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Abstract

Zeta Functions of Pseudodifferential Operators
and
Fourier Integral Operators on Manifolds with Boundary

The aim of the first part of the thesis is the study of the asymptotic behavior
of the eigenvalue counting function of selfadjoint operators in three different
settings: SG-operators on R” and on manifolds with cylindrical ends; bisingular
operators defined on M; X M,, product of two closed manifolds; bisingular
operators on Euclidean spaces. A precise formula for the first term in the
asymptotic expansion is given and, in a particular case, the second term is
determined as well. The results are achieved by the study of the complex
powers of operators and of the spectral C-function. This analysis, in the case
of SG-operators, leads also to the definition of non-commutative residue both
in the case of R" and of manifolds with cylindrical ends. Moreover, in the
case of R", endowed with a suitable metric, by mean of a regularized integral,
a connection between the non-commutative residue and the Einstein-Hilbert
action is showed.

The second part of the thesis treats an extension of Fourier Integral Operators
(FIO) in the half space R’;. Asin Boutet de Monvel’s calculus, we define a matrix
of operators

(r*Opl’”(a)fGW KW)
TYo S¥a
where Op¥ (a) is a Fourier Integral Operator defined by a symplectomorphism
X : TR\ {0} = TR} \ {0}, represented in a neighborhood of the boundary
by the phase function ¢, and by a principal symbol a; r* is the restriction
operator, e* is the extension operator. In order to have nice continuity results
in the scale of the H*(R’) Sobolev spaces, we need to impose conditions on
the symplectomorphism. Essentially, we require that the symplectomorphism
preserves the boundary and that all the components satisfy the transmission
property. If x fulfills these properties, then it induces a symplectomorphism
Xao : T'R"™ — T*R", represented by the phase function 5. The operator G¥?
is a FIO with phase ¢y on JR” and a singular Green symbol. The operator KV
is a FIO defined on JR" with phase 1, and with a potential symbol, T¥? is a
FIO defined on dR" with a trace symbol, $¥7 is a usual FIO defined on JR" with
phase ;.

It is the goal of the thesis to show continuity results for such operators in
the scale of H*(R’}) spaces and to establish results similar to those of Boutet de
Monvel.

Keywords: Spectral zeta function, Fourier Integral Operators, Boutet de
Monvel’s Calculus
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Zusammenfassung

Ziel des ersten Teils dieser Dissertation ist die Untersuchung des asympto-
tischen Verhaltens der Zahlfunktion der Eigenwerte selbstadjungierter Opera-
toren in drei verschiedenen Situationen: Fiir SG-Operatoren auf R” und Man-
nigfaltigkeiten mit zylindrischen Enden, fiir bisinguldre Operatoren, die auf
dem kartesischen Produkt M; X M, zweier geschlossener Mannigfaltigkeiten
definiert sind, sowie fiir bisinguldre Operatoren auf dem euklidischen Raum.

Eine genaue Formel fiir den ersten Term in der asymptotischen Entwicklung
wird angegeben; in Spezialfillen wird auch der zweite Term bestimmt. Die
Ergebnisse werden mit Hilfe einer Untersuchung komplexer Operatorpotenzen
und der spektralen Zetafunktion erzielt.

Im Fall von SG-Operatoren fiihrt diese Analyse weiterhin zur Definition
eines nichtkommutativen Residuums sowohl auf R” als auch auf Mannig-
faltigkeiten mit zylindrischen Enden. Dariiber hinaus wird fiir den Fall, dass
R" mit einer geeigneten Metrik versehen ist, mit Hilfe eines regularisierten In-
tegrals ein Zusammenhang zwischen dem nichtkommutativem Residuum und
der Einstein-Hilbert-Wirkung gezeigt.

Im zweiten Teil der Dissertation wird eine Erweiterung des Kalkiils der
Fourierintegraloperatoren (FIO) auf den Halbraum R’} behandelt. Wie in dem
Kalkiil von Boutet de Monvel definieren wir eine Matrix von Operatoren

r*AvetGYs  K¥o

( TY9 5%) : @)
Dabei ist A ein Fourierintegraloperator, gegeben durch einen Symplektomor-
phismus x : TR} \ {0} — T'R’} \ {0}, der wiederum in einer Umgebung des
Randes durch die Phasenfunktion 1 bestimmt ist, und ein Hauptsymbol a.
Ferner ist * der Restriktionsoperator und e* der Fortsetzungsoperator durch
Null. Um gute Stetigkeitsresultate in der Skala der Sobolevraume H*(R") zu
erzielen, miissen wir Bedingungen an den Symplektomorphismus stellen. Im
Wesentlichen fordern wir, dass der Symplektomorphismus den Rand erhilt
und alle Komponenten die Transmissionseigenschaft haben.

Besitzt y diese Eigenschaften, so induziert es einen Symplektomorphismus
Xo : T'R"™! — T*R"7!, dargestellt durch die Phasenfunktion ;. Der Operator
GY7 ist ein FIO mit Phase ¢, auf dM und einem singulidren Greenschen Symbol.
Der Operator K¥ ist ein FIO auf M mit Phase ¢ und einem Potentialsymbol
k, T ist ein FIO definiert auf M mit einem Spursymbol, S¥7 ist ein iiblicher
FIO auf dM mit Phase 1,.

Hier ist das Ziel, die Stetigkeit dieser Operatoren auf der Sobolevraum-
Skala H*(R’}) zu zeigen und Resultate analog zu denen von Boutet de Monvel
zu beweisen.

Schlagworter: Spektrale Zetafunktion, Fourierintegraloperatoren, Kalkiil
von Boutet de Monvel
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Introduction

It is the aim of this thesis to show how microlocal techniques can be applied
successfully to problems in analysis, geometry and spectral theory. In the
first part we are mainly interested in eigenvalue asymptotics and geometric
invariants. Specifically, we consider four situations where the manifold is
either R", a manifold with cylindrical ends, the product M; X M, of two closed
manifolds, or R™ x R™. For each case, we use a specific pseudodifferential
calculus, clarify the notion of ellipticity, define the complex powers and then
study their properties. This leads to information about the non-commutative
residue on manifolds with cylindrical ends and to connections with the Einstein-
Hilbert action. We find then new results for the counting functions of selfadjoint
operators belonging to the calculi described above. In a particular case, we
determine not only the leading term, but also the second one. The result is
obtained combining the study of the meromorphic extension of the spectral
C-function and a Tauberian Theorem, due to ]J. Aramaki, [7].

Let us briefly present the various pseudodifferential calculi involved; more
details are given in Chapter (I} SG-calculus was first introduced on R” by H.
O. Cordes [25] and C. Parenti [82], see also R. Melrose [71]. For an introduction
to SG-calculus and, more generally to global calculus on R", see F. Nicola and L.
Rodino [81]]. An SG-operator A = a(x, D) = Op (a) acting on R" can be defined
via the usual left-quantization

1
@)

Au) = o [ evatw oncere, we SE,
starting from symbols a(x, £) € C*(R" x R") with the property that, for arbitrary
multi-indices a, 8, there exist constants C,g > 0 such that the estimates

IDDfa(x, &)| < Cap(E)™1lxym=l

hold for fixed m;, m; € R and all (x, &) € R" X R", where (y) = /ly> +1, y € R™.
The set of such symbols is denoted by SG™(R"). The model example of an
SG-operator is (—A + 1)(1 + |x[)?. In 1987, E. Schrohe [91] introduced a class of
non-compact manifolds, the so-called SG-manifolds, on which it is possible to
transfer from R" the whole SG-calculus: in short, these are manifolds which
admit a finite atlas whose changes of coordinates behave like symbols of order
(0,1) (see [91] for details and additional technical hypotheses). The manifolds
with cylindrical ends are a special case of SG-manifolds, on which also the
concept of SG-classical operator makes sense. Moreover, the principal symbol
of an SG-classical operator A on a manifold with cylindrical ends M, has an
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invariant meaning, see Yu. V. Egorov and B.-W. Schulze [29], T. Hirschmann
[45], L. Maniccia and P. Panarese [64], R. Melrose [71].

In [90], L. Rodino introduced bisingular operators: pseudodifferential op-
erators defined on the product of two closed manifolds M; X M,. A main
motivation of that paper was the multiplicative property of the Atiyah-Singer
index, see [11]. A simple example of an operator in this class is the tensorial
product A; ® Ay, where A; € L™ (M), Ay € L™ (M,) are pseudodifferential op-
erators. Another example, studied in [90], is the vector-tensor product A; K A,.
It is easy to verify that, if A1 and A, are both differential operators, then A; ® A,
is a differential operator on M; X M,, but if A; or A, are pseudodifferential
operators then A; ® A; is not, in general, a pseudodifferential operator on the
closed manifold M; X M,. Nevertheless, operators of this type arise naturally in
different contexts. Bisingular calculus embeds this example into a wider theory.
The class of bisingular operators is denoted by L™"2(M;, M;). We will study,
in particular, the subclass Ly;""*(M; X M) of operators which have a principal
symbol. This calculus belongs to the framework of pseudodifferential operators
with operator-valued symbols (see, e.g., Yu. V. Egorov and B.-W. Schulze [29],
S. Rempel and B.-W. Schulze [88]], B.-W. Schulze [96] 07], E. Schrohe [94] and
the references therein for other examples). Namely, the principal symbol of an
operator A € Ly (M X My) is a triple (07" (A), 05%(A), 0™ (A)), where 0] (A)
is a function on T*M; \ 0 which takes values in L™ (M), 0312 (A) is a function on
T*M; \ 0 which takes values in L™ (M;) and ¢"™(A) is a function defined on
(T*M1 \ 0) X (T*M, \ 0). In [80], F. Nicola and L. Rodino introduced classical
bisingular operators and proved an index formula, see also V. S. Pilidi [85].

Bisingular calculus on Euclidean spaces, recently introduced by U. Battisti,
T. Gramchev, S. Pilipovi¢ and L. Rodino in [16], is a variant of bisingular calculus
adapted to Shubin’s calculus on R”. The simplest example of a bisingular
operator on R™*" is A; ® A, where A; € G"(R™) and A, € G™(R™) are
operators of Shubin type, see M. A. Shubin [100] [101] for more details. As in
the case of bisingular operators, the principal symbols in this setting is a triple
and is operator-valued.

In Chapter 2l we describe complex powers and spectral (-functions of el-
liptic operators belonging to the pseudodifferential calculi described above.
Complex powers of elliptic operators, in the case of closed manifolds, were first
introduced by R. Seeley in [98]. Then, the theory has been extended to different
settings, see, e.g, B. Ammann, R. Lauter, V. Nistor and A. Vasy [6], P. Boggiatto
and F. Nicola [20], G. Dore and A. Venni [27], G. Grubb [35,[36], G. Grubb and
L. Hansen [37], P. Loya [62, 63], L. Maniccia, E. Schrohe and ]J. Seiler [66], E.
Schrohe [92]. In [92], E. Schrohe first developed a theory of complex powers
in a setting close to SG-calculus; then L. Maniccia, E. Schrohe and ]. Seiler in
[66] described precisely the symbol of complex powers of SG-operators and
investigated the case of classical SG-operators. In Section we study the
spectral (-function in the setting of SG-calculus on R” and on manifolds with
cylindrical ends, following the construction of L. Maniccia, E. Schrohe and J.
Seiler [66] and of U. Battisti and S. Coriasco [15]. We restrict ourselves to the
case of classical SG-symbols. Dealing with classical operators, we can prove
that the spectral C-function can be extended as a meromorphic function to the
whole of C. In this way, following the original approach of M. Wodzicki [109],
we introduce the non-commutative residue in the SG-setting, via C-functions.
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The non-commutative residue was first considered by M. Wodzicki in 1984
[109], in the setting of pseudodifferential operators on closed manifolds, while
studying the meromorphic continuation of the zeta function of elliptic opera-
tors. The non-commutative residue turns out to be a trace on the algebra of
classical operators modulo smoothing operators. Moreover, if the dimension
of the closed manifold is larger than one, it is the unique trace on this algebra,
up to multiplication by a constant (the situation in dimension one is different,
as a consequence of the fact that, in this case, S*M is not connected, cf. C.
Kassel [55]). In 1985, V. Guillemin [41] independently defined the so-called
symplectic residue, equivalent to the non-commutative residue, with the aim
of “finding a soft proof of Weyl formula”. The non-commutative residue, some-
times called Wodzicki residue, gained a growing interest in the years, also in
view of the links with non-commutative geometry and the Dixmier trace, see,
e.g., A. Connes [24], B. Ammann and C. Bér [5], W. Kalau and M. Walze [54], D.
Kastler [56]. The concept has been extended to different situations: manifolds
with boundary by B. V. Fedosov, E. Golse, E. Leichtnam and E. Schrohe [31]
and Y. Wang [106| [107], conic manifolds by E. Schrohe [93] and ].B. Gil and
P.A. Loya [32], anisotropic operators on R" by P. Boggiatto and F. Nicola [17],
CR-manifolds by R. Ponge [86], [87]. Notice that the non-commutative residue
was already defined by F. Nicola in [79] for SG-calculus on R", by means of
holomorphic families. We follow here a different approach, which leads to an
invariant definition in the case of manifolds with cylindrical ends.

In Section we investigate (-functions of SG-elliptic operators in a dif-
ferent direction. Here, we do not aim at finding a trace on the algebra of
SG-classical operators, rather the goal is a regularized version of the Kastler-
Kalau-Walze Theorem on R”, linking Dirac operators and the Einstein-Hilbert
action. The contents of this section essentially come from U. Battisti and S.
Coriasco [14]. A. Connes conjectured that the non-commutative residue could
connect Dirac operators and the Einstein-Hilbert action. In 1995, D. Kastler
[56], W. Kalau and M. Walze [54] proved this conjecture. Namely, let I} be
the classical Atiyah-Singer Dirac operator defined on a closed spin manifold
M = (M, g) of even dimension n > 4. Then

—n+2y _ (n—2)21] 1
wres(lZ) )— —WLES(X) dx, (2)

where s(x) is the scalar curvature and dx the measure on M induced by the Rie-
mannian metric g (see, e.g., [5] for an overview on non-commutative residue
and non-commutative geometry). Y. Wang [105, (106, [107], suggested an exten-
sion of the result to a class of manifolds with boundary. T. Ackermann [1] gave
a proof of (2), using the relationship between heat trace and C-function and the
properties of the second term in the asymptotic expansion of the heat trace of
a generalized Laplacian. In Section we follow T. Ackermann’s idea and
give a regularized version of (2), using the regularized integral introduced by
L. Maniccia, E. Schrohe and J. Seiler in [65].

Next, in Sections and we study the complex powers of bisingu-
lar operators on compact closed manifolds and on Euclidean spaces, respec-
tively, following U. Battisti [13] and U. Battisti, T. Gramcheyv, S. Pilipovié¢ and L.
Rodino[16].

In Chapter [3| we state the main result about the asymptotic behavior of the

ix



counting functions Na(A). For each of the three settings described above, we
will prove that the counting function of an elliptic selfadjoint positive operator
A has the asymptotic behavior

CiA'log(A) + C/ AT+ O(A=%) - for = =1

ny

Na(D) ~ ] CaAm +O(A7 ) for2>2% A5, (3)
v1 vy
CaA™ +O(A™ ™) for 2 < &

where my, my are the orders of the operator A, v, v, are integer numbers de-
pending on the calculus we analyze, Cy, C}, C3, C; are constants depending on
the principal symbol of A and 04, 65,63 are strictly positive real numbers. In
[79], F. Nicola expresses the leading terms of the counting function, in the case
of SG-calculus on R”, by means of the Laurent coefficients of a suitable holo-
morphic family associated to the operator. In [64], L. Maniccia and P. Panarese
describe the leading term of N4(A) in the setting of SG-calculus on manifolds
with cylindrical ends using heat kernel methods. The asymptotic expansion
improves these results in the case of SG-calculus, giving also the second term
when vy /m; = vy/my. For bisingular operators, has been proved in [13],
and for bisingular operators on Euclidean spaces in [16]. Notice that, when
v1/my = vy/my, the asymptotic expansion of the counting function contains a
logarithmic term. This case corresponds to a pole of order 2 of the C-function
at the point v;/m;. Such a behavior appears in others settings: for example
manifolds with conical singularities, see P. Loya [32] and manifolds with cusps,
see S. Moroianu [73]. The approach used here is similar to the one in [73].
The exposition is completed by the analysis of an example, together with some
numerical experiments on the expected results.

In the second part, we develop a calculus of Fourier Integral Operators
(FIOs) on the half-space R". The basic idea is to consider, similarly as M. L
Visik and G. L. Eskin [104] and L. Boutet de Monvel [19], a class of operators
with contains both the classical boundary value problems and their inverses,
whenever these exist. The elements of the calculus are given by matrices of
operators

r*Op¥(a)e™ + G¥?  K¥2
TYs S¥a |’

where the entries are Fourier integral operators associated to a symplectomor-
phism x : T'R} \ 0 — T*R% \ 0, positively homogeneous of order one in the
fibers, satisfying suitable conditions. Essentially, x must preserve the boundary
of T"R! and all the components satisfy the transmission condition (related ideas,
in a different setting, are deeply investigated in A. Hirschowitz, A. Piriou [46]).
Such a symplectomorphism induces naturally a symplectomorphism y; at the
boundary. The function ¢ is a phase function that represents the symplectomor-
phism ), while 15 represents the symplectomorphism induced at the boundary.
These two conditions arise naturally if one requires that r*Op(a)e* acts contin-
uously from .7 (R") to itself and the same holds for " Op(a)*e*. Here we limit
ourselves to the case of the half-space R’ this is the first step in order to develop
in detail a calculus of Fourier Integral Operators of Boutet de Monvel type. The
theory of Fourier Integral Operators is well known in the case of manifolds with-
out boundary, see the classical paper by L. Hormander [47]; for an overview
on the theory see L. Hérmander [48,/49], J. J. Duistermaat [28], C. Sogge [102].

X



See V. Guillemin and S. Sternberg [43] for Fourier Integral operators in the
semi-classical setting. In the case of manifolds with conical singularities, R. B.
Melrose [69] introduced a notion of Fourier Integral Operator which has been
refined by V. E. Nazaikinskif, B.-W. Schulze and B. Yu. Sternin in [77, 78], with
the aim to get an index formula for such operators, see also V. E. Nazaikinskii,
A.Yu. Savin, B.-W Schulze and B. Yu. Sternin [75] and V. E. Nazaikinskii and B.
Yu. Sternin [76]. The theory of FIOs we present here uses as a main ingredient
the concept of vector-valued symbols, see e.g. Yu. V. Egorov and B.-W. Schulze
[29] and B.-W. Schulze [96] 97] about their general theory. The main difference
with the theory of pseudodifferential operators of Boutet de Monvel type is

that if Op¥(a) is a FIO of order m, then, in general, the operator r+Op,lf (a)e*
does not belong to S™(R"!, R"!, R"1; H5(R,), H*"™(R.)), see (6.2.18). Thisis a
consequence of the global nature of FIOs. We overcome this problem proving
that 7*Op¥ (a)e* belongs to S"™(R", R",R"; #(R,),.#(R,)). The continuity
on Sobolev spaces, by means of a splitting of the amplitude a, will be essentially
reduced to the analysis of r+Op¢(a)6g), where 68) is the j-th derivative of the
Dirac’s distribution at the boundary.

In Chapter[d]we recall the basic definitions and properties of manifolds with
boundary, following closely the approaches of B. W. Boothby [18], . M. Lee [59]
and J. R. Munkres [74]. For an introduction to manifolds with boundary, aimed
at the calculus on manifold with singularities, see also E. Schrohe and B.-W.
Schulze [95] and R. B. Melrose [70]. Then, we briefly introduce symplectic vector
spaces and the Maslov index of Lagrangian subspaces. In this part we have
used as main references A. Cannas da Silva [21], D. McDuff and D. Salamon
[67] and J. Robbin and D. Salamon [89]. Eventually, we give the definition
of symplectic manifolds and of the Keller-Maslov bundle associated with a
Lagrangian submanifold of the cotangent bundle of a smooth manifold. For
more details on the Keller-Maslov bundle and its connection with the Maslov
index we refer to J. ]. Duistermaat [28], L. Hormander [48) 149].

In Chapter [5| we introduce the function spaces on the half-space involved
in the theory. Then, we recall the basic properties of vector-valued symbols
following closely the treatment of E. Schrohe [94]. Next, we introduce wedge-
Sobolev spaces, cf. B.-W Schulze [96), 97], and describe continuity properties of
pseudodifferential operator with vector-valued symbols, cf., e.g., J. Seiler [99]
and T. Hirschmann [45].

Chapter[p]is devoted to the definition of Fourier Integral Operators of Boutet
de Monvel type. First, we motivate the assumptions on the symplectomor-
phism and, consequently, on the phase function. The aim is to prove that the
operator 1'+Op‘/’(11)e+ : H°(R}) — H*™(R") is continuous, where Op”b(a) is a FIO
on R" of order m with phase function 1, describing an admissible symplec-
tomorphism. Then, we introduce trace symbols, potential symbols and singular
Green symbols in order to define Fourier Integral Operators of Boutet de Monvel
type. Boutet de Monvel pseudodifferential operators are a particular case of
FIO of Boutet de Monvel type, namely, those defined by the identity symplecto-
morphism. We conclude showing that FIOs of Boutet de Monvel type are stable
with respect to right and left composition with a pseudodifferential operator of
Boutet de Monvel type. We also prove a version of Egorov Theorem adapted
to FIOs of Boutet de Monvel type.

We plan to complete our theory giving the global definition of FIOs of
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Boutet de Monvel type on compact manifolds with boundary, and the associated
notions of principal symbol and ellipticity. It would be interesting to study the
connections between our calculus and the parametrix constructions for mixed
hyperbolic problems, studied, e.g., by J. Chazarain in [22] and [23]. Finally, a
natural development is the analysis of index theory for this class of operators,
following the ideas of A. Weinstein [108]], C. Epstein and R. B. Melrose [30], E.
Leichtnam, R. Nest and B. Tsygan [60] and, in the case of manifolds with conical
singularities, of V. E. Nazaikinskif, B.-W. Schulze and B. Yu. Sternin [77, [78].
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Part I

Zeta Functions of
Pseudodifferential Operators






Chapter 1

Pseudodifferential Algebras

This chapter is a brief introduction to the pseudodifferential algebras we will
treat. In Section|[I.T|we analyze SG-calculus, in section[I.2] Bisingular operators
and in Section [2.4| Bisingular operators on Euclidean spaces, a global version of
Bisingular operators suited to Shubin’s Global calculus on R".

1.1 SG-Operators

In this section we recall the basic properties of SG-calculus, first on R", and
then on manifold with cylindrical ends. For the details of the calculus and the
extension to SG-manifolds see, e.g., [29] 91].

1.1.1 SG-Pseudodifferential Operators on R"

Definition 1.1.1. A function a € C*(R" X R") belongs to SG™"™(R") if, for all
multiindices a, § € N”, there exists a constants C,p > 0 such that

IDDfa(x, &)| < Cap(&)™ ™=, (x,&) € R" X R". (1.1)

SG™M(R" X R") is a Fréchet space, with seminorms given by {Cygla genn, the
best constant in (1.1). Moreover, SG-symbols form a graded algebra:

a € SG™™(R" x R"),b € SG™M™(R" xR") = abe SG™M*™MMm+my(R" x R").
The set
SR xR =[] SGMM(RXRY) = .7(RY)
(1m1,m2)R?

is called the set of smoothing symbols. We define the class of SG-pseudodiffe-
rential operators via left quantization. A linear operator A : .Z(R") — .7 (R")
is an SG-operator if it can be written as

Au(x) = Op(a) = (2711),1 f eea(x, E)(E)AE  u € S(R™),

with a € SG™™2(R"). The corresponding operators constitute the class

Lm1/m2 (Rﬂ) - Op (SGWll,mz (R}’l)) X
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In the sequel we will often simply write SG™ " and L™, respectively, fixing
the dimension of the base space to n. Using the classical property of composi-
tion of pseudodifferential operators, one can prove that SG-pseudodifferential
operators form a graded algebra, that is

[ o Lmi,mé C M +mi,m2+m;.
The residual elements are operators with symbols in SG™, that is, those having
kernelin.(R?"), continuously mapping S’(R") to S(R"). Notice that the class of
5G-smoothing operators coincides with the class of smoothing global Shubin’s
operators, see [101]. The notion of ellipticity in this setting involves not only

the behavior of the symbol w.r.t. the £-variable, as in the classical case, but also
its decay at infinity w.r.t. the x-variable:

Definition 1.1.2. An operator A = Op(a) € SG™"™ is SG-elliptic if there exists
a positive constant R such that

a(x, &)1 = O(&E) ™ (x)™™),
holds for |x| + |&| > R.

It is immediate to check that SG-operators act continuously on the .7 (R")
space and, by duality on the tempered distribution .’(R"). In order to obtain
Sobolev continuity results one has to introduce the weighted Sobolev spaces

HY2(R") = (1 € S'(R"): [lull,p, = (x)2I0p ((€)") ull2 < oo},

This scale of Sobolev spaces satisfies immersion property

H#2(R") — H""2(R"), s12>1,8 > 1.
If both inequalities are strict, the immersion is compact. Notice moreover that

S®RY= () H"™R)and SR = [ ] H"™(R").

(s1,52)€R? (s1,52)€R?
The next proposition followss by the composition properties of SG-operators
Proposition 1.1.1. If A € L™, then it can be extended to a continuous operator

A HV2(RY) — H»MATI(RY),

In view of the calculus and of the Definition of ellipticity the following
holds:

Proposition 1.1.2. Let A € L™ be an elliptic operator. Then, there exists an inverse
B of A modulo smoothing operators. Hence, A is a Fredholm operator.

It is possible to introduce the notion of classical symbol also in this setting.

Definition 1.1.3. i) A symbola(x, &) belongs to the class SGZEC'ETZ (R™) if there

existay,_i.(x, &) € J’L‘”;mri(R”), i=0,1,..., homogeneous functions of order
my — i with respect to the variable &, smooth with respect to the variable
x, such that, for a fixed 0-excision function w,

N-1
a(, &) = Y (&) a,-i,(x,8) € SGMNTRY), N=1,2,..;
i=0



ii) A symbol a(x, &) belongs to the class SGZ{E)’(TZ(]R") if there exist a. ,,,(x, &) €

%ﬂz_k (R™),k =0, ..., homogeneous functions of order m, —k with respect
to the variable x, smooth with respect to the variable &, such that, for a
fixed 0-excision function w,

a(x, &) = Y | @) @, 4(x,) € SGMNRY), N=1,2,...

Definition 1.1.4. A symbol a(x, &) is SG-classical, and we write a € SGZ’EX"; (R™)
= SGI(RY) = SGI™, if

i) there exist a,;,—.(x, &) € %ml—j (R™) such that, for a fixed 0-excision func-

tion @, (&) - (x, &) € scj};x‘)f/’"z (R") and

N-1

0, &) = ¥ (&) a6, &) € S NERY, N=1,2,..;
j=0

ii) there exist a. ,,—k(x, &) € j%:mz_k(R”) such that, for a fixed 0-excision func-

tion @, w(x) a.m,(x, £) € St gz—"(R") and

N-1
a(x,£) = ) 0@ @k € SGNRY, N=1,2,..
k=0
We set L™V m)(R") - Lglll/mz — Op (SGZ”"ZZ).

cl(x,&

Remark 1.1.1. The definition could be extended in a natural way from operators acting
between scalars to operators acting between (distributional sections of) vector bundles:
one should then use matrix-valued symbols whose entries satisfy the estimates
and modify accordingly the various statements below. To simplify the presentation,
we omit everywhere any reference to vector bundles, assuming them to be trivial and
one-dimensional.

The next two results are especially useful when dealing with SG-classical sym-
bols, see, e.g, see Yu. V. Egorov and B.-W Schulze [29].

Theorem 1.1.3. Lef a; € SGzl_k'mz_k, k =0,1,..., be a sequence of SG-classical
symbols and a ~ Y., ax its asymptotic sum in the general SG-calculus. Then,
aeSG"™.

Theorem 1.1.4. Let B" = {x € R" : |x| < 1} and let x be a diffeomorphism from the
interior of B" to R" such that

X

XO) = A=)

for |x| >2/3.

Choosing a smooth function [x] on R" such that 1 —[x] # 0 for all x in the interior of B"
and |x| > 2/3 = [x] = |x|, for any a € SG}'"™ denote by (D™a)(y,n), m = (m1,my),
the function

b(y,m) = (1 =)™ @ = [yD)"™a(x(y), x(m)).- (1.2)
Then, D™ extends to a homeomorphism from SG'|"™ to C*(B" x B").
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Remark 1.1.2. Theorem can be stated in an equivalent way using the radial
compactification map, see [68, [70]. We consider the manifold with boundary

SZ = {x = (x,rxn+1) | X € Sl’l, x‘rl+l Z O}r
and the function
RC:R" - S}
(5
X))/
Then, a € SG""™ if and only if

[yl [N ™"™=a(RC™ (), RC™ (1))

can be extended as a smooth function to C*® (S} X S%), where [-] is a boundary defining
function of SI} such that, in a neighborhood of JS'., it is equal to the coordinate function
Xn+1-

Note that the definition of SG-classical symbol implies a condition of compati-
bility for the terms of the expansions with respect to x and &. In fact, defining

my—j my—i my,m My, m .
a, and 0,7 on SGdzé) 2 and SGCIEX) ?, respectively, as
O_:Zl_](u)('x/ 5) = am‘] _j,'(xl 5)/ j = 0/ ]'/ cry
" a)(x, &) = am,_i(x, &), i=0,1,...,
it is possible to prove that
G- = 0" (@) = 0 (0l @) = 070 @),

j=01,..,i=01,...

(1.3)

Moreover, the algebra property of SG-operators and Theorem|[I.1.3|implies that
the composition of two SG-classical operators is still classical. For A = Op (a) €
L™ the triple 6(A) = (0y(A), 0.(A), 0ye(A)) = (@my, , @y , Amymy) i called the
principal symbol of A. This definition keeps the usual multiplicative behavior,
that is, for any A € Lg”z, Be LZ{’SZ, (r1,12), (51,82) € R?, 6(AB) = 6(A) 6(B), with
componentwise product in the right-hand side. We also set

Symp (A) (x/ 5) = Symp (Ll) (_X, 6) =
= am(x, &) = W(E)am, (%, &) + W(X) (@, (X, &) — W(E)my s (X, E))

for a fixed 0O-excision function w. Theorem below allows to express the
ellipticity of SG-classical operators in terms of their principal symbol:

Theorem 1.1.5. An operator A € L7} is elliptic if and only if each element of the
triple 0(A) is non-vanishing on its domain of definition; that is

i)y, (w,&) #0forallw € S"71, & € RY;
ii) .y, (x,0’) #0forallx e R", o’ € S"7L;

i) Ay my(w, @) # 0 forall w € S, 0’ € S,



1.1.2 SG-Operators on Manifolds with Cylindrical Ends

We analyze now an extension of SG-calculus for manifolds with cylindrical
ends, a special case of SG-manifolds [91]]. In this subsection we follow the idea
of L. Maniccia and P. Panarese [64]. For simplicity, we restrict ourselves to the
case of manifolds with one cylindrical end.

