
Approximate algorithms for efficient
indexing, clustering, and classification

in Peer-to-peer networks

Von der Fakultät für Elektrotechnik und Informatik

der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des Grades

Doktor der Naturwissenschaften

Dr. rer. nat.

genehmigte Dissertation von

M.Sc. Odysseas Papapetrou
geboren am 18. April 1978 in Nicosia, Zypern

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutionelles Repositorium der Leibniz Universität Hannover

https://core.ac.uk/display/250264061?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I

Referent Prof. Dr. Wolfgang Nejdl
Ko-Referent Prof. Dr. Norbert Fuhr

Tag der Promotion 18.04.2011

Keywords Peer-to-peer Networks
Information Retrieval
Data Mining

Schlagworte Peer-to-peer Netze
Information Retrieval
Data Mining

Acknowledgments

Conducting research for a doctorate inevitably requires a huge amount of effort. The
never-failing advice is simple: work hard, collaborate, and get frequent feedback from

people you trust. I was fortunate to have a large set of such persons, to ask for advice,
collaborate, and discuss with them, during my studies; friends, colleagues, and family,
and the following list is by no means exhaustive.

I owe a lot to my wife, colleague, and frequent coauthor, Ekaterini Ioannou, for
her patience and support during my study. Her skills, support, and advices, with re-
spect to both personal and academic problems were very important and helpful for my
endeavor.

Professor Wolfgang Nejdl, my advisor, had a principal role in my studies. His con-
tinuous support during my studies and his success on maintaining a good atmosphere
inside L3S, made the PhD process an unforgettable experience. My mentor, friend, and
coauthor, Dr. Wolf Siberski, also supported me during my PhD studies. His patience
and experience were very important and helpful for me.

Being in an institute of the size of L3S gave me the opportunity to collaborate with
many great colleagues. Dr. Dimitrios Skoutas stands out, for his contribution and sup-
port. Dr. Skoutas spent a significant amount of time to read many of my manuscripts
and provide comments, but also to discuss new ideas and provide feedback. Professor
Wolf-Tilo Balke, now at the University of Braunschweig, was also always there for me,
to offer advice and to provide solutions, with his own distinctive, highly appreciated,
way. I was also fortunate to collaborate with Professor Norbert Fuhr, from University
of Duisburg-Essen. I learned a lot from this collaboration, and I consider this to be a
great experience for me.

I greatly and unconditionally recommend collaboration with all these persons to
everybody, given such a chance.

II

Zusammenfassung
Peer-to-Peer-Netze haben die Art und Weise revolutioniert, in der Inhalte geteilt wer-
den, kommuniziert wird, und komplexe Berechnungsaufgaben verteilt durchgefhrt wer-
den. Etwa zehn Jahre nach ihrer Einführung kann man P2P-Technologie in vielen
kommerziellen Anwendungen finden, z.B., im Kontext von Internet-Telefonie oder in
Netzen zur Verteilung von Dateien.

In dieser Dissertation beschäftigen wir uns mit den folgenden Herausforderungen,
die in P2P-Netzwerken für Information Retrieval immer wieder vorkommen:

• Wir zeigen, wie ein verteilter invertierter Index für die Beantwortung von Stichwort-
Anfragen effizient gepflegt werden kann. Unser Ansatz bertrifft hinsichtlich der
Effizienz bisherige Verfahren um eine Größenordnung.

• Wir stellen einen Algorithmus für die effiziente Erkennung von Near-Duplicates
vor, der sich sowohl für Text als auch Multimedia-Inhalte eignet. Wir zeigen, wie
sich dieser Algorithmus an Systemanforderungen und Netzwerkcharacteristika
anpasst, um die Kosten zu minimieren, und weisen einen Performancegewinn
gegenüber früheren Ansätzen nach, der häufig eine Größenordnung übersteigt.

• Wir schlagen ein skalierbares Verfahren für Text Clustering in P2P-Netzwerken
vor. Dieses Verfahren nutzt die für Texte typische Term-Verteilung aus, um die
Kosten des Clustering erheblich zu reduzieren und adressiert so die Beschränkungen
bisheriger Ansätze bezüglich der Qualität, Effizienz und Skalierbarkeit.

• Wir beschreiben einen neuartigen Ansatz für kollaborative Klassifizierung in
einem P2P-Netzwerk, der es den teilnehmenden Nutzern ermöglicht, ihre Klas-
sifikationen zu verbessern, indem sie kompakte Repräsentationen ihrer lokalen
Modelle austauschen. Im Gegensatz zu bisherigen Verfahren beruht der neue
nicht auf dem Austausch persönlicher Daten und Dokumente, und ist damit ein
erheblicher Fortschritt in Bezug auf Datenschutz- und Urheberrechts-Aspekte,
während er gleichzeitig problemlos für große Netze skaliert.

Alle vorgeschlagenen Algorithmen ermöglichen eine genaue Steuerung des Trade-
offs zwischen übertragungskosten und Qualität der Approximation, und sind daher für
eine große Bandbreite von Anwendungen und Einsatzszenarios geeignet. In dieser
Arbeit wird ihre Effizienz und Effektivität sowohl wird durch umfangreiche experi-
mentelle Untersuchungen als auch durch theoretische Analysen nachgewiesen.

III

Abstract

Peer-to-peer networks have revolutionized the way we share information, the way we
communicate, and the way we distribute the computation of difficult problems. Almost
a decade after their introduction, such networks are found behind many commercial
successes, such as IP telephony, video streaming, and P2P file sharing applications.

In this dissertation we consider the following challenges, that frequently occur in
P2P networks with information retrieval requirements.

• We show how to efficiently maintain a distributed inverted index which can be
used for answering keyword queries. Our approach outperforms the state of the
art approaches by an order of magnitude.

• We present an algorithm for efficient near duplicate detection, targeted to multi-
media and text files. We show how the algorithm adapts to the system require-
ments and the network properties for minimizing the cost, and demonstrate the
performance improvement, often surpassing an order of magnitude.

• We propose a scalable method for text clustering in P2P networks. The method
exploits the inherent skew of the term distribution in text documents to drastically
reduce the cost of clustering, thereby addressing the limitations of the state of the
art approach with respect to quality, efficiency, and scalability.

• We describe a novel collaborative classification method constructed over a P2P
network, which enables the participating users to enhance their classifiers by
exchanging reduced, highly compact classification models. In sharp contrast to
earlier approaches, the method does not require exchange of raw private data,
addressing privacy and copyright concerns, and scales to large networks.

All proposed algorithms enable controlling the tradeoff between network cost and
approximation quality, and are thereby suitable for a wide range of application scenar-
ios and deployment setups. Their efficiency and effectiveness are evaluated through
extensive experimental setups, using real-world data, and through theoretical analysis.

IV

Contents

Zusammenfassung III

Abstract IV

1 Introduction 1
1.1 Motivation . 1

1.2 Contribution . 3

1.3 Structure of the Dissertation . 5

2 Foundations 6
2.1 P2P with Central Servers . 6

2.2 Unstructured P2P Networks . 7

2.3 Super Peer Networks . 8

2.4 Structured P2P Networks . 8

3 Distributed Indexing for Information Retrieval 12
3.1 Prerequisites . 13

3.2 Related Work . 16

3.3 PCIR Basic Algorithm . 19

3.4 PCIR Clustering-enhanced Algorithm 23

3.5 Cost Analysis . 29

3.6 Experimental Evaluation . 31

3.7 Summary . 39

4 Distributed Indexing for Near Duplicate Detection 41
4.1 Related Work . 42

4.2 Prerequisites . 43

4.3 POND Infrastructure . 47

4.4 Configuration and Optimization of POND 48

4.5 Experimental Evaluation . 53

4.6 Summary . 57

V

VI CONTENTS

5 P2P Text Clustering 58
5.1 Prerequisites . 59
5.2 Related Work . 60
5.3 PCP2P: Probabilistic Clustering for P2P 61
5.4 Cost Analysis . 67
5.5 Probabilistic Analysis . 68
5.6 Experimental Evaluation . 72
5.7 Summary . 80

6 P2P Text Classification 82
6.1 Related Work . 83
6.2 Collaborative Classification with CSVM 84
6.3 Experimental Evaluation . 87
6.4 Summary . 96

7 Conclusions and Future Work 97
7.1 Conclusions . 97
7.2 Future Work . 98

A Proofs 100
A.1 Proofs for Chapter 3 . 100
A.2 Proofs for Chapter 4 . 103
A.3 Proofs for Chapter 5 . 104

B Publications 106

References 120

Chapter 1

Introduction

1.1 Motivation
The Peer-to-peer (P2P) model has attracted the attention of both the Databases and
Information Retrieval communities in the past decade, as well as the users’ interest.
Their promise for infinite scale, and the recent advances in networking allowing for
home PCs to have a cheap, stable, and fast connection to the Internet, made the model
appealing for several applications. A recent study showed that P2P applications ac-
count for the majority of the network traffic, reaching up to 83% in Eastern Europe
countries [147]. Accordingly, the research literature is rich with papers investigating
how P2P networks can be efficiently constructed and maintained, as well as with pro-
posals suggesting new application scenarios.

Among the frequently considered application scenarios are the ones involving shar-
ing of resources, such as computational and network resources, storage space, and data.
For example, the BOINC framework1, the powering framework behind SETI@home
and Einstein@home projects, enables sharing of computational resources over a P2P
network for solving otherwise intractable problems. SummaryCache enables sharing
network and storage space, for constructing a distributed caching system. Skype and
Veoh exploit sharing of network resources over P2P networks, to enable telephony
and streaming video. pStore [13] and PeerStore [88] propose a P2P backup network,
where each peer contributes disk space to store encrypted data of other users, whereas
Microsoft’s FarSite [22] project focuses on sharing storage space to construct a dis-
tributed file system. Minerva [16] and Alvis [154], as well as commercial P2P file
sharing systems such as Limewire, focus instead on sharing files, such as documents,
videos, and audio files.

P2P file sharing was the first commercially exploited P2P application, and immedi-
ately gained the critical mass of users to succeed. Its popularity also triggered substan-
tial research efforts toward scalable information retrieval (IR) methods, since existing
centralized methods could not efficiently cope with the inherent file distribution in the
new paradigm. As a result, in the course of the last decade, several challenges were
addressed and novel P2P information retrieval applications were proposed.

The focus of this dissertation is also on information retrieval over P2P file sharing
networks. We advance the state of the art in the area by contributing a set of essential
components for scalable and advanced information retrieval. We focus on four fre-

1http://boinc.berkeley.edu/

1

http://boinc.berkeley.edu/

2 CHAPTER 1. INTRODUCTION

quent problems: (a) constructing and maintaining a distributed inverted index over a
Distributed Hash Table, (b) near duplicate detection, (c) text clustering, and, (d) text
classification.

Distributed inverted indexes constructed over Distributed Hash Tables (DHTs) are
arguably one of the most fundamental and frequently used components in P2P systems.
They are frequently employed to enable information retrieval in large-scale P2P sys-
tems, where central solutions face scalability constraints. Minerva [16], Alvis [103],
and PIER [74] are only few of the examples relying on DHTs to enable P2P infor-
mation retrieval. DHTs provide the necessary coordination and indexing substrate for
distributed wikis [128], web caches [76], data stores [85], domain name systems [34],
and spontaneous social networks [108, 107]. Owing to their ability to handle churn,
they serve as an indexing layer for popular file sharing networks, such as Bittorrent,
Limewire, and Kad. However, as we show later, and as also reported by other re-
searchers, e.g., Li et al. [94], maintaining the index becomes very inefficient when con-
sidering textual data. Therefore, there is a need for further research towards increasing
the performance and scalability of inverted indexes constructed over DHTs.

Near duplicate detection is also important in the context of information retrieval,
and has been already considered and even integrated in commercial web search en-
gines as a mechanism to improve IR quality [187, 78, 180]. Frequent application
scenarios for near duplicate detection in the P2P domain include finding different ver-
sions or encodings of the same resource that might be better suited for the individual
user device, parallelizing the downloading process of large multimedia files, detect-
ing resources that violate the copyright laws, and removing duplicates to save disk
space [177, 171, 188, 51, 175]. To enable scaling up to large networks, it is important
that the near duplicate mechanism is efficient, fully decentralized, and avoids bottle-
necks. Hence, this dissertation also investigates how to increase the query throughput
and performance of P2P near duplicate detection beyond the state of the art methods,
and to enable scaling up to large real-world P2P networks with massive data.

Clustering is another well-established technique, frequently considered in the con-
text of P2P information retrieval, for instance as an alternative methodology to navigate
through a large volume of information, or as part of advanced information retrieval
algorithms [101, 176, 83]. Further applications of P2P clustering include construct-
ing semantic overlay networks [166, 138], enabling cross-domain multi-organizational
clustering of data [40], and outlier detection in distributed streams [11]. However,
as we show later, previous P2P clustering algorithms [42, 47, 69, 73], including the
state of the art, have significant scalability constraints, and cannot cope with text data.
Consequently, further research is required towards a P2P text clustering algorithm that
scales to large networks and yields high quality solutions.

Similar to clustering, classification is also frequently used, either stand-alone for
information organization or as a useful enhancement in information retrieval. Fre-
quent scenarios include classification between spam and ham for emails, between per-
sonal and public for photos, and between relevant and not relevant with a query for
documents. Collaborative classification, where users share information to enhance
their local classifiers, has revolutionized the email spam filtering field, and ended
up in several commercial industrial-strength spam filters, like Google Gmail, Yahoo,
and Hotmail. Collaborative classification was also explored in the context of P2P,
e.g., [165, 102, 152, 6]. In this work, we propose a novel P2P collaborative classifi-
cation approach, which outperforms existing approaches with respect to classification
accuracy, requires negligible network cost, and scales to large networks and to high-
dimensional data, such as text.

1.2. CONTRIBUTION 3

1.2 Contribution

This thesis advances the state of the art in the following building blocks of P2P infor-
mation retrieval.

I. Building the inverted index over a DHT. As already mentioned, the prevalent
approach for enabling P2P information retrieval is by employing an inverted index,
constructed over a distributed hash table. This involves two challenges: (a) main-
taining the distributed inverted index, and, (b) using this index to locate and rank the
relevant results. The second challenge has been successfully addressed by a plethora
of approaches, e.g., [3, 127, 103, 16, 126, 82, 141]. However, it has been shown that
the maintenance of the distributed inverted index is very inefficient and imposes scala-
bility limitations, especially for indexing textual data using the standard ’bag of words’
information retrieval model [94]. Towards alleviating this problem, several approaches
were proposed [151, 36, 100], but these either require extensive additional work from
the users for manually selecting good indexing features, or have a negative impact on
the information retrieval quality.

To alleviate the scalability constraints without sacrificing the completeness of the
index we propose PCIR, which drastically reduces the indexing cost compared to ear-
lier approaches. PCIR pertains the ’bag of words model’, and addresses the scalability
issue by enhancing the indexing workflow with an intermediary step. Peers exploit
peer clustering and Bloom filters to form small groups, and coordinate the index main-
tenance process within each group. This allows exploiting the high term overlap be-
tween peers, and yields significant performance enhancements. The approach does
not depend on a particular family of relevance functions, or a particular algorithm for
query execution. It can be combined with the majority of existing P2P IR systems to
optimize the network usage, without modifying the way queries are executed, or alter-
ing the quality of the results. We demonstrate experimentally the benefits of PCIR by
applying it to four different state of the art P2P Information retrieval networks. PCIR
yields an order of magnitude less network cost compared to competitive algorithms
without negatively affecting the quality and completeness of the index.

The PCIR algorithm was described in the following publications:

• Odysseas Papapetrou, Wolf Siberski, Wolfgang Nejdl. PCIR: Combining DHTs
and Peer Clusters for Efficient Full-text P2P Indexing, Computer Networks 54(12):
2019-2040 (2010), Elsevier.

• Odysseas Papapetrou, Wolf Siberski, Wolfgang Nejdl. Cardinality estimation
and dynamic length adaptation for Bloom filters, Distributed and Parallel Databases
28(2):119-156 (2010), Springer.

• Odysseas Papapetrou. Full-text Indexing and Information Retrieval in P2P sys-
tems, in: Proc. Extending Database Technology PhD Workshop (EDBT), 2008,
Nantes, France.

• Odysseas Papapetrou, Wolf Siberski, Wolf-Tilo Balke, Wolfgang Nejdl. DHTs
over Peer Clusters for Distributed Information Retrieval, in: Proc. IEEE 21st In-
ternational Conference on Advanced Information Networking and Applications
(AINA), 2007, Niagara Falls, Canada.

4 CHAPTER 1. INTRODUCTION

II. Near duplicate detection. Several approaches for P2P near duplicate detection
have been already proposed. However, as shown later, without careful manual config-
uration from the user and adaptation of the algorithm to the contents of the network,
the existing P2P near duplicate detection methods, e.g., [14, 68, 51, 180] may have a
substantially higher cost than the optimal, with the difference often reaching to sev-
eral orders of magnitude compared to the minimal cost. Therefore, we require a P2P
near duplicate detection algorithm that can optimize its configuration according to the
user requirements and network properties, to minimize the network cost. We propose
POND, a P2P method based on Locality Sensitive Hashing, which enables this adapta-
tion and minimizes the network cost. POND allows users to select a tradeoff between
cost and completeness of the results, expressed using probabilistic guarantees, and op-
timizes the system configuration accordingly, so that the network cost is minimized for
the desired probabilistic guarantees. The good properties of POND are demonstrated
experimentally, with simulations of up to 100,000 peers, and using three real-world
datasets of text, video, and audio files, with a total size of more than 200 GBytes. The
experimental results show that performance improvements of several orders of magni-
tude are feasible, without a negative impact on quality.

Parts of this work have appeared in:

• Odysseas Papapetrou, Sukriti Ramesh, Stefan Siersdorfer, Wolfgang Nejdl. Op-
timizing Near Duplicate Detection for P2P Networks, in: Proc. IEEE Interna-
tional Conference on Peer-to-Peer Computing (P2P), 2010, Delft, Netherlands.

III. P2P clustering. Previous P2P text clustering methods, such as [42, 47, 69, 73],
run into scalability issues for large networks, or rely on a particular assumption for
the distribution of the text files to the participating peers, which is incompatible with
real-world scenarios where each peer carries its own documents. To address these
constraints we propose PCP2P, a P2P text clustering algorithm with probabilistic guar-
antees. The algorithm is designed with special concern on scalability and network
efficiency, and is suitable for clustering high-dimensional and skewed data like text
documents. Through an extensive theoretical analysis we derive probabilistic guaran-
tees for the clustering quality of PCP2P, and show how these are used to configure the
desired cost/quality tradeoff. We demonstrate the efficiency and effectiveness of the
algorithm through a large scale experimental evaluation, and an extensive comparison
with the state of the art methods.

PCP2P has been partially presented in:

• Odysseas Papapetrou, Wolf Siberski, Norbert Fuhr. Decentralized Probabilistic
Text Clustering, under revision at TKDE, 2010.

• Odysseas Papapetrou, Wolf Siberski, Norbert Fuhr. Text Clustering for Peer-to-
Peer Networks with Probabilistic Guarantees, in: Proc. 32nd European Confer-
ence on Information Retrieval (ECIR), 2010, Milton Keynes, UK.

• Odysseas Papapetrou. Full-text Indexing and Information Retrieval in P2P sys-
tems, in: Proc. Extending Database Technology PhD Workshop (EDBT), 2008,
Nantes, France.

• Odysseas Papapetrou, Wolf Siberski, Fabian Leitritz, Wolfgang Nejdl. Exploit-
ing Distribution Skew for Scalable P2P Text Clustering Databases, in: Proc.
Information Systems and Peer-to-Peer Computing (DBISP2P) 2008, Auckland,
New Zealand.

1.3. STRUCTURE OF THE DISSERTATION 5

IV. P2P classification. Several P2P collaborative classification algorithms were pro-
posed [165, 102, 152, 6], which enable users to share information over a P2P network,
and enhance their local classifiers. However, as we demonstrate later, these algorithms
have significant scalability limitations, and do not perform well on text data. Further-
more, most of these algorithms rely on sharing of raw training and testing data, such
as emails, which imposes serious privacy and copyright concerns, and limits their ap-
plicability. To address these issues we propose CSVM, a collaborative classification
framework constructed over a P2P network. The method focuses on text classification,
and addresses the limitations of the state of the art systems concerning communication
cost, privacy, and scalability. Peers participating in CSVM share information enabling
them to improve their classifiers to a quality which can otherwise be accomplished
only by manual user intervention, i.e., more extensive training. The algorithm allows
the participating peers to configure the tradeoff between cost and quality. Comprehen-
sive experimental evaluation using several massive real-world datasets demonstrates
that CSVM outperforms the state of the art collaborative classification methods with
respect to effectiveness, and closely approximates the quality of a centralized solu-
tion with only a small fraction of its computational and network cost, which is easily
affordable even by mobile devices.

Different aspects of CSVM are described in the following publications:

• Odysseas Papapetrou, Wolf Siberski, Stefan Siersdorfer. Collaborative Classifi-
cation over P2P networks, in Proc. WWW (Companion Volume), 2011.

• Odysseas Papapetrou, Wolf Siberski, Stefan Siersdorfer. Efficient Model Sharing
for Collaborative Text Classification, Technical report, 2011.

1.3 Structure of the Dissertation
The next chapter provides the necessary background for this work. In Chapter 3 we
describe PCIR, our proposal for scalable P2P indexing, and demonstrate how it can
be applied to existing P2P information retrieval systems for reducing the network cost.
Chapter 4 describes POND, the near duplicate detection system, and demonstrates its
efficiency and effectiveness with comprehensive experiments using up to 200 GBytes
of text files, videos, and audio files. In Chapter 5 we describe PCP2P, a P2P text clus-
tering algorithm designed with special concerns on scalability and network efficiency.
We derive probabilistic guarantees for the quality of PCP2P, and demonstrate its ef-
ficiency and effectiveness through a large-scale experimental evaluation. Chapter 6
introduces CSVM, a text classification algorithm that scales over P2P networks, and
presents comprehensive experimental results with several massive real-world data col-
lections, and comparisons with the state of the art algorithms. Finally, in Chapter 7, we
discuss future work, and conclude the thesis.

Chapter 2

Foundations

Peer-to-peer topologies can be broadly classified into four types: (a) P2P with central
servers, (b) unstructured P2P, (c) super peer networks, and, (d) structured P2P. We now
provide an overview of these topologies.

2.1 P2P with Central Servers
P2P with dedicated central servers was first popularized by Napster (1999-2001), a
file sharing network focused on sharing music files. The network is built around a
central server hosting an inverted index. Peers join the network by contacting this
server and registering their resources. The location of each resource is indexed using
the extracted resource features, such as the filename and meta data for multimedia files,
or the terms for text documents. Query execution also depends on the central server.
All queries are forwarded to the central server, and the query keywords are looked up
in the inverted index, to find the relevant results. The results are returned to the query
initiator, which then decides which of the resources should be retrieved, and contacts
their corresponding peers directly for retrieving the resources.

The BitTorrent protocol also belongs to this category, as it relies on dedicated
servers for indexing the resources. The key idea behind the protocol is that each re-
source is described using a small descriptor file, called torrent. Torrents are distributed
by conventional means, usually uploaded to dedicated web servers, and can be located
using specialized search engines. Each torrent is also associated with a special peer,
called a tracker, responsible for keeping track of the peers that own and can provide
the resource. For downloading a resource, the user first locates the corresponding tor-
rent and the associated tracker. The tracker coordinates the downloading process by
providing a list of peers that can provide parts of the resource.

This topology scales better than conventional information sharing approaches, web
hosting for example, since the central server does not need to maintain copies of all
resources locally. It only needs to keep an index of the resource locations, using a
limited number of features per resource, for instance, the filenames in Napster, or the
torrents in BitTorrent. However, as the resources, peers, and features per resource
increase, this topology also runs into bottlenecks. An increased query rate further
aggravates the workload of the server, since all queries need to be executed from the
same server. Finally, the high network cost for providing the central server, undertaken
by a single party, combined with the high churn rate expected in P2P networks, make

6

2.2. UNSTRUCTURED P2P NETWORKS 7

this architecture economically unattractive.

A non-technical concern of these server-centric P2P networks, which also con-
tributed towards the disfavor of the model, is that the server owners are considered
legally responsible for the search functionality. Due to the frequency of copyright in-
fringements in these networks, several companies, including Napster, suffered frequent
legal consequences for providing the search services.

2.2 Unstructured P2P Networks

Realizing the limitations of the central-server architectures, the decentralized unstruc-
tured P2P topology quickly emerged. The distinguishing characteristic of this topology
is that the participating peers maintain links to a few selected neighbors, which enable
information sharing without the need of central servers. A new peer joins the network
by locating a set of old peers, usually using a central registry or some well-known IP
addresses, and establishing a link with these peers. Concerning query execution, dif-
ferent approaches were proposed in the literature. The simplest approach is based on
query flooding. The query initiator forwards to all its neighbors the query, annotated
with a Time-To-Live value. Each neighbor answers the query by sending its local re-
sults to the query initiator, and forwards the query to its own neighbors, which repeat
the process recursively until the Time-To-Live expires. Variants of this topology are
used in Freenet [30] and Gnutella [162], two popular P2P file sharing networks.

To reduce the cost of flooding and to speed-up the query execution process, other
unstructured architectures were also proposed. An architecture which also found appli-
cation in recent Gnutella versions bases query routing in peer synopses, e.g., [35, 178,
86, 37]. Peers gossip summaries of their contents periodically, using synopses, such as
Bloom filters. These synopses are used during querying, to route the query only to the
peers most likely having related documents. Another influential architecture which im-
proves query performance is based on a semantic overlay network, where semantically
related peers are clustered together, e.g., in [36, 98, 45]. In addition, several mathemat-
ical models were proposed for the network construction and the query routing phase
that increase the probability that each query retrieves all relevant results, and improve
the scalability of such networks [28, 80, 183, 104, 114].

The main benefits of these approaches compared to the central-servers topology is
that they are more scalable, they evenly distribute the network and computational cost
to all participating peers, and do not suffer from a single point of failure. This makes
unstructured P2P networks an appealing solution for several application scenarios, such
as video streaming [167], privacy and anonymity [30], and collaborative classification
presented in Chapter 6. These networks also formed the basis of several popular file
sharing P2P networks, the most famous being Limewire and Freenet. However, due
to the absence of an inverted index, unstructured networks are not effective at locating
unpopular resources, or, in the words of Rodrigues and Druschel [144], they are good
at finding “hay”, but not at finding “needles”. Furthermore, their network efficiency
and performance is still limited, due to the extensive gossiping required for exchanging
the synopses, and the flooding during query processing [143].

8 CHAPTER 2. FOUNDATIONS

2.3 Super Peer Networks
To balance between the efficiency of P2P networks with central servers, and the scal-
ability and robustness of unstructured architectures, super peer topologies were pro-
posed, for instance in [122, 179, 125, 136, 96]. The key aspect behind these topologies
is that some of the peers have higher capabilities than others, such as faster network
connection and a higher uptime, which could be exploited for increasing the stability
and efficiency of the network. Therefore, super peer topologies construct a network
with two types of peers, the ordinary peers, and the more powerful super peers. Only
the super peers participate in the unstructured network. The ordinary peers instead find
and join a super peer, through which they have access to the network. Upon joining,
ordinary peers send their synopses to their super peers, which act on their behalf for
query processing. In particular, the query initiator forwards its query to its super peer,
which first looks up its collected synopses. If the query can already be answered, the
super peer returns the locations of the relevant resources to the query initiator. Other-
wise, the super peer floods the query to its neighboring super peers, which recursively
answer the query.

Several extensions were also proposed to address limitations of the basic topology.
For instance, Yang and Garcia-Molina [179] describe how redundancy at the super
peer level increases robustness, and enables load balancing. Kleis et al. [81] take into
account the underlying network conditions when constructing the super peer network,
thereby yielding better performance and scalability. Garbacki et al. [64] consider the
semantic similarity and interests of the peers for constructing the network. This yields
an increase in the locality of the queries, and makes query processing more efficient.

2.4 Structured P2P Networks
This is the prevailing P2P topology. It offers efficiency and effectiveness guarantees,
and is a central component of several popular file sharing networks, e.g., Limewire and
BitTorrent DHT. Our contributions also employs this topology to a large extend. The
common principle behind structured P2P networks is an overlay structure called Dis-
tributed Hash Table (DHT), which enables mapping of peer and resource identifiers to
a common address space, allowing for direct allocation of resource identifiers to peers.
DHTs follow the abstraction of hash tables, offering a put(key, value) method, which
associates value with key, and a get(key) method, which returns the value associated
with key. Typically, these methods have network complexity of O

(
log (n)

)
messages,

where n is the number of participating peers.
There is a plethora of DHT variants in the literature, for instance, Chord [158],

P-Grid [1], Pastry [145], Viceroy [106], CAN [140], and Kademlia [111]. We now
demonstrate the basic DHT functionality, using Chord as example. Figure 2.1 presents
a sample DHT. Each peer is assigned a unique identifier in the range of [0, 2r−1], where
r is a system parameter. For instance, most Chord implementations set r to 160 (in the
figure we use r = 6, for illustration purposes). This places the peers in a conceptual
ring. The significance of this placement is that each peer undertakes responsibility for
maintaining all keys in the range of its own identifier and the identifier of the previous
peer in the ring (e.g., P6 is responsible for all keys between 2 and 6). Then, each peer
constructs its finger table, by establishing pointers to other peers. The peers included
in this table are selected such that their keys have an exponentially increasing distance
with the source peer. For example, P6 will establish pointers to the peers responsible

2.4. STRUCTURED P2P NETWORKS 9

for storing the keys 6 + 2i, for i = [1 . . . 5].
This structure enables key lookups with logarithmic complexity. To execute a DHT

lookup for a query q, the query initiator peer pq first uses a predefined hash function
for computing hash(q), a hash value of q in the range of [0, 2r −1]. Cryptographic hash
functions such as SHA-1 and MD5 are usually employed for this purpose. Then, pq

selects from its finger table the peer p′ with the identifier satisfying id(p′) ≥ hash(q)
and minargp′ (hash(q) − id(p′)). Peer pq forwards the lookup message to p′. If p′ is
the responsible peer for that key, it answers back to pq with the value registered for
q. Otherwise, p′ repeats the routing process, transparently from pq, and forwards the
lookup message to the best peer candidate from its own finger table. The process is
repeated until the responsible peer for the query is found, which responds back to pq

directly with the answer. It can be shown that the lookup process scales logarithmically
with the number of peers.

Apart from the basic lookup functionality, several other issues were considered in
the context of DHTs. To recover for churn, e.g., peers leaving unannounced due to net-
work failures, Chord replicates each peer’s DHT fraction to a number of its successors.
When a peer fails, its successors take over the orphaned range, and no data is lost. A
similar approach is followed by Pastry [145]. Generally, by controlling the replication
factor, and under the assumption that there is no correlation between the peer identifiers
and the peer’s geographic location, ownership, or network connectivity, DHTs provide
guarantees for the completeness and connectivity of the graph. Rhea et al. [142], and
Li et al. [95] elaborate further on the topic.

DHTs have also been extended to handle high-dimensional data. For instance, the
CAN DHT [140] considers a d-dimensional space split into n zones, each assigned to
a peer. Peers construct their finger tables by including all peers responsible for neigh-
boring zones, i.e., zones that have d − 1 overlapping dimensions. A simple greedy
algorithm is employed for lookups, with network complexity of O(d × n1/d) messages.
Mercury [19] and HotRoD [134] handle multi-attribute data by constructing a single
virtual ring for each dimension. For DHT lookup, only the virtual rings with dimen-
sions relevant to the query are looked up.

Several DHT extensions were also proposed to address specific DHT limitations.
To address the problem that DHT lookups may impose high latency due to the geo-

P6 finger table

Key Peer

6+1 P19

6+2 P19

6+4 P19

6+8 P19

6+16 P23

6+32 P39

P39

P42

P48

P1

P6

P19

P23

P27
P34

P56

Figure 2.1: Chord ring

10 CHAPTER 2. FOUNDATIONS

graphic distance of the involved peers, Pastry DHT takes into account network locality.
Due to the replication imposed for handling churn, each lookup can be served from k
adjacent peers. Therefore, instead of always forwarding each message to the peer with
identifier closest to the key, the k closest peers with the key are detected from the finger
table, and the message is forwarded to the one minimizing the network distance.

To address the large number of messages created in DHT networks, which can
overload the network and cause problems to weak participants, Klemm et al. [82] con-
sider buffering of the DHT messages. Particularly, small DHT lookup messages are
buffered, and aggregated to larger messages with the same destination. This imposes
a slight additional latency on the DHT lookups and increases the failure rate of DHT
lookups, but it also reduces the network load substantially.

The problem of load balancing for peers holding popular keys has also been con-
sidered extensively, e.g., [67, 135, 134]. The frequent approach [67, 189] is to change
the region associated with each peer, such that more peers end up sharing the crowded
regions. For this, the notion of virtual servers is employed. Each peer hosts several
virtual servers, covering the responsibility range of the peer. When a peer becomes
overloaded it reassigns some of its virtual servers to neighboring peers. Network prox-
imity is also considered for choosing where each virtual server is reassigned, efficiently
computed via landmarking [189]. Pitoura et al. [134] follow a different approach, form-
ing virtual DHT rings over the same DHT overlay to maintain the data. The rings are
virtual, in the sense that they do not require materialization, with additional finger ta-
bles. The data replication imposed by this approach also enables recovery from peer
churn with no data loss. Bharambe et al. [19] address load balancing differently. Peers
construct a histogram on the popularity of the DHT regions, indicating the expected
load of each peer. The load imbalance between peers is addressed by moving peers
from the unpopular DHT regions to the popular DHT regions, to assist the overloaded
peers.

A shortcoming of traditional DHTs is that they only enable exact matching. Several
proposals address this issue, by enabling range queries over P2P [134, 135, 186, 19,
63]. For example, Gao et al. [63], and Zheng et al. [186] propose layered DHT struc-
tures, resembling a range tree and a segment tree respectively, which naturally enable
range queries. Similarly, P-Grid supports range queries by nature due to its trie back-
bone. Pitoura et al. [134, 135] follow a different approach, employing locality sensitive
hashing to generate the keys, thereby ensuring that similar values will end up in the
same or in near-by peers of the DHT ring.

The principal application of DHTs is for constructing a distributed inverted index,
for enabling keyword queries over P2P networks, e.g., [16, 154, 103, 74]. Each peer
processes its local collection to extract the main features, or terms, and posts these
terms in the DHT, with pointers to the relevant documents. For query execution, the
query terms are looked up in the DHT, to retrieve the posting lists with the relevant
documents. We will discuss the construction and maintenance of distributed inverted
indexes in more detail in Chapter 3.

There are also several approaches combining DHTs with other topologies to ad-
dress particular application challenges. For example, Loo et al. [100] propose a combi-
nation of DHTs and unstructured networks in the context of keyword search; unstruc-
tured networks are used for locating the popular resources, whereas a DHT index is
used to answer the rare queries. In the context of this thesis, we combine DHTs and
super peers to increase the efficiency of the inverted index maintenance, and to en-
able distributed clustering. We discuss the choices involved for such a combination in
Chapters 3 and 5.

2.4. STRUCTURED P2P NETWORKS 11

The purpose of this chapter was to briefly introduce the basic P2P topologies, in the
depth required for this thesis. A more detailed introduction to P2P systems and P2P
information retrieval can be found in several books and articles, e.g., [144, 156, 109].
Furthermore, in the following chapters, we will provide a more focused discussion
for some of these approaches, present their limitations, and compare them with our
contributions.

Chapter 3

Distributed Indexing for
Information Retrieval

Information retrieval is one of the most frequently considered applications for P2P
networks. A naive approach to enable P2P information retrieval is to use a devoted
powerful node for maintaining an inverted index of the contents of all peers. Consider-
ing the high expected churn factor for P2P networks, the large volume of the contained
information, and the targeted network size, this approach does not scale. As such,
a significant body of work has been targeted to alternative approaches, which do not
assume centralized services.

The predominant approach uses DHTs to enable a distribution of the inverted index
over all participating peers. Each peer analyzes its own collection, and extracts a set
of terms, normally after performing basic stemming and filtering of stopwords. For
each extracted term, the peer executes a DHT lookup to locate the responsible peer in
the network, and posts there its contact details, with the term and term score. With
respect to query processing, the query terms are similarly looked up in the index to find
the relevant peers. This approach (in the following called flat DHT indexing) has been
extensively used in the literature, such as in Minerva [16], Alvis [103], and PIER [74].
The approach works well when the number of terms per peer is limited, even for ex-
tremely large networks. However, flat DHT indexing becomes prohibitively expensive
for full-text indexing, or when the number of distinct terms per peer is high [94]. When
each peer features many distinct terms to index, it needs to execute a large amount of
DHT lookups for indexing its collection. And since the DHT decides which peer is
responsible for each term via hashing, a considerable number of peers holding some
part of the DHT have to be contacted to fully publish all terms of a peer. High peer
churn and frequent document updates in the peers aggravate the problem.

Several approaches have been proposed to limit the index maintenance cost, e.g.,
combining DHTs with unstructured networks [100], or indexing only selected terms [151].
As we show in Section 3.2, while these approaches efficiently reduce index mainte-
nance costs, they sacrifice completeness of the inverted index, increase the cost of
query execution, or decrease the quality and completeness of the query results.

In sharp contrast to previous works, we propose an approach which reduces index-
ing costs significantly without affecting querying cost or the quality of the results. Our
approach is called PCIR, short for Peer Clusters for Information Retrieval, and is based
on a hybrid super peer/DHT topology: we organize peers into groups, each of them rep-

12

3.1. PREREQUISITES 13

resented by a super peer for publishing the group’s information to a single global DHT
used for query processing. Each peer independently joins a group, and submits its in-
dex to the representative super peer for the group. The group representative efficiently
batches this information and periodically publishes it to the DHT, yet without remov-
ing any details or compromising the completeness of the inverted index. Because of
this message batching, the number of the required DHT lookups for publishing, as well
as the total number of messages is drastically reduced. Our evaluation shows that the
proposed approach enables cost savings of up to one order of magnitude compared to
a plain DHT, regarding number of messages as well as total transfer volume. At the
same time, network workload of the super peers remains below the network workload
of regular peers in the flat DHT approach.

In its basic form, PCIR relies on arbitrary assignment of peers to groups, without
taking the peer contents into account. We achieve further improvements by introducing
a distributed clustering scheme, such that peers form groups/clusters based on content
similarity. This further reduces the total number of distinct terms per cluster and ad-
ditionally decreases the required DHT lookups for publishing the terms and the total
number of messages for maintaining the DHT.

The next section shows how inverted indexes are currently constructed over DHTs,
and how the resulting index structure is used to evaluate keyword queries. In Sec-
tion 3.2 we discuss related work. The basic algorithm and the building blocks of our
topology are presented in Section 3.3, whereas in Section 3.4 we introduce the ad-
vanced scheme that employs peer clustering to further reduce the network overhead. A
cost analysis for both approaches is presented in Section 3.5, and Section 3.6 contains
the results of our experimental evaluation. Section 3.7 summarizes the contribution
and concludes the chapter.

3.1 Prerequisites
In this section we describe the underlying techniques and the standard approach for
DHT-based information retrieval in P2P networks.

3.1.1 DHT-based Inverted Indexes
Our approach relies on the functionality of a Distributed Hash Table to construct an
inverted index (cf. Section 2.4). We use Chord as a DHT overlay, but PCIR does
not rely on a specific DHT approach; other DHT overlays, such as P-Grid [1] and
Pastry [145], could be employed as well.

Each peer participates as a node in the DHT by taking responsibility for part of
the key range. Peers also index their collections in the DHT inverted index. For the
latter, each peer first builds a local inverted index for its documents, after processing
the terms with stopword filtering and stemming as usual (see Peer P4 in Fig. 3.1 for
example). Then, it creates an index entry for each discovered term and posts it to the
DHT by sending it to the peer responsible for this term. Terms are mapped to peers
in the DHT by using a hash function. The distributed inverted index can be built on
any DHT implementation, since it only requires the generic insert/lookup functionality,
offered by all DHT overlays.

The information contained in the index depends on the scoring functions to be
used. Common scoring functions in information retrieval take into account the term
frequency tf(t, d), the number of occurrences of term t in document d. Some P2P

14 CHAPTER 3. DISTRIBUTED INDEXING FOR INFORMATION RETRIEVAL

DHT I...Local Index

Term PF
Tennis 5
Sports 3
Volley 2
... ...

Local Index DHT Index

P1

P27

P19

P11

P7

P3

P2

DHT Layer

Politics
Nejdl

P4

P12

Football

Volley
Elections

Gottlob

Aberer

Chicken

Elections

Volley
...

Term
P1
P3
P9

P4

...

