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Abstract 

Cassava mosaic disease (CMD) caused by whitefly transmitted cassava mosaic viruses 

from the genus begomovirus is a most serious impediment to cassava cultivation in 

Africa and India. While several diverse begomoviruses are implicated in CMD in Africa, 

African cassava mosaic virus (ACMV) widespread in the continent and East African 

cassava mosaic virus Uganda (EACMV-UG) now present in East and central Africa 

present the principle components of the disease. Both viruses have an overlapping 

geographic distribution and when present, mixed infections frequently occur. Very severe 

mosaic disease symptoms in cassava are associated with double infections and 

synergism on symptoms and virus replication were reported. This study presented here 

is focusing on the interactions between ACMV and EACMV-UG in double infections of N. 

benthamiana and cassava. This is to attempt to uncover the crucial factors responsible 

for virus interactions leading to synergism.  

Virus concentration was considered to describe synergistic interactions between ACMV 

and EACMV-UG viruses in cassava. For this purpose the amount of viral genomic 

components in cassava infections was determined, in absolute and relative quantification 

experiments, by quantitative PCR.  Virus concentration was much higher in symptomatic 

leaf tissues compared to non-symptomatic leaves and corresponded with the severity of 

disease symptoms. Much higher virus titres were generally recorded for EACMV-UG 

compared with ACMV. Mixed infections with both viruses resulted in severe disease 

symptoms but only a slight increase of EACMV-UG was found. Relative quantification of 

virus genomes in mixed infections showed higher concentrations of EACMV-UG DNA-A 

compared to ACMV DNA-A but a drastic reduction of EACMV-UG DNA-B. ACMV 

concentrations in mixed infections appeared to be unaffected by presence of EACMV-

UG with concentrations similar to single infections. The higher concentrations of 

EACMV-UG DNA-B compared to EACMV DNA-A accumulation in single infections was 

consistent and irrespective of cassava cultivar and its tolerance status.  
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One explanation for synergism is that virus movement and spread and/or tissue tropism 

and invasion is altered in dual compared to single infections. To study this in vivo, 

genome components of infectious ACMV and EACMV-UG virus clones were modified by 

inserting the gene for green fluorescent protein (GFP) in place of the coat protein (CP) 

gene and alternatively, by replacing either the BV1 or BV2 genes on the DNA-B genomic 

components with GFP.  All efforts generating infectious virus mutants expressing GFP 

failed and CP DNA-A mutant viruses did not induce infections in Nicotiana benthamiana 

when inoculated with their cognate DNA-B.  Initial GFP fluorescence found in some 

epidermal cells inoculated with mutated viruses did not develop into systemic signals 

indicating for GFP expression from replicating virus. Likewise, mixtures of DNA-A and 

DNA-B with replacements of BC1 or BV1 with GFP did not result in viable virus and GFP 

expression was only observed in patches of inoculated cells. From this study, it can be 

assumed that GFP cannot be used as a live monitor to follow replicating cassava mosaic 

viruses and destructive in situ tests are required to resolve virus interactions on a 

subcellular basis. 

Virus-virus interaction in mixed infections and synergism has been postulated as a result 

from suppression of the host defence mechanism. To study the role of virus genes which 

are implicated in suppression of silencing mechanisms, ACMV and EACMV-UG AC2 and 

AC4 genes were isolated and functionally characterized for their activity on the post-

transcriptional gene silencing (PTGS) pathway. An Agrobacterium based leaf infiltration 

assay using GFP as a reporter was approached to reveal AC2 and AC4 suppression 

activity on early stages of post-transcriptional gene silencing. These transient gene 

expression assays showed that the activity of AC2 to suppress PTGS is weak, while for 

AC4 an activity on PTGS was not found.  

Transient expression of AC2 and AC4 and subsequent infection with ACMV resulted in a 

sharp increase of ACMV concentration in plants infiltrated with either ACMV or EACMV 

AC2. This study was extended to assays with AC2 and AC4 transgenic plants. N. 
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benthamiana harbouring AC2 or AC4 genes showed a variety of phenotypic alterations 

which were most pronounced with ACMV AC2 transgenes. In contrast to transient 

assays however, challenge inoculations of AC2 or AC4 transgenic plants with ACMV did 

not result in considerable differences between virus concentrations in transgenic plants 

compared to infections of wild type N. benthamiana. 

Key words: African cassava mosaic virus, East African cassava mosaic virus Uganda, 

mixed infection, synergism, tissue tropisms, AC2, AC4, gene silencing suppression, 

agroinfiltration, quantitative PCR, GFP fluorescence, transient gene expression.



 

Zusammenfassung 

Die Cassava Mosaikkrankheit (CMD), die durch weiße Fliege übertragene Mosaikviren 

der Gattung Begomovirus hervorgerufen wird, stellt ein enormes Problem und ernste 

Bedrohung für die Maniokproduktion in Afrika und Indien dar. Verschiedene 

Begomoviren können Mosaikkrankheiten auslösen jedoch sind in Afrika das African 

cassava mosaic virus (ACMV), das in allen Cassavagebieten vorkommt,  und das East 

African cassava mosaic virus (EACMV-UG) das in Ost- und Zentralafrika verbreitet ist, 

die bedeutendsten Verursacher der Krankheit. Die geographische Verteilung beider 

Viren überschneidet sich und so treten häufig Mischinfektionen auf, die mit sehr 

schweren Symptomen der Mosaikkrankheit einhergehen. Mischinfektionen beider Viren 

sind mit synergistischen Interaktionen verbunden, die sich in Symptomen und 

Virusreplikation auswirken. In der hier dargestellten Arbeit sollten Interaktionen zwischen 

ACMV und EACMV-UG in dualen Infektionen von N. benthamiana und Maniok 

untersucht werden, um die Faktoren zu beschreiben, die zu  Synergismus führen. 

Zunächst sollte die Konzentration der Viren in Maniok zur Beschreibung der 

synergistischen Interaktionen zwischen ACMV und EACMV-UG herangezogen werden. 

Zu diesem Zweck sollten die Genomkomponenten der Viren in absoluten und relativen 

Werten quantifiziert werden. Hierfür wurde ein quantitatives PCR Verfahren aufgebaut, 

das es ermöglichte alle viralen Genomkomponenten spezifisch zu quantifizieren. 

Viruskonzentrationen waren in symptomatischen Blattgeweben viel höher als in nicht-

symptomatischen Blättern und mit der Schwere der Symptome korreliert. Im Allgemeinen 

waren sehr viel höhere Virustiter für EACMV-UG im Vergleich zu ACMV festzustellen. 

Mischinfektion mit beiden Viren ergaben schwere Krankheitsphänotypen, waren jedoch 

nur mit geringfügigen Zunahmen von EACMV-UG verbunden. Die relative 

Quantifizierung der Virusgenome in Mischinfektionen zeigte höhere Konzentrationen von 

EACMV-UG DNA-A und eine erhebliche Reduktion der EACMV-UG DNA-B Genome, 
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während die ACMV Replikation von Mischinfektionen mit EACMV-UG unberührt zu sein 

schien und ähnliche Konzentrationen wie in Einzelinfektionen aufwies. Die in 

Einzelinfektionen stets höheren Konzentrationen von EACMV-UG DNA-B im Vergleich 

zu DNA-A, waren ungeachtet des Maniokkultivars und seines Toleranzstatus zu 

beobachten.  

Eine Erklärung für Synergismus ist die in Mischinfektionen veränderte Virusausbreitung 

und/oder Gewebetropismus und –besiedelung. Um dies in vivo zu studieren, wurden 

Genombestandteile von infektiösen ACMV und EACMV-UG Virusklonen durch 

Einfügung des „green flourescence protein“ Gens (GFP) anstatt des Hüllproteingens 

(CP) oder in DNA-B, durch Ersatz der BV1 oder BV2 Gene modifiziert. Alle Bemühungen 

infektiöse Viren, welche ein funktionales GFP als Reporter exprimieren, herzustellen 

führten nicht zum Erfolg. DNA-A Hüllproteinmutanten, die mit entsprechender DNA-B 

gemischt und inokuliert wurden waren in N. benthamiana nicht infektiös und die 

anfänglich sichtbare GFP Fluoreszenz blieb auf wenige epidermalen Zellen beschränkt. 

Sie entwickelte sich nicht zu systemischen Signalen, die auf GFP Expression durch 

replizierendes Virus hinwiesen. Ebenso waren Mischungen von GFP an Stelle von BC1 

bzw. BV1 in DNA-B mit entsprechender DNA-A nicht infektiös, und auch hier blieb die 

GFP Expression auf wenige Zellen beschränkt. Es muss davon ausgegangen werden, 

dass GFP als Vitalmarkierung für ACMV und EACMV-UG nicht verwendet werden kann.  

Virus-Virus Interaktion in Mischinfektionen und Synergismus ist ein Resultat von 

unterdrückten Abwehrmechanismen der Wirtspflanze. Um die Rolle von Virusgenen zu 

studieren die solche Abwehrmechanismen supprimieren, wurden AC2 und AC4 Gene 

von ACMV und EACMV-UG isoliert und funktional charakterisiert, um deren Aktivität auf 

das post-transkriptionale „gene silencing“ (PTGS) zu beschreiben. In Agrobakterium-

Infiltrationstests unter Verwendung von GFP als Reporter wurden AC2 und AC4 

transient in N. benthamiana Blättern exprimiert und auf PTGS Aktivität geprüft.  
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Transiente Genexpressionstudien zeigten, dass die Aktivität von AC2 nur schwach ist 

und für AC4 keine Aktivität festzustellen war. Transiente AC2 Genexpression im 

Virustest führte jedoch zu einem steilen Anstieg der ACMV Konzentration in infiltrierten 

Pflanzen, die  mit ACMV oder auch mit EACMV AC2 behandelt waren. Diese Studien 

wurden in AC2 und AC4 transgenen N. benthamiana Pflanzen weitergeführt. Zunächst 

zeigten solche transgene Pflanzen eine Vielzahl phänotypischer Veränderungen, die für 

ACMV AC2 Transgene besonders ausgeprägt waren. Im Gegensatz zu den vorher 

durchgeführten transienten Expressionsstudien wurden keine wesentlichen Unterschiede 

zwischen Virusinfektionen in transgenen und Wildtyp Pflanzen in Virusuntersuchungen 

mit ACMV festgestellt.  

Schlagworte: African cassava mosaic virus, East African cassava mosaic virus Uganda, 

Mischinfektion, Synergismus, Gewebeausbreitung, AC2, AC4, post-transkriptionales 

„Gene silencing“, PTGS, Transiente Genexpression, GFP Fluoreszenz, Agroinfiltration, 

quantitative PCR. 
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 Abbreviations 

µl   Microlitre 

35S   CaMV / CaVMV promoter 

A. tumefaciens Agrobacterium tumefaciens 

Aa   Amino acid 

AC1   ORF 1 on the complementary-sense strand of DNA-A 

AC2    ORF 2 on the complementary-sense strand of DNA-A 

AC3    ORF 3 on the complementary-sense strand of DNA-A 

AC4    ORF 4 on the complementary-sense strand of DNA-A 

ADK   adenosine kinase 

AV1   ORF 1 on the virion-sense strand of DNA-A 

AV2   ORF 2 on the virion-sense strand of DNA-A 

BAP   Benzylaminopurin 

BCIP   5-bromo-4-chloro-3-indoxylphosphate 

bp   Base pair 

C58C1   Strain of A. tumefaciens 

CBB   Cassava bacterial blight 

CGM   Cassava green mite 

CLSM   Confocal laser-scanning microscopy 

CMD   Cassava mosaic disease 

CP   Coat protein 

CR   Common region 
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CT   Threshold cycle 

DAS-ELISA  Double-Antibody-Sandwich ELISA 

ddH2O   Double-distilled water 

DEPC   Diethylpyrocarbonate 

DMSO   Dimethylsulfoxide 

dpi   Days post inoculation 

DRC6   Democratic Republic of Congo 

ds   Double stranded 

dsGFP   double stranded, hairpin Green fluorescent protein 

DSMZ   Deutsche Sammlung von Mikroorganismen und Zellkulturen  

DTT   Dithiothreitol 

EDTA   Ethylenediaminetetracetic acid 

ELISA   Enzyme-linked Immunosorbent assay 

EtOH   Ethanol 

F   Forward primer 

GFP   Green fluorescent protein 

HA   Hemagglutinin 

HCl   Hydrochloric acid 

HC-Pro  Helper component proteinase 

hpi   Hours post inoculation 

IgG   Immunoglobulin G 

IR   Intergenic region 
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Kb   KilobaseKn   Kanamycin 

LB media  Luria-Bertoni medium 

LBA 4404  Strain of A. tumefaciens 

LOV   Light, oxygen or voltage sensing 

MES   Morpholinoethansulfonacid 

miRNA   Micro RNA 

MP   Movement protein 

MS media  Murashige and Skoog medium 

N. benthamiana Nicotiana benthamiana 

NAA   Naphthalene acetic acid 

NBT   Nitroblue Tetrazoliumchloride 

NCBI   National Center for Biotechnoly Information 

ND   Not determined 

npt II   Neomycin phosphotransferase II 

NSP   Nuclear shuttle protein 

Nt   Nucleotide 

NTC   Non template water control 

OD   Optical density 

ORF   Open reading frames 

PBST   Phosphate buffer saline-Tween 

PPT   Phosphinothricin 

PTGS   Post-transcriptional gene silencing 
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PVDF   Polyvinylidene fluoride 

qPCR   Quantitative PCR 

RaM-ap  Rabbit anti-mouse alkaline phosphatase conjugate  

Ren   Replication enhancer  

Rep   Replication associated protein 

Rif   Rifampicin 

SDS   Sodium dodecyl sulfate 

sdm    site directed mutagenesis 

siRNA   Short interfering RNA 

smRs-GFP  Soluble modified red shift GFP 

ss   single stranded 

TAS-ELISA  Triple-Antibody-Sandwich ELISA 

T-DNA   Transfer DNA 

Tm   Melting temperature 

TME 117   Tropical Manihot esculenta cultivar 117 

TMS 30572  Tropical Manihot selection 30572 

TrAP   Transcriptional activator protein 

UNG   Uracil-N-Glycosylase 

UV   Ultraviolet 

V   Vector 

VIGS   Virus induced gene silencing 
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Virus acronyms 

AbMV   Abutilon mosaic virus 

ACLSV  Apple chlorotic leaf spot virus 

ACMV   African cassava mosaic virus 

ACMV-[CM]  African cassava mosaic virus (Cameroon virus strain) 

BDMV   Bean dwarf mosaic virus 

BYV   Beet yellow virus 

CaMV   Cauliflower mosaic virus 

CBSV   Cassava brown streak virus 

CMV   Cucumber mosaic virus 

CsVMV  Cassava vein mosaic virus 

CTV   Citrus tristeza virus 

EACMV-UG  East African Cassava mosaic virus Uganda (Uganda variant) 

EACMV  East African Cassava mosaic virus 

EACMZV  East African cassava mosaic Zanzibar virus 

ICMV   Indian cassava mosaic virus 

JCSMV  Johnsongrass chlorotic stripe mosaic virus 

MYMV   Mungbean yellow mosaic virus  

PPV   Plum pox virus 

PVA   Potato virus A 

PVX   Potato virus X 

PVY   Potato virus Y 
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RYMV   Rice yellow mosaic virus 

SLCMV  Sri Lankan cassava mosaic virus 

TBSV   Tomato bushy stunt virus 

TGMV   Tomato golden mosaic virus 

TGMV   Tomato golden mosaic virus 

TLCNDV  Tomato leaf curl New Delhi virus 

TMV   Tobacco mosaic virus 

ToLCV   Tomato leaf curl virus 

ToRSV  Tobacco ringspot virus 
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1. General Introduction 

1.1 Cassava, a subsistence crop  

Cassava, (Manihot esculenta Crantz, Euphorbiaceae), is universally known by several 

names: manioca, rumu or yucca (Latin America), mandioca or aipim (Brazil), manioc 

(Madagascar and French-speaking Africa), tapioca (India, Malaysia), ubi kettella or 

kaspe (Indonesia), cassava and sometimes cassada (English-speaking regions in Africa, 

Thailand and Sri Lanka). It is a perennial, woody shrub that grows up to 5 metres tall, 

and produces enlarged tuberous roots. Its large palmate leaves have five to seven lobes 

borne on a long slender petiole which grow only toward the end of the branches. 