Definition 1.1.5. A manifold with a cylindrical end is a triple (M, X, [f]), where
M = # 1l € is a n-dimensional smooth manifold and

i) . is a smooth manifold, given by .# = (M, \ D) UC with a n-dimensional
smooth compact manifold without boundary My, D a closed disc of M
and C c D a collar neighbourhood of dD in My;

ii) ¢ is a smooth manifold with boundary %" = X, with X diffeomorphic to
oD;

iii) f:[0f, 00) X sl - %, 0¢ > 0,1is a diffeomorphism, f({6} X S" 1) = X and
fU[65,6¢ + €f)} x S™1), &5 > 0, is diffeomorphic to C;

iv) the symbol LIc means that we are gluing .# and ¢, through the identifi-
cation of C and f({[67, 65 + €f)} x S"1);

v) the symbol [ f] represents an equivalence class in the set of functions

{g:[64,00) xS"! - €: gis a diffeomorphism,
g(16g) x S"™1) = X and
8([6g,04 + €¢) X s, €¢ > 0, is diffeomorphic to C}

where f ~ ¢ if and only if there exists a diffeomorphism © € Diff(S" ')
such that

(g o Hp,w) = (p,Ow)) (1.4)

for all p > max{6y, 6.} and w € S"1.
We use the following notation:
o u(5f ={xeR": |x| > (3f},‘

o ¢ = f([t,00) x §"!), where 7 > §;. The equivalence condition (T4)
implies that ¢ is well defined;

e 7:R" \ {0} N (0, OO) x S”_l X B R(X) = (lJCl/ %)/

o fr=fom: Ll_éf — € is a parametrisation of the end. Let us notice that,
setting F = ¢~1 o £, the equivalence condition (T.4) implies
& =8&n q P

F(x) = x| @(%). (1.5)

We also denote the restriction of f, mapping U, onto € =%\ Xby fr
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The couple (%, f;!) is called the exit chart. If &/ = {(Q;, )}, is such that the
subset {(Q;, ¥;)}Y¥;! is a finite atlas for ./ and (Q, Yn) = (%, f=1), then M, with
the atlas .27, is an SG-manifold (see [91]): an atlas </ of such a kind is called
admissible. From now on, we restrict the choice of atlases on M to the class
of admissible ones. We introduce the following spaces, endowed with their
natural topologies:

L (Us) = {u € C®(Us): Ve, p € N" V&' > 6 sup |x*dPu(x)| < oo},

xely

Fo(Us) = [ |{u € S (Ry): suppu € Uy,
NS
SM)={ueC*M): uo fn € 7 (Us,) for any exit map frl,
&' (M) denotes the dual space of . (M).

Definition 1.1.6. The set SG™"(Us,) consists of all the symbols a € C*(Us,)
which fulfill for (x, &) € Us, xR" only. Moreover, the symbol a belongs to the
subset SG/|'""*(Us, ) if it admits expansions in asymptotic sums of homogeneous
symbols with respect to x and & as in Definitions and where the
remainders are now given by SG-symbols of the required order on Us, .

Note that, since Uy, is conical, the definition of homogeneous and classical sym-
bol on Us, makes sense. Moreover, the elements of the asymptotic expansions
of the classical symbols can be extended by homogeneity to smooth functions
on R" \ {0}, which will be denoted by the same symbols. It is a fact that, given
an admissible atlas {(€2;, gbi)}fi 1 on M, there exists a partition of unity {¢;} and a
set of smooth functions {x;} which are compatible with the SG-structure of M,
that is:

® supp ¢; C (;, supp xi CQj, xi@i=¢i,i=1,...,N;
o 10%(pn © fr)@)] < Ca )™ and [07(xn © fr)(@)] < Ca (x)™ for all x € Us,.

Moreover, gy and xn can be chosen so that gp o f,T and yno fn are homogeneous
of degree 0 on Us. We denote by u* the composition of u: 1;(€2;) C R* — C with
the coordinate patches 1;, and by v. the composition of v: O; ¢ M — C with
Y7, i=...,N. Itis now possible to give the definition of SG-pseudodifferential
operator on M:

Definition 1.1.7. Let M be a manifold with a cylindrical end. A linear operator
A" (M) — '(M) is an SG-pseudodifferential operator of order (my,m;) on
M if, for any admissible atlas {(€;, 1/),-)}5\:[ , on M with exit chart (Qu, ¥n):

1) foralli =1,...,N-1and any ¢;, x; € C°(€);), there exist symbols a(x, &) €
5™ (1i(€);)) such that

(A 1).(3) = f f DG, Oulpdydx, 1€ CUPiQ));



2) for any ¢@n, xn of the type described above, there exists a symbol aN (x, &) €
SG"™™(Us,) such that

(om0 = [[[eeiaes v, ue A,

3) Ky, the Schwartz kernel of A, is such that
Ky € Co(Mx M)\ A)() (@ x2)\ W),

where A is the diagonal of M x M and W = (f; X f,)(V) with any conical
neighbourhood V of the diagonal of Us, X Us,.

The most important local symbol of A is @, which we will also denote a/, to
remind its dependence on the exit chart. Our definition of SG-classical operator
on M differs slightly from the one in [64]:

Definition 1.1.8. Let A € L™"(M). A is an SG-classical operator on M, and we
write A € L™ (M), if a/(x, &) € SG'1""*(Us,) and the operator A, restricted to
the manifold .Z, is classical in the usual sense.

The principal symbol a,,,,. of an SG-classical operator A € L}'""*(M) is of course
well-defined as a smooth function on T"M \ 0. In order to give an invariant
definition of principal symbol with respect to x of an operator A € L} (M),
the subbundle T\M = {(x,&) € T'M: x € X, & € T;M} was introduced. The
notion of ellipticity can be extended to operators on M as well:

Definition 1.1.9. Let A € L|"""*(M) and let us fix an exit map f,. We can define
local objects @y, —jm,—k, @.my—k @S
M0, =al, . (6,8), OeS™!, ER"\ (0},

(6,8 =a (6,8, 6eS, R

- My —

Definition 1.1.10. An operator A € ngzz (M) is SG-elliptic if the principal part

of af € SG™™(Us,) satisfies the SG-ellipticity conditions on Us, X R" and the
operator A, restricted to the manifold .#, is elliptic in the usual sense.

Proposition 1.1.6. The properties of A € L™""™(M) and of A € L7}""*(M), as well as
the notion of ellipticity, do not depend on the (admissible) atlas. Moreover, the local
functions a.,,, and an, m, give rise to invariantly defined elements of C*(T,M) and
C*(TyM \ 0), respectively.

Then, with any A € Lg“mz (M), it is associated an invariantly defined principal
symbol in three components 6(A) = (am,,., @ m,, Am, m,). Finally, through local
symbols given by pi(x,&) = (&), i = 1,...,N =1, and p/(x,&) = (&)™ (x)™,
s1,52 € R, we get an SG-elliptic operator IT;, 5, € L?**(M) and introduce the
(invariantly defined) weighted Sobolev spaces H**2(M) as

Hs1,sz(M) =f{ue y’(M) Hsl,szu S LZ(M)}

The properties of the spaces H**?(R") extend to H**?(M) without any change,
as well as the continuous action of the SG-operators.
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1.2 Bisingular Operators

In this section we introduce the basic theory of bisingular operators. We refer
to [90] and [80] for details and proofs. Here, Q; always denotes a bounded open
domain of R™.

Definition 1.2.1. We define 5""2(0);, (),) as the set of functions belonging to
C*(€21 X Q x R x R™) such that, for all multi-indices «;, §; and for all compact
subsets K; C €);, i = 1,2, there exists a positive constant Cq, a, 4, 6, k1 K, Such that

7

0% 9322351 afiﬂ(xll X2, &1, E2)| < Cay o o o ko Ko (E1 )™M TN yralaal,
forallx; € K;, & e R%,i=1,2.

57%7%(0), (p) is the set of smoothing symbols. Following [90], we introduce
the subclass of bisingular operators with homogeneous principal symbol.

Definition 1.2.2. Leta € §"((};,(),); a has a homogeneous principal symbol
if
i) there exists ay,, .(x1, X2, &1, &2) € §™7™2 ()1, ()p) such that

a(x1, xo,t&1, &) = t"Ma(x1, x0,&1,&2),  Vx1,x0,&2, V&l >1,1>0,
a—1y1(&1)am, € S"”_l’mz(Ql,Qz), Y1 0-excision function.

Moreover, a,, .(x1,x2, &1, D7) € ng(Qz), s0, being a classical symbol on €y,
it admits an asymptotic expansion w.r.t. the &, variable.

ii) there exists a.,,(x1, X2, &1, &2) € S™™2 (€)1, (p) such that

a(xy, x2, &1, t82) = t™a(x1, x2, &1, &), Vx1,x2,&1, V&2 > 1,6 >0,
a—1(E)am, € smm=l(0) Qy), Y, 0-excision function.

Moreover, a.,,(x1, x2, D1, &2) € LZ}1 (€21), so, being a classical symbol on €5,
it admits an asymptotic expansion w.r.t. the &; variable.

iii) The symbols a,,,. and a.,,, have the same leading term, so there exists
Ay my, SUCh that

amlr' - ljljz(éz)aml,mz € Sm],mz_l(er QZ)/
a-,mz - lPl(gl)aml,mz € Sml—l,mz (er QZ)/
and

a— wlamh- - 11b211~,mz + lpllpZam],mz € Sml_l/mz_l(le QZ)

my,mp

The set of symbols with homogeneous principal symbol is denoted by S

(€4, €2). We will shortly write that the principal symbol of a is {a, .., 4. m, ).

Remark 1.2.1. In [80l, classical bisingular operators were introduced using an ap-
proach very similar to the one of Remark The authors consider the maps

RC;: T"Q; — S50 = O x S™
(x, &) = (x,RC(S)),
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and the boundary defining functions p1, p, of the two boundary hypersurfaces, IS X
S and S x dS'?, of the manifold with corners S X S'?, such that p1(RC(&1), w) =
(&1), forall & € R™, and similarly for py. Then, setting p; = 1t; p;, where ; : T*(; —
Q; is the canonical projection, i = 1,2, one defines

*

Si™ (@ x Qo) = (RCy X RCa) 0", C¥(81.0 X §3,0),

where C*(S,(Qq X S1.CY,) is the set of functions which admit smooth extension up to
the boundary.

We define bisingular operators via their left quantization. A linear operator
A 1 CP (€ %) = C*(01 X ) is a bisingular operator if it can be written in
the form

A(u)(x1, x2) =Op(a)(x1, x2)
_ 1 ix1-E1+ixn- & A
=2y .Ew ane a(x1, X2, &1, E2)(E1, E2)dE1dEn,

with a € §™™2(Q, () ora € S;"rl’mz(Ql,Qz). Then, we write A € L™/™2(Q;, ()
orAe Lgfrl’mz (Q1,€Y)), respectively. The above definition can be extended to the
product of closed manifolds; we refer to [90] for the details of the construction
of global operators and the corresponding calculus.

Definition implies that, for every operator A € Ly!"*(C,()), we can

define principal symbol mappings, c™,0™,0™ "2, such that

o (A) s Ty \ {0} = L"(O)
(x1,&1) P amy - (x1,%2, &1, Da),

037 (A) : T'Qp \ {0} — L' ()
(x2,&2) B> ., (x1, X2, D1, &2),
G (AY s Ty \ {0} X T°Qy \ {0} — C

(xl/ xZ/ 51/ 52) = aml,mz (xl/ xZ/ 51/ 52)

(1.6)

Moreover, denoting by o(P)(x, &) the principal symbol of a preudodifferential
operator P on a closed manifold, the following compatibility relation holds

()" (A)(x1, &1))(x2, £2) =0(077 (A)(x2, £2))(x1, €1)

(1.7)
=6""2(A)(x1, X2, £1,€2) = A,y (X1, %2, &1, E2).

Comparing the compatibility condition with (L.3), we observe a similar-
ity, at least formal, between bisingular symbols with homogeneous principal
symbol and SG-classical symbols.

Remark 1.2.2. Ifwe consider the product of closed manifolds My X My, then the whole
symbol is a local object, in general. Nevertheless, similarly to the calculus on closed
manifolds, it is possible to give an invariant meaning to the mappings as functions
defined on the cotangent bundle, see [90].

As in the case of the calculus on closed manifolds, it is possible to define
adapted Sobolev spaces and then prove some continuity results.
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Definition 1.2.3. Let M;, M, be two closed manifolds. The Sobolev space
H™™2(M; X M,) is defined as

{u e 7'(My X Ma) | [ullmm i xay) = IOPKEDN™(E2)" )W) lr2 vty xsy) < 00}
Using the formalism of tensor products, we can also writ
H™ " (My X M) = H™ (M1)@-H" (Ma).

Similarly to Sobolev spaces H*(M), we have

i) H™™(M; x M,) — H™"™(M; x M,) is a continuous immersion if m; > m,
i=1,2.

ii) H™"™(M; x My) < H™"™2(M; X M,) is a compact immersion if m; > m,
i=1,2.

Proposition 1.2.1. A pseudodifferential operator A € L™ ™2 (M;XM,) can be extended
to a continuous operator

A: Hs’t(Ml X Mz) - I‘Is_ml’t_m2 (M1 X M2)

Furthermore, the norm of the operator can be estimated using the seminorms
of the symbol. It is also possible to prove the following proposition:

Proposition 1.2.2. Let A € L"™™(M; X My) be a bisingular operator. If m; < 0,
i = 1,2, then there exists N € N such that ||Alloo < sup Y.< pi(a(x1, x2, &1, E2)),
where {p;(-)}ien are the seminorms of the Fréchet space S™ 2 (M;, My).

An operator A € L™ (M; X M,) is elliptic if 0] (A), 0, (A), 0™ (A), the
three components of its principal symbol, are invertible in their domain of
definition. Explicitly:

Definition 1.2.4. Let A € Ly (M; X My). A is bisingular elliptic if
i) ™™ (A)(v1,v;) # 0 for all (vy,v;) € T"My \ {0} X T*M; \ {0};
ii) 0]"(A)(v1) € LI?(M,) is invertible for all v; € T*"M; \ {0};
iii) 032(A)(v2) € L]}'(M) is invertible for all v; € T*M; \ {0};
where ¢""2(A), 01" (A), 0, (A) are as in (L.6).

Remark 1.2.3. If an operator A € L, satisfies condition iii) of Definition
then both the operators o™ (A)(v1) € L"™(My) and 0™2(A)(vz) € L™ (M) are elliptic
operators. Moreover, if A satisfies conditions i) and ii), one can prove that both
o™ (A)(v1) and 6™ (A)(v2) are injective Fredholm operators with zero index, therefore
invertible operators also in the scale of H® spaces. Thus, in Definition it is
equivalent to require the invertibility of the operators on the spaces of smooth functions
or on the Sobolev spaces H°.

In [90], it is proved that, if A satisfies Definition Then, A is a Fredholm
operator. This property is a corollary of the following theorem:

1For the definition of ®y, see [103].
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Theorem 1.2.3. Let A € LITQ""Z (M1 X My) be bisingular elliptic. Then, there exists an
operator B € L,""™"*(My X Ma) such that

AB=1d + Ky,
BA =1d + Ky,

where 1d is the identity map and Ky, Ky are compact operators. Moreover, sym(B) =

b=1{a"(A), 0™ (A)).

The proof of Theorem is a consequence of the global version of the
following lemma:

Lemma 1.2.4. Let A € L"™™2(Q; x Q) and B € L"™2(Qy x )y), then

{(ao b)mﬁmi,-/ (ao b)-,m2+m;} = A{am,, og, bmi,-/ A.my O& b-,m; b
where

(@ og, b)(x1,x2, D1, &2) (1) = a(x1, x2, D1, &2) 0 b(x1, x2, D1, E2) ()  Yu € C (),
(a og, b)(x1,x2, &1, D2)(v) = alx1,x2,E1, D) 0 b(x1,x2,E1, D2)(v) Yo € C ().

In the first row the composition is in L*(()1), the algebra of of pseudodifferential
operators on )y, in the second row, it is in L= (Cp).

1.3 Bisingular Operators on Euclidean Spaces

In this section we illustrate a global version of bisingular operators, adapted
to Shubin’s calculus on R”, see [101]]. This class of operators has been recently
introduced in [16].

Definition 1.3.1. We define I (R" ,R™), m; € R,m, € R, as the subset of
C®(R?M*212) functions such that for all multiindices a;, B; (i = 1,2) there exists a
constant C so that

105 208 9%a(x1, xa, £1, E)| < Clxn, &)™l (e, Eyymeioal-lfal, - (1.8)

for all xq, &1, x2, 2. We also define
r—oo,—w(Rnl’an) — ﬂ rml,mz(Rnl,an) — y(RZnﬁan)l
my,mp€R2
the set of smoothing symbols in this context.

Definition 1.3.2. A linear operator A : C*(R"*"2) — C*(R™*™) is a globally
bisingular operator if it can be written asﬂ

A(u)(x1,x2) = Op(a)(u)(x1, x2) = ffeixl'élmz'ézﬂ(xl/xz, &1, E)(&r, E2)dE1dES,

(1.9
wherea € I"™"2(R™,R™). We define G™ " (R™, R") as the set of operators (1.9)
with symbol in I""2(R™, R™).

248 = 2n)dé;
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The S-continuity of globally bisingular operators is immediate, we just have
to check all seminorms. A continuity result on suitable Sobolev spaces can also
be proved, as stated below.

Definition 1.3.3. For positive integers s1,5,, we define Q**?(R™,[R™) as the
space of all u € L>(R™*") such that

B1_ B
o = Y IR DS DSz ul.

g |+|B11<s1,
laz|+|B21<s2
For general 51,5, € R we set
Q12 (R™,R™) = {u € " (R"™™) | |lullgs2 = [{Op({x1, £1)° (X2, £2))|12 < oo}

Theorem 1.3.1. An operator A € G™"™(R™,R") can be extended, for every s1,s; €
R, as a continuous operator

A . QS1,52 (R}h/ an) N Qslfml,Sz*mz (Rnl , R?‘lz )

The proof of Theorem follows observing that T%°(R" x R") C TJ(R"*"),
see [101]] for the definition of FB(R”). Then, we use the well known results of
L*-continuity and the definition of Q**2(R™*"). In order to make the notation
simpler, in the sequel we will just write [""2 and G™ ", fixing the dimensions
of the base spaces to 11, 1. We prove now that globally bisingular operators
form an algebra.

Theorem 1.3.2. Let A € G™"2 gnd B € G2, Then, A o B € GMthmatl

Proof. With a simple evaluation we obtain

(A o B)u(x1,x2) = ffeixléﬁingzc(xl,xz, &1, E)(E1, E2)AE1AES,
where

c(x1,x2, &1, &2) :fe‘““”“”a(xl,xz, N1, M2)b(y1, Y2, &1, E2)dy1dy.dnidn, (1.10)
pr={y1—x1,m — &),  Ho={y2—x2, M2 — ).

We divide the product ab in (1.10) into four parts, for a fixed integer N > 0:
a(xy, x2, M1, M2)b(y1, y2, &1, E2) = (ﬂb)ll\[ + (ab)y + (ﬂb)é\] + 7N,
where

@Y= Y (- (- &)

loq!
IB1l+lar|<2N Bilaq!
aglla(xl, X2, 51’ T]Z)&f’ib(xll Y2, 51; 52)/

L

(ab)y = !(yz — )P (1 - &)™

la
IBl+laal<2N palaz

dpa(x1, xa, 1M, éz)8§§b(y1, x2,&1,&2),

14



(ab)y = Z ;(}/1 — 1) (y2 — 1) (1 = &) (2 — &)

1Byl !
|a1|+|/sl|<zNﬁ1 ol
|ava|+[B2]<2N

Iy dnaalx1, xa, 51,52)9 135217(3(1,962, &1, &),
= Y e )P — )P - S - &)

! |0( la !
o [+[Br1<2N prlpalan
laz|+]B2|<2N

1 pl
f f 1-t)N ' - tz)N_laf;llaazﬂ(xllxz, &1+ ti(m = &), St
0o Jo

tr (12 — 52))3ﬁ1 3/325(961 + ti(y1 = x1), X2 + (Y2 — x2), &1, E2)dtidts.

Also, we define

N = f e‘”‘]‘i“z(ab)f\[ dyidy.dnidna, Ry = f e~y dyy dy, dny dn,.
Let us focus on c). Notice that

(1 — xp)Pre~in—=m=L0) = (—j)h Dfﬁe—i<y1—x1,m—é1>, (1.11)
(171 _ 51)a16—i<y1—x1,1]1—§1> — (—i)“lD;lle_i<yl_xl’m_él>~ (1_12)

If a1 # pi1, there exists an index i such that, for example, (a1); > (1)i. So,
using relation and integrating by parts, we derive (a;); times w.r.t. y; the
expression (y; — x1)P1, and, since (a1); > (B1)i, the derivative is zero. Clearly, the
same scheme can be used if (a1); < (B1);, by exchanging the role of the variable
and the covariable, and by (I.1I). This implies that we can restrict ourselves to
consider the case a1 = 1. Now, integrating by parts and using relation ,
we get

1 j QU aq
Cll\] = affeﬂ@kﬂ/lh_éﬁ Z aglla(xlrxL‘El/nZ)Dx] b(xl,]/z, 51,52)61]/2!11]2.

laz|<N
(1.13)
The expression (1.13)) can be written in the form

1

N _ 125} a1

= —_ o

c E al!a&a 2 Dy'b,
Jo1 <N

where the symbol o, means the composition of the operators acting on R".
With the same scheme we can prove that

N _ a2
& = Z 2|852a01D ;b
laz|<N
Integrating by parts twice, we get
== ) ——dNaLaDy Db,
a1|a2| &1 &

|1 |<N
|z | <N

15



We have now to analyze the remainder. Consider the identity
Y1 m (Y22 (1= Ay = Ag) (1= Ay, = Ay 001 = 70T (1.14)
By Peetre inequality, we have

rnl <xr, E0)MHI72P (g, &) 2Py — xg WIR2P () — g )42P

(1 = EYMIF2P(ny — &y)ylmal+2aP,

Using (1.14) with P large enough and integrating by parts, we prove that Ry €
1"7‘}11 +lz —ZN,M2+12 —2N‘ O

Remark 1.3.1. It is useful to write c as

(]
c~ Z Crmy+1,=2j,my+1, =2
j=0
where
c - i =ct +c2 +c
mi+h=2jma+h=2j = Sy 2jmyt,-2j T Syl =2jmy+h=2j T g+l =2jmy+lh-2j7

and

1 1
1 _ I Pa12%) ary g 5 B %) a1 a2
le +1p —2j,m2+12—2j - Z | (aél 402 Dx1 b Z (Xz! axl axZ an] sz b)/

.. .
larl=j 1 i)
c? = i 0%q o1 D2b — i(90”8”‘211D0“DD‘2b
my+lh=2jma+lh—2j — a! 5 P11 M ! X1 9,4 Uy, V),
laal=j laa|<jf
c = Lam 2aD3 Db
my+h=2fmy+1-2j a1|a2| X1 7 Xx2 X3 xp
a1 |=laz|=j

In the sequel, we will study a subclass of globally bisingular operators,
namely operators with homogeneous principal part.

Definition 1.3.4. A symbol a € I has homogeneous principal part if

i) there exists a function a,, .(x1, x2, &1, &2), homogeneous w.r.t. (x1,&;) of
order my, such that

a-— 11)1 (xll él)amlr' S le_lfmZ (Rnl +1y ),

Y fixed 0-excision function, and the operator a(x1, x2, &1, D7), with (x1, &)
frozen, is a classical global operator in R";

ii) there exists a.,,,, homogeneous w.r.t. (x5, &,) of order mj,, such that
a—Pa(x, &)a.y, € T Y (RIM),

1, fixed 0-excision function, and the operator a(x1, x2, D1, &), with (x2, &2)
frozen, is a classical global operator in R™;
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iii) there exists a function a, m,(x1, x2, &1, £2) homogeneous w.r.t. (x1,&1) of
order my and w.rt. (xp, &) of order m,, such that ay, », is equal to the
principal symbol of a,,, .(x1, x2, &1, D7) and of a. , (x1, x2, D1, &2) and

a—P1(x1, E1)am,,. — Pa(x2, E2)(A.my) + P1(x1, E1)Y2(X2, E2) Ay my
belongs to I~ Lm-1(Rm+n2),

In the rest of the section, the class of globally bisingular symbols with homo-
geneous principal part is denoted by I}, and the corresponding operators
with homogeneous principal symbol by Gy, (R™*"). We introduce three
functions, associated with an operator A € Gy EI

o (A) : T'(R™) \ {0} > G*(R™)
(x1,&1) P (X1, %2, &1, D2),
0y (A) : T'(R™) \ {0} - G'(R™)
(x2/ 52) g a',iﬂz (xl/ xZ/ Dl/ 52)/
o™ (A) : T (R™) \ {0} X T"(R™) \ {0} — H"{"

(x1,%2, &1, E2) B Ay, (X1, X2, &, E2).

Remark 1.3.2. Analogously to the case of bisingular operators, one can introduce
classical globally bisingular operator: this is achieved through the construction of
Remark in this setting. That is, one can set

I = (RC) X Ry " py o0 (2 x 62,

where p7H(RCy(x1, &1), w2) = (x1, &1) forall x1, &1 € R*™ and w, € S22, and similarly
for pp. Here we will treat globally bisingular symbols with homogeneous principal
symbols, therefore we do not detail the construction of classical globally bisingular
operators.

Now, we introduce the notion of ellipticity. As in the case of bisingular
operators on the product of closed manifolds, we restrict ourselves to symbols
with homogeneous principal symbol.

Definition 1.3.5. Let A € GJ}"™*(R"*"). A is an elliptic globally bisingular
operator if there exist constants Rj, R, such that

i) the operator 0’1”1 (A)(x1, &1) is invertible for every (x1,&1) € T'R™ \ {0};
ii) the operator 05”(A)(x2, &2) is invertible for every (x2, &2) € T'R™ \ {0};
i) for (x1,&1) € T'R™ \ {0}, (x2, &) € T'R™ \ {0}
l[o™™2(A)(x1, xx, &1, E2) # O. (1.15)

Remark 1.3.3. As in Remark we notice that, if an operator A € G satisfies
3.

condition iii) of Definition 1.3.5) then both the operators " (x1,&1) € G"™(R™) and
052(x2, &2) € G™(R™) are elliptic Shubin-type operators. Furthermore, if A satisfies
conditions i) and ii), one can prove that both o;’“ (A)(x2, &2) and 057 (A)(x1, &q) are
injective Fredholm operator with zero index, therefore invertible operators also in the
scale of Q° spaces. Thus, in Definition[1.3.5) it is equivalent to require the invertibility
of the operators on the Schwartz spaces or on the Sobolev spaces Q°.

my,my . . .
SWéllézz is the set of homogeneous function of order m; w.rt. &,i=1,2.
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Theorem 1.3.3. If A is an elliptic globally bisingular operator then it is a Fredholm
operator.

Proof. It is a consequence of Theorem From Remark if A is elliptic
one can define B as the operator with symbol

b =t1(x1, £1)sym(o} (A) ") + Pa(x2, &2)sym(ay(A) )
— 1 (%1, E1)a(x2, E2)a™ M2 (A) L
The calculus implies that B is an inverse of A modulo compact operator. O

Using a Neumann series procedure, by Theorem we prove that, if
a globally bisingular operator is elliptic, then it admits an inverse modulo
smoothing operators. So we have this immediate corollary:

Corollary 1.3.4. Let A € G be elliptic. Then
i) if Au € Qv (RM*), then u € Qs+,
ii) ifAue S, thenu e S.
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Chapter 2

Complex Powers and
C-Function

In this chapter we define the complex powers and the spectral (-function of
operators in the classes defined in Chapter|l] In Section we study SG-
classical operators, starting with the case of operators on R” and then switching
to the case of manifolds with cylindrical ends. In this part we follow the
construction of L. Maniccia, E. Schrohe and J. Seiler [66]. Eventually, we will
introduce the non-commutative residue via the corresponding C-function. The
non-commutative residue in SG-calculus on R" was already introduced by F.
Nicola in [79] by means of the theory of holomorphic families. We compare the
two constructions on R"”, and show that the approach by means of the C-function
is convenient for the extension of this concept to manifolds with cylindrical
ends. In Section we define a regularized version of the non-commutative
residue, in order to prove a (regularized version) of the Kastler-Kalau-Walze
Theorem on R" endowed with a suitable metric. In Sections and we
introduce complex powers of suitable operators with homogeneous principal
symbols in the setting of bisingular operators and bisingular operators on
Euclidean spaces, respectively. In both cases, we analyze the continuation of
the spectral (-function and we give a precise description of the corresponding
Laurent coefficients.

2.1 ComplexPowers and C-Function of SG-Operators

In this section we prove, in particular, that the complex powers of suitable SG-
classical operators are again SG-classical. Then, we study the corresponding
C-function. The material in this section comes mainly from [15].

Theorem 2.1.1. Given an elliptic operator A € L™ "™ with my, my > 0, only one of
the following properties holds:

i) the spectrum of A is the whole complex plane C;

ii) the spectrum of A is a countable set, without any limit point.
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Proof. If i) does not hold, there exists u € C such that (A — pl) is invertible.
Without loss of generality, we can assume p = 0, so that

(A-AD) =AI-7AATY),

showing that (A — AI) is not invertible if and only if A # 0 and 1 belongs to
the spectrum of A~!. From the properties of elliptic operators, we have that
A1 e L™~ Moreover, in view of the hypothesis m1, m, > 0, of the continuity
of A™! from L? = H% to H™"™ and of the compact embeddings between the
weighted Sobolev spaces stated in Section A7l [2 > H™m s [2 s a
compact operator, thus it has a countable spectrum with, at most, the origin as
a limit point. O

Remark 2.1.1. The proof of Theorem also shows that the eigenfunctions of A are
the same of A"

For fixed 0y, 0, let A = {z € C: 6y — 0 < arg(z) < Oy + 0} be a closed sector of
the complex plane with vertex at the origin. We now recall the definition of
S5G-ellipticity with respect to A:

Definition 2.1.1. Let A be a closed sector of the complex plane with vertex at the
origin. A symbol a(x, &) € SG™™ and the corresponding operator A = Op (a)
are called A-elliptic if there exist constants C, R > 0 such that

i) a(x,&) — A #0, forany A € A and (x, &) satisfying |x| + || = R;

i) |(a(x,&)—A)7 < C(EY™ (x)™™ for any A € A and (x, &) satisfying ||+ || >
R.

Remark 2.1.2. When matrix-valued symbols are involved, condition i) above is mod-
ified, asking that the spectrum of the matrix a(x, &) does not intersect the sector A for
x| + 1€ 2 R.