Peer
12
9
1

2
...

PF
17
21
19

5
...

Max.PF

Figure 3.1: Flat DHT topology and index structure

information retrieval systems build and maintain such a document granularity inverted
index, e.g., [103]. However, indexing each document individually is expensive in terms
of network cost. Therefore, most P2P information retrieval approaches use peer gran-
ularity [16], i.e., instead of publishing document term frequencies, each peer publishes
its peer term frequency pf(t, pi) =

∑
d∈DC(pi) tf(t, d), where DC(p) is the set of docu-

ments held by peer pi. Peer granularity indexes are more compact and can be effi-
ciently exchanged in a distributed system. Thus, they provide a good balance between
precision and resource requirements [26]. Additional index variants have also been
proposed, which we describe in Section 3.2.

In the following we assume that an index entry for term t and peer pi contains the
contact information for pi (usually the IP address), the peer frequency pf(t, pi), and the
maximum peer frequency max pf(pi) = maxt∈DC(pi) pf(t, pi), used for normalization of
the peer scores with the size of each peer’s collection (see, for example, Fig. 3.1). The
list of all index entries published for a term is called a posting list. The posting list of
a term t can be retrieved by performing a DHT lookup, using t as a key.

We refer to the described approach as flat DHT Indexing, as it does not use an
intermediate layer between the peers and the DHT to optimize index maintenance. Flat
DHT Indexing is employed by the state of the art P2P systems, and we use it as the
baseline for evaluating the performance of our approach.

In a P2P network, peers might become disconnected unexpectedly. The usual ap-
proach to cope with this is to attach an expiration time to each index entry. Peers pe-
riodically republish their content such that their index entries are renewed before they
expire. Under the periodic republishing model, it is acceptable for the distributed in-
dex to have stale data of maximum age period, if the DHT republishing occurs with an
interval period′, with period ≤ period′. The periodic republishing model is favorable
for realistic high-churn P2P setups, and the interval length period can be configured to

3.1. PREREQUISITES 15

balance the index accuracy with the overall publishing cost.
While DHT-based inverted indexes form an excellent foundation for distributed

query processing, their creation and maintenance incurs a very high number of network
messages. Even though these messages are usually small, their packaging according
to the network protocol (i.e., TCP/IP frames) causes a high network volume overhead.
For the TCP/IPv4 protocol, this overhead is 75% of the total message size, considering
the theoretic minimum TCP/IP frame size of 32 bytes (64 bytes for a transaction) and
assuming an average of 10 bytes for each term. The large number of these messages
also causes a high workload to the intermediate network routers. Furthermore, the
average cost at the individual peers asked to submit or route these messages can render
the weaker peers unable to participate, and cause increased latencies even at the high-
end peers.

3.1.2 DHT-based Query Processing

The work described in this chapter focuses on efficiently maintaining the required in-
formation in the distributed inverted index, and it is applicable to all query execution
techniques that rely on a DHT-based index. For completeness, we briefly demonstrate
the basics of the most frequent technique, where query processing is performed as two-
step process [16]. The query initiator first discovers all related peers with the query,
and selects the most relevant of them (collection selection). It then queries the selected
peers, collects and merges the results, and presents them to the user (query execution).

Collection selection. The literature is rich with collection selection techniques for
distributed collections. These approaches are directly applicable to P2P systems, since
each peer can be considered as a distributed collection. We demonstrate PCIR using
CORI [26] for addressing the collection selection problem.

Assume a query Q consisting of terms {t1, t2, . . . , tl}. The query initiator looks
up each query term in the DHT, and retrieves the corresponding posting lists. These
posting lists contain the peer scores per term for all related peers. The CORI score
s(Q, pi) for query Q and peer pi is computed as:

s(Q, pi) =
1
|Q|

∑
∀t∈Q

db + (1 − db) × Tt,pi × It,pi

with Tt,pi = dt + (1 − dt)
log(pf(t, pi) + 0.5)

log(max pf(pi + 1))
and It,pi =

log
(

n+0.5
c f (t)

)
log(n + 1)

. Parameters dt

and db are constants, with a suggested value of 0.4 (for more information on how
to set these constants see [26]). pf(t, pi) is the frequency of term t in peer pi and
cf(t) = |{p|pf(t, p) > 0}| is the collection frequency for t, that is, the number of peers at
which term t occurs. The frequency of the most frequent term in peer i is denoted as
max pf(pi). The parameter n is the number of peers connected in the network.

Comparing the data stored in the DHT (Fig. 3.1) and the data required for CORI
score function, we see that all the required data is already stored in the DHT, except
of n, the total number of peers. The value of n can be inexpensively estimated with a
random walk [110], and periodically redetermined to take churn into account. Thus,
for each query term the necessary parameters can be easily retrieved with a single DHT
lookup.

16 CHAPTER 3. DISTRIBUTED INDEXING FOR INFORMATION RETRIEVAL

Query execution. The query initiator finds the α peers with the highest CORI scores
for the query, and routes the query to them. The respective inverse collection frequency
icf(t) = 1

c f (t) for each query term t is attached to the query, to allow all peers to properly
weight the importance of each term. Each peer then independently selects its top-k
related documents, using tf × icf score. Links to the results are returned to the query
initiator, ordered by relevance with the query, and displayed to the user.

3.1.3 Bloom Filters

We use Bloom filters for compactly representing large term sets (Section 3.4). Bloom
filters were first proposed in [21], as a space-efficient representation of sets S = {e1, e2,
. . . , en} of n elements from a universe U. A Bloom filter consists of an array of m bits
and a set of k independent hash functions F = { f1, f2, . . . , fk}, which hash elements
of U to an integer in the range of [1,m]. The m bits are initially set to 0 in an empty
Bloom filter1. An element e is inserted into the Bloom filter by setting all positions
fi(e) of the bit array to 1, for all fi ∈ F.

A limitation of Bloom filters is that they do not allow removing of elements. For
removing an element, the whole Bloom filter needs to be rebuilt from scratch. A
workaround was proposed by Fan et al. [52], called counting Bloom filters. A counting
Bloom filter replaces the bit array of standard Bloom filters with an array of m counters.
For adding an element in a counting Bloom filter, the element is hashed using the hash
functions, and all respective counters are increased by one. For removing an element,
the respective counters are decreased by one. In our context, counting Bloom filters are
used to compute the difference between two Bloom filter summaries.

3.2 Related Work
Peer-to-peer information retrieval has been studied in a large number of publications.
The first proposals focused on distributed information retrieval in unstructured net-
works, using approximate system-wide information. PlanetP [37] is one of these sys-
tems. It uses gossiping to distribute peer content summaries, encoded as Bloom filters,
to all participating peers. From these summaries each peer computes peer frequencies,
which are used to rank peers for a given query without central coordination. Due to the
usage of gossiping for distribution of collection-wide information, PlanetP and similar
unstructured P2P approaches exhibit only limited scalability.

To overcome these limitations, super peer topologies were proposed where a few
dedicated nodes take the responsibility for maintaining the indexes [31, 10]. While
these systems scale better compared to the unstructured networks, they require that the
super peers have very good network connections and a high availability, to cope with
the workload imposed by these tasks.

P2P IR systems based on DHTs avoid this load balancing issue and promise high
scalability due to the fact that DHT cost grows logarithmically with network size [3,
103, 16]. As explained in Section 2.4, these systems enable information retrieval by
constructing a distributed inverted term index. However, the main weakness of DHT-
based P2P IR systems is the high cost for maintaining the inverted index. Existing
systems vary the granularity and completeness of the inverted index, targeting differ-
ent quality/cost tradeoffs. In the ALVIS system [3, 103], peers index the terms for

1We use the expressions ‘A bit is set to true/false’ and ‘A bit is set to 1/0’ interchangeably.

3.2. RELATED WORK 17

each of their documents individually (document granularity index). In this way ALVIS
achieves high performance query execution and high information retrieval quality, but
at a high cost for the index maintenance. In contrast, peer granularity systems trade
index accuracy with maintenance cost. For example, the peers in Minerva [16, 17]
aggregate their documents’ scores per term to produce a peer score for each term. Al-
though maintenance cost for peer granularity systems is lower compared to document
granularity systems, the approach still does not scale for full-text indexing because the
number of DHT lookups per peer is not reduced. In fact, Li et al. [94] have shown that
a P2P solution cannot scale to a large network size if full-text indexing is used, mainly
because index maintenance becomes too expensive. Our experiments, presented in
Section 3.6, further suggest that the main fraction of network cost is generated by the
huge number of DHT lookups, which is independent of the granularity of the inverted
index, and that by reducing the DHT lookups one can efficiently reduce the overall
index maintenance cost.

The Adlib approach [61] follows a different direction for reducing network cost.
It establishes a two-tier structure, where a first tier divides the documents into inde-
pendent, equal-sized partitions, called domains. Within each domain, nodes build a
distributed index for the documents, which is then offered in the second tier for query-
ing. By tuning the size and number of domains, index maintenance can be traded
against query efficiency. This approach reduces the number of DHT lookups, but only
with important tradeoffs for query execution, either in the quality of the results or in
the query cost. When full-text indexing over the whole P2P network is required, Adlib
is less efficient than traditional flat DHT indexing.

Another way to reduce network costs is to index only a subset of terms occurring
in a peer’s collection. In [151], the peers randomly choose a subset of the terms to
be indexed. Crespo and Garcia-Molina [36] organize the peers into semantic overlay
networks by asking each user to manually select the terms for her files. The proposal
by Loo et al. [100] builds a hybrid Gnutella/DHT infrastructure to limit the network
cost. Only rare items are indexed in the DHT, while search for frequent items is done
via message flooding in the Gnutella topology. In general, the systems in this family
reduce DHT maintenance cost significantly, as peers do not publish all their terms.
However, because of the incomplete index, retrieval quality is compromised.

Nguyen et al. [126] follow a different approach for reducing the inverted index
maintenance cost, called adaptive distributed indexing. Instead of indexing all terms at
a preselected granularity – either peer granularity or document granularity – each peer
forms small groups of its documents and indexes the terms of each group as a large
virtual document. The publishing granularity, i.e., the size of the document groups, is
selected such that overall cost for index maintenance and query execution is reduced.
In contrast to PCIR, adaptive distributed indexing does not focus on reducing the num-
ber of DHT lookups which constitute the major indexing cost. In fact, the number
of DHT lookups is orthogonal to the indexing granularity level. Therefore, adaptive
distributed indexing can also benefit from PCIR, for reducing the DHT lookups, and
thereby drastically reducing the total indexing cost.

The concept of query-driven indexing has also been recently exploited. For exam-
ple, in a recent version of ALVIS [154], peers identify frequent multi-term queries, and
cache their results in the DHT. This offers faster query execution with lower network
overhead, albeit at the expense of a larger inverted index over the DHT. To reduce this
additional cost, another query-driven indexing approach called mk-STAT [117] im-
poses additional constraints on what constitutes an interesting multi-term query: terms
that are highly statistically correlated in the documents are not considered interesting,

18 CHAPTER 3. DISTRIBUTED INDEXING FOR INFORMATION RETRIEVAL

since querying for one of the terms alone already returns most of the results.
In Section 3.6 we demonstrate experimentally that PCIR enables substantial net-

work savings also for query-driven indexing. In particular, we apply PCIR on four
publishing strategies: two different peer granularity publishing strategies [117, 16], a
query-driven strategy [117], as well as a document granularity strategy [141]. The
application of our approach to other strategies is straightforward. For example, [137]
increases query efficiency by changing the way documents are indexed: Instead of
publishing only the term scores for each document, each peer identifies the highly dis-
criminative keys from each document – each key can consist of more than one term –
and uses also these as keys to index the document. For indexing all highly discrimina-
tive keys, the number of required DHT lookups is increased. An indexing scheme such
as the one proposed by PCIR can effectively reduce the indexing cost for this approach
too, without interfering with the information retrieval quality or with the query execu-
tion efficiency. Other DHT-based systems that perform full-text indexing, e.g., [126],
can also employ PCIR for reducing the network cost, without affecting their query
execution part.

Some systems do not index terms at all. For instance, pSearch [160] proposes two
alternative dimension models for indexing the documents. The first one, pVSM, is
based on the Vector Space model, while the second one, pLSI, reduces the document
dimensions using Latent Semantic Indexing. The main problem in both the approaches
is the high network cost. In addition, pLSI assigns the LSI computation to a single peer,
causing serious bottlenecks and scalability issues for large networks. To aggravate the
problem, the proposed load balancing extension [159] induces a huge increase of the
network cost. Thus, pSearch does not scale for large networks.

Hierarchical DHTs have also been introduced, as a means to foster efficient band-
width utilization and a better adaptation to the underlying physical network [60, 191].
The latter point is promising, especially for information retrieval tasks in peer-to-peer
networks. However, a theoretical analysis shows that current proposals for hierarchical
DHTs are still less effective in number of messages compared to flat DHTs [191].

The issue of too many DHT accesses can also be partially alleviated by buffering
and aggregating small DHT messages with the same destination [82]. This optimiza-
tion is orthogonal to the term indexing strategy and can be used to further optimize
any approach, including the one proposed in this work. In fact, PCIR also generates
small messages – DHT lookups – therefore it can naturally benefit from message ag-
gregation, as long as this aggregation does not cause performance issues for the system.
Examining the benefits of integrating PCIR with message aggregation at the network
layer is part of our current work.

Super peer based topologies which do not rely on DHTs have also been proposed
for Information Retrieval. Cooper [31] proposes to maintain collection-wide informa-
tion as well as routing tables at designated super peers, called InfoBeacons. Balke
et al. [10] collect query statistics at super peers to facilitate efficient term query pro-
cessing. While these approaches incur significantly less index maintenance effort than
DHT-based algorithms, query processing workload is not evenly distributed over the
peers, hence impeding scalability.

In addition to the DHT index construction, query processing also introduces several
challenges. In [131] we presented a method for increasing the novelty of the results
by avoiding duplicate documents. The same problem was studied in [15, 118]. The
problem of top-k query execution has been investigated by Balke et al. [10] for super
peer networks, but also in [123, 116] for structured P2P networks. In [139] we showed
how Bloom filters can be used to construct more efficient query plans, and increase the

3.3. PCIR BASIC ALGORITHM 19

P1

P27

P19

P11

P7

P3

P2

DHT Layer

Politics
Nejdl

P4

P12

Football

Volley
Elections

Group Layer

P1

P1 P3 P27 P2

P19

P13 P7

P3

P12

Politics
Politics

Elections

Elections Politics

Volley
Football

Volley
ChickenFootball

Volley

Gottlob

Aberer

Nejdl
Gottlob

Aberer
Nejdl

Nejdl GottlobFootball

Chicken

Chicken

Message types

Peer sends inverted
index to its super peer

Super peer publishes
in the DHT

Aberer

Figure 3.2: The two-layer architecture combines grouping of peers around super peers
and an inverted index over a DHT (super peers are gray shaded)

efficiency of the distributed joins required for multi-term queries. These approaches
also rely to a DHT infrastructure, and can be combined with PCIR straightforwardly.

3.3 PCIR Basic Algorithm
As explained in the previous section, the main issue with DHT-based inverted indexes
is their high maintenance cost. PCIR reduces this cost without compromising the com-
pleteness of the inverted index so that existing query execution techniques can be ap-
plied, like the one described in Section 3.1.2. Since PCIR creates exactly the same
inverted index as flat DHT indexing, query processing does not need to be adapted, and
the same retrieval quality as before is achieved.

Our approach builds on the observation that peers usually have a large term overlap.
In the flat DHT model, this term overlap is not exploited; each peer independently
publishes its terms in the DHT, and therefore it requires its own DHT lookups for all
its terms. PCIR exploits this term overlap between peers by forming small groups of
peers, and assigning the responsibility for DHT lookups in each group to a selected
super peer of the group.

Figure 3.2 illustrates the PCIR overlay. First, a new peer joins the DHT, but without
publishing its terms in the DHT inverted index. Second, it either discovers and joins
an existing group of peers, or creates a new group and assumes the role of the super
peer. Third, it builds the local inverted index for its collection and sends it to the super
peer of its group. In turn, the super peer of each group collects these inverted indexes
of the group’s peers and publishes them to the DHT. Super peers reduce the number of
DHT lookups by performing only one lookup per term in the group, regardless of the
number of collected entries for the term. The above steps are repeated periodically to
compensate churn.

It is important to note that the super peers do not post an aggregated inverted index
for the group. They post the original index entries – the posting lists – as received from
their group peers. Therefore, unlike other super peer IR networks, queries do not go

20 CHAPTER 3. DISTRIBUTED INDEXING FOR INFORMATION RETRIEVAL

Keyword Peer pf max pf Super peer
Football p1 12 17 p4

p3 9 21 p4
p9 1 19 p9

Volley p1 7 17 p4
.

Figure 3.3: Logical DHT Inverted Index. For each term, the DHT keeps a list of
relevant peers, their contact details and the respective peer scores and super peers.

through the super peers, and query processing does not impose additional workload on
the super peers. Super peers in PCIR only contribute to the indexing process but do not
need to act as a point of entry for queries.

The resulting distributed index created from PCIR looks nearly identical to the one
constructed by flat DHT Indexing. The only difference is that in addition to the peer
information, the super peer adding the entry in the term’s posting list also adds its own
contact information. As we explain later, this information is required for efficiently
building the peer groups. Figure 3.3 shows a sample index. In the following sections
we explain how this index is built and maintained in detail.

3.3.1 Peer Life-cycle

We now take a closer look at the life-cycle of the peers in the network.

Peer joining the network. This activity includes two tasks: (a) joining the DHT, and
(b) joining a peer group. We omit the former from the discussion since it is specific to
the DHT protocol and orthogonal to our work.

Algorithm 3.1 presents the process for joining a group. The joining peer first de-
cides whether it should create its own peer group and become a super peer, or join an
existing group as a normal peer. In the former case, it publishes its contents to the
DHT directly, and awaits other peers to join its peer group. In the latter case, the peer
needs to find a super peer that still accepts connections. It does so by running a DHT
lookup on a random value (in the case of Chord, which typically has an id ring from
0 to 2160, the peer chooses a random value in this range). The DHT lookup returns a
peer responsible for holding the respective hash value, which is in turn queried for all
the super peers it is aware of (i.e., the super peers that have published information in
the posting lists this peer holds). The retrieved super peers are then checked in random
order. The new peer joins the peer group of the first discovered super peer that can
accept it, i.e., is not overloaded.

The decision for becoming a super peer or a normal peer can be taken by each peer
independently. For instance, the desired ratio sp ratio of peers and super peers can
be used to determine the probability of each individual peer to become a super peer.
Another strategy for a peer would be to become super peer after a specified number of
unsuccessful attempts to join an existing peer group. In sharp contrast to other super
peer systems, PCIR does not require super peers to be especially powerful, as these
are not used during query processing. In fact, as we show later, a super peer in PCIR
typically has less network workload than regular peers in flat DHT indexing.

3.3. PCIR BASIC ALGORITHM 21

Algorithm 3.1: Peer joining a peer group (basic PCIR)
Input: Psp ratio: Desired ratio of super peers to peers

// a peer joins the network

1 joinPCIR() {

2 if decideIfSuperPeer() then
// become a super peer

3 this.isSuperPeer← true;
4 groupInvertedIndex←myInvertedIndex;

5 else
// become a normal peer

6 this.isSuperPeer←false;
// find random super peer

7 mySuperPeer← findRandomSuperPeer();
// and submit your inverted index

8 mySuperPeer.groupInvertedIndex.update (myInvertedIndex);

9 }

10 SuperPeer findRandomSuperPeer() {
11 repeat
12 int randomKey← getRandom();
13 peer p← DHTLookup(randomKey);
14 <SuperPeer> listOfSPs← p.allKnownSuperPeers();
15 while (listOfSPs.isNotEmpty() & mySuperPeer is null) do
16 SuperPeer randomSP← listOfSPs.selectRandom();
17 if randomSP.canAcceptMe() then
18 mySuperPeer←randomSP;

19 until SuperPeer found;
20 return mySuperPeer;
21 }

22 boolean decideIfSuperPeer() {
23 double random← getRandom(0,1);
24 return random ≤ Psp ratio;
25 }

PCIR super peers can also independently control their workload and stop accepting
new peers before they become overloaded. Each super peer sets its own upper bound
for its workload based on its available network and computational resources. Since
the super peers workload depends on the number of distinct terms in the group, in our
implementation super peers express their upper bound in maximum number of distinct
terms in their group. Other possible ways of expressing the upper bound are maximum
number of peers in the group, maximum group collection size, or a combination of the
above. Note that this limit will never cause index entries to get lost. As soon as a super
peer reaches its self-imposed limit, it just stops accepting new peers.

Super peers do not have a special role during query processing; they are only used

22 CHAPTER 3. DISTRIBUTED INDEXING FOR INFORMATION RETRIEVAL

Algorithm 3.2: Periodic Peer/Super Peer publishing

1 while true do
2 if isSuperPeer then

// update with my own collection

3 this.groupInvertedIndex.update (myInvertedIndex);
// publish group’s inverted index

4 for term t in groupInvertedIndex do
// publish peerlist in DHT

5 peer p← DHTLookup(t.hashValue);
6 p.publish (groupInvertedIndex.getPeerList(t));

7 else
8 if (!mySuperPeer.isAlive () ‖ !mySuperPeer.canAcceptMe ()) then
9 joinPCIR () ; // join a new group

10 mySuperPeer.groupInvertedIndex.update (myInvertedIndex);

11 sleep(period);

to make the DHT publishing more efficient. Therefore, their attributes, performance
and workload, do not affect querying performance or quality of query results. A long
uptime of super peers is also not required, since the DHT update protocol is based on
periodic republishing; when a super peer disconnects, the peers in its group simply
repeat the process and join other groups.

Peer/Super peer periodic publishing. After a peer joins a group it periodically
sends its inverted index to the super peer of that group. The super peer of each group
packs together the peer frequencies per term (the posting lists for its group), and pub-
lishes them in the DHT (Alg. 3.2). The publishing process is periodically repeated to
compensate churn.

This two-layered publishing process has several advantages compared to flat DHT
indexing. Peers can efficiently publish their inverted index at their super peers, since
this requires only one message which is easily compressible, and does not generate any
DHT lookups. Super peers can also optimize the updating of the DHT index. All the
group’s peer scores for each term are packed in a single message, thereby (a) requiring
only a single DHT lookup and only one publishing message per distinct group term,
and, (b) enabling compression and delta updating. A disadvantage of the two-layered
approach is that the data now needs to be published twice, the first time from each peer
to its super peer, and the second time from the super peer to the DHT inverted index.
However, the benefits of the two-layered architecture, and mainly the drastic reduction
of the DHT lookups, surpass the extra publishing overhead.

Handling Churn. PCIR relies on periodic publishing of the peer scores, both from
peers to super peers, and from super peers to the DHT. When a peer sends its inverted
index to its super peer, it attaches an expiration period. The super peer uses this ex-
piration period to keep the group’s inverted index updated, i.e., to remove the expired
entries from the group’s posting lists. Therefore peers are not required to unpublish old
information; these are automatically filtered out by the super peers. Similarly, super

3.4. PCIR CLUSTERING-ENHANCED ALGORITHM 23

peers attach an expiration period to each of their DHT publishings. The peers partic-
ipating in the DHT index detect and remove the expired posts, so super peers also do
not need to unpublish anything. A global system time is not required. The peers only
need to share the same expiration period, and no further synchronization is required.

Because of the periodic republishing, peers do not have to act in the case a regular
peer leaves the network, either by expected departure or by unexpected failure. The
DHT itself automatically recovers without loss of data (see for example [145]). The
peer’s summary published at the super peer will also eventually expire, get removed
from the super peer and, in turn, from the DHT inverted index. In the meantime, any
query routed to this disconnected peer will simply fail, and the next relevant peer will
be selected for querying.

Super peers may also disconnect from the network. In this case, the group’s peers
detect the failure of the super peer in the next publishing period and individually find
and join another group, as described in Algorithm 3.1. Due to super peer churn, the
postings of a peer might not be propagated in the DHT within one publishing period.
However, the probability that this happens for i consecutive periods is small, and in
particular, pr = ci, where c denotes the churn percentage. For example, for a churn
of 20%, the probability that the contents of a peer are not published after 3 periods is
less than 1%. To avoid loosing already published information from the DHT, we set
the index entry expiration period to a multiple of the republishing period length, e.g., 3
times the republishing period. This ensures availability of the entries even under super
peer churn, without requiring the peers to take specific actions when their super peer
fails. Therefore, super peer churn does not impose additional cost on the peers.

Reducing the cost of super peers. For reducing the network usage, all peers use
delta updating to send their updated inverted indexes to their super peers. In case peers
have no changes, they send a single keep-alive message to notify their super peers that
they are still alive and they have no changes. These optimizations significantly reduce
the network cost of super peers, as well as the total network cost. Note that these
optimizations cannot be used in the flat DHT publishing scenario, as the DHT lookup
and the keep-alive or delta message would still be required per distinct term per peer,
and the total number and size of messages would not be reduced.

An additional measure taken towards reducing the cost of super peers involves the
DHT lookup implementation. In this work we use recursive DHT lookups: lookups are
handled recursively by the DHT peers, without requiring interaction with the origina-
tors of the lookup at each hop. Apart from the efficiency benefits of recursive compared
to iterative DHT lookups [38], recursive DHT lookups distribute the lookup cost to all
DHT peers more evenly. Super peers, which initialize the majority of the DHT lookups,
only need to execute the first lookup hop. The remaining lookup hops are distributed
evenly to all DHT peers.

3.4 PCIR Clustering-enhanced Algorithm
The basic PCIR algorithm reduces the required DHT lookups by exploiting the term
overlap in the group’s collection; only one DHT lookup is created for each distinct term
in the peer group. This basic approach already accounts for a 5-times reduction of the
total number of messages. The number of required messages can be further reduced
by reorganizing peers in the groups so that peers with similar content end up in the
same peer group. As a result, super peers of the groups will have fewer distinct terms,

24 CHAPTER 3. DISTRIBUTED INDEXING FOR INFORMATION RETRIEVAL

λ Number of top frequent terms published per super peer
µ Maximum number of clusters to compare with each virtual peer’s

Bloom filter
BFPi / BFCx Bloom filter of peer Pi / cluster Cx

m Bloom filter length in bits
k Number of hash functions per Bloom filter
tb(BFi) Number of bits set to true in BFi

Table 3.1: Notations for PCIR

and they will need to perform fewer DHT lookups for publishing the total terms of the
collection, yet without compromising completeness of the inverted index.

Clustering-enhanced PCIR clusters the peers based on their contents, so that peers
with similar contents are assigned to the same group. We refer to these groups as peer
clusters. For building the peer clusters we propose an inexpensive clustering algorithm
based on Bloom filter representations for the cluster and peer centroids. Peers create
their Bloom filters by hashing all their terms in an empty Bloom filter. Each super
peer is additionally responsible for maintaining the Bloom filter representation of its
cluster’s centroid, which equals to the disjunction of the filters of all the peers belonging
in the cluster. For estimating the term overlap between a peer and a candidate cluster,
the corresponding Bloom filter representations are compared.

To avoid comparing each peer’s Bloom filter with the Bloom filters of all clusters,
clustering-enhanced PCIR employs a DHT-based inverted index to index the clusters:
Super peers index their top most frequent terms in the DHT. When a new peer joins
the network, it first identifies its top most frequent terms, and uses the inverted index
to discover all clusters with common top terms. As we show later, this process offers
probabilistic guarantees that the peer joins the best cluster – the cluster with the higher
term overlap.

In the following, we discuss the building blocks of clustering-enhanced PCIR in
detail. In Section 3.4.1 we present the clustering objective function, and show how
it is inexpensively estimated using the Bloom filter representations of the peer and
cluster centroid. In Section 3.4.2 we describe a cluster centroid caching scheme used
to alleviate the workload of super peers. Section 3.4.3 describes the required changes
at the DHT inverted index for enabling peer clustering. The process of joining peers
in the clustering-enhanced PCIR network is put together in Section 3.4.4. In all other
aspects, clustering-enhanced PCIR algorithm works like the basic algorithm.

3.4.1 Clustering objective function

The purpose of clustering is to increase the term overlap in the super peers. Therefore,
the clustering objective function needs to compute the overlap between a peer and a
cluster collection, and assign the peer to the cluster with the largest overlap. To avoid
exchanging large inverted indexes between peers for computing the overlap, peers es-
timate the cardinality of the overlap using Bloom filters.

The clustering objective function is formally defined as follows:

Definition 3.1. Given a peer Pi, and the Bloom filter for its collection BFPi . For a
candidate cluster Cx, with Bloom filter centroid BFCx , the objective function f (Pi,Cx)

3.4. PCIR CLUSTERING-ENHANCED ALGORITHM 25

is:

f (Pi,Cx) =

 f ′(BFCx ,BFPi) , if Pi < Cx

f ′(BF{Cx−Pi},BFPi) , if Pi ∈ Cx
(3.1)

where f ′(BFCx ,BFPi) gives the expected cardinality for the overlap between the cluster
Cx and the peer Pi using their Bloom filters (cf. Theorem 3.1), and BF{Cx−Pi} is the
Bloom filter of cluster Cx after removing the contents of peer Pi. The best cluster is the
one that maximizes the objective function.

The following theorem shows how to estimate the cardinality of the overlap be-
tween a cluster and a peer, using their Bloom filters.

Theorem 3.1. Let BFA and BFB denote the Bloom filters of collections A and B respec-
tively. With BF∧ we denote the Bloom filter produced by bit-wise AND merging of the
bit arrays of BFA and BFB. We assume that all Bloom filters are of the same size m,
and use the same k hash functions. Then the expected number of elements in A∩ B is:

E(|A ∩ B|) =
m2 − m(tb(BFA) + tb(BFB)) + tb(BFA) × tb(BFB)

k × ln(1 − 1/m)

−
m2 − m(tb(BFA) + tb(BFB) − tb(BF∧))

k × ln(1 − 1/m)
(3.2)

where tb(BFx) is the number of bits set to true in BFx.

The proof is included in the appendix.

Correctness of the objective function. The goal of peer clustering is to increase the
term overlap at super peers. The objective function is correct if, given a peer and a set
of candidate clusters, it selects the cluster that maximizes term overlap with the peer.
Since Bloom filters are probabilistic, it may happen that the objective function picks
the wrong cluster as the optimal one. Although a wrong peer clustering decision does
not affect the quality in terms of information retrieval, we compute the probability that
the clustering objective function chooses the optimal cluster, to show that moderate
Bloom filter sizes are enough for high-quality clustering.

Theorem 3.2. Let BFPi , BFCx and BFCy represent the Bloom filters of peer Pi and
clusters Cx and Cy respectively. Without loss of generality, assume that f (Pi,Cx) >
f (Pi,Cy), where f (Pi,C j) denotes the clustering objective function for peer Pi and
cluster C j (Eqn. 3.1). Then, the probability of |Pi ∩Cx| > |Pi ∩Cy| is at least:

Pr
[
|Pi ∩Cx| > |Pi ∩Cy|

]
> 1−

exp

− f (Pi,Cy) ×
(

2 f (Pi,Cx) − 2 f (Pi,Cy)
2 f (Pi,Cy) + f (Pi,Cx)

)2

/4

×
exp

− f (Pi,Cx) ×
(

f (Pi,Cx) − f (Pi,Cy)
2 f (Pi,Cy) + f (Pi,Cx)

)2

/2

 (3.3)

The proof is included in the appendix.
An interesting observation from Theorem 3.2 is that correctness probability in-

26 CHAPTER 3. DISTRIBUTED INDEXING FOR INFORMATION RETRIEVAL

creases exponentially with the value of f (Pi,Cx) − f (Pi,Cy). Thus, even for small
differences, the objective function is able to distinguish the right cluster with high prob-
ability.

3.4.2 Cluster centroid caching

Super peers are responsible for maintaining the Bloom filter for their cluster centroid.
To avoid rebuilding these filters from scratch every time a peer joins or leaves a cluster,
super peers maintain them using counting Bloom filters. When a peer joins a cluster,
it sends its inverted index to the super peer of the cluster. From the inverted index,
the super peer generates the corresponding Bloom filter, and adds it to the cluster’s
counting Bloom filter. When the peer publishing expires, i.e., it is not updated in time,
the super peer subtracts the peer’s Bloom filter from the counting Bloom filter.

Super peers reduce their workload (both network and computational) by caching
the Bloom filter of their cluster to one or more other peers in the network. We refer to
these peers as cache peers. Super peers also register contact details for the cache peers
in the DHT inverted index (see Fig. 3.4). When a peer Pi wants to compare its centroid
with a cluster, it retrieves the cache location of the cluster centroid from the DHT, and
forwards its Bloom filter to the cache peer. The cache peer compares the two filters
and returns the estimated overlap size to peer Pi. The additional network workload
required for maintaining a fresh copy in the cache peer is negligible. In fact, we can
show that the proposed caching is always beneficial for super peers, for reducing both
their network and computational workload, and that the workload of the cache holders
is always less than the workload of the super peers.

To reduce network usage, super peers do not send counting Bloom filters in full
resolution to cache peers. A counting Bloom filter at the super peer has 8 bits per
counter, which allows a maximum of 256 values per counter. To execute the objective
function (Eqn. 3.1), a cache peer only requires a counting filter of two bits per counter
for finding both BFCx and BF{Cx−Pi}. In other words, it only needs to know whether a
counter at the counting filter of the cluster centroid has a value of 0, 1 or > 1. Thus,
super peers reduce the counting Bloom filters to 2-bit counters, which they send to
cache peers. Cache peers can then compute BFCx and BF{Cx−Pi} without requesting
more information from their super peers.

3.4.3 Aggregated Cluster Information Publishing

We enhance the distributed inverted index to enable efficient peer clustering. Apart
from the peer-related information, each super peer additionally publishes aggregated
cluster information. For each of the cluster’s top-λ most frequent terms, the super peer
publishes an extra record to the DHT, which includes the overall cluster frequency, and
the contact details of the peer holding the cluster centroid Bloom filter (the cache peer).
The cluster granularity records are distinguishable from the peer granularity records,
from their values in the Peer and Cache columns (see for example Fig. 3.4).

Publishing of the cluster data requires no additional messages; all cluster scores
are piggy-backed on existing DHT publishing messages. The network overhead for
publishing each cluster score is only 24 bytes. Since only the top-λ highest cluster
scores are published per super peer, with λ typically less than 10, the total additional
network usage per super peer is usually less than 240 bytes per cluster.

3.4. PCIR CLUSTERING-ENHANCED ALGORITHM 27

Keyword Peer PF Max PF Super peer Cache
Football P1 12 17 P4 null

P3 9 21 P4 null
P9 1 19 P9 null
null 7 21 P4 P3

Volley P1 7 17 P4 null
.

Figure 3.4: Logical DHT inverted index for clustering-enhanced PCIR. Changes com-
pared to the basic PCIR index are grey-shaded.

3.4.4 Joining Peers in the Clustering-Enhanced Algorithm
As in the basic algorithm, peers participating in clustering-enhanced PCIR first join the
DHT and then find a super peer to attach to. The two algorithms differ on how peers
select their super peers: peers in basic PCIR randomly select and join a super peer,
whereas peers in clustering-enhanced PCIR select the super peer that maximizes the
term overlap between the peer collection and the cluster collection.

Peers can evaluate the similarity of their collection and the candidate peer cluster’s
collections by using the clustering objective measure (Section 3.4.1). However, real-
world peer collections, as real persons’ interests, are often quite diverse with respect
to the topics of interest. For example, a single peer may collect documents about the
topics of spontaneous nuclear fission, jazz music and Hollywood movies all-together.
Trying to find the best cluster for such multi-thematic peers is difficult, and may lead
to suboptimal clustering.

We address this issue by partitioning each peer to a set of virtual peers with the
use of document clustering. Ideally, each virtual peer focuses on a single subject, so
that efficient clustering around super peers can be performed. Then, each virtual peer
joins the best-matching cluster for its own collection, and posts its contents to the
super peer of that cluster. Note however that while a peer splits its content into several
virtual peers, it participates always as a single node in the DHT, thereby not increasing
the network size. This approach further reduces the average number of distinct terms
per super peer, and therefore also reduces the overall maintenance cost for full-text
indexing.

To cluster the documents and create the virtual peers we use standard K-Means. As
a clustering objective function, K-Means uses Jaccard similarity [90], which reduces
the distinct terms per virtual peer. PCIR does not impose this clustering algorithm,
though; each peer is free to select the actual clustering algorithm, or even a partitioning
hierarchy like MeSH, for determining its virtual peers. In general, better peer partition-
ing leads to better PCIR performance.

After a peer is partitioned to virtual peers, each of the virtual peers finds a suitable
peer cluster to join. Searching for a suitable cluster is based on normal DHT lookups.
First the virtual peer performs a DHT lookup for each of its top-λ most frequent terms
and retrieves all related clusters (Alg. 3.3, lines 7-13). For each related cluster, the
virtual peer computes the partial cosine similarity based on the retrieved scores. Then
(lines 18-22), for the µ clusters with the highest partial cosine similarity, it sends its
Bloom filter to the peer that holds the cluster’s centroid (the cache peer), and retrieves
the expected overlap size, computed using Equation 3.1. Finally, it joins the most
similar cluster based on the retrieved expected overlap sizes. If no suitable cluster is

28 CHAPTER 3. DISTRIBUTED INDEXING FOR INFORMATION RETRIEVAL

found, the virtual peer creates a new cluster and becomes the super peer (lines 14-16).
Execution of the described algorithm requires λ DHT lookups and at most µ peer-

cluster comparisons. In total, finding and joining a cluster incurs a maximum of µ +

λ × log(n) total messages per virtual peer.
After a virtual peer joins a cluster, it periodically submits its inverted index to the

super peer of that cluster. This requires only one message per virtual peer, and is
effectively optimized by compression and delta updating. When a virtual peer sends
its information, the respective super peer updates the local and cached copy of the
cluster centroid to reflect all current information. Similar to the basic algorithm, the
only synchronization required between peers and super peers is a common expiration
period; no global time is required. Query processing and peer churn are handled in the

Algorithm 3.3: Peer periodically joining a peer cluster (clustering-enhanced
PCIR)

Input: myDocuments: Peer documents;
numberOfVPs: Number of virtual peers per peer

// break to virtual peers

1 virtualPeers← KMeans(myDocuments,numberOfVPs);
2 for virtualPeer vp ∈ virtualPeers do
3 vp.BF← ComputeMyBloomFilter(vp.localterms);
4 Map<Cluster,Score> clusterScores;
5 TopTerms < T1,T2, . . .Tλ >← TopSort(vp.localterms, λ);
6 for term t in TopTerms do
7 peer p← DHTLookup(t.hashValue);
8 <Cluster,Score>relevantClusters← p.getClusterList(t);
9 for <c:Cluster,s:Score> in relevantClusters do

10 if clusterScores.contains(c) then
11 clusterScores(c)← clusterScores(c)+s;

12 else
13 clusterScores(c)← s;

14 if clusterScores is empty then
// become a super peer

15 vp.isSuperPeer← true;
16 vp.clusterInvertedIndex← myInvertedIndex;

17 else
18 Sort descending all clusters on their score;
19 for top-µ clusters c do
20 if c.canAcceptMe() then

// the cluster is not overloaded

21 cp← CachePeer(c) ; // peer caching the centroid

// compare my bf to the cluster bf

22 BFSimScore[c]← cp.compare (vp.BF,cp.clusterBF);

23 Sort all clusters on the BFSimScore desc;
24 Join the cluster with the maximum BFSimScore;

3.5. COST ANALYSIS 29

same way as in the basic PCIR system, described in Section 3.3.

3.5 Cost Analysis
We now describe the cost model for the two PCIR approaches. By cost, we refer to the
number of required messages for the total system maintenance. The cost model does
not include the messages for constructing the Chord ring itself, as these are the same
in all approaches.

Throughout this section we use the following notations:

• n: Number of peers

• α: Average number of virtual peers per peer

• nsp: Number of super peers

• Dp: Average number of distinct terms per peer

• Dg: Average number of distinct terms per group/cluster

3.5.1 Flat DHT Publishing
We first assess the cost for publishing all terms in a flat DHT setting. The expected
cost in number of messages per DHT lookup is Clookup = log(n). A peer requires on
average Dp lookups, one for each distinct term, and an additional message per distinct
term to publish the peer score in the DHT. Therefore, for a network of n peers the total
cost of the system is:

C f lat = n × Dp
(
log(n) + 1

)
(3.4)

3.5.2 Basic PCIR
The total cost in the basic approach is the sum of: (a) C f : the cost for finding and
joining a group, and (b) Cu : the cost for the super peers to update the DHT inverted
index. We compute the cost for the case that each peer rejoins the PCIR network at
each iteration, i.e., it does not use delta updating, and at each iteration it needs to find
the super peer from scratch, even if its old super peer is still available. This makes the
cost analysis independent of the churn factor. The following paragraphs provide the
details.