Cassava is second to the potato as the most important starchy root crop of the world 

(FAOSTAT, 2008). More than two hundred species of Cassava are cultivated in regions 

with tropical and subtropical climates. According to FAO estimates, 238 million tonnes of 

cassava were produced worldwide in a total area of 18.6 million hectares (FAOSTAT, 

2008). The African continent accounts for half of the world production and Nigeria, with 

43 million tonnes, making it the world’s largest producer. 

The value of cassava as a famine relief crop for Africa has long been recognized. Here it 

is generally grown by smallholder farmers as a single crop or intercropped with maize, 

legumes and vegetables. The plant withstands droughts and harsh climates and grows in 

poor soils without significant maintenance and agronomical input (Hahn & Keyser, 1985; 

Thresh, 2006). Today, on a worldwide scale, cassava cultivation is changing from a 

subsistence crop to provide daily calories for the poor to a cash crop grown on an 

industrial scale to produce raw products like cassava flour transformed into starch or 

alcohol.  

Cassava is propagated exclusively by propagation of stem cuttings. Flowering in this 

plant is a rather complicated process since it does not occur synchronised within a 
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plantation and it also appears rather scattered.  As a consequence cassava breeding is a 

very difficult, cumbersome and lengthy process. On the other hand, cassava propagation 

and cultivation is rather easy since cuttings used for propagation are hardy and robust. 

Cuttings quickly develop roots and grow fast into stable plants which produce tuberous 

roots ready to harvest after 6-12 month depending on cassava variety and location. 

Cassava is cultivated intensively for human consumption in Africa where it presents the 

major sources of carbohydrates in Sub-Sahara Africa (Dahniya, 1994; Olsen, 2004). 

Despite its importance, cassava cultivation beyond the expectations and the potential of 

this crop is by far not exploited. In Africa, socio-economical and biological constraints 

limit the average yield per hectare to about 10 tonnes, a value that is far below a yield 

which can lie between 30.8 and 51 tonnes as estimated at research stations (Hahn et al., 

1979; Hahn & Keyser, 1985). One constraint to cassava production is represented by 

diseases and pests. Cassava is affected by serious diseases; Cassava mosaic disease 

(CMD), by far the most widespread virus disease in Africa (Patil & Fauquet, 2009), 

cassava brown streak disease (Alicai et al., 2007; Hillocks & Jennings, 2003) occurring 

in East African countries, vascular bacterial disease caused by Xanthomonas campestris 

pv manihotis, (Onyeka et al., 2008; Wydra et al., 2004) and anthracnose caused by 

Colletotrichum gloesporoides f.sp. manihotis Henn. (Onyeka et al., 2008; Owolade et al., 

2005). Serious pest problems are the cassava mealybug Phenacoccus manihoti, (Bellotti 

et al., 1999; Steiner, 1991) and the green spider mite Mononychellus tanajoa Bondar 

(Gutierrez, 1987; Raji et al., 2008; Skovgard et al., 1993).  

Pests and diseases in concert with poor conditions and/or cultivation practices can cause 

yield losses that may be as high as 50% in Africa. Cassava breeding for tolerance to 

abiotic and biotic stresses has resulted in selection of cassava varieties with improved 

yield, storage and tolerance characters (Ceballos et al., 2004; Dixon et al., 2008; Dixon & 

Ssemakula, 2008; Lokko et al., 2009; Morante et al., 2010; Raji et al., 2008; Raji et al., 

2009). 



The viruses and virus diseases of cassava 

 

3 

Management practices to reduce losses due to pests in cassava include site selection, 

soil improvement practices and selection of appropriate varieties and planting materials. 

In this respect, major progress has been made in insect control and the widespread use 

of resistant varieties (Amusa & Ojo, 2002; Bellotti et al., 1999; Hahn et al., 1980a; Raji et 

al., 2008; Thresh & Cooter, 2005).  

Nevertheless, virus diseases and especially those caused by cassava mosaic viruses 

present the biggest challenge to sustainable cassava production (Legg & Thresh, 2000; 

Thresh & Cooter, 2005). This is because CMD viruses constantly evolve and hence 

populations change, new virus genotypes develop to seriously compromise virus 

tolerance inbred into cassava cultivars since long (Hahn et al., 1980b; Terry & Hahn, 

1980). Understanding cassava mosaic virus diseases caused by geminiviruses has 

reached quite far and extensive knowledge exists on the viruses and their genomes 

(Legg & Fauquet, 2004; Ndunguru et al., 2005; Patil & Fauquet, 2009; Vanitharani et al., 

2005). Much less is known from the plant side and the kinetics of plant infections, the 

development of disease epidemics and the interactions of virus, insect vector and 

cassava genotype are far from being understood. These aspects need to be addressed 

before strategies can be devised to reach sustainable control of these significant 

diseases.  

  

1.2 The viruses and virus diseases of cassava 

Vegetatively propagated crops, like cassava are particularly prone to virus diseases and 

frequently multiple infections with quite different viruses persist in successive cycles of 

propagation.  

About 20 different viruses of economic importance have been reported in cassava 

(Calvert & Thresh, 2002). The most significant and by far the most devastating are 

mosaic diseases caused by geminiviruses (Patil & Fauquet, 2009). Other viruses, like 
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the Cassava brown streak viruses (Alicai et al., 2007; Hillocks et al., 2002; Winter et al., 

2010) can reach high significance in certain regions while others are described from 

cassava but only limited data on their biological or epidemiological significance exist. 

Viruses infecting Cassava and their taxonomic affiliations are summarised in table 1.1.  

Table 1.1: Viruses infecting cassava  

Africa 

African cassava mosaic virus (Geminiviridae: Begomovirus) 

East African cassava mosaic virus (Geminiviridae: Begomovirus) 

East African cassava mosaic Cameroon virus (Geminiviridae: Begomovirus) 

East African cassava mosaic Kenia virus (Geminiviridae: Begomovirus) 

East African cassava mosaic Malawi virus (Geminiviridae: Begomovirus) 

East African cassava mosaic Zanzibar virus (Geminiviridae: Begomovirus)  

South African cassava mosaic virus (Geminiviridae: Begomovirus) 

Cassava brown streak virus (Potyviridae: Ipomovirus) 

Ugandan Cassava brown streak virus (Potyviridae: Ipomovirus) 

Cassava Ivorian bacilli form virus (Not assigned) 

Cassava kummi viruses 

Cassava Q virus 

 

South/ Central America 

Cassava common mosaic virus (Potexvirus) 

Cassava virus X (Potexvirus) 

Cassava vein mosaic virus (Caulimoviridae) 

Cassava colombian symptomless virus (Potexvirus) 

Cassava American latent virus (Comoviridae: Nepovirus) 

Cassava frogskin virus 

Asia/ Pacific 

Cassava common mosaic virus (Potexvirus) 

Indian cassava mosaic virus (Geminiviridae: Begomovirus) 

Sri Lankan cassava mosaic virus (Geminiviridae: Begomovirus) 

Cassava green mottle virus (Comoviridae: Nepovirus) 

 

Cassava mosaic virus diseases cause production losses reaching almost 90% of 

harvestable roots (Thresh et al., 1994; Thresh & Otim-Nape, 1994). CMD has been 
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termed the most damaging plant virus disease in the world, causing famine and the 

death of thousands of people (Legg et al., 2006).  

 

1.3 Cassava mosaic disease 

Cassava mosaic disease is known since 1894 by its first outbreak in part of Eastern 

Africa now known as Tanzania (Warburg, 1894). It was then recognized later in West 

Africa and today is present throughout Sub-Sahara Africa, wherever cassava is 

cultivated and on the Indian continent (Abarshi et al., 2010; Atiri et al., 2004; Hong et al., 

1993; Legg & Fauquet, 2004; Mathew & Muniyappa, 1992; Patil et al., 2005; 

Sserubombwe et al., 2008; Were et al., 2003). Typical symptoms of CMD comprise 

irregular yellow or yellow–green chlorotic mosaic on leaves, leaf curling and distortion 

and stunted growth of the plant. Symptoms are usually more severe with younger plant 

parts and most pronounced in freshly expanding leaves. Plant variety, virus species and 

strain, cassava genotype, plant age of infection and multiple infections together with 

environmental factors affect symptom development (Legg & Thresh, 2000).  

Several distinct begomovirus species (Table 1.1) and their strains cause mosaic disease 

in cassava. These viruses are efficiently transmitted by the whitefly Bemisia tabaci and 

widely disseminated by man who use stem cuttings for new plantings. Nine cassava 

mosaic begomoviruses are recognized out of which seven occur in Africa and two in 

India. The viruses reported from Africa are African cassava mosaic virus (ACMV), East 

African cassava mosaic virus (EACMV) and a number of species distinct from East 

African cassava mosaic virus indicating for a high diversity and the probable centre of 

diversification somewhere in East Africa (Ndunguru et al., 2005; Sserubombwe et al., 

2008). Besides ACMV which is present throughout Sub-Sahara Africa, EACMV species 

have a significance by their regional distribution, the East African cassava mosaic 

Cameroon virus (EACMCV) present in Cameroon, Nigeria and Ivory Coast (Ariyo et al., 
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2005; Fondong et al., 2000; Pita et al., 2001a) and the East African cassava mosaic 

Malawi virus (EACMMV), East African cassava mosaic Zanzibar virus (EACMZV) and 

South African cassava mosaic virus (SACMV) are present in certain areas or even more 

restricted in their distribution to isolated spots.  

A severe epidemic form of CMD progressed through much of Uganda in the late 1980s 

and caused devastating crop losses (Legg et al., 2006; Otim-Nape et al., 1998; Zhou et 

al., 1997). This epidemic was attributed to a new cassava mosaic virus, a recombinant 

virus strain, EACMV-UG or Uganda variant (Zhou et al., 1997). This particular virus has 

dramatically extended its area (Bigirimana et al., 2004; Kumar et al., 2009; Legg et al., 

2001; Sseruwagi et al., 2004) and is most likely the most prevalent virus species 

infecting cassava in Africa. 

  

1.4 Geminiviridae 

Geminiviruses belong to a family of plant viruses which have emerged as serious threats 

to crop production worldwide (Mansoor et al., 2003b; Seal et al., 2006a; Varma & 

Malathi, 2003). In comparison to plant RNA viruses such as potyviruses or 

tobamoviruses, viruses in the family Geminiviridae were only recently discovered. Known 

since long as disease causing agents, the nature of the viruses remained unsolved until 

the end of the 1970s (Harrison, 1985a; Harrison, 1985b). In cassava, the African 

cassava mosaic virus, earlier called cassava latent virus was sequence characterised in 

1983 (Stanley & Gay, 1983) and the bipartite nature of the virus, requiring 2 DNA 

genome components for infectivity was also determined only then (Stanley, 1983). 

Geminiviruses are transmitted by insects and infect monocotyledonous and 

dicotyledonous plants (Alves-Junior et al., 2009). Their single stranded circular DNA 

genomes are encapsidated in twin icosahedral particles (Fig. 1.1) of approximately 20 x 

30 nm (Fauquet et al., 2008). 
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Figure 1.1: Electron micrograph of purified African cassava mosaic virus stained 
with uranyl acetate. Typical twinned quasi-isometric subunits (arrow).  The bar 
represents 100 nm. 

 

Genome organization and biological properties are key characters to distinguish four 

genera in the family Geminiviridae (Briddon et al., 1996; Rybicki et al., 2000). 

Mastreviruses and Curtoviruses are transmitted by leafhoppers and topocuviruses by 

treehoppers. Begomoviruses which are transmitted by whiteflies are the economically 

most important group (Stanley et al., 2005). Geminiviruses have either one circular 

genome or, a bipartite genome with two circular, single stranded DNAs, the DNA-A and 

the DNA-B component of about 2.6 to 2.8 Kb each (Fig. 1.2). The coding regions on the 

virus genomes are oriented in both, sense and complementary strands. Between the 

coding ORFs the bipartite begomoviruses have an intergenic region (IR) designated as 

common region (CR) because it shows identical sequence for both genome components. 

The CR contains motifs required for the control of replication and transcription along with 

a putative stem-loop structure which contains the highly conserved nonanucleotide 

TAATATTAC which is implicated in the initiation of the rolling circle replication (Hanley-

Bowdoin et al., 1999). The CR is place of initiation and termination of the replication 
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through the Rep protein (Arguello-Astorga et al., 1994a; Arguello-Astorga et al., 1994b). 

Geminivirus diseases can result in yield losses ranging from 12% to 95% (Anderson & 

Morales, 1994; Briddon et al., 2003; Fauquet & Fargette, 1990; Mansoor et al., 2003b; 

Monci et al., 2002; Ndunguru et al., 2005). The viruses are present in weeds (e.g. 

Ageratum conyzoides) and in ornamentals (e.g. honeysuckle, Lonicera japonica var. 

aureoreticulata) thus are ubiquitous in subtropical and tropical regions. Important world 

crops like tomato, cotton and cassava but also tobacco and papaya are seriously 

threatened (Mansoor et al., 2003b). The diseases and the viruses initially endemic in the 

developing tropics are now disseminated to areas with moderate climate (Sanz et al., 

2000). The number of virus species assigned to this family is steadily increasing since 

new viruses are continuously discovered (Haider et al., 2007). Today, the genus 

Begomovirus comprises more than 200 species (Fauquet et al., 2008). 

 

1.5 The begomoviruses 

During the last three decades, whitefly insects belonging to the genus Bemisia 

(Homoptera: Aleyrodidae), became one of the major pests in world agricultural systems 

(Jones, 2003; Oliveira et al., 2001). This has ultimately proliferated the problems caused 

by begomoviruses which are efficiently transmitted by Bemisia tabaci (Polston & 

Anderson, 1997; Varma & Malathi, 2003). Viruses within the genus Begomovirus are 

responsible for serious crop losses in tropical and subtropical regions, particularly in 

Africa where they cause serious problems in food crops like maize (maize streak viruses) 

or cassava (cassava mosaic viruses) and South America where tomato production is 

seriously threatened by viruses of a tomato yellow leaf curl virus complex (Morales & 

Jones, 2004). Begomoviruses have a distinct geographical separation in their 

occurrences which is also inherent in their genomes (Harrison et al., 2002; Harrison & 

Robinson, 1999). Old world viruses are present in Europe, Africa and Asia. They can be 

monopartite, like the economically most important tomato yellow leaf curl virus(es) from 
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Spain, Italy, Israel and the Mediterranean, or bipartite, like African cassava mosaic virus 

from Africa or, the tomato leaf curl viruses from Asia. DNA-A genome components of 

bipartite viruses are capable of autonomous replication and can produce virus particles 

but require DNA-B for efficient systemic infection (Stanley, 1983). 

Old World virus have an additional ORF, AV2 (bipartite viruses) or V2 (monopartite 

viruses). Viruses from a specific geography notwithstanding their host are more related 

than viruses infecting the same hosts in another part of the world (Harrison et al., 2002). 

Only in the Old World, monopartite geminviruses exist, often in association with satellite 

DNA. These satellite molecules denoted DNA-ß, are pathogenicity determinants, 

essential for the induction of the typical disease symptoms and determination of host 

range (Briddon et al., 2003; Briddon & Stanley, 2006). Satellites are entirely dependent 

on the helper virus for replication, movement and dissemination, however are somewhat 

promiscuous since they can be transreplicated by a number of quite different viruses 

(Briddon et al., 2003; Mansoor et al., 2003a). DNA-ß encode a single protein (ßC1) 

which has a nuclear localization signal and functions as a suppressor of RNA silencing.  

Begomovirus DNA-A genome components encode five or six proteins while the DNA-B 

genome carries 2 ORFs encoding for two proteins. The genes are positioned in 

ambisense direction and code for proteins responsible for encapsidation (AV1), viral 

replication and regulation of gene expression (AC1 and AC3) and for some viruses, for 

suppression of gene silencing (AC2, AC4) (Vanitharani et al., 2005). The pre-coat protein 

coded for by the ORF AV2 is a pathogenicity determinant and for some viruses it acts as 

a silencing suppressor (Chowda-Reddy et al., 2009). On DNA-B, BV1 and BC1 encode 

two proteins involved in intracellular (nuclear shuttle protein – NSP) and intercellular 

(movement protein – MP) virus movement (Lazarowitz, 1992). BC1 is found on the 

complementary strand and mediates cell-to-cell movement while BV1 in virion sense 

direction controls movement of viral DNA between the nucleus and cytoplasm (Gafni & 

Epel, 2002).  
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Figure 1.2: Arrangement of open reading frames (ORFs) in bipartite begomovirus 
genome DNA-A and DNA-B components. All bipartite begomoviruses contain 
ORFs in black arrows, while AV2 is only present in Old World viruses and AC4 
is only present in some viruses. ORFs AV1, AV2 and BV1 are in the virus-
sense direction while AC1 to AC4 and BC1 are transcribed from the 
complementary strand. Arrows indicate the direction of transcription. CR 
(stippled) represents the ‘common region’ shared among cognate DNA-A and 
DNA-B genome components. The number of nucleotides, from the origin of 
replication (ori), is indicated on the inner circle (Harrison & Robinson, 2005). 