To define the complex powers of an elliptic operator A, we need that the re-
solvent (A — AI)™! exists, at least, for |A| large enough. The following Theorem
shows that this is always the case when m;,m; > 0 and that the resolvent
can be well approximated by a parametrix of A — AL

Theorem 2.1.2. Let my,mp > 0 and A € L"™"™ be A-elliptic. Then, there exists a
constant L such that the resolvent set p(A) includes Ar = {A € A: |A| > L}. Moreover,
for suitable constants C,C" > 0, we have that

_ C
(A = AD Ml g2y < 1

and

’

- C
(A =AD" = BNl gz < Fel
where B(A) is a parametrix of A — AL

The next two results give estimates for the position of the eigenvalues of a
A-elliptic operator in the complex plane and the relation between A-ellipticity
and the principal symbol of a classical SG-operator, similarly to Theorem[1.1.5
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Lemma 2.1.3. If A = Op(a) € L™, m1,my > 0, is A-elliptic, there is a constant
co = 1 such that, for every (x,&) € R" x R", the spectrum of a(x, &) is included in the
set

Qoo = {2 € LV A (O™ W™ <1 < @)™ (o™}
and
I(A = a(x, &) < CUAL + (&)™ (x)™) ™, V(x, &) e R" xR, A € C\ Quy ey
Proposition 2.1.4. Fora € SG)|'"™, the A-ellipticity property is equivalent to

A, (X, 0) = A #0, forallx e R", w € S"}, L € A,
A (@, &)= A #£0, forall E€R", 0’ €S"1, A €A,

Ay (@, @) — A # 0, forallw € S"™ 1, @’ € S, A € A,
where ™1 = {u e R": |u| = 1).

Remark 2.1.3. If a is matrix-valued, the conditions in Proposition have to be
expressed in terms of the spectra of the three involved matrices, analogously to Remark
2.1.7]

We can now give the definition of A%, z € C. The following assumptions on
A are natural:

Assumptions1. 1. A€ L’gl’"’z, with my and my positive integers;

2. A'is A-elliptic with respect to a closed sector A of the complex plane with vertex
at the origin, therefore A is invertible;

3. The spectrum of A does not intersect the real interval (—oco,0).

Theorem implies that, if A satisfies Assumptions|(l} it has a discrete spec-
trum. In view of this, it is possible to find 0 € (0, 7t) so that (A — A)~! exists for
all e A=A0)={z€C: m—-0 <Larg(z) <m+0)}.

Definition 2.1.2. Let A be an SG-operator that satisfies Assumptions|l] Let us
define A,,z€ C,Rez < 0, as

1

=— | Z*(A-AD7tdA, (2.1)
2 Jr

v

where I = 9% A is the path in the Figure 2.1}

The operator A;, Rez < 0, is well defined since, from Theorem [I(A -

AD™Y|gqzy < 1 and this gives the absolute convergence of the integral. The

definition can be extended to arbitrary z € C:

Definition 2.1.3. Let A be an SG-operator that satisfies Assumptions|l} Define

4= A, forRez <0
1A, Al forRez>0,withl=1,2,..., Rez—1<0.
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Figure 2.1:

Imz
rgz=m—0
A
Rez
rgz=-m+0

Proposition 2.1.5. i) The Definition of A* for Rez > 0 does not depend on the
integer .

ii) A*A° = A** forall z,s € C.

iii) A¥=Ao...o Awhen z coincides with the positive integer k.
————

k times
iv) IfA € LMmm2 then A% € [[Mzmz,
The proof can be found, e.g., in [92] and [101]. Note that the definition and

properties of SG-symbols and operators with complex double order (z1, z,) are
analogous to those given above, with Re z;, Re z; in place of 1, m;, respectively.

Remark 2.1.4. An application of Lemma implies that the symbol of the operator
A has the form

sym(A*) = L f A% sym((A - AD™HdA.
2mi I* Q0

Itis a fact that, given an SG-classical operator A satisfying Assumptions|T} A* is

still classical. L. Maniccia, E. Schrohe and J. Seiler proved this in [66] by direct
computation, finding the SG-classical expansion of sym(A?). We prove here
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the same result by a different technique, which makes use of the identification
between SG-classical symbols and C*(B" x B") given in Theorem see Yu.
V. Egorov and B.-W Schulze [29].

Theorem 2.1.6. Let A € L7)"" be an operator satisfying Assumptions|l} Then A%,
Rez < 0, is SG-classical of order (m1z, myz).

Proof. In this proof we use vector notation for the orders, setting m = (1my, my),
e=(1,1). By Lemma and Remark we know that

1

a‘ = sym(AZ) = — f A? sym((A - /\I)_l)dA
2mi I Q0

We have to prove that a* € SGT*. To begin, we claim that

bz (x, &) = i f A% (am(x, &) = A) 7' dA = [am(x, E)F € SGT?, Rez < 0.
27 I Q) ‘

In view of Theorem itis enough to show that (D™bm;)(y, ) € C*(B" xB").
For t = (f1,t), set wi(y, 1) = (1 = [nD)""(1 — [y])2. By the change of variable
A =w_m(y, Ny, we get

1 A Wiz (Y, 1)

21t )+, oy XY, X (1) = A

_ f Hw-m(y,n)
21i Jz-q,, am(X(Y), X() — pw-m(y, 1)

(D™bmz)(y, 1)

1 G
= — S —, |
2mi L@W (D™am)(y, n) — u H

By Lemma[2.1.3} [am(x, &) — A > c((&)™ (x)"* +|A]), which implies [(D™am)(y, 1) —
pl = c(1 + |ul), so that D™?by, € C*(B" X B"), as claimed.

By the parametrix construction in the SG-calculus, and in view of the A-
ellipticity of A, we have

(A- A" =Op((a— 1)) + Op(c) + Op(g),

where g € SG™%, ¢ = sym((A = AI)"' = Op((a -~ AN)™) ~ L1 ¢j, ¢ =ri(@a=A)",
ri € SGc_lje, j =1, see [66]. We can then write
1

a7 =— AZsym((A — AI)"H)dA
2 Q0 Y

1 1 v
~— A¥a = A) A + — f Aria— A)HdA 2.2)
27Zl &+Q<x),<g> znl le a+Q<X>l<£)
1
+— A*qdA.
2711 C9+Q(x>,<£>

Let us consider the first term. The operator A is SG-classical so a = am + 7,
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re SGZ‘I“"—. We have, for all N € N,

@-AN1t=@m+r—A)7"
= (am - A)_l(l + (le - A)_lr)_l

N
= (am — 1) [Z(—l)k(am _
k=0

DN+ (@ = )71 = A) DA

and then
1
b = — A¥a—A)"ldA
2 90,
1 —1)k
= — A(am — A)7HdA + Z ) f A (am — M)A 4Ry,
2 I, I
bz b
where
(_1)N+1
Ry = : f A1+ (am — A) 1) (am — A)"N+2pNH A,
2 eIV

By the calculus and the hypotheses, it turns out that Ry € SG™N+De Moreover,
by € SG‘Cll‘Z‘ke, k > 1. Indeed, as above,

(1) f A Winzke (Y, 1) F (X (), X (1))
270 Jro iy @mOCy), X)) = AT

_ (D f LE W_mz (Y, 1) Wanz—ke (v, 1) (X (W), (1))
21t Jg+q,, Wm (Y, n) @m(x(y), x(1)) = pw-m(y, m)<+!

_ [ (@™<n(y, )"
21 Jgq,, (D™am)(y,n) — w1
Theorem [I1.1.3| then gives b € SG™* with b — by, € SGB*™°. In a completely
similar fa ion, it is possible to prove that the asymptotlc sum in gives
a symbol in SGT*7¢, since D7/®r; is smooth and uniformly bounded, together
with its derivatives, with respect to p (see [66] for more details). Finally, it is

easy to see that the third term in gives a smoothing operator. Again by
Theorem a* € SG™, with 0% = [am(x, &) mod SGT="e. 0

Remark 2.1.5. By Definition
A*=Ao A, Re(z-1)<0,

and, by Theorem we obtain that A is an SG-classical operator for all z € C.
So, denoting ain 1l_],.(x, &),j=0,1,..., the terms of the homogeneous expansion with

(D™ by, 1) = dA

du (2.3)

du € C(B" x B").

respect to & of Al the SG-calculus implies

By i (x, &) = Z aa i, Dxa}zml(z I)—k,* (24)

|a|+z+k j
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The same holds for the x-expansion

) 1
mzz k= Z aa - mpl— 1Da Zmz(z D-j* (25)

|a|+z+ j=k
The following Proposition is immediate, in view of the proof of Theorem 2.1.6}

Proposition 2.1.7. The top order terms in the expansions (2.4), (2.5) are such that

afm Z, = (um1 ’” )Z/

a-z,mzz = (a',mz)zl (26)
le

mzmez — (gml,mz )Z-

Remark 2.1.6. In order to define A* we do not need my, my integer numbers. Anyway,
this hypothesis is essential in the definition of the non-commutative residue given below,
so we included it from the very beginning in Assumptions

In [92]], E. Schrohe noticed that, for A € L™ such that Rezm; < —n and
Rezmy < —n, A% is trace class, so he defined

(A, z) = Sp(A?) = fKAz(x, x)dx, (2.7)

where Sp is the spur of A% i.e., a trace on the algebra of trace class operators.
Assuming that A is SG-classical and elliptic, we want to study the meromorphic
extension of C(A, z): this will allow to define trace operators, in connection with
the residues of C(A,z). We first consider the kernel Ka:(x,y) of the operator
A* defined in The information provided by the knowledge of the ho-
mogeneous expansions of the symbol of A* allows to investigate in detail the
properties of Ka:(x, y) on the diagonal (x, x).

Theorem 2.1.8. Let A be an elliptic operator that satisfies Assumptions (Il Then,
Kaz(x, x) is a holomorphic function for Rez < — and admits, at most, simple poles

at the points z; = %’, j=0,1,

Proof. Let us consider the kernel Ky4:(x, y) on the diagonal (x, x), given by

KAZ(x,x) = ﬁ fRn Sym(AZ)(x’ é)dé
1 . 1 .
= G |5|<1a (x, £)dE + o fg |21a (x, £)dE.

Clearly, the first integral converges, and the resulting function is holomorphic,
so we can focus on

p-1
l;fwéﬁ Zal(xﬁﬁmﬂﬁ

j=0

+frwwmm.
[E121
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The number p can be chosen such that m; Rez — p < —n: this means that we
have to deal with the terms appearing in the sum for j =0, ...,p — 1. Switching
to polar coordinates & = pw, p € [1, ), w € s,

p—l 00
f o, = ) f pm I dp f 7 (, 0)d0
[E1>1 j=0 1 Sn-1

+ f rmlz_p,.(x, &)dé.
[&1>1

To have convergence in the first integral, we must impose m; Rez + n <0, i.e.,
Rez < —.&. Evaluating the integral, we find

p-1
1
z A& = — 1 i | ;
L|21 ! (x, (S) ¢ — 1112 — ] +n Lﬂl amlz—]/'(x’ 6) 0

This proves that Ka:(x,x) is holomorphic for Rez < —--, and that it can be
extended as a meromorphic function on the whole complex plane with, at

most, simple poles at the points z; = %, j=0,1,... ]

Remark 2.1.7. As in the case of a compact manifold, see [98]], we can prove that the
kernel Ka=(x, x) is regular for z = 0 and, if A is a differential operator, Ka=(x, x) is also
reqular for all integer.

Now we proceed to examine the properties of (4, z):

Theorem 2.1.9. Let A be an elliptic operator that satisfies Assumptions|l} and define

C(A,z):f KAZ(x’x)dx:(Zi[)"f f sym(A®)(x, E)dEdx. (2.8)

The function C(A, z) is holomorphic for Rez < min{—mll, —nllz}. Moreover, it can be

extended as a meromorphic function with, at most, poles at the points

. jmn » k-n
Z],: ,]:0,1,..., Zk=
mq nip

 k=0,1,...

Such poles can be of order two if and only if there exist integers j, k such that

z} = = =z (2.9)

Proof. We divide R?" into the four regions

(o, &): I <118l <1, {(x,&): Ikl <L 1& > 1},
{(,&): x> 1,18 <1, {(x,&): x> 1, 1€ = 1}
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Setting, as above, * = sym(A~), we can write

G2 = g | y L R
G2 = g | ) f| R
G4 = G f y L ey
G = g | ; fp: R
(=Y a4z,

5

and examine each term of the sum separately.

1) The analysis of this term is straightforward. Since we integrate 4%, holo-
morphic function in z and smooth with respect to (x, £), on a bounded set
with respect to (x, &), C1(A, z) is holomorphic.

2) Using the asymptotic expansion of a* with respect to &, we can write

p-1

1
CAAJ):_QR)2:mﬂ+n—11;qi;lmzﬂxem&h

T ey fl “ f Tnzp, (%, E)dEdx.

Choosing p > my Rez + n, the last integral is convergent. For the sum, we

can argue as in the proof of the Theorem S0 C2(A, z) is holomorphic
iz

my *

for Rez < —-- and has, at most, poles at the points z} =
1 ]

3) To discuss this term we need the asymptotic expansion of a* with respect
to x. Using Proposition we can write

q-1

(0, 8) = Y @ (8) + Ee (6,8,

k=0

which implies

-1
1 i X

(A, z) = —f f a, .. (—,é)xmzz‘kdédx

3(4.2) Q)" Jiys1 g|<1kZ:0‘ maz =k \ x| i

1
+ — t yz—g(X, E)AEdx.
2mn)" Lpl le moz=q(%7€)

Now, switching to polar coordinates, we can write

I

k=0

I ,&)dEdx.
2m)n fx|>1 j|;|<1 iz, E)AEY
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4)

Arguing as in point (2), it turns out that (3(4,z) is holomorphic for
Rez < —;& and can be extended as a meromorphic function on the whole

kn

complex plane with, at most, poles at the points z7 et

To treat the last term we need to use both the expansions with respect to
x and with respect to £. We first expand a* with respect to £

déd

(2)n2£l>1jl;l>lmlz]xé)gx
—_— e . (x, &)dEdx.

b o f| y fm T Dl

In order to integrate over |{] > 1, we assume Rez < —%. Now, switching
to polar coordinates and integrating the radial part, we can write

Cu(A,2) = (2n)nZ f| e f . (x, 0)d0dx
S z ,E)dEdx.
+ @n)" >f|3;|>1 j|;>l rmlz—p,-(x &)d&dx

Now, in order to integrate over |x| > 1, we expand with respect to x

Ca(A,2) =

-1 p-1
1 3 1 i
Ca(A,2) =~ @n) kZ:;‘ 4 L oz ] f B, 0)dOdx
1 &
0)dxdo
(2n)” mz+n— ]j|;>1 Lm M=z q(x Jax

=0

\
,_.

q-
1 e mek (X, £)AEAO
(277)" fxlzl «lel ETpm k( )

+_ Vo o g (X, E)AXAE.
(277)” f|;|>1 £>1 mz—p,myz q( )

Imposing Rez < -7, and integrating the radial part with respect to the
x, we obtain

&
,_.
._\

p-

1
A MpZ— k
Cal4,2) = nk:o py mpz+n—kmz+n—j m=i
p-1
1 1
(27'()” ]Z;l myz+n— j’q(z)
1 & 1

(27'()” 4 myz+n—k Ry (@) + Rpy(2)

where

fo fs L fS , mrz—jmaz- (07,0)d0d0". (2.10)



Rk, Ryk, Ry, are holomorphic for Rez < min{—;-, mlz}, since p,q are
arbitrary. Therefore, we obtain that (4(A,z) is holomorphic for Rez <
mm{—— ——} and can be extended as a meromorphic function on the

whole complex plane with, at most, poles at the points z} = Jm”, zk kmz".

Clearly these poles can be of order two when the conditions (2.9) in the
statement are fulfilled.

The proof is complete. o

We can now prove two Theorems which show the relation between (A4, z)
and the functionals introduced by E. Nicola [79], namely

Try o(A) = (Zn)” foSa_ _.(6,0)d0'd0 = —— (2 e

TrlP(A) (27'()” T_m L|<r fs; 1 a_y.(x, 0)d0dx

my+n—1

~(log7) L7, - Z (mz_k) e 2.11)

i) = g B[ [ [ a0, 0pazao

-1 ,
mtn- =

-tog0y - Y o]

j=0

where " I”’2 are integrals of the form (2.10) with a,,;-, and a_, ;,  in

m1]

place of a* respectively. We define the following new functional, that

myz—jmyz—k”
we call the angular term

TRo) = o [ [ 2 Gemmmen)|_ @ 00000, 212

Remark 2.1.8. In general, it is rather cumbersome to evaluate the angular term defined
in 2.12). In the case my = my = —n, the computation is easier: by Proposition[2.1.7]

4

dz

z
z _ 1 a—n z,~Nnz a—”,—”
-nz,~nz = Im

=a_,_,logla_, ).
. e Z—1 n,—n g( n, n)

Theorem 2.1.10. Let A be an operator satisfying Assumptions|l} Then, defining
TR(A) = mimRes2 (C(A,2)) = mmz limz = 1°CA,2),  (213)

we have
TR(A) = Try,.(A). (2.14)

Proof. To evaluate the limit we split again C(A4, z) into the four terms already
examined in the proof of Theorem We get:

1) lim(z - 1)2C1(A, z) = 0, since (;(A, z) is holomorphic;
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2) lirr11(z —1)202(A, z) = 0, since (»(A,z) has a pole of order one at z = 1;
VAl
3) Similarly, lin}(z - 1)%03(A,2) = 0;
zZ—>

4) Finally,

1
: _ 2 — 1 ’ ’
lim(e - 104D = fS fS al,,(0,0)d0'do0

Now the theorem follows from Proposition H 2.1.5, which gives A! = A, so
thata!, , =a_, ;.

O
Theorem 2.1.11. Let A be an operator that satisfies Assumptions|l} Then, defining

Res”_, (C(A, 2))

TRys(A) = lim(z = 1) |04, 2) - — "= — |

(2.15)

we have
TRo(A). (2.16)

— 1 —~ 1= 1
TRy :(A) = ——Try(A) - —Tr.(A) +
we(8) = Ty () = T (A) +
Proof. We notice that the function

Res?_;({(A, 2))
(-1
is meromorphic with a simple pole at the point z = 1, so the limit (2.15) exists

and is finite. In order to prove the assertion, we use a decomposition of R?"
into four sets defined by means of a parameter 7 > 1,

C(A,2) -

Dy ={(x,&): X<t l&l <), Dy={(x&):xl<1l&l> 1),
Ds ={(x,&): x| >t &l <), Di={(x&): x| >7Il&l =1}

and set
Ci(A,z) = ff a*(x, &)d&dx, i=1,...,4.
D;

1) D; is a compact set: C1(A,z) is then holomorphic, so that, for any 7 > 1,
= lirlfll(Z -1)Gi(A,2) =0
z—

2) Expanding a* with respect to &, we find

p-1 gmztn— j

(a(A,2) = (Zn) ) e ] fg . (x, 0)d6dx

|x|<T =0

" @ny j|;|<7 f Tz, (%, S)dedx.



For p big enough, 7., is absolutely integrable with respect to &, So we
have, for q big enough, and any 7 > 1,

_ i __ ! 1
L, = gr}(z DG(A,z) = @ f|;c|<f LM a-, (x,0)dodx,

since any term in the limit goes to zero, apart the one corresponding to
j=n+mj.

3) Similarly, using the expansion of a* with respect to x,

1 5] mzz+n —k
G(A2) = (2 D | f %, (0,60

+ (2m)" j; . I .. t.,mZz_q(x, &)d&dx,

so that, for g big enough and any 7 > 1,

— lim(z 1 1
Ls = lim(z = )G(A,2) = = fs L ISTa_,,,,(e,g)dgde.

4) Expanding with respect to both the variables x and &,

C (A ) 1 qZ_l p—1 Tm]z-m—j Tmzz-m—k —
z) = ,
e @y & ez +n = jmoz+n - komz=j
]:
1 p-1 mzn—j
x, 0)dOdx
ey JZ‘ T o o im0
q

Maz+n— —k
d&d
(27‘()n < 1MpZ + 1 = kj;,, 1f|> miyz—pmyz—k(0r £)AEAO

' (Zn)” ‘f|3‘f>’[ L|>T @127p’m227q(x’ 5)dx‘1(£



So, for p and q big enough, and any 7 > 1, we have

2
Ly = lim(z - 1) (54(14, 2) - w) _

(z-1)
(Z B 1) ,.[(m1+m2)(z—1) -1 MozZ—N—11y
-1 mymp(2n)® (z—1)2 e
-1 Luim — 15
=1 mymp(2n)" (z —1)2
1 p-l Lmn—j
iy Z pr— L
mZ( 7'() j=0,j#my+n Mm+n—]j
-1
. 1 q Tmz+n—k ik
n _ 1 -n
1y (271) k=0 kmmpsk T2 T k

1 1
o A (x,0)d0dx
my (270" Jiise Lﬂl ima=g(70)

1 1
- T —p - (8, £)AEAO
my(2m)" L11 LlZT P 6, &)

The coefficients I ", 1"27¥, limits of corresponding integrals of the form
(2.10), are as in (2.11), while the second limit coincides with the angular

term ﬁg(A), defined in (2.12). Moreover, the first limit goes to

. pm+m)z=1) _q B

Qmyr ™" e mimy(z—1)
_ 1 _am +my _ 1 n ( 1 1 )
S T logt = (27'()”1_” —~ log T + o log].

Clearly, ﬁxlg(A) = lirP (Li+Ly+ L3+ Ly) = liIP (Ly + L3 + Ly). The two terms
T—+00 T—+00

f f £y g (¥, 0)dOdx and f T —p—n(6, £)AEAD
¥zt JS1 St JlElzT

in L4 vanish for 7 — +o0, by the uniform continuity of the integral. Moreover,
the terms in L, involving 1;1’117]. and I"27¥ are relevant only for m; +n—j>0and
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my +n —k > 0, respectively. Then, finally,

2

(zn)n T—)OO[ £|<T L” 1 a_n (x Q)dx‘ig

1 my+n—1 y—k

o L L (log oI’!

f f a._u(x, 0)dxdo
Sn-1 £|<T

my+n—1

+_
My = ml—]’“lf

m1m2 L‘n 1 L‘n 1 dz H’I1Z n—mniy,MyzZ—n—mip

which, by (2.11)), coincides with (2.16). The proof is complete. O

1=j

+ —(10gT)I ]

(0,0')d0’do.

z=1

The functional TR can be extended to all SG-classical operators with integer
order in a standard way, cfr. [55]. Explicitely, let A € Lgl’mz, my, my integers,
and choose an elliptic operator B of order (m], m}), satisfying Assumptions
and mj > my, m} > my. We can define {(B + s4, z), s € (-1,1), and then set

mw:%%%mi@wHAmo (2.17)
5=
Using the expression of TR given in Theorem it is possible to prove
that these definitions do not depend on the operator B. Moreover, with this
approach it is also possibile to prove that TR is a trace on the algebra </ of all
SG-classical operators with integer order modulo operators in L™, see [55].
Now, we switch to the case of a manifold with a cylindrical end M, as
defined in Subsection[I.1.2] First, we restate the notion of A-elliptic operator in
this case.

Definition 2.1.4. Let A € L]""*(M); A is A-elliptic if the principal part of a/ is
A-elliptic on Us, X R" and A, restricted to ./, is A-elliptic in the standard sense.

We can now formulate a set of hypotheses, analogous to Assumptions
that imply the existence of A%, z € C, for A € L' (M):

Assumptions 2. 1. A€ Lgl’mz (M), with my and my positive integers;

2. Ais A-elliptic with respect to a closed sector A of the complex plane with vertex
at the origin, therefore it is invertible;

3. The spectrum of A does not intersect the real interval (—oo,0).

The definitions of A* and C(4, z) for such an operator on M follow by the known
results on a closed manifold, see [98, [101], combined, via the SG-compatible
partition of unity, with similar constructions on the end %" through the exit
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chart, the latter are achieved by the same techniques used before in the case of
R". Note that, in view of the SG-structure on M given by the admissible atlases
and the hypotheses, A* and (A4, z) are invariantly defined on M. It is then easy
to prove that the properties of ((A, z) extend from R" to a general manifold with
cylindrical ends. The next Theorem[2.1.12]is the global version of Theorem[2.1.9]
on M:

Theorem 2.1.12. Let A € L™"™2(M) satisfy Assumptions Then C(A, z) is holomor-

phic for Rez < min{-_%, -} and can be extended as a meromorphic function with,

at most, poles at the points

1o

Such poles can be of order two if and only if there exist j and k such that zjl. =z

Proof. We have

C(Az) = fM Ka=(y, y)dy = L{ Kaz(y, y)dy + L \CKAz(y,y)dy- (2.18)

Since Ka:(y, y)dy has an invariant meaning on M, we can perform the compu-
tations through an arbitrary admissible atlas & = {(Q;, 1)}Y,. By the assump-
tions above, we know that {(€;, l/li)}z.\i Il isanatlas on.#: then, by considerations
completely similar to those that hold for compact manifolds without boundary,
see, e.g., [101], Ch. 2, we can prove that the first integral in is a complex
function of z with the properties stated above and, at most, poles of the type
z}, j=0,1,... To handle the contribution on ¢\ C, we fix an exit map f; and

compute the second integral, modulo holomorphic functions of z, as

f K(Op(a £): (x, x)dx.
Ue»fﬂf

We can then show that the remaining assertions on (A, z) hold true by repeating
the same steps of the proof of Theorem[2.1.9] O

We now extend the definition of the non-commutative residue for SG-
operators on R" to SG-operators on M in terms of the zeta function. First
of all, choose an admissible atlas and introduce the following functionals on
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L™ (M), analogous to those defined in (2.11):

TR(A) = —— Ay _n(0,0)d0'd0,
(2 l’l §n-1 §n-1 ’

Tr, (A hmf f a_y,(x,0)d0’ dx
o) = (271)” ol g, St )

— (log ) f f Ay, n(6,0)d6'dO
§n-1 Sn-1

m2+n -1 mz—k

o do'd
my —k fgfs”” (0, 0')a0" 6] (2.19)

Tr,(A) = (271)” lim fs N fg - (0, 8)dEdO

~ (log 7) f f -y (0,0')d0’d6
§n-1 Sn-1

m1+n -1 m- i
A, -i-n(0,07)d0’dO
]':O (ml - ]) LI 1 Lx 1 - ] ) ]

The angular term, analogous to (2.12), is defined as

—=c 1 d
TRy(A) = 2n)" L’l L’l E(ﬂmzfn—ml,mzzfnfmz) L

Then, by arguments similar to those in the proofs of Theorems[2.1.10jand [2.1.11}
we can prove:

(0,0)d0’do.  (2.20)
1

Theorem 2.1.13. Let A be an operator that satisfies Assumptions[2|and set

TRy(A). (2.21)

— 1 =c 1 =c¢
TRy :(A) = _m_lTr‘P(A) - m—zTre(A) + p—

TR(A)

The functionals p— and ﬁx,g (A) are the coefficients of the polar parts of order two
2

and of order one of C(A, z) evaluated at z = 1, respectively.

Remark 2.1.9. The functional TR extends to all SG-classical operators on M with
integer order. The scheme is the same of (2.17). In this way, TR turns out to be a trace
on the algebra A of SG-classical operators on M with integer order modulo smoothing
operators.

2.2 Kastler-Kalau-Walze type Theorem and Regu-
larized (-Function

Theorem shows that the kernel Kx:(x, y) of the complex power of suit-
able SG-elliptic operators behaves essentially as the kernel of the the complex
power of elliptic operators on closed manifolds first studied in [98]. Namely,
it admits a meromorphic extension for Rez < —-- and has at most simple

poles. Nevertheless, in Theorem we have prcl)ved that the C-function is
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different from the case of closed manifolds, since it can have poles of order
two. The different behavior is due to the non compactness of R". In this sec-
tion we introduce a regularized version of the C-function, following the idea
of L. Maniccia, E. Schrohe and J. Seiler [65]. The regularized C-function looses
the connections with the non-commutative residue. Indeed, we introduce a
regularized non-commutative residue which is not a trace on the algebra of
SG-classical operators, but has a deep link with the coefficients of the expan-
sion of the heat trace. Since we are not interested in the trace property of the
regularized non-commutative residue, we will define it on L‘S”O JL=°0, rather
then on L7*/L™~*. In view of this different setting, we do not consider
SG-ellipticity, but the usual notion of ellipticity. Clearly, elliptic operators are
not Fredholm on the Sobolev spaces on R”, since they admit an inverse mod-
ulo L=°9, which, in general, is not compact. We call this almost-inverse weak
parametrix. Notice that in this section, in order to make more transparent the
link between C-function and heat trace, we use a slightly different convention
to define C-function. The results presented in this subsection are published in

[4].
2.21 Finite-Part Integral

The finite-part integral, introduced in [65], gives a meaning to the integral of a
classical symbol 4, and coincides with the usual integral when a € L1(R"). dS
denotes the usual measure on |x| = 1, induced by the Euclidean metric on R”,
while, in this subsection, dx denotes the standard Lebesgue measure on R".

Definition 2.2.1. Let a be an element of the classical Hérmander symbol class
S’C'{ (R"), that is,

1. a € C*(R") and Yx € R" |D%(x)| < C,(1 + |x|)"™ 1!,

2. a admits an asymptotic expansion in homogeneous terms a,,—; of order
m — j: explicitly, for a fixed 0-excision function w and all N € N,

N-1

a-— Z @ ay-j € S"N(RM).
=0
Then:
- ifmeZ,set
J[a(x) dx := hm f a(x) dx— f Am-j(x) dx
lxl<p =0 Y =p
= lim f a(x)dx — ¥ Lp’“m‘j — Busmlogp
p—00 |X|<P n +m— ]
where

pj = f Ap-;dS; (2.22)
[x]=1
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-ifmé¢7Z,set

[m]-n-1
dx:=li f dx — f m—i(X)dx|. 2.23
fa(x) X pglgo[ IxISpa(x) X Z Mspa (%) x] (2.23)

j=0

From the above Definition it is clear that if 2 € L'(R") the finite part integral is
equivalent to the standard integral. If m ¢ Z the finite part integral coincides
with the Kontsevich-Vishik density [57], [58].

Remark 2.2.1. Now, we consider the radial compactification of R" to S% as in Remarks

LI2[12.1

X1 Xn 1
A+t A+ ) @Rzl

RCZRH _)Sﬁ:x:(xl/”-/xn)’_)yz

and choose V41 as boundary defining function on S';, such that its composition with
RC coincides in the interior with —= x = RCY(y) e R". Then

Va+ixp)’

dx = R 1)) ds
f a(x) dx fS e )

where the right hand side is defined as the term of order €° in the asymptotic expansion

of

f a(rc N (y))dS(y), €\, 0.
SzmlynHZE}

lff f dS is called Renormalised integral, see [3] and the references quoted therein for
st

its precise definition, properties and applications.