(a) Finding and joining a group. Each peer requires one DHT lookup to find a super
peer. Publishing all the data to the super peer requires one more message. The total
number of messages C f for all peers to find and join a group is C f = n

(
log(n) + 1

)
.

(b) Updating the DHT inverted index. Each super peer requires Dg DHT lookups,
which cause a total of Dg × log(n) messages. In addition, publishing of the peer scores
by the super peer requires Dg additional messages. Since we have nsp super peers, the
cost for all super peers to update the DHT is Cu = nsp × Dg

(
log(n) + 1

)
messages.

The total number of required messages for the basic approach is:

Cbasic = C f + Cu = n × log(n) + n + nsp × Dg
(
log(n) + 1

)
(3.5)

30 CHAPTER 3. DISTRIBUTED INDEXING FOR INFORMATION RETRIEVAL

3.5.3 Clustering-enhanced PCIR
Each peer partitions itself to α virtual peers, and each virtual peer behaves as a single
peer. We therefore compute the cost of each virtual peer individually.

The total cost in the clustering-enhanced approach is the sum of: (a) C f : the cost
for the α × n virtual peers for finding and joining a cluster, and (b) Cu : the cost for the
super peers to update the DHT inverted index. The following paragraphs provide the
details.

(a) Finding and joining a cluster. For finding a cluster, a virtual peer performs a
lookup on its λ most frequent terms in the DHT. This requires at most λ × log(n)
messages per virtual peer. It then detects the top-µ most relevant clusters, sends its
Bloom filter to the peers assigned the responsibility of caching the cluster Bloom filters,
and retrieves the comparison result (the objective function values). This incurs at most
2µ messages per virtual peer. Finally, each virtual peer submits its inverted index to
the most similar super peer in a single message, and the super peer updates the cached
copy of the Bloom filter (if required). The total number of required messages is upper-
bounded by C f ≤ α × n

(
λ × log(n) + 2µ + 2

)
.

(b) Updating the DHT inverted index. Each super peer needs to publish the inverted
index for its cluster in the DHT. This requires Cu = Dg

(
log(n) + 1

)
per super peer, like

in the basic approach.
The total cost for the clustering-enhanced approach is upper bounded by:

Ccluster = C f + Cu (3.6)
≤ n × α

(
λ × log(n) + 2µ + 2

)
+ nsp × Dg

(
log(n) + 1

)
3.5.4 Cost comparison
We now compare the expected cost of PCIR and the flat DHT approach. For this we as-
sume, as is common in IR [20, 71], that the dictionary size of each peer follows Heap’s
law [71]. We denote the length of a document, i.e., the number of words it consists
of, as len(d), and the length of a document collection len(DC(p)) =

∑
d∈DC(p) len(d).

According to Heap’s law, the number of new terms added to the set of all terms by a
new document decreases for each additional document. For the document collection
DC(p) of peer p, the number of distinct terms is Dp ≈ k × len(DC(p))β, where k and
β are parameters dependent of the language and text type.

Theorem 3.3. Given a P2P network of n peers structured over a DHT, with dictionary
size following Heap’s law, with parameters k and β. Let C f lat denote the number of
messages required by flat DHT indexing and Cbasic the number of messages required
by basic PCIR. The expected ratio of Cbasic/C f lat is E(Cbasic/C f lat) ≈

(
nsp/n

)1−β
.

The proof is included in the appendix.
From Theorem 3.3 we see that the expected ratio of Cbasic/C f lat is dependent on: (a)

the characteristic β value for the collection, and, (b) the ratio of super peers to peers.
Typical values for β are in the range of 0.4 < β < 0.6, so the exponent is typically
between 0.4 and 0.6. When the number of super peers decreases, the ratio gets higher,
and the cost of the PCIR basic approach is reduced.

3.6. EXPERIMENTAL EVALUATION 31

On the other hand, we do not want to overload the super peers. We can determine
the number of required peers for a given average load, i.e., the number of terms loadSP

the super peer needs to publish. From Heap’s law it follows that E
(

Dg

Dp

)
= (n/nsp)β (see

derivation of Eqn. A.4, in the proof of Theorem 3.3). To get loadSP expected terms per
super peer, we set Dg = loadSP. This gives us loadSP = Dp

(
n/nsp

)β
. By solving the

equation for nsp, we find the number of required super peers such that their average

load is loadSP: nsp = n
(
Dp/loadSP

) 1
β .

Evaluation of the above equations requires knowledge of Dp and of the collection’s
characteristic β value. To estimate these values in real setups, we use sampling. Our
experimental evaluation presented in Section 3.6 shows that sampling of a very small
number of peers (0.3% of the total peers) is sufficient for estimating these values and
for getting accurate cost estimations.

The expected number of messages per super peer can also be computed. Since
each super peer needs to publish Dg terms, it requires 2Dg messages for initiating the
DHT lookup and for publishing the terms. By participating in the DHT, a super peer
is also required to route some DHT messages generated from other super peers while
publishing their collections. The total number of these messages is ≈ nsp×Dg× log(n).
Each super peer routes on average nsp × Dg × log(n)/n of these messages. In addition,
each super peer needs to receive the updates from all the peers belonging to its group,
which cause an additional n/nsp messages. The total number of messages per super
peer is 2Dg + nsp × Dg × log(n)/n + n/nsp.

With respect to the clustering-enhanced approach, the cost ratio is:

Ccluster

C f lat
≈

nsp × Dg
(
log(n) + 1

)
n × Dp

(
log(n) + 1

) (3.7)

Equation 3.7 cannot be simplified further, as we did for the ratio of Cbasic/C f lat. The
analysis for the basic PCIR approach is based on the random assignment of peers to
groups. This assumption is not valid for the clustering-enhanced approach, where each
peer decides on the cluster to join based on its collection. Thus, the characteristic
value of β for each cluster collection at the clustering-enhanced PCIR is significantly
different than the value of β for a single peer document collection.

3.6 Experimental Evaluation
In addition to the theoretical cost analysis, we also conducted a large-scale experimen-
tal evaluation of PCIR. The objective of the experiments was to evaluate the two PCIR
variants on real-world datasets with respect to efficiency, and to compare them with
the current state of the art approaches for DHT publishing. The chosen experimental
configurations cover a wide range of application scenarios, and thoroughly investigate
the suitability of the PCIR variants for different system and network configurations.

3.6.1 Experimental setup and evaluation criteria
The efficiency of the two PCIR algorithms was experimentally evaluated using real-
world document collections. In particular, we simulated P2P networks of up to 5000
peers running the two PCIR variants, and measured the total network cost for each
algorithm to maintain the DHT inverted index. As a baseline we have used the flat DHT

32 CHAPTER 3. DISTRIBUTED INDEXING FOR INFORMATION RETRIEVAL

algorithm, according to which every peer publishes its own inverted index in the DHT.
For the simulation we considered networks of size N in the range 1000 ≤ N ≤ 5000.

We have repeated all experimental setups with and without churn. For the scenarios
without churn, the peers and their contents remained static throughout the experiment.
For the scenarios with churn, at each iteration we selected randomly up to 20% of the
peers and replaced them with an equal number of new peers, carrying new documents.
To make the experimental results independent of the churn factor, we imposed the
following constraints at the PCIR peers: (a) peers and super peers did not use delta
updating, and, (b) peers were forced to find and rejoin a peer group or a peer cluster at
every iteration. Under these constraints, churn has no effect on the results. The results
included in this section correspond to the configuration with 20% churn.

The main body of experiments was performed using peer granularity indexing,
which is the most widely used. Furthermore, to confirm the general applicability of
PCIR for maintaining different types of metadata in the DHT and enabling different in-
formation retrieval techniques, we use PCIR to support three additional IR techniques
over PCIR: (a) document granularity indexing [141], also employed in other popular
P2P systems, e.g., ALVIS [103] (b) sk-STAT [117], which uses peer granularity index-
ing with additional meta-data, (c) mk-STAT [117], a query-driven indexing enhance-
ment of sk-STAT, which includes in the inverted index also some frequently-queried
multi-term keys.

For the PCIR approach we varied the following parameters:

• Top-λ terms, top-µ super peers: We repeated the experiments for λ = [1, 2, . . . , 20]
and µ = [1, 2, . . . , 20].

• Upper bound for super peer workload: We experimented with upper bounds
ranging from 5000 terms to 40000 terms per super peer.

For clustering-enhanced PCIR, we set the Bloom filter length and number of hash func-
tions so that the Bloom filter error probability never exceeded 10%. In particular, we
found the optimal Bloom filter length and number of hash functions for each config-
uration by assuming that the number of objects in the Bloom filters is equal to the
upper bound for the super peer workload (5000 to 40000). We also ensured that for the
same upper bound, both basic and clustering-enhanced PCIR create the same number
of groups/clusters so that super peers in the two approaches represent the same number
of peers on average. Since the number of clusters in the clustering-enhanced approach
is dynamically determined, at each repetition we first executed the clustering-enhanced
setup and then initialized basic PCIR with the same number of groups.

In the clustering-enhanced PCIR experiments, all peers partitioned their collection
to three virtual peers by running K-Means. However, it is not required by the algorithm
that all peers are partitioned to an equal number of virtual peers. The number of doc-
ument categories in real-life peers is expected to vary, and the user, or the partitioning
algorithm itself, may decide on a different number of virtual peers.

Construction of peer collections. All experiments were conducted on two datasets,
the Reuters Corpus Volume I (RCV1) [93] and the MEDLINE collection [112]. The
results were very similar for the two datasets, so we present only the details for RCV1.
RCV1 is a publicly available standard dataset in IR consisting of 802,253 newswire
articles preprocessed using stemming and stopword filtering. For the evaluation we
used a subset of 160,000 randomly selected articles.

3.6. EXPERIMENTAL EVALUATION 33

Real-life peer collections, similar to real persons’ interests, are often multi-thematic.
Some users may be well-focused, having very specific documents of only one topic.
Other users may focus on a couple of non-related topics, and yet others may just col-
lect lots of diverse documents. We simulated all such users by using the classification
which accompanies the document collection. The documents used in the experiments
belonged to a total of 148 categories. Peers were creating their collections by: (a) ran-
domly selecting three random categories, and, (b) randomly selecting 20 documents for
each of these categories. At the end, each peer had exactly 60 distinct documents. Since
the RCV1 classification had categories of different specificities, some peers ended up
having many documents of diverse topics, while other peers were focused on three or
less very specific topics and had very similar documents overall.

Evaluation criteria. We compare the index maintenance cost of basic and clustering-
enhanced PCIR with the cost of the flat DHT approach, for all publishing strategies
(peer and document granularity, sk-STAT, and mk-STAT). We measure the number of
messages as well as the total data transfer volume caused by each algorithm as follows:

• Number of messages: We count all messages exchanged in the system, including
all DHT and super peer related messages.

• Transfer volume: We measure total transfer volume. Apart from the message
body (the actual data), we include a network header overhead of 64 bytes for
each transaction (theoretical minimum for TCP/IP network transaction). GZIP
compression is applied to the message body whenever this reduces the message
size.

In the following sections we report average results over 6 repetitions. Each exe-
cution was let to run for 4 iterations (4 DHT periodic submissions), until the cost per
iteration stabilized. Section 3.6.2 focuses on the experiments with peer granularity
indexing, and Section 3.6.3 presents the results corresponding to the three additional
publishing strategies.

3.6.2 Results for peer granularity indexing
Figures 3.5(a) and (b) plot the number of messages and transfer volume required by
each approach for different network sizes. The X axis corresponds to the λ value and
Y axis shows the network resources required by each approach, as a percentage of the
cost of flat DHT submission. Notice that the flat DHT submission cost is constant,
since it is independent of λ. Basic PCIR cost is also not directly relevant to λ, but
it is related indirectly via the number of groups. As explained earlier, to get a fair
comparison between the two PCIR variants, the number of groups at basic PCIR was
equal to the number of clusters at clustering-enhanced PCIR, which depends on λ.

For clarity we include only results for 1000, 3000, and 5000 peers. The results are
for an upper bound of 40000 terms per super peer, which is however never reached in
these experiments. Hence, the results for the experiment without an upper bound are
the same. Parameter λ takes values from 1 to 20, and µ is set to one. Because of the
high upper bound of terms per cluster in this experiment, there is never more than one
candidate cluster for a joining peer. Thus, increasing µ to more than one has no effect
in the results for this experiment.

Our first observation is that network savings grow with network size, for both basic
and clustering-enhanced PCIR. For example, for 1000 peers and λ = 1, the network

34 CHAPTER 3. DISTRIBUTED INDEXING FOR INFORMATION RETRIEVAL

 0

 10

 20

 30

 40

 50

 60

 70

 2 4 6 8 10 12 14 16 18 20

M
es

sa
ge

s
(%

fla
t D

H
T

)

λ value

 0

 10

 20

 30

 40

 50

 60

 70

 2 4 6 8 10 12 14 16 18 20

T
ra

ns
fe

r
V

ol
um

e
(%

fla
t D

H
T

)

λ value

 0

 10

 20

 30

 40

 50

 60

 70

 2 4 6 8 10 12 14 16 18 20

M
es

sa
ge

s
(%

 o
f f

la
t D

H
T

)

λ value

Basic: 1000 peers
Clustering: 1000 peers

3000 peers
3000 peers

5000 peers
5000 peers

Figure 3.5: Number of messages and transfer volume (percentage of flat DHT) for
PCIR with upper bound=40000 terms per super peer.

cost of basic and clustering-enhanced PCIR compared to the flat DHT approach is 70%
and 40% respectively, whereas the ratios for 5000 peers are around 50% and 20%.

For λ ≤ 10, clustering-enhanced PCIR is significantly better than basic PCIR. Its
optimal performance is reached at λ ≈ 8. Very low λ values (λ ≤ 3) essentially limit the
effectiveness of peer clustering, resulting in the creation of some small peer clusters.
90% of the optimal performance of clustering-enhanced PCIR is already obtained with
λ = 5, whereas for 6 ≤ λ ≤ 10, its performance remains almost unchanged. For
λ > 10, the two PCIR variants have comparable performance. For very high λ, the
overall number of messages and transfer volume at clustering-enhanced PCIR slightly
increases because of the increase in the cost of peers to find and join their super peers.

Finding the optimal λ and µ values. As described in Section 3.5, the performance of
PCIR, and thereby the λ and µ values for which clustering-enhanced PCIR minimizes
the network cost, depend on the network size, the upper bound, and the collection. An
online optimization similar to [174] can be used for optimizing the values and mini-
mizing the cost. However, our experiments show that in practice this is not necessary,
since varying λ between 5 and 10 has only a small effects on performance, and increas-
ing µ beyond 2 is not beneficial. In all experiments, a setup with λ = 6 and µ = 2
achieved at least 90% of the savings obtained by the optimal configuration. Especially
for the larger networks (i.e., 3000 peers and more), the configuration with λ = 6 and
µ = 2 achieved more than 95% of the optimal performance. The difference between
the optimal cost and the cost of PCIR with λ = 6 and µ = 2 also decreases with the
increase of network size.

From these results we conclude that online optimization for the values of λ and µ
is not necessary, and constant values of λ = 6 and µ = 2 give near optimal results.
Therefore, the rest of the results presented in this section are for λ = 6 and µ = 2.

Varying the maximum terms per super peer. In practice, each super peer sets its
upper bound itself, based on its network and computational capacity. In our experi-
ments we assume that all super peers have the same network resources and set their
upper bound to the same value.

3.6. EXPERIMENTAL EVALUATION 35

 0

 10

 20

 30

 40

 50

 10000 20000 30000 40000

M
es

sa
ge

s
(%

fla
t D

H
T

)

Maximum terms per super-peer

 0

 10

 20

 30

 40

 50

 10000 20000 30000 40000

T
ra

ns
fe

r
V

ol
um

e
(%

fla
t D

H
T

)

Maximum terms per super-peer

 0

 10

 20

 30

 40

 50

 60

 70

 2 4 6 8 10 12 14 16 18 20

M
es

sa
ge

s
(%

 o
f f

la
t D

H
T

)

λ value

Basic: 1000 peers
Clustering: 1000 peers

3000 peers
3000 peers

5000 peers
5000 peers

Figure 3.6: Number of messages and transfer volume (percentage of flat DHT) for
PCIR: λ = 6, µ = 2 and varying upper bound.

Figures 3.6(a) and (b) present the total maintenance cost (both super peers and stan-
dard peers) for different upper bound values, with λ = 6 and µ = 2. For an upper bound
of 5000 terms, clustering-enhanced PCIR has the same performance as basic PCIR.
This is expected since such a low upper bound is reached already by the document col-
lections of six peers, on average. Therefore, peer clustering cannot effectively increase
the term overlap in this case. With larger upper bounds, term overlap in the clusters
increases, and less clusters are required overall. Increasing the upper bound beyond
20000 terms further reduces the total cost but at a slower rate.

It is also interesting to see the ratio between physical peers and super peers for the
case of clustering-enhanced PCIR, and to investigate how this corresponds to the upper
bound per super peer. Table 3.2 includes sample values for the network of 5000 peers,
with different upper bounds. As expected, increasing the upper bound clearly results to
less super peers. However, at some point, i.e., after 20000 terms, the number of super
peers does not change significantly. This shows that it is infrequent that the super peers
acquire a dictionary larger than 20000 terms, and it happens for two reasons. First, the
dictionary size per super peer follows the Heap’s law (cf. Section 3.5), and therefore
it grows slowly with the number of peers and documents in the cluster. Second, the
employed objective function used during peer clustering assigns the virtual peers to

Upper bound #Super peers Ratio
5000 844 0.168
10000 278 0.055
15000 156 0.031
20000 118 0.023
25000 104 0.020
30000 98 0.019
35000 96 0.019
40000 93 0.018

Table 3.2: Number of super peers, and ratio of super peers:total physical peers for
different upper bounds, for a network of 5000 peers

36 CHAPTER 3. DISTRIBUTED INDEXING FOR INFORMATION RETRIEVAL

20000

30000

40000

50000

Flat DHT PCIR!Clustering: SP_Maint PCIR!Clustering: SP_DHT

PCIR!Basic: SP_Maint PCIR!Basic: SP_DHT

0

10000

20000

30000

40000

50000

5000 10000 15000 20000 25000 30000 35000 40000

Flat DHT PCIR!Clustering: SP_Maint PCIR!Clustering: SP_DHT

PCIR!Basic: SP_Maint PCIR!Basic: SP_DHT

2000

2500

3000

3500

4000

4500

5000

Flat DHT PCIR!Clustering: SP_Maint PCIR!Clustering: SP_DHT

PCIR!Basic: SP_Maint PCIR!Basic: SP_DHT

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5000 10000 15000 20000 25000 30000 35000 40000

Flat DHT PCIR!Clustering: SP_Maint PCIR!Clustering: SP_DHT

PCIR!Basic: SP_Maint PCIR!Basic: SP_DHT

Figure 3.7: (a) Messages, (b) Transfer volume (Kbytes), for PCIR super peers, with
λ = 6, µ = 2, and for varying upper bound.

super peers such that the term overlap is increased. Therefore, each peer is expected
to contribute only a small number of new terms in its super peer. As such, the upper
bound per super peer does not need to be large for PCIR to be efficient.

Super peers workload. It is also important to ensure that super peers do not con-
stitute a bottleneck for PCIR. We therefore analyzed the network workload of super
peers in PCIR and compared it to the network load of regular peers, as well as to the
load of the peers participating in flat DHT indexing. For clustering-enhanced PCIR,
we measure the total workload of the physical peer which hosts the super peer and
two regular virtual peers. For the basic PCIR approach, since the physical peers host
exactly one virtual peer (super peer or regular peer), the workload of the physical peer
includes only the workload of the super peer. To get a clearer insight on the workload
distribution, for both PCIR variants we distinguish between two types of network load:

SPMaint: Workload that is generated because of the role of the peer as super peer. This
includes the cost of maintaining the peer groups/clusters, and of publishing the
peer scores for all group/cluster terms.

SPDHT: Workload accounted to the participation of the super peer in the DHT, i.e., for
routing DHT lookups which are issued from other peers.

Figures 3.7 (a) and (b) display the network workload of super peers at the largest
setup with 5000 peers. The results are for λ = 6 and µ = 2 (the configuration which
gives at least 90% of the optimal performance for all setups). The X axis shows the
upper bound of terms per super peer and the Y axis corresponds to the average network
workload per super peer. For reference, the figure also includes the load per physical
peer in the flat DHT approach which maintains the same DHT index.

We see that the average network workload of super peers of both PCIR variants is
less than the respective workload of regular peers in the flat DHT indexing approach.
Concerning number of messages, super peers at both PCIR variants have substantially
less workload compared to regular peers in flat DHT indexing. With respect to transfer
volume, super peers of basic PCIR have comparable cost with the physical peers at flat
DHT indexing, whereas super peers of clustering-enhanced PCIR still have substan-
tially less transfer volume compared to physical peers at flat DHT indexing.

Interestingly, for the case of clustering-enhanced PCIR, the number of messages per
super peer decreases with the upper-bound per super peer, even though super peers are
burdened with indexing more terms. This happens because with higher upper bounds,

3.6. EXPERIMENTAL EVALUATION 37

peer clustering achieves higher term overlap in the super peers. With higher term over-
lap, fewer DHT lookups are created for indexing all peers, and fewer DHT lookup
messages need to be routed over the DHT. Therefore, the number of messages is sub-
stantially reduced for all participating peers (both regular peers and super peers). The
network savings per super peer attributed to this reduction (reduction in cost SPDHT)
are more than the additional cost imposed at the super peer because of the higher upper
bound (increase in cost SPMaint). As a result, the total number of messages per super
peer is reduced with an increase of the upper bound.

PCIR super peers also incur less transfer volume compared to the flat DHT peers,
even for the maximum upper bound of 40000 terms per super peer. For low upper
bound values – less than 20000 terms – super peers in basic and clustering-enhanced
PCIR have comparable transfer volume. However, for higher upper bounds – more than
25000 terms – peer clustering becomes more effective, and super peers in clustering-
enhanced PCIR end up with significantly less transfer volume compared to super peers
in basic PCIR. We also see that, in contrast to number of messages, transfer volume per
super peer increases when the upper bound is increased. This is expected because for a
higher upper bound, more virtual peers are allowed to join each super peer. Although
each virtual peer contributes only a small number of additional messages for its super
peer, it still needs to send its inverted index to its super peer, and this increases the
transfer volume of the super peer. However, as explained in Section 3.3, each super peer
can choose the upper bound for its workload independently so that its total workload
does not exceed its capabilities.

Also notice that for upper bounds higher than 30000 terms, the cost related to the
super peer role (cost SPMaint) does not change significantly, meaning that cluster sizes
of most super peers never reach the higher upper bounds. This observation is also con-
firmed from the results in Table 3.2, which show that by increasing the upper bound to
more than 30000 terms, only 5 clusters are affected. According to clustering-enhanced
PCIR, when peers are not sufficiently similar to be clustered together, new clusters are
created, so that centroids of existing clusters do not shift. Therefore, only super peers
that have a centroid which is very similar to many peer centroids will notice an increase
in their workload by increasing the upper bound.

As already noted, to keep the results independent of peer collection updates, peers
did not use delta updating in our experiments. In real-world deployments, virtual peers
would not be required to send their whole inverted index at their super peers at each
step. They could instead update the inverted indexes at their super peers by sending
only their changes. This would significantly decrease the overall network load, and
especially the transfer volume of the super peers. Note that delta updating is not bene-
ficial for flat DHT publishing, where the messages are generally very small.

Cost estimation accuracy. The experimental results also support the cost equations
presented in Section 3.5. Accuracy of the estimations was confirmed as follows. We
first incrementally sampled a small number of peers (0.3% of the total peers), and
counted the distinct and total terms for each sample. By applying the Gauss-Newton
method for nonlinear fitting we estimated the value of β for the text collection (0.59
for MEDLINE and 0.55 for the RCV1 collection). Then we ran the flat DHT and
the basic PCIR approach for all network sizes and measured the number of messages
required by the two approaches. We also computed the expected cost ratio Cbasic/C f lat,
based on Theorem 3.3. The cost ratio computed experimentally was very close to the
expected cost ratio. In particular, the maximum difference between the expected and

38 CHAPTER 3. DISTRIBUTED INDEXING FOR INFORMATION RETRIEVAL

the experimentally derived value was 7%, and the average difference was around 4%.
Especially regarding networks larger than 3000 peers, average difference was reduced
to less than 3% because of the larger sample size for estimating β. Nonetheless, even
for the largest network of 5000 peers, sampling was still inexpensive as it involved only
15 peers.

Summarizing, the experimental results demonstrate that both PCIR approaches are
significantly more efficient than flat DHT indexing. For large network sizes, the cost
for generating exactly the same inverted index with cluster-based PCIR is an order of
magnitude less than the corresponding cost with flat DHT indexing. Network workload
per super peer is also less than network workload of regular peers in the flat DHT
indexing approach.

3.6.3 Results for additional publishing strategies
To confirm the general applicability of PCIR for optimizing different indexing strate-
gies, we also implemented three additional index publishing strategies over PCIR. The
first one constructs document granularity inverted indexes, for increased retrieval qual-
ity [141]. Variants of document granularity indexing are used in well-known P2P sys-
tems, e.g., ALVIS [103], and therefore it is important to show that PCIR can support
these systems. The other two approaches are sk-STAT and mk-STAT [117]. Both ap-
proaches employ peer granularity indexes, similar to Minerva [16]. To address the
difficulty of collecting document granularity statistics to improve the IR quality, sk-
STAT enhances the DHT postings by including all document identifiers corresponding
to each term (e.g., their file names), represented as hash sketches. mk-STAT, which is
built on top of sk-STAT, additionally employs query logs to identify and index in the
DHT interesting term combinations, which are used for answering multi-term queries
efficiently.

For this experiment, we have implemented the three publishing strategies as de-
scribed in the original papers, and simulated them in our experimental setup. Each
approach was simulated in two variants: (a) where each peer publishes its own infor-
mation (i.e., flat DHT indexing), as described in the corresponding original papers, and,
(b) where the PCIR layer is additionally applied to reduce index maintenance cost. mk-
STAT requires a query log to identify frequent term combinations. We have used the
AOL query log to simulate queries, and configured the algorithm to consider the 25%
most frequent queries as candidates for multi-term indexing. The conditional probabil-
ity threshold for indexing a multi-term was set to 0.1, as proposed in [117]. The PCIR
layer was configured with λ = 6 and µ = 2.

Figure 3.8 presents the transfer volume for the three publishing strategies, for dif-
ferent upper bounds for the super peers. The presented results are for the largest net-
work with 5000 peers. For each publishing strategy, the transfer volume of PCIR is
presented as a percentage of the required transfer volume for flat DHT indexing for
the particular publishing strategy. We see that PCIR offers substantial performance
improvements with respect to the three alternative publishing strategies. In fact, the
improvement is comparable to the peer granularity strategy, discussed in Section 3.6.2.
The clustering-enhanced PCIR variant is again significantly better than its basic coun-
terpart. Furthermore, similar to the results for the peer granularity strategy, PCIR per-
formance increases with the super peers upper bound, and upper bounds higher than
30000 terms yield an order of magnitude lower cost compared to the baselines.

The publishing strategy does not influence the number of messages. Hence, the
improvement concerning number of messages required by the three alternative pub-

3.7. SUMMARY 39

 10

 20

 30

 40

 50

 60

 10000 20000 30000 40000

T
ra

ns
fe

r
V

ol
um

e
(%

fla
t D

H
T

)

Maximum terms per super-peer

Doc. granularity: Basic
mk-STAT: Basic
sk-STAT: Basic

Clustering
Clustering
Clustering

Figure 3.8: Transfer volume for different publishing strategies with PCIR

lishing strategies is equal to the peer granularity strategy, as reported in Section 3.6.2.
This also holds for mk-STAT, even though it maintains additional multi-term keys in
the DHT, because the additional information is attached to existing single-term main-
tenance messages.

Summarizing, the experimental results with additional publishing strategies con-
firm that PCIR is equally effective when used for document granularity publishing,
query-driven publishing (mk-STAT), and sk-STAT. Independent of the publishing strat-
egy, clustering-enhanced PCIR imposes an order of magnitude less messages and trans-
fer volume in the participating peers compared to the standard approach where each
peer publishes the same information for itself.

3.7 Summary
In this chapter we have presented PCIR, a hybrid DHT/super peer system that signif-
icantly reduces the network cost for maintaining a complete inverted index. Because
individually publishing all terms of each peer’s vocabulary to the DHT is too expensive,
we group peers around super peers that are responsible for aggregating all information
about their group’s collections and publishing it to the DHT. The performance im-
provement is achieved by exploiting the term overlap at the super peers to substantially
reduce expensive DHT lookups.

The two variants of the algorithm differ in the method used for constructing the
peer groups: the basic algorithm groups peers randomly around super peers, whereas
the clustering-enhanced algorithm first partitions peers into thematically focused vir-
tual peers that can then be clustered more effectively, to foster group homogeneity.
Whether creating random groups of peers or using a clustering algorithm for grouping,
a significant term overlap within each group is observed, allowing for network sav-
ings of one order of magnitude. Compared to the basic algorithm, clustering-enhanced

40 CHAPTER 3. DISTRIBUTED INDEXING FOR INFORMATION RETRIEVAL

PCIR further increases the term overlap in each group, and thus requires even less
DHT lookups than the basic approach. Both approaches reduce the DHT maintenance
network cost without having a negative influence on query execution, regarding both
precision/recall, as well as performance of the original DHT model.

Experiments with real-world datasets demonstrate performance improvements of
an order of magnitude over the conventional flat DHT approach, for four different
publishing strategies. A theoretical analysis explains the benefits of our approach
and supports our experimental results. Furthermore, super peers in PCIR do not get
overloaded; the maximum workload of the super peers can be set by the super peers
themselves. Experiments without upper bounds show that super peers still have less
workload compared to the workload of regular peers in conventional DHT publishing.

Chapter 4

Distributed Indexing for Near
Duplicate Detection

Efficiently and effectively searching for similar files over large file repositories is an
active research topic, and was extended for file types beyond text, e.g., video [187],
audio [180], and images [78]. This problem is generally known as Near Duplicate
Detection (NDD). Algorithms for NDD have various applications in large file repos-
itories such as reduction of storage requirements [188], and detection of copyrighted
multimedia content [177, 171].

Near duplicates are frequently created in P2P networks during normal file sharing
operations, an example being different recordings of the same movie that may exist
concurrently in a P2P file sharing network (for example, see Fig. 4.1). Minor differ-
ences between recordings may occur due to advertisements, lossy compression, dif-
ferent resolutions, or different recording programs. NDD can be used to find multiple
sources/peers for downloading the same resource in parallel, to find the same video or
audio resource at higher resolution, or to filter out near duplicates from the query results
in order to present only novel results to a peer. P2P networks that focus on Multimedia
Information Retrieval, such as SAPIR (www.sapir.eu) and VICTORY (www.victory-
eu.org), also benefit from identifying near duplicates for enabling content-based re-
trieval of videos and audio files [51]. However, NDD methods implemented in these
systems cannot scale to large P2P networks, since they assume a central repository, and
are based on costly, pair-wise comparisons to detect the near duplicates.

titanic-part1.avi

700 Mbytes, 98 min

titanic-part2.avi

690 Mbytes, 92 min

titanic.mpeg

1.4Gbytes, 198 min

Legend: Film Advertisements

titanic.avi

1.4Gbytes, 198 min

N
e

a
r

d
u

p
lic

a
te

s
V

id
e

o

lin
k
a

g
e

Figure 4.1: Near duplicates and video linkage.

41

42 CHAPTER 4. DISTRIBUTED INDEXING FOR NDD

In addition to centralized NDD systems, P2P and distributed NDD systems were
also recently proposed, e.g., [14, 68, 51, 180]. Most of these employ a family of algo-
rithms called Locality Sensitive Hashing (LSH) [39, 65] to map resources to bit strings,
and build an index suitable for efficiently answering K-Nearest Neighbor (KNN) queries.
NDD queries can be reduced to incremental KNN queries, e.g., keep querying for near-
est neighbors until the difference threshold for near duplicates is surpassed. Although
these approaches achieve good results in terms of effectiveness, they can be substan-
tially improved in terms of efficiency by considering network and collection charac-
teristics. Improving the performance of these approaches is the main objective of the
work presented in this chapter.

In sharp contrast to previous approaches, we address NDD directly instead of con-
sidering it as a special case of KNN. This allows us to optimally choose the tuning
parameters of LSH which affect the network cost and the probabilistic guarantees for
the detection of the near duplicates. By tuning these parameters, we minimize the net-
work cost for LSH, and we enable querying with constant cost and with probabilistic
guarantees, both of which are not possible with existing P2P algorithms. Our approach,
called POND, short for Peer-to-peer Optimized Near Duplicate detection, is both effi-
cient and effective, and applicable to large P2P networks and to a variety of file types.
In our experiments, the optimization of POND results in a cost reduction of several
orders of magnitude.

In addition, we extend POND to cover a particular requirement of modern file
sharing P2P networks: to link together all videos that have large near duplicate seg-
ments (e.g., “titanic.mpeg”, with “titanic-part1.avi” and “titanic-part2.avi” in Fig. 4.1),
a problem known as Video Linkage (VL) [79]. This video splitting occurs frequently,
e.g., when burning large videos to CDs. By linking together these videos, we can
parallelize further the downloading of large video files, and enable recovery of the
downloading process even if all sources of the original video file are disconnected.

The rest of the chapter is organized as follows: We discuss existing work for NDD
in Section 4.1. In Section 4.2 we present the preliminaries for near duplicate detection.
We describe the P2P infrastructure used by POND in Section 4.3. Our main contri-
bution, the adaptation of POND to the network and collection characteristics for min-
imizing the network usage under probabilistic guarantees, is presented in Section 4.4.
Section 4.5 presents a large-scale experimental evaluation of POND, using a real-world
collection of over 200 Gbytes, consisting of videos, audio, and text. We conclude in
Section 4.6.

4.1 Related Work
Locality Sensitive Hashing (LSH) [65] has recently received substantial attention in
the context of the K-Nearest Neighbor problem, as well as for near duplicate detection.
The objective of LSH is to map similar elements to the same hash value with high
probability, and dissimilar elements to different hash values, again with high probabil-
ity (using distance thresholds for both “high” and “low” similarity). Bawa et al. [14]
propose LSH Forest, which allows the distance thresholds to be set per query, and show
how it can be deployed in a P2P network. However, LSH Forest does not optimize net-
work usage for NDD queries. Since its objective is to enable the thresholds to be set per
query, it cannot tune certain parameters of LSH (more specifically, number of hash ta-
bles l and number of hash functions k described in Section 4.2) which, as we will show
later, are crucial for minimizing the total network cost. In fact, the cost of indexing

4.2. PREREQUISITES 43

each resource in LSH Forest is O(l × k), which is even higher than the corresponding
cost of standard LSH [65]. Furthermore, for query execution, the number of peers that
need to be visited is not constant as in the standard LSH, but varies depending on the
query parameters. In this work we have a different focus than LSH Forest. For the
applications we consider, the distance thresholds do not change often; the thresholds
may still change at run-time, but not necessarily per query. Having fixed thresholds
enables us to select the values for k and l that minimize the network cost, and to save a
substantial amount of network resources.

Similar to LSH Forest, several other P2P approaches address the NDD problem
by employing a KNN infrastructure. In a recent work [68], Haghani et al. presented
a P2P system based on LSH, and in particular on p-stable hashing. Their approach
significantly reduces the cost compared to LSH Forest, as it requires only l indexes per
resource. However, similar to LSH Forest, their work also focuses on KNN queries. As
such, even though it can execute near duplicate queries by reducing them to incremental
KNN queries, it does not optimize the LSH configuration for minimizing the network
cost. Due to this lack of optimization, the cost for answering a NDD query is not
constant. By restricting the problem domain to NDD queries only, the analysis and
optimization presented in our work could also be applied to their system for optimizing
the usage of network resources.

Dong et al. [44] focus on deriving analytically the optimal configuration for LSH
with the objective of minimizing the computational time and maximizing the recall.
They show significant performance increase compared to an unoptimized LSH. Unfor-
tunately their approach only considers centralized scenarios for which the expensive
resource is the computation time. As such, they do not consider the network usage
as a resource, which is important for high-churn P2P networks like the ones we are
interested in. Therefore, their results are not applicable to P2P.

There also exist methods on NDD and KNN for P2P systems that are not based on
LSH. Falchi et al. [51] present DINN, an algorithm for incremental nearest neighbor
in P2P based on priority queues, which however requires an efficient P2P range query,
or an incremental P2P NDD implementation. Otherwise, DINN needs to route each
query to almost all peers, and then cannot scale. Yang [180] proposes a P2P version of
MACSIS, an algorithm for detecting near duplicate audio files. The algorithm is built
over unstructured P2P networks, and uses gossiping for query execution; therefore, it
cannot scale to more than a few hundred peers.

To the best of our knowledge, this work is the first to propose a scalable P2P algo-
rithm that adapts to the peer contents, the network size, and the desired probabilistic
guarantees for addressing the NDD problem with near-optimal network cost, without
overloading the participating peers.

4.2 Prerequisites

In this section we provide an overview of near duplicate detection. To this end, we
first formalize the objectives of near duplicate detection and video linkage. We then
discuss representations for different multimedia resources, and finally describe Locality
Sensitive Hashing (LSH) which forms the technical basis of POND.

44 CHAPTER 4. DISTRIBUTED INDEXING FOR NDD

4.2.1 Problem Definition
Each resource x ∈ X has a type, e.g., audio, video, text. Resources of the same type
can have different formats, e.g., an audio resource can be mp3, wav, etc. A resource
representation R(x) is a normalized format-independent representation of resource x. In
this work, we represent resources as sets of strings. The transformation which produces
R(x) from x depends on the specific resource type. We will summarize different suitable
representations and transformations for video, audio, and text files in Section 4.2.2.

Definition 4.1 (Similarity function). Given two resources x1 and x2 of the same type
T ∈ {audio, video, text}, the similarity function Sim(R(x1),R(x2)) computes the similar-
ity of the two resources based on their resource representations. The similarity values
are in the range [0, 1].

A similarity value of 0 means that the resources are completely dissimilar, while a
similarity value of 1 denotes identical resources. In this work we measure similarity us-
ing Jaccard similarity, which is the standard similarity function for sets:

Sim(R(x1),R(x2)) :=
|R(x1) ∩ R(x2)|
|R(x1) ∪ R(x2)|

.

Definition 4.2 (Near duplicate resources). Given resources x1 and x2 of type T . The
resources are near duplicates under similarity threshold t if they have
Sim(R(x1),R(x2)) ≥ t.

Threshold t is in the range of [0 . . . 1]. Its value depends on the application scenario.
For instance, typical values for text are between 0.8 and 0.95 [173]. For our application
scenarios, e.g., parallelizing downloads, or locating multimedia resources of different
resolutions, this threshold is a fairly stable system property for each resource type.
For example, downloading a video in parallel from two sources works only if the two
sources have a similarity higher than a high threshold, otherwise merging of the two
sources will produce unwanted artifacts in the video. The threshold can be determined
a priori, according to the merging algorithm and the acceptable quality loss.

As explained already, it is often the case that videos have large overlapping seg-
ments, e.g., large videos may be partitioned into two or more files for easy storage.
The smaller parts may additionally undergo post-processing, like compression or re-
encoding with a different encoder. We want to be able to detect this relation between
the partitioned files and the original file, and link all resources together.

Definition 4.3 (Video Linkage). Given video resources x1 and x2, the videos are linked
if there exist non-empty segments of x1 and x2, denoted as Segment(x1) and Segment(x2),
such that Segment(x1) and Segment(x2) are near duplicates.

In this work we use ’part’ to denote the physical partitioning of a video into two or
more files (e.g.,titanic-part1.avi and titanic-part2.avi in Figure 4.1). In contrast, term
’segment’ refers to a conceptual splitting of a video into smaller segments.

4.2.2 Resource Representations for NDD
POND can operate on different resource representations and similarity functions for
each resource type. To keep the algorithm’s description independent of the resource

4.2. PREREQUISITES 45

types, we now introduce a common resource representation for all resource types, and
describe appropriate transformations to convert each resource to this common repre-
sentation. We also discuss about alternative representations and similarity functions,
which may be preferred for some scenarios.

Text resources. We process a text document x to produce its representation R(x) as
follows: (a) extract all terms from x, (b) stem all extracted terms, and (c) filter out stop-
words. Representation R(x) consists of the set of remaining terms. This combination
of the bag-of-words representation and Jaccard similarity is frequently used in IR for
computing similarity of text documents.

