let A ∈ Lm1,m2
cl (M); A is Λ-elliptic if the principal part of a f is

Λ-elliptic on Uδ f ×Rn and A, restricted to M , is Λ-elliptic in the standard sense.

We can now formulate a set of hypotheses, analogous to Assumptions 1,
that imply the existence of Az, z ∈ C, for A ∈ Lm1,m2

cl (M):

Assumptions 2. 1. A ∈ Lm1,m2
cl (M), with m1 and m2 positive integers;

2. A is Λ-elliptic with respect to a closed sector Λ of the complex plane with vertex
at the origin, therefore it is invertible;

3. The spectrum of A does not intersect the real interval (−∞, 0).

The definitions of Az and ζ(A, z) for such an operator on M follow by the known
results on a closed manifold, see [98, 101], combined, via the SG-compatible
partition of unity, with similar constructions on the end C : through the exit
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chart, the latter are achieved by the same techniques used before in the case of
Rn. Note that, in view of the SG-structure on M given by the admissible atlases
and the hypotheses, Az and ζ(A, z) are invariantly defined on M. It is then easy
to prove that the properties of ζ(A, z) extend from Rn to a general manifold with
cylindrical ends. The next Theorem 2.1.12 is the global version of Theorem 2.1.9
on M:

Theorem 2.1.12. Let A ∈ Lm1,m2 (M) satisfy Assumptions 2. Then ζ(A, z) is holomor-
phic for Re z < min{− n

m1
,− n

m2
} and can be extended as a meromorphic function with,

at most, poles at the points

z1
j =

j − n
m1

, j = 0, 1, . . . , z2
k =

k − n
m2

, k = 0, 1, . . .

Such poles can be of order two if and only if there exist j and k such that z1
j = z2

k .

Proof. We have

ζ(A, z) =

∫
M

KAz (y, y)dy =

∫
M

KAz (y, y)dy +

∫
C \C

KAz (y, y)dy. (2.18)

Since KAz (y, y)dy has an invariant meaning on M, we can perform the compu-
tations through an arbitrary admissible atlas A = {(Ωi, ψi)}Ni=1. By the assump-
tions above, we know that {(Ωi, ψi)}N−1

i=1 is an atlas on M : then, by considerations
completely similar to those that hold for compact manifolds without boundary,
see, e.g., [101], Ch. 2, we can prove that the first integral in (2.18) is a complex
function of z with the properties stated above and, at most, poles of the type
z1

j , j = 0, 1, . . . To handle the contribution on C \ C, we fix an exit map fπ and
compute the second integral, modulo holomorphic functions of z, as

∫
Uδ f +ε f

K(Op(a f ))z (x, x)dx.

We can then show that the remaining assertions on ζ(A, z) hold true by repeating
the same steps of the proof of Theorem 2.1.9. �

We now extend the definition of the non-commutative residue for SG-
operators on Rn to SG-operators on M in terms of the zeta function. First
of all, choose an admissible atlas and introduce the following functionals on
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Lm1,m2
cl (M), analogous to those defined in (2.11):

TR(A) =
1

(2π)n

∫
Sn−1

∫
Sn−1

a−n,−n(θ, θ′)dθ′dθ,

T̂r
c
ψ(A) =

1
(2π)n lim

τ→∞

[ ∫
M\Cτ

∫
Sn−1

a−n,·(x, θ′)dθ′dx

− (log τ)
∫
Sn−1

∫
Sn−1

a−n,−n(θ, θ′)dθ′dθ

−

m2+n−1∑
k=0

τm2−k

m2 − k

∫
Sn−1

∫
Sn−1

a−n,m2−k(θ, θ′)dθ′dθ
]

T̂r
c
e(A) =

1
(2π)n lim

τ→∞

[ ∫
Sn−1

∫
|ξ|≤τ

a·,−n(θ, ξ)dξdθ

− (log τ)
∫
Sn−1

∫
Sn−1

a−n,−n(θ, θ′)dθ′dθ

−

m1+n−1∑
j=0

τm1− j

(m1 − j)

∫
Sn−1

∫
Sn−1

am1− j,−n(θ, θ′)dθ′dθ
]
.

(2.19)

The angular term, analogous to (2.12), is defined as

T̂R
c
θ(A) =

1
(2π)n

∫
Sn−1

∫
Sn−1

d
dz

(am1z−n−m1,m2z−n−m2 )
∣∣∣∣∣
z=1

(θ, θ′)dθ′dθ. (2.20)

Then, by arguments similar to those in the proofs of Theorems 2.1.10 and 2.1.11,
we can prove:

Theorem 2.1.13. Let A be an operator that satisfies Assumptions 2 and set

T̂Rx,ξ(A) = −
1

m1
T̂r

c
ψ(A) −

1
m2

T̂r
c
e(A) +

1
m1m2

T̂R
c
θ(A). (2.21)

The functionals
TR(A)
m1m2

and T̂Rx,ξ(A) are the coefficients of the polar parts of order two

and of order one of ζ(A, z) evaluated at z = 1, respectively.

Remark 2.1.9. The functional TR extends to all SG-classical operators on M with
integer order. The scheme is the same of (2.17). In this way, TR turns out to be a trace
on the algebraA of SG-classical operators on M with integer order modulo smoothing
operators.

2.2 Kastler-Kalau-Walze type Theorem and Regu-
larized ζ-Function

Theorem 2.1.8 shows that the kernel KAz (x, y) of the complex power of suit-
able SG-elliptic operators behaves essentially as the kernel of the the complex
power of elliptic operators on closed manifolds first studied in [98]. Namely,
it admits a meromorphic extension for Re z < − n

m1
and has at most simple

poles. Nevertheless, in Theorem 2.1.9, we have proved that the ζ-function is
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different from the case of closed manifolds, since it can have poles of order
two. The different behavior is due to the non compactness of Rn. In this sec-
tion we introduce a regularized version of the ζ-function, following the idea
of L. Maniccia, E. Schrohe and J. Seiler [65]. The regularized ζ-function looses
the connections with the non-commutative residue. Indeed, we introduce a
regularized non-commutative residue which is not a trace on the algebra of
SG-classical operators, but has a deep link with the coefficients of the expan-
sion of the heat trace. Since we are not interested in the trace property of the
regularized non-commutative residue, we will define it on L∞,0cl /L

−∞,0, rather
then on L∞,∞cl /L−∞,−∞. In view of this different setting, we do not consider
SG-ellipticity, but the usual notion of ellipticity. Clearly, elliptic operators are
not Fredholm on the Sobolev spaces on Rn, since they admit an inverse mod-
ulo L−∞,0, which, in general, is not compact. We call this almost-inverse weak
parametrix. Notice that in this section, in order to make more transparent the
link between ζ-function and heat trace, we use a slightly different convention
to define ζ-function. The results presented in this subsection are published in
[14].

2.2.1 Finite-Part Integral

The finite-part integral, introduced in [65], gives a meaning to the integral of a
classical symbol a, and coincides with the usual integral when a ∈ L1(Rn). dS
denotes the usual measure on |x| = 1, induced by the Euclidean metric on Rn,
while, in this subsection, dx denotes the standard Lebesgue measure on Rn.

Definition 2.2.1. Let a be an element of the classical Hörmander symbol class
Sm

cl(R
n), that is,

1. a ∈ C∞(Rn) and ∀x ∈ Rn
|Dαa(x)| ≤ Cα(1 + |x|)m−|α|;

2. a admits an asymptotic expansion in homogeneous terms am− j of order
m − j: explicitly, for a fixed 0-excision function ω and all N ∈ N,

a −
N−1∑
j=0

ω am− j ∈ Sm−N(Rn).

Then:

- if m ∈ Z, set?
a(x) dx := lim

ρ→∞


∫
|x|≤ρ

a(x) dx −
m−n∑
j=0

∫
|x|≤ρ

am− j(x) dx


= lim
ρ→∞


∫
|x|≤ρ

a(x) dx −
m−n∑
j=0

β j

n + m − j
ρn+m− j

− βn+m logρ


where

β j :=
∫
|x|=1

am− j dS; (2.22)
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- if m < Z, set?
a(x) dx := lim

ρ→∞


∫
|x|≤ρ

a(x) dx −
[m]−n−1∑

j=0

∫
|x|≤ρ

am− j(x) dx

 . (2.23)

From the above Definition it is clear that if a ∈ L1(Rn) the finite part integral is
equivalent to the standard integral. If m < Z the finite part integral coincides
with the Kontsevich-Vishik density [57], [58].

Remark 2.2.1. Now, we consider the radial compactification of Rn to Sn
+ as in Remarks

1.1.2, 1.2.1:

RC : Rn
→ Sn

+ : x = (x1, . . . , xn) 7→ y =

[
x1

(1 + |x|2)
1
2

, . . . ,
xn

(1 + |x|2)
1
2

,
1

(1 + |x|2)
1
2

]
,

and choose yn+1 as boundary defining function on Sn
+, such that its composition with

RC coincides in the interior with 1√
(1+|x|2)

, x = RC−1(y) ∈ Rn. Then?
a(x) dx = R

∫
Sn

+

a(rc−1(y)) dS(y)

where the right hand side is defined as the term of order ε0 in the asymptotic expansion
of ∫

Sn
+∩{yn+1≥ε}

a(rc−1(y)) dS(y), ε↘ 0.

R
∫
Sn

+

f dS is called Renormalised integral, see [3] and the references quoted therein for

its precise definition, properties and applications.

2.2.2 Regularised Trace and Regularised ζ-Function

We fix a closed sector of the complex plane Λ with vertex at the origin, as in
Figure 2.1.

The definition of Λ-elliptic operator is the standard one, here given for
operators defined through matrix-valued symbols, whose spectrum we denote
by σ(a(x, ξ)):

Definition 2.2.2. The operator A ∈ Lµ,0(Rn) is Λ-elliptic if there exists a constant
R > 0 such that

σ(a(x, ξ)) ∩Λ = ∅ ∀|ξ| ≥ R, ∀x ∈ Rn (2.24)

and
(a(x, ξ) − λ)−1

∈ SG−µ,0(Rn) ∀|ξ| ≥ R, ∀x ∈ Rn, ∀λ ∈ Λ. (2.25)

It is well known that, if an operator A is Λ-elliptic, we can build a weak
parametrix B(λ) such that

B(λ) ◦ (A − λI) = Id + R1(λ),

(A − λI) ◦ B(λ) = Id + R2(λ), R1,R2 ∈ L−∞,0(Rn).
(2.26)
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Moreover

λB(λ) ∈ L−µ,0(Rn),

λ2
[
(A − λI)−1

− B(λ)
]
∈ L−∞,0(Rn), ∀λ ∈ Λ \ {0}.

(2.27)

From now on, µ > 0 and A is considered as an unbounded operator with
dense domain D(A) = Hµ(Rn) ↪→ L2(Rn) → L2(Rn). To define the complex
powers of a Λ-elliptic operator A, we assume that the following property holds
for its spectrum σ(A):

σ(A) ∩ {Λ \ {0}} = ∅ and the origin is at most an isolated point of σ(A). (A1)

Proposition 2.2.1. Let A ∈ Lµ,0(Rn), µ > 0, be a Λ-elliptic operator that satisfies
Assumption (A1). The complex power Az, Re z < 0, can be defined as

Az :=
1

2πi

∫
∂+Λε

λz(A − λI)−1dλ, (2.2.28)

where Λε = Λ ∪ {z ∈ C | |z| ≤ ε}, with ε > 0 chosen such that σ(A) ∩ {Λε \ {0}} = ∅
and ∂+Λε is the (positively oriented) boundary of Λε.

Proof. By the definition of Λ-elliptic operator, we know that (A−λI)−1 exists for
all λ ∈ Λ \ {0}. Moreover, by (2.27) we have that A is sectorial, so the integral
(2.2.28) converges in L(L2(Rn)). �

Remark 2.2.2. The definition of Az is then extended to arbitrary z ∈ C in the standard
way, that is Az := Az− j

◦ A j, where j ∈ Z+ is chosen so that Re z − j < 0, as in
Definition 2.1.3.

Theorem 2.2.2. Let A ∈ Lµ,0(Rn), µ > 0, be Λ-elliptic and satisfy Assumption (A1).
Then, Az

∈ Lµz,0(Rn). Moreover, if A is SG-classical then Az is still SG-classical

Remark 2.2.3. In order to define the symbol of Az, the resolvent (A − λI)−1 can be
approximated with the weak parametrix B(λ) defined in (2.26). In this way, a symbol
for Az can be computed, modulo smoothing operators w.r.t. the ξ-variable. Az can then
be considered as an element of the algebra A given by

A :=
⋃
µ∈Z

Lµ,0(Rn)/L−∞,0(Rn). (2.2.29)

The proof of the Theorem 2.2.2 has been given in [66] and can be seen also as a
slight modification of Theorem 2.1.6.

From here on, dx will denote the measure induced on Rn by a smooth
Riemannian metric g = (g jk). In order to obtain a result similar to (2) we have
to impose some condition on g, namely1

g is a matrix-valued SG-classical symbol of order (0, 0). (A2)

If A ∈ Lµ,m(Rn) is trace class, that is µ < −n,m < −n, we can define its trace

TR(A) :=
∫

KA(x, x) dx,

1In the [-calculus setting, this condition implies that the underlying metric is polyhomogeneous:
this is used, for instance, in [4].
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where KA(x, x) is the kernel of A restricted to the diagonal. The concept of regu-
larised trace, valid for classical SG-operators under less restrictive hypotheses
on the order, has been introduced in [65], using the finite part integral defined
in the previous section:

Definition 2.2.3. Let A ∈ Lµ,mcl (Rn) be such that µ < −n. We define the regu-
larised trace of A as

T̂R(A) :=
?

KA(x, x) dx. (2.2.30)

Remark 2.2.4. Note that the condition µ < −n implies that KA(x, x) is indeed a
function and that the finite part integral (2.2.30) is well defined.

Now, using the regularised integral, we can give the definition of regularised
ζ-function:

Definition 2.2.4. Let A ∈ Lµ,0cl (Rn), µ > 0, be a Λ-elliptic operator that satisfies
(A1); then we define

ζ̂(A, z) := T̂R(A−z) =

?
KA−z (x, x) dx, Re z >

n
µ
, (2.2.31)

where KA−z (x, x) is the kernel of the operator Az.

It is simple to prove that ζ̂(A, z) is holomorphic for Re z > n
µ , in view of the fact

that the hypotheses imply that the kernel KAz (x, x) is a function. As in the case
treated in [98], we can look for meromorphic extensions of ζ̂(A, z).

Theorem 2.2.3. Let A ∈ Lµ,0cl (Rn), µ > 0, be an SG-operator that admits complex
powers. Then the function ζ̂(A, z) can be extended as a meromorphic function with, at
most, poles at the points z j =

n− j
µ , j ∈ N.

Following the idea of M. Wodzicki [109], see also [55], we can now introduce
a regularised version of the non-commutative residue.

Definition 2.2.5. Let A ∈ Lµ,0cl (Rn), µ > 0, be a Λ-elliptic operator that satisfies
(A1). We define the regularised non-commutative residue of A as

ŵres(A) := µ resz=−1ζ̂(A, z).

In the case µ ∈ N, using the explicit expression of the regularised integral and
of the residues of ζ̂(A, z), we get

ŵres(A)=
1

(2π)n lim
ρ→∞


∫
|x|≤ρ

∫
|ξ|=1

a−n,·(x, ξ) dS(ξ)dx−
µ+n−1∑

j=0

β j

n − j
ρn− j
−βµ+n logρ


(2.2.32)

where

β j =

∫
|x|=1

∫
|ξ|=1

an− j,· dS(ξ)d̃S(x),

d̃S(x) the metric induced by g on |x| = 1. The case µ < Z is not very interesting,
since then ŵres(A) always vanishes, due to the fact that, in this case, the kernel
KA−z (x, x) has no poles at z = −1. The residue ŵres(·) also vanishes on smoothing
operators w.r.t. the ξ-variable, so it is well defined on the algebra A . Inciden-
tally, let us notice that the expression (2.2.32) is analogous to the functional
resψ(A) defined by F. Nicola in [79], by means of holomorphic families.
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2.2.3 A Kastler-Kalau-Walze type Theorem on Rn

First, we restrict to the case of R4 and consider the classical Atiyah-Singer
Dirac operator /D acting on the spinor bundle ΣR4. If the metric on R4 satisfies
Assumption (A2), it is immediate to verify that /D ∈ L1,0

cl . Let /D−2 denote a weak
parametrix of the square of the Dirac operator, that is /D2

◦ /D−2
= I+R, R ∈ L−∞,0.

The calculus implies that /D−2
∈ L−2,0

cl . Via direct computation, following the
idea of D. Kastler [56], it is possible to compute a−4,.(x, ξ), the term of of order
−4 in the asymptotic expansion w.r.t. the ξ-variable of the symbol of /D−2.
Evaluating the integral on the sphere w.r.t. the ξ variable one gets∫

|ξ|=1
a−4,.(x, ξ) dS(ξ) = −

1
24π2 s(x).

So we have that

ŵres( /D−2) = −
1

24π2

?
s(x) dx. (2.2.33)

The proof of (2.2.33) is contained in [12]. Let us notice the slight abuse of nota-
tion in (2.2.33), due to the fact that, in general, /D−2 does not satisfy Assumption
(A1): anyway, we can use (2.2.32) as a definition of ŵres( /D−2) in this case.

In order to obtain a generalisation of (2.2.33) to higher dimensions and to
more general operators, the direct approach seems to be rather cumbersome.
For this reason, we follow an idea of T. Ackermann [1] and take advantage of
the properties of the asymptotic expansion of the heat kernel of generalised
Laplacians.

As explained in the previous Section, if A ∈ Lµ,0cl (Rn), µ > 0, is Λ-elliptic and
satisfies Assumption (A1), we can define the complex powers of A and the heat
semigroup e−tA as well:

e−tA :=
i

2π

∫
∂+Λε

e−tλ(A − λI)−1dλ.

In [65] it has been proved that e−tA is an SG-operator belonging to L−∞,0(Rn), so
we can also consider the regularised heat trace T̂R(e−tA). There is a deep link
between regularised heat trace and ζ̂-function:

Theorem 2.2.4. Let A ∈ Lµ,0cl (Rn), µ > 0, be an operator that admits complex powers.
Then, for suitable constants ckl = ckl(A), the following two asymptotic expansions hold:

Γ(z) ζ̂(A, z) ∼
∞∑

k=0

1∑
l=0

ckl

(
z −

n − k
µ

)−l−1

, (2.2.34)

T̂R(e−tA) ∼
∞∑

k=0

1∑
l=0

(−1)lcklt
−

n−k
µ loglt, t↘ 0. (2.2.35)

Proof. The statement follows by adapting the arguments given in [65] to the
present situation. A main role in the proof is played by an abstract theorem by
G. Grubb and R. Seeley [39], connecting ζ-functions and heat traces. �
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Remark 2.2.5. Notice that in (2.2.34) poles of order two arise just for negative integers
−n, n ∈ N, the points where the Γ function has poles of order one.

Let us now consider a generalised positive Laplacian ∆ ∈ L−2,0
cl (E), where E

is a Hermitian vector bundle on Rn with connection ∇, that is

∆ = ∇∗∇ + K , K ∈ C∞(End(E)) symmetric endomorphism field.

We require that ∆ satisfies Assumption (A1): in this way, we can define e−t∆ as
above. In the case of closed manifolds, it is well known (see, e.g., [5]) that

Ke−t∆ (x, x) = kt(x, x) ∼ (4πt)−
n
2

[
1 · IdE +

(1
6

s(x)IdE −Kx

)
t + O(t2)

]
, t↘ 0.

(2.2.36)
where s(x) is the scalar curvature of the underlying manifold and the remain-
der term depends only on the connection and on the endomorphism field. The
asymptotic expansion (2.2.36) also holds in the case of manifolds with cylindri-
cal ends, since the computations are completely analogous and purely local, see
[3]. The evaluation of the first term of the asymptotic expansion can be found
in [64]: the expression of the second term then follows, using the properties
of generalised Laplacians. In view of our hypotheses, the right hand side of
(2.2.36) is a classical SG-symbol: then, we obtain

T̂R(e−t∆) ∼

(4πt)−
n
2

{?
Rk(E) dx + t

? [
Rk(E)

6
s(x) − Trace(Kx)

]
dx + O(t2)

}
, t↘ 0.

(2.2.37)

Since, trivially, when h is a meromorphic function with a simple pole in z0, the
function h̃(z) = h(cz), c ∈ R, is a meromorphic function with a simple pole in z0

c
and

resw=
z0
c

h̃ =
1
c

resz=z0 h,

we also have that

ŵres(∆−
n
2 +1) = (2 − n) resz=−1ζ̂(∆−

n
2 +1, z) = 2 resz= n−2

2
ζ̂(∆, z)

= 2 Γ
(n − 2

2

)−1

c2,0(∆),
(2.2.38)

where c2,0(∆) is the coefficient of the term of order t−
n−2

2 in the asymptotic
expansion (2.2.35). Finally, by (2.2.37) and the properties of Γ(z),

ŵres(∆−
n
2 +1) =

n − 2
Γ( n

2 )(4π)
n
2

? [
Rk(E)

6
s(x) − Trace(Kx)

]
dx. (2.2.39)

Remark 2.2.6. Assumption (A1) does not imply that ∆ is invertible, since we allow
the origin to be an isolated point of σ(∆). In view of this, the operator ∆−

n
2 +1 has to be

interpreted in the sense of the complex powers defined above.

If we consider a generalised Laplacian ∆, then its principal homogeneous
symbol is g jk(x)ξ jξk = |ξ|2 > 0, ξ , 0. ∆ turns out to be always Λ-elliptic
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with respect to a suitable sector of the complex plane, while σ(∆) can admit the
origin as an accumulation point. For example, it is well known that the classical
Atiyah-Singer Dirac operator on Rn, endowed with the canonical Euclidean
metric, has no point spectrum, but the essential spectrum is the whole real line.
In this case Assumption (A1) of course fails to be true2. A simple example
such that Assumption (A1) is satisfied can be built in the following way. Let
us consider a general Dirac operator D, defined on a Clifford bundle E over
Rn: D2 is then a generalised Laplacian and a non-negative operator. If we
consider D2

ε = D2 + εI, we obtain an invertible generalised Laplacian, that
clearly satisfies (A1). If we consider the classical Atyiah-Singer Dirac operator
/D, formula (2.2.39) turns to

ŵres(( /D2
ε)
−

n
2 +1) =

(n − 2)2[ n
2 ]

Γ( n
2 )(4π)

n
2

(
−

1
12

?
s(x) dx − ε

?
dx

)
. (2.2.40)

On the other hand, a natural example of a metric on Rn which can satisfy
Assumption (A2) is an asymptotically flat one. In General Relativity, such an
hypothesis on the metric is commonly assumed (e.g., in order to define the
ADM-mass). Explicitly, we can consider a metric g such that, for a constant
α > 0,

g jk(x) − δ jk = O(|x|−α) outside a compact set K ⊂ Rn.

Moreover, restricting ourselves to R4, if α > 2 the scalar curvature s(x) is
integrable: in this case, (2.2.33) becomes

ŵres( /D−2) = −
1

24π2

∫
s(x) dx.

The method above can be used to treat also the case of manifolds with cylin-
drical ends, using the contents of [15]: one defines in this setting a regularised
non-commutative residue and exploits its connection with the zeta function.
The asymptotic expansion of the heat kernel as t↘ 0 is locally defined, so, using
suitable regularised integrals the results can be generalised to those manifolds
in this class which admit a spin structure. We omit here any further detail.

2.3 Complex Powers and ζ-Function of Bisingular
Operators

Here we define the complex powers of a subclass of elliptic bisingular operators.
The contents of this section come from [13]. The first step is to give a suitable
definition Λ-ellipticity for bisingular operators.

Definition 2.3.1. Let Λ be a sector of C; we say that a ∈ Sm1,m2
pr (M1,M2) is

Λ-elliptic if there exists a positive constant R such that

i) (
σm1,m2 (A)(v1, v2) − λ

)−1
∈ S−m1,−m2 (M1,M2),

for all |vi| > R, i = 1, 2, uniformly for all λ ∈ Λ.
2For further properties of the Dirac spectrum on open manifolds, the reader can refer, for

instance, to the monograph by N. Ginoux [33].
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ii)
σm1

1 (A)(v1) − λ IdM2 ∈ Lm2
cl (M2),

is invertible for all |v1| > R, uniformly for all λ ∈ Λ.

iii)
σm2

2 (A)(v2) − λ IdM1 ∈ Lm1
cl (M1),

is invertible for all |v2| > R, uniformly for all λ ∈ Λ.

In the following, in order to define the complex power of A, we assume that
Λ is a sector of the complex plane with vertex at the origin, that is

Λ = {z ∈ C | arg(z) ∈ [π − θ,−π + θ]},

as in Figure 2.1.

Lemma 2.3.1. Let a ∈ Sm1,m2 (Ω1,Ω2) be Λ-elliptic. For all Ki ⊆ Ωi, i = 1, 2, there
exist c0 > 1 and a set

Ωξ1,ξ2 := {z ∈ C \Λ |
1
c0
〈ξ1〉

m1〈ξ2〉
m2 < |z| < c0〈ξ1〉

m1〈ξ2〉
m2 } (2.3.41)

such that

spec(a(x1, x2, ξ1, ξ2)) = {λ ∈ C | a(x1, x2, ξ1, ξ2) − λ = 0} ⊆ Ωξ1,ξ2 ,

∀xi ∈ Ωi, ξi ∈ Rni .

Moreover, ∀xi ∈ Ki, ξi ∈ Rni , λ ∈ C \Ωξ1,ξ2 , i = 1, 2,∣∣∣∣(λ − am1,m2 (x1, x2, ξ1, ξ2)
)−1∣∣∣∣ ≤ C(|λ| + 〈ξ1〉

m1〈ξ2〉
m2 )−1,∣∣∣∣sym

(
σm1

1 (a) − λ
)−1∣∣∣∣ ≤ C(|λ| + 〈ξ1〉

m1〈ξ2〉
m2 )−1,∣∣∣∣sym

(
σm2

2 (a) − λ
)−1∣∣∣∣ ≤ C(|λ| + 〈ξ1〉

m1〈ξ2〉
m2 )−1.