2.2.2 Regularised Trace and Regularised C-Function

We fix a closed sector of the complex plane A with vertex at the origin, as in

Figure

The definition of A-elliptic operator is the standard one, here given for
operators defined through matrix-valued symbols, whose spectrum we denote

by a(a(x, &)):

Definition 2.2.2. The operator A € LF0(R") is A-elliptic if there exists a constant
R > 0 such that
oax, ) NA=0 V=R, VxeR" (2.24)

and
(a(x,&) = A1 e SGHOR") VIE =R, VxeR", VAeA. (2.25)

It is well known that, if an operator A is A-elliptic, we can build a weak
parametrix B(A) such that

B(A)o (A —AI) =1d + Ry(A),

o (2.26)
(A= AD) o B(A) =Id + Ry(A), Ry, R, € L™O(RM).
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Moreover
AB(A) € L‘“’O(R”),

Az [(A _ /\I)_l _ B(/\)] c L—oo,O(Rn), VYAeA \ {0} (227)

From now on, u > 0 and A is considered as an unbounded operator with
dense domain D(A) = H¥(R") — L*[R") — L*[R"). To define the complex
powers of a A-elliptic operator A, we assume that the following property holds
for its spectrum o(A):

o(A) N {A\ {0}} = 0 and the origin is at most an isolated point of 6(A). (Al)

Proposition 2.2.1. Let A € L*(R"), u > 0, be a A-elliptic operator that satisfies
Assumption (Al). The complex power A*, Rez < 0, can be defined as
A% = i A(A - A4, (2.2.28)
27 I Ae
where Ae = AU {z € C | |z| < €}, with € > 0 chosen such that 6(A) N {Ae \ {0}} =0
and d* A. is the (positively oriented) boundary of A..

Proof. By the definition of A-elliptic operator, we know that (A — AI)™! exists for
all A € A\ {0}. Moreover, by (2.27) we have that A is sectorial, so the integral
(2.:2.28) converges in L(L*(R")). i

Remark 2.2.2. The definition of A is then extended to arbitrary z € C in the standard
way, that is A* := A*7 o AJ, where j € Z, is chosen so that Rez — j < 0, as in
Definition

Theorem 2.2.2. Let A € LFO(R"), u > 0, be A-elliptic and satisfy Assumption (AT).
Then, A% € L¥0(R"). Moreover, if A is SG-classical then A* is still SG-classical

Remark 2.2.3. In order to define the symbol of A, the resolvent (A — AI)™ can be
approximated with the weak parametrix B(A) defined in 2.26). In this way, a symbol
for A% can be computed, modulo smoothing operators w.r.t. the E-variable. A* can then
be considered as an element of the algebra </ given by

o = U LEORMY/LO(R™). (2.2.29)
UEZ

The proof of the Theorem[2.2.2 has been given in [66] and can be seen also as a
slight modification of Theorem[2.1.6]

From here on, dx will denote the measure induced on R” by a smooth
Riemannian metric ¢ = (gjx). In order to obtain a result similar to (2) we have
to impose some condition on g, namel

g is a matrix-valued SG-classical symbol of order (0, 0). (A2)

If A € L#™(R") is trace class, that is u < —n,m < —n, we can define its trace

TR(A) := fKA(x,x)dx,

1In the b-calculus setting, this condition implies that the underlying metric is polyhomogeneous:
this is used, for instance, in [4].
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where K4(x, x) is the kernel of A restricted to the diagonal. The concept of regu-
larised trace, valid for classical SG-operators under less restrictive hypotheses
on the order, has been introduced in [65]], using the finite part integral defined
in the previous section:

Definition 2.2.3. Let A € Lill’m(R”) be such that y < —n. We define the regu-
larised trace of A as

TR(A) := JC Ka(x, x) dx. (2.2.30)
Remark 2.2.4. Note that the condition u < —n implies that Ka(x,x) is indeed a
function and that the finite part integral (2.2.30)) is well defined.

Now, using the regularised integral, we can give the definition of regularised
C-function:

Definition 2.2.4. Let A € L‘: I’O(R”), u > 0, be a A-elliptic operator that satisfies
; then we define
8(A,z) = TR(A™?) = f Ka=(x,x)dx, Rez> g (2.2.31)

where Ka-:(x, x) is the kernel of the operator A*.

It is simple to prove that {(A, z) is holomorphic for Rez > ﬁ, in view of the fact
that the hypotheses imply that the kernel K4-(x, x) is a function. As in the case
treated in [98], we can look for meromorphic extensions of LA, z).

Theorem 2.2.3. Let A € Li’l’O(R”), p > 0, be an SG-operator that admits complex
powers. Then the function {(A, z) can be extended as a meromorphic function with, at
most, poles at the points z; = %, jeN

Following the idea of M. Wodzicki [109], see also [55], we can now introduce
a regularised version of the non-commutative residue.

Definition 2.2.5. Let A € L” 0(R”) u > 0, be a A-elliptic operator that satisfies
(AT). We define the regularlsed non-commutative residue of A as

wres(A) := preszz_1C(A, z).

In the case u € N, using the explicit expression of the regularised integral and
of the residues of {(4,z), we get

utn-1
_ ﬁf Pl =
wreS(A)_ Zn)” P_"X’ I:'fb;<p£| 1“—11 (x CE dS(E)dx jz(; ] ,Bp+n Ing]

(2.2.32)
where

B o dS(E)AS(x),
L|:1 j|‘;|=la Jr (CS) (X)

dS(x) the metric induced by g on |x| = 1. The case u ¢ Z is not very interesting,
since then wres(A) always vanishes, due to the fact that, in this case, the kernel
Ka-(x,x) hasno polesatz = —1. The residue wres(-) also vanishes on smoothing
operators w.r.t. the &-variable, so it is well defined on the algebra %7. Inciden-
tally, let us notice that the expression is analogous to the functional
res, (A) defined by F. Nicola in [79], by means of holomorphic families.

39



2.2.3 A Kastler-Kalau-Walze type Theorem on R”"

First, we restrict to the case of R* and consider the classical Atiyah-Singer
Dirac operator [P acting on the spinor bundle £R*. If the metric on R* satisfies

Assumption (A2), it is immediate to verify that I) € Liio. Let D7 denote a weak
parametrix of the square of the Dirac operator, that is P*olp> =I+R,R e L0,
The calculus implies that D?e L;l2’0. Via direct computation, following the
idea of D. Kastler [56], it is possible to compute a_4 (x, &), the term of of order
—4 in the asymptotic expansion w.r.t. the &-variable of the symbol of D=
Evaluating the integral on the sphere w.r.t. the £ variable one gets

1
[ ot as© = - s

So we have that

wres(D?) = — 5 41n2 f s(x) dx. (2.2.33)

The proof of is contained in [12]]. Let us notice the slight abuse of nota-
tion in (2.2.33), due to the fact that, in general, 2 does not satisfy Assumption
(AI): anyway, we can use as a definition of wres(I) ) in this case.

In order to obtain a generalisation of to higher dimensions and to
more general operators, the direct approach seems to be rather cumbersome.
For this reason, we follow an idea of T. Ackermann [1] and take advantage of
the properties of the asymptotic expansion of the heat kernel of generalised
Laplacians.

As explained in the previous Section, if A € LZO(R”), u > 0, is A-elliptic and
satisfies Assumption (AT), we can define the complex powers of A and the heat
semigroup e~*4 as well:

~tA i ~tA -1
= A—- Al .
e 27 Jyon, e AT dA
In [65] it has been proved that e~* is an SG-operator belonging to L=%(R"), so

we can also consider the regularised heat trace TR(e*4). There is a deep link
between regularised heat trace and -function:

Theorem 2.2.4. Let A € Lf I’O(R”), u > 0, be an operator that admits complex powers.
Then, for suitable constants ¢y = ci(A), the following two asymptotic expansions hold:

co 1 -1-1
r@ A, ~). ) (z ok ) , (2.2.34)
k=0 1=0 ¢
co 1
TR~ Y Z(—l)’ck,t‘"TTkz()g’t, £\ 0. (2.2.35)
k=0 1=0

Proof. The statement follows by adapting the arguments given in [65] to the
present situation. A main role in the proof is played by an abstract theorem by
G. Grubb and R. Seeley [39], connecting C-functions and heat traces. O
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Remark 2.2.5. Notice that in (2.2.34) poles of order two arise just for negative integers
—n, n € N, the points where the I function has poles of order one.

Let us now consider a generalised positive Laplacian A € LC_IZ’O(E), where E
is a Hermitian vector bundle on R" with connection V, that is

A=V'V+.%, X €C”(End(E)) symmetric endomorphism field.

We require that A satisfies Assumption (AI): in this way, we can define ¢~

above. In the case of closed manifolds, it is well known (see, e.g., [5]) that

as

Koo (,2) = ki(x, x) ~ (dmet) 2 [1 1dp + (%s(x)ldg )+ O(tz)], £\, 0.

(2.2.36)
where s(x) is the scalar curvature of the underlying manifold and the remain-
der term depends only on the connection and on the endomorphism field. The
asymptotic expansion also holds in the case of manifolds with cylindri-
cal ends, since the computations are completely analogous and purely local, see
[3]. The evaluation of the first term of the asymptotic expansion can be found
in [64]: the expression of the second term then follows, using the properties

of generalised Laplacians. In view of our hypotheses, the right hand side of
(2.2.36) is a classical SG-symbol: then, we obtain

ﬁ(e—tA) ~

@m)3{fRua¢mHj1R§qu—Tmm@a)

M+aﬂ}t\0
(2.2.37)

Since, trivially, when /1 is a meromorphic function with a simple pole in z, the
function h(z) = h(cz), c € R, is a meromorphic function with a simple pole in =
and

we also have that

Wres(A72 ) = 2 — n)res,.1{(AT2 Y 2) =2 reszz%é(A, 2)

n_? (2.2.38)

5 )_1 c20(A),

=2T (
where ¢0(A) is the coefficient of the term of order = in the asymptotic
expansion (2.2.35). Finally, by (2.2.37) and the properties of I'(z),

wres(A™2 ) = r(;)(;i)g JC[RkéE)s(x) — Trace(#;) | dx. (2.2.39)

Remark 2.2.6. Assumption does not imply that A is invertible, since we allow
the origin to be an isolated point of 6(A). In view of this, the operator A=2*! has to be
interpreted in the sense of the complex powers defined above.

If we consider a generalised Laplacian A, then its principal homogeneous
symbol is g]k(x)éjék =|&% > 0, £ # 0. A turns out to be always A-elliptic
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with respect to a suitable sector of the complex plane, while 0(A) can admit the
origin as an accumulation point. For example, it is well known that the classical
Atiyah-Singer Dirac operator on R", endowed with the canonical Euclidean
metric, has no point spectrum, but the essential spectrum is the whole real line.
In this case Assumption of course fails to be trueﬂ A simple example
such that Assumption is satisfied can be built in the following way. Let
us consider a general Dirac operator D, defined on a Clifford bundle E over
R": D? is then a generalised Laplacian and a non-negative operator. If we
consider D> = D? + €l, we obtain an invertible generalised Laplacian, that
clearly satisfies (AI). If we consider the classical Atyiah-Singer Dirac operator

I, formula (2.2.39) turns to

— (3]
wres((P?) %) = (rn(ﬂ)% (—11—2 fs(x) dx — efdx). (2.2.40)
2

On the other hand, a natural example of a metric on R” which can satisfy
Assumption is an asymptotically flat one. In General Relativity, such an
hypothesis on the metric is commonly assumed (e.g., in order to define the
ADM-mass). Explicitly, we can consider a metric g such that, for a constant
a >0,

gik(x) = 05 = O(lx|™*) outside a compact set K C R".

Moreover, restricting ourselves to R?*, if > 2 the scalar curvature s(x) is
integrable: in this case, (2.2.33) becomes

wres(ID %) = —ﬁ fs(x) dx.

The method above can be used to treat also the case of manifolds with cylin-
drical ends, using the contents of [15]: one defines in this setting a regularised
non-commutative residue and exploits its connection with the zeta function.
The asymptotic expansion of the heat kernel as ¢ “\, Oislocally defined, so, using
suitable regularised integrals the results can be generalised to those manifolds
in this class which admit a spin structure. We omit here any further detail.

2.3 Complex Powers and (-Function of Bisingular
Operators
Here we define the complex powers of a subclass of elliptic bisingular operators.

The contents of this section come from [13]. The first step is to give a suitable
definition A-ellipticity for bisingular operators.

Definition 2.3.1. Let A be a sector of C; we say that a € ngrl’mZ(Ml,Mg) is
A-elliptic if there exists a positive constant R such that

i)
-1
(™2 A)(1,02) = A) € STV, M),
for all [v;] > R, i = 1,2, uniformly for all A € A.

2For further properties of the Dirac spectrum on open manifolds, the reader can refer, for
instance, to the monograph by N. Ginoux [33].
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ii)
01" (A)(v1) = A Idw, € L7 (Ma),
is invertible for all |v1| > R, uniformly for all A € A.

iii)
0,7 (A)(v2) = A Idy, € L)' (My),
is invertible for all |v,| > R, uniformly for all A € A.

In the following, in order to define the complex power of A, we assume that
A is a sector of the complex plane with vertex at the origin, that is

A={zeC]larg(z) e[n—-0,-n+0]},

as in Figure

Lemma 2.3.1. Let a € S™"(C)1,0),) be A-elliptic. Forall K; € Q;, i = 1,2, there
exist cg > 1 and a set

1
Qg e, ={z€e C\A| a<51>m1<52>m2 < lz] < cpd&1)™M (&)™) (2.3.41)
such that
spec(a(x1, x2,&1,82)) ={A € Cla(xy,x2,E1,82) — A =0} € Qg g,
Vx; € ;& € R™,

Moreover, Vx; € K;, & € R, A e C\ Qg, s,,i=1,2,

(2= 1,32, 81, £2)) | < COAL+ (€)™ E)™)
|sym(o;"1(a) - /\)_1| < C(IAl+ (&)™ (&)™),
[sym(o32@ - 2)"'| < COAL+ g™ .

The proof of Lemma is essentially the same of Lemma 3.5 in [66]].

Next, we prove that, if A A-elliptic, then we can define a parametrix of
(A-AId). Actually, we prove that, for || large enough, the resolvent (A—A Id)™!
exists. Restricting ourselves to differential operators, we could follow formally
the idea of Shubin ([91], ch. II) of parameter depending operators. For general
pseudodifferential operators, it is well know that this idea does not work, see
[40].

Theorem 2.3.2. Let A € Ly!"*(My X M) be A-elliptic. Then there exists R € R*,
such that the resolvent (A — AI)™! exists for A € Ag = {A € A | |A| > R}. Moreover,

A= AN = O(AI™), A€ Ag.

Proof. First, we look for an inverse of (A — A Id) modulo compact operators, that
is an operator B(A) such that:

(A=A)oB(A)=Id + Ri(A), ARi(A) e L™V"Y (M x My),

L (2.3.42)
B(A)o (A—A)=Id + Ry(A), ARy(A) e L™V 1My x My),
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for all A € A. In order to find such an operator, we make the principal symbol
explicit
a—-A=psym@) —A+c, ceS"TVmTN (M, My).

As we have noticed in Theorem we can write the symbol of the inverse
(modulo compact operators) of an elliptic operator. In this case we need to be
more careful, because of the parameter A. Following the same construction as
in Theorem [1.2.3} we obtain

b(A) = {((0]"(A) = ATd,) ™", (052(A) = ATdp,) ). (2.3.43)

The above definition (2.3.43) is consistent in view of the A-ellipticity and of the
relations

o((0]"(A) = ATds,) ™ (61, €0)) (X2, &2) = @y, = )7 (11,32, £1, E2),

o((032(A) = ATd,) ™ (02, €2))(x1, &1) = @, = A) 7 (31, %2, E1, E2).
Using the calculus and Lemma we can check that B(A) satisfies conditions
(2.3.42). By parameter-ellipticity, we get that Ri(A) and Ry(A) are compact
operators for A € A, namely

(A—=AId)oB(A) =1d + Ri(A),

(A - A1d) o B(A) = 1d + Ry(A), (2.3.44)

AR1(A), AR2(A) € S~V 1My X My) uniformly w.r.t. A € A. So, B(A) is a parametrix
and its symbol b(A) has the form
bA) = = (@, my (1, X2, £1, &2) = A) " 01(E2)Pa(&1)
+ Sym{(am1,~(x1, x21 cS‘l/ D2) - /\ IMz)_l }l;ljl(él)
+ sym{(a. u, (x1, X2, D1, &) — Ang,) " 02(&2).

Moreover, we easily obtain
r1(A) = sym(Ry(A)) = (a — psym(a)) o b(A) + (psym(a) o b(A)) =1,  (2.3.45)
hence r1(A) € S~V"1(My, M,) is the asymptotic sum of terms of the type

97192 gDYUDED(N) g € S™™(My, My).

2

Clearly (@, m,(x1, X2, &1, E2)—A)™L = O(AI™Y). By the theory of pseudodifferential
operators on closed manifolds, the same property holds for

sym(aml,.(xl, X2, 51, Dz) -A Isz)_1

and

sym(a. m, (x1, %2, D1, &) — AIdp,) ™
and their derivatives. Thus r1(1) = O(]A|™), as a consequence of the calculus.
By Proposition this implies ||Rq]l;> = O(IAI™!), and the same is true for
the operator R,. So we can choose A large enough such that Ry, R, have norm
less than 1. In this way, using Neumann series, we prove that (A — A1d) is
one to one and onto, therefore invertible with bounded inverse, by the Open
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Map Theorem. Again, by Neumann series, we obtain B(A) such that
is fulfilled with R;, R, smoothing and still with norm O(A~!). Now notice that
)\[B(A) - B(/\)] € §7m-L=m=1 for all A € A. Furthermore, if we multiply both
equations in by (A — AI)™! we obtain

(A= AId)™! = B(A) + BAWR1(A) + Ry(A)(A — A)"IR1 (D).

Hence [|(A — A7 = O(IA|™!) and /\2[(14 -1 - B(A)] is a smoothing operator
in L=°7°(M; X M), uniformly w.r.t. A. m]

In order to define complex powers of an elliptic bisingular operator, we
introduce some natural assumptions, similar to those assumed in Section[2.1}

Assumptions 3. 1. A e L™"™(M;, My) is A-elliptic.
2. 0(A) N A = 0 (in particular, A is invertible).
3. A has homogeneous principal symbols.

Remark 2.3.1. Ifwe consider a A-elliptic operator A € L™ (My X My) with m; > 0
(i = 1,2), then o(A) is either discrete or the whole of C, because the resolvent is a
compact operator ([101ll, Ch. I). Since, by Theorem we know that for large A
the resolvent is well defined, it turns out that the spectrum o(A) is discrete. Then,
modulo a shift of the operator, we can find a suitable sector A such that Assumptions
is fulfilled.

Definition 2.3.2. Let A be an operator fulfilling Assumptions (3] Then, we can
define »
= — | A(A-A1d)dA, Rez <0, (2.3.46)
21 Joa:
where A, = AU {z € C| [z] £ €}. The Dunford integral in (2.3.46) is convergent,
since [[(A — A1d)7Y| = O(IAI™Y) for A large enough. As usual, we next define

AP = A, 0 A", Rez-k<DO.

Remark 2.3.2. In Assumptions 3|we require A N 6(A) = 0, that is, in particular, the
operator must be invertible. It is possible to define complex powers of non invertible
operator as well, provided the origin is an isolated point of the spectrum, see, e.g., [26]].
For example, one can define the complex powers of A = (—=A) ® (=A) on the torus
St x S, even if A has an infinite dimensional kernel.

Theorem 2.3.3. If the operator A € L™ (M, M,) satisfies Assumptions |3} then
A? € L™= (My X My) and it admits a homogeneous principal symbol. Moreover, by
Cauchy Theorenﬁ

z _ z
amlz,mzz - (aml/mz) s
z

N (L (2.3.47)

e = (@)

3In equation @3.47), @3, ; ., 21,2s By 2,y TEPTESENL, Tespectively, o)1%(A%), 0 2*(A%), 0™15M2%(A%),
while (ay,,,.)?, (a.m,)* are the complex powers of the operators Uzm1 (A), 0;"2 (A), and (am,,m,)* is the
complex power of the function ¢"1"2(A).
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Proof. As a consequence of a general version of Fubini’s Theorem we obtain

sym(A?) = ﬁ I} N A*sym((A — AD™)dA, Rez <O.

By Theorem 2.3.2, we know that A?[(A - AI)~' = B(1)| € L™>"(M; x My) so, up
to smoothing symbols, we have

sym(A%) =ﬁ f Azsym(B(A))dA
It A
LSO (2.3.48)
! Azsym(B(A))dA,

1,60
where Qg ¢, is as in Lemma and the second equality in (2.3.48) follows
by Cauchy integral formula. Now, by Lemma and by the explicit form
of sym(B(A)), we get A* € L™*™*(M; X M;). In order to show that A* has
homogeneous principal symbol, we write
sym(B(A)) =1 (6™ (A) — Alig,) ™" + 12(0"™(A) — Aly,) ™!
= P1a(a™ " (A) = 1)+ c(A),

where Ac(A) € my, mp—my — 1, —my — 1(M;, My), YA € A. We split integral in

(2.3.48) so that

j

sym(49) = - fa A" A~ Alg,) ™ (2.3.49)
to Aa(0™(A) = Aly,) "' dA (2.3.50)

21 Joe A
[ AT ) - 1)tdA (2.3.50)

21t Joea,
s | Ac(hyr. (23.52)

21t Joea,

The theorem follows from theory of complex powers on closed manifolds for the
integrals (2.3.49) and (2.3.50), and from Cauchy Theorem for integral (2.3.51).
Finally, we notice that the integral (2.3.52) gives a symbol of order (1m1z—1, mpz—
1). O

We now introduce the function ((A, z) of an elliptic operator that satisfies
Assumptions |3| The proof of the following property is similar to the case of
compact manifolds (see [101], ch. II).

Proposition 2.3.4. Let A € L™ (M;xM,), m; > 0,i = 1,2, be a selfadjoint operator
satisfying Assumptions|3| Then we have

Au) = Y A(f ),
ieN
where {A} e is the sequence of the eigenvalues of A, and {f;}jen are the corresponding
orthonormal eigenfunctions. We define

UA,z) = ZA;, Rez <min{~ -+, - =}

jeN
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The definition of (A, z) in the general case is the following:

Definition 2.3.3. Let A € L™ (M; XM,) be an operator satisfying Assumptions
Blthen

C(A,z) = f Kaz(x1,x2,x1, X2)dx1dx;, Rezmy < —nqy,Rezmy < —nyp,
M7 XM,

where Kg: is the kernel of A*. The integral is well defined if Rezm; < —n; and
Rezmy < —n, since, in this case, A is trace class.

Theorem 2.3.5. K= (x1, X2, Y1, Y2) is a smooth function outside the diagonal. Further-
more, its restriction to the diagonal Ka=(x1, X2, X1, X2) can be extended as a meromorphic
function on the half plane {z € C | Rez < mm{—%, —:1—22} + €} with, at most, poles at
lfhe pqint Zpole = min{—r’,’l—ll, —;’1—22}. The pole can be of order two if ::1_11 = :1—22, otherwise it
is a simple pole.

Proof. By definition, the kernel of A* has the form

1
Kaz(x1, X2, %1, %2) = @y f f a*(x1, x2, &1, E2)dE1dE. (2.3.53)
Rﬂl an

First, let us consider the case ;1 > J2. Then, if Rez < —J1, A% € L™*™*(M; X
M) C L7747 7¢(M; X My); hence it is trace class and the integral of the kernel

is finite. We can write a* = 4%, . + a7, aZ € S™*1"™*(M,;, M) and we have then

1 z Z
o) Wf o s e

z
(2n)”1+nz f”z L1|<1 miz, ar,-)déldSZ-

The second integral in is an holomorphic function for Rez < —JL + €
since we integrate w.r.t. the &; variable on a compact set. The same conclusion
holds for the integral of a;. on the set {(¢1,&2) | [€1] 2 1, &2 € R™} because it has
order (m1z — 1,myz). In order to analyze the integral of a;, , we switch to polar
coordinates and obtain

1
f f T,z AE1dEy = ———— f f Ay, AO1dE,. (2.3.55)
r2 Jigt mz+m Jrm Jgn-

Clearly, (2.3.55) can be extended as a meromorphic function on {z € C | Rez <
—o el and moreover, by (2.3.47), we get

(2.3.54)

Z——

m 1 -
lim (z+—)sz,x =——f f sym(c”(A) ™ )dO0,d&,.
i - A=(x1, x2) QT o Jona ym(o7'(A) ™ )d61dEr

The case ;- < ;2 is equivalent, by exchanging the role of x; and x,. The case

:711 = Z—i is a bit more delicate, since we have to analyze the whole principal

symbol. First we write
Ku:(x,x) = _t (az +at, = )+
’ @yt Jpu Jgop s M AR (2.3.56)
(ﬂ - umlz - ajz,mzz + azmlz,mzz)d‘gldéZ'
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The definition of principal symbol implies that the second term in (2.3.56)
belongs to Smz=lmz=1(pM M), hence the second integral is well defined for
Rez < - + € and holomorphic for Rez < -1 + €. Now we have to analyze
the mtegral of the principal symbol. Splitting R™ x R™ into the following four
regions,

{1, &) [al <t lél < T, {(&2,8) 181l £ 7,18 = 1),
(G, &) a2t lél < 1), {(E2,8) &1l > 7,18 > T},

z Z z _
f f (amlz,' + A npz — amlz,mzz) d&1déy =
R JR™
(my+mp)z+ny+ny
a d6,d6,
(m1z + ny)(myz + ny) fs"l y L,Z | fmmzmaz
Mz
do,d
C (mz+m) £2|<T L,l 1 O,z 40152
e 10,dE, (2.3.57)
(mZZ + n2) |&|<T JSm2t mzz
Mz
- d6,d
(mlz + I’ll) j|;z|>7 L,l T mlz mlz mzz) 1 51

Mzt
(mzZ + 1’12) L1|>T fS"‘z " mzZ - 111‘12 mzz)deldgl
+h(z),

one gets

where h(z) is an holomorphic function for Rez < z,0e + €. The evaluation of
the integrals in (2.3.57) are similar to Proposition 3.3 in [79], and Theorem 2.2
in [15]]. This concludes the proof. O

Since Mj, M, are closed manifolds, Theorem implies the following:

Corollary 2.3.6. Let A € L"™"™(M; X My) be an operator satisfying Assumptions
Then, (A, z) is holomorphic for Rez < min{—L, ——} and can be extended as a

meromorphzc function on the half plane Rez < mm{ } + €. Moreover, the
Laurent coefficients of C(A, z) at z = Zple = min{— s ——} are

my’

i oo e [, [ [ s s

' moy
in the case >

VZZ
iy Blonegt [, [ [ S 2

in the case ”2 >4
ml

res?(A) = lirr_ll(z +12C(A,z) =

1 ff f f @ ‘14646 (2.3.60)
(27‘[)”1 +ny (ml mz) MyxM, JSm-1 Jsr-1 2 !



. 2(A)
lim (= + )((4,2) - zes 1)2) ~TRi»(A) + TRy(A), (2.3.61)
where
TR, 2(A) =

1 -1 2
— am, )" —res“(A)logt
(271)”””2 iy m1 MyxMy j|;2|g¢ fsm( 2 (Alog ) (2.3.62)

lim 1 -1 2
P —— — a. —res“(A)logt
(zn)n1+n2 T_)oo mz My xM;, f|<;1|$’f jS‘”Zl( ’mZ) ( ) 8 )

and

1
TRy(A) i= ——F—— “ 1o d, m,d01d0,, (2.3.
o) = G D s J o 198 01002, 2369

in the case - = & = 1.

In 2:3.62), (am, ) and (a.,4,)" are the symbols of the complex powers of the
operators d, .(x1,x2, &1, D2) and 4., (x1, X2, D1, &2). In order to obtain the terms
in (2.3.61)), (2.3.62), (2.3.63), we notice that the constant 7 in is arbitrary
and the Laurent coefficients clearly do not change if we change the partition of
R™ x R™: therefore, we can let 7 tend to infinity. In this way, both the fourth
and fifth integral in ( vanish, due to the continuity of the integral w.r.t.
the domain of 1r1tegrat10r1 The evaluation is similar to the proof of Theorem
2.9 in [15] and of Proposition 3.3 in [79].

24 Complex Powers and C-Function of Bisingular
Operator on Euclidean Spaces

In this section we define complex powers of bisingular operators on Euclidean
spaces. First we define parameter ellipticity:

Definition 2.4.1. Let A be a sector of the complex plane and a be a symbol
belonging to I';}"™; a is called A-elliptic if there exists a constant R such that

i)
" (A)(x1, &1) — Al € GIP(R™)

is invertible for all |x1| + |£1] > R, uniformly w.r.t. A € A.

ii)
0,52 (A)(x2, &2) — Algn € GI/'(R™)

is invertible for all |xp| + |&2] = R, uniformly w.r.t A € A.

iii)
-1
(0™ (A)(x1, %2, &1, &) = A) - e T
for all [x;| + & = R, forall A € A.
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In the remaining part of this Section, we consider sectors of the complex
plane A with vertex at the origin as in the Figure

It is an exercise to prove that, if A € G,/ is A-elliptic, then the operator
is sectorial: follow, for example, the scheme of Theorem We make now
some natural assumptions in order to perform the functional calculus.

Assumptions 4. i) A € Gy is A-elliptic,
ii) 0(A) N A = 0; in particular, A is invertible.

Remark 2.4.1. In condition ii) of Assumptions [4, we assume that the operator is
invertible. We have made these assumptions in order to get a simpler theory. It is
nevertheless possible to handle functional calculus of operators with non trivial kernel,
even with infinite dimensional kernel: the crucial requirement is that the origin must
be an isolated point of the spectrum, cf. [26].

Definition 2.4.2. Let A be a globally bisingular operator that satisfies Assump-
tions[ We can define

A, = = A*(A - Ald)"'dA, Rez <0, (2.4.64)

where A, = AU {z € C||z| < €}. The complex power of A is defined as

4= A, Rez <0,
" A, 0AF keN,Rez—k<0.

Since the operator A is sectorial the Dunford integral in (2.4.64) converges. As
usual, one can prove that the Definition does not depend on k.

Theorem 2.4.1. If A € Gy (R™"™) fulfills Assumptions {4 then A* € G™="?,
Moreoverﬂ

ANk, &) = (P (A, E) (2.4.65)
AEAN &) = (0 (A, &), (2.4.66)
I AR) (a1, 2, E1,E2) = (0" (A) (v, X2, £, 62)) (2.4.67)

where the complex power in (2.4.65), (2.4.66) is the complex power of operators, while
in (2.4.67) is the standard complex power of a function.

We now introduce the C-function of suitable globally bisingular operators.
Then, we will study the meromorphic extension of C-function and we will
analyze its first left pole. We do not write the proofs of the following statements,
since they are similar to those of Theorem[2.1.92.1.11}2.3.5

Definition 2.4.3. Let A € G™™ be a globally bisingular operator that satisfies
Assumptions[d] Then

m ny

C(A,z) = ff Kaz(x1,x2,x1, x2)dx1dx;, Rez < 2min {——, ——},
RM*12

mp My

where Ky: is the kernel of A=.