 

1.6 Genome expression  

In infected cells, begomoviruses are directed to the nucleus where they replicate via a 

rolling circle mechanism that depends on the host machinery (Jeske et al., 2001; Preiss 

& Jeske, 2003). Bi-directional transcription also takes place within the nucleus from 

promoter sequences located in the intergenic region (Hanley-Bowdoin et al., 1999; 

Sunter & Bisaro, 1991). Host cellular factors and cell machinery both are required for 

replication, systemic spread, and suppression of antiviral defence mechanisms (Petty et 

al., 2000). The replication initiation protein (Rep) coded by AC1 functions in virus 

replication by binding to the stem structure at the origin of replication (ori) (Fontes et al., 

1994). It creates a nick in the virion strand  (Laufs et al., 1995) and initiates rolling circle 

replication (RCR) (Hanley-Bowdoin et al., 1999). Rep ligates DNA and represses its own 

promoter (Eagle et al., 1994; Sunter et al., 1993), plays a role as a DNA helicase (Pant 

et al., 2001) and can interact with itself (Orozco et al., 1997), with AC3 (Settlage et al., 
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1996) and with host proteins (Arguello-Astorga et al., 2004; Carrington et al., 1998; 

Castillo et al., 2003; Castillo et al., 2004; Egelkrout et al., 2002; Kong & Hanley-Bowdoin, 

2002; Settlage et al., 2001). AC3 is a supplementary replication enhancing protein (Ren) 

which increases viral DNA accumulation (Sunter et al., 1990), forms homo-oligomers and 

interacts with AC1 and host factors (Castillo et al., 2003; Settlage et al., 2005). 

The AC2 gene is the transcriptional activator protein (Sunter & Bisaro, 1991) and thus  is 

required for efficient transcription of the late viral sense genes, AV1 and BV1 (Sunter & 

Bisaro, 1992; Sunter & Bisaro, 1997a). The AC2 consists of three conserved domains: a 

basic domain with a nuclear localization signal at the N-terminal, a central DNA-binding 

Zn-finger motif and C-terminal acidic activator domain (Hartitz et al., 1999). It binds to 

ssDNA in a non specific way and only weakly to dsDNA, suggesting that it is not a 

canonical transcriptional factor but probably interacts with host plant cellular proteins to 

trigger transcriptional activation (Hartitz et al., 1999). Furthermore, for a number of 

begomoviruses, TraP acts as a suppressor of RNA silencing (Selth et al., 2004; Trinks et 

al., 2005; van Wezel et al., 2002b; van Wezel et al., 2003; Voinnet et al., 1999). 

The ORF AC4 is nested within AC1 but is translated from a frame shift (Hanley-Bowdoin 

et al., 1999). AC4 proteins of bipartite begomoviruses are highly variable and no general 

role has been ascribed to this gene product. Mutations in the AC4 of ACMV (Etessami et 

al., 1991) or Tomato golden mosaic virus (TGMV) (Elmer et al., 1988) had effects on 

viral replication or symptom development. Recently, gene silencing suppression activity 

was assigned to AC4 proteins from ACMV and Sri Lankan cassava mosaic virus 

(SLCMV) (Vanitharani et al., 2004; Vanitharani et al., 2005).  

The coat protein (CP) encoded by AV1 is the geminivirus structural protein, a 

multifunctional protein (Harrison et al., 2002), which forms multimers and encapsidates 

the viral ssDNA into the characteristic geminate particles (Bottcher et al., 2004). CP is 

responsible for specific vector transmission by the whitefly Bemisia tabaci and it provides 



Chapter 1 

12 

the structural features necessary for virus translocation in the insect (Kheyr-Pour et al., 

2000; Noris et al., 1998). In planta, a functional CP is not necessary for infectivity and 

systemic movement of bipartite begomoviruses however it is indispensable for 

movement of monopartite begomoviruses (Noris et al., 1998) and for efficient 

accumulation of viral ssDNA (Harrison et al., 2002; Qin et al., 1998). CP interacts with 

importin and might use this pathway to dock virus particles/nucleoproteins to the nucleus 

in initially infected cells (Gafni & Epel, 2002; Guerra-Peraza et al., 2005). It was also 

reported that CP can interact and down regulate AC1 thereby adopting a role in 

controlling DNA replication (Malik et al., 2005). 

The ORF AV2 (pre-coat) is only present in Old World begomoviruses (Harrison & 

Robinson, 1999). In the monopartite TLCV it has been implicated in ssDNA accumulation 

(Rigden et al., 1993) and mediates viral DNA export from the nucleus to the 

plasmodesmata (Rojas et al., 2001). For the bipartite Tomato leaf curl New Delhi virus, it 

was shown to be involved in systemic movement (Padidam et al., 1996).  

The genes encoded by the B component of bipartite begomoviruses, BV1 and BC1, 

provide functions required for virus movement. BV1, the nuclear shuttle protein (NSP) 

and BC1, the cell-to cell movement protein (MP) coordinate the movement of the viral 

DNA from the nucleus and across cell boundaries (Gafni & Epel, 2002; Noueiry et al., 

1994; Sanderfoot & Lazarowitz, 1995; Sanderfoot & Lazarowitz, 1996).Though it is not 

precisely known if single stranded or double stranded DNA forms are transported, BV1 

packages the viral DNA and interacts with BC1 in the cytoplasm to be transported 

through the plasmodesmata into the neighbouring cells (Lazarowitz & Beachy, 1999). 

BC1 and BV1 proteins of several bipartite begomoviruses are virulence determinants in 

different host plants (Carvalho & Lazarowitz, 2004; Hussain et al., 2005; Ingham et al., 

1995; Vonarnim & Stanley, 1992). 
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1.7 Tissue tropism 

Geminivirus replication is exclusively in the nucleus of infected cells (Morilla et al., 2004; 

Morra & Petty, 2000; Petty et al., 2000; Qin & Petty, 2001; Wege et al., 2001) This is 

independent from type of infection or plant tissues infected. Begomoviruses can remain 

limited to the phloem tissues or can be present in cells outside the vascular system. 

Tissue invasion has no effects on the disease development hence the efficient invasion 

of the host by a geminivirus is not correlated with symptom severity. Thus tissue 

specificity is a specific feature of virus and its host and for geminiviruses it is still unclear 

which host factors are more relevant (Morilla et al., 2004). In fact, different levels of viral 

replication and transcription in tissues, efficiency of viral proteins to support movement 

outside the vascular system and differentially acting defence strategies of the host might 

explain differences in tissue invasion among begomoviruses. Tomato yellow leaf curl 

virus (TYLCV) and AbMV are restricted to phloem cells while ACMV, Bean dwarf mosaic 

virus (BDMV) and Tomato golden mosaic virus (TGMV) efficiently invade non phloem 

tissues and are found in epidermal and palisade cells as well as in spongy parenchyma 

cells (Wege et al., 2001). In mixed infection with Tomato yellow leaf curl Sardinia virus 

(TYLCSV), tissue specificity is maintained while in mixed infections of begomoviruses 

with RNA viruses, virus concentrations can be increased in some cases while no effects 

are seen in others. Thus mixed infection with Cucumber mosaic virus (CMV) result in 

increase of AbMV concentrations and offset of phloem restrictions (Wege & Siegmund, 

2007) while mixed infections with TMV did not have this effect. 

Host factors might also play role in tissue invasion. This is highlighted by the observation 

that TGMV promoter elements function in a tissue-specific activation and repression of 

virion-sense gene expression (Sunter & Bisaro, 1997a). Adaptation to the host might 

also be significant. Euphorbia mosaic virus (EuMV) in its natural host Euphorbia 
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heterophylla L. remains restricted to the phloem but can invade non vascular tissues in 

the experimental host Datura stramonium L. (Kim & Lee, 1992). 

 

1.8 Post-transcriptional gene silencing 

Post-transcriptional gene silencing (PTGS) is a natural plant defence mechanism against 

RNA viruses which involves homology-dependent and specific RNA degradation 

(Vanitharani et al., 2004). As a counter defence, viruses encode a range of silencing 

suppressor proteins (Li & Ding, 2006; Voinnet, 2005). These proteins which are 

functionally and structurally quite diverse interfere with initiation, maintenance and 

systemic signalling in the RNA-silencing process. More than 30 different types of 

silencing suppressors have been identified from RNA viruses but also from DNA viruses 

(Li & Ding, 2006). For example, potyvirus helper component proteinases (HC-Pro) 

interfere with initiation and maintenance of silencing where short interfering RNAs 

(siRNAs) are produced. Cucumber mosaic virus (CMV) inhibits long-range PTGS-

signalling, thereby preventing initiation of PTGS in newly formed tissues. The generation 

of mobile silencing signals is suppressed by the p25 triple gene block protein of Potato 

virus X (PVX). In geminiviruses, the transcriptional activator protein (TrAp) expressed 

from AC2 in the monopartite Tomato yellow leaf curl China virus has been identified as 

suppressor of PTGS (van Wezel et al., 2002b). This was confirmed by transient gene 

expression assays with a PVX vector functionally identifying AC2 genes from several 

other begomoviruses as suppressors of gene silencing (Dong et al., 2003; Vanitharani et 

al., 2004; Voinnet et al., 1999). Interestingly, while AC2 was determined as silencing 

suppressor for EACMV and for Indian cassava mosaic virus (ICMV), AC4 was found 

acting as suppressor of gene silencing for ACMV and for Sri Lankan cassava mosaic 

virus (SLCMV) (Vanitharani et al., 2004). This further highlights the variety of counter–

defence strategies adopted by even related viruses acting on different aspects of RNA 

silencing. Thus synergism phenomena in mixed virus infections might be explained by 
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the concurrent interaction of unrelated suppressors to suppress the plant defence 

system.    

  

1.9 Recombination, pseudorecombination and mixed infections 

In recent years, ecological and economical damages caused by geminiviruses have 

increased. This is explained by the expanded geographic distribution of the vector and 

especially the polyphagous and fecundant B. tabaci biotype B whitefly (Anderson et al., 

2004; Anderson & Morales, 1994; Morales & Jones, 2004). The rapid invasion of this 

pest and the displacement, rather elimination, of existing host specialized biotypes has 

contributed to a rapid increase of begomovirus problems in old crops like tomato since 

viruses from weeds and ruderal plants once separated were now transmitted to the crop. 

As a consequence mixed infections caused by multiple begomoviruses exist and often 

synergism is observed (Ala-Poikela et al., 2005; Ribeiro et al., 2003). Mixed infections 

create the chances for genetic re-assortment and intra- or interspecific recombination, a 

phenomenon often reported from geminiviruses (Ala-Poikela et al., 2005; Fondong et al., 

2000; Monci et al., 2002; Morilla et al., 2004; Moriones & Navas-Castillo, 2008; Pita et 

al., 2001b; Saunders & Stanley, 1995). The virus associated with the severe virus 

epidemic in Uganda, East African cassava mosaic virus Uganda (EACMV-UG) is a 

natural recombinant between ACMV and EACMV where a CP fragment from ACMV was 

inserted into DNA-A of EACMV (Harrison et al., 1997; Zhou et al., 1997). Thus inter- and 

intraspecies recombination is a driving factor for geminivirus evolution (Fondong et al., 

2000; Lefeuvre et al., 2007; Moriones & Navas-Castillo, 2008; Ndunguru et al., 2005; 

Padidam et al., 1999; Pita et al., 2001b; Seal et al., 2006b).  
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Specific aims and objectives 

In this work, geminivirus infections of cassava with ACMV and EACMV-UG were studied. 

These are the most serious viruses in African cassava to date and occur wherever 

cassava is grown in Sub-Sahara Africa. Various aspects of the virus disease were 

studied in cassava and in N. benthamiana.  

ACMV and EACMV-UG once geographically separated now have a largely sympatric 

distribution. Mixed infections, a landmark of the new cassava virus disease epidemics, 

occur frequently and are characterised by more severe symptoms and synergistic 

interactions.  

The second chapter of this thesis focuses on replication of ACMV and EACMV-UG in 

cassava by separately analysing the kinetics of DNA-A and DNA-B genomic 

components. This was to quantify virus genome components during pathogenesis and to 

correlate DNA accumulation with incidence and severity of symptoms. In this virus study 

mixed infections and also susceptible, tolerant and resistant cassava breeding lines were 

subjected to quantitative assessment of DNA-A and DNA-B genome components. This 

study analyzed cassava with mixed infections of ACMV and EACMV-UG, to quantify the 

effects of mixed infections by resolving the concentration and relations of DNA-A and 

DNA-B genomic components of the viruses involved in these disease complexes. For 

these studies, real time quantitative PCR was used to determine copy numbers of virus 

genome components DNA-A and DNA-B in single and mixed infections of cassava 

genotypes with differential susceptibility/ resistance to ACMV and EACMV. 

The objective of the third chapter was to study movement and distribution of ACMV and 

EACMV-UG in infected N. benthamiana plants. For these in situ studies DNA-A and 

DNA-B genomic components were modified to express the green fluorescent protein 

(GFP) during replication as a reporter of virus movement and tissue invasion. The 

expression of GFP during replication of the virus should result in emission of 
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fluorescence signals which could be monitored by confocal laser scanning microscopy. 

Following the movement of the labelled viruses then would provide visual insights into 

the infection process of single and mixed virus infections and into synergistic interactions 

among begomoviruses. 

The fourth chapter comprises a functional analysis to elucidate the role of AC2 and AC4 

genes in ACMV and EACMV infections. In preliminary experiments, the silencing 

suppression activity of AC2 (TraP) and AC4 genes of ACMV were examined in transient 

expression assays as proof of function for AC2 and AC4 as virus gene silencing 

suppressor proteins. A transgenic model, N. benthamiana expressing TraP and AC4 

respectively, was established to study in challenge infections with ACMV and EACMV-

UG the interactions between constitutively expressed AC2 and AC4 proteins and 

replicating viruses. 

Finally, in the general discussion, a synopsis on the knowledge gains from the studies 

seeks to bring into perspective the results from the three related but independent studies 

on cassava begomoviruses with aspects of a broader significance for our understanding 

of plant virus disease processes.  
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2. African cassava mosaic virus (ACMV) and East African 

cassava mosaic virus (EACMV-UG) in single and mixed 

infected cassava (Manihot esculenta Crantz) 

Abstract 

To assess virus concentrations in susceptible, tolerant and resistant cassava cultivars in 

infections with African cassava mosaic virus (ACMV) and East African cassava mosaic 

virus Uganda (Uganda variant, EACMV-UG) the amounts of DNA-A and DNA-B of the 

geminiviruses were analysed by quantitative PCR. The concentrations in absolute and 

relative quantification experiments of viral DNA-A and DNA-B genome components in 

single and mixed infections were determined.  

Virus concentration was much higher in symptomatic leaf tissues compared to non-

symptomatic leaves and corresponded with the severity of disease symptoms. Much 

higher virus titres were generally recorded for EACMV-UG Ca055 compared with ACMV 

DRC6. The quantitative assessment also showed that the distribution of both viruses in 

the moderately resistant cassava cv. TMS 30572 was not different from the highly 

susceptible cv. TME 117. The highly resistant cassava cv. Albert was immune against 

ACMV but could be infected with EACMV-UG Ca111 albeit did only support limited virus 

replication and spread. The differential assessment of DNA genomic components to 

reveal quantitative relations among the components showed that higher amounts of 

ACMV DNA-A were present throughout the infection. This was vice versa for EACMV-

UG where higher amounts of DNA-B were recorded.  