The proof of Lemma 2.3.1 is essentially the same of Lemma 3.5 in [66].
Next, we prove that, if A Λ-elliptic, then we can define a parametrix of

(A−λ Id). Actually, we prove that, for |λ| large enough, the resolvent (A−λ Id)−1

exists. Restricting ourselves to differential operators, we could follow formally
the idea of Shubin ([91], ch. II) of parameter depending operators. For general
pseudodifferential operators, it is well know that this idea does not work, see
[40].

Theorem 2.3.2. Let A ∈ Lm1,m2
pr (M1 ×M2) be Λ-elliptic. Then there exists R ∈ R+,

such that the resolvent (A − λI)−1 exists for λ ∈ ΛR = {λ ∈ Λ | |λ| ≥ R}. Moreover,

‖(A − λI)−1
‖ = O(|λ|−1), λ ∈ ΛR.

Proof. First, we look for an inverse of (A−λ Id) modulo compact operators, that
is an operator B(λ) such that:

(A − λ) ◦ B(λ) = Id + R1(λ), λR1(λ) ∈ L−1,−1(M1 ×M2),

B(λ) ◦ (A − λ) = Id + R2(λ), λR2(λ) ∈ L−1,−1(M1 ×M2),
(2.3.42)
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for all λ ∈ Λ. In order to find such an operator, we make the principal symbol
explicit

a − λ = psym(a) − λ + c, c ∈ Sm1−1,m2−1(M1,M2).

As we have noticed in Theorem 1.2.3, we can write the symbol of the inverse
(modulo compact operators) of an elliptic operator. In this case we need to be
more careful, because of the parameter λ. Following the same construction as
in Theorem 1.2.3, we obtain

b(λ) =
{(

(σm1
1 (A) − λ IdM2 )−1, (σm2

2 (A) − λ IdM1 )−1
}
. (2.3.43)

The above definition (2.3.43) is consistent in view of the Λ-ellipticity and of the
relations

σ
(
(σm1

1 (A) − λ IdM2 )−1(x1, ξ1)
)
(x2, ξ2) = (am1,m2 − λ)−1(x1, x2, ξ1, ξ2),

σ
(
(σm2

2 (A) − λ IdM1 )−1(x2, ξ2)
)
(x1, ξ1) = (am1,m2 − λ)−1(x1, x2, ξ1, ξ2).

Using the calculus and Lemma 2.3.1, we can check that B(λ) satisfies conditions
(2.3.42). By parameter-ellipticity, we get that R1(λ) and R2(λ) are compact
operators for λ ∈ Λ, namely

(A − λ Id) ◦ B(λ) = Id + R1(λ),
(A − λ Id) ◦ B(λ) = Id + R2(λ),

(2.3.44)

λR1(λ), λR2(λ) ∈ S−1,−1(M1×M2) uniformly w.r.t. λ ∈ Λ. So, B(λ) is a parametrix
and its symbol b(λ) has the form

b(λ) = − (am1,m2 (x1, x2, ξ1, ξ2) − λ)−1ψ1(ξ2)ψ2(ξ1)

+ sym{(am1,·(x1, x2, ξ1,D2) − λ IM2 )−1
}ψ1(ξ1)

+ sym{(a·,m2 (x1, x2,D1, ξ2) − λ IM1 )−1
}ψ2(ξ2).

Moreover, we easily obtain

r1(λ) = sym(R1(λ)) = (a − psym(a)) ◦ b(λ) + (psym(a) ◦ b(λ)) − 1, (2.3.45)

hence r1(λ) ∈ S−1,−1(M1,M2) is the asymptotic sum of terms of the type

∂α1
ξ1
∂α2
ξ2

gDα1
x1

Dα2
x2

b(λ) g ∈ Sm1,m2 (M1,M2).

Clearly (am1,m2 (x1, x2, ξ1, ξ2)−λ)−1 = O(|λ|−1). By the theory of pseudodifferential
operators on closed manifolds, the same property holds for

sym(am1,·(x1, x2, ξ1,D2) − λ IdM2 )−1

and
sym(a·,m2 (x1, x2,D1, ξ2) − λ IdM1 )−1

and their derivatives. Thus r1(λ) = O(|λ|−1), as a consequence of the calculus.
By Proposition 1.2.2, this implies ‖R1‖L2 = O(|λ|−1), and the same is true for
the operator R2. So we can choose λ large enough such that R1,R2 have norm
less than 1. In this way, using Neumann series, we prove that (A − λ Id) is
one to one and onto, therefore invertible with bounded inverse, by the Open
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Map Theorem. Again, by Neumann series, we obtain B̃(λ) such that (2.3.44)
is fulfilled with R̃1, R̃2 smoothing and still with norm O(λ−1). Now notice that
λ
[
B(λ) − B̃(λ)

]
∈ S−m1−1,−m2−1 for all λ ∈ Λ. Furthermore, if we multiply both

equations in (2.3.42) by (A − λI)−1 we obtain

(A − λ Id)−1 = B̃(λ) + B̃(λ)R1(λ) + R2(λ)(λ − A)−1R1(λ).

Hence ‖(A − λI)−1
‖ = O(|λ|−1) and λ2

[
(A − λ)−1

− B̃(λ)
]

is a smoothing operator
in L−∞,−∞(M1 ×M2), uniformly w.r.t. λ. �

In order to define complex powers of an elliptic bisingular operator, we
introduce some natural assumptions, similar to those assumed in Section 2.1.

Assumptions 3. 1. A ∈ Lm1,m2 (M1,M2) is Λ-elliptic.

2. σ(A) ∩Λ = ∅ (in particular, A is invertible).

3. A has homogeneous principal symbols.

Remark 2.3.1. If we consider a Λ-elliptic operator A ∈ Lm1,m2
pr (M1 ×M2) with mi > 0

(i = 1, 2), then σ(A) is either discrete or the whole of C, because the resolvent is a
compact operator ([101], Ch. I). Since, by Theorem 2.3.2, we know that for large λ
the resolvent is well defined, it turns out that the spectrum σ(A) is discrete. Then,
modulo a shift of the operator, we can find a suitable sector Λ such that Assumptions 3
is fulfilled.

Definition 2.3.2. Let A be an operator fulfilling Assumptions 3. Then, we can
define

Az :=
i

2π

∫
∂Λ+

ε

λz(A − λ Id)−1dλ, Re z < 0, (2.3.46)

where Λε = Λ ∪ {z ∈ C | |z| ≤ ε}. The Dunford integral in (2.3.46) is convergent,
since ‖(A − λ Id)−1

‖ = O(|λ|−1) for λ large enough. As usual, we next define

Az := Az−k ◦ Ak, Re z − k < 0.

Remark 2.3.2. In Assumptions 3 we require Λ ∩ σ(A) = ∅, that is, in particular, the
operator must be invertible. It is possible to define complex powers of non invertible
operator as well, provided the origin is an isolated point of the spectrum, see, e.g., [26].
For example, one can define the complex powers of A = (−∆) ⊗ (−∆) on the torus
S1
× S1, even if A has an infinite dimensional kernel.

Theorem 2.3.3. If the operator A ∈ Lm1,m2 (M1,M2) satisfies Assumptions 3, then
Az
∈ Lm1z,m2z(M1 ×M2) and it admits a homogeneous principal symbol. Moreover, by

Cauchy Theorem3

az
m1z,m2z = (am1,m2 )z,

az
m1z,· = (am1,·)

z,

az
·,m2z = (a·,m2 )z.

(2.3.47)

3In equation (2.3.47), az
m1z,·, az

·,m2z, az
m1z,m2z represent, respectively, σm1z

1 (Az), σm2z
2 (Az), σm1z,m2z(Az),

while (am1 ,·)
z, (a·,m2 )z are the complex powers of the operators σm1

2 (A), σm2
2 (A), and (am1 ,m2 )z is the

complex power of the function σm1 ,m2 (A).
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Proof. As a consequence of a general version of Fubini’s Theorem we obtain

sym(Az) =
i

2π

∫
∂+Λε

λzsym((A − λI)−1)dλ, Re z < 0.

By Theorem 2.3.2, we know that λ2
[
(A−λI)−1

−B(λ)
]
∈ L−∞,−∞(M1 ×M2) so, up

to smoothing symbols, we have

sym(Az) =
i

2π

∫
∂+Λε

λzsym(B̃(λ))dλ

=
i

2π

∫
Ωξ1 ,ξ2

λzsym(B̃(λ))dλ,
(2.3.48)

where Ωξ1,ξ2 is as in Lemma 2.3.1 and the second equality in (2.3.48) follows
by Cauchy integral formula. Now, by Lemma 2.3.1 and by the explicit form
of sym(B̃(λ)), we get Az

∈ Lm1z,m2z(M1 × M2). In order to show that Az has
homogeneous principal symbol, we write

sym(B̃(λ)) =ψ1(σm1 (A) − λIM2 )−1 + ψ2(σm2 (A) − λIM1 )−1

− ψ1ψ2(σm1,m2 (A) − λ)−1 + c(λ),

where λc(λ) ∈ m1,m2−m1 − 1,−m2 − 1(M1,M2), ∀λ ∈ Λ. We split integral in
(2.3.48) so that

sym(Az) =
i

2π

∫
∂+Λε

λzψ1(σm1 (A) − λIM2 )−1 (2.3.49)

+
i

2π

∫
∂+Λε

λzψ2(σm2 (A) − λIM1 )−1dλ (2.3.50)

−
i

2π

∫
∂+Λε

λzψ1ψ2(σm1,m2 (A) − λ)−1dλ (2.3.51)

+
i

2π

∫
∂+Λε

λzc(λ)dλ. (2.3.52)

The theorem follows from theory of complex powers on closed manifolds for the
integrals (2.3.49) and (2.3.50), and from Cauchy Theorem for integral (2.3.51).
Finally, we notice that the integral (2.3.52) gives a symbol of order (m1z−1,m2z−
1). �

We now introduce the function ζ(A, z) of an elliptic operator that satisfies
Assumptions 3. The proof of the following property is similar to the case of
compact manifolds (see [101], ch. II).

Proposition 2.3.4. Let A ∈ Lm1,m2 (M1×M2), mi > 0, i = 1, 2, be a selfadjoint operator
satisfying Assumptions 3. Then we have

Az(u) =
∑
i∈N

λz
j( fi,u),

where {λ j} j∈N is the sequence of the eigenvalues of A, and { f j} j∈N are the corresponding
orthonormal eigenfunctions. We define

ζ(A, z) :=
∑
j∈N
λz

j , Re z < min
{
−

n1

m1
,−

n2

m2

}
.
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The definition of ζ(A, z) in the general case is the following:

Definition 2.3.3. Let A ∈ Lm1,m2 (M1×M2) be an operator satisfying Assumptions
3 then

ζ(A, z) :=
∫

M1×M2

KAz (x1, x2, x1, x2)dx1dx2, Re zm1 < −n1,Re z m2 < −n2,

where KAz is the kernel of Az. The integral is well defined if Re z m1 < −n1 and
Re z m2 < −n2 since, in this case, Az is trace class.

Theorem 2.3.5. KAz (x1, x2, y1, y2) is a smooth function outside the diagonal. Further-
more, its restriction to the diagonal KAz (x1, x2, x1, x2) can be extended as a meromorphic
function on the half plane {z ∈ C | Re z < min{− n1

m1
,− n2

m2
} + ε} with, at most, poles at

the point zpole = min{− n1
m1
,− n2

m2
}. The pole can be of order two if n1

m1
= n2

m2
, otherwise it

is a simple pole.

Proof. By definition, the kernel of Az has the form

KAz (x1, x2, x1, x2) =
1

(2π)n1+n2

∫
Rn1

∫
Rn2

az(x1, x2, ξ1, ξ2)dξ1dξ2. (2.3.53)

First, let us consider the case n1
m1
> n2

m2
. Then, if Re z < − n1

m1
, Az
∈ Lm1z,m2z(M1 ×

M2) ⊆ L−n1−ε,−n2−ε(M1 ×M2); hence it is trace class and the integral of the kernel
is finite. We can write az = az

m1z,· + az
r , az

r ∈ Sm1z−1,m2z(M1,M2) and we have then

KAz (x, x) =
1

(2π)n1+n2

∫
Rn2

∫
|ξ1 |≥1

(
az

m1z,· + az
r,·

)
dξ1dξ2

+
1

(2π)n1+n2

∫
Rn2

∫
|ξ1 |≤1

(
az

m1z,· + az
r,·

)
dξ1dξ2.

(2.3.54)

The second integral in (2.3.54) is an holomorphic function for Re z ≤ − n1
m1

+ ε
since we integrate w.r.t. the ξ1 variable on a compact set. The same conclusion
holds for the integral of az

r,· on the set {(ξ1, ξ2) | |ξ1| ≥ 1, ξ2 ∈ Rn2 } because it has
order (m1z − 1,m2z). In order to analyze the integral of az

m1,·, we switch to polar
coordinates and obtain∫

Rn2

∫
|ξ1 |≥1

az
m1z,·dξ1dξ2 = −

1
m1z + n1

∫
Rn2

∫
Sn1−1

am1z,·dθ1dξ2. (2.3.55)

Clearly, (2.3.55) can be extended as a meromorphic function on {z ∈ C | Re z <
−

n1
m1

+ ε}, and, moreover, by (2.3.47), we get

lim
z→− n1

m1

(
z +

n1

m1

)
KAz (x1, x2) = −

1
(2π)n1+n2 m1

∫
Rn2

∫
Sn1−1

sym(σm
1 (A)−

n1
m1 )dθ1dξ2.

The case n1
m1
< n2

m2
is equivalent, by exchanging the role of x1 and x2. The case

n1
m1

= n2
m2

is a bit more delicate, since we have to analyze the whole principal
symbol. First we write

KAz (x, x) =
1

(2π)n1+n2

∫
Rn1

∫
Rn2

(
az

m1z,· + az
·,m2z − az

m1z,m2z

)
+(

az
− az

m1z,· − az
·,m2z + az

m1z,m2z

)
dξ1dξ2.

(2.3.56)
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The definition of principal symbol implies that the second term in (2.3.56)
belongs to Sm1z−1,m2z−1(M1,M2), hence the second integral is well defined for
Re z < − n1

m1
+ ε and holomorphic for Re z < − n1

m1
+ ε. Now we have to analyze

the integral of the principal symbol. Splitting Rn1 × Rn2 into the following four
regions,

{(ξ1, ξ2) | |ξ1| < τ, |ξ2| < τ}, {(ξ2, ξ2) | |ξ1| ≤ τ, |ξ2| ≥ τ},

{(ξ1, ξ2) | |ξ1| ≥ τ, |ξ2| ≤ τ}, {(ξ2, ξ2) | |ξ1| > τ, |ξ2| > τ},

one gets ∫
Rn1

∫
Rn2

(
az

m1z,· + az
·,m2z − az

m1z,m2z

)
dξ1dξ2 =

τ(m1+m2)z+n1+n2

(m1z + n1)(m2z + n2)

∫
Sn1−1

∫
Sn2−1

az
m1z,m2zdθ1dθ2

−
τm1z+n1

(m1z + n1)

∫
|ξ2 |≤τ

∫
Sn1−1

az
m1z,·dθ1dξ2

−
τm2z+n2

(m2z + n2)

∫
|ξ1 |≤τ

∫
Sn2−1

az
·,m2zdθ1dξ1

−
τm1z+n1

(m1z + n1)

∫
|ξ2 |>τ

∫
Sn1−1

(
az

m1z,· − az
m1z,m2z

)
dθ1dξ1

−
τm2z+n2

(m2z + n2)

∫
|ξ1 |>τ

∫
Sn2−1

(
az
·,m2z − az

m1z,m2z

)
dθ1dξ1

+ h(z),

(2.3.57)

where h(z) is an holomorphic function for Re z ≤ zpole + ε. The evaluation of
the integrals in (2.3.57) are similar to Proposition 3.3 in [79], and Theorem 2.2
in [15]. This concludes the proof. �

Since M1,M2 are closed manifolds, Theorem 2.3.5 implies the following:

Corollary 2.3.6. Let A ∈ Lm1,m2 (M1 ×M2) be an operator satisfying Assumptions
3. Then, ζ(A, z) is holomorphic for Re z < min{− n1

m1
,− n2

m2
} and can be extended as a

meromorphic function on the half plane Re z < min{− n1
m1
,− n2

m2
} + ε. Moreover, the

Laurent coefficients of ζ(A, z) at z = zpole = min{− n1
m1
,− n2

m2
} are

lim
z→− n1

m1

(
z +

n1

m1

)
ζ(A, z) = −

1
(2π)n1+n2 m1

"
M1×M2

∫
Rn2

∫
Sn1−1

a
−

n1
m1

m1,· dθ1dξ2, (2.3.58)

in the case n1
m1
> n2

m2
.

lim
z→− n2

m2

(
z +

n2

m2

)
ζ(A, z) = −

1
(2π)n1+n2 m2

"
M1×M2

∫
Rn1

∫
Sn2−1

a
−

n2
m2
·,m2

dθ2dξ1, (2.3.59)

in the case n2
m2
> n1

m1
.

res2(A) = lim
z→−l

(z + l)2ζ(A, z) =

1
(2π)n1+n2 (m1m2)

"
M1×M2

∫
Sn1−1

∫
Sn2−1

(am1,m2 )−ldθdθ′,
(2.3.60)
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lim
z→−l

(z + l)
(
ζ(A, z) −

res2(A)
(z + l)2

)
= −TR1,2(A) + TRθ(A), (2.3.61)

where

TR1,2(A) :=
1

(2π)n1+n2
lim
τ→∞

( 1
m1

"
M1×M2

∫
|ξ2 |≤τ

∫
Sn1−1

(am1,·)
−l
− res2(A) log τ

)
+

1
(2π)n1+n2

lim
τ→∞

( 1
m2

"
M1×M2

∫
|ξ1 |≤τ

∫
Sn2−1

(a·,m2 )−l
− res2(A) log τ

) (2.3.62)

and

TRθ(A) :=
1

(2π)n1+n2 (m1m2)

∫
M1×M2

∫
Sn1−1

∫
Sn2−1

a−l
m1,m2

log am1,m2 dθ1dθ2, (2.3.63)

in the case n1
m1

= n2
m2

= l.

In (2.3.62), (am1,·)
l and (a·,m2 )l are the symbols of the complex powers of the

operators am1,·(x1, x2, ξ1,D2) and a·,m2 (x1, x2,D1, ξ2). In order to obtain the terms
in (2.3.61), (2.3.62), (2.3.63), we notice that the constant τ in (2.3.57) is arbitrary
and the Laurent coefficients clearly do not change if we change the partition of
Rn1 × Rn2 : therefore, we can let τ tend to infinity. In this way, both the fourth
and fifth integral in (2.3.57) vanish, due to the continuity of the integral w.r.t.
the domain of integration. The evaluation is similar to the proof of Theorem
2.9 in [15] and of Proposition 3.3 in [79].

2.4 Complex Powers and ζ-Function of Bisingular
Operator on Euclidean Spaces

In this section we define complex powers of bisingular operators on Euclidean
spaces. First we define parameter ellipticity:

Definition 2.4.1. Let Λ be a sector of the complex plane and a be a symbol
belonging to Γm1,m2

pr ; a is called Λ-elliptic if there exists a constant R such that

i)
σm1

1 (A)(x1, ξ1) − λIRn2 ∈ Gm2
cl (Rn2 )

is invertible for all |x1| + |ξ1| ≥ R, uniformly w.r.t. λ ∈ Λ.

ii)
σm2

2 (A)(x2, ξ2) − λIRn1 ∈ Gm1
cl (Rn1 )

is invertible for all |x2| + |ξ2| ≥ R, uniformly w.r.t λ ∈ Λ.

iii) (
σm1,m2 (A)(x1, x2, ξ1, ξ2) − λ

)−1
∈ Γ−m1−m2

for all |xi| + |ξi| ≥ R, for all λ ∈ Λ.
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In the remaining part of this Section, we consider sectors of the complex
plane Λ with vertex at the origin as in the Figure 2.1.

It is an exercise to prove that, if A ∈ Gm1,m2
pr is Λ-elliptic, then the operator

is sectorial: follow, for example, the scheme of Theorem 2.3.2. We make now
some natural assumptions in order to perform the functional calculus.

Assumptions 4. i) A ∈ Gm1,m2
pr is Λ-elliptic,

ii) σ(A) ∩Λ = ∅; in particular, A is invertible.

Remark 2.4.1. In condition ii) of Assumptions 4, we assume that the operator is
invertible. We have made these assumptions in order to get a simpler theory. It is
nevertheless possible to handle functional calculus of operators with non trivial kernel,
even with infinite dimensional kernel: the crucial requirement is that the origin must
be an isolated point of the spectrum, cf. [26].

Definition 2.4.2. Let A be a globally bisingular operator that satisfies Assump-
tions 4. We can define

Az :=
i

2π

∫
∂Λ+

ε

λz(A − λId)−1dλ, Re z < 0, (2.4.64)

where Λε = Λ ∪ {z ∈ C | |z| < ε}. The complex power of A is defined as

Az =

Az Re z < 0,
Az−k ◦ Ak k ∈ N,Re z − k < 0.

Since the operator A is sectorial the Dunford integral in (2.4.64) converges. As
usual, one can prove that the Definition 2.4.2 does not depend on k.

Theorem 2.4.1. If A ∈ Gm1,m2
pr (Rn1,n2 ) fulfills Assumptions 4, then Az

∈ Gm1z,m2z.
Moreover,4

σm1z
1 (Az)(x1, ξ1) =

(
σm1

1 (A)(x1, ξ1)
)z
, (2.4.65)

σm2z
2 (Az)(x2, ξ2) =

(
σm2

2 (A)(x2, ξ2)
)z
, (2.4.66)

σm1z,m2z(Az)(x1, x2, ξ1, ξ2) =
(
σm1,m2 (A)(x1, x2, ξ1, ξ2)

)z
, (2.4.67)

where the complex power in (2.4.65), (2.4.66) is the complex power of operators, while
in (2.4.67) is the standard complex power of a function.

We now introduce the ζ-function of suitable globally bisingular operators.
Then, we will study the meromorphic extension of ζ-function and we will
analyze its first left pole. We do not write the proofs of the following statements,
since they are similar to those of Theorem 2.1.9, 2.1.11, 2.3.5.

Definition 2.4.3. Let A ∈ Gm1,m2 be a globally bisingular operator that satisfies
Assumptions 4. Then

ζ(A, z) =

"
Rn1+n2

KAz (x1, x2, x1, x2)dx1dx2, Re z < 2 min
{
−

n1

m1
,−

n2

m2

}
,

where KAz is the kernel of Az.
4We have just defined symbols Γm1 ,m2 with m1,m2 ∈ R2. It is nevertheless possible to define

the same class with complex numbers z1, z2, if, in the inequality (1.8), instead of mi we use Re zi,
i = 1, 2.
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Theorem 2.4.2. Let A ∈ Gm1,m2 satisfy Assumptions 4. Then ζ(A, z) can be extended
as a meromorphic function on {z ∈ C | Re z < 2 min{− n1

m1
,− n2

m2
} + ε}. Moreover, the

Laurent coefficients at pole zpole = 2 min{− n1
m1
,− n2

m2
} depend on n1

m1
and n2

m2
.

In the case n1
m1
> n2

m2
:

lim
z→− 2n1

m1

(
z +

2n1

m1

)
ζ(A, z) =

(2π)−n1−n2

m1

∫
R2n2

∫
S2n1−1

(am1,·)
−

2n1
m1 dθ1dx2dξ2. (2.4.68)

In the case n2
m2
> n1

m1
:

lim
z→− 2n2

m2

(
z +

2n2

m2

)
ζ(A, z) =

(2π)−n1−n2

m2

∫
R2n1

∫
S2n2−1

(a·,m2 )−
2n2
m2 dθ2dx1dξ1. (2.4.69)

In the case n1
m1

= n2
m2

= l:

res2(A) = lim
z→−l

(z + l)2ζ(A, z) =
(2π)−n1−n2

m1m2

∫
S2n2−1

∫
S2n1−1

(am1,m2 )−ldθ1dθ2, (2.4.70)

lim
z→−l

(z + l)
(
ζ(A, z) −

res2(A)
(z + l)2

)
= −TR1,2(A) + TRθ(A), (2.4.71)

where

TR1,2(A) = (2π)−n1−n2(
lim
τ→∞

( 1
m1

∫
|x2 |+|ξ2 |<τ

∫
S2n1−1

(
(am1,·)

−ldθ1dx2dξ2 − res2(A) log τ
))

+ lim
τ→∞

( 1
m2

∫
|x1 |+|ξ1 |<τ

∫
S2n2−1

(
(am2,·)

−ldθ2dx1dξ1 − res2(A) log τ
)))
,

and
TRθ(A) =

(2π)−n1−n2

m1m2

∫
S2n2−1

∫
S2n1−1

(am1,m2 )−l log(am1,m2 )dθ1dθ2.
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Chapter 3

Weyl Formulae

In this Chapter we study the asymptotic behavior of counting function of
positive elliptic operators belonging to the classes introduced in Chapter 1.

3.1 Aramaki’s Tauberian Theorem

Given a positive selfadjoint operator P with spectrum {λ j} j∈N, one defines

NP(λ) =
∑
λ j<λ

1 = ]{ j | λ j < λ}.

We use Tauberian techniques to study the asymptotic behavior NP, namely an
extension of a classical Tauberian Theorem due to J. Aramaki [8].

Theorem 3.1.1. Let P be a densely defined positive selfadjoint operator, if

i) P−z is trace class for Re z < N, and ζ(P, z) admits a meromorphic continuation
in half plane Re z < N + ε, with at most poles on the real line;

ii) ζ(P, z) has the first left pole at the point −z0 and

ζ(P, z) +

p∑
j=1

A j

( j − 1)!

(
d
dz

) j−1 1
z + z0

,

extends to an holomorphic function on the half plane {z ∈ C | Re z < −z0 + ε};

iii) Γ(z)ζ(P, z) decays exponentially on vertical strips expect from neighborhoods of
the poles;

then,

NP(λ) ∼
p∑

j=1

A j

( j − 1)!