4We have just defined symbols "2 with my,my € R?. It is nevertheless possible to define
the same class with complex numbers z1, 2, if, in the inequality (1.8), instead of m; we use Rez;,
i=1,2.
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Theorem 2.4.2. Let A € G™"™ satisfy Assumptions[ Then C(A, 2) can be extended

as a meromorphic function on {z € C | Rez < 2m1n{ m1 ZTZZ} + €}. Moreover, the
711

n o
Laurent coeﬁ‘lczents at pole zype = 2min{—:L, — ™ 22} depend on e and "
m
In the case -+ >

n1—nyp 2n
lim ( )C(A O C R f f () dOrdxrdEs.  (2.4.68)
RZHZ 82111—1

20y m1
11

Zo=

In the case 7> 2> L

21y
z—— I

(2m)™™m="m 2
lim ( )C(A P i f f (@) 7 dOydr1dE,.  (2.4.69)
nip RrR211 Jg2np-1

mo_m o_.
In the case S L:

2 2 (27") e -1
res“(A) = hm(z +1)°CA,z) = —— (Amy,m,) "' d01d0,, (2.4.70)
SZHZ -1 IS

2n1 -1

2
lim(z+D[ca,z) - D) 2 TR 4 + TRy(A), 2.4.71)
21 (z+1)? ’
where
TR12(A) = 2r)™™ ™™
1
lim —f f Ay “1d0,dx,d&, — res’(A)log T
(T—wo(ml xal+E2l<T J ¥ (( ) e (4)log ))
+ lim (i f f (@, ) 'd02dx1dE1 - res*(A) log 7)),
TN Jp <t Jsrat
and

27‘[) m-iy

TRy(A o) o
o) = myniy j;zm—l fg;u 1(LZ 1) 108 (@, my )A61405.
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Chapter 3

Weyl Formulae

In this Chapter we study the asymptotic behavior of counting function of
positive elliptic operators belonging to the classes introduced in Chapter

3.1 Aramaki’s Tauberian Theorem

Given a positive selfadjoint operator P with spectrum {A} jen, one defines

Np(A) = ) 1=4#(j14; < AL

A/'<A

We use Tauberian techniques to study the asymptotic behavior Np, namely an
extension of a classical Tauberian Theorem due to J. Aramaki [8]].

Theorem 3.1.1. Let P be a densely defined positive selfadjoint operator, if

i) P7% is trace class for Rez < N, and C(P, z) admits a meromorphic continuation
in half plane Rez < N + €, with at most poles on the real line;

ii) C(P, z) has the first left pole at the point —zy and

LA (aVT
P 7 (&) =
& ’Z)+;(j—1)!(dz) z+z9
extends to an holomorphic function on the half plane {z € C | Rez < —zo + €};

iii) T'(z)C(P, z) decays exponentially on vertical strips expect from neighborhoods of
the poles;

then,

LA (d\ T s s
Np()\)~;(j_1)! (g) (?)ISZZO+O(A ), A oo, @3.1.1)

for a certain 6 > 0.
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Remark 3.1.1. In [8], |. Aramaki requires that C(P, z) has a polynomial growth on all
vertical strips. Actually, in the proof he uses condition iii) in order to shift an integral
in the complex plane. We have changed this condition with a weaker one, since in
our setting this one is more easy to be verified. In [8ll, the authors requires that the
C(P, z) admits an extension to the whole of C, but actually condition i) in Theorem
[.1.1]is sufficient. Furthermore, notice that we have chosen a different orientation of
C-function.

Property 3.1.2. If we consider a positive selfadjoint operator fulfilling Assumptions
or Assumptions 2] or Assumptions [3|or Assumptions [3} then it satisfies item iii) of
Theorem[3.1.7]

Proof. First, one has to notice that in these cases the sector used to define the
complex powers can be chosen with an angle 6 > 7.Then the proof follows
from a general result proved by G. Grubb and R. Seeley [39]], Corollary 2.10. O

Notice that J. Aramaki suggested others extension of Tauberian Theorem in
order the get a better bound of the rest in the formula (3.1.1)), see [9}[10].

3.2 Weyl Formulae for SG-Operators, Bisingular Op-
erators and Bisingular Operators on Euclidean
Spaces

In view of Theorems of[2.1.10} 2.1.11} Theorems 2.1.13|and Property

a direct application of Theorem [3.1.1|implies the following theorems

Theorem 3.2.1. Let A be a classical SG-operator, selfadjoint and positive, on R" or
a manifold with cylindrical ends, satisfying Assumptions[I]or [2} respectively. Then,
for certain 6; > 0, i = 0,1,2, the counting function Na(A) associated with A has the
following asymptotic behavior for A — +oo:

CoAinlog A + CoAim + O(An™™)  for my = my = m

NAA) ~ CiA™ + O(A# ) for my < my (3.2.2)
CoAiz + O(A 72 %) for my > ma.
Moreover, the constants appearing in the above estimates are given by
1 n — n 1 n
J—— o 2 — (ATH) — — ~ 2.

Ch=~— TR(A™H), Cj=TRy(AH)~ — TRAH), (3.2.3)

C1 = TRy (A7), (3.2.4)

Cy = TRy (A7 ™). (3.2.5)

If we consider instead bisingular operators, then Corollary Property
and Theorem imply the following:

Theorem 3.2.2. Let A € L™ (M; X M,) be a positive selfadjoint bisingular operator
satisfying Assumptions[3] Then, for A — oo,

CiA'log(A) + CjA + O for 2 = 12 = |
Na(A) ~ czAf + O(Af*@) for 25 1 (3.2.6)
CasA™ + O(A" ) for 72 < 2L,
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for certain 6; > 0,1 =1,2,3. The constants Cy,C;, Cy, C3 depend only on the principal
symbol of A, namely

T o o o 8010
T L o S ) 03005
c :TRLz(A)l—TRg(A) B nl f f f f (@) ' d0:d02;  (3.2.7)
12 JIMyxmt, Jsmt gt
= 7555 o, S o ) 0t
& i s, S om0

The result in the case of globally bisingular operators is analogous, in view
of Theorem

Theorem 3.2.3. Let A € G"™/"™2(R"*"™) be self-adjoint and positive. Moreover, sup-
pose that A satisfies Assumptions|d} Then, for A — oo,

CiA'log A + CjAT+ O(A!™r) 24 = 22 — ]

my my
222 2225
N4g(A) =L CoA"m + O(A7m ™) zmlzz > 3171_111
2L 2155 2n 2n
C3A "2+ O(/\ M ) m—]l > m_;’

for certain 6; > 0. The constants appearing in the asymptotic formulae above can be
expressed in terms of {am, ., 4.y, Amy m, }, the principal symbol of A, as follows:

1 1
=2 2nm, ~d0,do
Cl (zn)nl o anmZ Lanl L\an -1 (aml’mZ) 1 2s

, _TRy2(A) = TRe(A) 1 f f _
Cl B ! 47’11712 §2m-1 Jg2nm -1 (aml,mz) d91d92,

1 o
C=r—rr )™ dOydx1d
? (27‘()”1+n22n2 fRan Lanl(a ’MZ) ’ 2011 51’

1 2
© _(271)”1—*'”221’11 LZ"Z .fs;zx]l (@) " dO1dx2d .

3.3 An Example

We consider the bisingular operator A = (—=A) ® (—=A) on the torus S! x S
We clearly have o(A) = {n*m?}, menz. Hence, the spectrum is countable and
consists only of eigenvalues. The eigenvalue {0} has an infinite dimensional
eigenspace, while all other eigenspaces have dimension four. Therefore we get

Na(A) = Z 4, (3.3.8)

0<n?m?2<A
Let us define the function d(h) : N — N so that d(h) is equal to the numbers of
ways we can write 1 = m-n, with m, n natural positive numbers or, equivalently,
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itis equal to the number of divisors of 1. This function is usually called Dirichlet
divisor function. Setting

D@) = Y, d(n),

n<A

we obtain the so-called divisor summatory function. It is linked to the lattice
problem of counting the points with integer coordinates in the first quadrant
which are below the iperbola x;x, = A. By a simple computation, we obtain

NA(A2) = 4D(A) =4 ) d(n). (3.3.9)

n<A

Noticing that ((A) = 4Cr(2z)Cr(2z), where Cr(z) is the Riemann zeta-function,
we can easily find the coefficients of the asymptotic expansion. Namely, we
have

D(A) ~ Alog(A) + 2y = DA+ O(A1™®), A — oo, (3.3.10)
where
[7] 1
y = lim [; - —log Tl (3.3.11)

is the well known Euler-Mascheroni constant. The asymptotic expansion
(3.3.10) is well known (see [51] for an overview on Dirichlet divisor prob-
lem; see also [52] 61]). It is still an open question to understand the behavior
of remainder. In [44], G. H. Hardy proved that O(A+) is a lower bound for the
third term. The best approximation presently known, found by M. Huxley in
[50], is O(A¢(log A)%), where

131 18627
T 0,3149038462 d := 3320

+1 ~ 3,238822115.

It is conjectured that the remainder is O(A%).

It is interesting to investigate the link between the Dirichlet divisor function
and the above results on the spectral properties of a suitable operators. Let us
notice that in we have a slight abuse of notation, since N(1) was only
defined for positive operators. In this case A = (—A) ® (—A) is non-negative, but
has a non trivial kernel. In other words we actually consider

NA :=NA

where A correspond to the operator A with domain restricted to the orthogonal
complement of the kernel. The variant of our theory to such a setting, which
is possible, will be not detailed here. Rather, let us now consider the operator
Ac = (A +c)®(—A+c), ¢ > 0, defined on the torus S! x S!. Clearly, A, satisfies
Assumptions 3} so that we can apply Theorem It is easy to see that the
eigenvalues of A, are {(n? + c)(m* + )} nmene, €ach one with multiplicity four.
Hence

N(A:; A?) = 4 #{ real numbers of the form (n? + ¢)(m? + ¢) |
(% +c)m? +¢) <A, n,m e N} =4 D,A).
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By Theorem we know that o= 71(A, %) = (6*2(A.))"? so the constant C; in
(3.2.7) can be easily evaluated to be
11

- 2(2n)?

1 (2n)? 4 =2. (3.3.12)

Since in this case we know the eigenvalues of the operator, TR(A,) turns into

T—00
i=—[1]

[7]
TRip(Ac) =2 lim Z s —2log Tl
. c+ 1%)2

(3.3.13)

[7] 1
=4lim - —logt|=4y..
oo e (e +i2)2

We have named this constant y. because of the link with the usual constant of
Euler-Mascheroni y in (3.3.11). Notice that, letting c tend to 0, y. goes to +oo;
while, if ¢ tends to infinity, y. goes to —co. Finally, we obtain

RN
De(A) = I N(A; %) (3.3.14)

~ Alog(A) + 2y — DA+ O(A'™?), A — co.

In this case, knowing exactly the eigenvalues of the operator, we can check our
estimate with a numerical experiment. We have checked for D.(A) with
A =10.000.000. In the second column of the Table[B.I]there is the estimate of the
coefficient of first term of the asymptotic expansion obtained with the software
Maple 15, in the third the coefficient obtained by (3.3.14), and in the fourth the
error. We can notice that the error increases with c. This is not surprising, since
does not depend on c. In order to make the error smaller, we should
increase the number of digits at which we truncate the series D.(A). In Table
we analyze the coefficient of the second term. In this case the error is essentially
independent of c, this is due to the fact that does depend on c.

Remark 3.3.1. Let us consider the following limit in the operator topology
lim A, = A. (3.3.15)

c—0*

From (3.3.15) one could suppose that that the limit
11%5 }lN(AC; A?) = lim Ac(A) = D(A), A= eo (3.3.16)

holds as well. Anyway, the limit is not correct. Indeed, we have noticed that,
if ¢ tends to 0, y. goes to co, not to y. Moreover, D(A) is not linked with A, rather with
A. Nevertheless, if we define A. to be equal to the operator A defined on the orthogonal
complement of the eigenspace of ¢, then

lim A, = A,
c—0*
and so we obtain .
lim ZN(AC,- A2y =D(A), A — co. (3.3.17)

The limit (3.3.17) could also be checked via another numerical experiment.
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Table 3.1: 1st. term approximation

¢ | 1st. term with Maple | 1st. term in (3.3.14) error
2 1,024846785 1 0,024846785
3 0,9916281891 1 0,008371811
4 0,968979304 1 0,031020696
5 0,951859819 1 0,048140181
6 0,938130598 1 0,061869402
7 0,926687949 1 0,073312051
8 0,916888721 1 0,083111279
9 0,908326599 1 0,091673401
10 0,900728511 1 0,099271489
11 0,893902326 1 0,106097674
12 0,887707593 1 0,112292407
13 0,882038865 1 0,117961135
14 0,876815128 1 0,123184872
15 0,871972341 1 0,128027659
16 0,867459966 1 0,132540034
17 0,863235614 1 0,136764386
18 0,859265437 1 0,140734563
19 0,855520776 1 0,144479224
20 0,851977951 1 0,148022049
Table 3.2: 2nd. term approximation
¢ || 2nd. term with Maple | 2nd. term in (3.3.14) error
2 0,40048285 0,401484386 0,001001536
3 -0,13493765 -0, 1339381238 0,000999526
4 -0,499994550 -0,498993281 0,001001269
5 -0,775928050 -0,774926584 0,001001466
6 -0,997216950 -0,996213733 0,001003217
7 -1,181650650 -1,180647904 0,001002746
8 -1,339595550 -1,3385899520 0,001005598
9 -1,477600650 -1,476592538 0,001008112
10 -1,600067350 -1,599058126 0,001009224
11 -1,710092450 -1,7090842470 0,001008203
12 -1,809939750 -1,808931287 0,001008463
13 -1,901308850 -1,9002985710 0,001010279
14 -1,985505550 -1,9844949070 0,001010643
15 -2,063562050 -2,0625496430 0,001012407
16 -2,136292950 -2,1352865400 0,001006410
17 -2,204381450 -2,2033750580 0,001006392
18 -2,268373150 -2,2673662890 0,001006861
19 -2,328729950 -2,3277195600 0,001010390
20 -2,385833550 -2,3848212840 0,001012266
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Let us now consider the harmonic oscillator appearing in Quantum Me-
chanics,
2 2
—A7+ A%,

restricted to the one dimensional case. See, e.g., [83], for more details on the
spectral theory of non-commutative harmonic oscillator. Then, we know that
the Hermite basis of L*(R),

hi(x) = hi(x), j=0,1,..,

is the set of eigenfunctions of —9* + x? and that 2j + 1), j = 0,1,..., are the
corresponding eigenvalues, all with multiplicity one. Thus, we can consider
the shifted operator =9 + x* + 1, which has spectrum 2(j + 1), j = 0,1, ..., and
define the bisingular operator

B=(-0% +x]+1)® (=% + x5 +1) € G*(R,R).
Then, the spectrum of Bis {4 (j- i)}, j,i =1,2,.... So, we have that
Ng(4 A) = D(A).

It is clear that B satisfies the hypothesis of Theorem [3.2.3] Hence, we can state
the asymptotic (3.3.10), but using the results on asymptotic expansion of the
counting function in the context of globally binsingular operators. Notice that,
in this case, the link with the Dirichlet divisor function is more transparent,
since we do not need to worry about the kernel: B is a positive operator. Our
spectral approach to Dirichlet Divisor function suggests that, maybe, other
Weyl's formula techniques (e. g. given by Fourier Integral Operators) could be
useful to attack the Dirichlet Divisor conjecture.
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Part 11

Fourier Integral Operators on
Manifolds with Boundary
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Chapter 4

Background in Geometry

In this chapter we recall the basic notions of manifolds with boundary and we
analyze the construction of the double of a manifold with non trivial boundary.
We also include a brief introduction to symplectic geometry. The contents of
this chapter mainly come from [18, 21}, 59, 67, 70} 72} [74].

4.1 Smooth Manifolds with Boundary

The model case of manifold with boundary is the closed half-space R =
{(x1,...,%n-1,x,) € R" | x, > 0}, in the induced topology; the boundary of
the closed half-space is, of course, 8]1@ ={(x1,...,Xp-1,%,) € R" | x,, = 0}. The
definition of topological manifold with boundary is similar to that of a topolog-
ical manifold without boundary, but neighborhoods of points are of the form

(U NR"), U open set of R", ¢ local chart map.

Definition 4.1.1. A Hausdorff topological space M is a n-dimensional topolog-
ical manifold with boundary if it has a countable base of open sets and for all
p € M there is an open neighborhood U, of p such that U, is homeomorphic to

an open set U}, of R,

The open sets U, can be of two different types: interior open sets such that
u,n JR" = ( - that is open sets of R"- and boundary open sets such that
u,n JR". # 0. We say that p € M is an interior point if there exists an open

neighborhood U, homeomorphic to an interior open set of R™. The interior

points form a topological manifold we denote M. The complement of the
interior points is called the boundary of M and it is denoted by dM. The
boundary dM can also be defined as the set of points p € M such that for an

open neighborhood U, Y% (p) € JR", YU local homeomorphism on Up. Itis

a consequence of the invariance of domain that, if the condition ¥ (p) € IR"
holds for an open neighborhood of p, then it is true for any open neighborhood
of p. The set M turns out to be a topological manifold of dimension n — 1.

By Definition R is a topological manifold with boundary; the interior
manifold is R”. while the boundary manifold is JR".
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In order to introduce smooth manifolds with boundary one has to clarify
what smooth on R” means. Of course, this is needed only for points belonging
to the boundary. A map f : R — R is smooth if there exists a smooth
map f : R" — R such that f(x) = f(x) for all x € R”. In the same way, a
bijection x : R” — R” that sends boundary points into boundary points is a
diffeomorphism of R into itself, if there exists a diffeomorphism ¢ : R" — R”

such that ¥(x) = ¥(x) for all x € ]RTﬁ The definition of smooth manifold with
boundary is now analogue to the boundaryless case:

Definition 4.1.2. A topological manifold with boundary M is a smooth mani-
fold with boundary if it has a differentiable structure % = {%,, {,} such that

i) {%,} is an open covering of M.

ii) For all (%, Va), (%3, 1) the maps

a0 U5 2 Up(% N ) = Yal e N\ )
Yoy’ Yala O U) = V(% N %)
are diffeomorphisms of open sets of R’..
iii) % is maximal.
Notice that, if M is a smooth manifold with boundary, then, for all p € M, if
Y(p) € IR for a local chart, then Yg(p) € IM for any other local chart, because
diffeomorphisms of R” do preserve the boundary. If the boundary of M is

empty, Definitions and turns into the usual definitions of topological
manifold and smooth manifold without boundary.

Proposition 4.1.1. If M is a smooth manifold with non empty boundary M, then the
differentiable structure of M induces a differentiable structure on oM.

Proof. One has to notice that if {%,, i} induces a differentiable structure on M,
then {Z, N IM, P4lom} induces a differentiable structure on M. O

4.1.1 Tangentand Cotangent Bundles of Manifolds with Boun-
dary

In order to define the tangent space of a smooth manifold with boundary, we
notice that, given a diffeomorphism x : R”. — R”, it is possible to consider the
differential (or Jacobian) of x, which is the differential of an extension { of x to
the whole of R", restricted to ]RTﬁ It is important to observe that value of J(¥)|m
does not depend on the extension f.

Let us consider a smooth manifold with boundary M of dimension n with a
differentiable structure defined by the atlas &/ = {%,, ¥+ }. For each pointp € M
we consider the set of triples (p, (%, Ya),v) € {p} X & X R" such that p € %,. On
this set we introduce the equivalence relation

(U ), 0) ~ (U, p), W) & J(Wpp © Y2 ) 0 = .

Notice that this implies that the dimension of the tangent space of each point
of M, even at the boundary, is #. This can be easily explained if one defines the
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tangent space from the germs of functions at a point. With this method, it is
clear that we can approach a boundary point also in the normal direction.

Remark 4.1.1. It is possible to define the tangent space of M also in an indirect way,
embedding the manifold with boundary M into a smooth manifold M which has no
boundary. Then, one can define the tangent space of T,M for each point p € M and set
T,M = T,M. In Section we will explain how to build such an extension of M.

Having defined the tangent space at an arbitrary point p € M, we can define
the cotangent space T,M just as the dual of T,M. The next step is to introduce
the tangent bundle TM and the cotangent bundle T*M. This is done as in the
boundaryless case, by

TM=MxR"/ ~
(p,v) ~ (q,w) & p =qgand J(Pg o Y3 My, -0 = W,

where (%, Vo), (%, p) are local coordinates at p. It turns out that the tangent
space TM is a fiber bundle with fiber R”, and it is a 2n-dimensional manifold
with boundary. Clearly, dTM = TyM. In the same way, we can define T"M,
the cotangent bundle of M, which also turns out to be a smooth 2n-dimensional
manifold with boundary, with dT*M = T7, M.

As we have already noticed, dM is a smooth (1 — 1)-dimensional manifold,
so it is possible to define the bundles TOM and T*dM. Let us observe that the
injection i : IM — M is an embedding. We have that the push-forward of
the injection i gives a subbundle of TyM, namely 7.(TdM) C Ty M. Moreover,
thereisaninjectioni* : Tj, M — T"dM, obtained by the pull-back of the injection
i. Now, we can define the conormal bundle at the boundary,

N*OM = {w € T,,,M [Kw(p), X(p)), = 0
for all p € dM, for all sections X : IM — i.(TIM)},

where (-, -), expresses the duality between T;M and T,M. With this notation,
one has the exact sequence

0— N9IM — Ty M — T'dM — 0.

Lemma 4.1.2. Given a smooth manifold with boundary M, there exists a smooth
function f : M — [0,00) such that f~1(0) = dM and df + 0 on OM: f is then a
boundary defining function of M. Moreover, d f(p) has rank 1 at the boundary, and
there exists a vector field X such that X¢(f) > 0 at the boundary.

Proof. Let us consider an atlas {%,, .} such that {%,} is a locally finite covering
of M. Let x, a partition of unit subordinate to the covering {%,}, and let n be
the dimension of M. Then, for all points x € U, N dM, we set f(x) = ¢Pi(x),
where 1}, is the n-component of 1, in R". Clearly, by definition of boundary,
one has f(x) = 0 if x is a boundary point. We consider now other coordinates
Yp(x) = (y1,--.,yn) at x. We notice that, since ¢, o 1{15‘1 is a diffeomorphism of

R, Yo I,Dgl(yh <+, Yn-1,0) = 0, therefore aiyj(gbf}t o 170;1(]/1, e Yn, O)) = forall
j=1,...,n—1. Since J(a o ¢;') is non-singular, it turns out that %(gbg o)
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does not vanish in a neighborhood of dR”. Furthermore, since " (x) is non
negative, the derivative at the boundary must be positive. We set now

£ =) XalOP).

Clearly f(x) = 0 if and only if x € JM. Moreover, if Yg(x) = (y1,...,Yn) is
another local chart, we have

d _ L9 . P
5y, ovi = Z Vigy O o U5+ ;Xﬂa—y,‘"’a oY) (4L

By the considerations above, one has that, for boundary points, the first term
in (4.1.T) vanishes for all j = 1,...,n, the second term in vanishes for all
j=1,...,n—1and is strictly positive for j = n. This proves that df(x) has rank
1 and that there exists a vector field X, which is locally the pullback of the

normal vector field at 8@, such that X((f) > 0 at the boundary. O

From a smooth (1n—1)-dimensional boundaryless manifold N, one can obtain
a n-dimensional manifold with boundary by setting M = N x[0,1). M is usually
called the cylinder of N. The Collar Neighborhood Theorem states that, at least
in a neighborhood of the boundary, any manifold with boundary M can be
seen as a cylindrical manifolds, i.e., locally near the boundary, it is of the form
IM x[0,1).

Theorem 4.1.3. Let M be a compact smooth manifolds with boundary dM, and assume
it to be connected. Then, there exists a neighborhood U of IM in M diffeomorphic to
OM x [0,1). U is called collar neighborhood of M.

Proof. By Lemma[4.1.2]we know that there exists a smooth boundary defining
function f on M. We now consider U, a small neighborhood of dM, and let
€ = minyp i f(x) > 0, which is well-defined in view of the compactness of M\ U.
Next, let usset W = ([0, €)). Lemma guaranties the existence of a vector
field X such that X¢(f) > 0 at the boundary: it is not a restriction to suppose

that X((f) # (3 in W. So we set Xf = % and consider the flow gby(f(t,xo)
generated by Xy. We easily obtain that

d -

o bt x0) = Xp(f) =1,
that is

fodg (txo) =t+a, ack.

Setting qBXf (s,x0) = quf((s —a),xp) we have fo qBXf(t, xo) = t. Since W is compact,
every solution canbe extended to all W and, modulo a rescaling, we can suppose
the maximal domain of ¢ f(t, Xp) to be [0, 1]. Define now

x:9Mx[0,1) = f([0,¢€)
(x, 1) — <155<f(t, X0)-

By the properties of integral curves of a smooth vector field one has that y is a
diffeomorphism. m|
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Corollary 4.1.4. Suppose that M is a connected compact manifold, and N is a subman-
ifold of M such that there exists a two sided neighborhood U of N in M, that is U\ N
has two distinct connected components. Then, there exists a bicollar neighborhood V
of N such that V is diffeomorphic to N X (—=1,1) and N corresponds to N x {0}.

Proof. We consider an open neighborhood U of N such that U is compact.
Then it is possible to find two submanifolds with boundary Uj, U, such that
U;NU, = N. Now we have to repeat the construction of the boundary defining
function of Lemma in order to obtain a smooth function f : U — R such
that f71(0) = N, f~'((=,0]) = U; and f~}([0,o0)) = U, and a smooth vector
field X such that X¢(f) > 0 on Y. Then, repeating the construction of Theorem
one gets the diffeomorphism. i

Remark 4.1.2. Theorem and Corollary can also be proved in the non
compact case, see [74] Ch. 5. In the sequel, we will anyway focus only on compact
manifolds.

4.1.2 Gluing Manifolds with Boundary

Let us now consider two manifolds with boundary X, Z, set Y = dX, W = dZ
and suppose that there exists a diffeomorphism ¢ : Y — W. We can then define
the set

XUy Z=XUZ[~,

where
y~we yeYweWand ¢(y) =w.

Clearly, in this way we have just defined a set, and we have no differential
structure. We will now build one such that the inclusions

ix: X XUy Z,
iz : Z—>X|_|¢Z,

are diffeomorphisms onto the image. By Theorem there are neighbor-
hoods Uy of Y and Uw of W, and diffeomorphism gy, gw such that

8y - YX(O!]'] - uYr
aw: WX[l,Z) — Uw.

Let us consider Vy, Vi, open sets of Y and W, respectively, such that ¢(Vy) =
Vw. We define the map

g: VyX(O,Z)—)XLl(PZ
setting

g(x/ t) = Z'X(gY(x/ t))/ 0<t<1

g(x, 1) =iz(gw(p(x), 1)), 0<t<2
The smooth structure on Xy Z is defined choosing as open covering ix(X\ Vy),
iz(Z\ Vw) and g(Vy X (0,2)). By the definition of the function g, we have that

the differentiable structure defined on the collar neighborhood of the boundary
is compatible with the differentiable structures on X and on Z.
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Remark 4.1.3. It is also possible to prove that the differentiable structure given above
is unique up to diffeomorphisms preserving the boundary. Moreover, it is possible to
choose a differentiable structure such that the boundary defining function fy and fw
piece together, giving a differentiable function on X Uy Z. There is a version of this
construction also in the case of non compact manifolds, see [[74].

If we are given a compact manifold X with a non-trivial boundary Y, there
is a canonical way to build, starting from X, a closed manifold called the double

of X, and denoted by 2X. Indeed, it is enough to consider the manifold X L, X,

where X is the manifold X with reversed orientation and ¢ : Y — Y is the
identity. We reverse the orientation since, in this way, the normal vector field at
the boundary can be continued as a smooth vector field on the double manifold.
2X is a smooth manifold, therefore it is possible to define the tangent bundle as
well as the cotangent bundle. The tangent bundle of X can be defined also as
T2X restricted to X, the same holds for the cotangent bundle T*X.

4.2 Symplectic Geometry

In this section we recall some basic tools of symplectic geometry and we intro-
duce the Maslov index, which will be used in the construction of the Keller-
Maslov bundle. The results mainly come from [21} [67]

Definition 4.2.1. Let E be a real vector space. E is a symplectic vector space if
there exists a non-degenerate skew-symmetric linear 2-form w, that is

w(u,v)=0, YoveE=>u=0.
We denote the symplectic vector space as (E, w).

It is an easy consequence of the definition that the dimension of a symplectic
vector space (E, w) must be even. Notice that, for each skew-symmetric linear
2-form w, one can associate the linear map @ : E — E*

@:um (v w(u,)).
Definition .2.1]is equivalent to ker(@) = {0}.

Definition 4.2.2. Let (E, w), (E’, ") be two symplectic spaces. Then, an isomor-
phism @ : E — E’ is a symplectomorphism if ®*(w’) = w where, by definition,

O (') (1, v) = &' (P(u), ®(v)), VYu,veE.

Let W be a subspace of the symplectic space (E,w). The corresponding
orthogonal space is

WY ={u e E|w(u,v)=0,Yve W}
W is called
i) isotropic, if W € W®.

ii) coisotropic, if W® C W.
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iii) symplectic, if W N W = {0}.
iv) lagrangian, if W = W.
It is immediate to prove that

WCM= M’ CWe, (W9 =W, 4.2.2)
MNW) =M+ W®, (W +M)® = W N M. 4.2.3)

Proposition 4.2.1. A subspace W of the symplectic vector space (E, ) is Lagrangian
if and only if wlw = 0 and 2dim W = dim E.

Let us consider the vector space R?>" with base
i

—
x =(,0,...,0), x;=(,..., 1 ,0,...), 0<i<n,

&=0,..., 1 ,0,..),&=0,..., 1 ,0,..), 0<i<n,
——

n+1 n+i

and the skew-symmetric 2-form wq such that

a)O(xirxj) = wo(éir é]) = 0/ Vl/] = 11- . N,
wo(xi, &) = 0ij, Vi, j=1,...,n.

The space (R?", wy) is the basic example of symplectic vector space. Note that
every symplectic vector space is isomorphic to (R?", wj):

Theorem 4.2.2 (Darboux). Let (E, w) be a symplectic space of dimension 2n. Then,
there exists a basis g1, ...,qn, P1,-- - ,Pn Such that

w(qi,q;) = w(pi,pj)) =0, w@(qi,pj) = bi;.

Such a base is called symplectic base. Moreover, this base induces an isomorphism
®: R > E.

By Theorem since all symplectic vector spaces of dimension 2n are
isomorphic to (R, ay), it is enough to examine this symplectic vector space.
We consider now the set of symplectomorphisms of (R?", w), that is the subset
of GL(2n, R) such that W*wy = wy, or, equivalently,

W = Jo, (4.2.4)

where ] is the symplectic matrix defined as a matrix block

0 1
]0:(—Id o)'

It is an exercise to prove that, if we write

A B
v=(¢ o)
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condition turns to
ATCc=C"A, B'D=D'B, A'D-C'B=1d. (4.2.5)
We denote by Sp(211) the group of symplectomorphisms of R?". If we consider
the identification of R? with C given by
(x,y) = x+1iy,

we obtain that the multiplication by Jy turns out to be the multiplication by
i. With this identification, one has that Sp(2n) is identified with a subset of
GL(n,C) and that then U(n) C Sp(2n). Let us denote by O(2n) the usual or-
thonormal group.