Audio resources. The standard approach for evaluating similarity of two audio files
consists of creating textual acoustic fingerprints of the two files, and then using text-
based similarity measures to compute the similarity. Similar files are expected to have
similar fingerprints. The most frequently used non-proprietary fingerprinting technique
is fooid [89], integrated in several media players. Fooid is fast and portable, and pro-
duces fingerprints which are independent of the file format/encoding. Particularly, it
produces fingerprints for 424 different dimensions, such as energy, tonality, and length.
We convert these fingerprints to strings by concatenating the dimension id with the di-
mension value for each dimension. This results in a set of 424 strings for each audio
file, which we use as a representation.

Video resources. In this work we use a representation of videos based on the color
histograms of the keyframes [184]. The keyframes of a video are the frames that differ
significantly from their preceding frames, i.e., more than a given threshold. To gen-
erate the video representation, we first detect the video keyframes, and compute their
color histograms in the HSV space. We then generate a fingerprint of each histogram
by finding and sorting the k most populated buckets, and concatenating their indices in
a string. The video representation consists of the set of fingerprints of all keyframe his-
togram signatures. Video representations based on keyframe histograms are a standard
technique for partitioning and indexing video resources [184], as well as for finding
near duplicate videos [172, 177].

In order to address the video linkage problem, videos are conceptually split into
segments. The splitting points are decided using the keyframe extraction algorithm de-
scribed earlier, but using a higher distance threshold. Each video segment is handled
as an individual resource, with its own representation. A record of the video segmen-
tations is maintained by the peer that owns the video, such that the originating video
of each segment can be found during query execution. Therefore, detecting one near
duplicate segment for the query is sufficient for detecting the originating video, and for
linking it with the query.

Alternative Resource Representations. The POND framework is not bound to the
described similarity metrics and representations. For text files, it is straightforward to
adapt POND to use the vector space model and cosine similarity by using the theo-
retical results of [27]. Regarding audio, other acoustic fingerprints can be used such
as fdmf (http://w140.com/audio/), another open-source fingerprinting algorithm
for which we observed similar results in our experiments. For video files, additional
fingerprinting techniques based on keyframes [172, 177] are directly applicable to our
framework.

http://w140.com/audio/

46 CHAPTER 4. DISTRIBUTED INDEXING FOR NDD

careful, read,

health, book,

die, misprint

238
min{.} g(.)

1

Be careful about

reading health

books. You may

die of a misprint

R(x)Document x

R(.)

Hash values
93384,

238,954,

94392,...

minvali bit i of

label

fi(.)

Figure 4.2: Computing the i bit of a label j for a text resource

4.2.3 Locality Sensitive Hashing

Locality Sensitive Hashing is often used for NDD in centralized environments. POND
is also based on LSH which we briefly describe now. Our description follows the
notation of [65].

LSH is based on the notion of locality sensitive hash families. LetM be a metric
space (e.g., with dimensions corresponding to terms for text documents), and d(·, ·)
the distance function defined for any two points ofM, (e.g., the Jaccard distance be-
tween two documents). A family of hash functionsH is locality sensitive if there exist
positive thresholds r1 and r2, and probabilities pr1 and pr2 for which the following
conditions hold:

• If the distance between two points d(p, q) (e.g., two text documents) is less than
the distance threshold r1, then f (p) = f (q) with probability at least pr1, where
f (·) is randomly chosen fromH .

• If the distance between two points d(p, q) is at least equal to r2, then f (p) = f (q)
with probability at most pr2, where f (·) is randomly chosen fromH .

We now demonstrate LSH using text documents as an example. The algorithm is ini-
tialized by constructing l hash tables ht1, ht2, . . . , htl. To each hash table it binds k hash
functions f1(·), f2(·), . . . fk(·), which are selected uniformly at random from H . For
inserting a document d in this structure, the document’s representation R(d) is used to
compute l different labels of length k: L(d) = {Label1(d), Label2(d), . . . , Labell(d)}.
The algorithm computes Label j(d) that corresponds to hash table ht j, in a bit-by-bit
approach. Bit i of label Label j(d) is generated as follows (cf. Fig 4.2):

1. Hash function fi(·) (1 ≤ i ≤ k) corresponding to ht j is used to hash each term
from R(d).

2. The minimum hash value minvali produced by fi(·) for all terms is detected.

3. minvali is mapped to a binary value by further hashing. The resulting bit is used
as the ith bit of the document’s label.

For generating all k bits for Label j(d), this process is repeated for i = 1, 2, . . . , k result-
ing to the list L(d) of labels for d. Document d is then hashed in all l hash tables using
the corresponding labels as keys.

For successful deployment of the LSH algorithm in P2P environments we require:
(a) an inexpensive method to store the l hash tables in a P2P network, (b) a way to coor-
dinate the peers so that they maintain the required hash tables, and, (c) a distributed and
dynamic approach to adapt the configuration of LSH (parameters k and l) to minimize
network costs. We will elaborate on these issues in the subsequent sections.

4.3. POND INFRASTRUCTURE 47

4.3 POND Infrastructure
The backbone of POND is an inverted index combining a Distributed Hash Table and
Locality Sensitive Hashing. POND indexes the files/resources in this inverted index
such that similar resources are indexed using the same DHT keys, so that they can
be efficiently located using standard DHT lookups. The algorithm consists of two
parts: (a) the indexing part (Section 4.3.1) which is responsible for configuring and
maintaining the distributed index, and, (b) the query execution part (Section 4.3.2),
responsible for efficiently locating the near duplicates of a query file.

The novelty of POND is the adaptation of the indexing process to the network
and data collection characteristics, such that the required probabilistic guarantees are
satisfied with the minimal cost. In this section, we only sketch this process. We will
describe the configuration/optimization process in detail in Section 4.4.

4.3.1 Inverted Index Maintenance
In Section 4.2.3 we have explained how resource labels are computed for different
file types. We now elaborate on how the distributed inverted index is configured and
maintained, using the resource labels as keys. Our implementation relies on Chord for
constructing an inverted index, described in Section 2.4. However, other DHTs could
be used as well, since POND relies only on the basic DHT functionality, common to
all DHT implementations.

Before initializing the index, the user requirements need to be determined: (a) the
desired probabilistic guarantees prmin, expressing the minimum probability that each
near duplicate resource will be detected, and, (b) the minimum similarity minSim be-
tween two resources for considering them as near duplicates. POND then automatically
determines the optimal system configuration, and constructs the index.

The index maintenance algorithm is divided in three steps: (1) algorithm configu-
ration/optimization, where the core parameters are determined for optimizing the algo-
rithm, (2) computing the labels for each resource, and, (3) indexing the resources in the
DHT to enable their retrieval with subsequent near duplicate detection queries. These
steps are repeated at regular intervals so that the LSH configuration remains optimal
for the network size and for the content of the peers.

Step 1: Algorithm configuration/optimization The purpose of this step is to esti-
mate the parameters of LSH that satisfy the probabilistic guarantees with mini-
mum network cost. A randomly chosen peer pi collects statistics from the net-
work and computes the parameters that minimize the cost of POND: the optimal
number l of labels per resource, and the length k of each label. Then, pi uses the
DHT overlay to broadcast k and l to all participating peers. This step is a key
step for POND, and it will be described in more detail in Section 4.4.

Step 2: Computing the labels After receiving the updated l and k values, the partic-
ipating peers compute the labels for their resources – l labels of k bits for each
resource. Computation of labels is an inexpensive, local process. To optimize
this step further, labels are cached and reused, even if they are computed for dif-
ferent k and l values. So, if either k or l is increased, only the difference between
the existing labels and the new labels needs to be computed.

Step 3: Indexing After each peer has computed the labels for its resources, it needs to
index each resource in the DHT-based inverted index. For each resource x and for

48 CHAPTER 4. DISTRIBUTED INDEXING FOR NDD

each label Labeli(x), the peer publishes a triple < i, IP,RecID >, using Labeli(x)
as a key, where i is a label index, IP is the IP address of the peer, and RecID is
a resource ID for resource x. It is important to include i in this triple, because
otherwise the peer holding the triple cannot distinguish whether a resource x and
a query q have the same ith label, or whether Labeli(x) = Label j(q) with i , j.
Clearly, the latter case does not imply anything about the similarity of x and q.

To handle churn, peers use periodic republishing. When a peer publishes a triple in
the DHT, it attaches an expiration time. If the triple is not updated within its expiration
time, it is automatically removed from the DHT. The expiration time of a triple comes
shortly after the next expected republishing time; thereby resources are always indexed
in the DHT, and obsolete resources are removed soon after they expire.

Note that the presented infrastructure is not the only possible infrastructure for
POND. The optimization techniques described later, which is the main contribution of
this work, can be applied with some modifications to other systems as well, e.g., [68,
14].

4.3.2 Querying for near duplicate resources
A peer pq detects the near duplicates for a query resource q as follows. First it uses
R(q), the representation of q, to compute the l labels of q, denoted as L(q). For each
label Labeli(q) ∈ L(q), the peer retrieves from the DHT inverted index the triples of all
resources published using the same label as a key. These resources are the candidate
near duplicates. Following, pq sends R(q) to all peers that hold each of the discovered
resources, which then respond with links of all their near duplicate resources. In the
response, only the resources that satisfy the minimum similarity with the query repre-
sentation are included. As we will show in Section 4.4, this process guarantees that
each near duplicate resource will be detected with probability greater or equal to prmin.

The same algorithm is used for detecting video linkages. Recall from Section 4.2.2
that for video linkage, peers conceptually break each video to segments, and index
each segment individually. With respect to query execution, the query video is broken
into segments as well, and all near duplicates are retrieved for each segment. We will
show in Section 4.5 that this approach is very effective. In practice, not all segments
need to be queried; a peer stops querying as soon as it finds sufficient linkages for the
application requirements, e.g., for efficiently parallelizing the download.

When the objective of the query is for finding more peers owning a file, for par-
allelizing its download, clearly the query initiator does not yet have the full file, and
hence it cannot compute the resource representations. Therefore, it first downloads the
resource representation from another peer that owns the full resource. We assume that
peers already have an approach to find at least one copy of the file, for instance, using
keyword search over a DHT index, as enabled by LimeWire and other mainstream ap-
plications. Since resource representations are very compact, even for large videos, the
additional cost imposed by this process is negligible.

4.4 Configuration and Optimization of POND
Having described the overall framework of POND in Section 4.3, we now elaborate on
the first indexing step, i.e., configuring and optimizing the POND parameters. We pro-
vide an overview of the step in Section 4.4.1. In Sections 4.4.2 and 4.4.3 we present the

4.4. CONFIGURATION AND OPTIMIZATION OF POND 49

n Number of peers
avgRes Average number of resources per peer
minSim Minimum similarity for considering two

resources as near duplicates
prmin Minimum probability that POND will

detect each near duplicate resource
l Number of labels per resource
k Length of each label in bits

Table 4.1: Notations

theoretical analysis (network cost analysis and probabilistic analysis) which drives the
network optimization of POND. Finally, in Section 4.4.4 we combine the cost analysis
and probabilistic analysis to derive the optimal parameters l and k for LSH that mini-
mize the total network cost and satisfy the desired probabilistic guarantees. Table 4.1
introduces the notations used in the following sections.

4.4.1 Overview on the Parameter Optimization Procedure
In this step, the algorithm determines the values for l and k that minimize the total
network cost, and satisfy the desired probabilistic guarantees. The algorithm is exe-
cuted at regular intervals, on randomly selected peers. The problems that need to be
addressed are: (a) random selection of a peer for executing the optimization algorithm,
with minimal coordination between the peers, (b) statistics gathering, (c) computation
of the optimal values of l and k and their dissemination in all participating peers.

Random Selection. For the random selection problem, we require that one peer is
randomly selected for executing the algorithm every m minutes, and that all peers have
the same probability of being selected. We address this problem using a simple ran-
domized algorithm which is resistant to churn and requires no coordination. More
specifically, every m minutes, each peer decides with probability 1/n to execute the
optimization, where n denotes the overall number of peers. Thus, the expected number
of algorithm executions per m minutes is one.

Statistics Gathering. After a peer is selected to execute the optimization, it estimates
the following statistics:

• the number of peers in network, using the approach proposed in [62]

• the number of resources per peer, and the query rate

• the probability distribution function (PDF) for all pairwise resource similarities
in the corpus

The latter two are estimated using random sampling on a small percentage of peers,
1% in our experiments. Sampling requires a small number of messages and negligi-
ble transfer volume, thereby it does not overload the participating peers. This simple
method already provides good results, as verified in our experimental evaluation, but
alternative methods for estimating these statistics based on gossiping or random walks
are equally applicable, e.g., [62].

50 CHAPTER 4. DISTRIBUTED INDEXING FOR NDD

Computation and dissemination of the optimal l,k. Using the described statistics,
the peer computes the optimal values for l and k, as we will describe in detail in Sec-
tion 4.4.4. The optimal configuration is then disseminated in the network, such that it
can be further used for index maintenance and query execution. For disseminating the
configuration efficiently, the peer constructs a message including the collected statis-
tics and the estimated optimal values for k and l. The message is tagged with the local
peer time, and broadcasted over the DHT using an approach proposed by El-Ansary et
al. [48]. The algorithm requires O(n) messages and O(log(n)) time. Notice that it might
happen that two peers are selected to perform parameter optimization almost simulta-
neously. This is not a problem for POND since during configuration dissemination
only the most recent configuration is kept.

4.4.2 Cost analysis
The network cost of POND is composed as follows: (a) the cost of maintaining the
DHT overlay, (b) the cost of maintaining the locality-sensitive inverted index over
DHT, and (c) the cost of querying for near duplicates. The cost of establishing the
links between peers to maintain the DHT overlay is orthogonal to POND, therefore we
do not integrate it in our analysis. The reader can find a detailed cost analysis for Chord
in [158].

Inverted index maintenance cost. Indexing one resource in the DHT requires at
most l(log(n) + 1) messages:

• Executing l DHT lookups (one DHT lookup for each of the resource labels)
requires at most l × log(n) messages.

• Using the l labels as keys, and publishing the resource’s meta-data in the DHT
requires l additional messages.

Thus, the total number of messages for indexing all resources in the network is: Cmaint ≤

n × avgRes(l × log(n) + l) = O(n × avgRes × l × log(n)).

Query execution cost. Let q denote the resource for which we wish to find the near
duplicates, ND(q) the set of all near duplicates for q, and FP(q) the set of resources that
are falsely identified as near duplicates (the false positives). Finding the near duplicates
of q requires C f ind ≤ l(log(n) + 2) + 2|ND(q)| + |FP(q)| messages:

• Executing a DHT lookup for each of the l labels of q requires a maximum of
l × log(n) messages.

• Retrieving the candidate resources for the l labels requires 2l additional mes-
sages.

• Sending R(q), the representation of the query, to the peers holding all candidate
near duplicates requires a maximum of |ND(q)| + |FP(q)| messages.

• Retrieving all near duplicate resources requires a maximum of |ND(q)|messages.

The total cost per republishing period is a linear combination of Cmaint and C f ind.
Let y denote the expected number of queries at each republishing period. Then, the
total cost is Ctotal = Cmaint + y ×C f ind.

4.4. CONFIGURATION AND OPTIMIZATION OF POND 51

We now have the cost expressions for all aspects of the algorithm. In the following
sections we show: (a) how to get an estimate for |FP(q)|, and, (b) how to choose the
two parameters of POND, l and k, such that the total cost is minimized.

4.4.3 Probabilistic Analysis
We first compute the probability that a near duplicate resource will be detected. Then,
we derive an expectation for the number of false positives per query. These two parts
are put together in Section 4.4.4 to determine the combination of k and l that minimizes
the cost.

The following lemma computes the probability that two resources x and y have the
same label Label j, corresponding to hash table ht j.

Lemma 4.1. Given resources x and y with similarity Sim(x, y). The probability that the
jth label of x is identical to the jth label of y is:

Pr[Label j(x) = Label j(y)] =

k∑
i=0

(
k
i

)
× (1 − Sim (x, y))i × Sim(x, y)k−i × 0.5i

The proof is included in the appendix.
Note that the probability Pr[Label j(x) = Label j(y)] is the same for all j ∈ [1, . . . , l].

For convenience we will denote this probability as Pr
[
Label(x) = Label(y)

]
.

The probability that two resources x and y have at least one common label is given
by the following corollary.

Corollary 4.1. Given resources x and y with similarity Sim(x, y). The probability that
x and y have at least one common corresponding label is given by

prfound(x, y) = 1 −
(
1 − Pr

[
Label(x) = Label(y)

])l

= 1 −

1 − k∑
i=0

(
k
i

)
× (1 − Sim (x, y))i × Sim(x, y)k−i × 0.5i

l

(4.1)

The proof is included in the appendix.
Finally, the probability that two near duplicate resources x and y have at least one

common label can be lower bounded as follows.

Theorem 4.1. Given resources x and y with similarity Sim(x, y) ≥ minSim. The prob-
ability that x and y have at least one common corresponding label is at least equal to:

prndd(x, y) ≥ 1 −

1 − k∑
i=0

(
k
i

)
× (1 − minSim)i × minSimk−i × 0.5i

l

(4.2)

The proof is included in the appendix.
POND will detect two resources as potential near duplicates if these have at least

one common corresponding label. Therefore, the probability that each near duplicate
will be detected by the algorithm corresponds to the probability given by Equation 4.2.

52 CHAPTER 4. DISTRIBUTED INDEXING FOR NDD

Estimating the number of false positives. The false positives for a query q are the
resources detected by the algorithm as potential near duplicates but have similarity
with q lower than minSim. Peers detect that these resources are false positives before
transferring them over the network. Nevertheless, as explained earlier, false positives
cause additional network overhead, for detecting and filtering them out. Therefore, we
need to estimate the number of false positives for the purpose of accurately modeling
and minimizing the network cost.

We use S to denote the set of all resources in the network having similarity with q
less than minSim. Using Corollary 4.1, the expected number of false positives E(|FP(q)|)
can be computed as follows:

E(|FP(q)|) =
∑
x∈S

(
1 −

(
1 − Pr

[
Label(x) = Label(q)

])l
)

The estimation of the number of false positives using the above equation is costly to
compute as it requires computing all similarities between the query and all available
resources. An efficient alternative is to estimate |FP(q)| using an approximation for
the probability distribution of similarities. Let p(x) denote the probability distribution
function (PDF) of the pairwise similarities of all resources in the corpus. Then, the
expected number of false positives is:

E(|FP(q)|) = avgRes × n ×
∫ minSim

0
p(x) × prlabels(x) dx

where prlabels(x) denotes the probability that two resources with similarity x share at
least one label, and is computed using Equation 4.1. For a discrete PDF, we derive an
analogous expression by replacing the integral with a sum.

The PDF p(x) depends on the corpus and on the chosen similarity measures. Our
experiments with large collections (Section 4.5) indicate that the Zipf distribution con-
stitutes a good fit when using Jaccard similarity and the representations described ear-
lier. For estimating the Zipfian coefficient, POND uses peer sampling during the opti-
mization step, as described earlier in this Section.

4.4.4 Minimizing the Network Cost of POND

We are now ready to find the values for k and l that minimize the network cost. Recall
from Section 4.3 that POND should find each near duplicate with a probability at least
prmin. By reducing Equation 4.2 for k and solving for prndd = prmin we find the value
of k that will return each near duplicate resource with a probability higher than prmin.
This value, denoted as k0, is:

k0 =
log

(
1 − (1 − prmin)1/l

)
log

(
0.5 − 1

2 minSim

)
+ log(minSim)

Next, we show that k0 is also the value for k that minimizes the network cost.

Theorem 4.2. For given l, minSim and prmin the value of k that minimizes network cost
is k = bk0c

The proof is included in the appendix.

4.5. EXPERIMENTAL EVALUATION 53

So far, we assumed that the optimal value for parameter l is given. We now show
how to eliminate this assumption. Finding theoretically the value of l that minimizes
the cost is complicated. Therefore, we use the following algorithm to compute the
optimal l. We start with l = 1, and find the optimal k according to Theorem 4.2. For
these pairs of k and l we compute the expected cost, according to the analysis presented
in Section 4.4.2. We then increment l, and repeat the computations. For some value of
l, denoted with linc, the expected cost will start to increase, i.e., the cost for l = linc will
be higher than the cost for l = linc − 1. The optimal value of l is linc − 1. This holds
because the cost function is convex, and therefore has only one minimum, namely at
l = linc − 1. Note that this algorithm is executed once per republishing period, at the
peer responsible for the optimization. It is computationally inexpensive and requires
no network resources; thus, it does not constitute a bottleneck.

4.5 Experimental Evaluation
The purpose of our experimental evaluation was threefold. First, to investigate the
significance of the dynamic optimization performed by POND, by comparing it with
an NDD algorithm which does not optimize the values of k and l. Second, to exam-
ine the efficiency and effectiveness of POND using real-world collections and system
configurations. Third, to evaluate the proposed extension for video linkage.

4.5.1 Datasets and Evaluation Setup

POND was evaluated on three large, real-world collections. As a text collection we
have chosen the standard Reuters Corpus Volume I (RCV1) [93], one of the standard
IR datasets, including more than 800,000 newswire articles. For videos, we constructed
a collection by crawling a sample of Youtube videos with Tubekit [150].1 The collec-
tion contains 22,455 videos with a total volume of 144 Gbytes. We did not consider
existing publicly available video benchmarks, such as TRECVID, because these con-
tain a relative small number of videos (less than 200), and therefore cannot be used for
simulating P2P networks of reasonable sizes. For audio, we extracted the audio tracks
of the described Youtube collection as MP3s, amounting to a total size of 82 Gbytes.
The size of the three datasets summed up to 227 Gbytes.

For the text collection, we simulated a P2P network of 100,000 peers, structured
over Chord. All articles were distributed uniformly among the participating peers. For
the video and audio collections which had less resources, we simulated a network of
1000 peers, distributing the resources uniformly among peers as well.

For constructing the query set, we compared all resources pair-wise to identify the
pairs with similarity higher than a threshold minSim, for minSim ∈ {0.8, 0.9}. Some of
these pairs were in fact exact duplicates, e.g., the same video with a different file name.
POND detected all exact duplicates, since these were always producing identical labels.
Since these resources could also be detected with traditional hashing techniques, they
were excluded from the query set for our experiments.

For each configuration, we measured the total network cost, i.e., the number of
messages required for both maintenance and query execution. Effectiveness was com-
puted using the standard recall measure, i.e., the percentage of detected near duplicates.
There was no need to measure precision separately, since this is always 1, due to the

1We would like to thank the author of Tubekit, Chirag Shah, for assisting us with the crawling task.

54 CHAPTER 4. DISTRIBUTED INDEXING FOR NDD

 1e+007

 1e+008

 1e+009

 1e+010

 1e+011

 1e+012

 1 5 10 15 20 25 30

#m
es

sa
ge

s
(L

og
 s

ca
le

)

Number of hash tables l

Figure 4.3: Cost versus number of hash tables l, for minSim = 0.9

way POND collects the near duplicates. As explained in Section 4.3, resources which
are not near duplicates are efficiently filtered out and are neither transmitted over the
network to the query initiator, nor presented to the user as a result of the query.

4.5.2 Comparison with LSH

The advantage of POND compared to previous LSH algorithms is that it dynamically
optimizes the values of k and l so that the total network cost is minimized. To find
out the importance of this optimization for P2P networks, POND was compared with
a P2P implementation of standard LSH, in which k and l are chosen manually by the
user. In particular, POND was compared with LSH(K), described in [14]. Since the
procedure of choosing l and k is the only difference between LSH(K) and POND, the
difference observed in the efficiency of the two algorithms can be directly attributed to
the optimization performed by POND.

To this end, we have indexed the RCV1 collection in a network of 100,000 peers,
and varied the rate of queries per republishing period between 106 and 1015. Since
LSH(K) does not offer an approach for choosing l and k, it was tested for all possible
combinations of l and k satisfying prmin = 0.9. For each configuration we measured the
total network cost, i.e., the aggregate cost for maintenance and query execution. The
observed costs are shown in Figure 4.3 (note that the Y axis is in logarithmic scale).
For clarity, the figure includes only the most efficient LSH(K) configuration for each l
value.2 The cost incurred from POND for the same prmin is a single point, since POND
selects exactly one k and l combination for each query rate.

We observe that the value of l strongly influences the efficiency of LSH. On the
one hand, setting l too low leads to a very small k, increasing the number of false
positives by several orders of magnitude. On the other hand, setting l too high imposes
the unnecessary overhead of maintaining more hash tables. The difference between
the optimal and the incurred cost for each setting can be several orders of magnitude.
More importantly, we see that there is no universally optimal value for l and k, but the

2For a given pair of l and k values that satisfy the probabilistic guarantees, all other configurations with
the same l and with k′ < k also satisfy the probabilistic guarantees, albeit with higher network cost.

4.5. EXPERIMENTAL EVALUATION 55

 0.8

 0.84

 0.88

 0.92

 0.96

 1

 0.5 0.6 0.7 0.8 0.9

R
ec

al
l

Min. Detection Probability prmin

minSim = 0.8
minSim = 0.9

 0.8

 0.84

 0.88

 0.92

 0.96

 1

 0.5 0.6 0.7 0.8 0.9

R
ec

al
l

Min. Detection Probability prmin

minSim = 0.8
minSim = 0.9

 0.8

 0.84

 0.88

 0.92

 0.96

 1

 0.5 0.6 0.7 0.8 0.9

R
ec

al
l

Min. Detection Probability prmin

minSim = 0.8
minSim = 0.9

Figure 4.4: Recall versus minimum detection probability prmin: (a) RCV1 collection,
(b) Video collection, (c) Audio collection

optimal values depend on the system properties, which significantly vary with time in
P2P networks [146]. In contrast, the default cost of POND for each setting is always
nearly equal to the global minimum cost of the original LSH; the extra network cost
induced by the POND optimization step is negligible. This means that POND always
finds the best configuration for l and k, and minimizes the cost.

The experiment was repeated with the two multimedia collections, as well as with
different network sizes. The experimental results were similar to the presented ones,
verifying the importance of optimizing the values of l and k. In conclusion, by opti-
mizing the values of l and k for the given configuration, POND can reduce the total
network cost by several orders of magnitude.

4.5.3 Effectiveness for near duplicate detection
Effectiveness for NDD is measured with recall (precision is always 1, as explained in
Section 4.5.1). Figure 4.4 presents recall for different values of prmin, and for minSim ∈
{0.8, 0.9}. As expected, increasing prmin results to an increase on recall. In particular,
for higher prmin values, the optimization step constructs more hash tables or reduces the
hash functions in order to satisfy the higher probability requirements. This behavior is
consistent for the three different resource types, as well as for different minSim values.

We also see that even for very low prmin values, recall remains within acceptable
levels. For example, recall is always higher than 0.8, even for prmin = 0.5. The reason
for this is that POND computes the probabilistic guarantees considering the minimum
similarity value minSim, whereas most of the near duplicates have similarity higher
than minSim. Therefore, the actual probability for finding most of the near duplicates
is higher than the obtained probabilistic guarantees, yielding a recall higher than the
required one.

4.5.4 Network cost
Figure 4.5 plots the network cost of POND for different values of prmin, with minSim set
to 0.9. We distinguish between two types of cost: (a) maintenance cost, which is the
average number of messages required for indexing a single resource in the network,
and, (b) query cost, corresponding to the average number of messages required for
detecting and retrieving all near duplicates of a query, and filtering out all non near-
duplicates.

We observe that both indexing cost and query execution cost remain within rea-
sonable limits. For example, for the RCV1 experiment with prmin = 0.8, maintenance
requires less than 40 messages per article, whereas querying requires less than 80. Note

56 CHAPTER 4. DISTRIBUTED INDEXING FOR NDD

 0

 50

 100

 150

 200

 0.5 0.6 0.7 0.8 0.9

N
um

be
r

of
 M

es
sa

ge
s

Min. Detection Probability prmin

Query cost
Maintenance cost

 0

 20

 40

 60

 80

 0.5 0.6 0.7 0.8 0.9

N
um

be
r

of
 M

es
sa

ge
s

Min. Detection Probability prmin

Query cost
Maintenance cost

 0

 20

 40

 60

 80

 100

 0.5 0.6 0.7 0.8 0.9

N
um

be
r

of
 M

es
sa

ge
s

Min. Detection Probability prmin

Query cost
Maintenance cost

Figure 4.5: Cost versus minimum detection probability prmin (a) RCV1 collection, (b)
Video collection, (c) Audio collection

that for the aforementioned configuration, recall is already above 0.95. Furthermore,
as expected, increasing prmin causes higher network cost, because POND constructs
more hash tables to satisfy the required probabilistic guarantees. Nevertheless, even
for prmin = 0.95 which provides a recall of almost 1, maintenance cost does not sur-
pass the 70 messages per resource.

Also note that query execution cost is always higher than maintenance cost. As
described in Section 4.4.2, maintenance cost involves performing l DHT lookups, while
query execution cost additionally requires contacting all candidate peers and collecting
all the near duplicates. Therefore, maintenance cost per resource is expected to always
be less than query execution cost.

It is also interesting to compare the costs incurred for different types of resources.
We observe that the cost related to text documents is slightly higher than the respective
cost for video and audio resources. This difference is mostly attributed to the differ-
ence of network sizes in the corresponding experimental setups, as this affects the cost
of DHT lookups. Since POND uses DHT lookups both for maintenance and query
execution, the respective costs are also affected. Nevertheless, the increase is only log-
arithmic to the network size. We also observe that the querying costs for audios and
videos differ slightly, even though the audio resources are generated from the videos.
This happens because there are more near duplicates in the audio collection, compared
to the video collection. The typical case in which two audio files were near duplicates
while their corresponding videos were not, was songs accompanied by slide-shows,
i.e., two videos having the exact same song as audio but showing completely different
slide-shows.

4.5.5 Video Linkage
POND was also evaluated with respect to video linkage. For generating the query set
Q, we have selected a subset of videos with file sizes uniformly distributed between
20 and 120 Mbytes, and divided them to 2, 3, or 4 equal-sized parts. We then used all
partial videos q ∈ Q as queries for POND. A query was considered successful if it had
returned the original video from which it was created.

Figure 4.6 plots the average recall for different video file sizes. POND was initial-
ized with prmin = 0.9 and minSim = 0.9, on a network of 1000 peers. We observe that
recall increases significantly with the size of the original video. For example, recall
for the smaller files (20 – 40 Mbytes) is around 0.75, whereas recall for larger files
(100 – 120 Mbytes) is nearly 1. This is due to the video segmentation method. Since
each query segment is handled as an individual resource, the probability that a query
succeeds increases exponentially with the number of overlapping segments between

4.6. SUMMARY 57

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Re
ca
ll

Original video size range

2 parts 3 parts 4 parts

Figure 4.6: Video linkage: Recall versus average file size for videos broken to 2, 3 and
4 parts

the query and the full video. For extremely small queries, the overlapping segments
are too few, if any, yielding a lower recall. For the same reason, recall decreases with
the number of divisions for creating the query. By increasing the video and query
size, the number of common segments increases, and the recall reaches practically 1
for the videos above 100 Mbytes. Note that these are the videos for which finding the
near duplicates would be more important, e.g., for parallel downloading in file sharing
networks.

With respect to network cost, the maintenance cost for video linkage is typically
higher than the cost of NDD because each video segment is indexed and looked-up indi-
vidually. In our experiments, maintenance cost for video linkage was at most 110 mes-
sages per video, which is easily affordable. This cost is distributed uniformly among
all participating peers, as it is mostly composed of DHT lookups. Additional cost op-
timizations can be achieved by reducing the number of segments in each video, i.e.,
by increasing the distance threshold for splitting a video to segments. Including this
threshold in the optimization analysis is part of our future work.

In conclusion, POND efficiently and effectively addresses the video linkage prob-
lem, and focuses especially on large videos which constitute the dominant majority in
the Internet, achieving a recall very close to one.

4.6 Summary
In this chapter we have presented POND, a novel algorithm for near duplicate detection
whose key innovation lies in the deployment of parameter optimization to minimize
network usage. We have derived probabilistic guarantees for the success of POND to
answer NDD queries, and showed how the algorithm automatically configures the core
parameters of the underlying indexing method. Furthermore, we extended POND to
address the video linkage problem. A large-scale experimental evaluation using real
world datasets of more than 200 Gbytes demonstrated the importance of optimizing
the LSH parameters for reducing the cost of NDD in P2P networks. The results show
that POND successfully optimizes the LSH parameters, reduces the network cost to the
theoretical minimum, and satisfies the required probabilistic guarantees. The incurred
network cost is easily affordable by the participating peers, even for huge networks
and collections, making the algorithm suitable for integration in any mainstream DHT-
based file-sharing system.

Chapter 5

P2P Text Clustering

In this chapter we propose an algorithm for P2P text clustering. Text clustering is
widely employed for automatically structuring large document collections and for en-
abling cluster-based information browsing, to alleviate the problem of information
overflow. It is especially useful in highly distributed environments such as distributed
digital libraries [75] and P2P information management systems [2], since these en-
vironments operate on large-scale document collections, scattered over the network.
Several P2P systems rely on text clustering to enhance information retrieval efficiency
and effectiveness [101, 176, 83].

Most existing text clustering algorithms are designed for central execution. They
require that clustering is performed on a dedicated node, and are not suitable for de-
ployment over large scale distributed networks. Therefore, specialized algorithms for
distributed and P2P clustering have been developed, such as [42, 47, 69, 73]. However,
these approaches are either limited to a small number of nodes, or they focus on low
dimensional data only. Hence, a distributed clustering algorithm that scales to large
networks and large text collections is required.

We are particularly interested in systems where the content distribution is imposed
by their nature, such as P2P desktop sharing systems [2, 119], distributed digital li-
braries [75, 70], and mainstream file sharing P2P networks. Clustering in such net-
works is challenging, firstly because the data is inherently distributed and no participant
has the capacity, or willingness, to collect and process all data, and secondly, because
of the high churn rate, affecting availability of content and of computational nodes. For
these systems, we require a P2P algorithm that can cluster distributed and highly dy-
namic text collections, without overloading any of the participating peers, and without
requiring central coordination.

A key factor to reduce network traffic in these systems is to reduce the number of
required comparisons between documents and clusters. Our approach achieves this by
applying probabilistic pruning: Instead of considering all clusters for comparison with
each document, only a few most relevant ones are taken into account. We apply this
core idea to K-Means, one of the frequently used text clustering algorithms. The pro-
posed algorithm, called Probabilistic Clustering for P2P (PCP2P), reduces the number
of required comparisons by an order of magnitude, with negligible influence on the
clustering quality.

In the following section, we review the basic algorithms employed by PCP2P. Sec-
tion 5.2 gives an overview of existing distributed clustering approaches. In Sections 5.3
and 5.4 we introduce PCP2P and present the corresponding cost analysis. We describe

58

5.1. PREREQUISITES 59

Algorithm 5.1: K-Means
Input: allDocs: documents to be clustered;

k: number of clusters
1 allClusters← selectRandomClusters(k) ;
2 for Document d in allDocs do
3 for Cluster c in allClusters do
4 sim← cosineSimilarity(d, c) ;

5 Assign(d, cluster with maximum Similarity) ;

the probabilistic analysis in Section 5.5, and show how PCP2P is parameterized to
achieve a desired correctness probability. In Section 5.6 we verify experimentally the
scalability and quality of PCP2P, with simulations of up to 1 million peers and 1 million
documents, using real and synthetic data. We conclude the chapter in Section 5.7.

5.1 Prerequisites
In this section we briefly describe the infrastructure and algorithms used by PCP2P.

Document model. Similar to most clustering algorithms, PCP2P represents the doc-
uments and clusters using the Vector Space Model. For document d and term t, we
denote the frequency of t in d with T F(t, d). As usual, we apply term stemming and
stopword filtering to reduce the document model sizes and allow for more meaningful
clustering. Since Vector Space Models represents clusters and documents as high-
dimensional vectors, all standard norms can be used for computing the vector length.
The ones most interesting for data mining, which are frequently used for normalizing
the term frequencies, are the L1-Norm and the L2-Norm. The L1-Norm of a cluster or
document x is denoted as |x|1 and is defined as the sum of all term frequencies in the
cluster/document, |x|1 =

∑
t∈x T F(t, x). The L2-Norm is denoted as |x| and defined as

|x| =
√∑

t∈x T F2(t, x).

K-Means Clustering. K-Means [105], which we approximate with PCP2P, is one of
the most frequently used clustering algorithms because of its low complexity (linear in
the number of documents) and high clustering quality, particularly for text clustering.
The basic K-Means algorithm (cf. Alg 5.1) can be summarized as follows: (1) Select k
random starting points as initial centroids for the k clusters. (2) Assign each document
to the cluster with the nearest centroid. (3) Recompute the centroid of each cluster as
the mean of all cluster documents. (4) Repeat steps 2-3 until a stopping criterion is
met, e.g., no documents change clusters anymore.

For document clustering, K-Means shows comparable or better performance than
competitive algorithms while incurring significantly less cost [155].

DKMeans Clustering. A direct distribution of centralized clustering algorithms does
not scale to large networks. We still sketch such an approach here, to point out where
our optimizations take place. Like its centralized counterpart, distributed K-Means
(DKMeans) requires maintaining the cluster centroids, and comparing all documents to
all clusters to determine the best cluster. In DKMeans, the responsibility of maintaining

60 CHAPTER 5. P2P TEXT CLUSTERING

Algorithm 5.2: DKMeans
Input: myDocs: Peer documents to be clustered

1 allClusters← findAllClusters() ;
2 for Document d in myDocs do
3 for Cluster c in allClusters do
4 Send termVector(d) to ClusterHolder(c);
5 Sim[c]← cosineSimilarity(d,c);

6 Assign(d, argmax c Sim[c]) ;

each cluster centroid is assigned to a randomly selected peer, called cluster holder.
As in K-Means, each cluster holder selects a random document as initial centroid.
Clustering is performed as follows (cf. Algorithm 5.2): A peer first identifies all cluster
holders, e.g., using a DHT index (Line 1). Then, for each of its documents, it sends
its term vector to each cluster holder for comparison with the centroid and receives a
similarity score (Lines 4, 5). It then assigns the document to the most similar cluster,
by notifying the respective cluster holder (Line 6).

DKMeans requires that at each clustering iteration, all documents are sent over the
network to all cluster holders, for comparison. This clearly prohibits the algorithm to
scale. In Section 5.3 we show how PCP2P addresses this issue by drastically reducing
the number of required comparisons.

5.2 Related Work
Several algorithms for parallelizing K-Means have been proposed, e.g., [43, 56], which
harness the power of multiple nodes to speed up the clustering of large datasets. These
however assume a controlled network or a shared memory architecture, and therefore
are not applicable for P2P, where these assumptions do not apply.

Other approaches focus on P2P text clustering [40, 41, 42, 47, 69, 73, 83]. Eisen-
hardt et al. [47] proposed one of the first P2P clustering algorithms. The algorithm
distributes K-Means computation by broadcasting the centroid information to all peers.
Due to this need for broadcasting, the algorithm does not scale to large networks. Hsiao
and King [73] avoid broadcasting by employing a DHT to index all clusters using man-
ually selected terms. This approach requires extensive human interaction for selecting
the terms, and the algorithm cannot adapt to new topics.

Hammouda et al. [69] use a hierarchical topology for the coordination of K-Means
computation. Clustering starts at the lowest level of the hierarchy, and the local solu-
tions are aggregated until the root peer is reached. This algorithm has the disadvantage
that clustering quality decreases noticeably for each aggregation level, because of the
random grouping of peers at each level. Therefore, quality decreases significantly for
large networks. Already for a network of 65 nodes, the authors report a quality of less
than 20% of the quality of K-Means.

The state of the art in P2P clustering is the proposal of Datta et al. [41, 42]. In par-
ticular, the authors proposed LSP2P and USP2P, two P2P approximations of K-Means.
LSP2P uses gossiping to distribute the centroids. In an evaluation with 10-dimensional
data, LSP2P achieved an average misclassification error of less than 3%. However, as
we show in Section 5.6, when it comes to clustering text, LSP2P fails because it is
based on the assumption that data is uniformly distributed among the peers, i.e., each

5.3. PCP2P: PROBABILISTIC CLUSTERING FOR P2P 61

peer has a representative set of documents from each cluster. This assumption clearly
does not hold for text collections in P2P networks. The second algorithm, USP2P, uses
sampling to provide probabilistic guarantees. However, the guarantees are also based
on the assumption that data is uniformly distributed among the peers. Furthermore,
USP2P requires a coordinating peer which gets easily overloaded, since it is responsi-
ble for exchanging centroids with a significant number of peers, for sampling, e.g., 500
peers out of 5500 peers.