(
d
ds

) j−1 (
λs

s

)
|s=z0 + O(λz0−δ), λ→∞, (3.1.1)

for a certain δ > 0.
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Remark 3.1.1. In [8], J. Aramaki requires that ζ(P, z) has a polynomial growth on all
vertical strips. Actually, in the proof he uses condition iii) in order to shift an integral
in the complex plane. We have changed this condition with a weaker one, since in
our setting this one is more easy to be verified. In [8], the authors requires that the
ζ(P, z) admits an extension to the whole of C, but actually condition i) in Theorem
3.1.1 is sufficient. Furthermore, notice that we have chosen a different orientation of
ζ-function.

Property 3.1.2. If we consider a positive selfadjoint operator fulfilling Assumptions
1 or Assumptions 2 or Assumptions 3 or Assumptions 3, then it satisfies item iii) of
Theorem 3.1.1.

Proof. First, one has to notice that in these cases the sector used to define the
complex powers can be chosen with an angle θ > π

2 .Then the proof follows
from a general result proved by G. Grubb and R. Seeley [39], Corollary 2.10. �

Notice that J. Aramaki suggested others extension of Tauberian Theorem in
order the get a better bound of the rest in the formula (3.1.1), see [9, 10].

3.2 Weyl Formulae for SG-Operators, Bisingular Op-
erators and Bisingular Operators on Euclidean
Spaces

In view of Theorems of 2.1.10, 2.1.11, Theorems 2.1.12, 2.1.13 and Property 3.1.2
a direct application of Theorem 3.1.1 implies the following theorems

Theorem 3.2.1. Let A be a classical SG-operator, selfadjoint and positive, on Rn or
a manifold with cylindrical ends, satisfying Assumptions 1 or 2, respectively. Then,
for certain δi > 0, i = 0, 1, 2, the counting function NA(λ) associated with A has the
following asymptotic behavior for λ→ +∞:

NA(λ) ∼


C1

0λ
n
m logλ + C2

0λ
n
m + O(λ

n
m−δ0 ) for m1 = m2 = m

C1λ
n

m1 + O(λ
n

m1
−δ1 ) for m1 < m2

C2λ
n

m2 + O(λ
n

m2
−δ2 ) for m1 > m2.

(3.2.2)

Moreover, the constants appearing in the above estimates are given by

C1
0 =

1
mn

TR(A−
n
m ), C2

0 = T̂Rx,ξ(A−
n
m ) −

1
n2 TR(A−

n
m ), (3.2.3)

C1 = T̂Rx,ξ(A
−

n
m1 ), (3.2.4)

C2 = T̂Rx,ξ(A
−

n
m2 ). (3.2.5)

If we consider instead bisingular operators, then Corollary 2.3.6, Property
3.1.2 and Theorem 3.1.1 imply the following:

Theorem 3.2.2. Let A ∈ Lm1,m2 (M1×M2) be a positive selfadjoint bisingular operator
satisfying Assumptions 3. Then, for λ→∞,

NA(λ) ∼


C1λl log(λ) + C′1λ

l + O(λl−δ1 ) for n1
m1

= n2
m2

= l

C2λ
n2
m2 + O(λ

n2
m2
−δ2 ) for n2

m2
> n1

m1

C3λ
n1
m1 + O(λ

n2
m2
−δ2 ) for n2

m2
< n1

m1
,

(3.2.6)
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for certain δi > 0, i = 1, 2, 3. The constants C1,C′1,C2,C3 depend only on the principal
symbol of A, namely

C1 =
1

(2π)n1+n2 (n1 m2)

"
M1×M2

∫
Sn1−1

∫
Sn2−1

(am1,m2 )−ldθ1dθ2

=
1

(2π)n1+n2 (n2 m1)

"
M1×M2

∫
Sn1−1

∫
Sn2−1

(am1,m2 )−ldθ1dθ2;

C′1 =
TR1,2(A) − TRθ(A)

l
−

1
n1n2

"
M1×M2

∫
Sn1−1

∫
Sn2−1

(am1,m2 )−ldθ1dθ2;

C2 =
1

(2π)n1+n2 n2

"
M1×M2

∫
Rn1

∫
Sn2−1

(a·,m2 )−
m2
n2 dθ2dξ1;

C3 =
1

(2π)n1+n2 n1

"
M1×M2

∫
Rn2

∫
Sn1−1

(am1,·)
−

n1
m1 dθ1dξ2.

(3.2.7)

The result in the case of globally bisingular operators is analogous, in view
of Theorem 2.4.2:

Theorem 3.2.3. Let A ∈ Gm1,m2 (Rn1+n2 ) be self-adjoint and positive. Moreover, sup-
pose that A satisfies Assumptions 4. Then, for λ→∞,

NA(λ) =


C1λl logλ + C′1λ

l + O(λl−δ1 ) 2n1
m2

= 2n2
m2

= l

C2λ
2 n2

m2 + O(λ2 n2
m2
−δ2 ) 2n2

m2
> 2n1

m1

C3λ
2

n1
m2 + O(λ2

n1
m1
−δ3 ) 2n1

m1
> 2n2

m2
,

for certain δi > 0. The constants appearing in the asymptotic formulae above can be
expressed in terms of {am1,·, a·,m2 , am1,m2 }, the principal symbol of A, as follows:

C1 =
1

(2π)n1+n2 2n1m2

∫
S2n2−1

∫
S2n1−1

(am1,m2 )−ldθ1dθ2,

C′1 =
TR1,2(A) − TRθ(A)

l
−

1
4n1n2

∫
S2n2−1

∫
S2n1−1

(am1,m2 )−ldθ1dθ2,

C2 =
1

(2π)n1+n2 2n2

∫
R2n1

∫
S2n2−1

(a·,m2 )−
2n2
m2 dθ2dx1dξ1,

C3 =
1

(2π)n1+n2 2n1

∫
R2n2

∫
S2n1−1

(am1,·)
−

2n1
m1 dθ1dx2dξ2.

3.3 An Example

We consider the bisingular operator A = (−∆) ⊗ (−∆) on the torus S1
× S1.

We clearly have σ(A) = {n2m2
}(n,m)∈N2 . Hence, the spectrum is countable and

consists only of eigenvalues. The eigenvalue {0} has an infinite dimensional
eigenspace, while all other eigenspaces have dimension four. Therefore we get

NA(λ) =
∑

0<n2 m2≤λ

4. (3.3.8)

Let us define the function d(h) : N → N so that d(h) is equal to the numbers of
ways we can write h = m ·n, with m,n natural positive numbers or, equivalently,
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it is equal to the number of divisors of h. This function is usually called Dirichlet
divisor function. Setting

D(λ) =
∑
n≤λ

d(n),

we obtain the so-called divisor summatory function. It is linked to the lattice
problem of counting the points with integer coordinates in the first quadrant
which are below the iperbola x1x2 = λ. By a simple computation, we obtain

NA(λ2) = 4 D(λ) = 4
∑
n≤λ

d(n). (3.3.9)

Noticing that ζ(A) = 4ζR(2z)ζR(2z), where ζR(z) is the Riemann zeta-function,
we can easily find the coefficients of the asymptotic expansion. Namely, we
have

D(λ) ∼ λ log(λ) + (2γ − 1)λ + O(λ1−δ), λ→∞, (3.3.10)

where

γ := lim
τ→∞

 [τ]∑
i=1

1
i
− log τ

 (3.3.11)

is the well known Euler-Mascheroni constant. The asymptotic expansion
(3.3.10) is well known (see [51] for an overview on Dirichlet divisor prob-
lem; see also [52, 61]). It is still an open question to understand the behavior
of remainder. In [44], G. H. Hardy proved that O(λ

1
4 ) is a lower bound for the

third term. The best approximation presently known, found by M. Huxley in
[50], is O(λc(logλ)d), where

c :=
131
416
∼ 0, 3149038462 d :=

18627
8320

+ 1 ∼ 3, 238822115.

It is conjectured that the remainder is O(λ
1
4 ).

It is interesting to investigate the link between the Dirichlet divisor function
and the above results on the spectral properties of a suitable operators. Let us
notice that in (3.3.8) we have a slight abuse of notation, since N(λ) was only
defined for positive operators. In this case A = (−∆)⊗ (−∆) is non-negative, but
has a non trivial kernel. In other words we actually consider

NA := NÃ

where Ã correspond to the operator A with domain restricted to the orthogonal
complement of the kernel. The variant of our theory to such a setting, which
is possible, will be not detailed here. Rather, let us now consider the operator
Ac := (−∆ + c)⊗ (−∆ + c), c > 0, defined on the torus S1

× S1. Clearly, Ac satisfies
Assumptions 3; so that we can apply Theorem 3.2.2. It is easy to see that the
eigenvalues of Ac are {(n2 + c)(m2 + c)}(n,m)∈N2 , each one with multiplicity four.
Hence

N(Ac;λ2) = 4 ]{ real numbers of the form (n2 + c)(m2 + c) |

(n2 + c)(m2 + c) ≤ λ, n,m ∈ N} = 4 Dc(λ).
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By Theorem 2.3.3, we know that σ−1,−1(A−
1
2

c ) = (σ2,2(Ac))−
1
2 so the constant C1 in

(3.2.7) can be easily evaluated to be

C1 =
1
2

1
(2π)2 (2π)2 4 = 2. (3.3.12)

Since in this case we know the eigenvalues of the operator, TR(Ac) turns into

TR1,2(Ac) = 2 lim
τ→∞

 [τ]∑
i=−[τ]

1

(c + i2)
1
2

− 2 log τ


= 4 lim

τ→∞

 [τ]∑
i=0

1

(c + i2)
1
2

− log τ

 = 4γc.

(3.3.13)

We have named this constant γc because of the link with the usual constant of
Euler-Mascheroni γ in (3.3.11). Notice that, letting c tend to 0, γc goes to +∞;
while, if c tends to infinity, γc goes to −∞. Finally, we obtain

Dc(λ) =
1
4

N(Ac;λ2)

∼ λ log(λ) + (2γc − 1)λ + O(λ1−δ), λ→∞.
(3.3.14)

In this case, knowing exactly the eigenvalues of the operator, we can check our
estimate with a numerical experiment. We have checked (3.3.14) for Dc(λ) with
λ = 10.000.000. In the second column of the Table 3.1 there is the estimate of the
coefficient of first term of the asymptotic expansion obtained with the software
Maple 15, in the third the coefficient obtained by (3.3.14), and in the fourth the
error. We can notice that the error increases with c. This is not surprising, since
(3.3.12) does not depend on c. In order to make the error smaller, we should
increase the number of digits at which we truncate the series Dc(λ). In Table 3.2
we analyze the coefficient of the second term. In this case the error is essentially
independent of c, this is due to the fact that (3.3.13) does depend on c.

Remark 3.3.1. Let us consider the following limit in the operator topology

lim
c→0+

Ac = A. (3.3.15)

From (3.3.15) one could suppose that that the limit

lim
c→0+

1
4

N(Ac;λ2) = lim
c→0+

Ac(λ) = D(λ), λ→∞ (3.3.16)

holds as well. Anyway, the limit (3.3.16) is not correct. Indeed, we have noticed that,
if c tends to 0, γc goes to∞, not to γ. Moreover, D(λ) is not linked with A, rather with
Ã. Nevertheless, if we define Ãc to be equal to the operator A defined on the orthogonal
complement of the eigenspace of c2, then

lim
c→0+

Ãc = Ã,

and so we obtain
lim
c→0+

1
4

N(Ãc;λ2) = D(λ), λ→∞. (3.3.17)

The limit (3.3.17) could also be checked via another numerical experiment.
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Table 3.1: 1st. term approximation
c 1st. term with Maple 1st. term in (3.3.14) error
2 1,024846785 1 0,024846785
3 0,9916281891 1 0,008371811
4 0,968979304 1 0,031020696
5 0,951859819 1 0,048140181
6 0,938130598 1 0,061869402
7 0,926687949 1 0,073312051
8 0,916888721 1 0,083111279
9 0,908326599 1 0,091673401

10 0,900728511 1 0,099271489
11 0,893902326 1 0,106097674
12 0,887707593 1 0,112292407
13 0,882038865 1 0,117961135
14 0,876815128 1 0,123184872
15 0,871972341 1 0,128027659
16 0,867459966 1 0,132540034
17 0,863235614 1 0,136764386
18 0,859265437 1 0,140734563
19 0,855520776 1 0,144479224
20 0,851977951 1 0,148022049

Table 3.2: 2nd. term approximation
c 2nd. term with Maple 2nd. term in (3.3.14) error
2 0,40048285 0,401484386 0,001001536
3 -0,13493765 -0, 1339381238 0,000999526
4 -0,499994550 -0,498993281 0,001001269
5 -0,775928050 -0,774926584 0,001001466
6 -0,997216950 -0,996213733 0,001003217
7 -1,181650650 -1,180647904 0,001002746
8 -1,339595550 -1,3385899520 0,001005598
9 -1,477600650 -1,476592538 0,001008112

10 -1,600067350 -1,599058126 0,001009224
11 -1,710092450 -1,7090842470 0,001008203
12 -1,809939750 -1,808931287 0,001008463
13 -1,901308850 -1,9002985710 0,001010279
14 -1,985505550 -1,9844949070 0,001010643
15 -2,063562050 -2,0625496430 0,001012407
16 -2,136292950 -2,1352865400 0,001006410
17 -2,204381450 -2,2033750580 0,001006392
18 -2,268373150 -2,2673662890 0,001006861
19 -2,328729950 -2,3277195600 0,001010390
20 -2,385833550 -2,3848212840 0,001012266
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Let us now consider the harmonic oscillator appearing in Quantum Me-
chanics,

−∆2 + |x|2,

restricted to the one dimensional case. See, e.g., [83], for more details on the
spectral theory of non-commutative harmonic oscillator. Then, we know that
the Hermite basis of L2(R),

h j(x) = h j(x), j = 0, 1, ...,

is the set of eigenfunctions of −∂2 + x2 and that (2 j + 1), j = 0, 1, ..., are the
corresponding eigenvalues, all with multiplicity one. Thus, we can consider
the shifted operator −∂2 + x2 + 1, which has spectrum 2 ( j + 1), j = 0, 1, ..., and
define the bisingular operator

B = (−∂2
x1

+ x2
1 + 1) ⊗ (−∂2

x2
+ x2

2 + 1) ∈ G2,2(R,R).

Then, the spectrum of B is {4 ( j · i)}, j, i = 1, 2, . . .. So, we have that

NB(4 λ) = D(λ).

It is clear that B satisfies the hypothesis of Theorem 3.2.3. Hence, we can state
the asymptotic (3.3.10), but using the results on asymptotic expansion of the
counting function in the context of globally binsingular operators. Notice that,
in this case, the link with the Dirichlet divisor function is more transparent,
since we do not need to worry about the kernel: B is a positive operator. Our
spectral approach to Dirichlet Divisor function suggests that, maybe, other
Weyl’s formula techniques (e. g. given by Fourier Integral Operators) could be
useful to attack the Dirichlet Divisor conjecture.
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Part II

Fourier Integral Operators on
Manifolds with Boundary
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Chapter 4

Background in Geometry

In this chapter we recall the basic notions of manifolds with boundary and we
analyze the construction of the double of a manifold with non trivial boundary.
We also include a brief introduction to symplectic geometry. The contents of
this chapter mainly come from [18, 21, 59, 67, 70, 72, 74].

4.1 Smooth Manifolds with Boundary

The model case of manifold with boundary is the closed half-space Rn
+ =

{(x1, . . . , xn−1, xn) ∈ Rn
| xn ≥ 0}, in the induced topology; the boundary of

the closed half-space is, of course, ∂Rn
+ = {(x1, . . . , xn−1, xn) ∈ Rn

| xn = 0}. The
definition of topological manifold with boundary is similar to that of a topolog-
ical manifold without boundary, but neighborhoods of points are of the form
ψ−1(U ∩ Rn

+), U open set of Rn, ψ local chart map.

Definition 4.1.1. A Hausdorff topological space M is a n-dimensional topolog-
ical manifold with boundary if it has a countable base of open sets and for all
p ∈M there is an open neighborhood Up of p such that Up is homeomorphic to
an open set U′p of Rn

+.

The open sets U′p can be of two different types: interior open sets such that
U′p ∩ ∂Rn

+ = ∅ - that is open sets of Rn- and boundary open sets such that
U′p ∩ ∂Rn

+ , ∅. We say that p ∈ M is an interior point if there exists an open
neighborhood Up homeomorphic to an interior open set of Rn

+. The interior
points form a topological manifold we denote M̊. The complement of the
interior points is called the boundary of M and it is denoted by ∂M. The
boundary ∂M can also be defined as the set of points p ∈ M such that for an
open neighborhood Up, ψUp (p) ∈ ∂Rn

+, ψUp local homeomorphism on Up. It is
a consequence of the invariance of domain that, if the condition ψUp (p) ∈ ∂Rn

+

holds for an open neighborhood of p, then it is true for any open neighborhood
of p. The set ∂M turns out to be a topological manifold of dimension n − 1.
By Definition 4.1.1, Rn

+ is a topological manifold with boundary; the interior
manifold is Rn

+ while the boundary manifold is ∂Rn
+.
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In order to introduce smooth manifolds with boundary one has to clarify
what smooth on Rn

+ means. Of course, this is needed only for points belonging
to the boundary. A map f : Rn

+ → R is smooth if there exists a smooth
map f̃ : Rn

→ R such that f̃ (x) = f (x) for all x ∈ Rn
+. In the same way, a

bijection χ : Rn
+ → Rn

+ that sends boundary points into boundary points is a
diffeomorphism of Rn

+ into itself, if there exists a diffeomorphism ψ̃ : Rn
→ Rn

such that ψ̃(x) = ψ(x) for all x ∈ Rn
+. The definition of smooth manifold with

boundary is now analogue to the boundaryless case:

Definition 4.1.2. A topological manifold with boundary M is a smooth mani-
fold with boundary if it has a differentiable structure U = {Uα, ψα} such that

i) {Uα} is an open covering of M.

ii) For all (Uα, ψα), (Uβ, ψβ) the maps

ψα ◦ ψ
−1
β : ψβ(Uα ∩Uβ)→ ψα(Uα ∩Uβ)

ψβ ◦ ψ
−1
α : ψα(Uα ∩Uβ)→ ψβ(Uα ∩Uβ)

are diffeomorphisms of open sets of Rn
+.

iii) U is maximal.

Notice that, if M is a smooth manifold with boundary, then, for all p ∈M, if
ψα(p) ∈ ∂Rn

+ for a local chart, then ψβ(p) ∈ ∂M for any other local chart, because
diffeomorphisms of Rn

+ do preserve the boundary. If the boundary of M is
empty, Definitions 4.1.1 and 4.1.2 turns into the usual definitions of topological
manifold and smooth manifold without boundary.

Proposition 4.1.1. If M is a smooth manifold with non empty boundary ∂M, then the
differentiable structure of M induces a differentiable structure on ∂M.

Proof. One has to notice that if {Uα, ψα} induces a differentiable structure on M,
then {Uα ∩ ∂M, ψα|∂M} induces a differentiable structure on ∂M. �

4.1.1 Tangent and Cotangent Bundles of Manifolds with Boun-
dary

In order to define the tangent space of a smooth manifold with boundary, we
notice that, given a diffeomorphism χ : Rn

+ → Rn
+, it is possible to consider the

differential (or Jacobian) of χ, which is the differential of an extension χ̃ of χ to
the whole of Rn, restricted to Rn

+. It is important to observe that value of J(χ̃)|M
does not depend on the extension χ̃.

Let us consider a smooth manifold with boundary M of dimension n with a
differentiable structure defined by the atlas A = {Uα, ψα}. For each point p ∈M
we consider the set of triples (p, (Uα, ψα), v) ∈ {p} ×A ×Rn such that p ∈ Uα. On
this set we introduce the equivalence relation

((Uα, ψα), v) ∼ ((Uβ, ψβ),w)⇔ J(ψβ ◦ ψ−1
α )|ψα(p) · v = w.

Notice that this implies that the dimension of the tangent space of each point
of M, even at the boundary, is n. This can be easily explained if one defines the
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tangent space from the germs of functions at a point. With this method, it is
clear that we can approach a boundary point also in the normal direction.

Remark 4.1.1. It is possible to define the tangent space of M also in an indirect way,
embedding the manifold with boundary M into a smooth manifold M̃ which has no
boundary. Then, one can define the tangent space of TpM̃ for each point p ∈M and set
TpM = TpM̃. In Section 4.1.2 we will explain how to build such an extension of M.

Having defined the tangent space at an arbitrary point p ∈M, we can define
the cotangent space T∗pM just as the dual of TpM. The next step is to introduce
the tangent bundle TM and the cotangent bundle T∗M. This is done as in the
boundaryless case, by

TM = M × Rn/ ∼

(p, v) ∼ (q,w)⇔ p = q and J(ψβ ◦ ψ−1
α )|ψα(p) · v = w,

where (Uα, ψα), (Uβ, ψβ) are local coordinates at p. It turns out that the tangent
space TM is a fiber bundle with fiber Rn, and it is a 2n-dimensional manifold
with boundary. Clearly, ∂TM = T∂MM. In the same way, we can define T∗M,
the cotangent bundle of M, which also turns out to be a smooth 2n-dimensional
manifold with boundary, with ∂T∗M = T∗

∂MM.
As we have already noticed, ∂M is a smooth (n − 1)-dimensional manifold,

so it is possible to define the bundles T∂M and T∗∂M. Let us observe that the
injection i : ∂M → M is an embedding. We have that the push-forward of
the injection i gives a subbundle of T∂MM, namely i∗(T∂M) ⊆ T∂MM. Moreover,
there is an injection i∗ : T∗

∂MM→ T∗∂M, obtained by the pull-back of the injection
i. Now, we can define the conormal bundle at the boundary,

N∗∂M = {w ∈ T∗∂MM |〈w(p),X(p)〉p = 0

for all p ∈ ∂M, for all sections X : ∂M→ i∗(T∂M)},

where 〈·, ·〉p expresses the duality between T∗pM and TpM. With this notation,
one has the exact sequence

0→ N∗∂M→ T∗∂MM→ T∗∂M→ 0.

Lemma 4.1.2. Given a smooth manifold with boundary M, there exists a smooth
function f : M → [0,∞) such that f−1(0) = ∂M and d f , 0 on ∂M: f is then a
boundary defining function of M. Moreover, d f (p) has rank 1 at the boundary, and
there exists a vector field X f such that X f ( f ) > 0 at the boundary.

Proof. Let us consider an atlas {Uα, ψα} such that {Uα} is a locally finite covering
of M. Let χα a partition of unit subordinate to the covering {Uα}, and let n be
the dimension of M. Then, for all points x ∈ Uα ∩ ∂M, we set f (x) = ψn

α(x),
where ψn

α is the n-component of ψα in Rn. Clearly, by definition of boundary,
one has f (x) = 0 if x is a boundary point. We consider now other coordinates
ψβ(x) = (y1, . . . , yn) at x. We notice that, since ψα ◦ ψ−1

β is a diffeomorphism of

Rn
+, ψn

α ◦ψ
−1
β (y1, . . . , yn−1, 0) = 0, therefore ∂

∂y j

(
ψn
α ◦ψ

−1
β (y1, . . . , yn−1, 0)

)
= 0 for all

j = 1, . . . ,n − 1. Since J(ψα ◦ ψ−1
β ) is non-singular, it turns out that ∂

∂yn
(ψn

α ◦ ψ
−1
β )
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does not vanish in a neighborhood of ∂Rn
+. Furthermore, since ψn

α(x) is non
negative, the derivative at the boundary must be positive. We set now

f (x) =
∑
α

χα(x)ψn
α(x).

Clearly f (x) = 0 if and only if x ∈ ∂M. Moreover, if ψβ(x) = (y1, . . . , yn) is
another local chart, we have

∂
∂y j

( f ◦ ψ−1
β ) =

∑
α

ψn
α
∂
∂y j

(χα ◦ ψ−1
β ) +

∑
α

χα
∂
∂y j

(ψn
α ◦ ψ

−1
β ). (4.1.1)

By the considerations above, one has that, for boundary points, the first term
in (4.1.1) vanishes for all j = 1, . . . ,n, the second term in (4.1.1) vanishes for all
j = 1, . . . ,n − 1 and is strictly positive for j = n. This proves that d f (x) has rank
1 and that there exists a vector field X f , which is locally the pullback of the
normal vector field at ∂Rn

+, such that X f ( f ) > 0 at the boundary. �

From a smooth (n−1)-dimensional boundaryless manifold N, one can obtain
a n-dimensional manifold with boundary by setting M = N×[0, 1). M is usually
called the cylinder of N. The Collar Neighborhood Theorem states that, at least
in a neighborhood of the boundary, any manifold with boundary M can be
seen as a cylindrical manifolds, i.e., locally near the boundary, it is of the form
∂M × [0, 1).

Theorem 4.1.3. Let M be a compact smooth manifolds with boundary ∂M, and assume
it to be connected. Then, there exists a neighborhood U of ∂M in M diffeomorphic to
∂M × [0, 1). U is called collar neighborhood of ∂M.

Proof. By Lemma 4.1.2 we know that there exists a smooth boundary defining
function f on M. We now consider U, a small neighborhood of ∂M, and let
ε = minM\U f (x) > 0, which is well-defined in view of the compactness of M\U.
Next, let us set W = f−1([0, ε)). Lemma 4.1.2 guaranties the existence of a vector
field X f such that X f ( f ) > 0 at the boundary: it is not a restriction to suppose

that X f ( f ) , 0 in W. So we set X̃ f =
X f

X f ( f ) and consider the flow φX̃ f
(t, x0)

generated by X̃ f . We easily obtain that

d
dt

( f ◦ φX̃ f
(t, x0)) = X̃ f ( f ) = 1,

that is
f ◦ φX̃ f

(t, x0)) = t + a, a ∈ R.

Setting φ̃X̃ f
(s, x0) = φX̃ f

((s− a), x0) we have f ◦ φ̃X̃ f
(t, x0) = t. Since W is compact,

every solution can be extended to all W and, modulo a rescaling, we can suppose
the maximal domain of φ̃X̃ f

(t, x0) to be [0, 1]. Define now

χ : ∂M × [0, 1)→ f−1([0, ε)

(x, t)→ φ̃X̃ f
(t, x0).

By the properties of integral curves of a smooth vector field one has that χ is a
diffeomorphism. �
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Corollary 4.1.4. Suppose that M is a connected compact manifold, and N is a subman-
ifold of M such that there exists a two sided neighborhood U of N in M, that is U \N
has two distinct connected components. Then, there exists a bicollar neighborhood V
of N such that V is diffeomorphic to N × (−1, 1) and N corresponds to N × {0}.