Lemma 4.2.3. Sp(2n) N O(2n) = Sp(2n) N GL(n, C) = O(2n) N GL(n, C) = U(n).
Proof. Let W be a (2n X 2n)-matrix. By definition,
Y eGL(n,C) o V=)V, det(W) #0
W e Sp(n,C) & WIL[W =], (4.2.6)
Y eO?2n o vyl =1d = v,

By direct computation, one can check that every two conditions of (4.2.6) imply
the third, therefore we can focus on the case W € Sp(2n) N O(2n) and set

A B
v=(¢ 5)
Since W is orthogonal and symplectic, A = D and —B = C, so we have
A B
v=(% 4

Furthermore, (4.2.5) implies
A'TB=B"A, ATA+B'B=1d.
Therefore U = A + iB is unitary. o

Lemma 4.24. Let W € Sp(2n). If A € o(W) then A=t € o(W). Moreover, the
multiplicity of A and A™* are the same and, if —1 is an eigenvalue, then it has even
multiplicity. Finally,

ifW(z) = Az, W(2') = A2, and AN # 1, then wo(z,z") = 0.
Proof. Since W is symplectic we have
VW =Jo = W' = Jo¥ 7",

that is, WT and W are similar and this proves the first part of the lemma.
Moreover, notice that a symplectic matrix has determinant equal to one, so the
multiplicity of the eigenvalue —1 must be even. To prove the second part we
write

A wo(z Joz') = wo(W(2), JoW(2)) = w(z, ¥ Jo¥(2)) = wo(z,2).
If AA” # 0 this clearly implies w(z,z") = 0. m|
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Lemma 4.2.5. Let P = PT € Sp(2n). Therﬂ P* € Sp(2n) for all positive real .
Proof. We need to check that

wo(Pz, P°2) = wo(z,2), Vz,z' € R*. (4.2.7)

Since P is symmetric we can decompose E in the direct sum of the eigenspaces
of P. By Lemma we know that

w(P%(zy), P*(zy)) = A*A%w(za,z1) =0, if AN #1,
so (4.2.7) is fulfilled. If AA” = 1 clearly condition (4.2.7) holds. O

Proposition 4.2.6. The quotient Sp(2n)/U(n) is contractible.

Proof. Let W € Sp(2n). By Lemmawe know that (WWT)? is symplectic, so
we can define the retraction

B(t) : Sp(2n) x [0,1] — Sp(2n)
s () = (PP 1w
This is a path in Sp(2n) and (1) € U(n), so it gives a retraction. |

Remark 4.2.1. It is possible to prove that U(n) is the maximal compact subgroup of
Sp(2n).

Proposition 4.2.7. The fundamental group of Sp(2n) is Z.

Proof. By Proposition[4.2.6} it is enough to prove that 77, (U(n)) = Z. This follows
by the fibration det : U(1) — S!, with fiber SU(n). So we have the exact sequence

11 (SU(m)) — 1 (U(n)) = mi(S') — m(SU(n)).

Since 711(S') = Z, we have just to prove that SU(n) is simply connected. If n = 1
this is clear. For n > 2, consider the map SU(1) — S?*~! that sends a matrix into
its components of the first column. This is a fibration, with fiber SU(n — 1), so
one has the exact sequence

0= mp(S*"?) = m(SU(n — 1)) = m1(SU(n)) — (> = 0,

that is, SU(n) is simply connected if SU(n — 1) is simply connected. Then, by
induction, this is true for all 7. ]

Theorem 4.2.8 (Maslov Index of symplectomorphisms). There exists a functor
s, called Maslov Index,
us : C(R/Z,Sp(2n)) — Z

that satisfies the following axioms:

i) (Homotopy) Two loops A(t) and N'(t) are homotopic if and only if us(A) =
ps(A).

ii) (Product) For all loops A, N’ : R/Z — Sp(2n), we have us(A o A’) = us(A) —
us(A).

INotice that in this case P is symmetric and non-singular, hence it is possible to define P* for all
alla € R.
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iif) (Direct sum) If n = n1 + n,, then we can consider the space Sp(2n1) @ Sp(2n5)
which is a subspace of Sp(2n). If W1 and W, are loops in Sp(ny) and Sp(ny),
respectively, then
us(W1 @ W) = us(Wh) + ps(W).

iv) (Normalisation) The loop

WV :R/Z — UQ1)

t— eth

has Maslov index 1.

Sketch of the proof. Define p : Sp(2n) — S! setting

X =Y

p(W) = det(X + 1Y), (_X y

) = (YW 2.

So, for every loop A(t) of symplectomorphisms, we can define the loop on S!
given by p o A. We define

ps(A) = deg(p o A),

where deg is the winding number. For the proof that this map has the required
properties, see, e.g., [67].

4.2.1 Lagrangian Subspaces of Symplectic Vector Spaces

By Theorem we can restrict ourselves to consider Lagrangian subspace of
(R*", wg). We define .#(n) as the space of all Lagrangian subspaces of (R*", wy).

Lemma 4.2.9. Let X,Y be real (n x n)-matrixes. We define A C R*" as the range of
the (2n X n)-matrix

Z= ()5) . R" — R, (4.2.8)

Then, A € £ (n) if and only if Z has rank n and X'Y = YTX. Moreover, the space
A = {(x,Ax) | x € R"} is Lagrangian if and only if A is a symmetric.

Proof. Since Lagrangian spaces have dimension n, for all A € .Z(n) it is possible
to find n x n matrixes X, Y such that A = Range(Z), with Z as in (4.2.8). Indeed,
let us define Aper = {(x, y) € R* X R" = R2" | y = 0}. Then, there exists a matrix
A € GL(R?") such that A(Anor) = A. Choosing as X the upper-left corner (1 x 11)-
matrix of A and as Y the lower-left corner (1 X n)-matrix of A, one has that the
Z in has the desired properties. In the other direction, let us consider
z=Xu,Yu)and z’ = (Xu, Yu') in A. Then,

wo(z,2) =ul (XTY = YT X)W/,

so, if XTY = YTX, A defined as in (#:2.8) is Lagrangian. Finally, if we consider
X = 1d, we obtain that {(x, Ax) | x € R"} is Lagrangian if and only if AT = A,
that is, A is symmetric. m|

A matrix (2:8) with XTY = YT X is called Lagrangian Frame.
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Remark 4.2.2. Notice that Lemma implies that £ (n) is an analytic manifold of

+1
dimension M

Remark 4.2.3. A neighborhood of Anor in £ (n) can be identified with an open subspace
of the space of symmetric matrixes. To see this, let us consider a path of Lagrangian
frames (X(t), Y(t)) such that X(0) = Id and Y(0) = 0. By Lemma(4.2.9) one has that
XM®TY(t) = YI(#)X(t). Differentiating this relation and evaluating the differential at
zero, one gets

YT(0) = Y(0).

This means that the tangent space at Anor is parametrized by the space of symmetric
matrices. Then, considering geodesic coordinates (see, e.g., [53]l for the definition), one
gets that a base of neighborhoods of Aner is obtained by {(x, Ax) | A € U)} where U is
an open set in the topological space of symmetric matrices.

Proposition 4.2.10. If A and A are Lagrangian subspaces of R*", then there exists a
symplectomorphism ¥ € U(n) such that W(A\’) = A. Moreover, there exists a natural
homeomorphism between £ (n) and U(n)/O(n).

Proof. Firstnotice that any Lagrangian submanifold A can be seen as the image,
via a symplectomorphism, of the horizontal Lagrangian Apo;. We consider a
Lagrangian frame (X, Y) of A and build the matrix

w:(§ ;{)

It is clear that W(Apor) = A. Furthermore, since X'Y = YTX, W turns out to
be orthogonal. This proves the first part of the statement. Now, notice that
this Lagrangian frame is unique, up to multiplication on the right by O(n): this
implies £ (n) = U(n)/O(n).

o

Theorem 4.2.11 (Maslov Index of Lagrangian subspaces). There exists a functor
ur, called Maslov Index, such that

u: CR/Z, 2 () - I,
and satisfies the following axioms:
i) (Homotopy) If two loops A(t) and A’(t) are homotopic, then pp(A) = pr(A).
ii) (Product) If A : R/Z — Z(n) and ¥ : R/Z — Sp(2n), then
pr(WA) = ur(A) + 2us(W)
with us defined in Theorem[4.2.8]

iii) (Direct Sum) Let us consider two loops A1 : R/Z — L (n1) and Ay : R/Z —
Z(ny). Then, A1 ® Ay is a loop in L (1 + ny), and

ur(A1 @ Ag) = ur (A1) + ur(A2).

73



iv) (Normalisation) The loop

A:R/Z— Z£Q)

271t

t— {e™x | x e R}

has index 1.

Sketch of the proof In Lemma we have noticed that #(n) is isomorphic to
U(n)/O(n), so we define

p:.Ln) — s

429
A de’(X +iY), A =range (};) X +iY € Un). (4.29)

Since the matrix X +iY is unique up to right multiplication by matrices in O(n),
the Definition is well-given. Incidentally, note that, since we use the
square of the determinant, we consider non-oriented Lagrangian subspaces.
For a loop of Lagrangian subspaces A(t), we define

p(A) = deg(p o A),

where deg is the winding number as in Theorem [£.2.8] We refer to [67] for the
proof that, with this definition, y; has the required properties.

For sake of completeness, we give an equivalent definition of Maslov Index
for Lagrangian subspaces via intersection theory. First we need some technical
lemmas.

Lemma 4.2.12. For any Lagrangian subspace A € £ (n) there exists a Lagrangian
subspace W such that A& W = R>" and the map

AR 5 AX A

(Lw) = (I, w(w,)lA)

is a symplectomorphism with (A, A*) equipped with the symplectic form

()00

Proof. Let us consider an arbitrary subspace W such that AN W = {0} and
W C W®. Notice that dim(A) = n and dim(W®) > n, so dim(A N W) > 0.
Now, if W € A& W, by we have W 2 W N A% = W N A, hence
W@ N A = {0}, which is impossible. So we conclude that W*® ¢ A @ W and we
can choose an element e € W* such that e ¢ A @ W. Now we can repeat the
same procedure for the space W + [e] and, by induction, we stop when we find
a Lagrangian subspace, i. e., when W = W®. To prove the second part of the
Lemma we have just to notice that, since A and W are Lagrangian,

wo(l + m, ' + m") = wo(l, ') + wo(m, ') = wo(m, ') — wo(m’, ).
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Corollary 4.2.13. Let us consider a Lagrangian subspace A and its Lagrangian or-
thogonal complement W, defined by Lemma(4.2.12| Let Z be an orthogonal complement
of W: we have that Z ={A + AA | A € A}, where A : A — W is a linear map.

Proof. By definition, R = We&Z = A@W. Letusfix {z1,...,z,) and {A1, ..., A},
bases of Z and A, respectively. We define

A:Z->W
z; > w; € W such that A; + w; = z;.
The elements w; are well-defined, in view of Lemma 4.2.12 m]

Theorem 4.2.14. Let A(t) be a path of Lagrangian subspaces such that A(0) = Ao and
A(0) = Ag. Then, the following statements hold true

i) Let W be a Lagrangian complement of Ao, v € Ao and t small, and define
w(t) € W such that v + w(t) € A(t). Then,

Q) = S wo(0, W)l 4.2.10)
is independent of W.
ii) If Z(t) = (X(t), Z(t)) is a Lagrangian frame of A(t), then
Q(v) = (XO)u, YO)u) = (Y(O)u, X(O)u), u = Z(O)u,
(, ) being the scalar product on R*" and Q as in (£2.10).
iii) Q is natural, that is

QW o Ag,Wo Ag) oW =Q(Ap, Ag), YW €Sp(2n).

Proof. i) We can suppose, without loss of generality, that Ag = Apor = R" X
{0}. Then, {0} x R" is an orthogonal complement of Apo. By Corollary
all Lagrangian complements of Apo, can be written as {(Ax, x) | x €
R"}, where A : R" — R" is a suitable linear map. Moreover, by Remark
if we suppose t small enough, we have that A(t) = {(x, A(f)x) |
x € R"}, A(t) symmetric matrix. Let us suppose that v = (x,0), w(t) =
(By(t),y(t)). In order to have v + w(t) € A(t), we require y(t) = A(t)(x +
B y(t)). If we derive this relation and evaluate at t = 0, we get 7(0) = A(0) x
and obtain

Q(v) = (x, A(0)x),
so Q does not depend on W.

ii) Let us consider W = {0} x R". We have proved at point i) above that
this is not a restriction. Then, let Z(t) = (X(t), Y(t)) be a Lagrangian
frame of the curve such that v = (X(0)u, Y(O)u), w(t) = (0, y(t)). We have
Y(O)u+y(t) = Y(H)X(#) X (0)u, so wo(v, w(t)) = (X(0)u, y(t)). Differentiating
once, we get

Q(v) = (X(0)u, ¥(0)) =
(X(O)u, YO)XH(0)X(0)u) — (X(0)u, Y(0)X ™" (0)X(0) X~ (0) X (0)us).
Now, if we simplify and recall that X7Y = YTX, we get

Q(v) = (X(O)u, Y(0)uy = (Y(O)u, X(O)u).
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iif) This follows by the definition of Q.
O

Theoremf4.2.14|gives a bijection from the tangent space Tx.Z (1) to the quadratic
forms on A. Let us now consider a general Lagrangian subspace V. We have a
natural filtration

2 = zuv),
k=0

where L (V) is the space of Lagrangian space having k-dimensional intersection
with V. We define the Maslov cycle as Z(V) = [J;_; Zx(V). This is an algebraic
variety, £1(V) being its regular part. Let us consider a path of Lagrangian space
A(t) 1 [0,1] —» Z(n). The point t; is a crossing point if A(tp) € (V). The
crossing form is defined as

T(A, V1) = QA®), Al)|agnv,

with Q from Theorem A path A(f) of Lagrangian subspaces is tangent
to (V) at a crossing point tq if I'(A, V, ty) = 0. The crossing point t; is called
regular if I'(A, V, ty) is non-degenerate. If ¢y is regular and Ay, € X1(V), the
crossing is called simple. So a path of Lagrangian subspace has only simple
crossing points if it has transversal intersection with Y(V). The Maslov index
of a path A(¢) : [a,b] — £ (n) with just simple intersection is defined as

u(A, V) = % sgnT'(A, V,a) + Z sgnl'(A, V,t) + % sgnI(I', V,b), (4.2.11)

a<t<b

with the sum running over all simple crossing points. Using homotopy argu-
ments, this definition can be extended to all paths of Lagrangian subspaces, see
[89] for the details. If we consider loops, formula is simpler, because
the contribution at the end points vanishes. If A(t) : S — A(f) is a loop with
simple crossing points, we have

u(A, V) = Z sgnl'(A, V,1).

a<t<b

If one restrict to loops, the definition of I'(A, V, t) is independent on V, because
for all Lagrangian subspaces W one can consider a symplectomorphism W such
that W(V) = W. Then, using the naturality property of I' and the the fact that
Sp(2n) is connected, one gets that the the index is invariantly defined. One can
prove that this definition of Maslov index satisfies all the axioms of Theorem
4.2.11} so the two definitions are equivalent, see [89].

Definition 4.2.3. Let us consider four Lagrangian subspacess M1, M, Wi, W,
such that M; is transversal to W;, i = 1,2,j = 1,2. The Hormander index is
defined as

s(My, Ma; Wi, Wr) = u(A, V)

where A = Aj 0 Ay, Aq : [0,1] — Z(n) being an arc of Lagrangian subspacess
transversal to M; such that A;(0) = Wy, Ax(0) = W,. Similarly, A, : [0,1] —
Z(n) is an arc of Lagrangian subspaces transversal to M, connecting W, and
Wi. The definition does not depend on the choice of the path.
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We now give the definition of symplectic manifold and Lagrangian sub-
manifold.

Definition 4.2.4. Let M be a smooth manifold (possibly with non empty bound-
ary). M is symplectic if there exists a non degenerate closed two form w such
that w,(-, ) is a symplectic form for the vector space T,M, for all p € M. We
denote by (M, w) the symplectic manifold with symplectic form w.

A first immediate property is that a symplectic manifold (M, w) is even-dimen-
sional.

Example 4.2.1. Thefirst example of symplectic manifold is R*" with the form Y., dx; A
dyi, where {x;}!, represents the first n variables and {y;} | the remaining variables.
To check this property one can notice that, at every point p € R*", one can choose as
symplectic base of T,R*" the span of

), ) A,

Example 4.2.2. The symplectic manifold we will use in the following is the the cotan-
gent bundle of a smooth manifold M, possibly with boundary. Let us consider local
coordinates (x1,...,%n, &1, ..., &n) in a neighborhood of a point (xo, o) € T"M. The
symplectic form is locally defined as

w = Z dx; A dé;.
i=1
Actually one can prove that w is globally well defined and, introducing the fundamental
1-form a = Y1, &idx;, one has that w = —da. If one considers a manifold with

boundary (M, dM), then T*M turns out to be a symplectic manifold with boundary.
One can introduce also in this setting the notion of symplectomorphism.

Definition 4.2.5. Let (M, w1), (M>, w;) two symplectic manifolds. A diffeomor-
phism x : M; — M, is a symplectomorphism if w1 = x*w.

Also in the case of symplectic manifolds there exists a Darboux Theorem, anal-
ogous to Theorem

Theorem 4.2.15. Let (M, w) be a smooth manifold without boundary. Then, for
every point p € M, there exists a neighborhood U of p and local coordinates in U,
(xll e /xnr 61/ cery CEVI) SuCh that

w = Zldx,' Adé;.

Definition 4.2.6. Let (M, w) be a symplectic manifold. A submanifold N C M is
a Lagrangian submanifold if, for allp € N, T,N is a Lagrangian subspace of T,M
w.r.t. the symplectic form w. That is, we require that 7w = 0, wherei: N — M
is the immersion. This implies that dim(N) = 5, n being the dimension of M.
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Example 4.2.3. Let us consider the cotangent bundle T*M of a smooth manifold M.
Then one defines the zero section as the space

T"My = {(x,&) e TM | £ = 0}.

Since on this subspace the fundamental 1-form o = Y, &idx; vanishes identically, the
zero section is a Lagrangian submanifold of T*M. The zero section is often just written
as 0, when there is no confusion. In a similar way one can define the tangent space of a
fiber at a point A = (xo, &o)

TYM = {(x,€) | x = xo).
This is also a Lagrangian space, since dx vanishes identically on it.

Let us now consider a smooth manifold M and its cotangent bundle T*M\ 0.
Let us suppose that we are given a Lagrangian submanifold A. Let us fix a point
A = (x9, £0), and the corresponding Lagrangian submanifold T;OM. Considering
TA(T*M) as a symplectic vector space, given two arbitrary Lagrangian space
A1, Ay of TA(T"M), one can define, according to Definition[4.2.3]

S(TYM, Ta(A), Av, Av).

Given a Lagrangian submanifold A € T*M, we will consider a bundle L on A
with fiber, at each point A € A, given by the set of functions .Z(TA(T"M)) — C
such that

f(A) = STIMTA(A), A1, ) f(A2),

for all A1, Ay € Z(T)(T*M)). Such a bundle is called the Keller-Maslov bundle
and is the right tool to parametrize the principal symbol of FIOs.
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Chapter 5

Functions Spaces and
Symbols on the Half-Space

5.1 Function Spaces
In the sequel, the space H*(R") will be the usual Sobolev space on R”, while
H*#%2(R"), s = (s1,5,) € R? is defined as
H*R") = {u € " (R") | [K0)*Op (&)™) @llr2 < oo},
where Op(a) represents the pseudodifferential operator with symbol a.

Given a Fréchet space E, it is possible to define the space . (RY; E) of rapidly
decreasing vector-valued functions. It can be defined as the subset of C*(R7; E)
such that 9*x? f is a bounded set in E for all multi-indices a, 8. If we deal with
projective limits or inductive limits of Banach spaces, the same definition can be
used. Actually, itis possible to define .7 (IR; E) for all locally convex topological
vector spaces E, see [103], Ch. 44.

Let us now fix a quantization for the Fourier Transform. For every function
in . (RY, E), we set

FW)(&) = &) = (2n)"* fe_ix{”(x)dx, EERI

We recall from Section [4.T] the notation
RY ={(x1,...,x0) | (x1,...,Xp-1) € R x, > 0},
@ = {(xlr o /xn) | (xll .. -/xn—l) e Rn_l/xn Z 0}/

&M = {(xl/ e /le—l/ O) | (xll M '/xl’l—l) € Ri’l*‘l}'

We consider the restriction operator r* associated to R’;. Since R is an open
set, the restriction of a distributions is well known and

H*(RY) = {r"(u) | u € H*(R")}
A lles ey = inf{llullps @y | 77 (1) = £}
Moreover, we define

H§(RY) = {u € HS(R") | supp(u) € RT}.
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Notice that the spaces H*(R}) and H (W) have different nature, because H*(R')

is a subspace of distributions defined on R’}, while H? (R ) is a closed subspace
of H*(R"). We now focus on the space .7 (R?}), defmed as

SR =" f1f e SRY)

First of all, notice that there is a natural injection of .#(R") in L>(R") extending
the functions by zero in the negative half-space. Sometimes we identify .7 (R’})
with its extension in L?(R"). The space .#(R") can be given a Fréchet structure
via the family of seminorms

Pa,p(1t) = sup [xBa%u|, a,peN. (5.1.1)

n
xR

The Sobolev spaces we have defined in the half-space and the Schwartz spaces
in the half-space are closely related:

ind-lims, 5,)- Hy(RY) = [#(R)]"
=.7'(R") = {u € .#"(R") | supp(u) € R},
proj-lim, . H(R}) = Z(RY).
Remark 5.1.1. Notice that the topology on .7 (R) induced by the projective limit
topology and the one defined by the seminorms (5.1.1)) are equivalent. The topology
induced by the inductive limit on %’ (R%) is the topology of convergence on bounded

sets. That is, the topology of 7" (R") is given by a non-countable set of seminorms
{pa,}, where A; are bounded sets of 7 (R), and

pa,(u) = sup Ku, f)l.

fEA,'

5.2 The Extension Operator

In order to define operators on the half-space we have to introduce an operator
of extension, which, roughly speaking, is the dual of the restriction operator.
Here we focus on the case n = 1, we will see later why this is not a restriction.

Definition 5.2.1. Let f be a function defined on the half-space R.. We define
e*f as
¢ fx) = { fx) ifx>0 (5.2.2)

if x <0.

We analyze now the extension operator in the Sobolev spaces H*(R,). If

51 > %, then, one can define e* as in (5.2.2). This obviously implies a loss of

regularity: in this case we have
+ S t,s 1
e’ H¥(Ry) — H"™*(Ry,), <5

Ifs, € (—% %) r* is a bijection, and so one can define ¢* as the inverse of r*. The
case s; < —3 is more delicate and is explained in the following proposition.
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Proposition 5.2.1. Let s; < —3. Then, there exists a continuous extension operator
e+
et H¥(R,) - H5(R,)

such that r*(e* (1)) = u, for all u € H¥(R,).

Proof. First we prove that, if s; < —1, the mapping
i HY(Ry) — HY(R,)

turns out to be surjective. In order to prove surjectivity, we recall that the
spaces HS(IR+) and H%(R,) are related by duality w.r.t. the L*(R,) scalar product,
namely

HE(R,) = [Hy* (ROl Hi(RS) = [HS(R,)]'.

The proof can be found in [48], Appendix B.2. Therefore, to prove surjectivity,
it is enough to find, for each element in [H s(]1@)]*, an extension defined on
H™(R,), and this is possible by the Hahn-Banach Theorem. Notice that, since
H~%(R,) is not dense in H™5(R,), the extension is not unique. For example, the
restriction of the zero function equals the restriction of the Dirac’s distribution
0 at the origin.

Let u € H3(R,); since r* : HS(E) — H®(R,) is surjective, we can consider
the non empty set U = {ii | r*ii = u}. For uj,up € U we have (u; — up)lg+ = 0.
hence L

u =i + span{dy, . .. ,68[7”5])}.
U is a nonempty, closed, convex subset of H3(R™). Hence there is an element
i € U for which ||a||HS(E) is minimal. By the convexity, # is unique. The map

u — i is continuous, since

“ﬂ”Hs(]R) = min{“””[{g(ﬁ) I o= u}
= min{|[vllps@) | 70 = u} = [Jullpse,).-
Indeed, the first equality holds in view of the definition of i, while the sec-
ond follows by the fact that we have, for the projection iy : H*(R) — H(R),
[I7t0vllgs < |[9l|gs: then, the minimum is attained at HS(E). O

Remark 5.2.1. Theorem qives a general definition of e*.The disadvantage of such
1

an approach for s; < —3 is that the extension depends on the chosen Sobolev space:
since we determine e*u as the extension of minimal value of the corresponding norm,
by changing the space, the minima can change as well. Nevertheless, two different
extensions can differ only by a sum of derivatives of the Dirac’s distribution at the

origin.

5.3 Operator-Valued Symbols and Wedge Sobolev
Spaces

In this section we recall the basic tool of the theory of operator-valued symbols,
introduced by B.-W Schulze. The contents mainly come from [29} 94} 96].
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Definition 5.3.1. A strongly continuous group action of a Banach space B is a
family « = {xa} er+ of isomorphisms of B such that

i) KA 0Ky =K, 0Ky = Ky, in particular x; = 1d,
ii) for all fixed x € B the map
R* - B: A xi(x)
is continuous.

Definition has been given for a Banach space B. If B is a Fréchet space the
definition is the same.

Lemma 5.3.1. Let B be a Banach space with group action x,; then there exist constants
M, C such that
lIcall e, < Cmax{A, A7 1M, (5.3.3)

The previous lemma follows from the Banach-Steinhaus Theorem, see [84].
Since Banach-Steinhaus Theorem holds, in particular, for Fréchet spaces, induc-
tive limits of Banach spaces and projective limits of Banach spaces (see [34]),
one has that, analogously, holds also in such cases with inequalities as
for each seminorm.
In the following, we deal with specific group actions. In the case of functions
on R", we will consider
K f(x) = A2u(A x). (5.3.4)

We will use this group action also for all Sobolev space H® with s; > 0. In the
case s; < 0, the group action on distribution is given by duality, that is

(kau, fy =u,x;' f), f test function.

In the scalar cases B = R, C, the group action will be the trivial one, that is, for
each A, k; = Id. The reason of these choices will be explained in Subsection
when we will recall the definition of wedge Sobolev spaces.

Definition 5.3.2. Let us consider E, B Banach spaces with strongly continuous
group actions «, %, respectively. A function a(x, y, 1) € C*(R7, R, R7; £ (E, B)) is
a symbol in the set S”(R7, R, R7; Z(E, B)) = S™(RY,RY,R7; E,B) if foralla, B,y €
N1 there exists a constant C, g, such that

IIKZ,;)(&fa’y’&za(x, Y, r]))K<,,>)II 2(EB) < Caﬁ,y(n)m_la‘, for all x, y, 7.

In the sequel, the Banach spaces we will consider will be mainly H*(R;),
HS(@) and the Fréchet spaces will be .7 (R) or .7 (R.).
As we have noticed, the spaces .(R;) and .#’(R.) are related to H*(R,)

and H(S)(E) via projective limit and direct limit. We give the definition of
operator-valued symbols in the case of projective limit and direct limit.

Definition 5.3.3. Let E; — E,... be an inductive family of Banach spaces
such that the group action on E;., restricted to E;, is the same of E;, and
Fi1 < F, < ... a projective family of Banach space such that the group action
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of F;, restricted to Fi.1, is equal to the group action of Fi,1. Then, setting
E = ind-lim;E; and F = proj-lim,F;, we define
S"(R7,RT,RT; B, F) = proj-lim,S"(R7,R7,R; B, F;),
S"™(R7,RT,RT; E, B) = proj-lim,S" (R, R, R7; E;, B),
S™(RT,RT,RT,E,F) = proj—lim(i,j)Sm(Rq, R, RT; Ej, Fy),
where B is a general Banach space with group action.

The case of of symbols with values in the vector space of linear operators
from an inductive limit space to an inductive limit space or from a projective
limit space to a projective limit space is more delicate.

Definition 5.3.4. Let E; — E;... and F; — F,... be inductive families of
Banach spaces with group actions x; and &, respectively, such that the group
action of Ej;q, restricted to E;, is the same of E;, and similarly for the family F j-
We set E = ind-lim;E; and F = ind-lim;F;. Then, a smooth function a(x, y, 1)
which takes values in .Z(E, F) is a symbol in the class S" (R, RY, RY; E, F) if, for

all i and for all «, 8, v, there exists j and a constant Ci 8y such that

1R (250 95a0x, y, ) )capue)llr, < CL o lulle Gy, (5.3.5)

aBy
The following lemma follows from Definitionm

Lemma5.3.2. Leta € S"(R7,R7,R%; E,F)and b € S'(R1,RY,RY; E,G), E, F, G Banach
spaces, or projective limits of Banach spaces, or inductive limit of Banach spaces. Then

i) 8%85&551(9{, y,n) € S"W(RI, R, R; E, F), for all multi-indices a, B,y € N7;
it) The point wise composition (ba)(x, y,n) belongs to S"™*(R7, R, RT; E, G).
Theorem 5.3.3. Leta € S"(RY,R9,R%; E,F), E,F as in Deﬁnition Then,
Op(a) : #(RTE) - #(RYF)
e @yt [ SO, €ty )y d
is a continuous operator, where d& = (2n)~2dE.

Theorem 5.3.4. Let us consider symbols a € S™(R1,R1,RTE,F), b € SY(RY,
R7,R7; F, G), and the associated pseudodifferential operators A = Op(a), B = Op(b).
Then,

i) there exist a right symbol ag and a left symbol ay, defining the same operator;

ii) the composition B o A is again a pseudodifferential operator with symbol ¢ €
S"H(RY,RY, RY; E, G) such that

= 1
Cc~ Z EagbLD“aL.
laj=0

We give now a few examples of vector-valued operators.
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Example 5.3.1 (Trace Operators). Let us consider the trace operators y; : ./ (R;) —
C,j=0,1,...defined as

yif = limalf(t) = f(0).

In view of the trace theorem for Sobolev spaces [2l], one can prove that the trace operators
extends to H5(R,) with s; > % + j. Actually, y; can be seen as an operator-valued

symbol in Sf+%(Rq,]R”7 ; HY(R,), C), with the canonical group action on the Sobolev
space and the trivial one on C. Indeed, we find

by i(cp @)l = Kn)* Hm @ u(pt)] = n)/* 29 u(o).

This implies that the required estimates in Definition are fulfilled.

Example 5.3.2. Another important example is a pseudodifferential operator acting in
one variable only. Namely, let us consider a € S"(R", R") and define the operator

Opn(a)u(xn) = feix”.éna(x// Xn, &) En)U(En)AE .

It is possible to prove that
U Ky 0 Op, (@) o Keery

is a continuous operator from 7 (R) to itself. Moreover, one can extend it as a
continuous operator from H¥(R) to H*="O(R). Namely,

Kery-1 0 Op,(a) o keenu(xy) =
. no s I
Pon g@ry ~HYneen ( n) n d nd n-
fe a <é>ééu(<c€>y)y£
If we set N, (&' = &, and t, = y,(&’) we get
Kegryr © Op, (@) 0 Keery (Xn) =

f éral, s &l )) ..