The problem of forming clusters of peers, as opposed to clusters of documents, is
also considered in the literature. For example, in Chapter 3 of this thesis, we have pro-
posed PCIR which employs peer clustering to speed up the maintenance of distributed
inverted indexes. Koloniari and Pitoura [83] discussed P2P clustering in the context of
optimizing information retrieval in flat P2P networks. However, these approaches do
not focus on optimizing the network and computational cost of clustering per se, and
would therefore be too expensive when applied in the context of document clustering.
The algorithm proposed in this chapter is also directly applicable for peer clustering,
assuming that the contents of each peer can be represented with the vector space model.

5.3 PCP2P: Probabilistic Clustering for P2P

We start with a high-level description of the algorithm, followed by a detailed explana-
tion of each step.

In PCP2P, a peer undertakes up to three different roles. First, it serves as document
holder, i.e., it keeps its own document collection, and it assigns its documents to clus-
ters. Second, it participates in the underlying DHT by holding part of the distributed
index, and by routing DHT lookup messages. Third, a peer may become a cluster
holder, i.e., maintain the centroid and document assignments for one cluster.

PCP2P consists of two parallel activities, cluster indexing and document assign-
ment. Cluster indexing is performed by the cluster holders. In regular intervals, these
peers create compact cluster summaries and index them in the underlying DHT, us-
ing the most frequent cluster terms as keys. We describe this activity in Section 5.3.1.
The second activity, document assignment, consists of two steps, preselection and full
comparison. In the preselection step, the peer holding d retrieves selected cluster sum-
maries from the DHT index, to identify the most relevant clusters (Alg. 5.3, Line 2).
Preselection already filters out most of the clusters. In the full comparison step, the peer

Algorithm 5.3: PCP2P: Clustering the documents
Input: myDocs: Peer documents

1 for Document d in myDocs do
// PRESELECTION STEP

2 CandClusters← CandidateClustersFromDHT() ;
// FULL COMPARISON STEP

3 RemainingClusters← FilterOut(CandClusters) ;
4 for Cluster c in RemainingClusters do
5 Send termVector(d) to ClusterHolder(c);
6 Sim[c]← cosineSimilarity(d,c) ;

7 Assign(d, cluster with maximum similarity) ;

62 CHAPTER 5. P2P TEXT CLUSTERING

computes similarity score estimates for d using the retrieved cluster summaries. Clus-
ters with low similarity estimates are filtered out (Line 3), and the document is sent to
the few remaining cluster holders for full similarity computation (Lines 4-6). Finally,
d is assigned to the cluster with highest similarity (Line 7). This two-stage filtering
reduces drastically the number of full comparisons (usually less than five comparisons
per document, independent of the number of clusters). Both cluster indexing and doc-
ument assignment are repeated periodically to compensate churn, and to maintain an
up-to-date clustering solution.

The algorithm enables controlling the tradeoff between the network cost and the
clustering quality. In particular, the cluster indexing activity, as well as the preselection
and full comparison steps, are configured using the results of a probabilistic analysis,
thereby providing probabilistic guarantees that the resulting clustering solution exhibits
nearly the same quality as centralized clustering.

In the next section, we further describe the process of indexing the cluster sum-
maries. In Section 5.3.2 we look into the document assignment process, whereas in
Section 5.3.3 we present the three filtering strategies in detail. Section 5.3.4 discusses
further aspects of the algorithm.

5.3.1 Indexing of Cluster Summaries
Cluster holders are responsible for indexing the summaries of the clusters in the DHT.
Particularly, each cluster holder periodically recomputes the centroid of the cluster,
using the documents assigned to the cluster at the time. It also recomputes a cluster
summary and publishes it to the DHT index, using selected cluster terms as keys. As
we explain later, this enables peers to efficiently identify the relevant clusters for their
documents. For this identification, it is sufficient to consider the most frequent terms
of a cluster c as keys, i.e., all terms t with T F(t, c) ≥ CluTFmin(c), where CluTFmin(c)
denotes a frequency threshold for c. We use TopTerms(c) to denote the set of these
terms. Note that TopTerms(c) does not include stopwords; these are already removed
when building the document vectors. For illustration purposes, for the remainder of
this section we assume that CluTFmin(c) is known. In Section 5.5 we explain how the
optimal value for this threshold is derived, such that the algorithm satisfies the desired
probabilistic guarantees.

The cluster summary (cf. Fig. 5.1) includes: (1) all cluster terms in TopTerms(c)
and their corresponding T F values, (2) CluTFmin(c), and, (3) the sum of all term fre-
quencies (the L1-norm), cluster length (the L2-norm), and dictionary size. Note that
we choose not to normalize the term frequencies with inverse document frequencies
(IDF), because of the high cost associated for maintaining an IDF index over a P2P
network, compared to the low influence in clustering quality [132]. Nevertheless, ex-
isting techniques for estimating IDF, such as [168, 9, 124], or techniques to circumvent

TopTerms
Term football tennis basketball rugby
TF 21 19 17 17

Cluster Statistics
L1=1603 L2=82.2 DictSize=120
ClusterHolderIP=173.203.120.1 CluTFmin= 17

Figure 5.1: Sample cluster summary

5.3. PCP2P: PROBABILISTIC CLUSTERING FOR P2P 63

1.

2.

3.

4.

DHT Lookup for top terms of d

Retrieve all relevant clusters

Compare d with top relevant

clusters

Assign d to best cluster

Clust...

P1

P3

P6

P2
P4

P0

P5

P7

DHT cluster inv. index

1

3
4

3

2

STEPS

For each document d:

T
o

p
 t
e

rm
s

DH...DocumentHolder

Roles of Peer 1

Roles of Peer 2

Holder for key ‘tennis’ in

cluster inverted index

Clusters for term ‘tennis’

Cluster 6 Score:17 Holder:P6 ...

Cluster 5 Score:14 Holder:P5 ...

...

Term Freq

Tennis 5

Sport 3

Volley 2

... ...

Centroid for Cluster 6

Term Freq

Tennis 17

Hockey 16

Volley 11

... ...T
o

p
 t
e

rm
s

Docum... DHT...

Roles of Peer 6

Docum... DHT Participant ClusterHolder

Figure 5.2: PCP2P System architecture

the lack of IDF, such as using the Inverse Peer Frequency [37] can also be combined
with PCP2P.

To avoid overloading, each cluster holder selects random peers to serve as helper
cluster holders, and replicates the cluster centroid to them. Their IP addresses are
also included in the cluster summaries, so that peers can randomly choose a helper for
comparing their documents with the cluster centroid without going through the cluster
holder. Communication between the master and helper cluster holders only takes place
for updating the centroids, by exchanging the respective local centroids, as in [43];
therefore, load balancing does not impede the system scalability.

5.3.2 Document Assignment to Clusters

Each peer is responsible for clustering of its documents periodically. Clustering of a
document consists of two steps: (a) the preselection step, where the most promising
clusters for the document are detected, and, (b) the full comparison step, where further
clusters are filtered out, and the document is fully compared with the remaining clusters
and assigned to the best one.

Preselection step. The preselection step works as follows. Consider a peer p, cluster-
ing a document d. Let TopTerms(d) denote all terms in d with T F(t, d) ≥ DocTFmin(d),
where DocTFmin(d) denotes a frequency threshold for d (we explain how DocTFmin is
derived in Section 5.5). For each term t in TopTerms(d), peer p performs a DHT lookup
and finds the peer that holds the cluster summaries for t (Fig. 5.2, Step 1). It then con-
tacts that peer directly to retrieve all summaries published using t as a key (Step 2).
To avoid duplicate retrieval of summaries, p executes these requests sequentially, and
includes in each request the cluster ids of all summaries already retrieved. Then, p
merges the responses and constructs a list with all retrieved cluster summaries. We
refer to this list as the preselection list, denoted with Cpre.

As we will show later, the summary of the optimal cluster for d is included in
Cpre with high probability. This probability can be controlled by choosing the value of
DocTFmin for each document, and the value of CluTFmin of each cluster. In Section 5.5
we explain how the participating peers decide on these values automatically, such that
the desired probabilistic guarantees are satisfied.

64 CHAPTER 5. P2P TEXT CLUSTERING

Full comparison step. Peer p then sends the term vector of d to the candidate cluster
holders for performing full document-cluster comparison, and retrieves the comparison
results (Fig. 5.2, Step 3). The list of candidate clusters Cpre may be too long. To avoid
sending the document to all cluster holders for full comparison, p uses the cluster
summaries contained in Cpre to filter out the clusters not appropriate for the document
at hand. In the following section we describe three different strategies for this task.
Finally, p assigns d to the most similar cluster, and notifies the respective cluster holder
(Fig. 5.2, Step 4).

5.3.3 Filtering Strategies

We propose three different strategies to filter out clusters from Cpre: (a) Conservative,
(b) Zipf-based, and, (c) Poisson-based filtering. All strategies use the information con-
tained in the retrieved cluster summaries to estimate the cosine similarity between a
document and each of the clusters, and filter out the unpromising clusters. The con-
servative strategy makes a worst-case similarity estimation, which guarantees that the
optimal cluster from the ones in Cpre will be detected. The Zipf-based and Poisson-
based strategies filter out the clusters more aggressively, thereby reducing the network
cost substantially, at the expense of a small probability of errors.

Conservative Filtering. This strategy works similar to Fagin’s No Random Access
(NRA) algorithm [50] for top-k selection: clusters whose maximum possible score is
less than the best already known score are removed from the candidate clusters.

In our case the actual score is the cosine similarity between document and cluster
centroid, defined as

Cos(d, c) =
∑
t∈d

T F(t, d) × T F(t, c)
|d| × |c|

(5.1)

where |d| and |c| are the corresponding L2-Norms, and T F denotes the term frequency
of the term in the document/cluster.

Since the actual value of Cos(d, c) is not available, conservative filtering employs
the information contained in the cluster summaries to estimate the cosine similarity
between the document and each candidate cluster, denoted as ECos(d, c). To ensure
that the optimal cluster will not be filtered out, conservative filtering sets the value of
ECos(d, c) to the maximum possible value for the actual similarity Cos(d, c).

The similarity estimate relies on term frequency estimates for all document terms
not included in the cluster summary. It is computed according to the following rules:
(a) each term not included in the summary of a cluster c has a term frequency of at
most CluTFmin(c) − 1, otherwise it would have been included in the summary, and,
(b) the sum of all estimated term frequencies in the cluster cannot exceed the actual
cluster length. Precisely, let t1, . . . , tz denote the terms of d, sorted descending on their
frequency, such that T F(ti, d) ≥ T F(t j, d) for all i, j s.t. i < j. For cluster c and term t,
we denote the estimated term frequency as ET F(t, c).

Then, cosine similarity is estimated as

ECos(d, c) =

z∑
x=1

T F(tx, d) × ET F(tx, c)
|d| × |c|

(5.2)

5.3. PCP2P: PROBABILISTIC CLUSTERING FOR P2P 65

Particularly for the conservative strategy, ET F(tx, c) is computed as follows:

ET F(tx, c) =

T F(tx, c) , if tx ∈ TopTerms(c)
min

(
CluTFmin(c) − 1, |c|1 − S T (c) − S E(tx, c)

)
, otherwise

where |c|1 denotes the L1-Norm of the cluster terms (see Section 5.1). We use S T (c)
to denote the sum of cluster frequencies for all terms included in TopTerms(c), i.e.,
S T (c) =

∑
t∈TopTerms(c) T F(t, c), and S E(tx, c) =

∑x−1
y=1 ET F(ty, c) is the sum of all term

frequencies for c estimated up to now.
The filtering process works as follows. Peer p sends the compressed document vec-

tor to the first cluster holder in Cpre, denoted as cselected, and retrieves the actual cosine
similarity Cos(d, cselected). It then removes from Cpre the summary of cselected, as well
as the summaries of all clusters with estimated similarity ECos(d, c) < Cos(d, cselected).
The process is repeated until Cpre is empty, and the document is assigned to the cluster
with the highest cosine similarity. Since the expected cosine similarity is never under-
estimated, conservative strategy always assigns the document to the optimal cluster.

For the process to complete faster, the list of clusters is sorted based on their lower
bound for the cosine similarity. This bound is computed from the information included
in the corresponding cluster summary, which is already retrieved by the peer. We call
this the partial cosine similarity:

PCos(d, c) =
∑

t∈TopTerms(c)

T F(t, d) × T F(t, c)
|d| × |c|

(5.3)

Using this ordering has a positive effect on the performance of the full comparison
step.

Zipf-based filtering. Although conservative filtering substantially reduces the num-
ber of comparisons, it is based on a worst-case estimate for the cosine similarity. A
more optimistic estimate allowing for further reductions can be derived based on the
assumption that the term frequencies in the cluster follow a Zipf distribution. A term
frequency estimate for the cosine similarity can be computed as follows:

ET F(tx, c) =

T F(tx, c) , if tx ∈ TopTerms(c)

min
(
|c|1 − S T (c) − S E(tx, c),

|c|1
r(t,c)s×HDT (c),s

)
, otherwise

DT (c) denotes the number of distinct terms in c, and HDT (c),s the generalized harmonic
number of order DT (c) of s, i.e.,

∑DT (c)
i=1 i−s. Assuming that term frequencies follow

a Zipf distribution with exponent s, the expected term frequency of t in c is given by
|c|1/(r

s×HDT,s), where r(t, c) represents the estimated rank of t in c. The ranks of miss-
ing terms are estimated as follows: the ith document term not included in TopTerms(c)
is assumed to exist in the cluster, with rank r = |TopTerms(c)| + i.

Apart from the definition of ET F(t, c), Zipf-based filtering is identical to conserva-
tive filtering.

Poisson-based filtering. This strategy follows a different approach for pruning the
candidate clusters, which allows for probabilistic guarantees, and for a tradeoff between
clustering quality and network cost. The strategy is based on the assumption that the
score of each term t across all documents follows a Poisson distribution, where the

66 CHAPTER 5. P2P TEXT CLUSTERING

score of a term represents the term frequency normalized on the document’s length,
i.e., T F(t)/|d|. Poisson distribution is often used, e.g., [164], as it provides a reasonable
fit for the term scores, and it has some convenient properties, which will be discussed
in Section 5.5.5.

Note that the Poisson distribution model does not contradict the well accepted Zipf
model for term frequencies within a single cluster, since the two distributions model
two discrete concepts. On the one hand, Poisson distribution models the scores of any
term t in all clusters. On the other hand, the Zipf distribution describes the scores of all
terms in a single document. Therefore, the two models are not contradicting.

Consider peer p, which has already retrieved Cpre for document d. First, p com-
putes the partial cosine similarity PCos(d, c) of d and each cluster c ∈ Cpre (Eqn. 5.3).
For the cluster cmaxp with the best partial cosine similarity, it sends d to the cluster
holder to compute the full cosine similarity Cos(d, cmaxp). Then, p estimates the re-
maining cosine similarity RCos(d, c) for all other clusters c ∈ Cpre, i.e., the differ-
ence between the actual cosine similarity Cos(d, c) and the partial cosine similarity
PCos(d, c). Instead of estimating RCos(d, c) directly, which would be inefficient, the
peer computes the Probability Density Function (PDF) describing RCos(d, c), which
allows computing the probability that RCos(d, c) is above a threshold. In particular,
as we show in Section 5.5.5, RCos(d, c) follows a Poisson distribution with parameter

λ =
∑

t ∈ d\TopTerms(c)

T F(t, d) ×
AvgS c(t,Cpre)

|d|
, where AvgS c(t,Cpre) is:

AvgSc(t,Cpre) =
∑

c ∈ Cpre

T F(t, c)/|c| , if t ∈ TopTerms(c)
CluTFmin(c)−1

|c| , otherwise

Using this distribution, peer p can compute the probability that RCos(d, c) exceeds any
value Z ∈ [0, 1]. This probability is (Section 5.5.5):

Pr [RCos(d, c) ≥ Z] ≤
m∑

i=
⌊

m(1−Z)
MaxSc

⌋ exp(−λ) ×
λi

i!

with MaxSc =
CluTFmin(c)−1

|c| .
Following, p discards all clusters c ∈ Cpre for which the remaining cosine simi-

larity is less than the difference diff = Cos(d, cmaxp) − PCos(d, c), with high probabil-
ity. In particular, for a required correctness probability Prfcs, clusters are discarded if
Pr[RCos(d, c) < diff] ≥ Prfcs. The optimal cluster for the document is therefore kept
with a probability higher than Prfcs. Peer p sends d to the remaining candidate clus-
ters for cosine similarity computation, and assigns the document to the cluster with the
highest cosine similarity.

Compared to conservative filtering, Poisson-based filtering discards clusters more
aggressively, and thus reduces the required cosine similarities substantially. Its main
benefits compared to Zipf is that it allows controlling the tradeoff between cost and
clustering quality, and provides probabilistic guarantees. Therefore, it can reduce net-
work usage significantly, while still exhibiting a low and predictable error probability.

5.3.4 Further aspects

In this section we describe how PCP2P handles churn, and how it initializes.

5.4. COST ANALYSIS 67

Churn. As already stated, cluster indexing and document assignment are repeated
periodically to compensate churn and to maintain an updated clustering solution. No
synchronization is required between the peers. Cluster holders rebuild the cluster cen-
troids in regular intervals, i.e., every m minutes, including only documents that were
assigned to them during the last m minutes. Therefore, if a peer gets disconnected, its
documents are automatically removed from the clusters in the next m minutes. Peers
re-cluster their documents also every m minutes. Hence, each document belongs to
exactly one cluster at any time, and cluster centroids are at most m minutes stale. An
up-to-date clustering solution can be obtained at any time by fetching the centroids
from the cluster holders.

Initialization. There are different possible ways of initialization. The easiest one
assumes that a peer from the network starts the algorithm by selecting k peers randomly
to act as cluster holders. These cluster holders choose one of their documents as initial
centroid, and publish the cluster summary to the DHT. Then, the initiating peer uses
broadcasting over DHT to notify all participating peers to start clustering. Another
approach can be used for a continuously clustering network [101]. In this case, ini-
tialization in the strict sense is not required. When a peer detects that a cluster holder
has become unreachable, it takes over that role. Since documents are clustered peri-
odically, the new cluster will become populated with the right documents in the next
iteration.

5.4 Cost Analysis
We now compute the network cost of PCP2P, expressed in number of messages and
transfer volume. The network cost is composed of the following: (a) cost of indexing
the cluster summaries, (b) cost of the preselection step for each document, and, (c) cost
of the full comparison step.

Indexing of the cluster summary requires performing a DHT lookup for each term
in TopTerms(c), and publishing the summaries. The corresponding indexing cost per
cluster is Costind = O

(
|TopTerms(c)| × log(n)

)
, both with respect to transfer volume

and number of messages. The preselection step is executed for each document d, and
causes |TopTerms(d)| DHT lookups, which translate to a cost Costpre = O

(
log(n)×

|TopTerms(d)|). Finally, for the full comparison step, the document is sent to all re-
maining candidate clusters. Let C f cs denote the set of these clusters for d. Then, the
full comparison step requires Cost f cs = O(|C f cs|) messages. With respect to transfer
volume, this step incurs a cost TVCost f cs = O(|C f cs| × |d|).

The cost of indexing the cluster summaries is negligible, because the number of
clusters is small, and their summaries are very compact. The dominating cost, both
with respect to number of messages and transfer volume, is the one incurred for as-
signing documents to clusters, namely Costpre + Cost f cs. Per document, this cost has
the following properties: (a) it grows logarithmically with the number of peers, be-
cause DHT access cost grows logarithmically, and (b) it is independent of the size of
the document collection. It also depends on |C f cs|, which is by definition at most equal
to the number of clusters. Therefore, the clustering cost per document scales, in the
worst case, linearly with the number of clusters. However, our experimental evaluation
shows that the number of clusters in C f cs is very small, and independent of the total
number of clusters k. Therefore, in practice, this cost grows at a much slower rate than
linear, enabling PCP2P to scale to large networks, and to large numbers of documents
and clusters.

68 CHAPTER 5. P2P TEXT CLUSTERING

5.5 Probabilistic Analysis
For Section 5.3, we have assumed that the optimal values for CluTFmin(c) and
DocTFmin(d) are given. We now describe how each peer can compute these values
dynamically to satisfy the desired system-wide clustering quality requirements.

The analysis uses a probabilistic document generation model [130, 157]. Briefly,
the model assumes that each document belongs to a topic T , and each topic Ti is
described by a term probability distribution φi (a language model). Composite topics
are also possible. A document of length l belonging to Ti is created by randomly
selecting l terms with replacement from φi. The probability of selecting a term t is
given by the topic distribution φi.

5.5.1 Notations and Overview
The user initiating the algorithm chooses the desired quality in terms of the required
probability that each document is clustered at the optimal cluster, Prcorrect. The rest
of the system parameters are determined automatically from PCP2P. Prcorrect is associ-
ated with the following three system parameters: (a) Prind, that represents the proba-
bility that the cluster summary of each cluster ci is indexed in all TopDistr(α, φi), (b)
Prpre, expressing the probability that the preselection step for a document retrieves
the optimal cluster for this document, and, (c) Pr f cs, which is the probability that
the full comparison step retrieves the optimal cluster. The desired values for these
probabilities are common to all peers, and they are selected automatically such that
Prpre × Pr f cs ≥ Prcorrect.

The purpose of the probabilistic analysis is to enable PCP2P to automatically set
Prind, Prpre, and Pr f cs for the given Prcorrect, and to configure each step accordingly
such that these probabilities are satisfied. First, during the cluster indexing step, the
cluster holder of each cluster ci computes the value of CluTFmin(ci) so that the cluster
summary is indexed in each term from TopDistr(α, φi) with the predefined probabil-
ity Prind. In Section 5.5.3 we show how CluTFmin is computed per cluster such that
Prind is satisfied. A document is clustered correctly when both the preselection and full
comparison step include the optimal cluster in their result. The two steps succeed with
probabilities Prpre and Pr f cs, respectively. At the preselection step, the peer holding
document d selects DocTFmin(d) so that the optimal cluster for d is retrieved with prob-
ability Prpre, taking the probability Prind into consideration. We explain how DocTFmin

is computed in Section 5.5.4. Finally, the full comparison step takes place. In this step,
p decides which candidate clusters to filter out as non-promising such that the best clus-
ter is found with probability Prfcs. We present the corresponding probabilistic analysis
for this step in Section 5.5.5.

The following notations are used throughout the analysis. With Csol := {c1, . . . , ck}

we denote a snapshot of clusters on an ongoing clustering. Each cluster ci ∈ Csol

follows the language model φi. We use t1[φi], . . . , tn[φi] to denote the terms of φi sorted
by descending probabilities. With TopDistr(α, φi) we denote the set of α terms with
highest probability in φi, i.e., t1[φi], . . ., tα[φi]. Table 5.1 summarizes the notations.

5.5.2 Preliminaries
We first derive probabilistic bounds for the estimation of the term frequency of any term
t in a document or a cluster, given the term frequency distribution of the document or
the cluster. These bounds are required for the subsequent analysis.

5.5. PROBABILISTIC ANALYSIS 69

k Number of clusters
φi Term distribution of cluster ci

TopDistr(α, φi) The set of α terms with highest probability in φi

tx[φi] The x term of distribution φi, where terms are sorted by descend-
ing probability

Prcorrect Desired correctness probability
Prind Probability that the cluster summary is indexed in all terms in

TopDistr(α, φi)
Prpre Probability that the preselection step succeeds
Prfcs Probability that the full comparison step succeeds

Table 5.1: Notations

Theorem 5.1 computes the probability that a term with a given expected term fre-
quency has an actual term frequency in the document higher than a given value.

Theorem 5.1. Given a document d which follows language model φi. The expected
term frequency of term t in d according to φi is denoted with ˆT F(t, d). For term t with

ˆT F(t, d) > DocTFmin, the probability of the actual term frequency T F(t, d) exceed-
ing DocTFmin is at least 1 − exp(− ˆT F(t, d) × (1 − DocTFmin/ ˆT F(t, d))2/2). Further-
more, for a probability Prmin the term frequency of term t in d is at least b ˆT F(t, d) −√

2 ˆT F(t, d) × log(1
1−Prmin

)c.

Proof is included in the appendix.
Similarly, Theorem 5.2 computes the probability of a term with a given expected

term frequency to have a term frequency in the cluster exceeding a given value.

Theorem 5.2. Given a cluster ci which follows language model φi. The expected term
frequency of term t in ci according to φi is denoted with ˆT F(t, ci). For term t with

ˆT F(t, ci) > CluTFmin, the probability of the actual term frequency T F(t, ci) to ex-
ceed CluTFmin is at least 1 − exp(− ˆT F(t, ci) × (1 − CluTFmin/ ˆT F(t, ci))2/2). Further-
more, for a probability Prmin the term frequency of term t in ci is at least b ˆT F(t, ci) −√

2 ˆT F(t, ci) × log(1
1−Prmin

)c.

Proof is included in the appendix.

5.5.3 Indexing of Cluster Summaries
We now show how cluster holders derive the value of CluTFmin so that the cluster
indexing process satisfies the required probabilistic guarantees. Assuming that term
frequencies follow a Zipf distribution (validated, for example, in [20]) the expected
frequency of the α th most probable term of φi in a given cluster ci is ˆT F(tα[φi], ci) ≈
|ci|1/(α

s × Hm,s) where |ci|1 is the L1-norm of ci (see Section 5.1), m is the number of
distinct terms in ci, and s is the Zipf exponent of φi.

The cluster holders are required to publish their cluster summaries using each of
the terms in TopDistr(α, φi) as a key, with a probability at least equal to the system-
wide value Prind. Notice that the corresponding cluster distribution φi for each cluster
ci, hence also the set of terms TopDistr(α, φi), are unknown to the cluster holder.
However, the cluster holder can use Theorem 5.2 to compute a lower bound for the

70 CHAPTER 5. P2P TEXT CLUSTERING

cluster term frequency of tα[φi]:

CluTFmin(tα[φi], ci) =

 ˆT F(tα[φi], ci) −

√
2 ˆT F(tα[φi], ci) × log

(
1

1 − Prind

) (5.4)

All terms t j[φi] for j ≤ α will have a term frequency in the cluster at least equal to
CluTFmin with a minimum probability Prind. Thus, cluster holders will detect each
term in TopDistr(α, φi) with a minimum probability Prind.

In Section 5.5.6, we describe how the system-wide values for Prind and α are set,
and how the Zipf exponent is estimated.

5.5.4 Preselection Step

A peer p needs to set the value of DocTFmin per document which will guarantee that the
optimal cluster for the document is detected in the preselection step with a probability
Prpre. We now describe how this value is determined.

According to the cluster indexing activity, the cluster holder of ci includes in the
cluster summary each term in TopDistr(α, φi) with a probability of at least Prind. Con-
sider a document d which follows φi. For the preselection step to succeed, peer p needs
to correctly identify from d at least one of the terms from TopDistr(α, φi) that were
also included in the cluster summary. In this case, the optimal cluster will be included
in the list of clusters collected in the preselection step.

For a given value of DocTFmin and for all j ≤ α, term t j[φi] is correctly identified
by peer p when the term frequency of t j[φi] in d is at least equal to DocTFmin. The
probability that this happens is denoted by Pr[T F(t j, d) ≥ DocTFmin], and can be com-
puted with Theorem 5.1. Therefore, the probability that the preselection step succeeds
is:

Prpre(DocTFmin) ≥ 1 −
α∏

j=1

(
1 − Pr[T F(t j, d) ≥ DocTFmin] × Prind

)
(5.5)

Using Equation 5.5, peer p derives the maximum value of DocTFmin that satisfies
Prpre(DocTFmin) ≥ Prpre. Then, it determines the document’s terms with frequency at
least equal to DocTFmin, and executes the preselection step.

5.5.5 Full comparison step

The preselection step for d returns a set of candidate clusters Cpre. From this list, peer
p selects the clusters that will be fully compared with d, by using one of the filtering
strategies introduced in Section 5.3.3. The conservative filtering strategy always returns
the best cluster copt from Cpre, and thus it always assigns d to the best candidate cluster.
For the Poisson-based strategy, we now obtain probabilistic guarantees that d will be
assigned to copt. The Zipf-based strategy does not provide probabilistic guarantees for
the full comparison step.

Our analysis follows the notation introduced in Section 5.3.3. The analysis assumes
that for each term t ∈ d, the Probability Density Function (PDF) of the term scores
of t in all clusters follows the Poisson distribution, where term scores are defined as
the term frequencies normalized on the cluster length. In other words, {T F(t, c1)/|c1|,
T F(t, c2)/|c2|, . . . , T F(t, ck)/|ck |} follow a Poisson distribution. Poisson distribution,

5.5. PROBABILISTIC ANALYSIS 71

besides being a good fit for the term scores, has two useful properties: (i) Poisson
fitting is efficient, as it only requires finding the average value, and, (ii) the convolution
of k Poisson distributions with λ1, . . . , λk is also a Poisson with λ =

∑k
i=1 λi. This

second property is of particular importance, because it allows us to efficiently compute
the PDF of RCos(d, c) by convoluting the Poisson distributions corresponding to the
normalized term frequencies of all document terms that are not found in TopTerms(c).

To estimate the PDF of a term t, peer p finds the AvgSc(t,Cpre) value:

AvgSc(t,Cpre) =
∑

c ∈ Cpre

T F(t, c)/|c| , if t ∈ TopTerms(c)
CluTFmin(c)−1

|c| , otherwise

Since Poisson is a discrete distribution, for computing the distribution p discretizes the
score range to m equidistant values, v0, v1, . . . , vm−1, with vi = 1 − i × MaxS c(t)/m.
MaxS c(t) refers to the upper bound score of t, which is CluTFmin(c)−1

|c| given that t <
TopTerms(c). The value of m represents the resolution of the discretization.

The PDF of RCos(d, c) for c ∈ Cpre is estimated in a similar fashion. First, p finds
all document terms that are not included in TopTerms(c). These terms are the terms
that may contribute to RCos(d, c). The contribution of any of these terms to RCos(d, c)
is T F(t,d)

|d| ×
T F(t,c)
|c| . Since the PDF of T F(t,c)

|c| is a Poisson, the PDF of the term’s con-
tribution is also Poisson, with λt =

T F(t,d)
|d| × AvgSc(t). The PDF of RCos(d, c) is the

convolution of the PDFs for all terms t ∈ d\TopTerms(c). We discretize the scores
to m equidistant values, using 1 − PCos(d, c) as a maximum. The resulting PDF is:

Pr[RCos(d, c) ≥ v j] ≤
∑m

i= j e−λ ×
λi

i!
(5.6)

where λ =
∑

t ∈ d\TopTerms(c) λt. Note that the values of AvgSc and MaxSc are always
upper bounds for the real average and maximum term scores. Therefore, RCos is never
underestimated because of this.

5.5.6 Algorithm Configuration
In the previous sections we have described PCP2P without focusing on how the user
sets the parameters for the algorithm and what implications these parameters have. As
in standard K-Means, a user can freely select the number of clusters k. In addition, she
can configure the acceptable correctness probability Prcorrect for her application. All
other parameters are derived automatically, as follows.

First, a few sampled documents are collected from the network and are used to
estimate the Zipf distribution skew. The algorithm computes the remaining values as
follows. By default, α is set to 10 and Prind to 0.9, since the algorithm adapts to these
values to satisfy the probabilistic guarantees. The values of Prpre and Prfcs are set as
follows. In conservative filtering, the full comparison step is always correct, there-
fore Prpre = Prcorrect satisfies the probabilistic guarantees. For Zipf-based filtering we
only provide probabilistic guarantees for the preselection step, and these are achieved
by setting Prpre = Prcorrect. For Poisson-based filtering, Prpre = Prfcs =

√
Prcorrect

clearly satisfies the probabilistic guarantees. The algorithm then employs the analysis
described above to derive the DocTFmin and CluTFmin that satisfy the desired proba-
bilistic guarantees.

The previous combination of α and the probability values is not the only satisfying

72 CHAPTER 5. P2P TEXT CLUSTERING

combination. All combinations satisfying the constraint Prfcs × Prpre ≥ Prcorrect satisfy
the probabilistic guarantees, and the optimal combination of α, Prind, Prpre, and Prfcs

is the one that minimizes the cost. Preliminary experiments show that such an opti-
mization could reduce the cost further by around 10%. Part of our future work is to
efficiently identify the configuration that minimizes the cost.

5.6 Experimental Evaluation

In addition to the probabilistic analysis, PCP2P was evaluated experimentally with up
to 1 million peers and 1 million documents. The experiments had the following objec-
tives: (a) to evaluate quality and efficiency of PCP2P with different network configu-
rations and multiple datasets, (b) to compare the algorithm with other P2P clustering
algorithms, including the state of the art, as well as with the standard centralized coun-
terpart, (c) to examine the scalability of PCP2P, with respect to network size, number
of documents and number of clusters, and, (d) to assess the effects of load balancing.
We now describe the evaluation methodology, datasets, and measures.

Evaluation measures. Efficiency was evaluated using the following criteria: (a) num-
ber of messages, (b) transfer volume, and, (c) number of document-cluster comparisons
per clustering iteration.

Clustering quality was evaluated using the standard quality measures of entropy,
purity, and normalized mutual information (NMI) [185, 109], which compare the clus-
tering results against the human-generated document classification accompanying the
datasets.

Given a clustering solution Csol = {c1, c2, . . . , ck} of N documents, and a set of
human-generated classes Z = {ζ1, ζ2, . . . , ζτ}, such that each document belongs to ex-
actly one class and exactly one cluster, the purity of Csol is computed by labeling each
cluster to the class with the most documents in the cluster, and then measuring the
accuracy of the clustering. Precisely:

purity(Csol,Z) =
1
N

∑
k

max
j
|ck ∩ ζ j|

Purity takes values between 0 and 1, with high values denoting clusterings that closely
match the human-generated classes.

Normalized mutual information is computed as follows:

NMI(Csol,Z) = −
2I(Csol,Z)∑k

j=1
|c j |

N log |c j |

N +
∑τ

j=1
|ζ j |

N log |ζ j |

N

where |c j| and |ζ j| denote the number of documents in cluster c j and class ζ j respec-
tively. I(Csol,Z) is the mutual information, computed as follows:

I(Csol,Z) =
∑

k

∑
j

|ck ∩ ζ j|

N
log

N |ck ∩ ζ j|

|ck ||ζ j|

NMI takes values in the range of 0 and 1, with higher values denoting better clustering
solutions. Note that both purity and NMI never reach 1, if the number of clusters and

5.6. EXPERIMENTAL EVALUATION 73

the number of classes are not equal. Therefore, the scores of two different clustering
solutions are only comparable when they have an equal number of clusters.

Entropy is defined per cluster as follows:

E(c j,Z) = −

j∑
i=1

pi j log(pi j)

with pi j the probability that a document of cluster j belongs to class ζi. The total
entropy of the solution is computed by summing all normalized cluster entropies:

E(Csol,Z) = −

k∑
j=1

|c j| × E(c j,Z)
N

with |c j| denoting the number of documents in cluster c j. A low total entropy denotes a
good clustering solution, with the caveat that a total entropy of 0 could be achieved by
assigning each document to its own cluster.

Notice that computation of the three standard quality measures requires the refer-
ence classification Z. Therefore, for choosing the datasets for the experiments, we
required that these provided a reference classification.

Since PCP2P approximates the standard K-Means, as an approximation quality
metric we measured the number of document assignments differing from the standard
K-Means clustering solution. Precisely, if Csol′ denotes the standard K-Means cluster-
ing solution, then the approximation quality is:

Ap(Csol,Csol′) =
1
N

∑
i

max arg j |c j ∩ c′i |

Clearly, approximation quality requires that the compared algorithms consider the same
collection at every iteration. Therefore, we simulated churn such that all algorithms
end up with an identical collection at each clustering iteration. Also, to exclude effects
caused by the random cluster initialization, all algorithms were initialized with the
same cluster centroids.

Datasets and Methodology. We simulated networks of up to one million peers and
one million documents. The experiments were conducted on three datasets, a synthetic
dataset that was generated according to the well-accepted Probabilistic Topic Model,
and two real-world datasets, the Reuters Corpus Volume 1 (RCV1) [93], and MED-
LINE [112], the largest standard text collections which include a human-generated
classification. Note that a classification is required to compute the quality scores.
RCV1 includes more than 800,000 categorized newswire articles, pre-processed with
stopword filtering and stemming. MEDLINE on the other hand contains information
for more than 11 million citations with abstracts, categorized according to the Medi-
cal Subject Headings vocabulary. To be able to apply standard quality measures, we
have used a subset of the two collections, taking the articles and abstracts that belonged
to exactly one class. This resulted in approximately 140 thousands articles for RCV1
categorized in 53 classes, and 130 thousands abstracts for MEDLINE, belonging to
40 classes. Furthermore, to systematically examine the effect of the collection’s char-
acteristics on the algorithm, and to evaluate it with a significantly larger dataset, we
have also used synthetic document collections (SYNTH) with a size of 1.4 million

74 CHAPTER 5. P2P TEXT CLUSTERING

Experimental Configurations
Network size 100 – 1,000,000; 100,000
Number of documents 10000 – 1,000,000; 100,000
Number of clusters 25 – 200; 100
Probability Prpre 0.76 – 0.98; 0.9

Table 5.2: Experimental configurations. The default values are emphasized.

documents each. These collections were created according to the Probabilistic Topic
Model proposed in [157], from 200 composite language models, with different term
distribution skews.

Unless otherwise noted, peer collections were created by partitioning the datasets
uniformly to all peers. Churn was simulated by selecting a percentage of peers (up
to 20% per clustering iteration), and replacing them with new peers, carrying new
documents. The number of documents at each iteration, after churn, was 100,000 for
the real-world datasets, and 1 million for the SYNTH dataset. Results are presented for
20% churn; the outcome was similar for other churn factors.

PCP2P was compared with two other distributed clustering algorithms: (a) LSP2P,
which is the state of the art in P2P clustering [42], and, (b) DKMeans, a distribution of
K-Means over P2P (see Section 5.1). Note that DKMeans produces exactly the same
results as K-Means, and therefore constitutes a good comparison baseline. We have not
included other P2P clustering algorithms in the comparison, e.g., [69, 47], since these
do not scale to large networks, and to high-dimensional data like text, as discussed in
Section 5.2.

PCP2P was also compared with a modified version of DKMeans, in which all peers
downloaded all cluster centroids from cluster holders and performed the document-
cluster comparisons locally. However, the results showed that this modified DKMeans
is very inefficient regarding transfer volume compared to all other algorithms. For
example, for the configuration of 10,000 peers and 50 clusters, the modified DKMeans
requires 24,600 Mbytes compared to 3,770 Mbytes required by original DKMeans.
This ratio becomes even less favorable with larger networks, and with more clusters.
Therefore, we do not include the modified DKMeans in our discussion.

In the following, we present average results after 40 repetitions of each experiment.
Notice that, owing to the continuous peer churn, the clustering algorithms never finish,
i.e., the cluster centroids do not converge. This is also the case for real-world setups,
with the network contents changing continuously. However, the quality results of all
algorithms stabilize after about 15 iterations. Therefore, the algorithms are let to run
for 20 iterations, before we measure their network cost and quality per iteration. The
investigated configurations, and their default values are summarized in Table 5.2.

5.6.1 Quality

The quality of PCP2P is influenced by the correctness probability, the number of clus-
ters, and the dataset characteristics (the number of documents, and the term distribution
skew). The network characteristics, as well as the distribution of documents to peers,
does not have any effect on the quality, since each document is clustered individually.
Therefore, the results reported in this section are also representative of networks of
different sizes, as well as of different document distribution models.

5.6. EXPERIMENTAL EVALUATION 75

0.275

0.280

0.285

0.290

0.295

0.300

0.305

 0.76 0.8 0.84 0.88 0.92 0.96

E
nt

ro
py

Correctness Probability Prpre

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0.76 0.8 0.84 0.88 0.92 0.96

A
pp

ro
xi

m
at

io
n

qu
al

ity

Correctness Probability Prpre

0.24

0.26

0.28

0.30

0.32

0.34

0.36

 25 50 75 100 125 150 175 200

E
nt

ro
py

Number of Clusters

 1.26

 1.28

 1.3

 1.32

 1.34

 1.36

 1.38

 1.4

 0.8 0.85 0.9 0.95

E
nt

ro
py

Correctness Probability

K-Means, DKMeans Conservative Poisson Zipf

 1.26

 1.28

 1.3

 1.32

 1.34

 1.36

 1.38

 1.4

 0.8 0.85 0.9 0.95

E
nt

ro
py

Correctness Probability

K-Means, DKMeans Conservative Poisson Zipf

 1.26

 1.28

 1.3

 1.32

 1.34

 1.36

 1.38

 1.4

 0.8 0.85 0.9 0.95

E
nt

ro
py

Correctness Probability

K-Means, DKMeans Conservative Poisson Zipf

 1.26

 1.28

 1.3

 1.32

 1.34

 1.36

 1.38

 1.4

 0.8 0.85 0.9 0.95

E
nt

ro
py

Correctness Probability

K-Means, DKMeans Conservative Poisson Zipf

Figure 5.3: Quality: (a) Entropy, (b) Approximation quality, (c) Entropy for different
number of clusters

Correctness probability. To examine the effect of the correctness probability Prpre,
we executed PCP2P on a network of 10,000 peers, configured with Prpre in the range
of 0.76 to 0.98. Figure 5.3(a) corresponds to the entropy measure for the RCV1 col-
lection (lower entropy denotes better clustering quality). Table 5.3, Part I, summarizes
the results for purity and NMI. As expected, the quality of all PCP2P variants increases
with the correctness probability. Conservative PCP2P yields the best quality, since it
never filters out potential optimal clusters. The Poisson and Zipf-based variants yield
comparable quality. For probabilities higher than 0.9, all variants closely approximate
DKMeans. The experimental results with MEDLINE and SYNTH had similar out-
comes, summarized in Table 5.3, Part IV.