Proof. We consider an open neighborhood U of N such that U is compact.
Then it is possible to find two submanifolds with boundary U1,U2 such that
U1∩U2 = N. Now we have to repeat the construction of the boundary defining
function of Lemma 4.1.2, in order to obtain a smooth function f : U → R such
that f−1(0) = N, f−1((−∞, 0]) = U1 and f−1([0,∞)) = U2 and a smooth vector
field X f such that X f ( f ) > 0 on Y. Then, repeating the construction of Theorem
4.1.3, one gets the diffeomorphism. �

Remark 4.1.2. Theorem 4.1.3 and Corollary 4.1.4 can also be proved in the non
compact case, see [74] Ch. 5. In the sequel, we will anyway focus only on compact
manifolds.

4.1.2 Gluing Manifolds with Boundary

Let us now consider two manifolds with boundary X, Z, set Y = ∂X, W = ∂Z
and suppose that there exists a diffeomorphism φ : Y→W. We can then define
the set

X tφ Z = X ∪ Z/ ∼,

where
y ∼ w⇔ y ∈ Y,w ∈W and φ(y) = w.

Clearly, in this way we have just defined a set, and we have no differential
structure. We will now build one such that the inclusions

iX : X→ X tφ Z,
iZ : Z→ X tφ Z,

are diffeomorphisms onto the image. By Theorem 4.1.3, there are neighbor-
hoods UY of Y and UW of W, and diffeomorphism gY, gW such that

gY : Y × (0, 1]→ UY,

gW : W × [1, 2)→ UW .

Let us consider VY,VW , open sets of Y and W, respectively, such that φ(VY) =
VW . We define the map

g : VY × (0, 2)→ X tφ Z

setting

g(x, t) = iX(gY(x, t)), 0 < t ≤ 1
g(x, t) = iZ(gW(φ(x), t)), 0 ≤ t < 2

The smooth structure on XtφZ is defined choosing as open covering iX(X\VY),
iZ(Z \ VW) and g(VY × (0, 2)). By the definition of the function g, we have that
the differentiable structure defined on the collar neighborhood of the boundary
is compatible with the differentiable structures on X and on Z.
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Remark 4.1.3. It is also possible to prove that the differentiable structure given above
is unique up to diffeomorphisms preserving the boundary. Moreover, it is possible to
choose a differentiable structure such that the boundary defining function fY and fW
piece together, giving a differentiable function on X tφ Z. There is a version of this
construction also in the case of non compact manifolds, see [74].

If we are given a compact manifold X with a non-trivial boundary Y, there
is a canonical way to build, starting from X, a closed manifold called the double
of X, and denoted by 2X. Indeed, it is enough to consider the manifold Xtφ X,
where X is the manifold X with reversed orientation and φ : Y → Y is the
identity. We reverse the orientation since, in this way, the normal vector field at
the boundary can be continued as a smooth vector field on the double manifold.
2X is a smooth manifold, therefore it is possible to define the tangent bundle as
well as the cotangent bundle. The tangent bundle of X can be defined also as
T2X restricted to X, the same holds for the cotangent bundle T∗X.

4.2 Symplectic Geometry

In this section we recall some basic tools of symplectic geometry and we intro-
duce the Maslov index, which will be used in the construction of the Keller-
Maslov bundle. The results mainly come from [21, 67]

Definition 4.2.1. Let E be a real vector space. E is a symplectic vector space if
there exists a non-degenerate skew-symmetric linear 2-form ω, that is

ω(u, v) = 0, ∀v ∈ E⇒ u = 0.

We denote the symplectic vector space as (E, ω).

It is an easy consequence of the definition that the dimension of a symplectic
vector space (E, ω) must be even. Notice that, for each skew-symmetric linear
2-form ω, one can associate the linear map ω̃ : E→ E∗

ω̃ : u 7→ (v 7→ ω(u, v)).

Definition 4.2.1 is equivalent to ker(ω̃) = {0}.

Definition 4.2.2. Let (E, ω), (E′, ω′) be two symplectic spaces. Then, an isomor-
phism Φ : E→ E′ is a symplectomorphism if Φ∗(ω′) = ω where, by definition,

Φ∗(ω′)(u, v) = ω′(Φ(u),Φ(v)), ∀u, v ∈ E.

Let W be a subspace of the symplectic space (E, ω). The corresponding
orthogonal space is

Wω = {u ∈ E | ω(u, v) = 0,∀v ∈W}.

W is called

i) isotropic, if W ⊆Wω.

ii) coisotropic, if Wω
⊆W.
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iii) symplectic, if Wω
∩W = {0}.

iv) lagrangian, if Wω = W.

It is immediate to prove that

W ⊆M⇒Mω
⊆Wω, (Wω)ω = W, (4.2.2)

(M ∩W)ω = Mω + Wω, (W + M)ω = Wω
∩Mω. (4.2.3)

Proposition 4.2.1. A subspace W of the symplectic vector space (E, ω) is Lagrangian
if and only if ω|W = 0 and 2 dim W = dim E.

Let us consider the vector space R2n with base

x1 = (1, 0, . . . , 0), xi = (0, . . . ,

i︷︸︸︷
1 , 0, . . .), 0 ≤ i ≤ n,

ξ1 = (0, . . . , 1︸︷︷︸
n+1

, 0, . . .), ξi = (0, . . . , 1︸︷︷︸
n+i

, 0, . . .), 0 ≤ i ≤ n,

and the skew-symmetric 2-form ω0 such that

ω0(xi, x j) = ω0(ξi, ξ j) = 0, ∀i, j = 1, . . . ,n,
ω0(xi, ξ j) = δi, j, ∀i, j = 1, . . . ,n.

The space (R2n, ω0) is the basic example of symplectic vector space. Note that
every symplectic vector space is isomorphic to (R2n, ω0):

Theorem 4.2.2 (Darboux). Let (E, ω) be a symplectic space of dimension 2n. Then,
there exists a basis q1, . . . , qn, p1, . . . , pn such that

ω(qi, q j) = ω(pi, p j) = 0, ω(qi, p j) = δi, j.

Such a base is called symplectic base. Moreover, this base induces an isomorphism
Φ : R2n

→ E.

By Theorem 4.2.2, since all symplectic vector spaces of dimension 2n are
isomorphic to (R2n, ω0), it is enough to examine this symplectic vector space.
We consider now the set of symplectomorphisms of (R2n, ω0), that is the subset
of GL(2n,R) such that Ψ∗ω0 = ω0, or, equivalently,

ΨT J0Ψ = J0, (4.2.4)

where J0 is the symplectic matrix defined as a matrix block

J0 =

(
0 Id
−Id 0

)
.

It is an exercise to prove that, if we write

Ψ =

(
A B
C D

)
,

69



condition (4.2.4) turns to

ATC = CTA, BTD = DTB, ATD − CTB = Id. (4.2.5)

We denote by Sp(2n) the group of symplectomorphisms of R2n. If we consider
the identification of R2 with C given by

(x, y)→ x + iy,

we obtain that the multiplication by J0 turns out to be the multiplication by
i. With this identification, one has that Sp(2n) is identified with a subset of
GL(n,C) and that then U(n) ⊂ Sp(2n). Let us denote by O(2n) the usual or-
thonormal group.

Lemma 4.2.3. Sp(2n) ∩O(2n) = Sp(2n) ∩GL(n,C) = O(2n) ∩GL(n,C) = U(n).

Proof. Let Ψ be a (2n × 2n)-matrix. By definition,

Ψ ∈ GL(n,C)⇔ ΨJ0 = J0Ψ,det(Ψ) , 0

Ψ ∈ Sp(n,C)⇔ ΨT J0Ψ = J0

Ψ ∈ O(2n)⇔ ΨΨT = Id = ΨTΨ.

(4.2.6)

By direct computation, one can check that every two conditions of (4.2.6) imply
the third, therefore we can focus on the case Ψ ∈ Sp(2n) ∩O(2n) and set

Ψ =

(
A B
C D

)
.

Since Ψ is orthogonal and symplectic, A = D and −B = C, so we have

Ψ =

(
A B
−B A

)
.

Furthermore, (4.2.5) implies

ATB = BTA, ATA + BTB = Id.

Therefore U = A + iB is unitary. �

Lemma 4.2.4. Let Ψ ∈ Sp(2n). If λ ∈ σ(Ψ) then λ−1
∈ σ(Ψ). Moreover, the

multiplicity of λ and λ−1 are the same and, if −1 is an eigenvalue, then it has even
multiplicity. Finally,

if Ψ(z) = λz, Ψ(z′) = λ′z′, and λλ′ , 1, then ω0(z, z′) = 0.

Proof. Since Ψ is symplectic we have

ΨT J0Ψ = J0 ⇒ ΨT = J0Ψ
−1 J−1

0 ,

that is, ΨT and Ψ are similar and this proves the first part of the lemma.
Moreover, notice that a symplectic matrix has determinant equal to one, so the
multiplicity of the eigenvalue −1 must be even. To prove the second part we
write

λλ′ω0(z, J0z′) = ω0(Ψ(z), J0Ψ(z′)) = ω(z,ΨT J0Ψ(z′)) = ω0(z, z′).

If λλ′ , 0 this clearly implies ω(z, z′) = 0. �
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Lemma 4.2.5. Let P = PT
∈ Sp(2n). Then1 Pα ∈ Sp(2n) for all positive real α.

Proof. We need to check that

ω0(Pαz,Pαz′) = ω0(z, z′), ∀z, z′ ∈ R2n. (4.2.7)

Since P is symmetric we can decompose E in the direct sum of the eigenspaces
of P. By Lemma 4.2.4, we know that

ω(Pα(zλ),Pα(zλ′ )) = λαλ′αω(zλ, zλ′ ) = 0, if λλ′ , 1,

so (4.2.7) is fulfilled. If λλ′ = 1 clearly condition (4.2.7) holds. �

Proposition 4.2.6. The quotient Sp(2n)/U(n) is contractible.

Proof. Let Ψ ∈ Sp(2n). By Lemma 4.2.5 we know that (ΨΨT)α is symplectic, so
we can define the retraction

β(t) : Sp(2n) × [0, 1]→ Sp(2n)

Ψ 7→ β(t) = (ΨΨT)−
t
2 Ψ.

This is a path in Sp(2n) and β(1) ∈ U(n), so it gives a retraction. �

Remark 4.2.1. It is possible to prove that U(n) is the maximal compact subgroup of
Sp(2n).

Proposition 4.2.7. The fundamental group of Sp(2n) is Z.

Proof. By Proposition 4.2.6, it is enough to prove thatπ1(U(n)) = Z. This follows
by the fibration det : U(n)→ S1, with fiber SU(n). So we have the exact sequence

π1(SU(n))→ π1(U(n))→ π1(S1)→ π0(SU(n)).

Since π1(S1) = Z, we have just to prove that SU(n) is simply connected. If n = 1
this is clear. For n ≥ 2, consider the map SU(n)→ S2n−1 that sends a matrix into
its components of the first column. This is a fibration, with fiber SU(n − 1), so
one has the exact sequence

0 = π2(S2n−2)→ π1(SU(n − 1))→ π1(SU(n))→ π1(S2n−1) = 0,

that is, SU(n) is simply connected if SU(n − 1) is simply connected. Then, by
induction, this is true for all n. �

Theorem 4.2.8 (Maslov Index of symplectomorphisms). There exists a functor
µS, called Maslov Index,

µS : C(R/Z, Sp(2n))→ Z

that satisfies the following axioms:

i) (Homotopy) Two loops Λ(t) and Λ′(t) are homotopic if and only if µS(Λ) =
µS(Λ′).

ii) (Product) For all loops Λ,Λ′ : R/Z→ Sp(2n), we have µS(Λ ◦Λ′) = µS(Λ) −
µS(Λ′).

1Notice that in this case P is symmetric and non-singular, hence it is possible to define Pα for all
all α ∈ R.
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iii) (Direct sum) If n = n1 + n2, then we can consider the space Sp(2n1) ⊕ Sp(2n2)
which is a subspace of Sp(2n). If Ψ1 and Ψ2 are loops in Sp(n1) and Sp(n2),
respectively, then

µS(Ψ1 ⊕Ψ2) = µS(Ψ1) + µS(Ψ2).

iv) (Normalisation) The loop

Ψ : R/Z→ U(1)

t→ e2πit

has Maslov index 1.

Sketch of the proof. Define ρ : Sp(2n)→ S1 setting

ρ(Ψ) = det(X + iY),
(

X −Y
−X Y

)
= (ΨΨT)−

1
2 Ψ.

So, for every loop Λ(t) of symplectomorphisms, we can define the loop on S1

given by ρ ◦Λ. We define

µS(Λ) = deg(ρ ◦Λ),

where deg is the winding number. For the proof that this map has the required
properties, see, e.g., [67].

4.2.1 Lagrangian Subspaces of Symplectic Vector Spaces

By Theorem 4.2.2, we can restrict ourselves to consider Lagrangian subspace of
(R2n, ω0). We define L (n) as the space of all Lagrangian subspaces of (R2n, ω0).

Lemma 4.2.9. Let X,Y be real (n × n)-matrixes. We define Λ ⊆ R2n as the range of
the (2n × n)-matrix

Z =

(
X
Y

)
: Rn

→ R2n. (4.2.8)

Then, Λ ∈ L (n) if and only if Z has rank n and XTY = YTX. Moreover, the space
Λ = {(x,A x) | x ∈ Rn

} is Lagrangian if and only if A is a symmetric.

Proof. Since Lagrangian spaces have dimension n, for all Λ ∈ L (n) it is possible
to find n× n matrixes X,Y such that Λ = Range(Z), with Z as in (4.2.8). Indeed,
let us define Λhor = {(x, y) ∈ Rn

× Rn = R2n
| y = 0}. Then, there exists a matrix

A ∈ GL(R2n) such that A(Λhor) = Λ. Choosing as X the upper-left corner (n×n)-
matrix of A and as Y the lower-left corner (n × n)-matrix of A, one has that the
Z in (4.2.8) has the desired properties. In the other direction, let us consider
z = (X u,Y u) and z′ = (X u,Y u′) in Λ. Then,

ω0(z, z′) = uT(XTY − YTX)u′,

so, if XTY = YTX, Λ defined as in (4.2.8) is Lagrangian. Finally, if we consider
X = Id, we obtain that {(x,A x) | x ∈ Rn

} is Lagrangian if and only if AT = A,
that is, A is symmetric. �

A matrix (4.2.8) with XTY = YTX is called Lagrangian Frame.
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Remark 4.2.2. Notice that Lemma 4.2.9 implies that L (n) is an analytic manifold of

dimension
n(n + 1)

2
.

Remark 4.2.3. A neighborhood of Λhor in L (n) can be identified with an open subspace
of the space of symmetric matrixes. To see this, let us consider a path of Lagrangian
frames (X(t),Y(t)) such that X(0) = Id and Y(0) = 0. By Lemma 4.2.9, one has that
X(t)TY(t) = YT(t)X(t). Differentiating this relation and evaluating the differential at
zero, one gets

ẎT(0) = Ẏ(0).

This means that the tangent space at Λhor is parametrized by the space of symmetric
matrices. Then, considering geodesic coordinates (see, e.g., [53] for the definition), one
gets that a base of neighborhoods of Λhor is obtained by {(x,A x) | A ∈ U)} where U is
an open set in the topological space of symmetric matrices.

Proposition 4.2.10. If Λ and Λ′ are Lagrangian subspaces of R2n, then there exists a
symplectomorphism Ψ ∈ U(n) such that Ψ(Λ′) = Λ. Moreover, there exists a natural
homeomorphism between L (n) and U(n)/O(n).

Proof. First notice that any Lagrangian submanifold Λ can be seen as the image,
via a symplectomorphism, of the horizontal Lagrangian Λhor. We consider a
Lagrangian frame (X,Y) of Λ and build the matrix

Ψ =

(
X −Y
Y X

)
.

It is clear that Ψ(Λhor) = Λ. Furthermore, since XTY = YTX, Ψ turns out to
be orthogonal. This proves the first part of the statement. Now, notice that
this Lagrangian frame is unique, up to multiplication on the right by O(n): this
implies L (n) = U(n)/O(n).

�

Theorem 4.2.11 (Maslov Index of Lagrangian subspaces). There exists a functor
µL, called Maslov Index, such that

µL : C(R/Z,L (n))→ Z,

and satisfies the following axioms:

i) (Homotopy) If two loops Λ(t) and Λ′(t) are homotopic, then µL(Λ) = µL(Λ′).

ii) (Product) If Λ : R/Z→ L (n) and Ψ : R/Z→ Sp(2n), then

µL(ΨΛ) = µL(Λ) + 2µS(Ψ)

with µS defined in Theorem 4.2.8

iii) (Direct Sum) Let us consider two loops Λ1 : R/Z → L (n1) and Λ2 : R/Z →
L (n2). Then, Λ1 ⊕Λ2 is a loop in L (n1 + n2), and

µL(Λ1 ⊕Λ2) = µL(Λ1) + µL(Λ2).
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iv) (Normalisation) The loop

Λ : R/Z→ L (1)

t→ {e2πitx | x ∈ R}

has index 1.

Sketch of the proof In Lemma 4.2.9 we have noticed that L (n) is isomorphic to
U(n)/O(n), so we define

ρ : L (n)→ S1

Λ 7→ det2(X + iY), Λ = range
(
X
Y

)
X + iY ∈ U(n).

(4.2.9)

Since the matrix X + iY is unique up to right multiplication by matrices in O(n),
the Definition (4.2.9) is well-given. Incidentally, note that, since we use the
square of the determinant, we consider non-oriented Lagrangian subspaces.
For a loop of Lagrangian subspaces Λ(t), we define

µL(Λ) = deg(ρ ◦Λ),

where deg is the winding number as in Theorem 4.2.8. We refer to [67] for the
proof that, with this definition, µL has the required properties.

For sake of completeness, we give an equivalent definition of Maslov Index
for Lagrangian subspaces via intersection theory. First we need some technical
lemmas.

Lemma 4.2.12. For any Lagrangian subspace Λ ∈ L (n) there exists a Lagrangian
subspace W such that Λ ⊕W = R2n and the map

A : R2n
→ Λ ×Λ∗

(l,w) 7→ (l, ω(w, ·)|Λ)

is a symplectomorphism with (Λ,Λ∗) equipped with the symplectic form((
a
b

)
,

(
a′

b′

))
7→ b(a′) − b′(a).

Proof. Let us consider an arbitrary subspace W such that Λ ∩ W = {0} and
W ( Wω0 . Notice that dim(Λ) = n and dim(Wω0 ) > n, so dim(Λ ∩Wω0 ) > 0.
Now, if Wω0 ⊆ Λ ⊕W, by (4.2.3) we have W ⊇ Wω0 ∩ Λω0 = Wω0 ∩ Λ, hence
Wω0 ∩Λ = {0}, which is impossible. So we conclude that Wω0 * Λ ⊕W and we
can choose an element e ∈ Wω0 such that e < Λ ⊕W. Now we can repeat the
same procedure for the space W + [e] and, by induction, we stop when we find
a Lagrangian subspace, i. e., when W = Wω0 . To prove the second part of the
Lemma we have just to notice that, since Λ and W are Lagrangian,

ω0(l + m, l′ + m′) = ω0(l,m′) + ω0(m, l′) = ω0(m, l′) − ω0(m′, l).

�
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Corollary 4.2.13. Let us consider a Lagrangian subspace Λ and its Lagrangian or-
thogonal complement W, defined by Lemma 4.2.12. Let Z be an orthogonal complement
of W: we have that Z = {λ + Aλ | λ ∈ Λ}, where A : Λ→W is a linear map.

Proof. By definition, R2n = W⊕Z = Λ⊕W. Let us fix {z1, . . . , zn} and {λ1, . . . , λn},
bases of Z and Λ, respectively. We define

A : Z→W
zi 7→ wi ∈W such that λi + ωi = zi.

The elements wi are well-defined, in view of Lemma 4.2.12. �

Theorem 4.2.14. Let Λ(t) be a path of Lagrangian subspaces such that Λ(0) = Λ0 and
Λ̇(0) = Λ̇0. Then, the following statements hold true

i) Let W be a Lagrangian complement of Λ0, v ∈ Λ0 and t small, and define
w(t) ∈W such that v + w(t) ∈ Λ(t). Then,

Q(v) =
d
dt
ω0(v,w(t))|t=0 (4.2.10)

is independent of W.

ii) If Z(t) = (X(t),Z(t)) is a Lagrangian frame of Λ(t), then

Q(v) = 〈X(0)u, Ẏ(0)u〉 − 〈Y(0)u, Ẋ(0)u〉, u = Z(0)u,

〈 , 〉 being the scalar product on R2n and Q as in (4.2.10).

iii) Q is natural, that is

Q(Ψ ◦Λ0,Ψ ◦ Λ̇0) ◦Ψ = Q(Λ0, Λ̇0), ∀Ψ ∈ Sp(2n).

Proof. i) We can suppose, without loss of generality, that Λ0 = Λhor = Rn
×

{0}. Then, {0} × Rn is an orthogonal complement of Λhor. By Corollary
4.2.13, all Lagrangian complements of Λhor can be written as {(Ax, x) | x ∈
Rn
}, where A : Rn

→ Rn is a suitable linear map. Moreover, by Remark
4.2.3, if we suppose t small enough, we have that Λ(t) = {(x,A(t) x) |
x ∈ Rn

}, A(t) symmetric matrix. Let us suppose that v = (x, 0), w(t) =
(B y(t), y(t)). In order to have v + w(t) ∈ Λ(t), we require y(t) = A(t)(x +
B y(t)). If we derive this relation and evaluate at t = 0, we get ẏ(0) = Ȧ(0) x
and obtain

Q(v) = 〈x, Ȧ(0)x〉,

so Q does not depend on W.

ii) Let us consider W = {0} × Rn. We have proved at point i) above that
this is not a restriction. Then, let Z(t) = (X(t),Y(t)) be a Lagrangian
frame of the curve such that v = (X(0)u,Y(0)u), w(t) = (0, y(t)). We have
Y(0)u+y(t) = Y(t)X(t)−1X(0)u, soω0(v,w(t)) = 〈X(0)u, y(t)〉. Differentiating
once, we get

Q(v) = 〈X(0)u, ẏ(0)〉 =

〈X(0)u, Ẏ(0)X−1(0)X(0)u〉 − 〈X(0)u,Y(0)X−1(0)Ẋ(0)X−1(0)X(0)u〉.

Now, if we simplify and recall that XTY = YTX, we get

Q(v) = 〈X(0)u, Ẏ(0)u〉 − 〈Y(0)u, Ẋ(0)u〉.
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iii) This follows by the definition of Q.
�

Theorem 4.2.14 gives a bijection from the tangent space TΛL (n) to the quadratic
forms on Λ. Let us now consider a general Lagrangian subspace V. We have a
natural filtration

L (n) =

n⋃
k=0

Σk(V),

where Σk(V) is the space of Lagrangian space having k-dimensional intersection
with V. We define the Maslov cycle as Σ(V) =

⋃n
k=1 Σk(V). This is an algebraic

variety, Σ1(V) being its regular part. Let us consider a path of Lagrangian space
Λ(t) : [0, 1] → L (n). The point t0 is a crossing point if Λ(t0) ∈ Σ(V). The
crossing form is defined as

Γ(Λ,V, t) = Q(Λ(t), Λ̇(t))|Λ(t)∩V,

with Q from Theorem 4.2.14. A path Λ(t) of Lagrangian subspaces is tangent
to Σ(V) at a crossing point t0 if Γ(Λ,V, t0) = 0. The crossing point t0 is called
regular if Γ(Λ,V, t0) is non-degenerate. If t0 is regular and Λt0 ∈ Σ1(V), the
crossing is called simple. So a path of Lagrangian subspace has only simple
crossing points if it has transversal intersection with Σ(V). The Maslov index
of a path Λ(t) : [a, b]→ L (n) with just simple intersection is defined as

µ(Λ,V) =
1
2

sgn Γ(Λ,V, a) +
∑

a<t<b

sgn Γ(Λ,V, t) +
1
2

sgn Γ(Γ,V, b), (4.2.11)

with the sum running over all simple crossing points. Using homotopy argu-
ments, this definition can be extended to all paths of Lagrangian subspaces, see
[89] for the details. If we consider loops, formula (4.2.11) is simpler, because
the contribution at the end points vanishes. If Λ(t) : S1

→ Λ(t) is a loop with
simple crossing points, we have

µ(Λ,V) =
∑

a<t<b

sgn Γ(Λ,V, t).

If one restrict to loops, the definition of Γ(Λ,V, t) is independent on V, because
for all Lagrangian subspaces W one can consider a symplectomorphism Ψ such
that Ψ(V) = W. Then, using the naturality property of Γ and the the fact that
Sp(2n) is connected, one gets that the the index is invariantly defined. One can
prove that this definition of Maslov index satisfies all the axioms of Theorem
4.2.11, so the two definitions are equivalent, see [89].

Definition 4.2.3. Let us consider four Lagrangian subspacess M1,M2, W1,W2
such that Mi is transversal to W j, i = 1, 2, j = 1, 2. The Hörmander index is
defined as

s(M1,M2; W1,W2) = µ(Λ,V)

where Λ = Λ1 ◦ Λ2, Λ1 : [0, 1] → L (n) being an arc of Lagrangian subspacess
transversal to M1 such that Λ1(0) = W1, Λ2(0) = W2. Similarly, Λ2 : [0, 1] →
L (n) is an arc of Lagrangian subspaces transversal to M2 connecting W2 and
W1. The definition does not depend on the choice of the path.
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We now give the definition of symplectic manifold and Lagrangian sub-
manifold.

Definition 4.2.4. Let M be a smooth manifold (possibly with non empty bound-
ary). M is symplectic if there exists a non degenerate closed two form ω such
that ωp(·, ·) is a symplectic form for the vector space TpM, for all p ∈ M. We
denote by (M, ω) the symplectic manifold with symplectic form ω.

A first immediate property is that a symplectic manifold (M, ω) is even-dimen-
sional.

Example 4.2.1. The first example of symplectic manifold isR2n with the form
∑n

i=1 dxi∧

dyi, where {xi}
n
i=1 represents the first n variables and {yi}

n
i=1 the remaining variables.