Natural mixed infections with both viruses resulted in severe disease symptoms, 

however only a slight increase of EACMV-UG. Relative quantification of virus genomes 

in mixed infections showed higher concentrations of EACMV-UG DNA-A compared to 

ACMV DNA-A but a drastic reduction of EACMV-UG DNA-B. ACMV concentrations in 
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natural mixed infections appeared to be unaffected by presence of EACMV-UG with 

concentrations similar to single infections. The higher concentrations of EACMV-UG 

DNA-B compared to EACMV DNA-A accumulation in single infections was consistent 

and irrespective of cassava cultivar and its tolerance status. Since DNA-B is implicated 

in virus cell-to-cell spread and systemic movement, it can be postulated as a factor 

driving cassava mosaic disease epidemics.  

 

2.1 Introduction 

Begomoviruses causing mosaic diseases (CMD) represent serious problems to cassava 

cultivation of this important food crop wherever cassava is cultivated in Sub-Sahara 

Africa and India. In Africa, seven species of African cassava mosaic virus (ACMV) and 

East African cassava mosaic virus (EACMV) have been described (Ariyo et al., 2005; 

Bull et al., 2006; Ndunguru et al., 2005; Were et al., 2003). Genome sequences of ACMV 

form tight sequence clusters irrespective of their geographical origin. In contrast 

genomes of EACMV are very different and their genetic diversity is at a level of species 

and strain diversification. This diversification is most likely driven by frequent 

recombination between members of this EACMV species complex (Patil & Fauquet, 

2009; Pita et al., 2001b).  

The geographic distribution of ACMV and EACMV viruses on the African continent today 

is quite complex. Initially ACMV and EACMV had distinct geographic distributions (Hong 

& Harrison, 1995) while the dissemination of planting material, human migration over 

long distances and the efficiency of vector transmission have contributed to a now 

overlapping occurrence of the viruses albeit with an epicentre in central and eastern 

Africa (Legg et al., 2006; Ndunguru et al., 2005). Mixed ACMV/EACMV virus infections 

most probably have caused the emergence of a distinct recombinant strain of EACMV, 

the so called “Uganda variant virus”, which carries an ACMV type coat protein in an 
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otherwise EACMV genome (Pita et al., 2001b; Zhou et al., 1997). This particular virus, 

EACMV-UG is implicated in the serious cassava mosaic disease epidemics first found in 

Uganda end of the 1980s and moving into neighbouring countries of East and Central 

Africa (Legg & Fauquet, 2004). The severe disease phenotype of this “new” type of CMD 

was most often found in mixed infections with ACMV indicating for strong synergisms 

among both viruses. Mixed infections with severe synergistic disease phenotypes were 

also found in CMD epidemics in Cameroon and there, ACMV was mixed with East Africa 

cassava mosaic Cameroon virus, EACMCV (Fondong et al., 2000).  

The epidemic situation of West and East Sub-Sahara Africa is quite distinct. In West 

Africa, ACMV is the dominant virus. EACMCV is found in many countries, including Ivory 

Coast and Nigeria, and mostly in mixed ACMV infections (Ariyo et al., 2005). Outside 

Cameroon however, the virus has never reached an epidemiological significance 

comparable to EACMV-UG. This Uganda variant virus has swept from its first sight in the 

late 1980s throughout eastern and central Africa, from South Sudan (Tadu et al., 2006) 

to Angola (Kumar et al., 2009) and is the now dominant virus type in major cassava 

regions of Tanzania, Uganda and the Democratic Republic of Congo. While all other 

EACMV species and strains more or less remain at their locations of origin, this virus is 

rapidly spreading and extending its distribution range. Then, in a first phase of virus 

invasion into a new area, mixed ACMV infection develop, then EACMV-UG  is more 

frequently found and becomes the dominant virus often outcompeting and displacing 

ACMV  (Legg et al., 2006).  

This characteristic role and impact of EACMV-UG in the African CMD epidemics 

provoked a series of key questions to guide the research into elucidating the factors 

explaining the epidemics. The study presented here focuses on a quantitative 

assessment of ACMV and EACMV-UG in single and mixed infections in cassava. More 

severe disease phenotypes of mixed infections can probably be explained by an 

increase of ACMV and/or EACMV-UG genome DNA-A and DNA-B components. An 
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increase of virus titre in mixed infections presents more infectious particles thus boosting 

virus spread by whiteflies. The unilateral increase of EACMV-UG in mixed ACMV/EACM-

UG infected plants may then explain the rapid geographic dispersal of EACMV-UG and 

why EACMV-UG is then becoming the dominant and later on, the sole virus in CMD.  

In this study, ACMV and EACMV-UG were quantified using a quantitative PCR (qPCR) 

approach, to determine the copy numbers of the genome components DNA-A and DNA-

B of the respective viruses in single and mixed infections of cassava. Cassava cultivars 

with differential CMD susceptibility/resistance characters were used to evaluate the 

extent of virus replication in susceptible and tolerant cultivars, to quantify each genome 

DNA-A and DNA-B component during pathogenesis and to correlate it with symptom 

type, severity and the resistance status of the plant.  

 

2.2 Materials and Methods 

2.2.1 Plants and Viruses 

Virus infections in cassava were induced by inoculations with cloned virus genomes of 

an East African cassava mosaic virus (EACMV–UG, Uganda variant, isolate, Ca055) and 

an African cassava mosaic virus (ACMV, isolate DRC6). Head-to-tail partial multimers of 

DNA-A genomic components and DNA-B genomic components in the binary vector 

pGreenII (John Innes Center, UK) were introduced into cassava by biolistic inoculation, 

essentially following the protocol of Ariyo et al. (Ariyo et al., 2006). Subsequently, mixed 

infections in cassava were introduced by approach grafting of typified ACMV and 

EACMV-UG infected cassava. Each infection type was established in five plants of each 

cultivar. 

To compare virus replication in cassava, three cassava cultivars (cv.) with differential 

resistance against cassava begomoviruses were chosen. Viruses were inoculated in a 

Nigerian landrace, TME 117 (highly susceptible) and an improved cassava cv., TMS 
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30572 (moderately resistant). A highly resistant cassava cv. Albert, a land race widely 

grown in Tanzania, was also included in the analysis. This particular cultivar was infected 

with a wild type isolate of EACMV-UG and expressed, if at all, only very mild symptoms 

of begomovirus infection. A number of cassava plants, local landraces of unknown 

genotypes from earlier virus studies, with natural infections of ACMV, EACMV-UG or 

both viruses in mixed infections, were included in this study. 

All cassava plants were kept under greenhouse conditions at 26-28°C and monitored for 

symptom expression. Biolistically infected plants started with symptom expression about 

45 days after inoculation (dpi).  

 

2.2.2 Sample Preparation 

Tissue samples (approx. 100mg) from newly emerging symptomatic and non 

symptomatic leaves were taken from each plant, frozen in liquid nitrogen and stored at -

 80 °C. Total genomic DNA was extracted using a DNAeasy Plant Mini kit (Qiagen Inc., 

Germany) according to the protocol provided with the kit. DNA was finally dissolved in 

100 µl of Tris/EDTA (buffer AE). Prior to qPCR, DNA was quantified using a Nanodrop 

spectrophotometer ND-1000 (PEQLAB, Germany) and adjusted to a DNA concentration 

of 2 ng/µl. 10 ng DNA was used as template in each qPCR reaction. 

 

2.2.3 Primers and Probes design and optimization 

To determine suitable positions for primers and probes, alignments of complete DNA-A 

and DNA-B genome sequences of isolate Ca055 and DRC6 were carried out using the 

program ClustalX (Thompson et al., 2002). Consequently forward and reverse primers 

with the respective fluorogenic probes (TaqMan FAM/minor groove binding [MGB] 

probes) were designed using the Primer Express software (Applied Biosystems, USA)  

and/or the Beacon designer 7.0 software (PREMIER Biosoft International, USA). In an 
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initial step, to eliminate non specific amplification and primer/probe binding, primers and 

probes selected were subjected to a BLAST search against sequences in Genbank 

using the integrated BLAST sequence alignment search tool in the software.  

TaqMan FAM/MGB assays were developed for specific, differential detection of DNA-A 

and DNA-B genes of both viruses. For DNA-A genome components of Ca055 and 

DRC6, primers and probes were designed targeting AC1 (Rep) genes while primers and 

probes for amplification of DNA-B were designed in the BC1 (MP) gene. As an internal 

control and for quantitation purposes, TaqMan FAM/MGB assays were designed to 

amplify the β-actin gene of cassava.  

In qPCR, the primers for EACMV-UG amplified a 138 base pair (bp) fragment while for 

ACMV DRC6 a 68 bp fragment of the AC1 gene is amplified.  The amplification of DNA-

B components resulted in 70 bp and 72 bp fragments of BC1 genes of Ca055 isolate and 

DRC6 respectively. The amplicon size generated for β-actin, the internal reference 

control, was 97 bp. 

All primer/probe sets were tested using DNA extracted from leaves of cassava plants 

infected with virus isolate Ca055 or DRC6 and with total DNA from non-infected plants 

as negative controls. Since the TaqMan FAM assay failed for EACMV-UG AC1, a 

VIC/TAMRA assay was designed and subsequently used. Primer and probe sequences 

for qPCR detection of DNA-A and DNA-B of EACMV-UG Ca055 and ACMV DRC6 as 

well as the ß-actin gene of cassava are detailed in Table 2.1.  

 

2.2.4 PCR set up 

Working solutions of primers and probes, DNA samples from plants and plasmid 

dilutions were stored at -20°C and not thawed more than twice prior to use. Master mixes 

and water were kept in small aliquots at 4°C. To avoid DNA contamination and carry 

over, DNA extraction, preparation of master mixes and set up of PCR was done in 
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separate rooms. All buffers and solutions for qPCR were pipetted using sterile filter tips 

and composed on ice to avoid errors from evaporation during pipetting. For each sample, 

triplicate qPCR reactions were composed in 96-well microplate formats and microplates 

were sealed immediately after loading. Samples, standards, non template controls (NTC) 

and negative water controls were run on each plate to minimize variations between 

plates. 

The TaqMan Gene Expression Master Mix (Applied Biosystems CO., Foster City, CA) 

was used which contained AmpliTaq Gold® DNA polymerase (Ultra Pure), Uracil-DNA 

Glycosylase (UNG), including dNTPs, dUTP, a passive reference dye ROXTM, as well as 

other buffer components.  

Standard real time PCR reaction mix (25 μl) 

 

DNA (2 ng/µl) 5 µl 

2 x TaqMan Gene Expression Master Mix  12.5 µl 

Sense Primer [900 nM]  2.25 µl 

Antisense Primer [900 nM]  2.25 µl 

TaqMan MGB Probe [200 nM]  0.5 µl 

ddH2O 2.5 µl 

 

Cycling parameters were as follows: 1 cycle at 50oC for 2 min (activation of UNG, Uracil-

N-Glycosylase), 1 cycle at 95°C for 10 min (DNA polymerase activation), and 40 cycles, 

each consisting of 95°C (denaturation) and 1 min at 60°C (annealing and extension).  

All real time PCR assays were performed in an Eppendorf realplex4 ep gradient S 

Mastercycler (Eppendorf, Germany). 

  



26 

 

Table 2.1: Primers/TaqMan probes used for the detection and quantitation of East African cassava mosaic virus-UG Ca055, African cassava 
mosaic virus DRC6 genome components DNA-A and DNA-B and for the endogenous ß-actin gene of cassava 

 Accession No.  Oligonucleotide sequence (5'-3') Amplicon 
size (bp) 

gene R/Q dyes Final conc 
used (nM) 

ACMVDRC6 A FN668378 For ward primer TGCTAGAGGCGGTCAACAATC 68 Rep FAM/NFQMGB 225 

  Reverse primer CCGACTTACTGCCGCTGTTAA  …  …  … 225 

  TaqMan probe CTTTGGCGTAAGCATCAT  …  …  … 50 

ACMVDRC6 B FN668379 For primer TCGAAGGCTCATTCAGAATGAG 72 Mp FAM/NFQMGB 225 

  Reverse primer TGGACCGTGATGGGCCTAT  …  …  … 225 

  TaqMan probe TAGGCCCAGTGTCATAA  …  …  … 50 

EACMV-UG A FN 668377 For ward primer CAATGTACCAACCCGAGATTCTT 76 Rep FAM/NFQMGB 225 

  Reverse primer CTCCCTGAATGTTCGGATGAA  …  …  … 225 

  TaqMan probe TGTGTTGATCGGGATGG  …  …  … 50 

EACMV-UG B FN668380 For ward primer GGAGAAACAAGACGGAGATTACTCA 70 Mp FAM/NFQMGB 225 

  Reverse primer GCCTGTGTGTAATGGGTCGTT  …  …  … 225 

  TaqMan probe TGAGCAGTTGGAGTTGG  …  …  … 50 

Cassava ß-actin 
AB158612 
(N.tabacum) 

For ward primer GCATGCAATCCTTCGTCTTGA 97 ß-actin FAM/NFQMGB 250 

 
AY179605 
(N.bentha) 

Reverse primer AGCTGAGGTGGTGAAAGAATATCC  …  …  … 250 

  TaqMan probe TCAGTGAGGATCTTCATCA  …  …  … 50 

EACMV-UG A FN668377 For ward primer CGAATTGGATGAGAACATGGAGATG 138 Rep VIC/TAMRA 250 

  Reverse primer CCCGATGCTCATTAACGAAAGAAG  …  …  … 250 

    TaqMan probe TTCCCAATTACAAGCCCTTTCGTACCCG  …  …  … 50 
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2.2.5 Preparation of standard curves and DNA quantification 

To determine copy numbers of DNA-A and DNA-B molecules the qPCR was calibrated. 

Standard curves were prepared with plasmids harbouring a full-length copy of DNA-A or 

DNA-B component respectively of EACMV-UG Ca055 or ACMV DRC6. The molecular 

weight of each plasmid was determined from plasmid and vector sizes and plasmid DNA 

dilutions were prepared to generate standard curves from which copy numbers of the 

genomic components could be calculated. In this serial tenfold dilution approximately 1.2 

ng/µl DNA from non-infected cassava (TMS 30572) was spiked and a target curve 

starting from 300 molecules to 3x107 genome copies per 5 µl of sample was achieved. 

The conversion from mass to molecules was done assuming an average molecular 

weight of a deoxyribonucleotide (330 kDa) and the number of base pairs in the DNA 

using the formula: 

(X g/µl DNA / [plasmid length in basepairs x 660]) x Avogadro’s number x 10-12 

A similar standard curve was prepared for the cassava ß-actin gene by serial dilution of a 

plasmid harbouring a 1500 bp fragment of the cassava ß-actin gene to generate a 

standard curve starting from 30000 to 3x108 gene copies so that CT value of unknown 

sample falls within the range.  

The calculation of the standard curves was done using the Eppendorf realplex software 

(version 2.2) using the CT values obtained from qPCR as a function of the amount 

(copies) of nucleic acid target. 
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The standard curve chart displays the following information: 

Slope Increase in standard curve 

Y-Intercept Point at which the standard curve intersects with the Y-axis  

(based on amount = 1 [unit]) 

Efficiency Efficiency of the PCR , E= 10[-1/slope]-1 

Where a slope (S) -3.3 (E=1) represents 100% efficiency 

Rˆ2 Correlation coefficient of standard curve 

 

Standard curves were verified with GenEX software (BioEPS, Germany) by a linear 

regression analysis of the threshold cycle CT value for each replicate of six standard 

dilutions (for viral components) and five standard dilutions (for cassava β-actin gene) 

over the log of the total DNA amount present in each sample.  

For absolute quantitation, the numbers of DNA-A and DNA-B genome molecules of 

EACMV-UG Ca055 and ACMV DRC6 were determined from the specific standard 

curves generated for each plasmid containing a molecule of DNA-A or DNA-B genomic 

component respectively. The standard curves reproduced a linear relationship between 

the CT   value and the amount of total input DNA. Thus from the fitted line of regression, 

the target concentrations in the samples (genome copies) were interpolated from the 

appropriate standard curve. The amount of virus was also calculated by a linear 

regression analysis of the CT value of each sample over the log of the total DNA 

concentration. 