Now, the .#-continuity follows because the function a( ’ <’§">,E’ (&’ )) for fixed
(', &) € R"™ x R"™, belongs to S"(R,R). A simple observation, useful in the
computations, is that (1 + &2 + (&'Y?n2) = (&'YXnu)?. More precisely, one can prove

that Op,(a) € S"(R"1, R""1; H3(R), H=("O(R)), since the operator norm of
K(gry-1 © (&Y E,Opn(a)u) 0 Ky

comes from the seminorms of the symbol 85,8‘; [a ( ’/, <’§" L& Ml ))] seen as a symbol
in S"™(R, R), with (x’', &’) fixed. Knowing that a € S™(R",R"), it follows that

. —m+gl gt (aa a}g ( , (En ))
<n > Xn " 1 xn <£I> 6 T] <E >

where C depends on {p, s}, senn, the set of seminorms of the Fréchet space S™(R", R").

sup < C(Eymh

xeR
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Alsoin the case of operator-valued symbols it is possible to consider classical
symbols, but first one has to give a meaning to asymptotic expansions. The
following results are given without proofs: they are an extension of usual proofs
in the scalar case.

Theorem 5.3.5. Givena; € S™i(R1,R7,RY; E, F), j € N, E, F being Banach spaces or
inductive or projective limit of Banach spaces, there exists a symbol a € S™(R",R"; E, F)
such thata ~ Y, aj, where ~ means that, for all N € N,

N-1
a- Z aj € S"N(R1, R, R, E, F).
j=0
Definition 5.3.5. A symbol a € S"(RY,R7,RY; E,F), E,F being Banach spaces
or inductive or projective limit of Banach spaces with group actions «,x,

respectively, is classical if it has an asymptotic expansion a ~ };a; with
aj € S"(R7,R1, R7; E, F) such that

aj(x,y,An) = )\m‘jmaj(x, Y, MK

forall A > 1, || > R. We write, in this case, a € SH(RT,RT,R7; E, F). Clearly, if
E,F are equal to R or C, the definition coincides with the usual one.

5.3.1 Dual and Transposed Symbol

It is well known that [H*(R)]* = H™*(R), where the duality is understood in the
L?-sense. Moreover, since « is unitary on functions, x,i = k1, we have that
the definition of group action on distribution by transposition or by L>-duality
is the same. Now, we embed this example in a more abstract theory. Let us
consider a triple of Hilbert vector spaces (E_, Ey, E+) such that there exists a
topological vector space V such that V 2 E_ U Ey U E,.. Furthermore, suppose
that EpNE_NE, isdensein E,, Ey, E_ and that E_ is the dual of E, via the scalar
product of Eyg. Explicitly: there is a continuous, non-degenerate, sesquilinear
form (-, -)g such that
():E-XE; - C,

and (-, -)g coincides with the scalar product of Ey on (E- N Eg) X (E+ N Eg). We
can then identify E, with the dual of Ex with the norm

lixlle. = sup |(x, Y)le,  [lYlle, = sup |(x, y)le- (5.3.6)
llyl=1 llxll=1

We assume that the group action defined on V is compatible with the sesquilin-
ear form (-, -)g, that is
(xru, ) = (u, Kilv), Yu e Ey,v € E,.
In the sequel, the triples of Hilbert spaces we use will be mainly
(H™(R), L*(R), H*(R)),  (Hg*(R), L*(R.), H*(R.)).

The aim of this abstract construction is the following: given a triple (E_, Eo, E),
associate with each symbol a(x, y,n) € S"(R7,R7, R7; E_,F_) an adjoint symbol
a‘(x,y,n) € S"(RT,RY,RY; F,, E,) such that

(alx,y,me, fr = (e, a*(x, y,n)f)E, Vx,y,1; Ve, f.
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In order to check that a* belongs to S™(R7, R7,R7;F,, E,) one can use (5.3.6).
Moreover, one can verify that

(Op(@)u, v).7®s;p) = (1, Op(a")v) 7 rs;E),
where the scalar product on .(R%; E) is defined as
(,)omip + L (REE) X S (RTE) > C

5.3.7
(1,0) = (4, 0) @) = f(u(X),v(x))de. ( )

In the case of general locally convex topological vector spaces with seminorms
{Pa}aer one has |I| semidefinite sesquilinear forms.

A similar argument can be used also for the transposed of a symbol a €
S™(R7,R7,RT; E,F). We want to define the transposed symbol a' € S"(RY,RY,
RY; F’, E’) such that

(@'(9), fy = u,a(f)), VfeEgeF.

The dual spaces F',E’ are endowed with the topology of convergence on
bounded sets. Similarly to (5.3.7) one obtains

(@' (w), )o@ p) = (U,a(0)) ww®ip, ue€.SRIF),ve S RYE).
where
() ®IE) - SRLE)x #(RT;F) - C

(1,0) > (U, V) o (riE) = f (u(x), v(x))dx.

5.3.2 Wedge Sobolev Spaces
In Example[5.3.2)we have seen that
Op,(a) € S"(R"™", R"; H¥(R), H* "O(R)).
Moreover, Theorem states that
Op,.(Op,(@)(x',&)) : LR, HY(R)) — 7 (R", H*"O(R)) (5.3.8)

is a continuous operator. Actually, by the general theory of pseudodifferential
operators one knows that has a continuous extension from H*(R") to
H5=mO(R™). In order to capture this Sobolev continuity, we introduce adapted
Sobolev spaces that, in the standard case, are equivalent to the usual Sobolev
spaces. The results of this section mainly come from [94]96]. About properties
of wedge Sobolev spaces see also [45]95].

Definition 5.3.6. Let E be a Banach space with group action x. We define
#*°(R7; E) as the completion of . (RY; E) with respect to the norm

[ f (¥ liyr ().
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If we deal with general locally convex topological vector spaces F with semi-
norms {palac;, we define #°(R7; F) as the completion of . (R%; F) w.r.t. the
seminorms

po(u)® = f (Y paic gy () dn.

That is: if a sequence {u,},en € #°(R7;F) is such that {p}(u,)} is a Cauchy
sequence for all «, then there exists u € #*(RY; F) such that p} (u,) — p}(u), for
all a.

It is possible to introduce, as in the standard case, weighted wedge Sobolev
spaces
WE(RTE) = () 2u | u e W2(RT E)}.

The following properties can be proved by techniques similar to those used in
[4599].

Proposition 5.3.6. i) If s1 > sy then W (RT,E) — #*2(R;E) is a continuous
immersion, if s; > s, the immersion in compact. By s1 > s or s1 > s, we mean
that the inequalities hold for both the components of sy and s,.

ii) [W5(RTE)] =% SR E).
iii) If E — F continuously and xg = xp on E then
WORTE) — #RTF), VseR
Let us notice that if E = ind-lim;E; and F = proj-lim F; then
#3(RT; E) = ind-lim;#*(R7; E;),
W3R F) = proj—limjV/S(Rq;Fj).
So, we can define the space
WERT;.Z(RY)) = ind-limg, )00 #S(RT; Hi 2 (RS)),
»oRY; S (RY)) = proj-limg ), 7 °(RY; H"2(R,)).
Moreover, notice that the following equality holds:
S(RY) = proj-limg o SR H(RY)),
(R = ind-lims, 5,) (11 1200 # (R HY (R)).
The following Theorem is proved in [99].

Theorem 5.3.7. Let a € S™(R7,R7,R7; E, F), E, F Hilbert spaces. Then, the operator
Op(a), defined in Theorem admits a continuous extension to wedge Sobolev
spaces

Op(a) : #*(RT;E) — w7 "*2(RT, F).
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Chapter 6

Fourier Integral Operators of
Boutet de Monvel Type

In this chapter we consider operators acting on the half-space R”. In order
to prove continuity properties in the scale of Sobolev spaces, we need some
hypotheses on the phase of the FIOs and on the symbol. This local theory will be
the first step in order to introduce a global definition of FIOs on manifolds with
boundary, starting from a symplectomorphism fulfilling suitable conditions.

6.1 Transmission Condition and Admissible Phase
Functions

In this section we will consider FIOs arising from symplectomorphisms of man-
ifolds with boundary. As we have noticed in the Example the cotangent
bundle T*M of a manifold with boundary (M, dM) is a symplectic manifold
with boundary T7, M. Let us consider (M, dM), (Z,dZ), two compact manifolds
with boundary and x : T"M \ 0 — T*Z \ 0, a symplectomorphism positively
homogeneous of order one in the fibers. It is natural to require that the the
symplectomorphism preserves the boundary: x(dT"M \ 0) = J(T"Z \ 0). The
following lemma, which is proved in [69], analyzes symplectomorphisms of
this type.

Lemma 6.1.1. If (M,dM) and (Z,9Z) are compact manifolds with boundary and
X :T"M\ 0 — T*Z\ 0 is a symplectomorphism, positively homogeneous of order 1 in
the fibers, such that x(dT"M\ 0) = dT*Z \ 0, then x induces a symplectomorphism
Xo: T'OM\ 0 — T*dZ\ 0, positively homogeneous of order one in the fibers, such that
the following diagram commutes:

% + X + +
Ty M\NOM = T3, 7\ N*9Z

TOM\0 —2 = T9Z\ 0
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Proof. In we havenoticed thati), : T, M — T"dM has a kernel given by the
normal bundle N*dM. More precisely, it is a Hamiltonian foliation. The leaves
are integral curves of a Hamiltonian vector field. In this case, locally, the Hamil-
tonian vector field is d;,, where &, is the dual variable of the normal direction at
the boundary. This structure is preserved by the symplectomorphism y, which
sends fibers into fibers. Since (i*)71(i*(p)) is connected for all p € T*My; \ N*9M,
the diffeomorphism yx, is well defined and turns out to be positively homoge-
neous of order one in the fibers, since i}, and x have this property. Notice that,
if ay is the fundamental 1-form on T*M, then (i},)"am = amlr-om and the same
property holds for az. Then, we have

(1‘;\4)*()(9)*0432 = X*(i*z)*aaz = x"(azlorz) = amlorm,
thatis, x, preserves the fundamental 1-form, so itis a symplectomorphism. O

Remark 6.1.1. In Lemma we have considered the induced symplectomorphism
Xo outside the zero section. Actually, since x is smooth on JT*M \ 0, the induced
symplectomorphism ), is also smooth on the zero section. Since x, is positively
homogeneous of order one in the fibers, the smoothness at the zero section implies that
Xo 1s then trivial in the fibers.

Property 6.1.2. Let (M,dM), (Z,9Z) be smooth manifolds with boundary and x :
T*"M\ 0 — T*Z\ 0 be a symplectomorphism positively homogeneous of order one in the
fibers, preserving the boundary. We can consider cylindrical coordinates at the bound-
aries IM and dZ: these coordinates induce cylindrical coordinates at dT*M and dT*Z.
For all possible choices of such cylindrical coordinates, denoting by (X, Xx,, X&'s X<,)
the components of x, we have that the Jacoban matrix of the symplectomorphism at the
boundary has the form

v Xy Oe Xy 8x,1)(x’ a:f,,)(x’
I = dvxe doxe OIxXxe deXe
Oy Xx, aé’Xxn &x,, Xx, &5” Xx,
dvXe, OeXe, OxXe OdeXe,

where
i) Ay Xx,, O Xx,, O, Xx, ave null vectors,
ii) dg, X, I, X& are null vectors.

Proof. Part i) follows because the symplectomorphism maps the boundary to
the boundary, that is x,(x’,&’,0,&,) = O for all (x',&’,&,). Part ii) follows
by Lemma [6.1.1) which implies that the symplectomorphism induced at the
boundary depends only on the coordinates at T*dM. So the Jacobian has the
form

dv Xy O o X 8xn X 0
[ = dvxe Odgxe Odxxe 0
x 0 0 Fx, Xx, 0

835/)(‘311 8£/X£n &-XVIXE,VI agnxén
Let us now recall that the Jacobian matrix of a symplectomorphism always has
determinant equal to one. Lemma implies that the sub-matrix

ax’ Xx' aé’Xx’
&x/ Xé’ &51)(5/
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is equal to J,,. |

In order to define a suitable calculus for FIOs on manifolds with boundary,
we need to introduce the notion of transmission property, see, e.g., [19,35,138|
88,194]. Consider the function spaces:

H" ={Z('u)|ue YR:)} and Hj ={F(eu)|luec SRy

It is possible to prove that H* and H; are spaces of functions decaying of first
order at infinity. Moreover, we denote by H’ the set of all polynomials in one
variable. Then, we define

H=H"®H;®H', H =H;®H, Hy=H"®H,.

Definition 6.1.1. Leta € S"(R”xR"xR"). Then, 2 has the transmission property
at x, = y, = 0 provided that, for all k, /,

9y, 0%,a(x',0,,0,& ,(E)E,) € "R X R" x R" &, Hy,.

We denote by SII(R" x R" x R") the subset of symbols with the transmission
property.
For symbols positively homogeneous of order m w.r.t. the & variable, Defi-

nition is equivalent to
&, d,,0%a(x',0,y,0,0,1) = (-1)" 3% 9, d%a(x’,0,y,0,0,-1) (6.1.1)

Xn~ Yn

forallk,! € N, € N'~1. The above condition is often called symmetry condition:
the proof of the equivalence can be found in [88]].

Definition 6.1.2 (Admissible symplectomorphism). Let (M, dM) and (Z,dZ) be
compact manifolds with boundary and x : T"M \ 0 — T*Z \ 0 a symplectomor-
phism. We call this symplectomorphism admissible if all the components of
locally satisfy the transmission condition. This definition has a global mean-
ing, because a change of coordinates in the cotangent bundle is linear w.r.t.
the fibers. A phase function that represents an admissible symplectomorphism
will be called admissible.

Property 6.1.3. Let Y(x’, x,, &', &) be an admissible phase function, locally represent-
ing a symplectomorphism x close to the boundary of M. Then, the phase function at
the boundary x,, = 0 is linear in the &' variable and does not depend on the &, variable.

Proof. The phase function, in a local chart, represents the symplectomorphism
at the boundary, that is the graph of x is described as

(x// Xn, ax’ ¢/ axn IPI a§’¢/ aén ¢/ é’/ én)
Since dg, Y(x’,0,&’,&,) = 0 for all x’, &', &, we can write
w&(x,/ é,) = lp(x/r Or 5,/ én)/ |£/| ;t 0

If |£'] = 0, in view of the non-continuity at |£| + |£,| = 0, we cannot, in general,
define 9. Nevertheless, in Remark [6.1.1| we have noticed that the symplecto-
morphism y, induced at the boundary is smooth: this implies that the phase
function is also smooth, and, since it is positively homogeneous of order one,
it turns out to be linear in the fibers. O
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6.2 Fourier Integral Operators on the Half-Space

In this section we analyze the continuity properties of FIOs on the half-space
R’}. We restrict ourselves to FIOs defined by Lagrangian submanifolds obtained
from admissible symplectomorphisms as in Definition[6.1.2} and in this case the
base manifold is R’ In the following, we will make use of a general statement
on FIOs associated to a symplectomorphism, that allows us to consider left and
right quantization of the symbol and of the phase, see [49], Ch. 25. Since we are
concerned with the behavior of FIOs near the boundary, not with the behavior
at infinity,

in the sequel we will always consider
symbols with compact support in the space variable.

The first step is to analyze the action of a FIO with these properties on Dirac’s
distribution at the origin.

Theorem 6.2.1. Let a € S{'(R",R") and 1 a phase function that represents, locally at
the boundary, an admissible symplectomorphism x. Then

K&, &) =r*Opy (@)3
= f eV S a3, &, E0)S) B
defines an operator-valued symbol in S™*2*(R"1, R"1;C,.#(R,)). Here, 6éj) is the

j-th derivative of the Dirac’s distribution at 0, while vy, is the phase function that
defines the symplectomorphism induced on the boundary as in Lemmal6.1.1]

Proof. Firstwe consider the operator Op¥(a) acting on smooth functions defined
on the whole of R".

Op¥(a) : CX(R") — C*(R")
U= feiw(X',Xn,él,én)a(xl’ X, ‘S,/ én)ﬁ(é// én)d(gldén —
f ) f e (i, &, EAE, E)AE AE,,

where r(x’, x,, &', En) = Y(X', %0, &, En) —Pa(x’, &'). Since ¢ represents a canonical
symplectomorphism, from the results in [49], Ch.25, it admits a right quantiza-
tion. Therefore

Op"(a)(¢p ® 00)(xn)
_ f i) f G o D 2 6 6,80 5, BN
— feitp,;(x’,é’)kj(x/, 51)4\)(5/)551

6.2.2)
— fezx"é'ﬂxn'in—lll” (y’ryn,é',é")aR(y/, . &, én)qb(y/) ® 60(yn)dy,dyndéldén

) f AR f eI W ) g (1, &, &)
P(Y') ® do(yn)dy dy,ds' d&,,
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where the equality is modulo operators with smooth kernel,
I Y € ) = T e &) — 5 (L ),

and ¢! is the phase function representing x~!, inverse of the symplectomor-
phism x. Now, we focus on the action in the normal direction, namely, the
expression

B(y', &', %x)(00) = f e f eI gy Y, &, E)OodYndEn.
By the definition of operators on distributions, we have, for all u € C°(R),
<K<ér>—1360, u) = (60, Bt o (K(gr)bl)) =

<60/ <EI>% fe_ir1(y,/x”/§,/§n)+iynéuu1{(y// xl’l/ 5// én)u(<5’>]/n)d]/nd5n> =

(5’)% faR(y’,O, &, EEMNN(-Ey)dE, = (transmission property)
(&) iSf(y’,é’) f EN(ENTE, +(E)? imbf(y’,é’) f hu(En)(=En)AE,
k=0 1=0
where sf € S"(R", R, A; € I', {b}} € S"(R"!,R"™™), is a null sequence,
h e Z(Ry) @ S (R_). Using the properties of the Fourier transform,
(i1 Bdo, ) =(&)? Z sty &)ikoy )+

k=0

= (6.2.3)
(Y A, [ I uei,
1=0

Applying the restriction operator r*, all terms that depend on égk) vanish, so we
get

Kyt BSo = (&) Z ARG, &Yt i) = B, &, %)- (6.2.4)
1=0
As derivatives w.r.t. (x/,&’) can be treated in the same way, we see that
r*Béo(y’, &) € S™ (R, R C,.#(R,)). Now, since 1,(x’, &) is a symplecto-
morphism of the boundary, inserting (6.2.4) into (6.2.2), we obtain

K11 OpY (@) (¢ ® &) = f eI et B, & xa) by )y 4

— (5/>% Z r+h1(xn) feix“é/—ilp;l(y/rfl)Alb;?(y/, 5’)¢(y’)dy’d£,

=0

Finally, switching back to the left quantization, we get, modulo smoothing
operators,

Kyt r feiw(xl’x"’g/"E”)_il,Ua(X/,E’)a(x/’ Xn, 5/, én)éodén
1
= (@2 Y b, &)t ().
=0
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This implies the assertion for j = 0, since r*h € .7 (R,) and b; € S"(R"~!, R"™1).
The proof for j > 0 is similar: it is enough to notice that the phase function
has the transmission property, since it is admissible, so we can follow the same
steps, but with a symbol of order m + ;. O

Remark 6.2.1. We could prove, with a and vy as in Theorem that
: few(x/’x”’glfén)—i%(x’,é’)a(x// Xn, 51, En)gg) dén

is a symbol in gmrati(R1, R C,.(RL)).

Remark 6.2.2. Theorem |6.2.1| gives a precise description of r*Op‘/”(a)ég). Suppose
that a € S{)(R", R") and there exists N such that

kK a(x',0,& (£)&,) € S"(R" x R")&,Ho,
for k < N, that is, the expansion of 9% a, k < N, at x, = 0 has no polynomial part w.r.t.
the &,-variable. Then, r+Op4’(a)5g) is a regular distribution and

rop? @) = xe.Op¥@)5), j=0,...N, (6.2.5)

where xwr, is the characteristic function of R*. Relation (6.2.5)) holds also in the case
the symbol a vanishes at x, = 0 at least of order m + j + 1, because the multiplication
makes vanish all the derivatives of the Dirac’s distribution appearing in (6.2.3).

Definition 6.2.1. A functiona € C*(R};! X R X Ry, X Re,) belongs to the set
BS™(R"1, R"1; S/(R)) if, for all a, B, , 6, there exists a constant Cy 5,5 such that

10%,05,07,0° a(x’, x, &, &) < CG&7 Yo, 0,
Clearly, BS"(R"1, R""1; S(R)) € BS"(R"!, R"1; S"(R)) if I > I.
A direct computation implies the following statements:

i) the classes BS"(R"~!, R""1; S/(R)) have a multiplicative property, that is

BS’”(R"‘l, Rn—l; SZ(R))Bsm’ (Rn_l, Rn_l,' Sl’ (R))

6.2.6
c Bsm+m’ (Rn—ll Rn_l,' Sl+l’ (R)) ( )

ii) Leta € S"(R",R"), then
G %, &) = a (x', é—> g, 5n<5’>) (6:2.7)

belongs to BS™(R"™!, R""!, S™(R)).
Lemma 6.2.2. Let a € S™(R" X R") and ¢ be chosen as in Theorem Then

" O O 3 & E o ) (! e 75
! x/ 7 4 7

it v & e (6.2.8)
= VW X, E En)—itha(x' € )ﬁ(x', X, &, En)

4

where i (x', 25, &, (E)Ey) € BS" IR, R, SHA(R)).
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Proof. The assertion is proved by induction. It is trivially true if |a| = || = 0 by
(6.2.7). So, let us suppose that (6.2.8) is true for |a| + |f] < t, t € N, and show that
it holds true for |a| + |B| = t. If |a| # 0 we can write

85} (8‘;,_ Y Di,eiw("/"‘”"5'@”)"'%(""8){1(3(’, X, &, cfn)) = (by the inductive hypothesis)
=0, ( PV A )i ) gy & 5n)) =

eiyb(x’,x,l,rE’,En)—i%(x'ﬂS)(aé;(ﬁl}(x’, Xn, &, &En) — WX, ENAX, X0, &, En)

+ D, X, &, E0)) =
=ei¢<x',xn,af,eo—wa(x',s’)(b(x', Xn, &, ENAX , xn, &L En)

+ aé;ﬁ(x/, xn, 5// 51’!))/
(6.2.9)

where

1
B, 20y £y E0) = %o f DO (¥, 0,&, E)0. (6.2.10)
0 ]

In (6.2.9), we have used Taylor expansion around x, = 0 and the condition
P(x’,0,&, &) —Pa(x’, &) = 0. The function b in (6.2.10) is the integral remainder.
Now, we have to verify that

Xn

(&

Xn

(¥, o & e a (v s

) &, &KE')) + (dgi) (x'

7 ‘S’/ én <£,>)
belongs to BS™~l(R"~!, R"-1, SFI(R)). This is true since, by the inductive hypoth-
esis, a(x', 2, &, E,(&")) € BS" (R R, SPI(R)), 3 € BSTI(R™, R,
S9%(R)), and f01 85;8xn1/)(x’, 0,&,&,)d0 is a symbol of order zero, so b in (6.2.10)
belongs to BS™'(R"!, R""!; S(R)) by (6.2.7); then, we just apply the multiplica-
tive property (6.2.6). If |a| = 0, then we have

&x; (ail‘lfeilP(x',xu,é’,én)—il!)a(x’,é’)a(x" X0, &, En)) =

ax; (ez‘w(x',xn,a/zo—i%(::x:)d(xf,xm &, 5n)) = W Xn & En)=itpa( &)
(et 2, &, E)AC X0, & E) + D, X0, & E)).
where
1
0, 0,60 = [ 00n 0,15, o

is the integral remainder of Taylor expansion of 8,(;((1/}(36’, Xn, &, En) = Pa(x’, &)
at x, = 0. Again, by the inductive hypothesis, a(x’, 2%, &', £,(&')) € BS™ (R,

/E/

R"-1, Sm*A-1(R)), moreover ¢ € BSO(R"!, R"~1; SY(R)), thus, applying the mul-
tiplicative property (6.2.6), the assertion is proved. ]
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Theorem 6.2.3. Let a(x’,x,,&',&,) € S[(R",R") and  represent locally at the
boundary an admissible symplectomorphism. Then,

+Op (@)e" : S (Ry) — S (Ry)
urrt ff eilll(x',xnﬂi’in)*illJa(X’ﬂE')*iyn&za(x',xn, & &)
e u(Yn)dyndn

is an opemtor-valued symbol in S’”(R”‘l,IE{”‘1 ;7 (Ry), S (Ry)). The same property
holds for r~ Op (a)e* and r*Op (a)e.

Proof. The following argument is a slight modification of the proof of the .-
continuity of FIOs with non homogeneous phase in [110], Sec. 1.5. We are
interested in the behavior at the boundary, so it is no restriction to consider

7 (xn) f f Y ) =i E i (o, & Enx et () (yn)dy,d&,,

(6.2.11)
where w, x are cut-off functions near the origin. We consider now another
cut-off function «’ such that ww’ = w: we can rewrite (6.2.11)) as

rt f f Vo O g (3 x,, & E) X (Y)e T () (Y)Y dE

where

4/(x//xnré//£n) = a)'(xn)yb(x’,xn, & En) =1 = ()X - Eny
ﬂ,(x,, x‘rlr é,/ é‘rl) = ﬂ(x,, lel g’r gn)a)(x‘rl)'

We have to prove that, for each choice of [, s, a, B, there exists I, s’ such that
prsikiey Dg,Df,rJ“Opf(a)e*K(g,)u} < (&Y™ alpy, o (u).

where {p; s} are the seminorms of .”(R.). Let us start with the case |a| = |f| =
| = s =0, that is, let us estimate

(K<5,>_1r+0p,f(a)e+1<< nux’, &) =r ff i (¥, i & €N =ipa (X &)=Y én

Jn o e >)x<yn>e+<u><yn>dynd5n
(6.2.12)

( (&N

We introduce the operators

1-i(9g, [ (v, &, &, &EN)] - ) 2%,

L=
D10 [ (v & )] - b

and

1 )
Li = 1+—|6n|2(1 + Zéngyn),
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which satisfy
Lo/ —ibomitnén = ¥/ =i,

L;eilp'_ilpa_iynén — eil!/’—il/)a—iynén'
Let us notice now that

e [w (< &

o (5 (@6 (¥, s &0 60t = ).
By hypothesis, d¢, ¥(x’,0,¢&’,&,) = 0 for all ¥/, &, &,,. Hence, we write

o (5 ) Pev (¥ 60t =) =
)(x,,awo“'gnl,b(x 0,E,EEN) = x0)| =

s L) = 0w, )|~ 0 =

b
o (o ()0, .t -1

where 11 € [0, <’é”>] Clearly w ( (92”)) 0,05, W' (X', 1, &, E(E")) is bounded, because

Y € S{(R",R"), and @’ € CX(R). So, choosing x, small enough, we can assume
that

<7<l

e W (¥ s € E0) = gt )] - 3,

Now let us examine 1 + |0;

sn[ll}/ ( ,1 (?y é, 571(5 ))] - ynlz. We have

2
14%[ @yaagm
Z%P+P&¢%mé%géﬁﬁﬂ—%r

1 2
> 5[1 + X = Yul —T]
Now, using integration by parts, we can write (6.2.12) as

ff (1 5.7 D) it £ )i 1 ( ’<£>,é e >)

X(n)e" W) (yn)dy,dé, =

rr f f ei#/ X, s & En(E )i (¥ &) =iy (6.2.13)

L (0 (v, s 7 60) L ) € ) il

Let us examine the terms in the last integral of (6.2.13). Since a’ € S"(R",R"),
we get

—2Iy
<(A=D+ b —yal) EYEN" (6.214)

wdxé%aa@ﬂ
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and
ll l] -1 i

Lie*u(y) = (&)™ {Z cihetdl, (u) + &l ()~ 1’} (6.2.15)
i=0 i=0 k=0
where ¢;,d; are constants. We split (6.2.15) into two parts: (Llllem)s, which

contains the terms with no Dirac’s distributions involved, and (Lllle+u)d, which
contains all the others. Now, (6.2.13) turns into

ff i (0, it En(EN=ipa (v &) =iYnn
(6.2.16)

Léfa [(Llfe u)s +(L111€+u))d] dyndé.

In order to get the desired inequality for the integral containing Lf)‘)a’(Lll1 e*u)s
we just impose Iy, [; large enough, so that one can evaluate the integral using
(6.2.14) and (6.2.15), exactly as in [110], p. 66. For the term depending on
Dirac’s distribution, we notice that Lé)a’ is still a symbol with the transmission
property of order m and (&,)~? satisfy the transmission property: then, using
the properties of trace operators in Example and Theorem we get
the assertion for || = |f| =m =n = 0.
To prove the general case it is enough to apply Lemma that shows

9, 9% eV At S g (! e &, Ey) =
el’ll}(X’,xyz,é’,én)—ill)a(X’,é’)ﬁ(x X, ELED,
a(x, 2, &, 6 >= € BS" (R, R, ™HFI(R)). Now, by (6.217), we can

prove Theorem [6.2.1| with 4 instead of a and then repeat the same scheme we
have used above to get the desired inequality By Remark [6.2.]] ‘ it is clear that

the result of the Theorem also holds for r+Op,, (@)e” and r Op (a)e*. O

(6.2.17)

Note that, as it can be seen by the proof of Theorem if we derive w.r.t.
the x” variable, the operator in the normal direction can increase the order: this
is the reason why, in this setting, it is not possible to prove that

rOpy (@)t : S (R,) - .Z(Ry)
u—r ff eilP(X’,xmrE',éu)—i%(x’,é’)—iynéna(x"xm g, én)e+u(yn)dyndén

is a symbol in S"(R"!, R"~1; H5(R,), H*""(R.)), a being a symbol of order m.
This can be seen explicitly, through the following counterexample:

A: SR - S (RY)
U ffei[(X'—y')'U'+(f(X’)xn—yn)'77n]u(y', v dy' dy,dn g,

where f is a strictly positive function. The phase function of the FIO A in
(6-2.18) represents a symplectomorphism x of T*R” = R?" in itself of the form

(6.2.18)

X: RZ” - RZ”
&, (6.2.19)
f (X’) f&n))

(', x, &, En)'_)(x f(x)xnlg f( x")xy
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Indeed, setting x = (X', x,,), v = (v, y») and n = (17, 1,,) the phase function of A
turns out to be

oG y,m =& —y) 0+ (F&)%n = Yu) - M-

Notice that ¢;(x, y,n) = 0 implies x" = y" and f(x)x, = yu, S0 ¢ parametrize the
Lagrangian submanifold

Co = (O, 20,1+ /)01, f N, X f ()20, =11, =100).-
Thus, C:p correspond to the canonical relation
Co =", xu, " + f' ()X, f )0, X, )20, 1, 110)
=graph(x) = (X, xu, &, &u, X, f(X )20, & = £/ (X))

En &n )
f@) f(x))

The symplectomorphism y is admissible since preserves the boundary:
X&' xn, &, En) € IR & (X, x,,&, &) €RY, thatisx, =0,

and it is linear in the fibers, therefore all components have the transmission
property. Looking at the action along the normal direction, we see that (6.2.18))
cannot be an operator-valued symbol in S’(R"~!, R""1; H*(R,), H*(R,)). Indeed,

K(,ﬁ—l&x; ffei(f(w)x”y”)'ﬂ”K(n’)u(J/n)dyndén

= Ky (<n'>% I e“f(“x"-%)‘”"i(ax;f)(x')xnnnu«n»yn)dyndnn)

= Kary
} ff e ("'”‘”'9”1'<8x;f>(x'>xnenmen)den)
— K<U/>—1 <nl>% ff ei(q’)f(x’)xn-en (8x;f)(xl)xn8’—yn\u(6n)d9n)

Koy (€72 (O FYE 000, () (X))
(D FO )X, 1 f ().