To check this property one can notice that, at every point p ∈ R2n, one can choose as
symplectic base of TpR2n the span of(

∂
∂x1

)
p
, . . . ,

(
∂
∂xn

)
p
,

(
∂
∂y1

)
p
, . . . ,

(
∂
∂yn

)
p
.

Example 4.2.2. The symplectic manifold we will use in the following is the the cotan-
gent bundle of a smooth manifold M, possibly with boundary. Let us consider local
coordinates (x1, . . . , xn, ξ1, . . . , ξn) in a neighborhood of a point (x0, ξ0) ∈ T∗M. The
symplectic form is locally defined as

ω =

n∑
i=1

dxi ∧ dξi.

Actually one can prove thatω is globally well defined and, introducing the fundamental
1-form α =

∑n
i=1 ξidxi, one has that ω = −dα. If one considers a manifold with

boundary (M, ∂M), then T∗M turns out to be a symplectic manifold with boundary.

One can introduce also in this setting the notion of symplectomorphism.

Definition 4.2.5. Let (M1, ω1), (M2, ω2) two symplectic manifolds. A diffeomor-
phism χ : M1 →M2 is a symplectomorphism if ω1 = χ∗ω2.

Also in the case of symplectic manifolds there exists a Darboux Theorem, anal-
ogous to Theorem 4.2.2.

Theorem 4.2.15. Let (M, ω) be a smooth manifold without boundary. Then, for
every point p ∈ M, there exists a neighborhood U of p and local coordinates in U,
(x1, . . . , xn, ξ1, . . . , ξn) such that

ω =

n∑
i=1

dxi ∧ dξi.

Definition 4.2.6. Let (M, ω) be a symplectic manifold. A submanifold N ⊆M is
a Lagrangian submanifold if, for all p ∈ N, TpN is a Lagrangian subspace of TpM
w.r.t. the symplectic form ω. That is, we require that i∗ω = 0, where i : N ↪→M
is the immersion. This implies that dim(N) = n

2 , n being the dimension of M.
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Example 4.2.3. Let us consider the cotangent bundle T∗M of a smooth manifold M.
Then one defines the zero section as the space

T∗M0 = {(x, ξ) ∈ T∗M | ξ = 0}.

Since on this subspace the fundamental 1-form α =
∑
ξidxi vanishes identically, the

zero section is a Lagrangian submanifold of T∗M. The zero section is often just written
as 0, when there is no confusion. In a similar way one can define the tangent space of a
fiber at a point λ = (x0, ξ0)

T∗0λ M = {(x, ξ) | x = x0}.

This is also a Lagrangian space, since dx vanishes identically on it.

Let us now consider a smooth manifold M and its cotangent bundle T∗M\0.
Let us suppose that we are given a Lagrangian submanifold Λ. Let us fix a point
λ = (x0, ξ0), and the corresponding Lagrangian submanifold T∗0λ M. Considering
Tλ(T∗M) as a symplectic vector space, given two arbitrary Lagrangian space
Λ1,Λ2 of Tλ(T∗M), one can define, according to Definition 4.2.3,

s(T∗0λ M,Tλ(Λ),Λ1,Λ1).

Given a Lagrangian submanifold Λ ⊆ T∗M, we will consider a bundle L on Λ
with fiber, at each point λ ∈ Λ, given by the set of functions L (Tλ(T∗M)) → C
such that

f (Λ1) = is(T∗0λ M,Tλ(Λ),Λ1,Λ1) f (Λ2),

for all Λ1,Λ2 ∈ L (Tλ(T∗M)). Such a bundle is called the Keller-Maslov bundle
and is the right tool to parametrize the principal symbol of FIOs.
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Chapter 5

Functions Spaces and
Symbols on the Half-Space

5.1 Function Spaces

In the sequel, the space Hs(Rn) will be the usual Sobolev space on Rn, while
Hs1,s2 (Rn), s = (s1, s2) ∈ R2 is defined as

Hs(Rn) = {u ∈ S ′(Rn) | ‖〈x〉s2 Op(〈ξ〉s1 )(u)‖L2 < ∞},

where Op(a) represents the pseudodifferential operator with symbol a.
Given a Fréchet space E, it is possible to define the space S (Rq; E) of rapidly

decreasing vector-valued functions. It can be defined as the subset of C∞(Rq; E)
such that ∂αxβ f is a bounded set in E for all multi-indices α, β. If we deal with
projective limits or inductive limits of Banach spaces, the same definition can be
used. Actually, it is possible to define S (Rq; E) for all locally convex topological
vector spaces E, see [103], Ch. 44.

Let us now fix a quantization for the Fourier Transform. For every function
in S (Rq,E), we set

F (u)(ξ) = û(ξ) = (2π)−
n
2

∫
e−ix·ξu(x)dx, ξ ∈ Rq.

We recall from Section 4.1 the notation

Rn
+ = {(x1, . . . , xn) | (x1, . . . , xn−1) ∈ Rn−1, xn > 0},

Rn
+ = {(x1, . . . , xn) | (x1, . . . , xn−1) ∈ Rn−1, xn ≥ 0},

∂Rn
+ = {(x1, . . . , xn−1, 0) | (x1, . . . , xn−1) ∈ Rn−1

}.

We consider the restriction operator r+ associated to Rn
+. Since Rn

+ is an open
set, the restriction of a distributions is well known and

Hs(Rn
+) = {r+(u) | u ∈ Hs(Rn)}

‖ f ‖Hs(Rn
+) = inf{‖u‖Hs(Rn) | r+(u) = f }.

Moreover, we define

Hs
0(Rn

+) = {u ∈ Hs(Rn) | supp(u) ⊆ Rn
+}.
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Notice that the spaces Hs(Rn
+) and Hs

0(Rn
+) have different nature, because Hs(Rn

+)
is a subspace of distributions defined on Rn

+, while Hs
0(Rn

+) is a closed subspace
of Hs(Rn). We now focus on the space S (Rn

+), defined as

S (Rn
+) = {r+ f | f ∈ S (Rn

+)}.

First of all, notice that there is a natural injection of S (Rn
+) in L2(Rn) extending

the functions by zero in the negative half-space. Sometimes we identify S (Rn
+)

with its extension in L2(Rn). The space S (Rn
+) can be given a Fréchet structure

via the family of seminorms

pα,β(u) = sup
x∈Rn

+

|xβ∂αu|, α, β ∈ Nn. (5.1.1)

The Sobolev spaces we have defined in the half-space and the Schwartz spaces
in the half-space are closely related:

ind-lim(s1,s2)→−∞Hs
0(Rn

+) = [S (Rn
+)]∗

= S ′(Rn
+) = {u ∈ S ′(Rn) | supp(u) ⊆ Rn

+},

proj-lims1,s2→∞
Hs(Rn

+) = S (Rn
+).

Remark 5.1.1. Notice that the topology on S (Rn
+) induced by the projective limit

topology and the one defined by the seminorms (5.1.1) are equivalent. The topology
induced by the inductive limit on S ′(Rn

+) is the topology of convergence on bounded
sets. That is, the topology of S ′(Rn

+) is given by a non-countable set of seminorms
{pAi }, where Ai are bounded sets of S (Rn

+), and

pAi (u) = sup
f∈Ai

|〈u, f 〉|.

5.2 The Extension Operator

In order to define operators on the half-space we have to introduce an operator
of extension, which, roughly speaking, is the dual of the restriction operator.
Here we focus on the case n = 1, we will see later why this is not a restriction.

Definition 5.2.1. Let f be a function defined on the half-space R+. We define
e+ f as

e+ f (x) =

{
f (x) if x > 0
0 if x ≤ 0. (5.2.2)

We analyze now the extension operator in the Sobolev spaces Hs(R+). If
s1 > 1

2 , then, one can define e+ as in (5.2.2). This obviously implies a loss of
regularity: in this case we have

e+ : Hs(R+)→ Ht,s2 (R+), t <
1
2
.

If s1 ∈ (− 1
2 ,

1
2 ), r+ is a bijection, and so one can define e+ as the inverse of r+. The

case s1 < − 1
2 is more delicate and is explained in the following proposition.
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Proposition 5.2.1. Let s1 < − 1
2 . Then, there exists a continuous extension operator

e+

e+ : Hs(R+)→ Hs
0(R+)

such that r+(e+(u)) = u, for all u ∈ Hs(R+).

Proof. First we prove that, if s1 < − 1
2 , the mapping

r+ : Hs
0(R+)→ Hs(R+)

turns out to be surjective. In order to prove surjectivity, we recall that the
spaces Hs

0(R+) and Hs(R+) are related by duality w.r.t. the L2(R+) scalar product,
namely

Hs(R+) = [H−s
0 (R+)]∗, Hs

0(R+) = [H−s(R+)]∗.

The proof can be found in [48], Appendix B.2. Therefore, to prove surjectivity,
it is enough to find, for each element in [H−s

0 (R+)]∗, an extension defined on
H−s(R+), and this is possible by the Hahn-Banach Theorem. Notice that, since
H−s(R+) is not dense in H−s(R+), the extension is not unique. For example, the
restriction of the zero function equals the restriction of the Dirac’s distribution
δ at the origin.

Let u ∈ Hs(R+); since r+ : Hs
0(R+) → Hs(R+) is surjective, we can consider

the non empty set U = {ũ | r+ũ = u}. For u1,u2 ∈ U we have (u1 − u2)|R+ = 0.
hence

u = ũ + span{δ0, . . . , δ
([−s+ 1

2 ])
0 }.

U is a nonempty, closed, convex subset of Hs
0(R+). Hence there is an element

ū ∈ U for which ‖ū‖Hs
0(R+) is minimal. By the convexity, ū is unique. The map

u→ ū is continuous, since

‖ū‖Hs(R) = min{‖v‖Hs
0(R) | r

+v = u}

= min{‖v‖Hs(R) | r+v = u} = ‖u‖Hs(R+).

Indeed, the first equality holds in view of the definition of ū, while the sec-
ond follows by the fact that we have, for the projection π0 : Hs(R) → Hs

0(R),
‖π0v‖Hs ≤ ‖v‖Hs : then, the minimum is attained at Hs

0(R+). �

Remark 5.2.1. Theorem 5.2.1 gives a general definition of e+.The disadvantage of such
an approach for s1 < − 1

2 is that the extension depends on the chosen Sobolev space:
since we determine e+u as the extension of minimal value of the corresponding norm,
by changing the space, the minima can change as well. Nevertheless, two different
extensions can differ only by a sum of derivatives of the Dirac’s distribution at the
origin.

5.3 Operator-Valued Symbols and Wedge Sobolev
Spaces

In this section we recall the basic tool of the theory of operator-valued symbols,
introduced by B.-W Schulze. The contents mainly come from [29, 94, 96].
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Definition 5.3.1. A strongly continuous group action of a Banach space B is a
family κ = {κλ}λ∈R+ of isomorphisms of B such that

i) κλ ◦ κµ = κµ ◦ κλ = κµλ, in particular κ1 = Id,

ii) for all fixed x ∈ B the map

R+
→ B : λ 7→ κλ(x)

is continuous.

Definition 5.3.1 has been given for a Banach space B. If B is a Fréchet space the
definition is the same.

Lemma 5.3.1. Let B be a Banach space with group action κλ; then there exist constants
M,C such that

‖κλ‖L (B,B) ≤ C max{λ, λ−1
}
M. (5.3.3)

The previous lemma follows from the Banach-Steinhaus Theorem, see [84].
Since Banach-Steinhaus Theorem holds, in particular, for Fréchet spaces, induc-
tive limits of Banach spaces and projective limits of Banach spaces (see [34]),
one has that, analogously, (5.3.3) holds also in such cases with inequalities as
(5.3.3) for each seminorm.

In the following, we deal with specific group actions. In the case of functions
on Rn, we will consider

κλ f (x) = λ
n
2 u(λ x). (5.3.4)

We will use this group action also for all Sobolev space Hs with s1 ≥ 0. In the
case s1 < 0, the group action on distribution is given by duality, that is

〈κλu, f 〉 = 〈u, κ−1
λ f 〉, f test function.

In the scalar cases B = R,C, the group action will be the trivial one, that is, for
each λ, κλ = Id. The reason of these choices will be explained in Subsection
5.3.2, when we will recall the definition of wedge Sobolev spaces.

Definition 5.3.2. Let us consider E,B Banach spaces with strongly continuous
group actions κ, κ̃, respectively. A function a(x, y, η) ∈ C∞(Rq,Rq,Rq; L (E,B)) is
a symbol in the set Sm(Rq,Rq,Rq; L (E,B)) = Sm(Rq,Rq,Rq; E,B) if for all α, β, γ ∈
Nq there exists a constant Cα,β,γ such that

‖κ̃−1
〈η〉

(
∂
β
x∂
γ
y∂
α
ηa(x, y, η)

)
κ〈η〉

)
‖L (E,B) ≤ Cα,β,γ〈η〉m−|α|, for all x, y, η.

In the sequel, the Banach spaces we will consider will be mainly Hs(R+),
Hs

0(Rn
+) and the Fréchet spaces will be S (R) or S (R+).

As we have noticed, the spaces S (R+) and S ′(R+) are related to Hs(R+)
and Hs

0(R+) via projective limit and direct limit. We give the definition of
operator-valued symbols in the case of projective limit and direct limit.

Definition 5.3.3. Let E1 ↪→ E2 . . . be an inductive family of Banach spaces
such that the group action on Ei+1, restricted to Ei, is the same of Ei, and
F1 ←↩ F2 ←↩ . . . a projective family of Banach space such that the group action
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of Fi, restricted to Fi+1, is equal to the group action of Fi+1. Then, setting
E = ind-limiEi and F = proj-limiFi, we define

Sm(Rq,Rq,Rq; B,F) = proj-limiS
m(Rq,Rq,Rq; B,Fi),

Sm(Rq,Rq,Rq; E,B) = proj-limiS
m(Rq,Rq,Rq; Ei,B),

Sm(Rq,Rq,Rq; E,F) = proj-lim(i, j)S
m(Rq,Rq,Rq; E j,Fi),

where B is a general Banach space with group action.

The case of of symbols with values in the vector space of linear operators
from an inductive limit space to an inductive limit space or from a projective
limit space to a projective limit space is more delicate.

Definition 5.3.4. Let E1 ↪→ E2 . . . and F1 ↪→ F2 . . . be inductive families of
Banach spaces with group actions κi and κ̃ j, respectively, such that the group
action of Ei+1, restricted to Ei, is the same of Ei, and similarly for the family F j.
We set E = ind-limiEi and F = ind-lim jF j. Then, a smooth function a(x, y, η)
which takes values in L (E,F) is a symbol in the class Sm(Rq,Rq,Rq; E,F) if, for
all i and for all α, β, γ, there exists j and a constant C j

α,β,γ such that

‖κ̃−1
〈η〉

(
∂
β
x∂
γ
y∂
α
ηa(x, y, η)

)
κ〈η〉u

)
‖F j ≤ C j

α,β,γ‖u‖Ei〈η〉
m−|α|. (5.3.5)

The following lemma follows from Definition 5.3.4.

Lemma 5.3.2. Let a ∈ Sm(Rq,Rq,Rq; E,F) and b ∈ St(Rq,Rq,Rq; F,G), E,F,G Banach
spaces, or projective limits of Banach spaces, or inductive limit of Banach spaces. Then

i) ∂αη∂
β
x∂
γ
ya(x, y, η) ∈ Sm−|α|(Rq,Rq,Rq; E,F), for all multi-indices α, β, γ ∈ Nq;

ii) The point wise composition (ba)(x, y, η) belongs to Sm+t(Rq,Rq,Rq; E,G).

Theorem 5.3.3. Let a ∈ Sm(Rq,Rq,Rq; E,F), E,F as in Definition 5.3.4. Then,

Op(a) : S (Rq; E)→ S (Rq; F)

u 7→ (2π)−
n
2

∫
ei(x′−y′)·ξ′a(x′, y′, ξ′)u(y′)dy′ d̄ξ′

is a continuous operator, where d̄ξ = (2π)−
n
2 dξ.

Theorem 5.3.4. Let us consider symbols a ∈ Sm(Rq,Rq,Rq; E,F), b ∈ St(Rq,
Rq,Rq; F,G), and the associated pseudodifferential operators A = Op(a), B = Op(b).
Then,

i) there exist a right symbol aR and a left symbol aL, defining the same operator;

ii) the composition B ◦ A is again a pseudodifferential operator with symbol c ∈
Sm+t(Rq,Rq,Rq; E,G) such that

c ∼
∞∑
|α|=0

1
α!
∂αξbLDαaL.

We give now a few examples of vector-valued operators.
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Example 5.3.1 (Trace Operators). Let us consider the trace operators γ j : S (R+)→
C, j = 0, 1, . . . defined as

γ j f = lim
t→0+

∂ j
t f (t) = f ( j)(0).

In view of the trace theorem for Sobolev spaces [2], one can prove that the trace operators
extends to Hs(R+) with s1 > 1

2 + j. Actually, γ j can be seen as an operator-valued
symbol in S j+ 1

2 (Rq,Rq; Hs(R+),C), with the canonical group action on the Sobolev
space and the trivial one on C. Indeed, we find

|γ j(κ〈η〉(u))| = |〈η〉
1
2 lim

t→0+
(∂( j)

t u(〈η〉t))| = 〈η〉 j+
1
2 ∂( j)

t u(0).

This implies that the required estimates in Definition 5.3.2 are fulfilled.

Example 5.3.2. Another important example is a pseudodifferential operator acting in
one variable only. Namely, let us consider a ∈ Sm(Rn,Rn) and define the operator

Opn(a)u(xn) =

∫
eixn·ξn a(x′, xn, ξ

′, ξn)û(ξn)d̄ξn.

It is possible to prove that

u 7→ κ〈ξ′〉−1 ◦Opn(a)u ◦ κ〈ξ′〉

is a continuous operator from S (R) to itself. Moreover, one can extend it as a
continuous operator from Hs(R) to Hs−(m,0)(R). Namely,

κ〈ξ′〉−1 ◦Opn(a) ◦ κ〈ξ′〉u(xn) =∫
eixn·

ξn
〈ξ′〉−iyn·ξn a

(
x′,

xn

〈ξ′〉
, ξ′, ξn

)
u(〈ξ′〉yn)dyn d̄ξn.

If we set ηn〈ξ′〉 = ξn and tn = yn〈ξ′〉 we get

κ〈ξ′〉−1 ◦Opn(a)u ◦ κ〈ξ′〉(xn) =∫
eixn·ηn a

(
x′,

xn

〈ξ′〉
, ξ′, ηn〈ξ

′
〉

)
û(ηn)d̄ηn.

Now, the S -continuity follows because the function a
(
x′, xn
〈ξ′〉 , ξ

′, ηn〈ξ′〉
)
, for fixed

(x′, ξ′) ∈ Rn−1
× Rn−1, belongs to Sm(R,R). A simple observation, useful in the

computations, is that (1 + ξ2 + 〈ξ′〉2η2
n) = 〈ξ′〉2〈ηn〉

2. More precisely, one can prove
that Opn(a) ∈ Sm(Rn−1, Rn−1; Hs(R),Hs−(m,0)(R)), since the operator norm of

κ〈ξ′〉−1 ◦

(
∂
β
x′∂

α
ξ′Opn(a)u

)
◦ κ〈ξ′〉

comes from the seminorms of the symbol ∂βx′∂
α
ξ

[
a
(
x′, xn
〈ξ′〉 , ξ

′, ηn〈ξ′〉
)]

seen as a symbol
in Sm(R,R), with (x′, ξ′) fixed. Knowing that a ∈ Sm(Rn,Rn), it follows that

sup
x∈R

∣∣∣∣∣〈ηn〉
−m+|q|∂t

xn
∂q
ηn

(
∂αξ′∂

β
xn

a
(
x′,

xn

〈ξ′〉
, ξ′, ηn〈ξn〉

))∣∣∣∣∣ ≤ C〈ξn〉
m−|α|

where C depends on {pγ,δ}γ,δ∈Nn , the set of seminorms of the Fréchet space Sm(Rn, Rn).
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Also in the case of operator-valued symbols it is possible to consider classical
symbols, but first one has to give a meaning to asymptotic expansions. The
following results are given without proofs: they are an extension of usual proofs
in the scalar case.

Theorem 5.3.5. Given a j ∈ Sm− j(Rq,Rq,Rq; E,F), j ∈ N, E,F being Banach spaces or
inductive or projective limit of Banach spaces, there exists a symbol a ∈ Sm(Rn,Rn; E,F)
such that a ∼

∑
a j, where ∼ means that, for all N ∈ N,

a −
N−1∑
j=0

a j ∈ Sm−N(Rq,Rq,Rq; E,F).

Definition 5.3.5. A symbol a ∈ Sm(Rq,Rq,Rq; E,F), E,F being Banach spaces
or inductive or projective limit of Banach spaces with group actions κ̃, κ,
respectively, is classical if it has an asymptotic expansion a ∼

∑
j a j with

a j ∈ Sm(Rq,Rq,Rq; E,F) such that

a j(x, y, λη) = λm− jκ̃λa j(x, y, η)κλ−1

for all λ ≥ 1, |η| > R. We write, in this case, a ∈ Sm
cl(R

q,Rq,Rq; E,F). Clearly, if
E,F are equal to R or C, the definition coincides with the usual one.

5.3.1 Dual and Transposed Symbol

It is well known that [Hs(R)]∗ = H−s(R), where the duality is understood in the
L2-sense. Moreover, since κ is unitary on functions, κλū = κλu, we have that
the definition of group action on distribution by transposition or by L2-duality
is the same. Now, we embed this example in a more abstract theory. Let us
consider a triple of Hilbert vector spaces (E−,E0,E+) such that there exists a
topological vector space V such that V ⊇ E− ∪ E0 ∪ E+. Furthermore, suppose
that E0∩E−∩E+ is dense in E+,E0,E− and that E− is the dual of E+ via the scalar
product of E0. Explicitly: there is a continuous, non-degenerate, sesquilinear
form (·, ·)E such that

(·, ·) : E− × E+ → C,
and (·, ·)E coincides with the scalar product of E0 on (E− ∩ E0) × (E+ ∩ E0). We
can then identify E± with the dual of E∓ with the norm

‖x‖E− = sup
‖y‖=1
|(x, y)|E, ‖y‖E+

= sup
‖x‖=1
|(x, y)|E. (5.3.6)

We assume that the group action defined on V is compatible with the sesquilin-
ear form (·, ·)E, that is

(κλu, v)E = (u, κ−1
λ v), ∀u ∈ E0, v ∈ E+.

In the sequel, the triples of Hilbert spaces we use will be mainly

(H−s(R),L2(R),Hs(R)), (H−s
0 (R+),L2(R+),Hs(R+)).

The aim of this abstract construction is the following: given a triple (E−,E0,E+),
associate with each symbol a(x, y, η) ∈ Sm(Rq,Rq,Rq; E−,F−) an adjoint symbol
a∗(x, y, η) ∈ Sm(Rq,Rq,Rq; F+,E+) such that

(a(x, y, η)e, f )F = (e, a∗(x, y, η) f )E, ∀x, y, η; ∀e, f .
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In order to check that a∗ belongs to Sm(Rq,Rq,Rq; F+,E+) one can use (5.3.6).
Moreover, one can verify that

(Op(a)u, v)S (Rq;F) = (u,Op(a∗)v)S (Rq;E),

where the scalar product on S (Rq; E) is defined as

(·, ·)S (Rq;E) : S (Rq; E) ×S (Rq; E)→ C

(u, v) 7→ (u, v)S (Rq;E) =

∫
(u(x), v(x))Edx.

(5.3.7)

In the case of general locally convex topological vector spaces with seminorms
{pα}α∈I one has |I| semidefinite sesquilinear forms.

A similar argument can be used also for the transposed of a symbol a ∈
Sm(Rq,Rq,Rq; E,F). We want to define the transposed symbol at

∈ Sm(Rq,Rq,
Rq; F′,E′) such that

〈at(g), f 〉 = 〈u, a( f )〉, ∀ f ∈ E, g ∈ F′.

The dual spaces F′,E′ are endowed with the topology of convergence on
bounded sets. Similarly to (5.3.7) one obtains

〈at(u), v〉S (Rq,E) = 〈u, a(v)〉S (Rq;F), u ∈ S (Rq; F), v ∈ S (Rq; E).

where

〈·, ·〉S (Rq;E) : S (Rq; E) ×S (Rq; F)→ C

(u, v) 7→ 〈u, v〉S (Rq;E) =

∫
〈u(x), v(x)〉dx.

5.3.2 Wedge Sobolev Spaces

In Example 5.3.2 we have seen that

Opn(a) ∈ Sm(Rn−1,Rn−1; Hs(R),Hs−(m,0)(R)).

Moreover, Theorem 5.3.3 states that

Opx′ (Opn(a)(x′, ξ′)) : S (Rn−1,Hs(R))→ S (Rn−1,Hs−(m,0)(R)) (5.3.8)

is a continuous operator. Actually, by the general theory of pseudodifferential
operators one knows that (5.3.8) has a continuous extension from Hs(Rn) to
Hs−(m,0)(Rn). In order to capture this Sobolev continuity, we introduce adapted
Sobolev spaces that, in the standard case, are equivalent to the usual Sobolev
spaces. The results of this section mainly come from [94, 96]. About properties
of wedge Sobolev spaces see also [45, 95].

Definition 5.3.6. Let E be a Banach space with group action κ. We define
W s(Rq; E) as the completion of S (Rq; E) with respect to the norm

‖u‖2W s(Rq;E) =

∫
〈η〉2s
‖κ〈η〉−1 û(η)‖2Edη.
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If we deal with general locally convex topological vector spaces F with semi-
norms {pα}α∈I, we define W s(Rq; F) as the completion of S (Rq; F) w.r.t. the
seminorms

ps
α(u)2 =

∫
〈η〉2spα(κ〈η〉−1 û(η))2dη.

That is: if a sequence {un}n∈N ⊆ W s(Rq; F) is such that {ps
α(un)} is a Cauchy

sequence for all α, then there exists u ∈ W s(Rq; F) such that ps
α(un)→ ps

α(u), for
all α.

It is possible to introduce, as in the standard case, weighted wedge Sobolev
spaces

W s(Rq; E) = {〈x〉−s2 u | u ∈ W s2 (Rq; E)}.

The following properties can be proved by techniques similar to those used in
[45, 99].