For relative quantitation, values obtained in qPCR in amplification of DNA-A and DNA-B 

genome components were compared with values obtained for amplification of the 

cassava ß-actin gene used as endogenous reference and a DNA from non-infected 

cassava used as calibrator. The results were expressed as target/reference ratio. For 

relative quantitation, a mathematical model to calculate the mean normalized target 

amount was used (Applied Biosystems).  
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2.2.6 Statistical analysis 

Results from qPCR were exported in GenEx Professional (version 4.3.8) for verification 

of standard curves and to quantify target concentrations in samples. Replicates of 

samples were analyzed to calculate the standard deviation of CT values. Standard 

deviation between the samples was evaluated using the log of the amount [copies]. From 

the standard curves the copy numbers of DNA-A and DNA-B genome components were 

determined by interpolation. To statistically evaluate all values obtained in separate 

qPCR reactions, data were presented graphically in box and whisker plots calculated in 

SigmaPlot 9.0. These plots are based on calculations for the main median from all data; 

the upper median, for data > median and; for the lower median, from data < median. In a 

graphical display (Figure 2.4) median values represent the upper (75% of data) and 

lower limits (25% of data) of the box, with a cross section of the main median. Whiskers 

extend to the data’s smallest and highest values reflecting the extremes. A box plot thus 

graphically displays the variation of the experimental data and is less influenced by 

extreme values.    

 

2.3 Results 

2.3.1 Cassava mosaic virus infections in cassava 

Mosaic symptoms on leaves of cassava are typical indications for cassava mosaic 

disease. Symptoms of CMD are more pronounced on younger leaves of plants infected 

with cassava begomoviruses. Symptomatic leaves alternating with non-symptomatic are 

characteristic for the disease (Fig. 2.1). 
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Figure 2.1: Cassava mosaic disease symptoms on field grown cassava in 
Yangambi, Democratic Republic of Congo. Single infection of EACMV-UG in a 
DRC local cassava landrace  cultivar “Mbongo”. 

 

Cassava cultivars infected with ACMV and EACMV-UG most often show a serious 

response to virus infections with severe symptoms on almost every leaf consisting of 

mosaic, leaf malformation and distortion. In the advanced stages of this mixed virus 

infection, leaves are severely crippled and the entire plant appears stunted (Fig. 2.2).   
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Figure 2.2: Severe Cassava mosaic disease symptoms of the cassava cultivar 
“Mbongo” infected with ACMV and EACMV-UG. 

 

For the quantitative assessment of cassava virus infections, cassava cultivars were 

infected with “reference” cassava mosaic begomoviruses and maintained under 

glasshouse conditions to monitor for disease progress. Upon biolistic inoculation, 

cassava plantlets developed leaf symptoms starting on youngest freshly expanding 

leaves approximately 3-6 weeks after inoculation. Symptoms on cassava differed with 

viruses and cassava cultivar. ACMV and EACMV-UG infections resulted in leaf 

symptoms that consisted of mottling, mild to severe mosaic and leaf deformation. In the 

highly susceptible TME 117, symptoms were most severe but there was no visible 

difference between symptoms induced by either ACMV or EACMV-UG. However, in 

ACMV infections, recovery of symptoms with non symptomatic leaves following leaves 

with pronounced mosaic symptoms was often found (Fig. 2.3A), while in EACMV-UG 

infections, this phenomenon was less frequently observed (Fig. 2.3.B). In the improved 

cv. TMS 30572, only mild symptoms were visible with infections of ACMV (Fig. 2.3. C) 
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while more severe symptoms were recorded for EACMV infections. For ACMV and 

EACMV this cv. responded with recovery from symptoms. After a symptomatic phase 

with pronounced mosaic symptoms, apparently healthy leaves developed with only very 

faint or completely missing symptoms.  

 

Figure 2.3: Cassava mosaic diseases established under glasshouse conditions. 
Symptoms of ACMV (A) and EACMV-UG (B) in the highly susceptible cassava 
cv. TME 1117. Single ACMV infections (C) and mixed ACMV/EACMV-UG 
infections (D) in the improved cassava cv. TMS 30572. Severe symptoms of 
EACMV-UG in a local land race cv. (E). Faint and transient symptoms of 
EACMV-UG in the cassava cv. Albert (F). 

 

When mixed infections were introduced, the symptom status of TME 117 already 

seriously impacted from single infections did not change, while more drastic symptoms 
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were recorded for the moderately ACMV resistant cv. TMS 30572. In mixed 

ACMV/EACMV-UG infections, symptoms of severe mosaic and leaf deformation were 

observed and the recovery phase characteristic for single infections did not happen (Fig. 

2.3. D).  

Even under optimal conditions for cassava infections established in the laboratory, the 

cassava cv. Albert was not susceptible to ACMV infection. Upon natural infection with 

EACMV-UG, only few (1-3) leaves expressed symptoms and infected plants eventually 

recovered from symptoms (Fig. 2.3 F). However cv. Albert remained infected and 

recovery was only from symptoms and not from virus infection. Even after a prolonged 

phase of latent infections with apparently healthy, non symptomatic leaves developing, 

symptomatic leaves expressing mild symptom were formed after which the plants 

recovered again. This genotype expressed a high degree of resistance against EACMV-

UG. An existing EACMV-UG infection did not change the predisposition to ACMV hence 

ACMV resistance was maintained. 

EACMV-UG causes a serious begomovirus disease in cassava and especially local 

landraces (Fig. 2.3 E) respond with severe symptoms and a mosaic type with often bright 

yellow appearance. In advanced stages of the disease, infected plants deteriorate 

completely.  

                

2.3.2 Development of a real-time PCR assay for quantification of DNA-A and 

DNA-B genomic components of ACMV DRC6 and EACMV-UG Ca055 

Conditions for qPCR were optimized, varying the concentrations of primers and probes 

for each primer/probe set. Primer concentration between 225 nM and 250 nM and probe 

concentrations of 100 nM were found optimal with high and reproducible fluorescence 

signals in qPCR obtained with DNA standards. The amplicon sizes predicted for each 

primer and probe were confirmed by agarose gel electrophoresis. Primers and probes 
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designed for DNA-A and DNA-B components of virus isolates Ca055 and DRC6 were 

specific for their respective targets. Amplification and fluorescence was only recorded 

when homologous sequences were present in a DNA sample. Occasionally upon qPCR, 

in samples from non-infected cassava plants and non-DNA template controls, CT values 

>35 were recorded, indicating the threshold limits of template detection.  

Standard curves for absolute and relative quantitation of DNA-A to DNA-B genomic 

components were generated for plasmid DNA dilutions which were subjected to 3 

replicate qPCR reactions for each dilution (Table 2.2).  

 

Table 2.2: CT values obtained in qPCR for DNA- A and DNA-B components of ACMV 
DRC6 and EACMV Ca055 and amplification of the cassava ß-actin gene 

 

Amount of 
plasmid 

[copies] 

EACMV-UG 

Ca055 

DNA-A 

EACMV-UG 

Ca055 

DNA-B 

ACMV 

DRC6 

DNA-A 

ACMV 

DRC6 

DNA-B 

β-actin  

cassava 

 CT ± Std. 

dev. 

CT ± Std. 

dev. 

CT ± Std. 

dev. 

CT ± Std. 

dev. 

CT ± Std.    

dev. 

3.00E+08 - - - - 19.62±0.16 

3.00E+07 15.44±0.22 15.79±0.21 14.42±0.15 13.66±0.02 22.87±0.35 

3.00E+06 19.06±0.22 19.54±0.18 17.75±0.12 17.80±0.12 27.71±0.41 

3.00E+05 22.19±0.25 22.6±0.14 21.23±0.21 21.52±0.37 30.39±0.49 

3.00E+04 25.96±0.18 25.57±0.09 24.57±0.14 24.75±0.30 33.78±0.5 

3000 28.95±0.31 28.26±0.15 27.9±0.33 28.63±0.22 - 

300 32.03±0.39 32.5±0.29 29.91±0.58 31.45±0.40 - 

 - not determined 
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The equations of the standard curves for EACMV-UG Ca055 DNA-A and DNA-B 

obtained by plotting the amount [log of copies] present in each plasmid dilution against 

CT (measured) - CT (predicted) were y = -3.3245x + 40.496; R² = 0.9988 and y = -3.2194x 

+ 40.076; R² = 0.996 respectively. This indicated an efficiency of 100%. The equations of 

the standard curves for ACMV DRC6 DNA-A  and DNA B obtained by plotting the log of 

DNA- A or DNA-B copies present in each plasmid against CT (measured) - CT (predicted) 

were  y = -3.1783x + 38.458; R² = 0.9947, efficiency = 100% and y = -3.613x + 40.999; 

R² = 0.9981, efficiency = 91% respectively. The equation of the standard curve for β-

actin gene of cassava was y=-3.585x + 50.104; R² = 0.9926 reflecting a qPCR efficiency 

> 90%.   Each qPCR system resulted in reliable and reproducible amplification signals 

with low CT standard deviations and high correlation coefficients of the standard curves 

(Table 2.2). 

Standard curves generated for plasmid DNA in all qPCR assays revealed highly similar 

slopes (Fig. 2.4). Since CT values for plasmid dilutions of the β-actin gene resulted in a 

regression line with a similar slope, the ration between the CT of the endogenous 

reference and the CT of the sample could be calculated. 
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Figure 2.4: Standard curves for plasmid dilutions generated by plotting the log 

number of plasmid copies of DNA-A and DNA-B components of EACMV-UG 
Ca055 and ACMV DRC6 and plamids containing ß-actin, versus the CT values 
obtained. CT values for each plasmid dilution are means of triplicate qPCR 
reactions.  

  

For absolute quantification of cassava mosaic virus genome components DNA-A and 

DNA-B of EACMV-UG Ca055 and ACMV DRC6 the exact copy number of viral 

components could now be determined from the standard curves generated from qPCR 

CT values obtained with defined concentrations of plasmid DNA.   

 

2.3.3 Absolute quantification of EACMV-UG Ca055 and ACMV DRC6 genome 

components in cassava 

Absolute quantification of DNA-A and DNA-B components of EACMV-UG and ACMV 

showed that virus DNA concentrations were always significantly higher (3 to 4 orders of 

magnitude) in symptomatic tissues compared to non-symptomatic leaves (Fig. 2.5, 2.6).  
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Figure 2.5: Absolute quantitation of EACMV-UG Ca055 DNA-A and DNA-B (A) and 
ACMV DRC6 (B) in non symptomatic and symptomatic leaf tissues of cassava 
cv. TME 117. 

 

EACMV-UG Ca055 DNA-B concentrations varied significantly in non symptomatic 

tissues and also where significantly higher than DNA-A concentrations.  

In the highly susceptible cassava cv. TME 117, the molecule numbers, in 10 ng plant 

DNA, of EACMV-UG Ca055 DNA-A ranged between 5300 for non symptomatic tissues 

and 3.3 million copies in symptomatic tissues while concentration of DNA-B was 

between 5200 and 21.2 million copies. The amount of ACMV DRC6 DNA-A ranged 

between 124 copies and 116 million copies and that of DNA-B between 164 copies and 
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44.1 million copies in singly infected non-symptomatic and symptomatic cassava leaves 

of the cassava cv. TME 117. 

The study of EACMV-UG Ca055 genome components in the cassava cv. TMS 30572 

(Fig. 2.6 A) also showed a large variation of DNA-A and DNA-B genome component 

concentrations in non symptomatic leaves. Similar to the virus situation in TME 117, the 

concentration of Ca055 DNA-B exceeded that of DNA-A. In symptomatic cassava 

tissues, the highest copy numbers recorded for Ca055 DNA-A was 32.6 million 

molecules while Ca055 DNA-B reached 81.4 million copies. 
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Figure 2.6: Absolute quantitation of DNA-A and DNA-B genomic components of 
EACMV-UG Ca055 (A) and ACMV DRC6 (B) in non symptomatic and 
symptomatic leaf tissues of the improved cassava cv. TMS 30572.  

 

In Figure 2.6, the results are taken for the evaluation DNA-A and DNA-B components of 

ACMV DRC6 in non-symptomatic and symptomatic cassava leaf samples of land race 

TMS 30572. The ratio of copy numbers of ACMV-DRC6 DNA-A and ACMV-DRC6 DNA-

B in non symptomatic and symptomatic cassava leaf tissues was almost 1:1. When 
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compared with concentrations of EACMV, ACMV concentrations in this cultivar were 

lower than EACMV ranging between 0.45 million to 8.34 million DNA-A copies in 

symptomatic leaf tissues compared to more than 32 million DNA-A copies calculated for 

EACMV-UG in this host. 

 

2.3.4 Quantification of EACMV-UG genome components in cassava cv. Albert 

In the begomovirus resistant cassava cv. Albert, infected with the wild type isolate 

EACMV-UG Ca111, low concentrations of DNA-A were detected in qPCR. Upon qPCR 

amplification of DNA-B, the increase of fluorescence was retarded and non sigmoidal 

curve shapes were obtained indicating for qPCR failure (Fig. 2.7).   

 

 

 
Figure 2.7: Fluorescent signals in qPCR obtained with an EACMV-UG Ca055 DNA 

B positive control standard sample (sigmoid curve) and signals from qPCR 
amplification of EACMV-UG Ca111 DNA B (non sigmoid curves). For each 
sample qPCR was performed in 2 replicates.  
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qPCR products obtained from these runs were analyzed on 2% agarose gels and an 

efficient PCR amplification was confirmed. Sequence analysis of the cloned qPCR 

fragments then revealed sequence deviations in DNA-B of EACMV-UG Ca111 

identifying a mismatch of two nucleotides which is localised within the probe.  

 

 

 
Figure 2.8: Sequence of the EACMV-UG Ca111 DNA-B fragment amplified in qPCR. 

Box represents probe sequence. Dots are base identities. TG base mismatch 
is in the core of the probe. 

 

The mismatches of probe-template duplexes in the core region of the probe were most 

likely responsible for the failure of this probe in qPCR. It shows that mismatches in this 

region were not tolerated preventing binding of TaqMan probes to the target and 

development of fluorescence. Since it was not possible to generate infections with 

EACMV-UG Ca055 in Albert, this cv. was excluded from further experiments.   

 

2.3.5 Relative quantitation of ACMV DRC6 and EACMV Ca055 in cassava cv. TME 

117 and cv. TMS 30572 

A high variation in copy numbers of DNA-A and DNA-B components was found in 

cassava plants which was considerably higher in non symptomatic tissues (Figure 2.5) 

than in leaves with mosaic symptoms. Consequently, for a better assessment of the virus 

situation relative quantitation, to monitor virus infection in each plant in relation to the 

endogenous reference ß-actin, was pursued (Table 2.3, 2.4 and Appendix).
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Table 2.3: Calculation of relative titre of EACMV -UG Ca055 DNA-A and DNA-B in virus infected (non-symptomatic) and non infected, virus-free 
cassava cv. TME 117. Calculation was according to the relative standard curve method. 

 

    EACMV -UG Ca055 β- actin gene of cassava         

Test sample 
TME 117_NS 

genome 
component 

Ct ± Std. 
Dev. 

Mean 
Log 

Conc. 

Mean 
Conc. 

(copies) 

Ct ± Std. 
Dev. 

Mean 
Log 

Conc. 

Mean 
Conc. 

(copies) 

Normalized 
target 

Fold 
difference in 
target with 
Calibrator 

A:B A vs. 
B 

Ca 30 DNA-A 27.82±0.26 3.81 6.56E+03 24.28±0.1 7.20 1.59E+07 4.14E-04 5.94E+02 0.01 A < B 

 DNA-B 22.82±0.13 5.35 2.25E+05 24.28±0.1 7.20 1.59E+07 1.42E-02 5.57E+04   

Ca 32 DNA-A 26.55±0.22 4.19 1.57E+04 24.69±0.06 7.09 1.22E+07 1.29E-03 1.85E+03 0.10 A < B 

 DNA-B 24.76±0.04 4.74 5.54E+04 24.69±0.06 7.09 1.22E+07 4.54E-03 1.79E+04   

Ca 34 DNA-A 27.80±0.14 3.82 6.56E+03 24.47±0.03 7.15 1.40E+07 4.68E-04 6.72E+02 0.03 A < B 

 DNA-B 24.40±0.06 4.86 7.17E+04 24.47±0.03 7.15 1.40E+07 5.11E-03 2.01E+04   

Ca 30.2 DNA-A 21.97±0.22 5.57 3.74E+05 24.27±0.04 7.21 1.60E+07 2.33E-02 3.35E+04 0.10 A < B 

 DNA-B 20.36±0.02 6.12 1.32E+06 24.27±0.04 7.21 1.60E+07 8.23E-02 3.23E+05   

Ca 32.2 DNA-A 21.03±0.05 5.85 7.13E+05 24.4±0.08 7.17 1.47E+07 4.86E-02 6.97E+04 0.35 A < B 

 DNA-B 21.16±0.11 5.87 7.43E+05 24.4±0.08 7.17 1.47E+07 5.07E-02 1.99E+05   

Ca 34.2 DNA-A 26.69±0.09 4.15 1.41E+04 24.48±0.02 7.14 1.39E+07 1.02E-03 1.46E+03 0.10 A < B 

 DNA-B 24.80±0.04 4.73 5.37E+04 24.48±0.02 7.14 1.39E+07 3.87E-03 1.52E+04   

Ca 91.1 DNA-A 36.56±0.52 0.79 10.74 24.33±0.1 7.19 1.54E+07 6.97E-07 1.00 1.00 A = B 

(Calibrator) DNA-B 38.16±1.89 0.37 3.92 24.33±0.1 7.19 1.54E+07 2.54E-07 1.00     
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Table 2.4: Calculation of relative concentrations of EACMV-UG Ca055 DNA-A and DNA-B in symptomatic leaves of virus infected and in leaf 
tissues of non infected, virus-free cassava cv. TME 117.  