Figure 5.3(b) plots the approximation quality of PCP2P for different values of Prpre.
Conservative filtering yields the best approximation quality, with a minimum of 0.97,
and a maximum of 0.997. Zipf-based and Poisson-based PCP2P are also accurate,
yielding an approximation quality of at least 0.95. We also note that the resulting
approximation quality is always higher than the one expected by the probabilistic guar-
antees, since the guarantees compute upper bounds for the number of errors.

Number of clusters. As shown in Figure 5.3(c), the number of clusters also affects
the quality of all algorithms. This is expected, considering that the computation of the
quality measures depends on the number of clusters. However, the quality of PCP2P
is always very close to the maximum quality delivered by DKMeans, even for the
configuration with 200 clusters. Summarizing, the approximation quality of PCP2P
does not decrease with an increase of the number of clusters.

76 CHAPTER 5. P2P TEXT CLUSTERING

Se
tu

p
Q

ua
lit

y
C

os
t

A
lg

.
E

nt
r.

N
M

I
Pu

r.
M

sg
s

Tr
.V

ol
.

×
10

6
(G

b)
I.

V
ar

y
pr

ob
ab

ili
ty

gu
ar

an
te

es
.R

C
V

1,
10

0
cl

us
te

rs
,1

0,
00

0
pe

er
s

P
r p

re
N

/A
K

M
ea

ns
0.

27
9

0.
52

4
0.

68
9

18
6

13
.2

0.
8

C
on

s.
0.

29
4

0.
50

6
0.

68
2

12
.2

2.
4

Po
is

so
n

0.
29

9
0.

50
3

0.
67

9
10

.8
1.

98
Z

ip
f

0.
29

5
0.

50
6

0.
68

2
10

.8
1.

98

0.
9

C
on

s.
0.

28
6

0.
51

6
0.

68
9

13
.7

2.
7

Po
is

so
n

0.
28

9
0.

51
3

0.
68

7
12

.1
2.

24
Z

ip
f

0.
28

6
0.

51
6

0.
68

9
12

.1
2.

23

0.
98

C
on

s.
0.

27
8

0.
52

5
0.

69
4

23
.9

3.
66

Po
is

so
n

0.
28

1
0.

52
3

0.
69

2
21

.8
3.

03
Z

ip
f

0.
28

0
0.

52
4

0.
69

3
21

.7
3

II
.V

ar
y

#d
oc

um
en

ts
.S

Y
N

T
H

,e
xp

.=
1.

0,
P

r p
re

=
0.

9,
10

0,
00

0
pe

er
s

D
oc

um
en

ts

10
00

00

K
M

ea
ns

0.
16

5
0.

90
6

0.
49

0
18

6.
2

10
.1

7
C

on
s.

0.
16

5
0.

90
6

0.
49

0
3.

68
0.

22
Po

is
so

n
0.

16
5

0.
90

5
0.

48
9

3.
67

0.
22

Z
ip

f
0.

16
5

0.
90

6
0.

49
0

3.
67

0.
22

50
00

00

K
M

ea
ns

0.
16

5
0.

90
5

0.
48

4
26

6.
6

21
.1

7
C

on
s.

0.
16

6
0.

90
5

0.
48

3
17

.9
1

1.
08

Po
is

so
n

0.
16

7
0.

90
4

0.
48

3
17

.8
2

1.
08

Z
ip

f
0.

16
5

0.
90

5
0.

48
5

17
.8

5
1.

08

10
00

00
0

K
M

ea
ns

0.
16

4
0.

90
7

0.
48

4
36

7.
1

34
.9

1
C

on
s.

0.
16

3
0.

90
7

0.
48

5
34

.7
8

2.
08

Po
is

so
n

0.
16

4
0.

90
6

0.
48

5
34

.6
1

2.
07

Z
ip

f
0.

16
5

0.
90

5
0.

48
2

34
.6

7
2.

07
II

I.
V

ar
y

#p
ee

rs
.S

Y
N

T
H

,P
r p

re
=

0.
9,

10
0

cl
us

te
rs

Pe
er

s

10
00

00

K
M

ea
ns

0.
16

4
0.

90
7

0.
48

1
36

7.
1

34
.9

1
C

on
s.

0.
16

4
0.

90
7

0.
48

5
34

.7
8

2.
08

Po
is

so
n

0.
16

4
0.

90
6

0.
48

5
34

.6
1

2.
07

Z
ip

f
0.

16
5

0.
90

5
0.

48
2

34
.6

7
2.

07

50
00

00

K
M

ea
ns

0.
16

4
0.

90
7

0.
48

1
11

47
.5

8
69

.8
0

C
on

s.
0.

16
4

0.
90

7
0.

48
5

41
.3

8
2.

42
Po

is
so

n
0.

16
4

0.
90

6
0.

48
5

41
.2

7
2.

44
Z

ip
f

0.
16

5
0.

90
5

0.
48

2
41

.2
9

2.
44

Se
tu

p
Q

ua
lit

y
C

os
t

A
lg

.
E

nt
r.

N
M

I
Pu

r.
M

sg
s

Tr
.V

ol
.

×
10

6
(G

b)
Pe

er
s

(I
II

.c
on

tin
ue

d.
..)

10
00

00
0

K
M

ea
ns

0.
16

4
0.

90
7

0.
48

1
21

94
.1

6
11

6.
59

C
on

s.
0.

16
4

0.
90

7
0.

48
5

43
.7

8
2.

57
Po

is
so

n
0.

16
4

0.
90

6
0.

48
5

43
.6

7
2.

56
Z

ip
f

0.
16

5
0.

90
5

0.
48

2
43

.7
2

2.
56

IV
.V

ar
y

co
lle

ct
io

n.
P

r p
re

=
0.

9,
10

0
cl

us
te

rs
,1

00
,0

00
pe

er
s

C
ol

le
ct

io
n

M
E

D
L

IN
E

K
M

ea
ns

0.
55

7
0.

22
2

0.
37

3
18

6.
2

12
.5

8
C

on
s.

0.
56

6
0.

21
2

0.
36

7
15

.9
8

2.
64

Po
is

so
n

0.
57

0
0.

20
8

0.
36

2
13

.1
1

1.
87

Z
ip

f
0.

56
8

0.
21

0
0.

36
5

13
.0

9
1.

89

SY
N

T
H

ex
p.

=
0.

5

K
M

ea
ns

0.
17

0
0.

89
9

0.
49

1
18

6.
2

11
.8

1
C

on
s.

0.
17

0
0.

89
9

0.
49

3
15

.9
3

1.
09

Po
is

so
n

0.
16

9
0.

89
9

0.
49

7
15

.4
2

0.
99

Z
ip

f
0.

16
9

0.
89

9
0.

49
4

15
.4

4
1

SY
N

T
H

ex
p.

=
1.

0

K
M

ea
ns

0.
16

5
0.

90
6

0.
49

0
18

6.
2

10
.1

7
C

on
s.

0.
16

5
0.

90
6

0.
49

0
3.

68
0.

22
Po

is
so

n
0.

16
5

0.
90

5
0.

48
9

3.
67

0.
22

Z
ip

f
0.

16
4

0.
90

6
0.

49
0

3.
67

0.
22

SY
N

T
H

ex
p.

=
1.

4

K
M

ea
ns

0.
16

4
0.

90
7

0.
48

7
18

6.
2

9.
47

C
on

s.
0.

16
3

0.
90

7
0.

48
9

3.
55

0.
21

Po
is

so
n

0.
16

3
0.

90
7

0.
48

9
3.

55
0.

21
Z

ip
f

0.
16

3
0.

90
8

0.
48

9
3.

55
0.

21
V.

V
ar

y
#c

lu
st

er
s.

R
C

V
1,

P
r p

re
=

0.
9,

10
0,

00
0

pe
er

s
C

lu
st

er
s

50

K
M

ea
ns

0.
31

4
0.

53
8

0.
65

8
93

.1
6.

59
C

on
s.

0.
32

3
0.

52
7

0.
65

5
12

.9
1.

88
Po

is
so

n
0.

32
3

0.
52

7
0.

65
5

11
.9

4
1.

61
Z

ip
f

0.
32

5
0.

52
6

0.
65

2
11

.8
3

1.
59

10
0

K
M

ea
ns

0.
27

9
0.

52
5

0.
68

9
18

6.
2

13
.1

7
C

on
s.

0.
28

9
0.

51
3

0.
68

5
13

.6
7

2.
69

Po
is

so
n

0.
28

9
0.

51
4

0.
68

6
12

.1
2.

24
Z

ip
f

0.
29

1
0.

51
2

0.
68

3
12

.5
2.

23

20
0

K
M

ea
ns

0.
24

6
0.

51
3

0.
72

6
37

2.
2

26
.3

4
C

on
s.

0.
24

8
0.

50
9

0.
72

6
14

.8
6

4.
04

Po
is

so
n

0.
25

2
0.

50
6

0.
72

3
12

.2
6

3.
26

Z
ip

f
0.

25
1

0.
50

8
0.

72
4

12
.2

7
3.

27

Ta
bl

e
5.

3:
D

et
ai

le
d

ex
pe

ri
m

en
ta

lr
es

ul
ts

5.6. EXPERIMENTAL EVALUATION 77

Dataset characteristics. To verify the applicability of the PCP2P for different text
corpora, we have used the SYNTH collection, which enabled us to manipulate its char-
acteristics in a systematic way. Particularly, all algorithms were executed on a network
with a fixed number of peers, progressively increasing the number of documents up to
1 million. Table 5.3, Part II, presents key results of this experiment. Our first observa-
tion is that collection size does not have a significant effect on clustering quality; the
minor fluctuations (i.e., between 0.164 and 0.168 for entropy) are due to the different
document collections clustered at each configuration, and not due to an algorithmic
factor. As such, the PCP2P quality always remains very close to the quality achieved
by DKMeans, even for the largest collection with one million documents.

The term frequency distribution skew of the dataset is also an important factor
for the quality of PCP2P, since the algorithm relies on the fact that term frequencies
follow the Zipf distribution. Although it is widely accepted that document collections
follow this distribution, different document collections exhibit different distribution
skews [20]. For example, the RCV1 collection used in our experiments has a skew
of 0.55 and MEDLINE has a skew of 0.59. Other values, typically around 1.0, are
also frequently reported in the literature, e.g., in [20, 190]. To evaluate the influence of
the skew on PCP2P, we have used the SYNTH collections generated with different Zipf
skew factors, between 0.5 and 1.4. The example results, presented in Table 5.3, Part IV,
confirm that PCP2P adapts to the collection skew and delivers high-quality clustering
in all cases, very close to the DKMeans results.

5.6.2 Efficiency and scalability
We now investigate the influence on efficiency of the correctness probability, the net-
work and collection characteristics, as well as the number of clusters. Furthermore, we
examine the additional cost imposed by load balancing.

Correctness probability. Figures 5.4(a) and (b) show the number of messages and
transfer volume per clustering iteration in correlation to Prpre. The results correspond
to a network of 100,000 peers with the RCV1 collection, and with 20% churn. For
comparison purposes the cost of DKMeans is also included in the plots. All PCP2P
variants generate an order of magnitude less messages than DKMeans, with Poisson
and Zipf-based PCP2P being the most efficient. Concerning transfer volume, conser-
vative filtering requires between 17% and 27% of the transfer volume of DKMeans,
whereas Zipf-based and Poisson-based filtering require between 15% and 22%. Note
that the Poisson variant already provides 90% correctness probability with 6% mes-
sages and 17% of the transfer volume of DKMeans. The number of document-cluster
comparisons – Figure 5.4(c) – which translates to computational cost for the cluster
holders, is also substantially reduced compared to the baseline: the conservative strat-
egy requires at most 12% of the DKMeans comparisons, whereas the Poisson and
Zipf-based variants require below 1%, even for the highest investigated probabilistic
guarantees, which deliver practically the same quality as DKMeans.

Network size. For evaluating the effect of the number of peers on PCP2P, we con-
ducted experiments with networks of different sizes, and measured the cost for perform-
ing the clustering. In Figure 5.5(a) we present the results for the SYNTH collection,
since this was the largest one and allowed us to simulate networks of up to one million
peers. We see that the cost for PCP2P increases only logarithmically with network size.

78 CHAPTER 5. P2P TEXT CLUSTERING

 10

 12

 14

 16

 18

 20

 22

 24

 0.76 0.8 0.84 0.88 0.92 0.96

M

es
sa

ge
s

(m
ill

io
ns

)

Correctness Probability Prpre

DKMeans: 186 million msgs

1.6

2.0

2.4

2.8

3.2

3.6

 0.76 0.8 0.84 0.88 0.92 0.96

T
ra

ns
fe

r
vo

lu
m

e
(G

by
te

s)

Correctness Probability Prpre

DKMeans: 13.17 GBytes

0.00

0.02

0.04

0.06

0.08

 0.76 0.8 0.84 0.88 0.92 0.96

C

om
pa

ris
on

s
(m

ill
io

ns
)

Correctness Probability Prpre

0.60

0.90

1.20

DKMeans: 10 millions

 1.26

 1.28

 1.3

 1.32

 1.34

 1.36

 1.38

 1.4

 0.8 0.85 0.9 0.95

E
nt

ro
py

Correctness Probability

K-Means, DKMeans Conservative Poisson Zipf

 1.26

 1.28

 1.3

 1.32

 1.34

 1.36

 1.38

 1.4

 0.8 0.85 0.9 0.95

E
nt

ro
py

Correctness Probability

K-Means, DKMeans Conservative Poisson Zipf

 1.26

 1.28

 1.3

 1.32

 1.34

 1.36

 1.38

 1.4

 0.8 0.85 0.9 0.95

E
nt

ro
py

Correctness Probability

K-Means, DKMeans Conservative Poisson Zipf

 1.26

 1.28

 1.3

 1.32

 1.34

 1.36

 1.38

 1.4

 0.8 0.85 0.9 0.95

E
nt

ro
py

Correctness Probability

K-Means, DKMeans Conservative Poisson Zipf

Figure 5.4: Efficiency: (a) number of messages, (b) Transfer volume, (c) number of of
comparisons

 34

 36

 38

 40

 42

 44

 200 400 600 800 1000#
M

es
sa

ge
s

(m
ill

io
ns

)

Network Size (thousands)

 200
1000
2000

 0

 50

 100

 150

 200

 250

 300

 350

 400

 25 50 75 100 125 150 175 200

M

es
sa

ge
s

(m
ill

io
ns

)

Number of Clusters

 2

 4

 6

 8

 10

 12

 14

 16

 0.6 0.8 1 1.2 1.4

M

es
sa

ge
s

(m
ill

io
ns

)

Collection Characteristic Exponent

DKMeans: 186 million msgs

 1.26

 1.28

 1.3

 1.32

 1.34

 1.36

 1.38

 1.4

 0.8 0.85 0.9 0.95

E
nt

ro
py

Correctness Probability

K-Means, DKMeans Conservative Poisson Zipf

 1.26

 1.28

 1.3

 1.32

 1.34

 1.36

 1.38

 1.4

 0.8 0.85 0.9 0.95

E
nt

ro
py

Correctness Probability

K-Means, DKMeans Conservative Poisson Zipf

 1.26

 1.28

 1.3

 1.32

 1.34

 1.36

 1.38

 1.4

 0.8 0.85 0.9 0.95

E
nt

ro
py

Correctness Probability

K-Means, DKMeans Conservative Poisson Zipf

 1.26

 1.28

 1.3

 1.32

 1.34

 1.36

 1.38

 1.4

 0.8 0.85 0.9 0.95

E
nt

ro
py

Correctness Probability

K-Means, DKMeans Conservative Poisson Zipf

Figure 5.5: Number of messages: (a) varying network size, (b) varying number of
clusters, (c) varying skew

This behavior is expected, and in accordance to the theoretical analysis (Section 5.4);
the only factor changing with network size for PCP2P is the DHT access cost, which
grows logarithmically. On the other hand, DKMeans cost increases linearly since each
peer needs to communicate with all cluster holders, independent of the number of doc-
uments it carries. Similar results were observed on the other two collections.

Number of clusters. To examine the effect of the number of clusters to the efficiency
of PCP2P, we repeated the clustering of the three collections on a network of 100,000
peers with up to 200 clusters. Figure 5.5(b) shows the number of messages in corre-
lation to the number of clusters for the RCV1 collection. Clearly, all PCP2P variants
scale favorably with the number of clusters. For example, for 25 clusters, the conser-
vative variant induces 12 million messages, whereas for 200 clusters it causes only 3
million additional messages. The Poisson-based variant causes between 11.7 to 12.2
million messages in the same cluster range, whereas Zipf-based PCP2P causes 11.6
to 12.2 million messages. The same scale-up properties are observed with respect to
the transfer volume and number of comparisons (Table 5.3, Part V). This essentially
means that the network cost of PCP2P is only slightly affected by the number of clus-
ters, making the algorithm scalable for a wide range of settings and requirements.

Dataset characteristics. Similar to the quality experiments, the SYNTH collection
was used to evaluate the effects of the collection characteristics to the efficiency of
PCP2P. Table 5.3, Part II, includes the results corresponding to different dataset sizes,
for a fixed network size of 100,000 peers. As predicted by the theoretical analy-

5.6. EXPERIMENTAL EVALUATION 79

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

 0 10 20 30 40 50

E
nt

ro
py

Classes per peer

LSP2P

0.28

0.30

0.32

0.34

0.36

0.38

 200 400 600 800 1000

E
nt

ro
py

Network Size

LSP2P(unif)
LSP2P(binl)
LSP2P(zipf)

 1.26

 1.28

 1.3

 1.32

 1.34

 1.36

 1.38

 1.4

 0.8 0.85 0.9 0.95

E
nt

ro
py

Correctness Probability

K-Means, DKMeans Conservative Poisson Zipf

 1.26

 1.28

 1.3

 1.32

 1.34

 1.36

 1.38

 1.4

 0.8 0.85 0.9 0.95

E
nt

ro
py

Correctness Probability

K-Means, DKMeans Conservative Poisson Zipf

 1.26

 1.28

 1.3

 1.32

 1.34

 1.36

 1.38

 1.4

 0.8 0.85 0.9 0.95

E
nt

ro
py

Correctness Probability

K-Means, DKMeans Conservative Poisson Zipf

 1.26

 1.28

 1.3

 1.32

 1.34

 1.36

 1.38

 1.4

 0.8 0.85 0.9 0.95

E
nt

ro
py

Correctness Probability

K-Means, DKMeans Conservative Poisson Zipf

Figure 5.6: Quality of PCP2P and LSP2P: (a) varying the number of classes per peer,
and, (b) varying the document distribution to peers

sis, PCP2P scales linearly with the collection size with respect to all cost measures.
DKMeans also scales linearly to the number of documents, but incurs a significantly
larger cost overall due to a larger constant factor.

Figure 5.5(c) displays the execution cost in number of messages, for a varying
distribution skew, and for Prcorrect = 0.9. We see that for the same quality level, PCP2P
cost is substantially reduced for higher skews. This behavior is expected: with higher
skews, the first few most frequent terms of documents and clusters are sufficient for
finding the candidate clusters, and PCP2P requires fewer comparisons for satisfying
the probabilistic guarantees. For commonly reported skew values (around 1.0), the
number of messages is reduced by two orders of magnitude compared to DKMeans.
Nonetheless, even for a skew as low as 0.5, the cost of both PCP2P variants is already an
order of magnitude lower than the DKMeans cost. Recall that the quality of the results
remains unaffected by the skew factor (Section 5.6.1), since the algorithm adapts to the
skew factor to satisfy the probabilistic guarantees.

Load balancing. As explained in Section 5.3.1, cluster holders may employ load
balancing to avoid overloading. The load balancing process incurs a small network
overhead for synchronizing the centroids between the cluster holders and their helpers.
To examine this additional overhead, we have configured the load balancing threshold
such that the load of each cluster holder never exceeds twice the average expected load,
and repeated all experiments. The overhead in all examined configurations was less
than 100 additional messages, and less than 10 Mbytes total. Therefore, load balancing
does not impede the efficiency of PCP2P.

5.6.3 Comparison with other algorithms

PCP2P was also compared with LSP2P, the state of the art in P2P clustering. A prelim-
inary testing of LSP2P with low-dimensional synthetic data verified the good results
presented in [42], but also revealed a strong correlation of the algorithm’s quality to
the way the documents were distributed to the peers. Therefore, our further experi-
ments focus on the effect of the document distribution to the quality of the compared
algorithms.

80 CHAPTER 5. P2P TEXT CLUSTERING

Real-world peer collections are often multi-thematic, similar to real persons’ in-
terests. Some users may be well-focused, having very specific documents of only one
topic. Other users may focus on a couple of non-related topics, and yet others may just
collect lots of diverse documents. We simulated all such users by using the reference
classification accompanied with each dataset. Peers were creating their collections by:
(a) randomly selecting i random categories/classes from the reference classification,
and, (b) randomly selecting j documents for each class, ending up with i × j different
documents.

We first examine the influence of the number of classes i assigned to each peer
during the creation of the peer collections. Figure 5.6(a) plots the quality of the com-
pared algorithms, when deployed on a network of 1000 peers for clustering the RCV1
collection. The number of clusters was set to 100, and PCP2P was configured with
Prpre = 0.9. The quality of DKMeans and of all PCP2P variants is independent of the
number of classes per peer, since these algorithms handle each document individually.
On the other hand, the quality of LSP2P reduces with the decrease of i, and for i ≤ 10,
it becomes significantly worse than the optimal quality of DKMeans. In practice, this
means that LSP2P requires that each participating peer carries documents from almost
all classes to perform well. This is clearly a limiting factor for the applicability of
LSP2P on text corpora, since it cannot be expected that real-world users have such a
high variation of personal documents. In fact, in real-world networks, the number of
possible classes and clusters might be even higher than the ones investigated here, ag-
gravating the problem. The experiments with MEDLINE and SYNTH confirmed the
same limitation of LSP2P.

For the second comparison, we compare the scalability of the compared algorithms
by varying the number of peers in the network. To alleviate the pre-mentioned limi-
tation of LSP2P that each peer requires a very diverse document collection, the docu-
ments were assigned to the peers randomly, completely ignoring the document classes.
Therefore, each peer was expected to own a diverse set of documents. With respect to
the number of documents per peer, we tested three different distributions: (a) a Zipf
distribution, with skew equal to 1, (b) a binomial distribution, with average equal to
100, 000/n, where n denotes the number of peers, and, (c) a uniform distribution with
the same average. These distributions are frequently considered in the literature for
modeling the size of the peer collections.

Figure 5.6(b) plots the quality of the compared algorithms, for clustering the RCV1
collection to 100 clusters. We see that uneven document distributions, such as the Zipf
distribution, create additional problems to LSP2P, which become more apparent for
larger networks. The quality of PCP2P on the other hand remains unaffected from
the documents distribution, as expected. Similar results were also observed with the
MEDLINE and the SYNTH collection.

Concerning network cost, LSP2P was more efficient than PCP2P, since peers in
LSP2P exchange cluster-granularity data instead of document-granularity data. How-
ever, the inability of LSP2P to deliver a quality clustering solution, and its requirement
that all peers have documents from all classes makes the algorithm unsuitable for real-
world scenarios.

5.7 Summary
We presented PCP2P, the first scalable P2P text clustering algorithm. PCP2P achieves
a clustering quality comparable to standard K-Means, while reducing network cost by

5.7. SUMMARY 81

an order of magnitude. We provided a probabilistic analysis for the correctness of the
algorithm, and showed how it adapts to satisfy the required probabilistic guarantees.

Extensive experimental evaluation with up to 1 million peers and 1 million doc-
uments – real and synthetic – has verified the scalability and high effectiveness of
all PCP2P variants, and its appropriateness for text collections with a wide range of
characteristics. The results demonstrate that PCP2P quality closely approximates the
optimal clustering quality of K-Means and DKMeans as predicted by the theoretical
analysis, with a small fraction of the cost. The network benefits often exceed one or-
der of magnitude compared to DKMeans, and a configuration mechanism based on
probabilities enables fine-tuning of the cost/quality tradeoff of PCP2P. Finally, the ex-
periments have also shown that PCP2P outperforms LSP2P, the current state of the art
algorithm, and addresses its scalability limitations.

Chapter 6

P2P Text Classification

Automatically structuring heterogeneous document collections into thematically coher-
ent subsets is a relevant task for a variety of Web applications. Some frequent examples
are focused crawling, structuring Web directories, social bookmarking, and email spam
filtering [72, 8, 129, 29]. For these classification applications, supervised learning has
become the method of choice. Supervised machine learning approaches employ the
following methodology: they use a set of training items manually assigned to cate-
gories by the users, to build classifiers for automatic assignment of category labels. A
sufficient amount of training data is crucial for achieving high classification accuracy.
However, labeling enough data and keeping the training set sufficiently diverse and
up-to-date can require a substantial manual effort.

Collaborative solutions, where users combine information and resources, have re-
cently gained importance in various areas, e.g., collaborative semantic desktop [119],
collaborative tagging [170], sharing of e-mail signatures for spam detection [84], P2P
telephony, e.g., Skype, and video streaming [153]. Collaborative solutions have been
also explored for classification, to address the issue of insufficient training data [165,
115, 102, 6, 152]. The basic idea of collaborative classification is to aggregate infor-
mation from different users in a collaborative network, for constructing better machine
learning models that can be used by every network member for their individual infor-
mation demands. A naive approach based on sharing training samples directly among
users to obtain larger training sets is prohibitive, since it ignores privacy, security, and
copyright aspects of the user’s personal information sources, and also leads to high
network costs for the participants.

For distributed classification, Luo et al. [102] introduce a voting-based algorithm
for P2P networks, where voting vectors with components corresponding to vote counts
for categories are maintained in a distributed manner. However, their setting implies
that personal (test) data to be classified have to be either available on all peers or need
to be propagated. In [6] only a selected subset of training vectors, namely the support
vectors obtained from locally built RSVM models (a modification of support vector
machines) are propagated in the network; this helps to overcome some of the privacy
and network cost issues, however, only to a certain extent.

Our approach is based on exchange of classification models instead of training or
test data, as also proposed in [152]. Each node combines classification models received
from other nodes with its own model to build a meta classifier, which is then used
for organizing the user’s individual document collection. Compared to typical, stand-
alone classifiers, meta classifiers do not suffer from a cold start problem. They are

82

6.1. RELATED WORK 83

also substantially more accurate, since they correspond to a much larger training set.
As model dissemination infrastructure, we use an unstructured peer-to-peer network.
For instance, participating nodes might use a plug-in for folders in their file system for
enabling collaborative document organization, or an email client plug-in for enabling
collaborative spam filtering. The infrastructure is fault-tolerant, and does not require
central coordination.

For efficient model exchange, it is crucial to keep the models compact. However,
the number of model components (dimensions) and, thus, the size of the models can
become very large, leading to considerable communication costs. To drastically reduce
these costs and enable a fine-grained and flexible control of the cost/quality tradeoff,
we combine meta-classification with model dimensionality reduction. Instead of ex-
changing the complete models, participating nodes only distribute the most important
components of their models. This approach enables participating users to build highly
accurate meta models with negligible network cost.

We validate our approach on four large standard collections for text classification,
and compare it to existing state of the art methods. Our experiments evaluate the influ-
ence of model propagation and model dimensionality reduction on classification accu-
racy and distribution efficiency, and identify sweet spots for the corresponding parame-
ters. The results show that the computation and communication resources required for
participating in the network are negligible, and therefore documents can be classified
in real-time, even on commodity machines.

The rest of this chapter is organized as follows. In the next section we summarize
and compare related work on collaborative classification. In Section 6.2 we present our
approach in detail, covering the classification, distribution of local models, dimension-
ality reduction, and the construction of meta classifiers. Section 6.3 shows the results
of our large-scale evaluation with respect to classification accuracy and efficiency, as
well as comparisons with existing approaches. We conclude the chapter in Section 6.4.

6.1 Related Work
The machine learning literature has studied a variety of ensemble based meta methods
such as bagging, stacking, or boosting [23, 57, 87, 99, 169], and also combinations
of heterogeneous learners, e.g., [182]. For bagging, an ensemble consists of classifiers
built on bootstrap replicates of the training set. The classifiers’ outputs are combined by
plurality vote. For stacking, multiple classifiers are trained on parts of the training set
and evaluated on the remaining training documents. The outputs of the classifiers are
used as feature values for training a new classifier (stacked generalization). Boosting
can be viewed as a model averaging method. Here a succession of models is built, each
one trained on a data set in which the points misclassified by the previous model are
given more weight. However, these approaches do not deal with distributed settings.

Mladenić et al. [120] describe a pruning method for normal vectors of Support
Vector Machines (SVMs), which they use for feature selection to make the training
more efficient. Our work is the first to apply this technique in the context of efficient
model propagation in a distributed environment. Another technique for dimensionality
reduction was proposed in [8], for the purpose of reducing memory requirements of the
local classification process. This technique uses feature hashing to collapse several fea-
tures into one dimension. As we show in Section 6.3, feature hashing can substantially
degrade classification quality.

Distributed classification can be characterized according to distribution infrastruc-

84 CHAPTER 6. P2P TEXT CLASSIFICATION

ture and meta-classification approach. With respect to distribution, centrally coordi-
nated [165], hierarchical [12] and purely decentralized P2P classification algorithms
have been proposed. The latter are realized either using a distributed hash table [7], or
an unstructured topology [115, 102, 6, 152]. These approaches employ various meta-
classification techniques. In [165] the authors show how to compute a distributed Naive
Bayes classifier with centralized coordination. In [115] the parameters of local genera-
tive models are transmitted to a central site and combined. Luo et al. [102] introduce a
voting-based classification algorithm in a P2P network. They compute voting vectors
with components corresponding to vote counts for categories in a distributed manner.
Their setting substantially differs from ours in that test data in their scenario either have
to be available on all peers or have to be propagated (instead of exchanging classifica-
tion models). This is prohibitive in applications such as spam filtering, both in terms
of network cost for large test sets of emails, and due to privacy reasons. This issue
affects all approaches requiring distribution of training or test sets. Cascade RSVM [6]
applies Reduced SVM [92] to distributed classification. A variant of Cascade RSVM,
which uses a DHT as underlying topology has been published in [7]. Instead of shar-
ing complete training sets, peers exchange only their support vectors. In a cascaded
classification process, the peers add the received vectors to their respective training
set and re-classify, until the process converges. Support vectors directly represent in-
dividual local documents, raising privacy issues with respect to their propagation. In
Section 6.3, we show that our approach clearly outperforms Cascade RSVM.

Our notion of distributed model sharing and propagation in a P2P environment
is closest to the one described in [152]. However, that work treats classification ef-
fectiveness aspects only, not considering the incurred communication costs. Because
complete models are exchanged between nodes, these costs can become unacceptable
in the case of high-dimensional data such as text. In this chapter, we show how this
approach can be made practical by compacting the transferred models and limiting the
number of exchanges in such a way that communication cost becomes very low while
classification quality remains nearly unaffected.

The proposed collaborative classification algorithm belongs to the class of local al-
gorithms, i.e., each node only needs to cooperate with a small set of nearby neighbors
to perform the desired tasks. In recent years, local algorithms for various other data
mining problems have been developed, e.g., computing an average [113], conducting
a majority vote [148], or k-means clustering [42]. See [40] for a survey. Local al-
gorithms scale extremely well, and are very robust because any failure only affects a
small neighborhood.

To the best of our knowledge, the work described in this chapter is the first to ap-
ply flexible dimensionality reduction for efficient classification model propagation and
combination, and to provide a thorough experimental study of the resulting efficiency-
effectiveness tradeoffs in the context of distributed and collaborative classification.

6.2 Collaborative Classification with CSVM

We now describe our framework for distributed execution of linear discriminative clas-
sification. CSVM, short for Collaborative SVM, combines local classification, model
sharing, and dimensionality reduction, to realize scalable distributed classification with
an excellent quality/network cost tradeoff. We describe the framework assuming that
the local classifiers are built using support vector machines (hence the name CSVM),

6.2. COLLABORATIVE CLASSIFICATION WITH CSVM 85

but the framework is in fact agnostic to the used local classifiers. For example, it can
also use Reduced SVM [92], which increases training efficiency for large training sets
by choosing a suitable subset of the training data. It is also applicable to other linear
discriminative classification approaches, e.g., Fisher’s Discriminant [54].

In CSVM, nodes performing classification are connected in a peer-to-peer network.
We assume that each peer in the network has its own training set. The algorithm con-
sists of the following steps:

• Every peer computes a local classification model using its own training set.

• Peers reduce their local models, and exchange them with a small number of
selected neighbors.

• Each peer merges the received models with its own model to construct a more
powerful meta classifier, taking reliability weights into account.

This process is repeated periodically to account for changes in the network, and to in-
corporate new training documents. The resulting meta classifiers exhibit a much higher
quality than the local ones, and can be used at each node for classification purposes. In
the following, we describe the elements of the algorithm in detail.

Classification with Support Vector Machines. In SVM classification, the data to be
classified is assumed to be in the form of feature vectors. For example, a feature vector
of a document might consist of the frequencies of the terms occurring in the text, taking
into account the inverse document frequency for weighting. In the following, we focus
on binary classification, i.e., the classifier needs to distinguish between two classes of
items, usually labeled positive and negative instances. There exist various techniques
to reduce multi-class classification to a set of binary classification problems that can be
solved separately [5].

SVMs, as all linear discriminative algorithms, construct a hyperplane as classifica-
tion model, described by the equation ~w · ~x + b = 0, where ~w is the normal vector and
b the bias of the hyperplane. The constructed hyperplane separates the set of positive
training examples from the set of negative examples with maximum margin. This train-
ing requires solving a quadratic optimization problem whose empirical performance is
somewhere between quadratic and cubic in the number of training documents [25].
Given an SVM model m, for classifying a new, previously unseen item e with feature
vector ~e, we only need to test whether this vector lies on the positive side or the negative
side of the separating hyperplane. This decision simply requires computing the scalar
product of ~w and ~e, and results in a classification score s(e,m), which can be positive or
negative, and corresponds to our confidence of e being positive resp. negative. SVMs
have been shown to perform very well for a wide spectrum of applications, e.g., text
classification [46], spam detection [149], content-based image retrieval [161], speech
recognition [59], and medical analysis [91].

Model Propagation in the Network. In our framework we are given a set of peers
P = {p1, p2, . . . , pl}. Peers form an unstructured P2P network, as the ones described in
Section 2.2, where each peer chooses its neighbors randomly. Techniques to construct
and maintain such networks are well studied, e.g., [30, 162, 66, 163], and any of these
techniques can be applied to maintain the P2P infrastructure. The resulting random
graph network topology can be described with the neighborhood relation N ⊂ P ×
P. Note that our algorithm only requires the availability of a minimum amount of

86 CHAPTER 6. P2P TEXT CLASSIFICATION

neighborhood links for each peer, i.e., at least n neighbors. This requirement can also
be satisfied from structured P2P topologies, e.g., Chord (cf. Section 2.4), thus CSVM
can also be built on top of a structured P2P network.

Each peer pi ∈ P maintains its own item collection Ci and training set Ti ⊂ Ci, with
|Ti| << |Ci|. Every item in the training set Ti is labeled as either positive or negative.
A peer pi with a set of neighbors N(pi) builds and propagates its local SVM model mi

as follows. First, it uses its training set Ti to construct mi. It then randomly chooses n
of its neighbors, denoted as R(pi), and requests their local classification models. Using
the models received from these peers, it computes a new meta model, as described
below. This process is repeated periodically, to take into consideration the new training
documents accumulated at the collaborating peers.

Dimensionality Reduction. The propagation of the SVM models incurs a network
cost for the participating peers. This cost is determined by the dimensionality of the
models, i.e., the size of the normal vector ~w of each model. As each feature introduces
an additional dimension in ~w, these feature vectors can become very large and their
transmission costly. To address the efficiency in the context of centralized classifica-
tion, Mladenić et al. [120] describe a pruning method for normal vectors of Support
Vector Machines (SVMs). They show that components in the normal vector ~w with
high absolute values are the most important ones for the classification model.

We exploit this result in a novel way for obtaining a much more compact model rep-
resentation without significant loss of information. Particularly, each peer determines
its top-k normal vector dimensions with highest absolute values, and discards the re-
maining dimensions. In the following, we denote the reduced normal vector of peer pi

as ~w′i. In Section 6.3 we study the influence of parameter k on the network load and
on the accuracy of the classification, and show that the combination of highly reduced
model representations still yields highly accurate meta models. Our evaluation shows
that the employed approach incurs negligible quality loss, with a very low network
cost. Note that our system is not limited to this dimensionality reduction technique;
there is a plethora of alternative dimensionality reduction methods that could also be
employed, such as the ones described in [55, 181].

Meta Model Construction. We now describe how a peer pi combines the set of
models received from its neighbors and its own model into a single meta model metai.
For clarity, we first explain how the meta model is constructed assuming that peers ex-
change unreduced classification models, and we then consider the case of exchanging
reduced models. A local linear discriminative model m contains the hyperplane repre-
sentation, i.e., a tuple < ~w, b >. When transmitting m, a vector ~l is added which maps
the dimensions of ~w to features, i.e., the ith component of ~l relates the ith component of
~w to its corresponding feature. This eliminates the need to maintain a common feature
enumeration over the P2P network.

We note that some information can be inferred from the exchanged classification
models about the word distribution of the user’s documents. The exchange of a certain
amount of user information is unavoidable for collaboration. However the reduced
models can be seen as a very compressed statistical representation of the data, and, thus,
reveal much less information than the complete training data, or the support vectors.

Let Mi = {mi} ∪ {m j : p j ∈ R(pi)} denote the set of all models available at peer
pi, i.e., its own model and the models requested from its neighbors. To classify an
item e with feature vector ~e, a peer combines classification scores s(e,m j) of the in-

6.3. EXPERIMENTAL EVALUATION 87

dividual models in m j ∈ Mi to a meta score. For this combination, each model m j

is assigned a weight ri according to the respective model’s reliability. In our exper-
iments (see Section 6.3) we use the respective training set size as reliability weight.
More complex weights could take into account other factors, such as trust [77]. As-
suming that the reliability weights are normalized, the meta score is computed as
s(e,metai) = 1

|Mi |

∑
m j∈Mi

r j · s(e,m j).
Merging of the individual scores is equivalent to computing a single hyperplane

~wmetai · ~x + bmetai , where ~wmetai is the combined normal vector and bmetai the combined
bias. The combined normal vector is computed as ~wmetai = 1

|Mi |

∑
m j∈Mi

r j · ~w j, where ~w j

is the normal vector of model m j. Note here that
∑

denotes the sum of the correspond-
ing vectors { ~w j : m j ∈ Mi}, respecting the mapping of features to vector dimensions
defined by ~l. The combined bias is obtained similarly as bmetai = 1

|Mi |

∑
m j∈Mi

r j · b j.
Combining all models to a single meta model per peer is desirable for efficiency rea-
sons. In particular, the computational cost for classifying an item with feature vector
~e, using |Mi| different models is O(|Mi| × |~e|), while the cost for evaluating it using the
meta classifier, as we do, is only O(|~e|).

As explained, peers in our system reduce the models to save network resources.
In practice, each peer only transmits the reduced normal vector ~w′, the corresponding
encodings ~l′, and bias b. The actual meta model hyperplane constructed at each peer
pi is ~w′metai

= 1
|Mi |

∑
m j∈Mi

r j · ~w′j. The classification process remains the same as for the
unreduced case.

Cost Model. CSVM belongs to the class of local algorithms, since the communica-
tion cost for each peer to build the meta model is independent of the size of the network.
This cost depends on the number of neighbors n = |R(pi)| of each peer pi, and on k, the
number of the top model components exchanged. The network cost for constructing
each meta model is Cmeta = O(n × k), and the total communication cost for one period
in a network of |P| peers is O(|P| × n × k). In Section 6.3.4 we discuss how to optimize
the parameters k and n for a given network cost constraint to maximize the accuracy of
the meta classifier.