Proposition 5.3.6. i) If s1 ≥ s2 then W s1 (Rq; E) ↪→ W s2 (R; E) is a continuous
immersion, if s1 > s2 the immersion in compact. By s1 ≥ s2 or s1 > s2 we mean
that the inequalities hold for both the components of s1 and s2.

ii) [W s(Rq; E)]∗ = W −s(Rq; E∗).

iii) If E ↪→ F continuously and κE = κF on E then

W s(Rq; E) ↪→ W s(Rq; F), ∀s ∈ R2.

Let us notice that if E = ind-lim jE j and F = proj-lim jF j then

W s(Rq; E) = ind-lim jW
s(Rq; E j),

W s(Rq; F) = proj-lim jW
s(Rq; F j).

So, we can define the space

W s(Rq; S ′(Rn
+)) = ind-lim(t1,t2)→∞W s(Rq; Ht1,t2

0 (R+)),

W s(Rq; S (Rn
+)) = proj-lim(t1,t2)→∞W s(Rq; Ht1,t2 (R+)).

Moreover, notice that the following equality holds:

S (Rn
+) = proj-lim(s1,s2),(t1,t2)→∞W s(Rn−1; Ht(R+)),

S ′(Rn
+) = ind-lim(s1,s2),(t1,t2)→∞W s(Rn−1; Ht

0(R+)).

The following Theorem is proved in [99].

Theorem 5.3.7. Let a ∈ Sm(Rq,Rq,Rq; E,F), E,F Hilbert spaces. Then, the operator
Op(a), defined in Theorem 5.3.3, admits a continuous extension to wedge Sobolev
spaces

Op(a) : W s(Rq; E)→ W s1−m,s2 (Rq; F).
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Chapter 6

Fourier Integral Operators of
Boutet de Monvel Type

In this chapter we consider operators acting on the half-space Rn
+. In order

to prove continuity properties in the scale of Sobolev spaces, we need some
hypotheses on the phase of the FIOs and on the symbol. This local theory will be
the first step in order to introduce a global definition of FIOs on manifolds with
boundary, starting from a symplectomorphism fulfilling suitable conditions.

6.1 Transmission Condition and Admissible Phase
Functions

In this section we will consider FIOs arising from symplectomorphisms of man-
ifolds with boundary. As we have noticed in the Example 4.2.2, the cotangent
bundle T∗M of a manifold with boundary (M, ∂M) is a symplectic manifold
with boundary T∗

∂MM. Let us consider (M, ∂M), (Z, ∂Z), two compact manifolds
with boundary and χ : T∗M \ 0 → T∗Z \ 0, a symplectomorphism positively
homogeneous of order one in the fibers. It is natural to require that the the
symplectomorphism preserves the boundary: χ(∂T∗M \ 0) = ∂(T∗Z \ 0). The
following lemma, which is proved in [69], analyzes symplectomorphisms of
this type.

Lemma 6.1.1. If (M, ∂M) and (Z, ∂Z) are compact manifolds with boundary and
χ : T∗M \ 0→ T∗Z \ 0 is a symplectomorphism, positively homogeneous of order 1 in
the fibers, such that χ(∂T∗M \ 0) = ∂T∗Z \ 0, then χ induces a symplectomorphism
χ∂ : T∗∂M \ 0→ T∗∂Z \ 0, positively homogeneous of order one in the fibers, such that
the following diagram commutes:

T∗
∂MM \N∗∂M

� _

i∗M
��

χ // T∗
∂ZZ \N∗∂Z

� _

i∗Z
��

T∗∂M \ 0
χ∂ // T∗∂Z \ 0
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Proof. In 4.1.1 we have noticed that i∗M : T∗
∂MM→ T∗∂M has a kernel given by the

normal bundle N∗∂M. More precisely, it is a Hamiltonian foliation. The leaves
are integral curves of a Hamiltonian vector field. In this case, locally, the Hamil-
tonian vector field is ∂ξn , where ξn is the dual variable of the normal direction at
the boundary. This structure is preserved by the symplectomorphism χ, which
sends fibers into fibers. Since (i∗)−1(i∗(p)) is connected for all p ∈ T∗M∂M \N∗∂M,
the diffeomorphism χ∂ is well defined and turns out to be positively homoge-
neous of order one in the fibers, since i∗M and χ have this property. Notice that,
if αM is the fundamental 1-form on T∗M, then (i∗M)∗αM = αM|T∗∂M and the same
property holds for αZ. Then, we have

(i∗M)∗(χ∂)∗α∂Z = χ∗(i∗Z)∗α∂Z = χ∗(αZ|∂T∗Z) = αM|∂T∗M,

that is, χ∂ preserves the fundamental 1-form, so it is a symplectomorphism. �

Remark 6.1.1. In Lemma 6.1.1 we have considered the induced symplectomorphism
χ∂ outside the zero section. Actually, since χ is smooth on ∂T∗M \ 0, the induced
symplectomorphism χ∂ is also smooth on the zero section. Since χ∂ is positively
homogeneous of order one in the fibers, the smoothness at the zero section implies that
χ∂ is then trivial in the fibers.

Property 6.1.2. Let (M, ∂M), (Z, ∂Z) be smooth manifolds with boundary and χ :
T∗M\0→ T∗Z\0 be a symplectomorphism positively homogeneous of order one in the
fibers, preserving the boundary. We can consider cylindrical coordinates at the bound-
aries ∂M and ∂Z: these coordinates induce cylindrical coordinates at ∂T∗M and ∂T∗Z.
For all possible choices of such cylindrical coordinates, denoting by (χx′ , χxn , χξ′ , χξn )
the components of χ, we have that the Jacoban matrix of the symplectomorphism at the
boundary has the form

Jχ =


∂x′χx′ ∂ξ′χx′ ∂xnχx′ ∂ξnχx′

∂x′χξ′ ∂ξ′χξ′ ∂xnχξ′ ∂ξnχξ′
∂x′χxn ∂ξ′χxn ∂xnχxn ∂ξnχxn

∂x′χξn ∂ξ′χξn ∂xnχξn ∂ξnχξn

 ,
where

i) ∂x′χxn , ∂ξ′χxn , ∂ξnχxn are null vectors,

ii) ∂ξnχx′ , ∂ξnχξ′ are null vectors.

Proof. Part i) follows because the symplectomorphism maps the boundary to
the boundary, that is χxn (x′, ξ′, 0, ξn) = 0 for all (x′, ξ′, ξn). Part ii) follows
by Lemma 6.1.1, which implies that the symplectomorphism induced at the
boundary depends only on the coordinates at T∗∂M. So the Jacobian has the
form

Jχ =


∂x′χx′ ∂ξ′χx′ ∂xnχx′ 0
∂x′χξ′ ∂ξ′χξ′ ∂xnχξ′ 0

0 0 ∂xnχxn 0
∂x′χξn ∂ξ′χξn ∂xnχξn ∂ξnχξn


Let us now recall that the Jacobian matrix of a symplectomorphism always has
determinant equal to one. Lemma 6.1.1 implies that the sub-matrix(

∂x′χx′ ∂ξ′χx′

∂x′χξ′ ∂ξ′χξ′

)
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is equal to Jχ∂ . �

In order to define a suitable calculus for FIOs on manifolds with boundary,
we need to introduce the notion of transmission property, see, e.g., [19, 35, 38,
88, 94]. Consider the function spaces:

H+ = {F (e+u) | u ∈ S (R+)} and H−0 = {F (e−u) | u ∈ S (R+)}.

It is possible to prove that H+ and H−0 are spaces of functions decaying of first
order at infinity. Moreover, we denote by H′ the set of all polynomials in one
variable. Then, we define

H = H+
⊕H−0 ⊕H′, H− = H−0 ⊕H′, H0 = H+

⊕H−0 .

Definition 6.1.1. Let a ∈ Sm(Rn
×Rn
×Rn). Then, a has the transmission property

at xn = yn = 0 provided that, for all k, l,

∂k
yn
∂l

xn
a(x′, 0, y′, 0, ξ′, 〈ξ′〉ξn) ∈ Sm(Rn−1

× Rn−1
× Rn−1)⊗̂πHξn .

We denote by Sm
tr(Rn

× Rn
× Rn) the subset of symbols with the transmission

property.

For symbols positively homogeneous of order m w.r.t. the ξ variable, Defi-
nition 6.1.1 is equivalent to

∂k
xn
∂l

yn
∂αξ′a(x′, 0, y′, 0, 0, 1) = (−1)m−|α|∂k

xn
∂l

yn
∂αξ′a(x′, 0, y′, 0, 0,−1) (6.1.1)

for all k, l ∈ N,α ∈ Nn−1. The above condition is often called symmetry condition:
the proof of the equivalence can be found in [88].

Definition 6.1.2 (Admissible symplectomorphism). Let (M, ∂M) and (Z, ∂Z) be
compact manifolds with boundary and χ : T∗M \ 0→ T∗Z \ 0 a symplectomor-
phism. We call this symplectomorphism admissible if all the components of χ
locally satisfy the transmission condition. This definition has a global mean-
ing, because a change of coordinates in the cotangent bundle is linear w.r.t.
the fibers. A phase function that represents an admissible symplectomorphism
will be called admissible.

Property 6.1.3. Letψ(x′, xn, ξ′, ξn) be an admissible phase function, locally represent-
ing a symplectomorphism χ close to the boundary of M. Then, the phase function at
the boundary xn = 0 is linear in the ξ′ variable and does not depend on the ξn variable.

Proof. The phase function, in a local chart, represents the symplectomorphism
at the boundary, that is the graph of χ is described as

(x′, xn, ∂x′ψ, ∂xnψ, ∂ξ′ψ, ∂ξnψ, ξ
′, ξn).

Since ∂ξnψ(x′, 0, ξ′, ξn) = 0 for all x′, ξ′, ξn, we can write

ψ∂(x′, ξ′) = ψ(x′, 0, ξ′, ξn), |ξ′| , 0.

If |ξ′| = 0, in view of the non-continuity at |ξ′| + |ξn| = 0, we cannot, in general,
define ψ∂. Nevertheless, in Remark 6.1.1 we have noticed that the symplecto-
morphism χ∂ induced at the boundary is smooth: this implies that the phase
function is also smooth, and, since it is positively homogeneous of order one,
it turns out to be linear in the fibers. �
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6.2 Fourier Integral Operators on the Half-Space

In this section we analyze the continuity properties of FIOs on the half-space
Rn

+. We restrict ourselves to FIOs defined by Lagrangian submanifolds obtained
from admissible symplectomorphisms as in Definition 6.1.2, and in this case the
base manifold is Rn

+. In the following, we will make use of a general statement
on FIOs associated to a symplectomorphism, that allows us to consider left and
right quantization of the symbol and of the phase, see [49], Ch. 25. Since we are
concerned with the behavior of FIOs near the boundary, not with the behavior
at infinity,

in the sequel we will always consider
symbols with compact support in the space variable.

The first step is to analyze the action of a FIO with these properties on Dirac’s
distribution at the origin.

Theorem 6.2.1. Let a ∈ Sm
tr(Rn,Rn) and ψ a phase function that represents, locally at

the boundary, an admissible symplectomorphism χ. Then

k j(x′, ξ′) =r+Opψn (a)δ( j)
0

=r+

∫
eiψ(x′,xn,ξ′,ξn)−iψ∂(x′,ξ′)a(x′, xn, ξ

′, ξn)δ̂( j)
0 d̄ξn

defines an operator-valued symbol in Sm+ 1
2 + j(Rn−1,Rn−1;C,S (R+)). Here, δ( j)

0 is the
j-th derivative of the Dirac’s distribution at 0, while ψ∂ is the phase function that
defines the symplectomorphism induced on the boundary as in Lemma 6.1.1.

Proof. First we consider the operator Opψ(a) acting on smooth functions defined
on the whole of Rn.

Opψ(a) : C∞c (Rn)→ C∞(Rn)

u 7→
∫

eiψ(x′,xn,ξ′,ξn)a(x′, xn, ξ
′, ξn)û(ξ′, ξn)d̄ξ′ d̄ξn =∫

eiψ∂(x′,ξ′)
∫

eir(x′,xn,ξ′,ξn)a(x′, xn, ξ
′, ξn)û(ξ′, ξn)d̄ξ′ d̄ξn,

where r(x′, xn, ξ′, ξn) = ψ(x′, xn, ξ′, ξn)−ψ∂(x′, ξ′). Sinceψ represents a canonical
symplectomorphism, from the results in [49], Ch.25, it admits a right quantiza-
tion. Therefore

Opψ(a)(φ ⊗ δ0)(xn)

=

∫
eiψ∂(x′,ξ′)r+

∫
eiψ(x′,xn,ξ′,ξn)−ψ∂(x′,ξ′)a(x′, xn, ξ

′, ξn)δ̂( j)
0 d̄ξnφ̂(ξ′)d̄ξ′

=

∫
eiψ∂(x′,ξ′)k j(x′, ξ′)φ̂(ξ′)d̄ξ′

=

∫
eix′·ξ′+ixn·ξn−iψ−1(y′,yn,ξ′,ξn)aR(y′, yn, ξ

′, ξn)φ(y′) ⊗ δ0(yn)dy′dyn d̄ξ′ d̄ξn

=

∫
eix′·ξ′−iψ−1

∂
(y′,ξ′)

∫
eixn·ξn−ir−1(y′,yn,ξ′,ξn)aR(y′, yn, ξ

′, ξn)

φ(y′) ⊗ δ0(yn)dy′dyn d̄ξ′ d̄ξn,

(6.2.2)
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where the equality is modulo operators with smooth kernel,

r−1(y′, yn, ξ
′, ξn) = ψ−1(y′, yn, ξ

′, ξn) − ψ−1
∂ (x′, ξ′),

and ψ−1 is the phase function representing χ−1, inverse of the symplectomor-
phism χ. Now, we focus on the action in the normal direction, namely, the
expression

B(y′, ξ′, xn)(δ0) =

∫
eixn·ξn

∫
e−ir−1(y′,ynξ′ξn)aR(y′, yn, ξ

′, ξn)δ0dyn d̄ξn.

By the definition of operators on distributions, we have, for all u ∈ C∞c (R),

〈κ〈ξ′〉−1 Bδ0,u〉 = 〈δ0,Bt
◦

(
κ〈ξ′〉u

)
〉 =

〈δ0, 〈ξ
′
〉

1
2

∫
e−ir−1(y′,xn,ξ′,ξn)+iynξn aR(y′, xn, ξ

′, ξn)u(〈ξ′〉yn)dyn d̄ξn〉 =

〈ξ′〉
1
2

∫
aR(y′, 0, ξ′, ξn〈ξ

′
〉)û(−ξn)d̄ξn = (transmission property)

〈ξ′〉
1
2

m∑
k=0

sR
k (y′, ξ′)

∫
ξk

nû(ξn)d̄ξn + 〈ξ′〉
1
2

∞∑
l=0

λlbR
l (y′, ξ′)

∫
ĥl(ξn)û(−ξn)d̄ξn

where sR
k ∈ Sm(Rn−1,Rn−1), λl ∈ l1, {bR

l } ∈ Sm(Rn−1,Rn−1), is a null sequence,
hl ∈ S (R+) ⊕S (R−). Using the properties of the Fourier transform,

〈κ〈ξ′〉−1 Bδ0,u〉 =〈ξ′〉
1
2

m∑
k=0

sR
k (y′, ξ′)ikδ(k)

0 (u)+

〈ξ′〉
1
2

∞∑
l=0

λlbR
l (x′, ξ′)

∫
hl(xn)u(xn)dxn.

(6.2.3)

Applying the restriction operator r+, all terms that depend on δ(k)
0 vanish, so we

get

κ〈ξ′〉−1 r+Bδ0 = 〈ξ′〉
1
2

∞∑
l=0

λlbR
l (y′, ξ′)r+hl(xn) = B(y′, ξ′, xn). (6.2.4)

As derivatives w.r.t. (x′, ξ′) can be treated in the same way, we see that
r+Bδ0

(
y′, ξ′) ∈ Sm+ 1

2 (Rn−1,Rn−1;C,S (R+)). Now, since ψ∂(x′, ξ′) is a symplecto-
morphism of the boundary, inserting (6.2.4) into (6.2.2), we obtain

κ〈ξ′〉−1 r+Opψ(a)(φ ⊗ δ0) =

∫
eix′·ξ′−iψ−1

∂
(y′,ξ′)κ〈ξ′〉−1 r+B(y′, ξ′, xn)φ(y′)dy′ d̄ξ′

= 〈ξ′〉
1
2

∞∑
l=0

r+hl(xn)
∫

eix′·ξ′−iψ−1
∂

(y′,ξ′)λlbR
l (y′, ξ′)φ(y′)dy′ d̄ξ′.

Finally, switching back to the left quantization, we get, modulo smoothing
operators,

κ〈ξ′〉−1 r+

∫
eiψ(x′,xn,ξ′,ξn)−iψ∂(x′,ξ′)a(x′, xn, ξ

′, ξn)δ̂0 d̄ξn

= 〈ξ′〉
1
2

∞∑
l=0

λlbl(x′, ξ′)r+hl(xn).

93



This implies the assertion for j = 0, since r+hk ∈ S (R+) and b j ∈ Sm(Rn−1,Rn−1).
The proof for j > 0 is similar: it is enough to notice that the phase function
has the transmission property, since it is admissible, so we can follow the same
steps, but with a symbol of order m + j. �

Remark 6.2.1. We could prove, with a and ψ as in Theorem 6.2.1, that

r−
∫

eiψ(x′,xn,ξ′,ξn)−iψ∂(x′,ξ′)a(x′, xn, ξ
′, ξn)δ̂( j)

0 d̄ξn

is a symbol in Sm+ 1
2 + j(Rn−1,Rn−1;C,S (R−)).

Remark 6.2.2. Theorem 6.2.1 gives a precise description of r+Opψ(a)δ( j)
0 . Suppose

that a ∈ Sm
tr(Rn,Rn) and there exists N such that

∂k
xn

a(x′, 0, ξ′, 〈ξ′〉ξn) ∈ Sm(Rn−1
× Rn−1)⊗̂πH0,

for k ≤ N, that is, the expansion of ∂k
xn

a, k ≤ N, at xn = 0 has no polynomial part w.r.t.
the ξn-variable. Then, r+Opψ(a)δ( j)

0 is a regular distribution and

r+Opψ(a)δ( j)
0 = χR+

Opψ(a)δ( j)
0 , j = 0, . . .N, (6.2.5)

where χR+
is the characteristic function of R+. Relation (6.2.5) holds also in the case

the symbol a vanishes at xn = 0 at least of order m + j + 1, because the multiplication
makes vanish all the derivatives of the Dirac’s distribution appearing in (6.2.3).

Definition 6.2.1. A function a ∈ C∞(Rn−1
x′ × Rn−1

ξ′ × Rxn × Rξn ) belongs to the set
BSm(Rn−1,Rn−1; Sl(R)) if, for all α, β, γ, δ, there exists a constant Cα,β,γ,δ such that

|∂αξ′∂
β
x′∂

γ
xn
∂δξn

a(x′, xn, ξ
′, ξn)| ≤ C〈ξ′〉m−|α|−|γ|〈ξn〉

l−|δ|.

Clearly, BSm(Rn−1,Rn−1; Sl(R)) ⊆ BSm(Rn−1,Rn−1; Sl′ (R)) if l′ ≥ l.

A direct computation implies the following statements:

i) the classes BSm(Rn−1,Rn−1; Sl(R)) have a multiplicative property, that is

BSm(Rn−1,Rn−1; Sl(R))·BSm′ (Rn−1,Rn−1; Sl′ (R))

⊆ BSm+m′ (Rn−1,Rn−1; Sl+l′ (R)).
(6.2.6)

ii) Let a ∈ Sm(Rn,Rn), then

ã(x′, xn, ξ
′, ξn) = a

(
x′,

xn

〈ξ′〉
, ξ′, ξn〈ξ

′
〉

)
(6.2.7)

belongs to BSm(Rn−1,Rn−1,Sm(R)).

Lemma 6.2.2. Let a ∈ Sm(Rn
× Rn) and ψ be chosen as in Theorem 6.2.1. Then

∂αξ′∂
β
x′e

iψ(x′,xn,ξ′,ξn)−iψ∂(x′,ξ′)a(x′, xn, ξ
′, ξn)

= eiψ(x′,xn,ξ′,ξn)−iψ∂(x′,ξ′)ã(x′, xn, ξ
′, ξn),

(6.2.8)

where ã
(
x′, xn
〈ξ′〉 , ξ

′, 〈ξ′〉ξn

)
∈ BSm−|α|(Rn−1,Rn−1; Sm+|β|(R)).
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Proof. The assertion is proved by induction. It is trivially true if |α| = |β| = 0 by
(6.2.7). So, let us suppose that (6.2.8) is true for |α|+ |β| < t, t ∈ N, and show that
it holds true for |α| + |β| = t. If |α| , 0 we can write

∂ξ′j

(
∂
α−1 j

ξ′ Dβ
x′e

iψ(x′,xn,ξ′,ξn)−iψ∂(x′,ξ′)a(x′, xn, ξ
′, ξn)

)
= (by the inductive hypothesis)

=∂ξ j

(
eiψ(x′,xn,ξ′,ξn)−iψ∂(x′,ξ′)ã(x′, xn, ξ

′, ξn)
)

=

eiψ(x′,xn,ξ′,ξn)−iψ∂(x′,ξ)
(
∂ξ′j (iψ(x′, xn, ξ

′, ξn) − iψ∂(x′, ξ′))ã(x′, xn, ξ
′, ξn)

+ ∂ξ′j ã(x′, xn, ξ
′, ξn)

)
=

=eiψ(x′,xn,ξ′,ξn)−iψ∂(x′,ξ′)
(
b(x′, xn, ξ

′, ξn)ã(x′, xn, ξ
′, ξn)

+ ∂ξ′j ã(x′, xn, ξ
′, ξn)

)
,

(6.2.9)

where

b(x′, xn, ξ
′, ξn) = xn

∫ 1

0
∂ξ′j∂xnψ(x′, θ, ξ′, ξn)dθ. (6.2.10)

In (6.2.9), we have used Taylor expansion around xn = 0 and the condition
ψ(x′, 0, ξ′, ξn)−ψ∂(x′, ξ′) = 0. The function b in (6.2.10) is the integral remainder.
Now, we have to verify that

b
(
x′,

xn

〈ξ′〉
, ξ′, ξn〈ξ

′
〉

)
ã
(
x′,

xn

〈ξ′〉
, ξ′, ξn〈ξ

′
〉

)
+ (∂ξ′j ã)

(
x′,

xn

〈ξ′〉
, ξ′, ξn〈ξ

′
〉

)
belongs to BSm−|α|(Rn−1,Rn−1,S|β|(R)). This is true since, by the inductive hypoth-
esis, ã

(
x′, xn
〈ξ′〉 , ξ

′, ξn〈ξ′〉
)
∈ BSm−|α|−1(Rn−1,Rn−1,S|β|(R)), xn

〈ξ′〉 ∈ BS−1(Rn−1,Rn−1,

S0(R)), and
∫ 1

0 ∂ξ′j∂xnψ(x′, θ, ξ′, ξn)dθ is a symbol of order zero, so b in (6.2.10)
belongs to BS−1(Rn−1,Rn−1; S0(R)) by (6.2.7); then, we just apply the multiplica-
tive property (6.2.6). If |α| = 0, then we have

∂x′j

(
∂
β−1 j

x′ eiψ(x′,xn,ξ′,ξn)−iψ∂(x′,ξ′)a(x′, xn, ξ
′, ξn)

)
=

∂x′j

(
eiψ(x′,xn,ξ′,ξn)−iψ∂(x′,ξ′)ã(x′, xn, ξ

′, ξn)
)

= eiψ(x′,xn,ξ′,ξn)−iψ∂(x′,ξ′)(
c(x′, xn, ξ

′, ξn)ã(x′, xn, ξ
′, ξn) + ∂x j ã(x′, xn, ξ

′, ξn)
)
.

where

c(x′, xn, ξ
′, ξn) = xn

∫ 1

0
∂x′j∂xnψ(x′, txn, ξ

′, ξn)dt,

is the integral remainder of Taylor expansion of ∂x′j ((ψ(x′, xn, ξ′, ξn) − ψ∂(x′, ξ′))
at xn = 0. Again, by the inductive hypothesis, ã(x′, xn

〈ξ′〉 , ξ
′, ξn〈ξ′〉) ∈ BSm (Rn−1,

Rn−1, Sm+|β|−1(R)), moreover c ∈ BS0(Rn−1,Rn−1; S1(R)), thus, applying the mul-
tiplicative property (6.2.6), the assertion is proved. �

95



Theorem 6.2.3. Let a(x′, xn, ξ′, ξn) ∈ Sm
tr(Rn,Rn) and ψ represent locally at the

boundary an admissible symplectomorphism. Then,

r+Opψn (a)e+ : S (R+)→ S (R+)

u 7→ r+

"
eiψ(x′,xn,ξ′,ξn)−iψ∂(x′,ξ′)−iynξn a(x′, xn, ξ

′, ξn)

e+u(yn)dyn d̄ξn

is an operator-valued symbol in Sm(Rn−1,Rn−1; S (R+),S (R+)). The same property
holds for r−Opψn (a)e+ and r+Opψn (a)e−.

Proof. The following argument is a slight modification of the proof of the S -
continuity of FIOs with non homogeneous phase in [110], Sec. 1.5. We are
interested in the behavior at the boundary, so it is no restriction to consider

r+ω(xn)
"

eiψ(x′,xn,ξ′,ξn)−iψ∂(x′,ξ′)−iynξn a(x′, xn, ξ
′, ξn)χ(yn)e+(u)(yn)dyn d̄ξn,

(6.2.11)
where ω, χ are cut-off functions near the origin. We consider now another
cut-off function ω′ such that ωω′ = ω: we can rewrite (6.2.11) as

r+

"
eiψ′(x′,xn,ξ′,ξn)−iψ∂(x′,ξ′)−iynξn a′(x′, xn, ξ

′, ξn)χ(yn)e+(u)(yn)dyn d̄ξn,

where

ψ′(x′, xn, ξ
′, ξn) = ω′(xn)ψ(x′, xn, ξ

′, ξn) − [1 − ω′(xn)]xn · ξn,

a′(x′, xn, ξ
′, ξn) = a(x′, xn, ξ

′, ξn)ω(xn).