 

    EACMV -UG Ca055 β- actin gene of cassava         

Test sample 
TME 117_S 

genome 
component 

Ct ± Std. 
Dev. 

Mean 
Log 

Conc. 

Mean 
Conc. 

(copies) 

Ct ± Std. 
Dev. 

Mean 
Log 

Conc. 

Mean 
Conc. 

(copies) 

Normalized 
target 

Fold 
difference in 
target with 
Calibrator 

A:B A vs. 
B 

Ca 31 DNA-A 18.09±0.31 6.74 5.57E+06 24.54±0.16 7.13 1.34E+07 4.15E-01 5.96E+05 0.02 A < B 

 DNA-B 14.28±0.06 8.02 1.05E+08 24.54±0.16 7.13 1.34E+07 7.80E+00 3.07E+07   

Ca 33 DNA-A 15.77±0.15 7.44 2.74E+07 24.28±0.11 7.20 1.59E+07 1.73E+00 2.48E+06 0.05 A < B 

 DNA-B 13.38±0.07 8.30 2.00E+08 24.28±0.11 7.20 1.59E+07 1.26E+01 4.95E+07   

Ca 35 DNA-A 17.79±0.18 6.83 6.75E+06 24.49±0.08 7.14 1.39E+07 4.87E-01 6.99E+05 0.03 A < B 

 DNA-B 14.71±0.06 7.89 7.69E+07 24.49±0.08 7.14 1.39E+07 5.54E+00 2.18E+07   

Ca 31.2 DNA-A 19.65±0.13 6.27 1.86E+06 24.48±0.08 7.15 1.40E+07 1.33E-01 1.91E+05 0.02 A < B 

 DNA-B 16.00±0.04 7.48 3.04E+07 24.48±0.08 7.15 1.40E+07 2.17E+00 8.54E+06   

Ca 33.2 DNA-A 15.3±0.09 7.58 3.78E+07 24.23±0.09 7.21 1.64E+07 2.31E+00 3.32E+06 0.09 A < B 

 DNA-B 13.75±0.18 8.19 1.54E+08 24.23±0.09 7.21 1.64E+07 9.43E+00 3.71E+07   

Ca 35.2 DNA-A 16.6±0.07 7.19 1.54E+07 24.65±0.06 7.10 1.25E+07 1.23E+00 1.76E+06 0.04 A < B 

 DNA-B 13.72±0.02 8.20 1.57E+08 24.65±0.06 7.10 1.25E+07 1.25E+01 4.93E+07   

Ca 91.1 DNA-A 36.56±0.52 0.79 10.74 24.33±0.1 7.19 1.54E+07 6.97E-07 1.00 1.00 A = B 

(Calibrator) DNA-B 38.16±1.89 0.37 3.92 24.33±0.1 7.19 1.54E+07 2.54E-07 1.00     
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When EACMV-UG Ca055 infections in cv. TME 117 were monitored, the concentrations 

of DNA-B were always higher compared to DNA-A, whether symptoms were expressed 

or not (Fig. 2.9). The ratio of DNA-B to DNA-A was similar in all leaf samples (Table 2.3). 

 

Figure 2.9: Relative amount of DNA-A and DNA-B genome components of EACMV -
UG Ca055 in non symptomatic (A) and symptomatic (B) leaf tissues of 
cassava cv. TME 117. Red dot indicates value for DNA-A concentration, blue 
dot is value for DNA-B concentration in different samples.  

 

In ACMV DRC6 singly infected cassava cv. TME 117, the proportions of DNA 

components were slightly reversed. In this highly susceptible cultivar, ACMV DNA-A was 

always higher than DNA-B although the differences in genome component 

concentrations were not very pronounced (Fig. 2.10 A). As in EACMV-UG infections, the 
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concentration of virus in symptomatic leaf tissues was considerably higher than in leaves 

that did not express symptoms (Fig. 2.10 A & B). 

 

Figure 2.10: Relative amounts of DNA-A and DNA-B genome components of ACMV 
DRC6 in non symptomatic (A) and symptomatic (B) leaf tissues of cassava cv. 
TME 117. Red dot indicates value for DNA-A concentration, blue dot is value 
for DNA-B concentration in different samples.  

 

In the improved cassava cultivar TMS 30572, DNA-B concentrations were higher than 

amounts of DNA-A. In leaves expressing mosaic symptoms, virus concentrations ranged 

from approximately 1 million copies of DNA-A versus 5 million copies DNA-B (sample 

Ca39 Fig. 2.11 B) and approximately 20 million DNA-A copies versus 50 million copies of 
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DNA-B (Fig. 2.11 B, sample 37). In non symptomatic leaves virus was always present 

and considerable concentrations of genomic components ranging from 700 to 440000 for  

DNA- A and from 4000 to 750000 for DNA-B were recorded (Appendix, Table 2.7 & 2.8).        

 

Figure 2.11: Relative amounts of DNA-A and DNA-B genome components of 
EACMV-UG Ca055 in non symptomatic (A) and symptomatic (B) leaf tissues of 
cassava plants cv. TMS 30572. Red dot indicates value for DNA-A 
concentration, blue dot is value for DNA-B concentration in different samples.  

 

In TMS 30572, the ratio between DNA-A and DNA-B components was nearly 1:1 with 

only slight variations in the proportions of DNA-A and DNA-B in non symptomatic 

tissues. In non symptomatic tissues of TMS 30572 DNA-A concentrations ranged from a 
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few hundred copies to 1.5 million molecules (Appendix Table 2.10) while virus 

concentration in symptomatic tissues was constantly high ranging between 1 and 8 

million copies of DNA-A and DNA-B copies respectively.  

 

Figure 2.12: Relative amounts of DNA-A and DNA-B genome components of ACMV 
DRC6 in non symptomatic (A) and symptomatic (B) leaf tissues of cassava cv. 
TMS 30572. Red dot indicates value for DNA-A concentration, blue dot is value 
for DNA-B concentration in different samples.  

 

The comparison of virus titres in the susceptible cv. TME 117 and the moderately 

resistant cv. TMS 30572 showed that EACMV-UG and ACMV were detectable in non 

symptomatic leaves with considerable variability of the amounts of DNA-A and DNA-B 
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detected. In symptomatic leaves a fluctuation of virus concentrations was less 

pronounced and virus titre was increased by several orders of magnitudes. EACMV 

concentrations in symptomatic tissues were similar in both cultivars but were 10 to 100 

fold in excess of ACMV. Similarly ACMV DRC6 concentrations in symptomatic cv. TME 

117 and cv. TMS 30572 were not significantly different albeit at much lower values than 

recorded for EACMV-UG Ca055.  

 

2.3.6 Relative quantitation of ACMV and EACMV-UG in naturally occurring mixed 

infections of cassava 

To study “synergism” between ACMV and EACMV in mixed infected plants, natural 

occurring mixed infections of these viruses in cassava were studied. Mixed infected 

cassava collected in the Democratic Republic of Congo (DRC6) was subjected to 

differential virus analysis.  

In mixed infections, DNA-A concentrations of both viruses were similar. Virus 

accumulation was not dramatically different compared with single infections although 

DNA-A concentrations of EACMV-UG were lower in mixed infections while the amount of 

ACMV DNA-A was more or less similar. The quantitative assessment of DNA 

accumulation in mixed infections however showed a dramatic decrease of EACMV-UG 

DNA-B in mixed infections with DNA-B almost undetectable (Fig. 2.13 A & B).     
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Figure 2.13: Relative quantitation of genome components of EACMV-UG and 
ACMV in a natural occurring mixed infection of a cassava landrace from the 
Democratic Republic of Congo (DRC6). Virus DNA-A and DNA-B 
concentrations in non symptomatic leaves (A) compared to virus titres in 
symptomatic tissues (B).   

 

The analysis of a further natural mixed infection of ACMV and EACMV-UG (DRC 7) 

confirmed the virus situation and the quantitative ratios between the DNA genomic 

components of the two viruses (Fig. 2.14). Compared to single infections, there is no 

significant change in the level of DNA-A accumulation for both EACMV-UG and ACMV. 

Several millions of DNA-A copies of both viruses are present in symptomatic tissues 

while only a few thousand copies of DNA-A can be measured in leaves without virus 
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symptoms. As with DRC6, the amount of EACMV-UG DNA-B is remarkably low in mixed 

infected plants and only few DNA-B copies can be traced in leaves from mixed infected 

plants.  

 
 
Figure 2.14: Relative quantitation of genome components of EACMV-UG and 

ACMV in a natural occurring mixed infection of a cassava landrace from the 
Democratic Republic of Congo (DRC 7). Virus DNA-A and DNA-B 
concentrations in non symptomatic leaves (A) compared to virus titres in 
symptomatic tissues (B).   

 

To assess virus concentration in the cassava cv. TME 117 and TMS 30572, natural 

mixed infections of ACMV and EACMV-UG (DRC 7) were transmitted to respective virus 

free cassava plants by approach grafting. Newly developing leaves responded with 

typical virus symptoms approximately 6-10 weeks after grafting.  
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qPCR assessment of virus amounts in  symptomatic leaves of cassava cv. TME 117 and 

TMS 30572 showed an accumulation of ACMV while CT values obtained for both 

EACMV-UG genome components indicated for only trace amounts of EACMV-UG in  

both cv. (Fig. 2.15 A & B). 

 
 
Figure 2.15: Relative quantitation of EACMV-UG and ACMV genome components 

in mixed infection of cv. TME 117 (A) and cv. TMS 30572 (B).  Mixed infections 
were established by graft transmission from a naturally occurring ACMV/ 
EACMV-UG mixed infection (DRC 7) onto cassava plants of the respective 
cultivars.  

 

In a separate grafting experiment, artificial mixed infections were generated by grafting 

cassava scions from cassava infected with a single virus to cassava plants infected with 
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the complementary virus. For this experiment, scions of TMS 30572 biolistically 

inoculated with infectious clones of either ACMV DRC6 or EACMV-UG Ca055 were 

grafted on a cv. TMS 30572 infected with the corresponding virus to create an 

ACMV/EACM mixed infection. In all graft combinations evaluated 6-8 weeks after 

grafting, no evidence was found for movement of the grafted virus into tissues with an 

established virus infection. And vice versa, the virus from an infected cassava rootstock 

was never found invading the grafted shoots that established an infection with the 

corresponding virus.  

 

2.4 Discussion 

PCR-based techniques have become standard for detection and identification of viruses. 

Combined with sequence analysis, species, strains and isolates of RNA and DNA 

viruses can be differentiated at high resolution and infections with multiple viruses can be 

determined. By use of real-time PCR it is even possible to quantify virus genomes in 

plants and insects (Fabre et al., 2003; Korimbocus et al., 2002; Mason et al., 2008) and 

the level of virus replication in plants infected with viruses and their strains can be 

compared (Ratti et al., 2004; Ruiz-Ruiz et al., 2007; Vaianopoulos et al., 2009).  

Here, infections of cassava with ACMV and EACMV-UG were studied by quantitative 

real-time PCR to describe replication of both viruses in single and mixed infections. The 

amount of viral DNA-A and DNA-B components were determined by qPCR and analysed 

in absolute and relative quantitation experiments, for a differential and separate 

assessment of both virus genome components during cassava infections. Through 

absolute quantitation, the exact number of DNA genome components in cassava 

cultivars was measured whereas by relative quantitation, changes in and between the 

genome DNA-A and DNA-B components were analysed. This was done by comparing 
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qPCR measurements for virus genomes in relation to the concentrations calculated for 

the endogenous cassava ß-actin gene.  

The ß-actin gene of cassava was chosen as endogenous reference because several 

copies of ß-actin are present in the genomes of higher plants and, because 

concentrations of ß-actin measured by qPCR were within the range of virus DNA in 

infected leaf tissues. Thus, the endogenous ß-actin was not only used to validate the 

analytical procedure, from DNA extraction to qPCR (Korimbocus et al., 2002; Lopez et 

al., 2006), but also, to normalise the quantity of input DNA. With this, a precise 

comparison among samples was possible.  

Extensive analysis of ACMV and EACMV-UG genome sequences resulted in a number 

of primer and probe sets suitable for specific amplification of each of the virus DNA-A 

and DNA-B genome components. With these qPCR systems, an unbiased DNA 

amplification/quantitation should be achieved which was not disrupted by the presence of 

non target sequences. Although the sequences of all DNA-A and DNA-B genomes 

showed substantial differences and regions of high diversity especially in AC1 (Rep, 

DNA-A) and BC1 (MP, DNA-B) were identified to deduce specific primers and probes, 

the appropriate system was only found after a series of qPCR experiments with cassava 

DNA.  

The significance of choosing the right primer and probe system became evident when 

several systems competent in quantifying virus genomic components in single infections 

failed to specifically detect its target in mixed infections. A specificity problem inherent to 

TaqMan assays was encountered when a wild type virus infection was studied. Detection 

of EACMV-UG isolate Ca111, a naturally occurring virus with an almost identical genome 

sequence to the infectious cloned virus EACMV-UG Ca055, failed using the DNA-B 

qPCR system and only non sigmoidal curves from artefactual fluorescence at higher Ct 

(>33) was recorded in qPCR (Fig.2.7). Sequence analysis of the 70bp qPCR amplicon 

then demonstrated that qPCR failure was because of a 2 base mismatch in the core 
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region of the FAM/NFQMGB probe preventing accurate probe hybridisation. While PCR 

amplification efficiently occurred, the probe failed to bind to its target sequence.  

Sequence heterogeneity within the probe annealing region does not present problems 

for SYBR-green based qPCR assays since sequence heterogeneity in regions 

encompassed by primers do not affect detection (Papin et al., 2004). A SYBR assay also 

would remove the layer of variation caused by hybridisation efficiency. Nevertheless, the 

preference for using a TaqMan assay in these experiments was to provide a high level of 

sensitivity combined with specificity.  

The aim of this study was to analyse begomovirus infections in cassava and to compare 

the concentrations and ratios of 4 virus DNA genome components for which definite 

sequences were known. Sequence variation, a common feature of field material, was not 

taken into consideration when qPCR systems for each genome component were 

developed. The failed qPCR system for EACMV-UG DNA-B illustrates the limitation of 

qPCR for virus detection in field collected materials. Otherwise negligible deviations in 

sequence can lead to failure of the assay and cause false negative results. Nevertheless 

the real-time qPCR developed for the detection and quantitation of EACMV-UG Ca055 

and ACMV DRC6 provides a rapid and useful diagnosis tool to identify and differentiate 

both viruses in field samples. While differential diagnosis for begomovirus species and 

strains infecting cassava is best done by established, classical PCR methods (Ariyo et 

al., 2005; Bull et al., 2006) the versatility of this method becomes evident, when 

extremely low virus concentrations need to be detected e.g. in resistant cassava lines.  

The qPCR system developed for each virus genome component resulted in standard 

curves plotting the CT values over the logarithm of the amount of input DNA. Highly linear 

regression lines verified accuracy over the range of dilutions chosen for each system. In 

qPCR a considerable variability in virus concentration was found among plants. This was 

more pronounced when virus was quantified in non symptomatic leaves. As shown in the 

boxplot diagrams which graphically depict results from absolute quantitation experiments 
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(Fig. 2.4-2.6), a considerable degree of dispersion of data was recorded. This variability 

of virus load among plants is most likely because cassava infections cannot be 

synchronized and biological replications of virus infections in clonally propagated 

cassava genotypes still display independent infection phases. The architecture of 

cassava plantlets developing from cuttings can also be quite different. Single shoots (Fig. 