6.3 Experimental Evaluation

The experimental evaluation had the following objectives:

• The evaluation of scalability and effectiveness of CSVM in dependence of its
system parameters, number of neighbors per peer (Section 6.3.2), and number of
dimensions per model (Section 6.3.3). This includes a discussion on the param-
eter tuning for the algorithm, i.e., the influence of optimized parameter selection
for a given network cost budget (Section 6.3.4).

• The validation of CSVM performance characteristics using different real-world
datasets, and using different sizes of training data per peer (Section 6.3.5).

• The comparison of CSVM with the state of the art in distributed and collaborative
classification (Section 6.3.6).

We start by describing the experimental setup.

88 CHAPTER 6. P2P TEXT CLASSIFICATION

6.3.1 Experimental Setup
As described in Section 6.2, the CSVM framework can employ different linear dis-
criminative classifiers for computing the local models. In our experiments, we tested
CSVM using standard SVMs (denoted as CSVM) as well as Reduced SVM classi-
fiers [92] (CRSVM). To investigate the benefits of collaborative classification, we com-
pared these two CSVM variants with their non-collaborative counterparts (denoted as
SVM and RSVM) where each peer uses only its local classifier built solely on its own
training set. As a gold standard for collaborative classification, we also show the quality
of non-distributed SVM classification (CENTR), computed on the union of the training
sets of all peers. Notice that the CENTR classifier is only theoretical; as we explained
already in the introduction, it has important scalability and privacy issues for large
P2P networks. We also compared our approach with the state of the art P2P classifier,
Cascade RSVM [6] (CASC). Finally, to examine the quality of our dimensionality re-
duction, we compared our approach with [8] (denoted henceforth as HASH), a state of
the art non-distributed approach to reduce the feature space for SVM classification. We
examined the performance of two HASH variants, the standard one which uses stan-
dard SVM for computing the classifiers, and a second one using RSVM (RHASH). All
algorithms employ the LIBSVM implementations of SVM and RSVM [97].

In order to analyze the effect of the system configuration on the efficiency and ef-
fectiveness of CSVM, we conducted a wide range of experiments, varying the number
of collaborating neighbors, and the dimensionality of the shared models. All experi-
ments were repeated with different training set sizes per peer, and with four different
datasets, to verify the applicability of CSVM to distinct usage scenarios. In the fol-
lowing, we report on experiments for a network of 100 peers built over an unstructured
P2P network. Note that the algorithm’s accuracy and efficiency for the participating
peers is independent of both network size and network topology. Therefore, all results
also apply to larger and differently formed P2P networks.

The experiments were conducted on four standard, Web-based datasets [97, 32]:

rcv1: The Reuters Corpus Volume 1 dataset consists of more than 800,000 news feed
articles, and contains about 47,000 features.

trec: The TREC 2007 spam corpus, consisting of 75,000 emails, manually assessed as
spam or ham. The dataset has a total of 395,000 features.

news20: The 20 Newsgroups dataset consists of approximately 20,000 newsgroup ar-
ticles with 1,3 million features.

realsim: Approximately 72,000 UseNet articles from four discussion groups in the
topics of ’simulated auto racing’, ’simulated aviation’, ’real autos’, and ’real avi-
ation’. The classification objective is to separate the documents about simulation
from the others. This dataset has a total of 21,000 features.

We used the standard features and ground truth for binary classification available
from [97] for the rcv1, news20, and realism datasets. For the trec collection we used
term-based TF-IDF features, and the user assessments in [32] as ground truth. Each
dataset was split into a training set and a disjoint test set. From the training set, we
assigned to each peer a local training collection. Unless otherwise noted, each local
training collection consisted of 25 positive and 25 negative randomly selected docu-
ments. To increase the reliability of our quality assessments, all peers were evaluated
on the full test set; note that this does not influence the integrity of the evaluation since
the peers do not exchange any information on the test data.

6.3. EXPERIMENTAL EVALUATION 89

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 5 10 15 20 25 30

A
re

a
U

nd
er

 C
ur

ve

Neighbors

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 5 10 15 20 25 30

B
re

ak
 E

ve
n

P
oi

nt

Neighbors

 0

 50

 100

 150

 200

 250

1 5 10 15 20 25 30

N
et

w
or

k
co

st
 (

K
by

te
s)

Neighbors

 CSVM CRSVM CENTR SVM RSVM

Figure 6.1: Influence of the number of neighbors on classification quality and cost (a)
Area Under Curve, (b) Precision-Recall Break Even point, (c) Network cost per peer.

Evaluation Measures. As efficiency measures, we have used the network cost per
peer as well as the processing cost required for classifying each document. Effective-
ness was evaluated using the standard classification quality measures: (a) the Receiver
Operating Characteristic (ROC) Curve [53] as well as its aggregate measure, the Area
Under the ROC Curve (AUC), and (b) the Precision-Recall Break Even Point (BEP).
AUC and BEP values close to 1 indicate highly accurate classifiers, whereas values
close to 0 correspond to low classification quality. ROC curves are used for visualizing
the performance of binary classifiers, and show the ratio of misclassified items in rela-
tion to the ratio of correctly classified items. In the literature, these two measures are
widely used for evaluating binary classification scenarios, e.g., [33, 49, 58, 18, 32].

6.3.2 Influence of the Number of Neighbors

We first examine how the number of neighbors per peer influences the performance
of CSVM. Here, number of neighbors refers to the number of peers that each peer
exchanges models with, i.e., the cardinality of R(·) (cf. Section 6.2).

Quality. Figures 6.1(a) and (b) show the AUC and BEP measures, respectively, for
CSVM and CRSVM configured with different neighborhood sizes. The results corre-
spond to the rcv1 collection, with the number of dimensions reduced to 500. For com-
parison, we also include the performance of SVM and RSVM, the two non-collaborative
approaches. For illustration purposes, SVM and RSVM are plotted as horizontal lines;
the number of neighbors for both algorithms is 0 by definition, though.

Both CSVM and CRSVM clearly outperform the corresponding non-collaborative
approaches. As expected, the benefit of collaboration increases with the neighborhood
size. While, for instance, with just one neighbor per peer CSVM and CRSVM perform
only marginally better than their corresponding non-collaborative counterparts, with
8 neighbors, we can already observe an improvement of more than 7% compared to
the corresponding baselines. We also observe that the approaches using standard SVM
(i.e., SVM and CSVM) achieve higher quality than the ones employing RSVM. The
reason is that RSVM trades classification quality for speed, resulting in less accurate
classifiers than standard SVM.

CSVM and CRSVM achieve significant improvements compared to the standard
SVMs, even for small neighborhood sizes. In particular, CRSVM with just 4 neighbors
yields a performance improvement of more than 10% compared to RSVM. Similarly,
CSVM with 4 neighbors achieves a performance increase of more than 5% compared

90 CHAPTER 6. P2P TEXT CLASSIFICATION

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ru

e
P

os
iti

ve
 r

at
e

False Positive rate

CSVM : 1
2
4

8
16
32

SVM

0.2

0.4

0.6

0.8

 0 0.01 0.02 0.03 0.04 0.05

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ru

e
P

os
iti

ve
 r

at
e

False Positive rate

CSVM:50
100
200

500
1000
ALL

SVM

0.2

0.4

0.6

0.8

 0 0.01 0.02 0.03 0.04 0.05

Figure 6.2: ROC curves for different neighborhood sizes and number of dimensions

to SVM. Adding more neighbors per peer further improves classification quality at a
slower rate.

The ROC curve for the CSVM experiments (Figure 6.2(a)) reveals further insights
on the strengths of CSVM. The improvement of both algorithms is particularly appar-
ent on the left hand side of the curves, i.e., with false positive rates less than 0.05. This
is generally the most interesting area for classification scenarios such as collaborative
spam filtering, which involve a high cost for false positives. The ROC curves also con-
firm our previous observation that small neighborhood sizes are sufficient for achieving
significant improvements; for example, the ROC curve corresponding to 8 neighbors
already closely approximates the one of 32 neighbors. Similar results apply to CRSVM
(see Figure 6.3(a)).

Efficiency. In Figure 6.1(c), we show how network cost develops when increasing the
number of neighbors. Note that the corresponding network cost for non-collaborative
SVM and RSVM is 0, since these do not employ model exchange. As expected (cf.
Section 6.2), the network cost of both CSVM and CRSVM is linear with the number of
neighbors. Due to the compactness of the SVM models after dimensionality reduction,
the network cost per peer is well-manageable, even for deployment over mobile net-
works. For example, the total network cost per peer for the setup with 32 neighbors (the
maximum value considered) is only 250 Kbytes for CSVM and only 170 Kbytes for

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ru

e
P

os
iti

ve
 r

at
e

False Positive rate

CRSVM:1
2
4

8
16
32

RSVM

 0

 0.2

 0.4

 0.6

 0.8

 0 0.02 0.04
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ru

e
P

os
iti

ve
 r

at
e

False Positive rate

CRSVM:50
100
200

500
1000
ALL

RSVM

 0

 0.2

 0.4

 0.6

 0.8

 0 0.02 0.04

Figure 6.3: ROC curves for CRSVM: (a) number of neighbors, (b) number of dimen-
sions

6.3. EXPERIMENTAL EVALUATION 91

0.80

0.84

0.88

0.92

0.96

1.00

1 5 10 15 20 25 30

A
re

a
U

nd
er

 C
ur

ve

Neighbors

0.80

0.84

0.88

0.92

0.96

1.00

50 100 200 500 1000 ALL

A
re

a
U

nd
er

 C
ur

ve

Dimensions

rcv1 trec news20 realsim

Figure 6.4: Influence of (a) number of neighbors, (b) number of dimensions, to quality,
for all datasets

CRSVM. The lower network cost of CRSVM compared to CSVM is due to a specific
property of RSVM: it generates more compact models than standard SVM. In some
instances, these models have even less than the maximum allowed number of dimen-
sions, i.e., less than 500 in our configuration. Therefore, the network cost of CRSVM
is sometimes even lower than the expected cost.

With respect to computational complexity, all compared algorithms require the
same time for classifying a document, approximately 0.01 milliseconds on a single
AMD 2.7 GHz processor. Classification cost is linear to the number of non-zero com-
ponents of the document vector, i.e., the number of distinct terms; therefore, the num-
ber of neighbors per peer, as well as the number of dimensions, does not influence
the computational complexity of CSVM. Classification time is negligible, making the
algorithm suitable for online classification. The periodic merging of the models also
takes a negligible amount of time, less than 10 milliseconds per peer, even for the case
where all dimensions are kept.

The qualitative results of the experiments on the other datasets are similar, as can
be seen from the AUC values shown in Figure 6.4(a). Summarizing, the first set of
experiments shows that increasing the number of neighbors leads to better classification
quality, and that a small number of neighbors already yields substantial improvements
compared to the baselines, with negligible network and computational overhead.

6.3.3 Influence of the Number of Dimensions
In our second experimental series we examined the influence of the number of model
dimensions on the performance of CSVM and CRSVM. Figures 6.5(a) and (b) present
the AUC resp. BEP values for CSVM and CRSVM, configured with different numbers
of dimensions (ranging from 50 to all dimensions). The results are shown for the rcv1
collection, with 8 neighbors per peer. As before, we include the non-collaborative
counterparts for comparison.

Quality. As expected, increasing the dimensionality has a positive effect on the clas-
sification quality. For instance, increasing from 50 to 200 dimensions increases the
AUC value from 0.914 to 0.954. Also, similar to the case of increasing the neigh-
borhood size, the number of dimensions does not need to be very high for substan-
tial quality improvements; both CSVM and CRSVM yield already substantial benefits

92 CHAPTER 6. P2P TEXT CLASSIFICATION

0.70

0.75

0.80

0.85

0.90

0.95

1.00

50 100 200 500 1000 ALL

A
re

a
U

nd
er

 C
ur

ve

Dimensions

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

50 100 200 500 1000 ALL

B
re

ak
 E

ve
n

P
oi

nt

Dimensions

 0

 50

 100

 150

 200

 250

50 100 200 500 1000 ALL

N
et

w
or

k
co

st
 (

K
by

te
s)

Dimensions

 CSVM CRSVM CENTR SVM RSVM

Figure 6.5: Influence of the number of dimensions on classification quality and cost (a)
Area Under Curve, (b) Precision-Recall Break Even point, (c) Network cost per peer.

with 500 dimensions, achieving a classification quality almost equal to the unreduced
models (denoted with ALL on the X axis). The ROC curves further confirm these
observations (Figure 6.2(b) and Figure 6.3(b)).

The results on the other three datasets are summarized in Figure 6.4(b). An inter-
esting observation is that the news20 collection benefits more from the increase in the
number of dimensions than the other datasets. In particular, we observe substantial
quality increase in the news20 results, even after increasing from 1000 to all dimen-
sions; for the other datasets, this change yields just a very small additional performance.
This is due to the larger number of features contained in news20, namely 1.3 million
compared to less than 400,000 for the other datasets. This result also yields an inter-
esting challenge, for estimating the number of important dimensions for each dataset,
which we plan to address in our future work.

Efficiency. We observe that network cost grows linearly with the number of model
dimensions (Figure 6.5(c)). For the configuration with 500 dimensions, which yields
a near-optimal classification, the network cost reaches a maximum of 62 Kbytes per
peer. Interestingly, the cost for the CRSVM approach reaches a plateau after 500 di-
mensions. This is because in most cases, RSVM generates local models of less than
500 dimensions per peer. Therefore, the dimension limit does not lead to further model
reduction. This is also the reason why CRSVM with 500 dimensions achieves the same
quality as CRSVM with unreduced models.

As explained in Section 6.3.2, computational complexity is orthogonal to the num-
ber of neighbors and the number of model dimensions; therefore, the classification time
of CRSVM is equal to the one of the standard, non-collaborative SVM algorithm.

6.3.4 Parameter Tuning
As demonstrated in the previous experiments, the accuracy of the algorithm is con-
trolled by the number of collaborating neighbors and model dimensions. These pa-
rameters can be tuned to optimize classification accuracy for a given, user- or system-
defined, network cost quota.

In order to explore the optimal combination of number of neighbors and dimen-
sions we tested both algorithms with different quotas. These were expressed as the
maximum transfer volume per peer participating in the network (including both in-
coming and outgoing transfer volume). For each quota, we executed all possible setups
– combinations of the number of neighbors and dimensions – and identified the combi-
nation resulting in the maximum AUC value. Figure 6.6 summarizes the experimental

6.3. EXPERIMENTAL EVALUATION 93

 0.93

 0.94

 0.95

 0.96

 0.97

 1 5 10 15 20 25 30

A
re

a
U

nd
er

 C
ur

ve

Neighbors rcv1

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1 5 10 15 20 25 30

A
re

a
U

nd
er

 C
ur

ve

Neighbors trec

 0.8
 0.81
 0.82
 0.83
 0.84
 0.85
 0.86

 1 5 10 15 20 25 30

A
re

a
U

nd
er

 C
ur

ve

Neighbors news20

 0.935
 0.94

 0.945
 0.95

 0.955
 0.96

 0.965
 0.97

 1 5 10 15 20 25 30

A
re

a
U

nd
er

 C
ur

ve

Neighbors realsim

16 Kbytes 32 Kbytes 64 Kbytes 128 Kbytes

Figure 6.6: Classification quality for various network constraints: (a) rcv1, (b) trec, (c)
news20, (d) realsim.

results for the four collections. The X axis depicts the neighborhood size whereas Y
depicts the AUC measure. We see that the AUC measure is fairly stable in the area be-
tween 5 and 20 neighbors per peer, having a maximum difference of less than 0.02. In
particular, a default value of 8 neighbors per peer provides already near-optimal results
for all examined configurations (more than 99% of the optimal AUC). Interestingly, the
function of AUC with respect to the two control parameters is always convex, which
can facilitate the efficient optimization of the parameters using, for instance, convex op-
timization techniques. Part of our future work will focus on enabling the peers to adapt
dynamically and efficiently to their network limitations for maximizing the classifier
performance.

6.3.5 Influence of Training Data Characteristics

The previous experiments considered only scenarios where the training data is assigned
uniformly to the peers. However, CSVM can also be applied to P2P networks with
heterogeneous training set sizes, corresponding, for instance, to scenarios where the
effort put into creating local training sets varies strongly between users. In fact, these
are precisely the setups where the non-collaborative algorithms fail, due to insufficient
training data on some peers (the cold start problem). Therefore, we examined two
alternative distributions characterizing the number of documents per peer, (a) Poisson,
and, (b) Zipf distribution. To allow for comparison with the previous results we kept
the average number of documents per peer at 50. As before, we conducted two series of
experiments, by varying either the number of neighbors or the number of dimensions.

Figure 6.7 presents the AUC measures for the four datasets, and the discussed dis-
tributions. We see that the AUC values are practically equal for each dataset, inde-
pendent of the distribution of the training set. This means that the quality of CSVM
stays unaffected of the distribution of the training sets. Even for the Zipf distribution,
where most of the peers have a very low number of training data, CSVM still yields
practically the same results by combining weighed models from neighboring peers.
CRSVM (Table 6.1) is more influenced by the distribution, but the derived quality is
still acceptable, and always significantly better than the centralized counterpart. The
same qualitative results were achieved with respect to the BEP measure.

With respect to the two non-collaborative algorithms, SVM and RSVM, we observe
that the distribution has a strong negative effect. Table 6.1 shows the classification qual-
ity for 8 neighbors and 500 dimensions. The classification quality of the two baselines
clearly degrades as many peers have only small training sets, due to the Zipf distribu-
tion. This distribution is ubiquitous for content on the Internet [4], and it is therefore
important to be able to cope with it.

94 CHAPTER 6. P2P TEXT CLASSIFICATION

0.80

0.84

0.88

0.92

0.96

1.00

 1 5 10 15 20 25 30

A
re

a
U

nd
er

 C
ur

ve

Neighbors

0.80

0.84

0.88

0.92

0.96

1.00

50 100 200 500 1000 ALL

A
re

a
U

nd
er

 C
ur

ve

Dimensions

rcv1 trec news20 realsim
Zipf

Poisson
Uniform

Figure 6.7: Influence of training set distributions: (a) number of neighbors, and, (b)
number of dimensions.

Training set Quality (AUC)
Dataset Distr. SVM RSVM CSVM CRSVM

rcv1 zipf 0.879 0.669 0.965 0.884
poisson 0.911 0.706 0.965 0.897
uniform 0.907 0.730 0.966 0.897

trec zipf 0.932 0.677 0.990 0.941
poisson 0.956 0.738 0.990 0.945
uniform 0.959 0.813 0.990 0.946

news20 zipf 0.793 0.608 0.849 0.733
poisson 0.816 0.622 0.848 0.745
uniform 0.817 0.650 0.850 0.734

realsim zipf 0.880 0.675 0.958 0.886
poisson 0.901 0.718 0.961 0.887
uniform 0.907 0.721 0.960 0.903

Table 6.1: Classification quality for different training set distributions.

6.3.6 Comparison with other Algorithms

In this section, we present the results of our comparison with the state of the art in dis-
tributed and collaborative classification. We compared CSVM and CRSVM with two
other collaborative classification algorithms, CASC, the state of the art in distributed
classification, and HASH/RHASH, which perform dimensionality reduction based on
hashing. CENTR was also included in the comparison, as an indication of the maxi-
mum possible quality for the given training data.

We compared all algorithms with respect to their cost/quality ratio, i.e., which qual-
ity can be achieved with a certain network cost budget. The CSVM and CRSVM algo-
rithms were initialized with 8 neighbors per peer and d dimensions per model, where
50 ≤ d ≤ ALL. As the number of neighbors was fixed, for each network budget the
affordable number of dimensions was precomputed according to our cost model (see
Section 6.2). HASH and RHASH were configured to yield the same network cost as
the CSVM/CRSVM algorithms. This involved setting the number of dimensions (the
HASH buckets) to d, and the neighborhood size to 16 per peer (because HASH has

6.3. EXPERIMENTAL EVALUATION 95

0.70

0.75

0.80

0.85

0.90

0.95

1.00

 0 50 100 150 200 250

A
re

a
U

nd
er

 C
ur

ve

Network cost per peer (Kbytes)

rcv1
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

 0 50 100 150 200 250 300 350 400

A
re

a
U

nd
er

 C
ur

ve

Network cost per peer (Kbytes)

trec

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

 0 500 1000 1500 2000

A
re

a
U

nd
er

 C
ur

ve

Network cost per peer (Kbytes)

news
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

 0 50 100 150 200 250

A
re

a
U

nd
er

 C
ur

ve

Network cost per peer (Kbytes)

realsim

CSVM CRSVM CENTR CASC HASH RHASH

Figure 6.8: Classification quality for different algorithms

half the transmission cost per dimension compared to CSVM). For CASC, we tested
all possible configurations and chose the ones performing best for a given network bud-
get. Note that CASC does not allow preselecting or upper-bounding the network cost,
and therefore the cost ranges of the compared algorithms do not completely overlap.
For example, for the rcv1 collection, there exists no possible configuration of CASC
with a network cost less than 10 Kbytes per peer.

Figures 6.8(a)-(d) depict the AUC measures in correlation to the network require-
ments for all compared algorithms. We see that CSVM substantially outperforms all
other distributed algorithms. For three of the datasets, it closely approximates the qual-
ity of CENTR, with very small network cost. The only exception is the news20 dataset,
which is challenging for all distributed algorithms. This can be explained by the char-
acteristics of the news20 classification task: the classifier needs to identify messages
from 10 newsgroups as positive, and from 10 other ones as negative. As such, both
the positive and negative class consist of a high variety of topics (e.g., ‘cars’, ‘sports’,
‘politics’, ‘religion’). The available local training documents are not sufficient to cap-
ture this variety, leading to local classifiers of low quality. Nonetheless, CSVM helps
increasing the quality, and achieves the highest AUC of the distributed approaches.

CRSVM is inferior to CSVM, but still outperforms the HASH and CASC algo-
rithms in its cost range. We expect RSVM to show its strengths only with very large
local training sets. Another limitation of CRSVM and of all the RSVM-based algo-
rithms also becomes apparent from these results: the underlying RSVM already trades
classifier accuracy for efficiency, limiting the possibility of a fine-grained control of the
desired cost/quality tradeoff.

It is also interesting to consider the point where CASC reaches the maximum qual-

96 CHAPTER 6. P2P TEXT CLASSIFICATION

Dataset Quality Network cost per peer (Kbytes)
(AUC) CSVM CASC

rcv1 0.971 237 2342
trec 0.992 390 1400
news20 0.895 2223 5157
realsim 0.966 224 2006

Table 6.2: Network cost of CSVM and CASC for achieving a comparable classification
quality.

ity of the considered CSVM configuration (for improving the CSVM quality further,
more neighbors would be required). Table 6.2 presents the network cost of the al-
gorithms. We observe that CASC incurs up to an order of magnitude higher cost
than CSVM for achieving the same classification quality. The other compared algo-
rithms are not depicted in the table as they cannot achieve a quality level comparable
to CSVM.

6.4 Summary
We have presented CSVM, a collaborative classification algorithm built on top of a
P2P network. Each participating node merges SVM classifiers trained locally on a
small number of neighboring nodes into more accurate meta classifiers. To reduce the
network cost, only the most important components of the SVM models are exchanged
between users.

Our experimental evaluation provided a systematic study of the system parameters,
i.e., number of collaborating neighbors and dimensionality of the models. The results
demonstrate that CSVM substantially outperforms state of the art collaborative clas-
sification techniques while keeping network costs an order of magnitude lower. Our
approach offers the additional advantage that network load can be controlled in a pre-
cise and flexible way, allowing for an optimal utilization of network resources.

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we have addressed problems in the area of P2P information retrieval and
data mining, proposing novel and efficient algorithms that advance the state of the art.

In particular, in the context of information retrieval we have focused mainly on two
frequently occurring problems, keyword search and near duplicate detection. With re-
spect to keyword search, we showed that efficiency of the state of the art P2P systems
can be drastically increased by optimizing the maintenance of the distributed inverted
index, without sacrificing effectiveness. The key innovation of our optimization lies in
the deployment of a middle layer between the peers and the distributed inverted index,
for coordinating the indexing process. PCIR forms small groups of peers around su-
per peers, which undertake the responsibility of the DHT maintenance process for the
whole group. We explored two different peer grouping methods, and showed that ad-
ditional performance improvement can be observed by clustering the peers to increase
the term overlap in super peers. Our experimental results show an order of magni-
tude improvement compared to the state of the art approaches for constructing indexes
of various granularities, and without overloading any of the peers. The accompany-
ing theoretical analysis confirms the applicability of the experimental observations for
different setups.

With respect to near duplicate detection, we demonstrated experimentally the im-
portance of fine tuning the core parameters of LSH-based near duplicate detection
methods for optimizing the network cost. In sharp contrast to existing methods, our
proposal determines the optimal values of these parameters dynamically, by exploiting
statistics which can be inexpensively collected from the network. POND relies on a
thorough theoretical analysis for linking the network cost with probabilistic guarantees,
and deriving the optimal values of the number of LSH hash tables and hash functions.
The approach is also the first one addressing the video linkage problem over a P2P
environment. A large-scale experimental evaluation with 227 Gbytes of real-world text
and multimedia datasets confirmed that POND satisfies the desired probabilistic guar-
antees with the optimal network cost, and showed improvements of several orders of
magnitude compared to the case where the parameters are not determined dynamically.

Concerning data mining, we have considered P2P clustering and classification,
mainly focusing on textual data. In the context of clustering, we have proposed PCP2P,
which exploits the Zipf distribution of term frequencies inside each document to effi-

97

98 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

ciently detect the relevant clusters over a DHT network in two stages. We have explored
three different strategies for excluding the irrelevant clusters, and derived probabilistic
correctness guarantees. In addition to the theoretical evaluation, the good performance
of all PCP2P variants was demonstrated with large-scale experiments, using several
text corpora, and by comparing with the state of the art algorithms for P2P clustering.

Finally, we have demonstrated the benefits of collaboration for increasing the clas-
sification accuracy, and proposed a framework which enables collaborative classifica-
tion over unstructured P2P networks. The novel aspect of our framework is that it
combines meta classifiers with dimensionality reduction, for increasing the classifica-
tion accuracy and decreasing the network cost for collaboration. We have considered
two instantiations of the framework, the one using the state of the art SVM classifiers,
and the second employing Reduced SVMs, which trade quality for efficiency. Our ex-
periments with four standard datasets established the good properties of the proposed
framework, and its superior efficiency and effectiveness with the state of the art compet-
itive algorithms. We have also studied the involved cost/quality tradeoffs, and showed
that a near-optimal performance is achieved with a network cost that is sufficiently
small to allow deployment of the framework over mobile networks.

A common aspect of our contributions is that they enable a tradeoff between effi-
ciency and effectiveness based on their capabilities of the participating peers and the
application requirements. All algorithms closely approximate the optimal quality of
their corresponding centralized implementations, but without requiring dedicated sev-
ers, without suffering from bottlenecks, and at a small fraction of the cost of the state
of the art counterparts. Having a clear focus on large-scale P2P networks, the algo-
rithms scale well with the number of peers and do not make any assumption about
the distribution of documents to peers, or the capacity and uptime of the participating
peers.

7.2 Future Work
In addition to the particular extensions of each contribution, which we already de-
scribed in the previous chapters, our future work focuses on combining PCIR and
PCP2P towards constructing a fully distributed advanced information retrieval solu-
tion. Even though clustering was already considered in the literature for improving the
IR quality, e.g., [101, 176], past solutions assumed a central architecture for perform-
ing the clustering, and therefore suffered from scalability limitations. Having proposed
a fully distributed and scalable P2P clustering algorithm, we want to pursue this idea
further, incorporating the state of the art in cluster-based information retrieval for a
fully decentralized P2P IR algorithm.

Another aspect of our work focuses on applying the core ideas of PCP2P to other
clustering algorithms, not necessarily distributed, for enabling probabilistic pruning of
the candidate clusters. As already demonstrated, this pruning enables substantial reduc-
tion of the required document-cluster comparisons, which translate to drastic compu-
tational cost reductions. Therefore, it is also interesting to pursue this idea for central-
ized clustering algorithms, for improving their efficiency without a negative influence
on quality.

With respect to POND, we want to repeat the described theoretical analysis for
other P2P configurations [14, 68]. These systems currently address NDD as a special
case of the KNN problem, and therefore POND cannot be applied directly to opti-
mize the network cost. Specializing the functionality of these systems to only NDD

7.2. FUTURE WORK 99

queries with fixed distance thresholds would enable the application of our optimiza-
tion method. Finally, we will explore new application scenarios of NDD in multimedia
mining and retrieval over existing P2P file sharing networks, such as Limewire. We
expect that the proposed technique finds direct applications to metadata-based search,
where annotations (such as tags or descriptions) provided by different users for near
duplicate content can be combined to build more comprehensive indexes.

Appendix A

Proofs

A.1 Proofs for Chapter 3

We first introduce two Lemmas which are necessary for our proofs.

Lemma A.1. The expected number of true bits in a Bloom filter of length m with k hash

functions after n elements were hashed is: Ŝ (n) = m
(
1 −

(
1 − 1

m

)kn
)
.

Proof. Given a Bloom filter of length m with k hash functions and n elements hashed
into it. We define the binary random variables Z1,Z2, . . . ,Zm where Zi is interpreted to
be the indicator variable for the event that the ith bit in the Bloom filter is set to true.

The probability that the ith bit is set to true is P[i = true] = 1 −
(
1 −

1
m

)kn

. Having a

Bloom filter of length m, the expected number of true bits equals to

Ŝ (n) =
∑m

i=1 P[i = true] = m
(
1 −

(
1 − 1

m

)kn
)
. �

Lemma A.2. Given a Bloom filter BF of length m with k hash functions and t bits
set to true. The expected number of elements hashed in the Bloom filter is Ŝ −1(t) =

ln
(
1 − t

m

)
k × ln

(
1 − 1

m

)
Proof. We find Ŝ −1(t) using the probability of a bit to be true:

P[i = true] =
t
m

= 1 −
(
1 −

1
m

)kŜ −1(t)

⇒

(
1 −

1
m

)kŜ −1(t)

= 1 −
t
m
⇒

Ŝ −1(t) =
ln

(
1 − t

m

)
k × ln

(
1 − 1

m

)
�

100

A.1. PROOFS FOR CHAPTER 3 101

Theorem 3.1

Proof. We now show how the cardinality of the intersection of two sets A and B can
be derived from their Bloom filters. The proof proceeds as follows. We will first
estimate the number of bits that are set to true in both Bloom filters BFA and BFB,
but from a different element in each Bloom filter. These bits are set to true due to
hash collisions, and by estimating the number of these collisions (Eqn. A.1), we can
estimate the number of true bits in the Bloom filter of the intersection of the two sets
A ∩ B. From there, we can use Lemma A.2 to estimate the number of elements in the
intersection.

To simplify exposition, we represent Bloom filters as sets of numbers. The set
representation of a Bloom filter contains value i if and only if the ith bit of the corre-
sponding bit array is true, i.e., SETBF = {i : BF[i] = true}.

With BF∩ we denote the Bloom filter of the intersection of the two sets A ∩ B.
BF∧ denotes the Bloom filter produced by a bitwise-AND merging of BFA and BFB.
With R we denote the number of random collisions, that is, the bits set in BFA and BFB,
therefore also in BF∧, but not set in BF∩.

The expected value for R, denoted as R̂, is found as follows. The elements in
SETBFA\SETBF∩ are independent from the elements in SETBFB\SETBF∩ . Thus the proba-
bility of an element to occur in both SETBFA\SETBF∩ and SETBFB\SETBF∩ is
|SETBFA |−|SETBF∩ |

m−|SETBF∩ |
×
|SETBFB |−|SETBF∩ |

m−|SETBF∩ |
, where |SETx| denotes the cardinality of SETx.

When an element occurs in both SETBFA\SETBF∩ and SETBFB\SETBF∩ it also occurs
in SETBF∧ . The expected value of R is:

R̂ =
(
m − |SETBF∩ |

)
×
|SETBFA |−|SETBF∩ |

m−|SETBF∩ |
×
|SETBFB |−|SETBF∩ |

m−|SETBF∩ |

Moreover, by definition:

|SETBF∧ | = |SETBF∩ | + R (A.1)

By replacing R in Equation A.1 with the expected value we get an estimation for
|SETBF∩ |:

E(|SETBF∩ |) = |SETBF∧ | − (m − |SETBF∩ |) ×
|SETBFA |−|SETBF∩ |

m−|SETBF∩ |
×
|SETBFB |−|SETBF∩ |

m−|SETBF∩ |
(A.2)

Note that BF∩ is a normal Bloom filter of the set A∩B. Thus we can use Lemma A.1
to estimate the number of objects hashed into it: |SETBF∩ | = m

(
1 − (1 − 1/m)kn

)
, where

n = E(|A∩B|). Combining that with Equation A.2, we get an estimation for E(|A∩B|):

E(|A ∩ B|) =
ln(m2 − m|SETBFA | − m|SETBFB | + |SETBFA | × |SETBFB |)

k ln(1 − 1/m)
−

ln(m2 − m × |SETBFA | − m × |SETBFB | + m × |SETBF∧ |)
k ln(1 − 1/m)

(A.3)

Equation 3.2 is derived by replacing the notation of |SETBFx | with the original nota-
tion of tb(BFx).

For completeness, we mention that it is also possible to derive probabilistic upper
and lower bounds for the value of E(|A∩B|), which can be useful for several scenarios.
The same applies for the value of Ŝ −1(t), derived by Lemma A.2. We derive these

102 APPENDIX A. PROOFS

bounds in [133]. �

Theorem 3.2

Proof. We use Theorem 3.1 to estimate the expected cardinality of S x := Pi ∩ Cx and
S y := Pi ∩ Cy. The expected cardinality for the two sets is denoted with f (Pi,Cx) and
f (Pi,Cy), and the true (unknown) cardinality is denoted with |S x| and |S y|.

Without loss of generality assume that f (Pi,Cx) > f (Pi,Cy). In such a case the
objective function selects Cx as the optimal one for peer Pi. The objective function
selection is wrong when |S y| > |S x|. We find the probability of |S y| > |S x| using
Chernoff bounds. For the lower bound, we use the simplified form proposed in [121],
pp. 69–70.

Pr
[
|S y| > |S x|

]
< Pr

[
|S y| > (1 + δy) × f (Pi,Cy)] × Pr[|S x| < (1 − δx) × f (Pi,Cx)

]
= exp(− f (Pi,Cy) × δ2

y/4) × exp(− f (Pi,Cx) × δ2
x/2)

with δy = f (Pi,Cx)/ f (Pi,Cx) × (1 − δx) − 1.
Using derivation we find the values of δx and δy which minimize the above proba-

bility: δx = −
f (Pi,Cy)− f (Pi,Cx)

2 f (Pi,Cy)+ f (Pi,Cx) and δy =
2 f (Pi,Cx)−2 f (Pi,Cy)
2 f (Pi,Cy)+ f (Pi,Cx) . The minimal probability is:

Prmin

[
|S y| > |S x|

]
< exp

− f (Pi,Cy)
(

2 f (Pi,Cx) − 2 f (Pi,Cy)
2 f (Pi,Cy) + f (Pi,Cx)

)2

/4
×

exp
− f (Pi,Cx)

(
f (Pi,Cx) − f (Pi,Cy)

2 f (Pi,Cy) + f (Pi,Cx)

)2

/2

which gives:

Prmax

[
|Pi ∩Cx| > |Pi ∩Cy|

]
>1 − exp

− f (Pi,Cy)
(

2 f (Pi,Cx) − 2 f (Pi,Cy)
2 f (Pi,Cy) + f (Pi,Cx)

)2

/4
×

exp
− f (Pi,Cx)

(
f (Pi,Cx) − f (Pi,Cy)

2 f (Pi,Cy) + f (Pi,Cx)

)2

/2

�

Theorem 3.3

Proof. In the basic PCIR approach, each peer selects and joins exactly one peer group.
Let p denote a peer, and g a group of peers. With DC(·) we denote the document
collection of a peer or a group. Super peers form the document collection of their
group by concatenating the document collection of all peers in the group. Formally,
DC(g) :=

⋃
p ∈ g

DC(p).

The dictionary size of the group collection follows Heap’s law. Dg ≈ k×len (DC(g))β

where k and β are collection-characteristic values. The dictionary size of peer p ∈ g

also follows Heap’s law: Dp ≈ k × len(DC(p))β. Then, the expected ratio E
(

Dp

Dg

)
is:

E
(

Dp

Dg

)
=

k × len(DC(g))β

k × len(DC(p))β

A.2. PROOFS FOR CHAPTER 4 103

Each group holds on average n/nsp peers. Thus, the average collection length per group
equals to len(DC(p) = n/nsp × len(DC(p), and:

E
(

Dp

Dg

)
=

len(DC(p))β

(n/nsp × len(DC(p)))β
=

(
nsp/n

)β
(A.4)

We now look at the cost ratio between basic PCIR and the flat DHT indexing ap-
proach. The term nsp × Dg × log(n) is the dominant term in the equation for the basic
PCIR cost expression (Equation 3.5), and closely approximates the total cost. This
gives:

E
(
Cbasic

C f lat

)
≈

nsp × Dg(log(n) + 1)
n × Dp × (log(n) + 1)

(A.5)

From Equations A.4 and A.5 we get:

E
(
Cbasic

C f lat

)
≈

nsp × (n/nsp)β

n
=

(
nsp/n

)1−β
(A.6)

�

A.2 Proofs for Chapter 4

Lemma 4.1

Proof. Pr
[
Label j(x) = Label j(y)

]
can be expressed as a product of the individual prob-

abilities of the k bits in the corresponding labels to match. As explained in the previous
section, the individual bits of the labels are set using min-wise hashing followed by
binary hashing. If the result of min-wise hashing of two resources is the same, the
result of the binary hashing is also assured to be the same. If the result of the min-wise
hashing is not the same, the result of binary hashing can still be the same with proba-
bility 0.5. More specifically, the probability that x and y have the same label Label j is
computed as follows. Consider the min-wise hashing value computed for a single hash
function fi(·) ∈ H j. The probability that min-wise hashing of the two resources using
hash function fi(·) yields the same result depends on the similarity of the resources. For
the case that Sim(x, y) denotes Jaccard similarity between the two resources, Broder et
al. [24] show the following:

Pr[min{ fi(x)} = min{ fi(y)}] = Sim(x, y) (A.7)

where min{ fi(·)} denotes the min-wise hashing values of the resources using fi. Be-
cause of pairwise independence of the hash functions in H j, the probability that i of
the k min-wise hash values of x and y are pairwise equal is Sim(x, y)i. It follows that
the remaining (k − i) min-wise hash values are not pairwise equal with a probability
of (1 − Sim(x, y))k−i. Owing to binary hashing that follows the min-wise hashing, the
probability of these (k − i) min-hash values to still map to equal binary values is given
by ((1 − Sim (x, y)) × 0.5)k−i. Factor

(
k
i

)
accounts for all combinations of i out of k, for

0 ≤ i ≤ k. �

104 APPENDIX A. PROOFS

Corollary 4.1

Proof. Two corresponding labels of x and y do not match with a probability of (1 −
Pr[Label(x) = Label(y)]), which can be computed with Lemma 4.1. The probabil-
ity that none of the labels of x and y match is

(
1 − Pr

[
Label(x) = Label(y)

])l. The
probability that at least one of the l labels matches follows directly: prfound(x, y) = 1 −(
1 − Pr

[
Label(x) = Label(y)

])l
= 1−

(
1 −

∑k
i=0

(
k
i

)
× (1 − Sim (x, y))i × Sim(x, y)k−i × 0.5i

)l
.

�

Theorem 4.1

Proof. We first show that the probability value prfound(x, y) monotonically increases
with Sim (x, y). The derivative of prfound(x, y) with respect to Sim(x, y) is

pr′found(x, y) =
k
(
0.5 + 0.5

Sim(x,y)

)k
Sim(x, y)k

1 + Sim(x, y)

Notice that pr′found is always positive for 0 ≤ Sim(x, y) ≤ 1, which means that prfound(x, y)
is monotonically increasing with Sim(x, y). Hence, for x, y with Sim(x, y) ≥ minSim,

1 ≥ prfound(x, y) ≥ 1 −

1 − k∑
i=0

(
k
i

)
× (1 − minSim)i × minSimk−i × 0.5i

l

�

Theorem 4.2

Proof. Probability prndd monotonically increases with the decrease of k, if all other
parameters are fixed (Eqn. 4.2). Therefore, for all k ≤ k0, the value of prndd will
be higher than or equal to the probability prmin desired by the user. The value of k
is orthogonal to maintenance cost, but affects query execution cost due to the false
positives. The number of false positives monotonically decreases with k. Therefore,
the number of false positives will be reduced by selecting the maximum k value for
which prndd ≥ prmin. This value is k = bk0c. �

A.3 Proofs for Chapter 5

Theorem 5.1

Proof. The proof uses the simplified Chernoff bound for the lower tail ([121], p. 72),
which states that for any δ > 0, the probability of the sum of N independent Poisson
trials to be less than (1 − δ) × µ is less than exp(−µ × δ2/2). Symbol µ denotes the
expected value for the sum.