Now, we recall a technical lemma, proved in [88], p. 122.

Lemma 6.2.4. Let a € S™(R",R") be a symbol with the transmission property. Then,
there exists a symbol a; € S™(R",R") having the transmission property for all hyper-
planes x, = €, € > 0, such that

Ok (a(x, xn, &, En) = (X, X0, &, En)lr=0 = 0
forallk € Nand forall x', &', &,
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Proof. We set

(o8]

i
CERRIEDY %aﬁna(x',o, &, Eb(t ) (6.2.20)

=0

where ¢ is a cut-off function at the origin and {¢;} is a sequence such that the
series in (6.2.20) converges in S"(R", R"). Clearly, choosing 4, as in (6.2.20), we
get that a — a; vanishes of infinite order at x, = 0. The symbol a; has then the
transmission property for all hyperplanes x, = €, € > 0, since a has it w.r.t. to
x, =0. O

Proposition 6.2.5. Let a and 1 be as in Theorem [6.2.1, Then, for all a and B it is
possible to write
r+8f,ag,0p:f (a)e* = r+OpZ(ad)e+ + rJ'Opf(ao)e+
with ag such that
(@%,0%,0p} (a0)e") f € LA(R), (6.2.21)

and ag € S}(R",R") is a polynomial in &.
Proof. The proof follows from Remark[6.2.2]and an observation of the proof of
Theorem First we consider |a| = |f| = 0. We prove that

(0,950p, @)e’) f € S(Ry) f e S(Ry), (6.2.22)

where we consider .7 (R,) as a subset of L>(R,). Let us consider a,a; as in
Lemma and set b = a — a;. In view of the transmission property of a, we
can write

" En

06,0, = 36,98+ X, 35,
k=0 k=0

where the a,j € Sm(R”_l, R”‘l) are polynomials in &’. Then, we set
m .
ag (X, 2%, &', En) Zx]nak,j(x’, ENERP(tixn),
k=
ay (X, %, &, En) = ix{;bk,j(x',é’)hk,j(i)¢(tjxn),
&)
By construction, it is clear that a = a; + ay. Notice that 4} has no polynomial

part w.r.t. the &, variable, while b vanishes to infinite order at x,, = 0. In view
of Remark we have that

e'r*Op¥(ag)do = x®.Op”(a})d0 (6.2.23)
errop? )8y = x=,OpY()s), VjeN, (6.2.24)

where xg, is the characteristic function of R,. Let us consider relations (6.2.14)
and (6.2.15). If we replace there a’ witha!, with the notation of (6.2.14), we get
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that L o(a5) has no polynomial part w.r.t. the &,. Similarly, using notation from
(6-2.16), (Ll0 Llle u); equals a sum of derivatives of Dirac’s d1str1but10n up

to the order /; — 1. Each 681) is associated with a symbol of type Ll0 0) T >2 =y
(that is, a symbol vanishing at infinity at least of order j +2). (6.2.22) then
follows by Remark[6.2.2] since the singular terms vanish, by the propertles of
a3. Now, we have to check (6.2.22) for |a| + || > 0. Performing the derivatives,
we obtain symbols 4} and b and b still vanishes of infinite order at the origin.
The symbol &} can have, in general, polynomial parts up to order || — 1. Notice,
nevertheless, that

ax’(lP(x/r Xn, ‘S/r ‘EH) - lnba(x/r é’))

vanishes of the first order at x,,. So dé vanishes at x, of order ||, and we can
repeat the same scheme as above. ]

Remark 6.2.3. We have proved that rJ“Opf(a)e’r is a continuous operator from .7 (R,)
to itself, so it is possible to define the transposed operator

(r*Op} (@e")'
It is important to stress that, in general,
(r"Op, @) f # r*(Opy@)e f, fe .S (Ry). (6.2.25)
A simple counterexample is the operator (r*de*)!. It is immediate that
(r*de*) f = —r*de’ + £(0)do.

Nevertheless, if is satisfied, then is true. Indeed, we have

((r* Opy/@)e")' fu) = (f,r* Opy/ @)e*u) =

(f, X2, 0py @)e*u) = (xw. f, Opy/ (@e*u) =

(Opj(@)'e”f,e ).
Moreover, if is satisfied, since C2°(R,.) is dense in .7’ (R..), we have

(r*Opye"u = lim r*Op; (@)e" ¢,

¢r — uin ' (Ry). As a consequence of the .7 (R..) continuity, we obtain as well that
r*OpY (ag)e* is an element of S"(R™1, R™1; 7/ (R,),.7"(R,)).

Lemma 6.2.6. Let f € .7/ (R) be a distribution such that r* f is a C* function in the
open set R, with a . behavior at +oco. Explicitly, fx € .7(R), where x is a smooth
function that vanishes in (—oo,€) and equals one in (2€,+00). Then, the following
statements are equivalent:

i) forall jeN ‘ ' .
lir(r)1+ dfx)y=c, deC,

that is, the function f can be extended as a smooth function in a neighborhood of
zero.
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i) for all j € N and for all sequences (i} ey € C¥(R.,) such that
W - (—1)1'(3g) in /' (R), (6.2.26)

we have '
lim (f, ¢,y =c/, ceC.
mM—00

There is a trivial continuous inclusion i : CX(Ry) — CX(R) given by the

extension by zero, so the limit (6.2.26) is well defined.

Proof.

i)= ii) If f canbe extended as a smooth function in a neighborhood of the origin,
we can choose an extension f € .”(R). Then we have, for all j and for all

m, and for all {I#L,}meN C C2(Ry),
(F= Py =0 (6.2.27)
since supp(f — f) € R_ and supp ¢}, C R,. Equality implies
Fuhy =y =ch, Vim, (6.2.28)
so that
¢ = lim ¢, = lim (f,p},) = (f, lim $},) = (-1)/5)'f.
This gives the desired result, observing that

(-6 f = lim 9/ f(x) = lim 9/ f(x).

ii) = i) Conversely, let us suppose that condition ii) holds but condition i) is not
fulfilled. So, there existsa j = 0, 1,..., such that the limit

lim ' f(x)

is not ¢/. This means that there exists & such that for all m € N there exists
X € (0, L) such that

c/ — 9 f(x)| > €. (6.2.29)
We can suppose that f is real valued: in fact, if it is not the case, then either
its real or imaginary part satisfy (6.2.29). Since f is smooth in R, there
exists a neighborhood U,, of x,, such that (6.2.29) holds for all x € U,,.

We can suppose that U,, is balanced and we call r,, its radius. In order to
simplify the notation set 7y = 1, xg = 0. Now, let us consider the sequence

-1

-1 X—Xm |2

W = rmamexp((l—lTl) ) Xy — Vi <X < Xy + 'y

m - .
0 otherwise
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where the constant a,, is chosen so that f Y = 1. Then ¢, = 69 in " (R).
We can write

Kf, (~)/gl)y — ol = I fu I F () m(x)dx —

m

(9 f(x) — c)y,dx

U

1o ) — o
inf 9/ f(x) - ¢

> i£f|af f(x) —cll - ' f Ydx

By the definition of the sets U,,, we have infy, | ff (x) = ¢jl > &, so finally
we find } ,
Kf ey —cll=e YmeN,
that is 4 ‘
lim (f, 1)) #

and we get the contradiction.
O

Theorem 6.2.7. Let 1\ and a be as in Theorem By Proposition we can write
a =ayg+ag. Then, Op,ll:(ao)eJr maps . (Ry) to L*(R). Hence (e*r™ — 1)Opf(a0)e+ =
—e’r’Op,‘,b(ao)eﬂ Moreover, r’Op:,U (ap)e™ extends to an operator

rOp} ()" : 7" (R,) > S (R-)
and defines a symbol in S"™(R"1, R"L;, 7" (R,), S (R-)).

Proof. In Proposition we have noticed that e*r*OI:vf(ao)eJr = XR, Op,l’lb (ap)e*,
Xr, being the characteristic function of R,. So, we can write

(€*rt —1)Op} (ap)e* u = (xr, — 1)OpY (ag)e u = —e~Op'(ap)eu, u e .7 (R,).
(6.2.30)
Since, for every u € .'(R,), (r+Opf(a0)e+)u = limy 50 r*Opf(ao)lequ, {pm) C
CZ’(R,), such that ¢, — u in #’(R,), we restrict ourselves to functions in
CZ(R,). We want to prove that, for all a, 3, there exist s1, s such that

Pap(rOPY (@o)etu) < (&Y lullgr, 1 € CE(R,),

{pap} being the seminorms of /(R_). Notice that dg, (x’, x,, &, &) is neg-
ative for all x, negative. Hence, if x, < —e < 0, the phase function has
no critical points, an integration by parts arguments implies that singsupp

(r‘Op,lfe+(ao)u) C {0}, and we get as well that

B
sup [(1+x2)29% (e*r* = 1)Opy (ao)ul < (&Y™ lullgrss2.

Xy <—€

Notice that we have used the fact that the symbol has compact support w.r.t.
the space variable x. Now, we need to consider only the behavior when x,
approaches the origin.
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From Theorem and Proposition we notice that the following
maps are continuous:

rOpl(ag)e” : Z(R,) - .Z(R,) (6.2.31)

and
rOp}(a)e* : 7" (Ry) > 7' (R-). (6.2.32)

In order to prove that (e*r* — 1)OpY (ag)e* belongs to the set S"(R"1, R"1;
7" (R4), L (R-)), we have to analyze

lim 1c(e1(%,0% 0%, (1~ Opy, (ao)e™ Yicqery (1) (). (6.2.33)

x,—0—

We recall that .7 (IR_) is endowed with the topology of the inductive limit w.r.t.
the inductive set {Hy**(R-)}, so, by definition, we have to prove that, for all
51,52,

| lim ey 0%0%, (7OpY (e e e < (&))" llvs s,

X,
for u € CZ(R;). Using the idea of Lemma we do not focus on
Jim xee 105,020 1~ Op} (ag)e renu(xy),
but, rather on
(K(ery1 Bi, 8‘2‘, r‘Opi(ao)eJ'K(g/)u, (—1)k8’;n¢)m ),
where {{,}nen € C°(R-) is a sequence such that

e Py — S, in S (R). (6.2.34)

Notice that (6.2.34) implies that k)1, converges to (ENY73 8. By definition we
have

(Y, K4y15, 9% 1~ Op} (@0 (e ) =
(k(gryar* (85 9%, Opf(ao)tmg/))e_l/)m, u)

This equality holds in view of Remark and Proposition By
and (6.2.32) we get

TLim (regeryar® (0%,0%O0p} (a0) 1 Je™ Ym, ) =
(&) (ke ar (05,05, 0pY (a0) k(s )0, 1.
&
By Theorem we know that
(e (9, 9% Opy (a0) ey 0o € SR, R C, A (R,)),
so, finally
%1_1)130 (g1 r+(3i,8g,Opf(ao)t1<<gr>)e_z,bm, u)|
< Ilicgery17* (94,28, 0py (a0) 1y Oollrrss e 1122y
< Cpé/p(K<gl>—l 1’+(af,8g,opf(ao)t1<<g/>)6o)||u||H*51/*52
< Cal&Y" Ml 5152 -
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where we have used the continuous immersion of .7 (R,) in H**2(R,), and p;,
is a suitable seminorm of (R;) such that [|u||g=®,) < Cpsp(u), for a certain
CeR. O

Theorem 6.2.8. Let a € SJ}(R",R"), and ¢ an admissible phase function. Then,
1
r*Opy(a)et : H'(RY) —» H*"(R"), s> 5

continuously.

Proof. First notice that if s < 0 the result follows from the continuity of ¢* and
the properties of FIOs with homogeneous phase. If s > 0, using interpolation
we may assume s € N, we notice that

" Op¥(a)e™ = r*Op¥(a)e™ o AT o AS,

where A%, = r*A’e" are pseudodifferential operators in the sense of Boutet de
Monvel such that AS, : H(R") — L%(R") is continuous and invertible. Denote
by A7° the inverse of AS. Since A% : HS(R") — L?(R,) is continuous, we have
just to prove that 1’+Op""(rz)e+ o A7 : L*(R") — H*™(R") is continuous. We
observe that

r*Op¥(a)e” o r*A~%et = r*Op¥(a) o A™%¢" — " Op¥(a)(e"r™ — 1)A%e". (6.2.35)

The operator Op¥(a) o A=, by the properties of FIOs is, modulo operators with
smoothing kernel, a FIO of order m — s with phase 1. Thus, r*Op¥(a) o A™¢* :
L*(R") — H*™(R") is continuous, since e* is continuous on L2. We have now
to analyze the second term of (6.2.35). We treat it as a FIO defined on the
boundary with operator-valued symbol. Notice that A™ is of negative order,
and the differential part of the decomposition in[6.2.5 vanishes, so

r+0pf(a)(e+r+ - 1A ety = —r+0pf(a)e‘r‘/\_se+u, u € C2(R,).

Applying Theorem or using the general theory of Boutet de Monvel
calculus, we obtain that r"A°¢" extends to a symbol belonging to S~5(R""!
,RL 2(Ry), 7 (R2)); by Theorem we know that

r*Opl(@)e € S"(R", R #(R.), #(R.)).
So, r*Opf(a)e’r’A’se’ is a symbol in §"= (R*! ,R"L;, 7"(R,), #(R:)). We

can therefore write 1’+Opf(a)(e+1”r — 1)A™%¢" as an operator-valued FIO de-
fined on the boundary with phase function 1)y and an amplitude belonging
to S"S(R™L, R 77(Ry), . (Ry)), so we get

RO 7R R (R,)

i rOpY(etrt—1)A~r

HT(RY) <——# (R, R S (RY))
[m]

Remark 6.2.4. As we have seen in Property we can define the extension operator
forall s € R. Anyway, as noticed in Remark this extension,in general, could
depend on the Sobolev space: for this reason we have imposed in Theorem that
1
s> —3.
2
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6.3 Fourier Integral Operators of Boutet de Monvel
Type on the Half-Space

In order to define FIOs of Boutet de Monvel type, we recall the definition of
potential symbols, trace symbols, singular Green symbols. First we define d., the
derivative in the normal direction:

1
d; =1td et H'(Ry) —» HS'(Ry), s> —5-

One can consider the operator d, as an operator-valued symbol belonging to
SHR™, R™1; HY(R,), H1(R,)). Recall that we write s = (sq,53).

i) A potential symbol of order m is an element of
"R, R C,. (Ry)) = proj-lim S™(R"™!, R"™; C, H¥(R,)).
ii) A trace symbol of order m and type zero is an element of the set
"R, R ' (R,), C) = proj-lim S™(R"™, R"™; H3(R,), C).

Clearly, a trace symbol of order m and type zero defines also a symbol in
S™(R™, R HO2(Ry), €), if s1 > —3. A trace symbol of type d is a sum of
the form

d
=) 4oL, teS"IRTLRLS(R,),0).
j=0

where t is in S™(R"*1, R*1; H2(R,),C), 51 > d — %
iii) A singular Green symbol of order m and type zero is an element of
"R, R (R), S (Ry)) =
proj-lim S™(R"™!, R"1; H3(R,), H*(R,)).

A singular Green symbol of order m and type zero furnishes a symbol
in S™(R"1, R H(R,), #(R,)), provided s; > —1. A singular Green
symbol of order m and type d is a sum of the form

d
g=Y .80, g e€S"IR RS R.), S (R,)).
j=0

Obviously, gis in S"(R"™, R"1; H2(R,), .#(R.)), 51 > d — 3.

Remark 6.3.1. The trace operator y; is a trace symbol of order j+ 1 and type j+ 1. In
fact, one can write

yo(f) = fo (e Fy, )y, — fo e, )y,

f e L Ry). Thatis yo = to + 19+, where

tof = (&) f e fly)dy,, hf=- f e f(y,)dyy.
0

0

106



One can check that ty and t; admit an extension to .#'(R.), that ty belongs to
S1R™, R, (R,),C) and t € ST1(R™,R"L,."(R,),C). Therefore, yq is
a trace symbol of order § and type one. By iteration, one can prove the general result
fOT Vi

Definition 6.3.1. Let ¢ be an admissible phase function, describing an admis-
sible symplectomorphism y. Moreover, let ¢, be the phase function induced
by ¢ on the boundary. Then, a FIO of Boutet de Monvel type of order m and
type d is a matrix of the type

A= r*Op¥(a)e* + G¥» K%
. TV S¥a |’

where: Op¥(a) is a FIO with phase function ¢ and symbol a € S!'(R",R"); G¥?
is a FIO with phase function ) and singular Green symbol g of order m and
type d; K¥? is a FIO with phase function ¢; and potential symbol k of order m
and type d; T¥? is a FIO with phase function ¢y and trace symbol t of order m
and type d; S¥ is a FIO with phase function ¢y and symbol s € S"(R""!, R"1).
The set of such operators is denoted by 93;"‘1(@).

Pseudodifferential operators of Boutet de Monvel type [19] 36| [88] 94] are
a particular case of FIOs of Boutet de Monvel type when we assume that the

symplectomorphism y is the identity: we denote this class by 2"™4(R"). As a
consequence of Theorem and of the Sobolev continuity of FIOs defined
through operator-valued symbols, we get the following Theorem:

Theorem 6.3.1. Every A € ﬂf’d(@) induces a continuous operator
A - HS(RVI) ® HS(Rn—l) — Hs—m(Rn) D Hsfm(Rn—l)’
provided s > d — 1.

Now, we analyze the composition of a Boutet de Monvel pseudodifferential
operator with a FIO of Boutet de Monvel type. Recall that we assume the
involved symbols to have compact support w.r.t. the space variable. To this
aim we introduce two lemmas.

Lemma 6.3.2. Let 1 be a phase function which represents an admissible symplecto-
morphism and 1y be the corresponding phase function at the boundary. Then, if a €
S"(R*1, R, R""Y; E, F), E, F being Banach spaces or projective limit of Banach spaces
or inductive limits of Banach spaces, there exist a left symbol a;, € S™(R" 1, R* 1, E,F)
and a right symbol ag € S™(R"!, R""L; E, F) such that

feill}a(x',é')_,‘y/.é/a(x,l y/’ é)dé‘/ —
fei%(X',é')—f}/néna[d(xf, &) = feix"é'—ill)a(y/,é’)ak(y’,g)dé'l

where the equality is modulo operators with kernel in C®(R"™* x R"™Y; #Z(E, F)).

Proof. Since the phase function represents a symplectomorphism at the bound-
ary it is linear in the fibers, that is y(x’, &) = Wy(x’) - &, where Wy(x’) is an
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element of GL(n — 1), and the same holds for W/ (x"). Moreover, [/ (x")&| ~ ['].
Then, notice that it is possible to consider asymptotic expansions of vector-
valued symbols as in the proof of Lemma and, following the scheme of
[49], Ch. 25, to obtain the desired left and right quantization. m]

Lemma 6.3.3. Let P be a pseudodifferential operator of order m whose symbol p
satisfies the transmission property and is compactly supported with respect to the space
variable. Let us consider an admissible symplectomorphism x with the associated
phase function ¢, 1, being the corresponding phase function at the boundary, and
a singular Green symbol of type zero g € S™ (R"1,R"L; #"(R,), #(R4)). Then,
r*Pe* o OpY?(g) is a FIO with phase 1 and with a singular Green symbol § €
s (R RS (Ry), S (Ry)).

Proof. We set r*Op,(p)e* = Op, (p). It is well-known and follows, e.g., from
Theorem[6.2.3] that

Op; (p) € S"(R', R #(R,), 7 (R.)).
Moreover, we can write
(Op;;(p) 0 OP*(9)) ux') =
= f e Op, (D', ) f o f Vg (@, &Y )dE dz' aT!
-/ EWMUI L O (), C)gu (2, € AT (€ )
- f O, (¢, V()
By an argument similar to the one valid for pseudodifferential and Fourier

operators with scalar symbols, using the properties of oscillatory integrals
involving operator-valued symbols, we obtain that

1 , N
gL(X’, 5/) ~ Z ﬁ(ag OP:(P))(X', dx/llfa(X', é/))DfZX, [elqj(x ,Z ,é )gL(Z,, é,)]

n—1
a’€Zlf

2=y’

where

O, 2, &) = a2, &) = Pa(x', &) = dehy(x’, E)(Z' = X').
Since the terms appearing in the asymptotic expansion are singular Green sym-
bols of order m+m’ — [I;ﬂ] and type zero, §; € S"" (R"!,R"1; 7" (R,), L (Ry)),

modulo operators with kernel in C*(R""!, R""}; Z(7"(R,), #(R,))), and is a
singular Green symbol of order m + m’ and type zero, as stated. O

Theorem 6.3.4. Let P € Z"74»(R") and A € %?ﬂ’dﬂ (R") be a Boutet de Monvel
pseudodifferential operator and a FIO of Boutet de Monvel type, respectively. Then
P o Ais a FIO of Boutet de Monvel type of order mp + mg and type (ma +dp, da). =

max{(ma + dp),da} defined again by the symplectomorphism x, that is P o A €

mp+ma,(ma+dp,da)+ qon
%, “(RD),
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Proof. Letus consider a phase function ¢ which represents yx close to the bound-
ary. We have to analyze the composition
r*Op(p)e™ + Gp Kp ) . ( Op¥(a)e* + Gﬁf K;‘g
P ¥
Ty Sp T S
We start with the composition of elements in the upper-left corner. We can
write
r*Op(p)e* o r*Op¥ (a)et =
r*Op(p) o Op*(a)e” + r*Op(p)(e*r* — 1)Op¥ (a)e*
Op(p) o Op(a)¥, by the general theory of FIOs, is a FIO of order mp + m# with
canonical transformation y. We prove next that the operator r*Op(p)(e*r* —
1)Op4’(a)e+ is a FIO on the boundary with vector-valued symbol, associated
with the canonical transformation x, and with a Green symbol of order mp +1m.4
and type (ma)+ = max{mg, 0}. Thus, we have to study the composition in the

normal direction. We decompose the symbol a = a4 + a9 as in Proposition
First, we analyze the differential part

ma )
r*Op, (p)(e'r* ~1)Op}; [Z aj(x’, X, 5’)£L]e+u, (6.3.36)
=1
where a;(x’, x,, &) € S"27J(R", R"""). Since, on .#(R,)
Ene*u(Yn)(En) = —ie* Dy, u(Ey) — (0)d0, (6:3.37)
by induction, we have that

k-1
Eerulyy) = (-if [e+8§nu + Z u<’>(0)870""‘”] . (6.3.38)
1=0

So, (6.3.36) turns into
" Op,(p)(e'r™ = 1)

fe"w—f‘#a Z(—i)juj(X’,xn, &) (6*(9{,,M(5n) -
j=1

Following the scheme of the proof of Theorem one gets that

j-1 4
u(l)(O)B\f)f’l)] &,
1=0

ma j-1 )
(e -1) f eV N (=)o 3, &) Y u(0)0y Vg,
j=1

1=0

—

ma j— . ma
Y b, €080 + Y a2, € 0),
1=0

=0

X

]

where bj)(x’, &) € S"I(R"1, R"!) and ¢; € §"a-2 (R"!, R""1;C, #(R_)). Ob-
serving that y; is a trace symbol of order / + % and type I, we get that

1l
—_

ma -1 A
r"Op,(p)e'r" - 1) ffil’bil’b" 2(—i)jaj(x',xn, ) Z u(])(O)gf)]_l_l)dén
=1 1=0
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is a Green symbol of order mp +m 4 and of type (m#).. We have now to analyze

Op,(e'r =Y, [ e, x, €063, (e,
=1

(6.3.39)

Mma

=Op,(p)e'r 1) Z a]-Op,lf(l)eJr o 8114

j=1

Recall that e*r* —1 = —¢7r~ on regular distributions. Then, by Theorem
we get that r’a]-Opf(l)eJr is a symbol in §™4~7 (R*!, R""1; 7/(R,), #(R_)); since
r*Op,(p)e” € S™ (R™, R"1;.7"(R.),.(R,)), the symbol in is a Green
symbol of order mp + m4 and type (ms)-.

We have now to consider

r*Op, (p)(e*r* — 1)Op}, (ag)e*. (6.3.40)

Theorem@implieg r~OpY (ap)e* € S™a (R™1, R™1;.7"(R,),.(R_)). Observ-
ing that 7*Op, (p)e” is an element of S (R", R""1; #(R_), .#(R,)), we get that
the symbol in is a Green symbol of order mgp + ms and type zero.

The other compositions can be analyzed in a similar way, we omit most of
the details.

1. r*Op(p)e* o G, is a FIO a with phase function that represents x, and a
singular Green symbol of order mp + m4 and type da.

2. Gpo leOpl’”(a)e+ is a FIO with a phase function that represents x, and
a singular Green symbol of order mp + mgz and of type (ma + dp),s =
max{ma + dp,0}.

3. Gpo Gl; is a FIO on the boundary, with a phase function that represents
Xo and a Green symbol of order mp + m4 and type d.a.

4. r*Op(a)e* o Kﬁf is a FIO on the boundary with phase function that repre-
sents x, with a potential symbol of order mp + m 4.

5. Gpo Kljﬁf is a FIO on the boundary with phase function that represents x,
and a potential symbol of order mp + m 4.

6. Kpo Tﬁf is a FIO on the boundary with phase function that represents x,
and a Green symbol of type d# and order mp + m 4.

7. Kp o szf is a FIO on the boundary with phase function that represents x,
and a potential symbol of order mgp + 1.

8. Tp o r*Op¥(a)e* is a FIO on the boundary with phase function that repre-
sents x, and a trace operator of type (.4 + dp). and order mp + m 4.

9. Tpo Gf,f is a FIO on the boundary with phase function that represents yx,
and a trace symbol of order mp + mg4 and type d.

10. Spo Tﬁf is a FIO on the boundary with phase function that represents y,
and a trace symbol of order mp + mg4 and type d.
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11. Tpo Kﬁf is a FIO on the boundary with a phase function that represents
X5 and a symbol in S"# AR, R,

12. Sp o szf is a FIO on the boundary with phase function that represents x,
and a symbol in §"7*"a(R"L, R 1),

The composition in 1) follows by Lemma The other compositions in 3),
4), 5), 6), 7), 8), 10), 11), 12), can be treated similarly exploiting the proper-
ties of vector-valued symbols, in particular the possibility to write asymptotic
expansions. The compositions in 2) and 9) are slightly more delicate. Let us
analyze the composition in 2). We suppose dp = 0. The operator r*Op"(a)e*,
by Proposition can be split into 7*Op¥ (az + ag)e*. We first analyze the
differential part, obtaining

Op(g4) © Op*?(r* Op}, (az)e™).

We analyze the composition in the normal direction of the involved vector-
valued symbols. We have that

ma

(r*Op} (ag)e*)u = r* f efw-%Zaj(x',xn,g')g{;ﬂ(gn)dgn. (6.3.41)

=1

Using (6.3.37) and (6.3.38), we can write

(r"Op} (@)e™)u =
Mz j-1
NE < , (il N (6.3.42)
Y=Y Py x, € (0Pl WGY ™) + Opl (1e*d), u).
j=1 I=1

By Theorem Remark and the properties of trace operators, we get
that the sum in j,/ can be written as

ma . )
(Oplbae’) = Y &', €3}, 4 € SRR, SR, S (R.)).
j=1
Then, by the definition of Green symbols of type zero, we obtain that Gp o

(r+Op,lf (az)e™) is a Green symbol of order mp + m.4 and type (1m.4).. To prove the
same result for ay, we only have to notice that 7*Op"(ag)e* extends to a symbol
in "R, R . 7/(R,), " (R,)), and the result follows from the definition
of Green symbol. If dp # 0, we see that

a+ fel'l,b(xr,xmél/&z)iwa(x//é/)a(x’, xn, é,, én)ﬁ(én)dél’l
L e GO AT

where @ = dy,a + (idy,)a, which implies @ € S"#*}(R",R"). Using an iterative
scheme we can reduce to the case dp = 0, raising the order from m 4 to mz + dp.
To handle the composition 9), we can repeat the same scheme. o

111



Remark 6.3.2. Using essentially the same scheme of Theorem it is possible to
prove that if A € B (RYL) and P € B" (RY) then Ao P € By " (RY),
(d = max{mp + da,dp}),

As in the case of FIOs on closed manifolds, one could look for an Egorov
type Theorem. To this aim we have to analyze the adjoint of operators in

BRY).

Theorem 6.3.5. Let us consider ‘A € %?’0(@), m < 0. Then, A", the formal adjoint
of Q, is a FIO of Boutet de Monvel type, namely A" € ﬂ:ﬁ?(RTﬁ). Moreover, locally
close to the boundary

7 :( rH(OpY(@)e + (G¥) (T (6.3.43)

(Kbay (s¥oy )

where (OpY(a))* is the formal adjoint of Op¥(a), so its phase function is ™', The
operators (G¥7)*, (K¥2)*, (T¥7)*, (S¥?)* appearing in are the adjoints of G¥?, K¥7,
TY3, S¥3, respectively, that is, they are FIOs with vector-valued symbols, with phase
function 3! that represents x3", the inverse of the boundary symplectomorphism.

Proof. Since m < 0, Op””(a) is continuous from L*(R") to itself. Moreover,
et : L2(R") — L?(R") is continuous and its adjoint is 7*. So we can write
(r*Op¥(a)e*u, V)pwr) = (Op¥(a)e*u, e V)2
= (¢*u, (OpY (@))"e*v)r2ny = (1, 1" (Op”(a)) e 0)2ar).
For the other components of A", one can use the properties of adjoints of FIOs,
noticing that the adjoint of a Green operator of order m and type O is still a Green
operator of the same order and type, the adjoint of a potential operator of order
m is a trace operator of order m and type 0 and the adjoint of a trace operator

of order m and type 0 is a potential operator of order m. This a consequence of
the adjoint property of Green, potential and trace symbols, see [94]. O

Definition 6.3.2. For every m € Z we can define the operator

m rtA"e* 0
[A+] = )

0 Op(eH™)

where r*A"e* : H™(R;}) — L*(R}) is an isomorphism. The operator [A"] is an
element of %Y (@) and it is invertible.

Now we can state in this case a version of Egorov Theorem for FIOs of
Boutet de Monvel type.

Theorem 6.3.6. Let A € ,%’;”d (R) be a FIO of Boutet de Monvel type. Then, provided
d<my,meZ

i) Ifm<0andd =0 then Ao A is a an element of B*"O(R™).

ii) If m > 0 then we have that (A o [A7"])(A o [A7"])" is an element of BO(R™).
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Proof. The proof of part i) essentially follows from Theorem and from
Egorov Theorem for standard FIOs. The second part follows from the first,

noticing that, from Theorem Q o [A7"] belongs to 95’2’0 (@). |

In general, one cannot prove an Egorov type Theorem for FIOs of Boutet de
Monvel type of all orders and types, in fact such a statement would not even

be true for an operator of #"™4(R"), provided n > 0 ord > 0 or d > m. Namely,
if we consider a Boutet de Monvel operator # of positive order, then its formal
adjoint #*, in general, is not even a Boutet de Monvel operator.

Remark 6.3.3. By means of Theorems and it is possible to prove that,
if P e B4R and A € B (RY), m < 0,d =0, then Ao P o A" belongs to
B (RE).
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