2.3 A-C) and branching types with several shoots (Fig. 2.3 D, F) make it difficult to 

choose leaves of similar development and comparable symptoms. Furthermore, a 

cassava leaf consists of 5 fingers and symptoms within a leaf and between fingers can 

be quite variable. Hence comparing DNA-A and DNA-B concentrations and virus load is 

by statistics only which becomes more precise when the number of samples subjected to 

qPCR is increased. A similar variability in qPCR was found when tomato infections with 

the begomovirus TYLCSV were quantitatively analysed (Mason et al., 2008). A high 

variability of virus load was found among leaves of the same plant with significant 

differences of virus concentrations even between leaves directly following each other. 

Virus load in the uppermost youngest leaves was less variable and thus these leaves 

were found most useful for comparative studies. Considering symptoms, recovery from 

symptoms and leaf stage, the right choice of material for a cassava virus assay was 

most problematic hence variability was an inevitable parameter.  

In spite of a high variability of absolute values, the ratios between virus DNA and ß-actin 

were within comparable range. While with this approach extreme outliers were still 

recorded, box plots generally showed a more limited dispersion of qPCR data. Even 

slight variations in quality and quantity of DNA can significantly contribute to variability in 

qPCR. In relative quantification, DNA preparation affects virus and endogenous control 

similarly. Hence with a lower standard deviation of the data, this is the method of choice 

to study viruses in plant infections.  

Viruses and cassava cultivars in this study were selected because ACMV and EACMV-

UG are major virus species in African cassava cultivation and the viruses were frequently 
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reported in mixed infections (Harrison et al., 1997) causing severe, synergistic disease 

phenotypes. The genotypes chosen are typical cassava cultivars; TME 117 a landreace 

from Nigeria well appreciated for its starch quality however highly susceptible to CMD 

and TMS 30572, a widely adopted improved cassava cultivar for its resistance 

characters against ACMV (Raji et al., 2008) and, cassava cv. Albert, popular in Tanzania 

with high resistance against ACMV and EACMV-UG.  

Relative quantitation of the viruses in single infections of cassava showed results similar 

to those obtained in absolute quantitation assays. Virus load in single infections was 

much higher in symptomatic tissues than in non symptomatic leaves. The concentration 

of virus recorded corresponded with the severity of disease symptoms with 

concentrations of EACMV-UG much higher than ACMV. This finding is consistent with 

earlier studies on ACMV (Fargette et al., 1996; Ogbe et al., 2003a) where higher virus 

concentrations correlated with the severity of the disease phenotype. These authors 

however were unclear whether these findings apply to all categories of cassava 

genotypes, from highly susceptible to resistant cultivars. Now, from the data of the 

quantitative assessment it can be deduced that neither ACMV nor EACMV-UG 

concentrations differed and similar levels were recorded for infections of the moderately 

resistant cv. TMS 30572 and for the highly susceptible cv. TME 117.  

Symptom severity of CMD is used to classify susceptibility and resistance of cassava 

genotypes (Hahn et al., 1980b). These phenotypic characteristics are field observations 

that do not take into account the virus status of the plant. Ogbe and co-authors (2003) 

used TAS-ELISA to quantify ACMV load in cassava cv. among which TME 117 and TMS 

30572 were analysed. In both, the moderately resistant TMS 30572 and the susceptible 

genotype TME 117, ACMV multiplication reached similar levels despite the milder 

symptoms expressed in TMS 30572. This study extended the ELISA based analysis of 

Ogbe et al. (2003) by differential analysis of ACMV and EACMV-UG infections in these 
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cultivars. A difference in virus replication between the highly susceptible and the 

moderately resistant cultivar was not determined.  

Resistance evaluation of cassava, done by assessment and scoring of symptom 

incidence and severity and calculation of disease progress (Egesi et al., 2007) contains a 

considerable genotype x environment interaction. This is because in natural 

environments, cassava virus infections rely on whiteflies, are therefore not synchronised 

and virus load can differ significantly between plants. Under the prevailing experimental 

conditions of these experiments, virus load and infection were somewhat better 

synchronised but glasshouse conditions, although identical for all genotypes, are still 

artificial environments influencing virus replication and plant symptoms. Hence viruses 

adapted to higher temperatures will replicate to a lower level at ambient glasshouse 

conditions (23 °C to 26°C) than at 28 to 36°C, which are however temperatures 

prevailing in cassava locations in Africa. Also, symptoms can be more pronounced in 

cassava grown at lower temperatures hence observations under glasshouse conditions 

are not directly comparable to virus and diseases situations in the field. Nevertheless, 

virus replication in TME 117 and in TMS 30572 was at similar levels and also symptoms 

were not considerably different. Hence the classification of TMS 30572 as a moderately 

resistant cultivar is not warranted. In contrast, for cassava cv. Albert, growing conditions 

had no influence on its virus status. The highly resistant cv. Albert was immune against 

ACMV and supported only a limited replication, rather maintenance of EACMV-UG, 

permitting only a limited systemic invasion of virus going along with mild symptoms. 

The differential assessment of DNA genomic components by qPCR revealed a striking 

difference between the viruses. The DNA-A to DNA-B ratios recorded for EACMV-UG 

were B>A while on ACMV, there was always a higher concentration of DNA-A compared 

to DNA-B. Symptom type and plant invasion (movement) are predominant features of 

DNA-B, which was studied intensively with plant infections induced by pseudo-

recombinant viruses (Hou & Gilbertson, 1996; Unseld et al., 2000). From these studies, 
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the increase in symptom severity coincided with accumulation of DNA-B genomic 

components while plants showing attenuated symptoms had reduced levels of DNA-B. 

High levels of virus accumulation and consequently more severe symptoms were 

considered as better adaptability of the virus to the host (Hou et al., 1998). Thus from 

this quantitative study, EACMV-UG appeared to be the better adapted virus than ACMV 

reaching far higher virus concentrations in all cultivars than what was recorded for 

ACMV. The increased DNA-B levels in EACMV-UG infections, indicated for a highly 

efficient invasion of the “adapted” host. The poor replication of EACMV-UG in cassava 

cv. Albert and the limited virus movement with mild symptom expression then is a 

characteristic of a “non adapted” host (Dawson & Hilf, 1992).  

In pseudo-recombinant virus studies, symptomless infections always coincided with 

lower levels of DNA-B accumulation thus mapping symptoms to DNA-B (Schaffer et al., 

1995; Vonarnim & Stanley, 1992). In this study, non symptomatic tissues had 

significantly lower concentrations of both DNA-A and DNA-B genome components. 

Asymmetric DNA-A and DNA-B regulation in pseudo-recombinant infections (Faria et al., 

1994) indicating for virus (Morris et al., 1991) and host encoded factors determining the 

disease phenotype were not found with ACMV and EACMV-UG infections in cassava. 

Therefore symptomless phases and recovery can be attributed to the ability of the host 

to, at least in phases, impair virus replication while a systemic virus invasion in 

asymptomatic leaves still occurs. In this study a considerable although quite variable 

level of virus in non symptomatic leaves was found and virus free leaves were only rarely 

found.   

From the mere comparison of virus accumulation, EACMV-UG was found in 

considerably higher concentrations in infected plants compared to ACMV. Therefore one 

could conclude that the spread of the CMD pandemics in East Africa which is associated 

with significant increases of dual ACMV/ EACMV-UG infections is because EACMV-UG 

acquisition by whiteflies is more efficient due to a higher number of virus particles in 
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infected plants. Consequently, EACMV-UG would become the predominant virus in 

areas previously affected only by ACMV. This hypothesis which is based on 

observations from single virus infections however cannot be substantiated with the 

observations made with natural and artificial mixed infections in cassava. In cassava 

mixed infections collected from western Congo (DRC) ACMV concentrations were 

recorded which were similar to single infections with lower virus load in non symptomatic 

tissues (Fig. 2.13 - 2.15). Interestingly, EACMV-UG DNA-A concentrations were also 

more or less unchanged while the concentration of EACMV-UG DNA-B was drastically 

reduced. This observation made with highly standardised qPCR systems is in sharp 

contrast to reports of synergism among ACMV and East African cassava mosaic 

Cameroon virus (EACMCV) where accumulation of EACMCV was very high for both 

DNA genome components with greatest increase of DNA-B compared to single 

EACMCV infections (Fondong et al., 2000). The study by Pita and co-workers (Pita et al., 

2001b), to describe viral keys determining the CMD epidemic in Uganda also showed a 

higher accumulation of both EACMV genomes in mixed infections thus indicating for 

strong synergism between ACMV and EACMV-UG. The higher level of EACMV-UG 

DNA-B accumulation over DNA-A was consistent with more severe symptoms and was 

postulated as a factor driving CMD epidemics and spread by whiteflies. The study 

presented here cannot confirm these earlier reports. ACMV concentrations in mixed 

infections appear to be unaffected by presence of EACMV-UG while the low 

accumulation of EACMV-UG DNA-B rather indicates for negative interference. As shown 

for TYLCV/ TYLCSV mixed infections (Morilla et al., 2004) increased symptoms in dual 

infections are not necessarily bound to higher DNA accumulation. The TYLCV/TYLCSV 

infections however are confined to the phloem and hence this might be limiting the 

accumulation of DNA. 

In earlier studies (Fondong et al., 2000; Pita et al., 2001b) tissues reflecting very severe 

symptoms of synergism among ACMV and EACMCV were compared. Those tissues 



Chapter 2 

60 

reflect ultimate, highly severe stages of infection with severely affected and malformed 

leaves (see Fondong et al., 2000; Fig. 1a). In fact cassava leaves from mixed infections 

in this study also showed very severe symptoms but samples for qPCR were not taken 

from these decline phases of the plant. During plant infections, the kinetics of ACMV and 

EACMV-UG however might change as was indicated by the graft inoculation 

experiments (Fig. 2.15). When natural virus infections in cassava were transmitted to 

TME 117 or TME 30572, the accumulation of ACMV occurred very fast, while EACMV-

UG was barely detected even until 7 weeks after inoculation. This might be because of 

lower amounts of DNA-B limiting virus movement which probably changes in acute and 

serious phases of plant infections. This however was not investigated in this study. 

Mixed ACMV/ EAMCV -UG infections were studied in the glasshouse under prevailing 

conditions which were similar for all viruses but do not reflect field situations. Thus 

EACMV-UG might under higher temperatures reach higher levels of virus accumulation. 

And furthermore, cassava under field conditions might show more or less pronounced 

virus symptoms and probably a more pronounced synergism phenotype. This study 

could not address this aspect. However, using qPCR it could be shown that a moderately 

resistant cassava genotype still sustains high levels of virus replication and thus might 

not be the best parent for resistance breeding. Furthermore while only a limited set of 

plants was subjected to quantitative virus analysis, methods are now developed to 

further quantify interactions between ACMV and EACMV-UG in natural infections of 

cassava.
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3. Investigations on the distribution and interaction of African 

cassava mosaic virus (ACMV) and East African cassava 

mosaic virus (EACMV) in Nicotiana benthamiana  

Abstract 

To study virus movement and spread in plants infected with geminiviruses, infectious 

clones of the begomoviruses African cassava mosaic virus and East African cassava 

mosaic virus were modified by insertion of the gene for green fluorescent protein (GFP) 

in place of the coat protein (CP) gene and alternatively, by replacing either the BV1 or 

BV2 genes on the DNA-B genomic components with GFP. AV2://GFP fusions and CP 

DNA-A mutant viruses failed to produce infections in Nicotiana benthamiana when 

inoculated with their cognate DNA-B and infectivity inherent to the parental begomovirus 

clones was lost. In N. benthamiana an initial GFP fluorescence emission was observed 

in epidermal cells inoculated with mutated viruses only. Weak systemic symptoms from 

infection with the AV2://GFP mutant virus was found in rare cases, however there was 

no GFP expression. Complementing mutant DNA-A or DNA-B clones with their 

respective wild type genomic components restored systemic infections however GFP 

mutants were not transreplicated to emit fluorescent signals. 

Similarly GFP mutants of EACMV-UG DNA-B were also not infectious and mixtures of 

dysfunctional BC1 or BV1 in DNA-B with wild type DNA-A did not result in viable virus. 

GFP expression was observed in patches either inoculated with a mutated BC1 gene or 

BV1 replaced with GFP. This GFP fluorescence probably arose from an initial replication 

from a functional DNA-A. From this study, it can be assumed that GFP expression from 

replicating cassava mosaic begomoviruses is not possible since labelling of DNA-A and 

DNA-B genome components of EACMV and ACMV with GFP resulted in loss of viability 

and function.  
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3.1 Introduction 

Cassava mosaic disease is a complex disease caused by nine different species of 

geminiviruses, within the genus Begomovirus of the family Geminiviridae (Patil & 

Fauquet, 2009). Geminiviruses are characterized by small geminate particles containing 

single stranded circular DNA molecules. Their genome is amplified in the nuclei of host 

cells by a rolling circle replication mechanism which utilizes dsDNA intermediates as 

templates for replication and, to generate mature ssDNA genomes. They also serve as 

templates for transcription during infection (Bisaro, 2006; Hanley-Bowdoin et al., 1999; 

Saunders et al., 1991). The genomes of geminiviruses are small and encode only few 

proteins whose open reading frames extend bi-directionally from an intergenic region. 

Therefore the coding regions are located on both strands, virion sense and 

complementary, of the ds and transcriptionally active intermediate DNA molecule. The 

circular DNA genomes of cassava infecting begomoviruses consist of two components, 

DNA-A and DNA-B, which are essential for infectivity in plants (Stanley & Townsend, 

1985; Vanitharani et al., 2005). Both molecules have cognate intergenic regions, also 

referred to as common region (Fig. 3.1).   

 

 

 
Figure 3.1: Genome organization of a bipartite begomovirus. The common region 

is highly conserved in the cognate DNA-A and DNA-B components of 
individual bipartite begomoviruses. It contains elements required for viral 
DNA replication and gene expression. CP, coat protein; MP, movement 
protein; NSP, nuclear shuttle protein; Ren, replication enhancer; Rep, 
replication associated protein; TrAP, transcriptional activator protein. Source: 
Mansoor et al., 2003 
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DNA-A has six genes: AC1 encodes a replication–associated protein (Rep) essential for 

viral DNA replication associated with host DNA polymerase; AC2 encodes a transcription 

activator protein (TrAP) controlling gene expression and silencing suppression; AC3 

encodes a replication enhancer protein (Ren); AV1 and AV2 encode the coat protein 

(CP) for encapsidation and a pre coat protein, respectively. The small protein AC4 which 

is found in some geminiviruses is involved in pathogenesis and RNA silencing 

suppression and together with Rep is implicated in cell cycle progression (Fondong et 

al., 2007). On DNA-B BV1 and BC1 genes (Fig. 3.1) encode a nuclear-shuttle protein 

(NSP) and movement protein (MP), respectively (Mansoor et al., 2003b; Vanitharani et 

al., 2005).  

In situ hybridization studies revealed tissue specificity of monopartite (Morilla et al., 2004; 

Rojas et al., 2001) and bipartite (Morra & Petty, 2000; Qin & Petty, 2001; Wege et al., 

2001) geminiviruses with DNA accumulation only found in nuclei of infected cells. Even 

co-infection with Cucumber mosaic virus (CMV) did not change this although an 

increased number of nuclei with higher amounts of Abutilon mosaic virus (AbMV) were 

found in Nicotiana benthamiana, tobacco and tomato (Wege & Siegmund, 2007). Co-

infection with CMV however released the phloem restriction of AbMV thus indicating for 

considerable synergistic effects also existing in co-infections of DNA and RNA viruses. In 

this, the CMV silencing suppressor gene 2b was implicated. In contrast to CMV, Tomato 

mosaic virus (ToMV) did not change tissue tropism but led to decreased titres of AbMV 

in co-infected plants, despite severe symptoms indicating for synergistic interactions 

(Pohl & Wege, 2007). This symptom synergism despite negative interference was 

explained by a simultaneous action of two viruses on different host pathways resulting in 

an overall enhanced host response. 