We apply the bounds to find Pr[T F(t, ci) < DocT Fmin] as follows. For a document
d of length l and for a term t, we define binary random variables Z1, . . . ,Zl, where Zi

denotes the event that the ith term of d is t. As in most language models, we assume
that terms are independent. The expected number of occurrences of t is denoted by

A.3. PROOFS FOR CHAPTER 5 105

ˆT F(t, d) = φi[t] × l. Then, by Chernoff bounds (lower tail):

Pr[T F(t, d) ≥ DocT Fmin] ≥

1 − exp(− ˆT F(t, d) × (1 − DocT Fmin/ ˆT F(t, d))2/2)

For any probability Prmin, the minimum value of DocT Fmin satisfying Pr[T F(t, d) ≥
DocT Fmin] ≥ Prmin is:

DocT Fmin = ˆT F(t, d) −

√
2 × ˆT F(t, d) × log(

1
1 − Prmin

) (A.8)

Since DocT Fmin is a natural number, we take the floor of the RHS of expression A.8
as its value. �

Theorem 5.2

Proof. We represent clusters as concatenations of their documents. Since we assume
that all documents in cluster ci follow the same language model φi, the cluster also
follows φi. The equations follow directly from Chernoff inequality, similar to Theo-
rem 5.1. �

Appendix B

Publications

Journal articles
1. Odysseas Papapetrou,Wolf Siberski, Wolfgang Nejdl. PCIR: Combining DHTs

and Peer Clusters for Efficient Full-text P2P Indexing, Computer Networks 54(12):
2019-2040 (2010), Elsevier.

2. Odysseas Papapetrou, Wolf Siberski, Wolfgang Nejdl. Cardinality estimation
and dynamic length adaptation for Bloom filters, Distributed and Parallel Databases,
28(2):119-156 (2010), Springer.

3. George A. Papadopoulos, Aristos Stavrou, Odysseas Papapetrou. An implemen-
tation framework for Software Architectures based on the coordination paradigm.
Science of Computer Programming 60(1): 27-67 (2006), Elsevier.

Peer-reviewed conferences
1. Odysseas Papapetrou, Ekaterini Ioannou, Dimitrios Skoutas. Efficient Discovery

of Frequent Subgraph Patterns in Uncertain Graph Databases, in: Proc. 14th In-
ternational Conference on Extending Database Technology (EDBT), 2011, Up-
psala, Sweden.

2. Odysseas Papapetrou, Ling Chen. XStreamCluster: an Efficient Algorithm for
Streaming XML data Clustering, in: Proc. 16th Database Systems For Advanced
Applications (DASFAA), 2011, Hong Kong.

3. Odysseas Papapetrou, Wolf Siberski, Stefan Siersdorfer. Collaborative Classifi-
cation over P2P networks, in: Proc. WWW 2011 (Companion Volume), Hyder-
abad, India.

4. Odysseas Papapetrou, Wolf Siberski, Norbert Fuhr. Text Clustering for Peer-to-
Peer Networks with Probabilistic Guarantees, in: Proc. 32nd European Confer-
ence on Information Retrieval (ECIR), 2010, Milton Keynes, UK.

5. Odysseas Papapetrou, Sukriti Ramesh, Stefan Siersdorfer, Wolfgang Nejdl. Op-
timizing Near Duplicate Detection for P2P Networks, in: Proc. IEEE Interna-
tional Conference on Peer-to-Peer Computing (P2P), 2010, Delft, Netherlands.

106

107

6. Odysseas Papapetrou, George Papadakis, Ekaterini Ioannou, Dimitrios Skoutas.
Efficient Term Cloud Generation for Streaming Web Content, in: Proc. 10th
International Conference on Web Engineering (ICWE), 2010, Vienna, Austria.

7. Ekaterini Ioannou, Odysseas Papapetrou, Dimitrios Skoutas, Wolfgang Nejdl.
Efficient Semantic-Aware Detection of Near Duplicate Resources, in: Proc. 7th
Extended Semantic Web Conference (ESWC), 2010, Heraklion, Greece.

8. Sukriti Ramesh, Odysseas Papapetrou, Wolf Siberski. Optimizing Distributed
Joins with Bloom filters, in: Proc. Fifth International Conference on Distributed
Computing and Internet Technologies (ICDCIT), 2008, New Delhi, India.

9. Loizos Michael, Wolfgang Nejdl, Odysseas Papapetrou, Wolf Siberski. Improv-
ing distributed join efficiency with extended Bloom filter operations, in: Proc.
IEEE 21st International Conference on Advanced Information Networking and
Applications (AINA), 2007, Niagara Falls, Canada.

10. Odysseas Papapetrou, Wolf Siberski, Wolf-Tilo Balke, Wolfgang Nejdl. DHTs
over Peer Clusters for Distributed Information Retrieval, in: Proc. IEEE 21st In-
ternational Conference on Advanced Information Networking and Applications
(AINA), 2007, Niagara Falls, Canada.

11. Juri L. De Coi, Eelco Herder, Arne Koesling, Christoph Lofi, Daniel Olmedilla,
Odysseas Papapetrou, and Wolf Siberski. A model for competence gap analysis,
in: Proc. International Conference on Web Information Systems and Technology
(WEBIST), 2007, Barcelona, Spain.

12. Odysseas Papapetrou, Sebastian Michel, Matthias Bender, Gerhard Weikum. On
the Usage of Global Document Occurrences in Peer-to-Peer Information Sys-
tems, in: Proc. International Conference of Cooperative Information Systems
(CoopIS), 2005, Ag. Napa, Cyprus.

13. Odysseas Papapetrou, George A. Papadopoulos. Aspect Oriented Programming
for a component-based real life application: a case study, in: Proc. of Sympo-
sium of Applied Computing (SAC), 2004, Nicosia, Cyprus.

14. Odysseas Papapetrou, George Samaras. IPMicra: Toward a Distributed and
Adaptable Location Aware Web Crawler, in: Local Proc. Advances in Databases
and Information Systems (ADBIS) 2004, Budapest, Hungary.

15. Odysseas Papapetrou, George Samaras. Minimizing the Network Distance in
Distributed Web Crawling, in: Proc. International Conference of Cooperative
Information Systems (CoopIS), 2004, Larnaca, Cyprus.

16. Odysseas Papapetrou, George Samaras. IPMicra: An IP-address based Location
Aware Distributed Web Crawler, in: Proc. International Conference on Internet
Computing, 2004, Nevada, USA.

17. Odysseas Papapetrou, George Samaras. Distributed location aware web crawl-
ing, in: Proc. WWW (Alternate Track Papers & Posters), 2004, New York, USA.

18. Odysseas Papapetrou, Stavros Papastavrou, George Samaras. UCYMICRA: Dis-
tributed Indexing of the Web Using Migrating Crawlers, in Proc. Advances in
Databases and Information Systems (ADBIS), 2003, Dresden, Germany.

108 APPENDIX B. PUBLICATIONS

19. Odysseas Papapetrou, Stavros Papastavrou, George Samaras. Distributed Index-
ing of the Web using Migrating Crawlers, in: Proc. WWW (Alternate Track
Papers & Posters), 2003, Budapest, Hungary.

Peer-reviewed workshops
1. Odysseas Papapetrou, Wolf Siberski, Fabian Leitritz, Wolfgang Nejdl. Exploit-

ing Distribution Skew for Scalable P2P Text Clustering Databases, in: Proc.
Information Systems and Peer-to-Peer Computing (DBISP2P) 2008, Auckland,
New Zealand.

2. Odysseas Papapetrou. Full-text Indexing and Information Retrieval in P2P sys-
tems, in: Proc. 11th International Conference on Extending Database Technol-
ogy, PhD Workshop (EDBT), 2008, Nantes, France.

Technical reports
1. Odysseas Papapetrou, Wolf Siberski, Norbert Fuhr. Decentralized Probabilistic

Text Clustering, under revision at TKDE, 2010.

2. Odysseas Papapetrou, Wolf Siberski, Stefan Siersdorfer. Efficient Model Sharing
for Collaborative Text Classification, 2011.

Bibliography

[1] K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth,
M. Punceva, and R. Schmidt. P-Grid: A self-organizing structured P2P system.
SIGMOD Record, 32(3):29–33, 2003.

[2] K. Aberer, P. Cudré-Mauroux, M. Hauswirth, and T. V. Pelt. GridVine: Building
internet-scale semantic overlay networks. In ISWC, pages 107–121, 2004.

[3] K. Aberer, F. Klemm, M. Rajman, and J. Wu. An architecture for peer-to-peer
information retrieval. In Workshop on Peer-to-Peer Information Retrieval, 2004.

[4] L. A. Adamic and B. A. Huberman. Zipf’s law and the internet. Glottometrics,
3:143–150, 2002.

[5] E. L. Allwein, R. E. Schapire, and Y. Singer. Reducing multiclass to binary:
A unifying approach for margin classifiers. Journal of Machine Learning Re-
search, 1:113–141, 2000.

[6] H. H. Ang, V. Gopalkrishnan, S. C. H. Hoi, and W. K. Ng. Cascade rsvm in
peer-to-peer networks. In ECML/PKDD (1), pages 55–70, 2008.

[7] H. H. Ang, V. Gopalkrishnan, W. K. Ng, and S. C. H. Hoi. Communication-
efficient classification in P2P networks. In ECML/PKDD (1), pages 83–98, 2009.

[8] J. Attenberg, K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and M. Zinke-
vich. Collaborative email-spam filtering with consistently bad labels using fea-
ture hashing. In CEAS, 2009.

[9] W.-T. Balke, W. Nejdl, W. Siberski, and U. Thaden. DL meets P2P - distributed
document retrieval based on classification and content. In ECDL, pages 379–
390, 2005.

[10] W.-T. Balke, W. Nejdl, W. Siberski, and U. Thaden. Progressive distributed top
k retrieval in peer-to-peer networks. In ICDE, pages 174–185, 2005.

[11] S. Bandyopadhyay, C. Giannella, U. Maulik, H. Kargupta, K. Liu, and S. Datta.
Clustering distributed data streams in peer-to-peer environments. Inf. Sci.,
176(14):1952–1985, 2006.

[12] D. Barbalace, C. Lucchese, C. Mastroianni, S. Orlando, and D. Talia.
Mining@home : Public resource computing for distributed data mining. In From
Grids to Service and Pervasive Computing. Springer, 2008.

109

110 BIBLIOGRAPHY

[13] C. Batten, K. Barr, A. Saraf, and S. Trepetin. pStore: A secure peer-to-peer
backup system. Technical Memo MIT-LCS-TM-632, Massachusetts Institute of
Technology Laboratory for Computer Science, October 2002.

[14] M. Bawa, T. Condie, and P. Ganesan. LSH forest: self-tuning indexes for simi-
larity search. In WWW, pages 651–660, 2005.

[15] M. Bender, S. Michel, P. Triantafillou, and G. Weikum. Global document fre-
quency estimation in peer-to-peer web search. In WebDB, 2006.

[16] M. Bender, S. Michel, P. Triantafillou, G. Weikum, and C. Zimmer. Improving
collection selection with overlap awareness in P2P search engines. In SIGIR,
pages 67–74, 2005.

[17] M. Bender, S. Michel, P. Triantafillou, G. Weikum, and C. Zimmer. Minerva:
Collaborative P2P search. In VLDB, pages 1263–1266, 2005.

[18] P. N. Bennett, S. T. Dumais, and E. Horvitz. Probabilistic combination of text
classifiers using reliability indicators: models and results. In SIGIR, pages 207–
214, 2002.

[19] A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury: supporting scalable
multi-attribute range queries. In SIGCOMM, pages 353–366, 2004.

[20] C. Blake. A comparison of document, sentence, and term event spaces. In ACL,
2006.

[21] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
munications ACM, 13(7):422–426, 1970.

[22] W. J. Bolosky, J. R. Douceur, and J. Howell. The Farsite project: a retrospective.
SIGOPS Oper. Syst. Rev., 41:17–26, April 2007.

[23] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[24] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher. Min-wise
independent permutations (extended abstract). In STOC, pages 327–336, 1998.

[25] C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition.
Data Min. Knowl. Discov., 2(2):121–167, 1998.

[26] J. P. Callan, Z. Lu, and W. B. Croft. Searching distributed collections with
inference networks. In SIGIR, pages 21–28, 1995.

[27] M. Charikar. Similarity estimation techniques from rounding algorithms. In
STOC, pages 380–388, 2002.

[28] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker. Making
Gnutella-like P2P systems scalable. In SIGCOMM, pages 407–418, 2003.

[29] L. Chen, P. Wright, and W. Nejdl. Improving music genre classification using
collaborative tagging data. In WSDM, pages 84–93, 2009.

[30] I. Clarke, S. G. Miller, T. W. Hong, O. Sandberg, and B. Wiley. Protecting Free
Expression Online with Freenet. IEEE Internet Computing, 6:40–49, 2002.

BIBLIOGRAPHY 111

[31] B. F. Cooper. Guiding queries to information sources with InfoBeacons. In
Middleware, pages 59–78, 2004.

[32] G. V. Cormack. TREC 2007 Spam Track Overview. In Text REtrieval Confer-
ence, (TREC), 2007.

[33] G. V. Cormack and T. R. Lynam. Online supervised spam filter evaluation. ACM
Trans. Inf. Syst., 25(3):11, 2007.

[34] R. Cox, A. Muthitacharoen, and R. Morris. Serving DNS using chord. In IPTPS,
Cambridge, MA, March 2002.

[35] A. Crespo and H. Garcia-Molina. Routing indices for peer-to-peer systems. In
ICDCS, pages 23–, 2002.

[36] A. Crespo and H. Garcia-Molina. Semantic overlay networks for P2P systems.
In AP2PC, pages 1–13, 2004.

[37] F. M. Cuenca-Acuna, C. Peery, R. P. Martin, and T. D. Nguyen. PlanetP: Us-
ing Gossiping to Build Content Addressable Peer-to-Peer Information Sharing
Communities. In HPDC, pages 236–249, 2003.

[38] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and R. Morris. Designing
a DHT for low latency and high throughput. In NSDI, pages 85–98, 2004.

[39] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hash-
ing scheme based on p-stable distributions. In Symposium on Computational
Geometry, pages 253–262, 2004.

[40] S. Datta, K. Bhaduri, C. Giannella, R. Wolff, and H. Kargupta. Distributed data
mining in P2P networks. IEEE Internet Computing, 10(4):18–26, 2006.

[41] S. Datta, C. Giannella, and H. Kargupta. K-Means clustering over a large, dy-
namic network. In Proc. SDM, 2006.

[42] S. Datta, C. R. Giannella, and H. Kargupta. Approximate distributed K-Means
clustering over a P2P network. TKDE, 21(10):1372–1388, 2009.

[43] I. S. Dhillon and D. S. Modha. A data-clustering algorithm on distributed mem-
ory multiprocessors. In Proceedings of the Workshop on Large-Scale Parallel
KDD Systems, pages 245–260, San Diego, CA, USA, 1999.

[44] W. Dong, Z. Wang, W. Josephson, M. Charikar, and K. Li. Modeling LSH for
performance tuning. In CIKM, pages 669–678. ACM, 2008.

[45] C. Doulkeridis, K. Nørvåg, and M. Vazirgiannis. DESENT: decentralized and
distributed semantic overlay generation in P2P networks. IEEE Journal on Se-
lected Areas in Communications, 25(1):25–34, 2007.

[46] S. T. Dumais, J. C. Platt, D. Hecherman, and M. Sahami. Inductive learning
algorithms and representations for text categorization. In CIKM, 1998.

[47] M. Eisenhardt, W. Müller, and A. Henrich. Classifying documents by distributed
P2P clustering. In INFORMATIK, pages 286–291, Frankfurt, Germany, 2003.

112 BIBLIOGRAPHY

[48] S. El-Ansary, L. O. Alima, P. Brand, and S. Haridi. Efficient broadcast in struc-
tured P2P networks. In IPTPS, pages 304–314, 2003.

[49] S. Ertekin, J. Huang, L. Bottou, and L. Giles. Learning on the border: active
learning in imbalanced data classification. In CIKM, pages 127–136, 2007.

[50] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middle-
ware. In PODS, 2001.

[51] F. Falchi, C. Gennaro, F. Rabitti, and P. Zezula. A distributed incremental nearest
neighbor algorithm. In INFOSCALE, page 82, 2007.

[52] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: a scalable
wide-area Web cache sharing protocol. IEEE/ACM Transactions on Network-
ing, 8(3):281–293, 2000.

[53] T. Fawcett. An introduction to ROC analysis. Pattern Recogn. Lett., 27(8):861–
874, 2006.

[54] R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals
of Eugenics, 7, 1936.

[55] G. Forman. An extensive empirical study of feature selection metrics for text
classification. J. Mach. Learn. Res., 3:1289–1305, 2003.

[56] G. Forman and B. Zhang. Distributed data clustering can be efficient and exact.
SIGKDD Explor. Newsl., 2(2):34–38, 2000.

[57] Y. Freund. An Adaptive Version of the Boost by Majority Algorithm. In COLT,
1999.

[58] J. Fürnkranz, E. Hüllermeier, E. Loza Mencı́a, and K. Brinker. Multilabel clas-
sification via calibrated label ranking. Mach. Learn., 73(2):133–153, 2008.

[59] A. Ganapathiraju, J. Hamaker, and J. Picone. Support vector machines for
speech recognition. In International Conference on Spoken Language Process-
ing, pages 2348–2355, 1998.

[60] P. Ganesan, P. K. Gummadi, and H. Garcia-Molina. Canon in G major: Design-
ing DHTs with hierarchical structure. In ICDCS, pages 263–272, 2004.

[61] P. Ganesan, Q. Sun, and H. Garcia-Molina. Adlib: A self-tuning index for
dynamic P2P systems. In ICDE, pages 256–257, 2005.

[62] A. J. Ganesh, A.-M. Kermarrec, E. L. Merrer, and L. Massoulié. Peer counting
and sampling in overlay networks based on random walks. Distributed Comput-
ing, 20(4):267–278, 2007.

[63] J. Gao and P. Steenkiste. An adaptive protocol for efficient support of range
queries in DHT-based systems. In ICNP, pages 239 – 250, 2004.

[64] P. Garbacki, D. H. J. Epema, and M. van Steen. Optimizing peer relationships
in a super-peer network. In ICDCS, page 31, 2007.

[65] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via
hashing. In VLDB, pages 518–529, 1999.

BIBLIOGRAPHY 113

[66] C. Gkantsidis, M. Mihail, and A. Saberi. Random walks in peer-to-peer net-
works. In INFOCOM, pages 241–263, 2004.

[67] B. Godfrey, K. Lakshminarayanan, S. Surana, R. M. Karp, and I. Stoica. Load
balancing in dynamic structured P2P systems. In INFOCOM, 2004.

[68] P. Haghani, S. Michel, and K. Aberer. Distributed similarity search in high
dimensions using locality sensitive hashing. In EDBT, pages 744–755, 2009.

[69] K. M. Hammouda and M. S. Kamel. HP2PC: Scalable hierarchically-distributed
peer-to-peer clustering. In SDM, 2007.

[70] B. Haslhofer and P. Knezevié. The BRICKS digital library infrastructure. In
Semantic Digital Libraries, pages 151–161. 2009.

[71] H. S. Heaps. Information Retrieval-Computational and Theoretical Aspects.
Academic Press, 1978.

[72] P. Heymann, G. Koutrika, and H. Garcia-Molina. Can social bookmarking im-
prove web search? In WSDM, pages 195–206, 2008.

[73] H.-C. Hsiao and C.-T. King. Similarity discovery in structured P2P overlays. In
ICPP, pages 636–, 2003.

[74] R. Huebsch, B. N. Chun, J. M. Hellerstein, B. T. Loo, P. Maniatis, T. Roscoe,
S. Shenker, I. Stoica, and A. R. Yumerefendi. The architecture of PIER: an
internet-scale query processor. In CIDR, pages 28–43, 2005.

[75] Y. Ioannidis, D. Maier, S. Abiteboul, P. Buneman, S. Davidson, E. Fox,
A. Halevy, C. Knoblock, F. Rabitti, H. Schek, and G. Weikum. Digital library
information-technology infrastructures. Int J Digit Libr, 5(4):266 – 274, 2005.

[76] S. Iyer, A. I. T. Rowstron, and P. Druschel. Squirrel: a decentralized peer-to-peer
web cache. In PODC, pages 213–222, 2002.

[77] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The eigentrust algorithm
for reputation management in P2P networks. In WWW, pages 640–651, 2003.

[78] Y. Ke, R. Sukthankar, L. Huston, Y. Ke, and R. Sukthankar. Efficient near-
duplicate detection and sub-image retrieval. In ACM Multimedia, pages 869–
876, 2004.

[79] H.-s. Kim, J. Lee, H. Liu, and D. Lee. Video linkage: group based copied video
detection. In CIVR, pages 397–406, 2008.

[80] J. Kleinberg. The small-world phenomenon: an algorithm perspective. In STOC,
pages 163–170, 2000.

[81] M. Kleis, E. K. Lua, and X. Zhou. Hierarchical peer-to-peer networks using
lightweight superpeer topologies. In ISCC, pages 143–148, 2005.

[82] F. Klemm and K. Aberer. Aggregation of a term vocabulary for P2P-IR: A DHT
stress test. In DBISP2P, pages 187–194, 2005.

[83] G. Koloniari and E. Pitoura. A recall-based cluster formation game in P2P sys-
tems. PVLDB, 2(1):455–466, 2009.

114 BIBLIOGRAPHY

[84] J. Kong, B. Rezaei, N. Sarshar, V. Roychowdhury, and P. Boykin. Collaborative
spam filtering using e-mail networks. IEEE Computer, 39(8):67–73, 2006.

[85] J. Kubiatowicz, D. Bindel, Y. Chen, S. E. Czerwinski, P. R. Eaton, D. Geels,
R. Gummadi, S. C. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Y.
Zhao. OceanStore: An architecture for global-scale persistent storage. In ASP-
LOS, pages 190–201, 2000.

[86] A. Kumar, J. Xu, and E. W. Zegura. Efficient and scalable query routing for
unstructured peer-to-peer networks. In INFOCOM, pages 1162–1173, 2005.

[87] L. I. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms. Wiley,
2004.

[88] M. Landers, H. Zhang, and K.-L. Tan. Peerstore: Better performance by relaxing
in peer-to-peer backup. In P2P, pages 72–79, 2004.

[89] V. A. Larsen. Combining audio fingerprints. Technical report, Norwegian Uni-
versity of Science and Technology, 2008. Available at http://daim.idi.ntnu.no/.

[90] L. Lee. Measures of distributional similarity. In ACL, 1999.

[91] Y.-J. Lee, O. Mangasarian, and W. Wolberg. Breast cancer survival and
chemotherapy: A support vector machine analysis. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, 55:1–20, 2000.

[92] Y.-J. Lee and O. L. Mangasarian. RSVM: Reduced support vector machines. In
SDM, pages 55–70, 2001.

[93] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. RCV1: A new benchmark collection
for text categorization research. Journal of Machine Learning Research, 5:361–
397, 2004.

[94] J. Li, B. T. Loo, J. M. Hellerstein, M. F. Kaashoek, D. R. Karger, and R. Morris.
On the feasibility of peer-to-peer web indexing and search. In IPTPS, pages
207–215, 2003.

[95] J. Li, J. Stribling, R. Morris, M. F. Kaashoek, and T. M. Gil. A performance vs.
cost framework for evaluating DHT design tradeoffs under churn. In INFOCOM,
pages 225–236, 2005.

[96] J. Liang, R. Kumar, and K. W. Ross. The FastTrack overlay: A measurement
study. Computer Networks, 50(6):842 – 858, 2006.

[97] LIBSVM library and data collections, 2010. Available at
http://www.csie.ntu.edu.tw/˜cjlin/libsvm/.

[98] A. Linari and G. Weikum. Efficient peer-to-peer semantic overlay networks
based on statistical language models. In P2PIR, pages 9–16, 2006.

[99] N. Littlestone and M. Warmuth. The Weighted Majority Algorithm. Information
and Computation, 108(2):212–261, 1994.

[100] B. T. Loo, R. Huebsch, I. Stoica, and J. M. Hellerstein. The case for a hybrid
P2P search infrastructure. In IPTPS, pages 141–150, La Jolla, CA, USA, 2004.

BIBLIOGRAPHY 115

[101] J. Lu and J. Callan. Content-based retrieval in hybrid peer-to-peer networks. In
CIKM ’03, pages 199–206, 2003.

[102] P. Luo, H. Xiong, K. Lü, and Z. Shi. Distributed classification in peer-to-peer
networks. In SIGKDD, pages 968–976, 2007.

[103] T. Luu, G. Skobeltsyn, F. Klemm, M. Puh, I. P. Žarko, M. Rajman, and
K. Aberer. AlvisP2P: scalable peer-to-peer text retrieval in a structured P2P
network. VLDB, 1(2):1424–1427, 2008.

[104] Q. Lv, S. Ratnasamy, and S. Shenker. Can heterogeneity make Gnutella scal-
able? In IPTPS, pages 94–103, March 2002.

[105] J. MacQueen. Some Methods for Classification and Analysis of Multivariate Ob-
servations. 5th Berkeley Symposium on Math. Statistics and Probability, pages
281–297, 1967.

[106] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: a scalable and dynamic emula-
tion of the butterfly. In PODC, pages 183–192, 2002.

[107] M. Mani, A.-M. Nguyen, and N. Crespi. What’s up 2.0: P2P spontaneous social
networking. In IEEE INFOCOM, Poster session, 2009.

[108] M. Mani, A.-M. Nguyen, and N. Crespi. Scope: A prototype for spontaneous
P2P social networking. In PerCom Workshops, pages 220–225, 2010.

[109] C. Manning, P. Raghavan, and H. Schütze. Introduction to Information Re-
trieval. Cambridge University Press, 2008.

[110] L. Massoulie, E. L. Merrer, A.-M. Kermarrec, and A. Ganesh. Peer counting
and sampling in overlay networks: random walk methods. In PODC, pages
123–132, 2006.

[111] P. Maymounkov and D. Mazières. Kademlia: A peer-to-peer information system
based on the XOR metric. In IPTPS, pages 53–65, 2002.

[112] Medline database, US National Library of Medicine, 2006.
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed.

[113] M. Mehyar, D. Spanos, J. Pongsajapan, S. H. Low, and R. M. Murray. Asyn-
chronous distributed averaging on communication networks. IEEE/ACM Trans.
Netw., 15(3):512–520, 2007.

[114] S. Meregu, S. Srinivasan, and E. Zegura. Adding structure to unstructured peer-
to-peer networks: the use of small-world graphs. Journal of Parallel and Dis-
tributed Computing, 65:142–153, 2005.

[115] S. Merugu and J. Ghosh. Privacy-Preserving Distributed Clustering using Gen-
erative Models. In ICDM, pages 211–218, 2003.

[116] S. Michel. Top-k aggegation queries in large-scale distributed systems. In BTW,
pages 418–427, 2009.

[117] S. Michel, M. Bender, N. Ntarmos, P. Triantafillou, G. Weikum, and C. Zim-
mer. Discovering and exploiting keyword and attribute-value co-occurrences to
improve P2P routing indices. In CIKM, pages 172–181, 2006.

116 BIBLIOGRAPHY

[118] S. Michel, M. Bender, P. Triantafillou, and G. Weikum. IQN routing: Integrating
quality and novelty in P2P querying and ranking. In EDBT, pages 149–166,
2006.

[119] E. Minack, R. Paiu, S. Costache, G. Demartini, J. Gaugaz, E. Ioannou, P.-A.
Chirita, and W. Nejdl. Leveraging personal metadata for desktop search: The
Beagle++ system. J. Web Sem., 8(1):37–54, 2010.

[120] D. Mladenić, J. Brank, M. Grobelnik, and N. Milic-Frayling. Feature selection
using linear classifier weights: interaction with classification models. In SIGIR,
pages 234–241, 2004.

[121] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

[122] W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M. T. Schlosser, I. Brunkhorst,
and A. Löser. Super-peer-based routing strategies for rdf-based peer-to-peer
networks. J. Web Sem., 1(2):177–186, 2004.

[123] T. Neumann, M. Bender, S. Michel, R. Schenkel, P. Triantafillou, and
G. Weikum. Distributed top-k aggregation queries at large. Distributed and
Parallel Databases, 26(1):3–27, 2009.

[124] R. Neumayer, C. Doulkeridis, and K. Nørvåg. Aggregation of document fre-
quencies in unstructured P2P networks. In WISE, pages 29–42, 2009.

[125] W. S. Ng, B. C. Ooi, and K.-L. Tan. BestPeer: a self-configurable peer-to-peer
system. In ICDE, page 272, 2002.

[126] L. T. Nguyen, W. G. Yee, and O. Frieder. Adaptive distributed indexing for
structured peer-to-peer networks. In CIKM, pages 1241–1250, 2008.

[127] H. Nottelmann and N. Fuhr. Evaluating different methods of estimating retrieval
quality for resource selection. In SIGIR, pages 290–297, 2003.

[128] G. Oster, P. Molli, S. Dumitriu, and R. Mondéjar. Uniwiki: A collaborative P2P
system for distributed wiki applications. In WETICE, pages 87–92, 2009.

[129] S. Overell, B. Sigurbjörnsson, and R. van Zwol. Classifying tags using open
content resources. In WSDM, pages 64–73, 2009.

[130] C. H. Papadimitriou, H. Tamaki, P. Raghavan, and S. Vempala. Latent semantic
indexing: a probabilistic analysis. In PODS, pages 159–168, 1998.

[131] O. Papapetrou, S. Michel, M. Bender, and G. Weikum. On the usage of global
document occurrences in peer-to-peer information systems. In CoopIS, pages
310–328, 2005.

[132] O. Papapetrou, W. Siberski, F. Leitritz, and W. Nejdl. Exploiting distribution
skew for scalable P2P text clustering. In DBISP2P, pages 1–12, 2008.

[133] O. Papapetrou, W. Siberski, and W. Nejdl. Cardinality estimation and dynamic
length adaptation for bloom filters. Distributed and Parallel Databases, 28:119–
156, 2010. 10.1007/s10619-010-7067-2.

BIBLIOGRAPHY 117

[134] T. Pitoura, N. Ntarmos, and P. Triantafillou. Replication, load balancing and
efficient range query processing in dhts. In EDBT, pages 131–148, 2006.

[135] T. Pitoura, N. Ntarmos, and P. Triantafillou. Saturn: Range queries, load balanc-
ing and fault tolerance in DHT data systems. TKDE, 2010.

[136] G. Pitsilis, P. Periorellis, and L. Marshall. A policy for electing super-nodes in
unstructured P2P networks. In AP2PC, pages 54–61, 2004.

[137] I. Podnar, M. Rajman, T. Luu, F. Klemm, and K. Aberer. Scalable peer-to-peer
web retrieval with highly discriminative keys. In ICDE, pages 1096–1105, 2007.

[138] B. Qiao, G. Wang, and K. Xie. A self-organized semantic clustering approach
for super-peer networks. In WISE, pages 448–453, 2006.

[139] S. Ramesh, O. Papapetrou, and W. Siberski. Optimizing distributed joins with
bloom filters. In ICDCIT, pages 145–156, 2008.

[140] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable
content addressable network. In SIGCOMM, pages 161–172, 2001.

[141] P. Reynolds and A. Vahdat. Efficient peer-to-peer keyword searching. In Mid-
dleware, pages 21–40, 2003.

[142] S. C. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling churn in a DHT.
In USENIX Annual Technical Conference, General Track, pages 127–140, 2004.

[143] J. Ritter. Why Gnutella can’t scale. no, really. Technical report, Darkridge, Inc.,
2001. http://www.darkridge.com/˜jpr5/doc/gnutella.html.

[144] R. Rodrigues and P. Druschel. Peer-to-peer systems. Commun. ACM, 53(10):72–
82, 2010.

[145] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decentralized object lo-
cation, and routing for large-scale peer-to-peer systems. In Middleware, pages
329–350, 2001.

[146] S. Saroiu, K. P. Gummadi, and S. D. Gribble. Measuring and analyzing the
characteristics of napster and gnutella hosts. Multimedia Syst., 9:170–184, 2003.

[147] H. Schulze and K. Mochalski. Internet study 2007. Technical report, IPOQUE,
2007.

[148] A. Schuster, R. Wolff, and D. Trock. A high-performance distributed algorithm
for mining association rules. Knowl. Inf. Syst., 7(4):458–475, 2005.

[149] D. Sculley and G. Wachman. Relaxed online svms for spam filtering. In SIGIR,
pages 415–422, 2007.

[150] C. Shah. Tubekit: a query-based youtube crawling toolkit. In JCDL, page 433,
2008.

[151] R. Siebes. pNear: combining content clustering and distributed hash tables. In
P2PKM, 2005.

118 BIBLIOGRAPHY

[152] S. Siersdorfer and S. Sizov. Meta methods for model sharing in personal infor-
mation systems. ACM Trans. Inf. Syst., 26(4):1–35, 2008.

[153] T. Silerston and O. Fourmaux. Measuring P2P iptv systems. In NOSSDAV, 2007.

[154] G. Skobeltsyn, T. Luu, I. P. Zarko, M. Rajman, and K. Aberer. Query-driven
indexing for scalable peer-to-peer text retrieval. Future Generation Comp. Syst.,
25(1):89–99, 2009.

[155] M. Steinbach, G. Karypis, and V. Kumar. A comparison of document clustering
techniques. In KDD Workshop on Text Mining, 2000.

[156] R. Steinmetz and K. Wehrle. Peer-to-Peer Systems and Applications. Springer,
2005.

[157] M. Steyvers and T. Griffiths. Handbook of Latent Semantic Analysis, chapter
Probabilistic Topic Models, pages 427–448. Lawrence Erlbaum, 2007.

[158] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord:
A scalable peer-to-peer lookup service for internet applications. SIGCOMM
Comput. Commun. Rev., 31(4):149–160, 2001.

[159] C. Tang, S. Dwarkadas, and Z. Xu. On scaling latent semantic indexing for large
peer-to-peer systems. In SIGIR, pages 112–121, 2004.

[160] C. Tang, Z. Xu, and M. Mahalingam. pSearch: Information retrieval in struc-
tured overlays. SIGCOMM Comput. Commun. Rev., 33(1):89–94, 2003.

[161] D. Tao, X. Tang, X. Li, and X. Wu. Asymmetric bagging and random subspace
for support vector machines-based relevance feedback in image retrieval. IEEE
Trans. Pattern Anal. Mach. Intell., 28(7):1088–1099, 2006.

[162] I. J. Taylor. Gnutella. In From P2P to Web Services and Grids, Computer
Communications and Networks, pages 101–116. Springer London, 2005.

[163] W. W. Terpstra, J. Kangasharju, C. Leng, and A. P. Buchmann. Bubblestorm:
resilient, probabilistic, and exhaustive peer-to-peer search. In SIGCOMM, pages
49–60, 2007.

[164] M. Theobald, G. Weikum, and R. Schenkel. Top-k query evaluation with prob-
abilistic guarantees. In VLDB, pages 648–659, 2004.

[165] J. Vaidya and C. Clifton. Privacy preserving naive bayes classifier for vertically
partitioned data. In SDM, 2004.

[166] M. Vazirgiannis, K. Nørvåg, and C. Doulkeridis. Peer-to-peer clustering for
semantic overlay network generation. In PRIS, 2006.

[167] V. Venkataraman, K. Yoshida, and P. Francis. Chunkyspread: Heterogeneous
unstructured tree-based peer-to-peer multicast. In ICNP, pages 2–11, 2006.

[168] H. F. Witschel. Global term weights in distributed environments. Information
Processing and Management, 44(3):1049–1061, 2008.

[169] D. Wolpert. Stacked Generalization. Neural Networks, 5(2):241–259, 1992.

BIBLIOGRAPHY 119

[170] H. Wu, M. Zubair, and K. Maly. Collaborative classification of growing collec-
tions with evolving facets. In Hypertext, pages 167–170, 2007.

[171] X. Wu, A. G. Hauptmann, and C.-W. Ngo. Practical elimination of near-
duplicates from web video search. In MULTIMEDIA, pages 218–227, 2007.

[172] X. Wu, C.-W. Ngo, and Q. Li. Threading and autodocumenting news videos: a
promising solution to rapidly browse news topics. Signal Processing Magazine,
IEEE, 23(2):59–68, March 2006.

[173] C. Xiao, W. W. 0011, X. Lin, and J. X. Yu. Efficient similarity joins for near
duplicate detection. In WWW, pages 131–140, 2008.

[174] L. Xiao, Y. Liu, and L. M. Ni. Improving unstructured peer-to-peer systems
by adaptive connection establishment. IEEE Trans. Comput., 54(9):1091–1103,
2005.

[175] Y. Xing, Z. Li, and Y. Dai. Peerdedupe: Insights into the peer-assisted sampling
deduplication. In P2P, pages 1–10, 2010.

[176] J. Xu and W. B. Croft. Cluster-based language models for distributed retrieval.
In SIGIR, pages 254–261, 1999.

[177] Y. Yan, B. C. Ooi, and A. Zhou. Continuous content-based copy detection over
streaming videos. In ICDE, pages 853–862, 2008.

[178] B. Yang and H. Garcia-Molina. Improving search in peer-to-peer networks. In
ICDCS, pages 5–14, 2002.

[179] B. Yang and H. Garcia-Molina. Designing a super-peer network. In ICDE, pages
49–, 2003.

[180] C. Yang. Peer-to-peer architecture for content-based music retrieval on acoustic
data. In WWW, pages 376–383, 2003.

[181] Y. Yang and J. O. Pedersen. A comparative study on feature selection in text
categorization. In ICML, pages 412–420, 1997.

[182] H. Yu, K. C.-C. Chang, and J. Han. Heterogeneous learner for web page classi-
fication. In ICDM, pages 538–545, 2002.

[183] H. Zhang, A. Goel, and R. Govindan. Using the small-world model to improve
freenet performance. Computer Networks, 46(4):555–574, 2004.

[184] H. Zhang, A. Kankanhalli, and S. W. Smoliar. Automatic partitioning of full-
motion video. Multimedia Systems, 1(1):10–28, 1993.

[185] Y. Zhao and G. Karypis. Empirical and theoretical comparisons of selected
criterion functions for document clustering. Machine Learning, 55(3):311–331,
2004.

[186] C. Zheng, G. Shen, S. Li, and S. Shenker. Distributed segment tree: Support of
range query and cover query over DHT. In IPTPS, 2006.

120 BIBLIOGRAPHY

[187] X. Zhou, L. Chen, A. Bouguettaya, N. Xiao, and J. A. Taylor. An efficient near-
duplicate video shot detection method using shot-based interest points. IEEE
Transactions on Multimedia, 11(5):879–891, 2009.

[188] B. Zhu, K. Li, and H. Patterson. Avoiding the disk bottleneck in the data domain
deduplication file system. In FAST, pages 1–14, 2008.

[189] Y. Zhu and Y. Hu. Efficient, proximity-aware load balancing for DHT-based
P2P systems. IEEE Trans. Parallel Distrib. Syst., 16:349–361, 2005.

[190] G. K. Zipf. Human Behavior and the Principle of Least-Effort. Addison-Wesley,
Cambridge, MA, 1949.

[191] S. Zöls, Z. Despotovic, and W. Kellerer. Cost-based analysis of hierarchical
DHT design. In Peer-to-Peer Computing, pages 233–239, 2006.

	Zusammenfassung
	Abstract
	Introduction
	Motivation
	Contribution
	Structure of the Dissertation

	Foundations
	P2P with Central Servers
	Unstructured P2P Networks
	Super Peer Networks
	Structured P2P Networks

	Distributed Indexing for Information Retrieval
	Prerequisites
	Related Work
	PCIR Basic Algorithm
	PCIR Clustering-enhanced Algorithm
	Cost Analysis
	Experimental Evaluation
	Summary

	Distributed Indexing for Near Duplicate Detection
	Related Work
	Prerequisites
	POND Infrastructure
	Configuration and Optimization of POND
	Experimental Evaluation
	Summary

	P2P Text Clustering
	Prerequisites
	Related Work
	PCP2P: Probabilistic Clustering for P2P
	Cost Analysis
	Probabilistic Analysis
	Experimental Evaluation
	Summary

	P2P Text Classification
	Related Work
	Collaborative Classification with CSVM
	Experimental Evaluation
	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	Proofs
	Proofs for Chapter 3
	Proofs for Chapter 4
	Proofs for Chapter 5

	Publications
	References