We have to prove that, for each choice of l, s, α, β, there exists l′, s′ such that

pl,s{κ〈ξ′〉−1 Dα
ξ′D

β
x′r

+Opψn (a)e+κ〈ξ′〉u} ≺ 〈ξ′〉m−|α|pl′,s′ (u).

where {pl,s} are the seminorms of S (R+). Let us start with the case |α| = |β| =
l = s = 0, that is, let us estimate(
κ〈ξ′〉−1 r+Opψn (a)e+κ〈ξ′〉

)
u(x′, ξ′) =r+

"
eiψ′(x′, xn

〈ξ′〉 ,ξ
′,ξn〈ξ′〉)−iψ∂(x′,ξ′)−iynξn

a′
(
x′,

xn

〈ξ′〉
, ξ′, ξn〈ξ

′
〉

)
χ(yn)e+(u)(yn)dyn d̄ξn.

(6.2.12)

We introduce the operators

Lt
0 =

1 − i
(
∂ξn

[
ψ′

(
x′, xn
〈ξ′〉 , ξ

′, ξn〈ξ′〉
)]
− yn

)
∂ξn

1 + |∂ξn

[
ψ′

(
x′, xn
〈ξ′〉 , ξ

′, ξn〈ξ′〉
)]
− yn|

2

and

Lt
1 =

1
1 + |ξn|

2

(
1 + iξn∂yn

)
,

96



which satisfy

Lt
0eiψ′−iψ∂−iynξn = eiψ′−iψ∂−iynξn ,

Lt
1eiψ′−iψ∂−iynξn = eiψ′−iψ∂−iynξn .

Let us notice now that∣∣∣∣∣∂ξn

[
ψ′

(
x′,

xn

〈ξ′〉
, ξ′, ξn〈ξ

′
〉

)
− iψ∂(x′, ξ′)

]
− xn

∣∣∣∣∣ =∣∣∣∣∣ω′ ( xn

〈ξ′〉

) (
〈ξ′〉∂ξnψ

(
x′,

xn

〈ξ′〉
, ξ′, ξn〈ξ

′
〉

)
− xn

)∣∣∣∣∣ .
By hypothesis, ∂ξnψ(x′, 0, ξ′, ξn) = 0 for all x′, ξ′, ξn. Hence, we write∣∣∣∣∣ω′ ( xn

〈ξ′〉

) (
∂ξnψ

(
x′,

xn

〈ξ′〉
, ξ′, ξn〈ξ

′
〉

)
− xn

)∣∣∣∣∣ =∣∣∣∣∣ω′ ( xn

〈ξ′〉

) (
xn∂xn∂ξnψ

(
x′, η, ξ′, ξn〈ξ

′
〉
)
− xn

)∣∣∣∣∣ =∣∣∣∣∣xn

((
ω′(

xn

〈ξ′〉

)
∂xn∂ξnψ(x′, η, ξ′, ξn〈ξ

′
〉) − 1

)∣∣∣∣∣
where η ∈ [0, xn

〈ξ′〉 ]. Clearly ω′
(

xn
〈ξ′〉

)
∂xn∂ξnψ

′(x′, η, ξ′, ξn〈ξ′〉) is bounded, because
ψ ∈ S1(Rn,Rn), and ω′ ∈ C∞c (R). So, choosing xn small enough, we can assume
that ∣∣∣∣∣∂ξn

[
ψ′

(
x′,

xn

〈ξ′〉
, ξ′, ξn〈ξ

′
〉

)
− ψ∂(x′, ξ′)

]
− xn

∣∣∣∣∣ ≤ τ < 1.

Now let us examine 1 + |∂ξn [ψ′
(
x′, xn
〈ξ′〉 , ξ

′, ξn〈ξ′〉
)
] − yn|

2. We have

1 +

∣∣∣∣∣∂ξn

[
ψ′

(
x′,

xn

〈ξ′〉
, ξ′, ξn〈ξ

′
〉

)]
− yn

∣∣∣∣∣2
≥

1
2

[
1 +

∣∣∣∣∣∂ξn

[
ψ′

(
x′,

xn

〈ξ′〉
, ξ′, ξn〈ξ

′
〉

)]
− yn

∣∣∣∣∣]2

≥
1
2

[
1 + |xn − yn| − τ

]2

Now, using integration by parts, we can write (6.2.12) as

r+

"
eiψ′

(
x′, xn
〈ξ′〉 ,ξ

′,ξn〈ξ′〉
)
−iψ∂(x′,ξ′)−iynξn a′

(
x′,

xn

〈ξ′〉
, ξ′, ξn〈ξ

′
〉

)
χ(yn)e+(u)(yn)dyn d̄ξn =

r+

"
eiψ′

(
x′, xn
〈ξ′〉 ,ξ

′,ξn〈ξ′〉
)
−iψ∂(x′,ξ′)−iynξn

Ll0
0

(
a′

(
x′,

xn

〈ξ′〉
, ξ′, ξn〈ξ

′
〉

))
Ll1

1 (χ(yn) e+(u)(yn))dyn d̄ξn.

(6.2.13)

Let us examine the terms in the last integral of (6.2.13). Since a′ ∈ Sm(Rn,Rn),
we get∣∣∣∣∣Ll0

0 a′
(
x′,

xn

〈ξ′〉
, ξ′, ξn〈ξ

′
〉

)∣∣∣∣∣ ≺ (
(1 − τ) + |xn − yn|

)−2l0
〈ξ′〉m〈ξn〉

m (6.2.14)
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and

Ll1
1 e+u(y) = 〈ξn〉

−2l1

 l1∑
i=0

ciξ
i
ne+∂i

yn
(u) +

l1−1∑
i=0

i∑
k=0

diξ
i
nγk(u)δ(i−1)

0

 , (6.2.15)

where ci, di are constants. We split (6.2.15) into two parts: (Ll1
1 e+u)s, which

contains the terms with no Dirac’s distributions involved, and (Ll1
1 e+u)d, which

contains all the others. Now, (6.2.13) turns into

r+

"
eiψ′(x′, xn

〈ξ′〉 ,ξ
′,ξn〈ξ′〉)−iψ∂(x′,ξ′)−iynξn

Ll0
0 a′

[
(Ll1

1 e+u)s + (Ll1
1 e+u))d

]
dyn d̄ξ.

(6.2.16)

In order to get the desired inequality for the integral containing Ll0
0 a′(Ll1

1 e+u)s
we just impose l0, l1 large enough, so that one can evaluate the integral using
(6.2.14) and (6.2.15), exactly as in [110], p. 66. For the term depending on
Dirac’s distribution, we notice that Ll0

0 a′ is still a symbol with the transmission
property of order m and 〈ξn〉

−2 satisfy the transmission property: then, using
the properties of trace operators in Example 5.3.1 and Theorem 6.2.1, we get
the assertion for |α| = |β| = m = n = 0.

To prove the general case it is enough to apply Lemma 6.2.2, that shows

∂
β
x′∂

α
ξ′e

iψ(x′,xn,ξ′,ξn)−iψ∂(x′,ξ′)a(x′, xn, ξ
′, ξn) =

eiψ(x′,xn,ξ′,ξn)−iψ∂(x′,ξ′)ã(x′, xn, ξ
′, ξn),

(6.2.17)

ã
(
x′, xn
〈ξ′〉 , ξ

′, ξn〈ξ′〉
)
∈ BSm−|α|(Rn−1,Rn−1,Sm+|β|(R)). Now, by (6.2.17), we can

prove Theorem 6.2.1 with ã instead of a and then repeat the same scheme we
have used above to get the desired inequality. By Remark 6.2.1 it is clear that
the result of the Theorem also holds for r+Opψn (a)e− and r−Opψn (a)e+. �

Note that, as it can be seen by the proof of Theorem 6.2.3, if we derive w.r.t.
the x′ variable, the operator in the normal direction can increase the order: this
is the reason why, in this setting, it is not possible to prove that

r+Opψn (a)e+ : S (R+)→ S (R+)

u→ r+

"
eiψ(x′,xn,ξ′,ξn)−iψ∂(x′,ξ′)−iynξn a(x′, xn, ξ

′, ξn)e+u(yn)dyn d̄ξn

is a symbol in Sm(Rn−1,Rn−1; Hs(R+),Hs−m(R+)), a being a symbol of order m.
This can be seen explicitly, through the following counterexample:

A : S (Rn)→ S (Rn)

u 7→
"

ei[(x′−y′)·η′+( f (x′)xn−yn)·ηn]u(y′, yn)dy′dyn d̄η′ d̄ξn,
(6.2.18)

where f is a strictly positive function. The phase function of the FIO A in
(6.2.18) represents a symplectomorphism χ of T∗Rn

+ = R2n
+ in itself of the form

χ : R2n
+ → R2n

+

(x′, xn, ξ
′, ξn) 7→

(
x′, f (x′)xn, ξ

′
− f ′(x′)xn

ξn

f (x′)
,
ξn

f (x′)

)
.

(6.2.19)
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Indeed, setting x = (x′, xn), y = (y′, yn) and η = (η′, ηn) the phase function of A
turns out to be

φ(x, y, η) = (x′ − y′) · η′ + ( f (x′)xn − yn) · ηn.

Notice that φ′η(x, y, η) = 0 implies x′ = y′ and f (x′)xn = yn, so φ parametrize the
Lagrangian submanifold

C′φ = (x′, xn, η
′ + f ′(x′)xnηn, f (x′)ηn, x′, f (x′)xn,−η

′,−ηn).

Thus, C′φ correspond to the canonical relation

Cφ =(x′, xn, η
′ + f ′(x′)xnηn, f (x′)ηn, x′, f (x′)xn, η

′, ηn)

=graph(χ) =

(
x′, xn, ξ

′, ξn, x′, f (x′)xn, ξ
′
− f ′(x′)xn

ξn

f (x′)
,
ξn

f (x′)

)
.

The symplectomorphism χ is admissible since preserves the boundary:

χ(x′, xn, ξ
′, ξn) ∈ ∂Rn

+ ⇔ (x′, xn, ξ
′, ξn) ∈ Rn

+, that is xn = 0,

and it is linear in the fibers, therefore all components have the transmission
property. Looking at the action along the normal direction, we see that (6.2.18)
cannot be an operator-valued symbol in S0(Rn−1,Rn−1; Hs(R+),Hs(R+)). Indeed,

κ〈η′〉−1∂x′j

"
ei( f (x′)xn−yn)·ηnκ〈η′〉u(yn)dyn d̄ξn

= κ〈η′〉−1

(
〈η′〉

1
2

"
ei( f (x′)xn−yn)·ηn i(∂x′j f )(x′)xnηnu(〈η′〉yn)dyn d̄ηn

)
= κ〈η′〉−1

(
〈η′〉−

1
2

"
ei(〈η′〉 f (x′)xn−zn)· ηn

〈η′〉 i(∂x′j f )(x′)xnηnu(zn)dyn d̄ηn

)
= κ〈η′〉−1

(
〈η′〉−

1
2

"
ei f (x′)xn·ηn i(∂x′j f )(x′)xnηnû

(
ηn

〈η′〉

)
d̄ηn

)
= κ〈η′〉−1

(
〈η′〉

3
2

"
ei〈η′〉 f (x′)xn·θn i(∂x′j f )(x′)xnθnû(θn)d̄θn

)
= κ〈η′〉−1

(
〈η′〉

3
2

"
ei〈η′〉 f (x′)xn·θn (∂x′j f )(x′)xn∂̂yn u(θn)d̄θn

)
= κ〈η′〉−1

(
〈η′〉

3
2 (∂x′j f )(x′)xn∂xn u(〈η′〉 f (x′)xn)

)
= (∂x′j f (x′))xn∂xn u( f (x′)xn).

Now, we recall a technical lemma, proved in [88], p. 122.

Lemma 6.2.4. Let a ∈ Sm(Rn,Rn) be a symbol with the transmission property. Then,
there exists a symbol a1 ∈ Sm(Rn,Rn) having the transmission property for all hyper-
planes xn = ε, ε ≥ 0, such that

∂k
xn

(a(x, xn, ξ
′, ξn) − a1(x′, xn, ξ

′, ξn))|xn=0 = 0

for all k ∈ N and for all x′, ξ′, ξn.
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Proof. We set

a1(x′, xn, ξ
′, ξn) =

∞∑
j=0

x j
n

j!
∂ j

xn
a(x′, 0, ξ′, ξn)φ(t jxn) (6.2.20)

where φ is a cut-off function at the origin and {t j} is a sequence such that the
series in (6.2.20) converges in Sm(Rn,Rn). Clearly, choosing a1 as in (6.2.20), we
get that a − a1 vanishes of infinite order at xn = 0. The symbol a1 has then the
transmission property for all hyperplanes xn = ε, ε > 0, since a has it w.r.t. to
xn = 0. �

Proposition 6.2.5. Let a and ψ be as in Theorem 6.2.1. Then, for all α and β it is
possible to write

r+∂
β
x′∂

α
ξ′Opψn (a)e+ = r+Opψn (ad)e+ + r+Opψn (a0)e+

with a0 such that
(∂βx′∂

α
ξ′Opψn (a0)e+) f ∈ L2(R), (6.2.21)

and ad ∈ Sm
tr(Rn,Rn) is a polynomial in ξ.

Proof. The proof follows from Remark 6.2.2 and an observation of the proof of
Theorem 6.2.3. First we consider |α| = |β| = 0. We prove that

(∂βx′∂
α
ξ′Opψn (a0)e+) f ∈ S (R+) f ∈ S (R+), (6.2.22)

where we consider S (R+) as a subset of L2(R+). Let us consider a, a1 as in
Lemma 6.2.4 and set b = a − a1. In view of the transmission property of a, we
can write

∂ j
xn

a(x′, 0, ξ′, ξn) =

m∑
k=0

ak, j(x′, ξ′)ξk
n +

∞∑
k=0

λk, jbk, j(x′, ξ′)hk, j

(
ξn

〈ξ′〉

)
,

where the ak, j ∈ Sm(Rn−1,Rn−1) are polynomials in ξ′. Then, we set

ad(x′, xn, ξ
′, ξn) =

∞∑
j=0

m∑
k=0

x j
nak, j(x′, ξ′)ξk

nφ(t jxn),

a1
0(x′, xn, ξ

′, ξn) =

∞∑
j=0

∞∑
k=0

x j
nbk, j(x′, ξ′)hk, j

(
ξn

〈ξ′〉

)
φ(t jxn),

a0 =a1
0 + b.

By construction, it is clear that a = ad + a0. Notice that a1
0 has no polynomial

part w.r.t. the ξn variable, while b vanishes to infinite order at xn = 0. In view
of Remark 6.2.2, we have that

e+r+Opψ(a1
0)δ0 = χR+

Opψ(a1
0)δ0 (6.2.23)

e+r+Opψ(b)δ( j)
0 = χR+

Opψ(b)δ( j)
0 , ∀ j ∈ N, (6.2.24)

where χR+
is the characteristic function of R+. Let us consider relations (6.2.14)

and (6.2.15). If we replace there a′ witha1
0, with the notation of (6.2.14), we get
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that Ll0
0 (a1

0) has no polynomial part w.r.t. the ξn. Similarly, using notation from
(6.2.16), (Ll0

0 (a1
0)Ll1

1 e+u)d equals a sum of derivatives of Dirac’s distribution up

to the order l1 − 1. Each δ( j)
0 is associated with a symbol of type Ll0

0 (a1
0) ξ

j+1
n

〈ξn〉
2( j+1)

(that is, a symbol vanishing at infinity at least of order j + 2). (6.2.22) then
follows by Remark 6.2.2, since the singular terms vanish, by the properties of
a1

0. Now, we have to check (6.2.22) for |α| + |β| > 0. Performing the derivatives,
we obtain symbols ã1

0 and b̃ and b̃ still vanishes of infinite order at the origin.
The symbol ã1

0 can have, in general, polynomial parts up to order |β|−1. Notice,
nevertheless, that

∂x′ (ψ(x′, xn, ξ
′, ξn) − ψ∂(x′, ξ′))

vanishes of the first order at xn. So ã1
0 vanishes at xn of order |β|, and we can

repeat the same scheme as above. �

Remark 6.2.3. We have proved that r+Opψn (a)e+ is a continuous operator from S (R+)
to itself, so it is possible to define the transposed operator

(r+Opψn (a)e+)t.

It is important to stress that, in general,

(r+Opψn (a)e+)t f , r+(Opψn (a))te+ f , f ∈ S (R+). (6.2.25)

A simple counterexample is the operator (r+∂e+)t. It is immediate that

(r+∂e+)t f = −r+∂e+ + f (0)δ0.

Nevertheless, if (6.2.21) is satisfied, then (6.2.25) is true. Indeed, we have

〈(r+Opψn (a)e+)t f ,u〉 = 〈 f , r+Opψn (a)e+u〉 =

〈 f , χR+
Opψn (a)e+u〉 = 〈χR+

f ,Opψn (a)e+u〉 =

〈Opψn (a)te+ f , e+u〉.

Moreover, if (6.2.21) is satisfied, since C∞c (R+) is dense in S ′(R+), we have

(r+Opψn e+)u = lim
k→∞

r+Opψn (a)e+φk,

φk → u in S ′(R+). As a consequence of the S (R+) continuity, we obtain as well that
r+Opψn (a0)e+ is an element of Sm(Rn−1,Rn−1; S ′(R+),S ′(R+)).

Lemma 6.2.6. Let f ∈ S ′(R) be a distribution such that r+ f is a C∞ function in the
open set R+ with a S behavior at +∞. Explicitly, fχ ∈ S (R), where χ is a smooth
function that vanishes in (−∞, ε) and equals one in (2ε,+∞). Then, the following
statements are equivalent:

i) for all j ∈ N
lim
x→0+

∂ j f (x) = c j, c j
∈ C,

that is, the function f can be extended as a smooth function in a neighborhood of
zero.
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ii) for all j ∈ N and for all sequences {ψ j
m}m∈N ⊆ C∞c (R+) such that

ψ j
m → (−1) jδ( j)

0 in S ′(R), (6.2.26)

we have
lim

m→∞
〈 f , ψ j

m〉 = c j, c j
∈ C.

There is a trivial continuous inclusion i : C∞c (R+) → C∞c (R) given by the
extension by zero, so the limit (6.2.26) is well defined.

Proof.

i)⇒ ii) If f can be extended as a smooth function in a neighborhood of the origin,
we can choose an extension f̃ ∈ S (R). Then we have, for all j and for all
m, and for all {ψ j

m}m∈N ⊆ C∞c (R+),

〈( f̃ − f ), ψ j
m〉 = 0 (6.2.27)

since supp( f̃ − f ) ⊆ R− and suppψ j
m ⊂ R+. Equality (6.2.27) implies

〈 f̃ , ψ j
m〉 = 〈 f , ψ j

m〉 = c j
m ∀ j,m, (6.2.28)

so that

c j = lim
m→∞

c j
m = lim

m→∞
〈 f̃ , ψ j

m〉 = 〈 f̃ , lim
m→∞

ψ j
m〉 = (−1) jδ( j)

0 f̃ .

This gives the desired result, observing that

(−1) jδ( j)
0 f̃ = lim

x→0+
∂ j f̃ (x) = lim

x→0+
∂ j f (x).

ii)⇒ i) Conversely, let us suppose that condition ii) holds but condition i) is not
fulfilled. So, there exists a j = 0, 1, . . ., such that the limit

lim
x→0+

∂ j f (x)

is not c j. This means that there exists ε̄ such that for all m ∈ N there exists
xm ∈ (0, 1

m ) such that

|c j
− ∂ j f (xm)| > ε̄. (6.2.29)

We can suppose that f is real valued: in fact, if it is not the case, then either
its real or imaginary part satisfy (6.2.29). Since f is smooth in R+, there
exists a neighborhood Um of xm such that (6.2.29) holds for all x ∈ Um.
We can suppose that Um is balanced and we call rm its radius. In order to
simplify the notation set r0 = 1, x0 = 0. Now, let us consider the sequence

ψm =

r−1
m am exp

((
1 − | x−xm

rm
|
2
)−1)

xm − rm < x < xm + rm

0 otherwise
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where the constant am is chosen so that
∫
ψm = 1. Thenψm → δ0 in S ′(R).

We can write

|〈 f , (−1) jψ( j)
m 〉 − c j

| =

∣∣∣∣∣∣
∫

Um

∂ j f (x)ψm(x)dx − c j

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫

Um

(∂ j f (x) − c j)ψndx

∣∣∣∣∣∣ ≥ inf
Um
|∂ j f (x) − c j

| ·

∣∣∣∣∣∫ ψmdx
∣∣∣∣∣

= inf
Um
|∂ j f (x) − c j

|.

By the definition of the sets Um, we have infUm | f j(x) − c j| > ε̄, so finally
we find

|〈 f , ψ( j)
m 〉 − c j

| ≥ ε̄ ∀m ∈ N,

that is
lim
n→∞
〈 f , ψ( j)

m 〉 , c j,

and we get the contradiction.

�

Theorem 6.2.7. Letψ and a be as in Theorem 6.2.3. By Proposition 6.2.5 we can write
a = ad + a0. Then, Opψn (a0)e+ maps S (R+) to L2(R). Hence (e+r+

− 1)Opψn (a0)e+ =

−e−r−Opψn (a0)e+. Moreover, r−Opψn (a0)e+ extends to an operator

r−Opψn (a0)e+ : S ′(R+)→ S (R−)

and defines a symbol in Sm(Rn−1,Rn−1; S ′(R+),S (R−)).

Proof. In Proposition 6.2.5 we have noticed that e+r+Opψn (a0)e+ = χR+
Opψn (a0)e+,

χR+
being the characteristic function of R+. So, we can write

(e+r+
− 1)Opψn (a0)e+u = (χR+

− 1)Opψn (a0)e+u = −e−Opψn (a0)e+u, u ∈ S (R+).
(6.2.30)

Since, for every u ∈ S ′(R+), (r+Opψn (a0)e+)u = limm→∞ r+Opψn (a0)e+φm, {φm} ⊆

C∞c (R+), such that φm → u in S ′(R+), we restrict ourselves to functions in
C∞c (R+). We want to prove that, for all α, β, there exist s1, s2 such that

pα,β(r−Opψn (a0)e+u) ≺ 〈ξ′〉m‖u‖Hs1 ,s2 , u ∈ C∞c (R+),

{pα,β} being the seminorms of S (R−). Notice that ∂ξnψ(x′, xn, ξ′, ξn) is neg-
ative for all xn negative. Hence, if xn < −ε < 0, the phase function has
no critical points, an integration by parts arguments implies that singsupp
(r−Opψn e+(a0)u) ⊆ {0}, and we get as well that

sup
xn<−ε

|(1 + x2
n)

β
2 ∂αxn

(e+r+
− 1)Opψn (a0)u| ≺ 〈ξ′〉m‖u‖Hs1 ,s2 .

Notice that we have used the fact that the symbol has compact support w.r.t.
the space variable x. Now, we need to consider only the behavior when xn
approaches the origin.
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From Theorem 6.2.3 and Proposition 6.2.5, we notice that the following
maps are continuous:

r+Opψn (a0)e+ : S (R+)→ S (R+) (6.2.31)

and
r−Opψn (a0)e+ : S ′(R+)→ S ′(R−). (6.2.32)

In order to prove that (e+r+
− 1)Opψn (a0)e+ belongs to the set Sm(Rn−1, Rn−1;

S ′(R+),S (R−)), we have to analyze

lim
xn→0−

κ〈ξ′〉−1

(
∂
β
x′∂

α
ξ′∂

k
xn

(r−Opψn (a0)e+
)
κ〈ξ′〉(u)(xn). (6.2.33)

We recall that S ′(R−) is endowed with the topology of the inductive limit w.r.t.
the inductive set {Hs1,s2

0 (R−)}, so, by definition, we have to prove that, for all
s1, s2,

| lim
xn→0−

κ〈ξ′〉−1∂
β
x′∂

α
ξ′∂

k
xn

(r−Opψn (a0)e+κ〈ξ′〉u)(xn)| ≺ 〈ξ′〉m−|α|‖u‖Hs1 ,s2 (R),

for u ∈ C∞c (R+). Using the idea of Lemma 6.2.6, we do not focus on

lim
xn→0−

κ〈ξ′〉−1∂
β
x′∂

α
ξ′∂

k
xn

r−Opψn (a0)e+κ〈ξ′〉u(xn),

but, rather on

〈κ〈ξ′〉−1∂
β
x′∂

α
ξ′r
−Opψm(a0)e+κ〈ξ′〉u, (−1)k∂k

xn
ψm〉,

where {ψm}m∈N ∈ C∞c (R−) is a sequence such that

e−ψm → δ0, in S ′(R). (6.2.34)

Notice that (6.2.34) implies that κ〈ξ′〉ψm converges to 〈ξ′〉−
1
2 δ0. By definition we

have

〈ψm, κ〈ξ′〉−1∂
β
x′∂

α
ξ′r
−Opψn (a0)κ〈ξ′〉e+u〉 =

〈κ〈ξ′〉−1 r+
(
∂
β
x′∂

α
ξ′Opψn (a0)tκ〈ξ′〉

)
e−ψm,u〉

This equality holds in view of Remark 6.2.3 and Proposition 6.2.5. By (6.2.34)
and (6.2.32) we get

lim
m→∞
〈κ〈ξ′〉−1 r+

(
∂
β
ξ′∂

α
x′Opψn (a0)tκ〈ξ′〉

)
e−ψm,u〉 =

〈ξ′〉−
1
2 〈κ〈ξ′〉−1 r−

(
∂
β
x′∂

α
ξ′Opψn (a0)tκ〈ξ′〉

)
δ0,u〉.

By Theorem 6.2.1 we know that

κ〈ξ′〉−1 r+
(
∂
β
x′∂

α
ξ′Opψn (a0)tκ〈ξ′〉

)
δ0 ∈ Sm−|α|(Rn−1,Rn−1;C,S (R+)),

so, finally

lim
m→∞

|〈κ〈ξ′〉−1 r+
(
∂
β
x′∂

α
ξ′Opψn (a0)tκ〈ξ′〉

)
e−ψm,u〉|

≤ ‖κ〈ξ′〉−1 r+
(
∂
β
x′∂

α
ξ′Opψn (a0)tκ〈ξ′〉

)
δ0‖Hs1 ,s2 (R+)‖u‖H−s1 ,−s2 (R)

≤ Cpδ,ρ(κ〈ξ′〉−1 r+
(
∂
β
x′∂

α
ξ′Opψn (a0)tκ〈ξ′〉

)
δ0)‖u‖H−s1 ,−s2

≤ Ca〈ξ
′
〉

m−|α|
‖u‖H−s1 ,−s2 (R).
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where we have used the continuous immersion of S (R+) in Hs1,s2 (R+), and pδ,ρ
is a suitable seminorm of S (R+) such that ‖u‖Hs,s2 (R+) ≤ Cpδ,ρ(u), for a certain
C ∈ R. �

Theorem 6.2.8. Let a ∈ Sm
tr(Rn,Rn), and ψ an admissible phase function. Then,

r+Opψn (a)e+ : Hs(Rn
+)→ Hs−m(Rn

+), s > −
1
2
,

continuously.

Proof. First notice that if s ≤ 0 the result follows from the continuity of e+ and
the properties of FIOs with homogeneous phase. If s > 0, using interpolation
we may assume s ∈ N, we notice that

r+Opψ(a)e+ = r+Opψ(a)e+
◦Λ−s

+ ◦Λs
+,

where Λs
+ = r+Λse+ are pseudodifferential operators in the sense of Boutet de

Monvel such that Λs
+ : Hs(Rn

+) → L2(Rn
+) is continuous and invertible. Denote

by Λ−s
+ the inverse of Λs

+. Since Λs
+ : Hs(Rn

+) → L2(R+) is continuous, we have
just to prove that r+Opψ(a)e+

◦ Λ−s
+ : L2(Rn

+) → Hs−m(Rn
+) is continuous. We

observe that

r+Opψ(a)e+
◦ r+Λ−se+ = r+Opψ(a) ◦Λ−se+

− r+Opψ(a)(e+r+
− 1)Λ−se+. (6.2.35)

The operator Opψ(a) ◦Λ−s, by the properties of FIOs is, modulo operators with
smoothing kernel, a FIO of order m − s with phase ψ. Thus, r+Opψ(a) ◦ Λ−se+ :
L2(Rn

+) → Hs−m(Rn
+) is continuous, since e+ is continuous on L2. We have now

to analyze the second term of (6.2.35). We treat it as a FIO defined on the
boundary with operator-valued symbol. Notice that Λ−s is of negative order,
and the differential part of the decomposition in 6.2.5 vanishes, so

r+Opψn (a)(e+r+
− 1)Λ−se+u = −r+Opψn (a)e−r−Λ−se+u, u ∈ C∞c (R+).

Applying Theorem 6.2.7, or using the general theory of Boutet de Monvel
calculus, we obtain that r−Λ−s

+ e+ extends to a symbol belonging to S−s(Rn−1

,Rn−1; S ′(R+),S (R−)); by Theorem 6.2.3, we know that

r+Opψn (a)e− ∈ Sm(Rn−1,R−1; S (R−),S (R+)).

So, r+Opψn (a)e−r−Λ−se− is a symbol in Sm−s (Rn−1 ,Rn−1; S ′(R+),S (R+)). We
can therefore write r+Opψn (a)(e+r+

− 1)Λ−se+ as an operator-valued FIO de-
fined on the boundary with phase function ψ∂ and an amplitude belonging
to Sm−s(Rn−1,Rn−1; S ′(R+),S (R+)), so we get

L2(Rn
+) � � // W 0(Rn−1,Rn−1; S ′(R+))

r+Opψ(e+r+
−1)Λ−sr+

��
Hs−m(Rn

+) W s−m(Rn−1,Rn−1; S (R+))_?
oo

.

�

Remark 6.2.4. As we have seen in Property 5.2.1, we can define the extension operator
for all s ∈ R. Anyway, as noticed in Remark 5.2.1, this extension,in general, could
depend on the Sobolev space: for this reason we have imposed in Theorem 6.2.8 that
s > − 1

2 .
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6.3 Fourier Integral Operators of Boutet de Monvel
Type on the Half-Space

In order to define FIOs of Boutet de Monvel type, we recall the definition of
potential symbols, trace symbols, singular Green symbols. First we define ∂+, the
derivative in the normal direction:

∂+ = r+∂xn e+ : Hs(R+)→ Hs−1(R+), s > −
1
2
.

One can consider the operator ∂+ as an operator-valued symbol belonging to
S1(Rn−1,Rn−1; Hs(R+),Hs−1(R+)). Recall that we write s = (s1, s2).

i) A potential symbol of order m is an element of

Sm(Rn−1,Rn−1;C,S ′(R+)) = proj-limsSm(Rn−1,Rn−1;C,Hs(R+)).

ii) A trace symbol of order m and type zero is an element of the set

Sm(Rn−1,Rn−1; S ′(R+),C) = proj-limsSm(Rn−1,Rn−1; Hs
0(R+),C).

Clearly, a trace symbol of order m and type zero defines also a symbol in
Sm(Rn−1,Rn−1; Hs1,s2 (R+),C), if s1 > − 1

2 . A trace symbol of type d is a sum of
the form

t =

d∑
j=0

t j∂
j
+, t j ∈ Sm− j(Rn−1,Rn−1; S ′(R+),C).

where t is in Sm(Rn−1,Rn−1; Hs1,s2 (R+),C), s1 > d − 1
2 .

iii) A singular Green symbol of order m and type zero is an element of

Sm(Rn−1,Rn−1; S ′(R),S (R+)) =

proj-limsSm(Rn−1,Rn−1; Hs
0(R+),Hs(R+)).

A singular Green symbol of order m and type zero furnishes a symbol
in Sm(Rn−1,Rn−1; Hs1,s2 (R+),S (R+)), provided s1 > − 1

2 . A singular Green
symbol of order m and type d is a sum of the form

g =

d∑
j=0

g j∂
j
+, g j ∈ Sm− j(Rn−1,Rn−1; S ′(R+),S (R+)).

Obviously, g is in Sm(Rn−1,Rn−1; Hs1,s2 (R+),S (R+)), s1 > d − 1
2 .

Remark 6.3.1. The trace operator γ j is a trace symbol of order j + 1
2 and type j + 1. In

fact, one can write

γ0( f ) =

∫
∞

0
〈ξ′〉e−yn〈ξ′〉 f (yn)dyn −

∫
∞

0
e−yn〈ξ′〉∂yn f (yn)dyn,

f ∈ S (R+). That is γ0 = t0 + t1∂+, where

t0 f = 〈ξ′〉

∫
∞

0
e−yn〈ξ′〉 f (yn)dyn, t1 f = −

∫
∞

0
e−yn〈ξ′〉 f (yn)dyn.
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One can check that t0 and t1 admit an extension to S ′(R+), that t0 belongs to
S

1
2 (Rn−1,Rn−1; S ′(R+),C) and t1 ∈ S−

1
2 (Rn−1,Rn−1; S ′(R+),C). Therefore, γ0 is

a trace symbol of order 1
2 and type one. By iteration, one can prove the general result

for γ j.

Definition 6.3.1. Let ψ be an admissible phase function, describing an admis-
sible symplectomorphism χ. Moreover, let ψ∂ be the phase function induced
by ψ on the boundary. Then, a FIO of Boutet de Monvel type of order m and
type d is a matrix of the type

A :=
(

r+Opψ(a)e+ + Gψ∂ Kψ∂

Tψ∂ Sψ∂

)
,

where: Opψ(a) is a FIO with phase function ψ and symbol a ∈ Sm
tr(Rn,Rn); Gψ∂

is a FIO with phase function ψ∂ and singular Green symbol g of order m and
type d; Kψ∂ is a FIO with phase function ψ∂ and potential symbol k of order m
and type d; Tψ∂ is a FIO with phase function ψ∂ and trace symbol t of order m
and type d; Sψ∂ is a FIO with phase function ψ∂ and symbol s ∈ Sm(Rn−1,Rn−1).
The set of such operators is denoted by Bm,d

χ (Rn
+).

Pseudodifferential operators of Boutet de Monvel type [19, 36, 88, 94] are
a particular case of FIOs of Boutet de Monvel type when we assume that the
symplectomorphism χ is the identity: we denote this class by Bm,d(Rn

+). As a
consequence of Theorem 6.2.8 and of the Sobolev continuity of FIOs defined
through operator-valued symbols, we get the following Theorem:

Theorem 6.3.1. EveryA ∈ Bm,d
χ (Rn

+) induces a continuous operator

A : Hs(Rn) ⊕Hs(Rn−1)→ Hs−m(Rn) ⊕Hs−m(Rn−1),

provided s > d − 1
2 .

Now, we analyze the composition of a Boutet de Monvel pseudodifferential
operator with a FIO of Boutet de Monvel type. Recall that we assume the
involved symbols to have compact support w.r.t. the space variable. To this
aim we introduce two lemmas.

Lemma 6.3.2. Let ψ be a phase function which represents an admissible symplecto-
morphism and ψ∂ be the corresponding phase function at the boundary. Then, if a ∈
Sm(Rn−1,Rn−1,Rn−1; E,F), E,F being Banach spaces or projective limit of Banach spaces
or inductive limits of Banach spaces, there exist a left symbol aL ∈ Sm(Rn−1,Rn−1; E,F)
and a right symbol aR ∈ Sm(Rn−1,Rn−1; E,F) such that∫

eiψ∂(x′,ξ′)−iy′·ξ′a(x′, y′, ξ)d̄ξ′ =∫
eiψ∂(x′,ξ′)−iyn·ξn aL(x′, ξ)d̄ξ′ =

∫
eix′·ξ′−iψ∂(y′,ξ′)aR(y′, ξ)d̄ξ′,

where the equality is modulo operators with kernel in C∞(Rn−1
× Rn−1; L (E,F)).

Proof. Since the phase function represents a symplectomorphism at the bound-
ary it is linear in the fibers, that is ψ∂(x′, ξ′) = Ψ∂(x′) · ξ′, where Ψ∂(x′) is an
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element of GL(n − 1), and the same holds for Ψ′
∂
(x′). Moreover, |Ψ′

∂
(x′)ξ| ∼ |ξ′|.

Then, notice that it is possible to consider asymptotic expansions of vector-
valued symbols as in the proof of Lemma 6.3.3 and, following the scheme of
[49], Ch. 25, to obtain the desired left and right quantization. �

Lemma 6.3.3. Let P be a pseudodifferential operator of order m whose symbol p
satisfies the transmission property and is compactly supported with respect to the space
variable. Let us consider an admissible symplectomorphism χ with the associated
phase function ψ, ψ∂ being the corresponding phase function at the boundary, and
a singular Green symbol of type zero g ∈ Sm′ (Rn−1,Rn−1; S ′(R+),S (R+)). Then,
r+Pe+

◦ Opψ∂ (g) is a FIO with phase ψ∂ and with a singular Green symbol g̃ ∈
Sm+m′ (Rn−1,Rn−1; S ′(R+),S (R+)).

Proof. We set r+Opn(p)e+ = Op+
n (p). It is well-known and follows, e.g., from

Theorem 6.2.3 that

Op+
n (p) ∈ Sm(Rn−1,Rn−1; S (R+),S (R+)).

Moreover, we can write(
Op+

n (p) ◦Opψ∂ (g)
)

u(x′) =

=

∫
eix′·ζ′Op+

n (p)(x′, ζ′)
∫

e−iz′·ζ′
∫

eiψ∂(z′,ξ′)gL(z′, ξ′)û(ξ′)d̄ξ′dz′ d̄ζ′

=

∫
eiψ∂(x′,ξ′)

["
ei(x′−z′)·ζ′+i(ψ∂(z′,ξ′)−ψ∂(x′,ξ′))Op+

n (p)(x′, ζ′)gL(z′, ξ′)dz′ d̄ζ′
]
û(ξ′)d̄ξ′

=

∫
eiψ∂(x′,ξ) g̃L(x′, ξ′)û(ξ)d̄ξ′.

By an argument similar to the one valid for pseudodifferential and Fourier
operators with scalar symbols, using the properties of oscillatory integrals
involving operator-valued symbols, we obtain that

g̃L(x′, ξ′) ∼
∑

α′∈Zn−1
+

1
α′!

(∂α
′

ζ′Op+
n (p))(x′, dx′ψ∂(x′, ξ′))Dα′

z′
[
eiΦ(x′,z′,ξ′)gL(z′, ξ′)

]
z′=x′

,

where
Φ(x′, z′, ξ′) = ψ∂(z′, ξ′) − ψ∂(x′, ξ′) − dx′ψ∂(x′, ξ)(z′ − x′).

Since the terms appearing in the asymptotic expansion are singular Green sym-

bols of order m+m′−
[
|α|
2

]
and type zero, g̃L ∈ Sm+m′ (Rn−1,Rn−1; S ′(R+),S (R+)),

modulo operators with kernel in C∞(Rn−1,Rn−1; L (S ′(R+),S (R+))), and is a
singular Green symbol of order m + m′ and type zero, as stated. �

Theorem 6.3.4. Let P ∈ BmP,dP (Rn
+) and A ∈ BmA,dA

χ (Rn
+) be a Boutet de Monvel

pseudodifferential operator and a FIO of Boutet de Monvel type, respectively. Then
P◦A is a FIO of Boutet de Monvel type of order mP+ mA and type (mA+ dP, dA)+ =
max{(mA + dP), dA} defined again by the symplectomorphism χ, that is P ◦ A ∈
BmP+mA,(mA+dP,dA)+
χ (Rn

+).
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Proof. Let us consider a phase functionψwhich representsχ close to the bound-
ary. We have to analyze the composition(

r+Op(p)e+ + GP KP
TP SP

)
◦

 r+Opψ(a)e+ + Gψ∂
A

Kψ∂
A

Tψ∂
A

Sψ∂
A

 .
We start with the composition of elements in the upper-left corner. We can
write

r+Op(p)e+
◦ r+Opψ(a)e+ =

r+Op(p) ◦Opψ(a)e+ + r+Op(p)(e+r+
− 1)Opψ(a)e+

Op(p) ◦ Op(a)ψ, by the general theory of FIOs, is a FIO of order mP + mA with
canonical transformation χ. We prove next that the operator r+Op(p)(e+r+

−

1)Opψ(a)e+ is a FIO on the boundary with vector-valued symbol, associated
with the canonical transformationχ∂ and with a Green symbol of order mP+mA
and type (mA)+ = max{mA, 0}. Thus, we have to study the composition in the
normal direction. We decompose the symbol a = ad + a0 as in Proposition 6.2.5.
First, we analyze the differential part

r+Opn(p)(e+r+
− 1)Opψn

 mA∑
j=1

a j(x′, xn, ξ
′)ξ j

n

 e+u, (6.3.36)

where a j(x′, xn, ξ′) ∈ SmA− j(Rn,Rn−1). Since, on S (R+)

ξn ̂e+u(yn)(ξn) = −iê+∂yn u(ξn) − iu(0)δ̂0, (6.3.37)

by induction, we have that

ξk
n
̂e+u(yn) = (−i)k

ê+∂k
xn

u +

k−1∑
l=0

u(l)(0)δ̂(k−l−1)
0

 . (6.3.38)

So, (6.3.36) turns into

r+Opn(p)(e+r+
− 1)∫

eiψ−iψ∂
mA∑
j=1

(−i) ja j(x′, xn, ξ
′)

ê+∂ j
yn

u(ξn) −
j−1∑
l=0

u(l)(0)δ̂( j−l−1)
0

 d̄ξn.

Following the scheme of the proof of Theorem 6.2.1, one gets that

(e+r+
− 1)

∫
eiψ−iψ∂

mA∑
j=1

(−i) ja j(x′, xn, ξ
′)

j−1∑
l=0

u(l)(0)δ̂( j−l−1)
0 d̄ξn

=

mA∑
j=1

j−1∑
l=0

b̃ j,l(x′, ξ′)u(l)(0)δ( j−l−1)
0 +

mA∑
l=0

cl(x′, xn, ξ
′)u(l)(0),

where b̃ j,l(x′, ξ′) ∈ SmA− j(Rn−1,Rn−1) and cl ∈ SmA−l− 1
2 (Rn−1,Rn−1;C,S (R−)). Ob-

serving that γl is a trace symbol of order l + 1
2 and type l, we get that

r+Opn(p)(e+r+
− 1)

∫
eiψ−iψ∂

mA∑
j=1

(−i) ja j(x′, xn, ξ
′)

j−1∑
l=0

u(l)(0)δ̂( j−l−1)
0 d̄ξn
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is a Green symbol of order mP+mA and of type (mA)+. We have now to analyze

Opn(p)(e+r+
− 1)

mA∑
j=1

∫
eiψ−iψ∂a j(x′, xn, ξ

′)ê+∂ j
yn

u(ξn)d̄ξn

= Opn(p)(e+r+
− 1)

mA∑
j=1

a jOpψn (1)e+
◦ ∂ j

+u

(6.3.39)

Recall that e+r+
− 1 = −e−r− on regular distributions. Then, by Theorem 6.2.7

we get that r−a jOpψn (1)e+ is a symbol in SmA− j (Rn−1,Rn−1; S ′(R+),S (R−)); since
r+Opn(p)e− ∈ SmP (Rn−1, Rn−1; S ′(R−),S (R+)), the symbol in (6.3.39) is a Green
symbol of order mP + mA and type (mA)+.
We have now to consider

r+Opn(p)(e+r+
− 1)Opψn (a0)e+. (6.3.40)

Theorem 6.2.7 implies r−Opψn (a0)e+
∈ SmA (Rn−1,Rn−1; S ′(R+),S (R−)). Observ-

ing that r+Opn(p)e− is an element of SmP (Rn−1,Rn−1; S (R−),S (R+)), we get that
the symbol in (6.3.40) is a Green symbol of order mP + mA and type zero.

The other compositions can be analyzed in a similar way, we omit most of
the details.

1. r+Op(p)e+
◦ Gψ∂

A
, is a FIO a with phase function that represents χ∂ and a

singular Green symbol of order mP + mA and type dA.

2. GP ◦ e+Opψ(a)e+ is a FIO with a phase function that represents χ∂ and
a singular Green symbol of order mP + mA and of type (mA + dP)+ =
max{mA + dP, 0}.

3. GP ◦ Gψ
A

is a FIO on the boundary, with a phase function that represents
χ∂ and a Green symbol of order mP + mA and type dA.

4. r+Op(a)e+
◦ Kψ∂
A

is a FIO on the boundary with phase function that repre-
sents χ∂ with a potential symbol of order mP + mA.

5. GP ◦Kψ∂
A

is a FIO on the boundary with phase function that represents χ∂
and a potential symbol of order mP + mA.

6. KP ◦ Tψ∂
A

is a FIO on the boundary with phase function that represents χ∂
and a Green symbol of type dA and order mP + mA.

7. KP ◦ Sψ∂
A

is a FIO on the boundary with phase function that represents χ∂
and a potential symbol of order mP + mA.

8. TP ◦ r+Opψ(a)e+ is a FIO on the boundary with phase function that repre-
sents χ∂ and a trace operator of type (mA + dP)+ and order mP + mA.

9. TP ◦Gψ∂
A

is a FIO on the boundary with phase function that represents χ∂
and a trace symbol of order mP + mA and type dA.

10. SP ◦ Tψ∂
A

is a FIO on the boundary with phase function that represents χ∂
and a trace symbol of order mP + mA and type dA.
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11. TP ◦ Kψ∂
A

is a FIO on the boundary with a phase function that represents
χ∂ and a symbol in SmP+mA (Rn−1,Rn−1).

12. SP ◦ Sψ∂
A

is a FIO on the boundary with phase function that represents χ∂
and a symbol in SmP+mA (Rn−1,Rn−1).

The composition in 1) follows by Lemma 6.3.3. The other compositions in 3),
4), 5), 6), 7), 8), 10), 11), 12), can be treated similarly exploiting the proper-
ties of vector-valued symbols, in particular the possibility to write asymptotic
expansions. The compositions in 2) and 9) are slightly more delicate. Let us
analyze the composition in 2). We suppose dP = 0. The operator r+Opψ(a)e+,
by Proposition 6.2.5, can be split into r+Opψ(ad + a0)e+. We first analyze the
differential part, obtaining

Op(gA) ◦Opψ∂ (r+Opψn (ad)e+).

We analyze the composition in the normal direction of the involved vector-
valued symbols. We have that

(r+Opψn (ad)e+)u = r+

∫
eiψ−ψ∂

mA∑
j=1

a j(x′, xn, ξ
′)ξ j

nê+u(ξn)d̄ξn. (6.3.41)

Using (6.3.37) and (6.3.38), we can write

(r+Opψn (ad)e+)u =

mA∑
j=1

(−i) j
j−1∑
l=1

r+a j(x′, xn, ξ
′)

(
Opψn (1)(δ( j−l−1)

0 )γl(u) + Opψn (1)e+∂l
yn

u
)
.

(6.3.42)

By Theorem 6.2.1, Remark 6.3.1 and the properties of trace operators, we get
that the sum in j, l can be written as

(r+Opψn (bd)e+) =

mA∑
j=1

ã j(x′, ξ′)∂
j
+, ã j ∈ SmA− j(Rn−1,Rn−1,S ′(R+),S ′(R+)).

Then, by the definition of Green symbols of type zero, we obtain that GP ◦
(r+Opψn (ad)e+) is a Green symbol of order mP+mA and type (mA)+. To prove the
same result for a0, we only have to notice that r+Opψ(a0)e+ extends to a symbol
in SmA (Rn−1,Rn−1; S ′(R+),S ′(R+)), and the result follows from the definition
of Green symbol. If dP , 0, we see that

∂+

∫
eiψ(x′,xn,ξ′,ξn)−iψ∂(x′,ξ′)a(x′, xn, ξ

′, ξn)û(ξn)d̄ξn

= r+

∫
eiψ(x′,xn,ξ′,ξn)−iψ∂(x′,ξ′)ã(x′, xn, ξ

′, ξn)û(ξn)d̄ξn,

where ã = ∂xn a + (i∂xnψ)a, which implies ã ∈ SmA+1(Rn,Rn). Using an iterative
scheme we can reduce to the case dP = 0, raising the order from mA to mA + dP.
To handle the composition 9), we can repeat the same scheme. �
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Remark 6.3.2. Using essentially the same scheme of Theorem 6.3.4, it is possible to
prove that if A ∈ BmA,dA

χ (Rn
+) and P ∈ BmP,dP (Rn

+) then A ◦ P ∈ BmA+mP,d
χ (Rn

+),
(d = max{mP + dA, dP}),

As in the case of FIOs on closed manifolds, one could look for an Egorov
type Theorem. To this aim we have to analyze the adjoint of operators in
Bm,d
χ (Rn

+).

Theorem 6.3.5. Let us considerA ∈ Bm,0
χ (Rn

+), m ≤ 0. Then,A∗, the formal adjoint
of Q, is a FIO of Boutet de Monvel type, namely A∗ ∈ Bm,0

χ−1 (Rn
+). Moreover, locally

close to the boundary

A
∗ =

(
r+(Opψ(a))∗e+ + (Gψ∂ )∗ (Tψ∂ )∗

(Kψ∂ )∗ (Sψ∂ )∗

)
, (6.3.43)

where (Opψ(a))∗ is the formal adjoint of Opψ(a), so its phase function is ψ−1. The
operators (Gψ∂ )∗, (Kψ∂ )∗, (Tψ∂ )∗, (Sψ∂ )∗ appearing in (6.3.43) are the adjoints of Gψ∂ , Kψ∂ ,
Tψ∂ , Sψ∂ , respectively, that is, they are FIOs with vector-valued symbols, with phase
function ψ−1

∂
that represents χ−1

∂
, the inverse of the boundary symplectomorphism.

Proof. Since m ≤ 0, Opψ(a) is continuous from L2(Rn) to itself. Moreover,
e+ : L2(Rn

+)→ L2(Rn) is continuous and its adjoint is r+. So we can write

(r+Opψ(a)e+u, v)L2(Rn
+) = (Opψ(a)e+u, e+v)L2(Rn)

= (e+u, (Opψ(a))∗e+v)L2(Rn) = (u, r+(Opψ(a))∗e+v)L2(Rn
+).

For the other components ofA∗, one can use the properties of adjoints of FIOs,
noticing that the adjoint of a Green operator of order m and type 0 is still a Green
operator of the same order and type, the adjoint of a potential operator of order
m is a trace operator of order m and type 0 and the adjoint of a trace operator
of order m and type 0 is a potential operator of order m. This a consequence of
the adjoint property of Green, potential and trace symbols, see [94]. �

Definition 6.3.2. For every m ∈ Z we can define the operator

[Λm
+ ] :=

(
r+Λme+ 0

0 Op(〈ξ′〉m)

)
where r+Λme+ : Hm(R+

n ) → L2(R+
n ) is an isomorphism. The operator [Λm

+ ] is an
element of Bm,0(Rn

+) and it is invertible.

Now we can state in this case a version of Egorov Theorem for FIOs of
Boutet de Monvel type.

Theorem 6.3.6. LetA ∈ Bm,d
χ (Rn

+) be a FIO of Boutet de Monvel type. Then, provided
d ≤ m+, m ∈ Z

i) If m ≤ 0 and d = 0 thenA ◦A∗ is a an element of B2m,0(Rn
+).

ii) If m > 0 then we have that (A◦ [Λ−m
+ ])(A◦ [Λ−m

+ ])∗ is an element of B0,0(Rn
+).
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Proof. The proof of part i) essentially follows from Theorem 6.3.5 and from
Egorov Theorem for standard FIOs. The second part follows from the first,
noticing that, from Theorem 6.3.4, Q ◦ [Λ−m

+ ] belongs to B0,0
χ (Rn

+). �

In general, one cannot prove an Egorov type Theorem for FIOs of Boutet de
Monvel type of all orders and types, in fact such a statement would not even
be true for an operator of Bm,d(Rn

+), provided m > 0 or d > 0 or d > m. Namely,
if we consider a Boutet de Monvel operator P of positive order, then its formal
adjoint P∗, in general, is not even a Boutet de Monvel operator.

Remark 6.3.3. By means of Theorems 6.3.4 and 6.3.6, it is possible to prove that,
if P ∈ Bm′,d′ (Rn

+) and A ∈ Bm,d
χ (Rn

+), m ≤ 0, d = 0, then A ◦ P ◦ A∗ belongs to
Bm′,d′ (Rn

+).
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no. 177-178, Exp. No. 708, 199–229, Séminaire Bourbaki, Vol. 1988/89.
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