Cassava is a vegetatively propagated crop and thus virus diseases are common. Mosaic 

diseases caused by begomoviruses occur wherever this plant is grown in Sub-Sahara 

Africa and in India. Frequently multiple virus species are found in cassava and this leads 
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to more severe symptoms and often decline of the infected plant. One of the 

fundamental questions in virus synergism is, whether the spatial distribution of viruses, 

i.e. cell and tissue invasion, differs between single and mixed infections of geminiviruses. 

If synergism is a consequence of virus to virus and virus to host interaction it is 

interesting to uncover whether the virus cross talk acts on a cellular basis i.e. both 

viruses are invading the same cell or, is based on signal transduction between cells or 

tissues, i.e. when viruses do not enter into cells harbouring other viruses.   

This study attempts to visualize movement and spatial distribution of cassava mosaic 

geminiviruses in N. benthamiana. To directly follow cell and tissue invasion of the 

viruses, direct labelling of the viruses by incorporating the gene for green fluorescence 

(GFP) into the viral genomes was approached. Movement within the plant and tissue 

invasion should then be visualised by using confocal laser scanning microscopy 

monitoring the fluorescence signal (Wang et al., 1997; Wang et al., 1999). 

Cell-to-cell movement of geminiviruses in plants is facilitated by CP dependent spread of 

monopartite geminiviruses and CP independent movement of bipartite begomoviruses. 

The CP of the bipartite begomovirus ACMV is essential for encapsidation of the DNA 

components, for vector transmission (Briddon et al., 1990; Liu et al., 1997) and is 

implicated in movement including nuclear import and export and transport of the viral 

genome to the cell periphery (Unseld et al., 2001; Unseld et al., 2004). The CP is not 

essential for systemic infection in N. benthamiana (Stanley and Townsend, 1986; Ward 

et al., 1988). Hence the dispensability of a functional CP for virus movement presents 

the opportunity to replace sequences of this gene with that of the GFP gene and, to 

maintain vital viral functions, pathogenicity and movement, in planta. In this study the 

DNA-A of ACMV (isolate DRC6) and EACMV (isolate Ca123) were modified by replacing 

the CP gene with GFP. In an alternative strategy, the GFP gene was introduced into the 

DNA-B component of EACMV (isolate Ca055).   
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3.2 Materials and Methods 

3.2.1 Plants and Viruses 

Virus infections in the N. benthamiana were induced by inoculations with cloned virus 

genomes of East African cassava mosaic virus (EACMV isolate Ca123) DNA-A and an 

East African cassava mosaic virus (EACMV–UG, Uganda variant, isolate, Ca055) DNA-

B. Initially DNA-A of EACMV isolate 123 and EACMV-UG isolate Ca 055 were 

manipulated, however site directed mutagenesis (sdm) of Ca123 DNA-A to incorporate 

restriction sites for cloning was more successful hence EACMV Ca123 DNA-A was used 

throughout all DNA-A manipulations. Mixtures of genome components Ca123 DNA-A 

and Ca055 B clones were highly infectious to both cassava and N. benthamiana and 

pseudo-recombinant viruses lead to even more severe symptoms than the original 

homologous combinations. Manipulations of African cassava mosaic virus DNA-A an 

infectious ACMV clone generated from an isolate collected in the Democratic Republic of 

Congo (ACMV isolate DRC6) was used. Head-to-tail partial multimers of DNA-A genomic 

components and DNA-B genomic components in the binary vector pGreenII (John Innes 

Center, UK) were introduced by biolistic inoculation, essentially following protocols 

established in the Plant Virus laboratory (Ariyo et al., 2006). Systemic begomovirus 

infections were verified by PCR using DNA-A specific primers.  

 

3.2.2 Incorporating GFP into recombinant EACMV and ACMV DNA-A and DNA-B 

for localization studies 

The basis for generation of EACMV and ACMV chimeric DNA-A components were 

infectious virus clones comprising head-to-tail partial multimers of genomic components 

DNA-A and DNA-B used for resistance screening at the DSMZ Plant Virus Department. 

By site directed mutagenesis, a Sma I/Xma I site and a Sph I site were incorporated into 
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the CP gene for removal of CP sequences and to facilitate directional cloning of foreign 

gene sequences into the replacement vector (Figure 3.2).  

 

 
Figure 3.2: EACMV DNA-A vector pSN29_pG EACMV [Ca123]-A_R6. A partial head-

to-tail dimer EACMV [123] DNA-A in pGreen II carrying a duplicated, redundant 
common region fragment (ORI) was modified by site directed mutagenesis to 
introduce restriction sites for directional cloning of GFP gene sequences.  

 

The constructs were subcloned into the backbone of the binary vector pGreen II 

(http://www.pgreen.ac.uk) for agro-inoculations of plants. All clones were functionally 

verified by agro-inoculation to introduce plant infections in N. benthamiana and by 

biolistic delivery in cassava (Winter, unpublished).  

Head-to-tail partial multimers of ACMV genomic components DNA-A and DNA-B were 

similarly developed in pGreen II vectors. Restriction sites were introduced in the CP 

sequences of ACMV DNA-A by replacing parts of the CP with a synthesized gene 

fragment carrying Kpn I and Pst I and Hind III sites at positions appropriate for directional 

cloning of GFP (Figure.3.6). For transient gene expression and as a control, GFP was 

cloned under the control of an enhanced Cauliflower mosaic virus (CaMV) 35S promoter 

in pGreenII. Gene constructions, manipulations and recombinant DNA techniques were 

performed following established laboratory protocols (Sambrook & Russel, 2001). All 

restriction endonucleases and DNA-modifying enzymes were used according to the 

manufacturer’s instructions. 
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A GFP reporter gene, the smRs-GFP gene (Davis & Vierstra, 1998) with improved 

fluorescence characteristics and protein solubility was found best suited for transient 

studies. This smRs-GFP was amplified by PCR from a source plasmid carrying this 

reporter gene in a different context (Dietrich & Maiss, 2003). 

  

3.2.2.1 GFP labelling of EACMV DNA-A 

To construct all recombinant labelled DNA-A constructs of EACMV-Ca123, template 

plasmid pSn29_EACMV[Ca123]DNA-A_R6 (Fig. 3.2) was used.  

For construction of pSn58_EACMV[Ca123]DNA-A[∆CPAV2://GFP] (Fig. 3.3), to 

generate a carboxyterminal GFP fusion to AV2, a Pst I restriction site was introduced by 

sdm upstream the AV2 stop codon. Inverse amplification using Phusion high fidelity DNA 

polymerase (Finnzymes) with phosphorylated forward R6_dCPAV2://GFP+:  

5’-P*-TTACTGCAGtGCATGCATTTCTATGATGCAGTG-3’ and reverse primers 

R6_dCPAV2://GFP-: 5’-P*-GACGTTACTGCAGCCCTTCGGGACATC-3’ reconstituted 

the entire plasmid, excluded the CP and added a CAG codon at a position upstream the 

AV2 stop codon. After re-ligation of the PCR product the Pst I site was reconstituted and 

the resulting construct was then digested with Pst I and Sph I to accept GFP. The smRs 

GFP gene was then inserted to result in pSN58 after amplification with primers 

R6_GFPAV2dCP+: 5`-TAATCTGCAGTAAAGGAGAAGAACTTTTCACTGG-3`and 

R6_GFPAV2dCP-: 5`-TATTAGCATGCTTTTGTATAGTTCATCCATGCC-3` adding Pst I 

and Sph I sites respectively. 
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Figure 3.3: pSn58_EACMV [Ca123]-A [∆CPAV2://GFP] (6686 bp). The smRs GFP is 

inserted as a translational fusion to the precoat protein AV2 with the CP 
entirely replaced by GFP  

 

In another strategy smRs GFP was inserted in an AV2 and CP deletion mutant to reach 

pSn92_EACMV[Ca123]DNA-A[∆CP∆AV2GFP] (Fig. 3.4). The template plasmid 

pSn29_EACMV[Ca123]DNA-A_R6 was restricted with Xma I and Sph I to release the 

CP fragment which was subsequently replaced by GFP. The resulting intermediate 

construct was used as template for reverse amplification using phosphorylated forward 

R6_dCPdAV2+: 5’-P*-ATGTCGAAGCGACCCGGGGAACTTTTC-3’ and reverse primer 

R6_dCPdAV2-: P*-GTTGACGCGCTCTACTACTTCGCGACGAAGTAT resulting in a 

deleted AV2 and CP, however leaving the AV2 start codon intact.  

 

 

 
 
Figure 3.4: pSn92_EACMV[Ca123]DNA-A[∆CP∆AV2GFP]. The smRs GFP is 

inserted into the DNA-A genome component replacing AV2 and CP and 
utilising the AV2 start consensus.  

 

In pSn93_EACMV[Ca123]DNA-A[AV2∆CPGFP] (Fig. 3.5) the CP was replaced with 

GFP and keeping the start codon of CP for GFP translation initiation while AV2 was left 

truncated.  
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A 734 bp Sma I/ Sph I fragment of pSN29 was replaced with a 725 bp recombinant GFP 

construct which was amplified using 

SN_R6GFPnew+ : 5’-GGATCCCGGGGTTAGCAAGGGCGA-3’ and  

SN_R6GFPnew- : 5’-GCATGCGCTTGTACAGCTCGTCCATGC-3’, to generate the 

respective restrictions sites for directional cloning.   

 

 
Figure 3.5: pSn93_EACMV[Ca123]DNA-A[AV2∆CPGFP]. The smRs GFP is inserted 

into the DNA-A genome component utilising the CP start codon and truncating 
AV2.  

 

3.2.2.2 GFP labelling of ACMV DNA-A 

To construct GFP labelled DNA-A of ACMV, a multimeric cloned DNA-A of an ACMV 

infectious virus (isolate DRC 6) was used as template. Multiple restriction sites in the 

ACMV DNA-A genome presented an impediment to follow classical cloning and 

subcloning strategies. Hence an artificial de novo synthesised gene was inserted that 

carried restriction recognition sites and partially reconstituted the CP. The resulting 

plasmid, pSn59_pGACMV[CaDRC6]DNA-A_cloning (Figure 3.6), was used to generate 

further recombinant ACMV constructs by introducing GFP using the appropriate 

restriction sites. 
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Figure 3.6: pSn59_ pG ACMV [CaDRC6]-A cloning (6116 bp). The artificial gene 

carries Kpn I, Pst I and Hind III sites to facilitate cloning.  

 

For construction of the recombinant plasmid pSn60_ACMV[CaDRC6]DNA-

A[AV2://GFP∆CP], smRs GFP was introduced into the Pst I/ Hind III sites of pSN59 to 

generate a translational fusion with AV2 and truncating CP. To generate 

pSn61_ACMV[CaDRC6]DNA-A[AV2∆CPGFP], GFP was introduced via Kpn I/ Hind III 

sites to utilize the start of CP and truncating AV2.  

pSn62_ACMV [CaDRC6]DNA-A[∆AV2∆CPGFP] then carried a GFP introduced via the 

Bam HI / Hind III restriction sites deleting AV2 and CP but using the AV2 translational 

context as start.  



Materials and Methods 

71 

 

 
 
Figure 3.7: GFP constructs in vectors containing ACMV DNA-A genomic 

components. pSn60_ACMV [CaDRC6]-A [AV2://GFP∆CP], as translational 
fusion to AV2; pSn61_ACMV [CaDRC6]-A [AV2∆CPGFP], with GFP translation 
from the start of CP and, pSn62_ACMV [CaDRC6]-A [∆AV2∆CPGFP] utilising 
the start codon of AV2 and truncating the CP. 

 

3.2.2.3 GFP labelling of EACMV-UG DNA-B  

For construction of recombinant labelled DNA-B constructs, a partial multimeric DNA-B 

of an infectious EACMV-UG (isolate Ca055) clone, pSn001_EACMV[Ca055]DNA-B_1.7 

was used as template.  

 

 
 
Figure 3.8: Partial head-to-tail dimer pSn001_pG EACMV [Ca055]-B _1.7 carrying a 

duplicated, BC1 fragment redundant fragment (BC1)  
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The template plasmid was digested with Bsp 120I to eliminate the partial repeat 

comprising BC1 then treated with Klenow fragment to fill in before ligation to generate an 

intermediate clone. By sdm, BC1 and BV2 respectively were modified, to introduce the 

restriction sites Mlu I/Nhe I in a BC1 construct and the restriction sites Mlu I/Nhe I in BV1 

of another intermediate clone. The smRs-GFP amplified with primers carrying 

appropriate restriction sites was subsequently introduced replacing BC1 or BV1 

respectively. Finally the Bsp 120I redundant BC1 fragment was subsequently cloned into 

the smRs GFP plasmids to reconstruct the partial 1.7 head-to-tail multimer of EACMV 

DNA-B (Figure 3.9). All the intermediates and end constructs were confirmed by 

sequencing analysis using the service of MWG.  

 

 

 
 
Figure 3.9: GFP constructs in vectors containing EACMV DNA-B genomic 

components. pH1890_EACMV [Ca055]-B, a monomeric full length clone of 
EACMV [Ca055] DNA-B an intermediate clone; pSn67_EACMV [Ca055]-B 
[BV1/GFP], BV1 is replaced by smRs GFP; pSn68_EACMV [Ca055]-B 
[BC1/GFP], BC1 is replaced with GFP. 

 

3.2.3 Biolistic inoculation of cloned ACMV and EACMV genomes to N. 

benthamiana plants  

Wild type and mutated DNA-A components of EACMV were mixed in separate reactions 

with equal amounts of DNA-B for biolistic inoculation and to initiate systemic virus 
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infections in N. benthamiana. Plants raised under standard greenhouse conditions 16/8 h 

light/dark photoperiod were inoculated at the two to three leaf stage by particle 

bombardment (250 psi) with a hand held device, the biolistic PDS-1000/He system, 

(BioRad, USA) as described by Ariyo et al., 2006. Similarly N. benthamiana plants were 

biolistically inoculated with mixtures of DNA-A and DNA-B of wild type and mutated 

ACMV isolate DRC6 for inoculation control. For monitoring transient expression, a binary 

vector construct carrying smRs-GFP under the control of an enhanced 35S promoter 

(pG-d35S_smRs-GFP) was used as a control and likewise inoculated on leaves of N. 

benthamiana. Wild type Ca123 DNA-A and recombinant GFP constructs of DNA-B were 

also introduced into N. benthamiana to verify viral infectivity and GFP fluorescence. 

 

3.2.4 Inoculation of cloned ACMV and EACMV genomes to N. benthamiana plants 

by agro-infiltration 

For transient expression, smRs-GFP in the binary expression vector pGreenII was 

transformed into A. tumefaciens strain LBA 4404 (Hoekema et al., 1983) harbouring a 

pSoup plasmid (Hellens et al., 2000). Similarly all wild type and mutated DNA-A and 

DNA-B constructs of EACMV and ACMV were also transformed in LBA 4404. 

For agroinfiltration patch assay and viral infectious studies, A. tumefaciens strains 

harbouring wild type DNA and the GFP labelled constructs on the cognate DNA-B were 

infiltrated onto the fully expanded leaves of about 28-35 days old N. benthamiana plants. 

Prior to agroinfiltration, each A. tumefaciens strain was grown to an optical density A 600 

nm = 1 and subsequently equal volumes of DNA-A and DNA-B harbouring bacteria were 

mixed. A 1 ml syringe (no needle) was pressed onto the underside of a leaf and arrested 

by counter-pressure on the other side. Bacterial suspensions were then exerted to 

infiltrate 3 to 4 leaves. Thus treated plants were kept in the greenhouse at 25 oC with a 

16-h photoperiod and monitored for development of GFP fluorescence. 
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3.2.5 GFP Imaging 

GFP fluorescence was monitored using a confocal laser-scanning microscope (CLSM). 

Leaf samples were prepared from N. benthamiana plants inoculated with a recombinant 

labelled construct and placed in water under glass cover slips. Confocal imaging of GFP 

labelled viruses in primary inoculated and systemic leaves was performed with the CLSM 

(Leica, TCS SP2) equipped with a 488 nm argon laser and with fluorescence detected at 

500 to 600 nm. Leica confocal software was used to merge the images from the different 

channels. The specimen were examined using a Leica 10x and 63x dry objectives. 

 

3.2.6 Verification of virus infections 

Total DNA was extracted from infiltrated and leaves following the treated ones. Using the 

Qiagen plant DNA extraction kit (Qiagen, Germany). Aliquots of plant DNA were 

subjected to PCR for amplification and detection of DNA-A and DNA-B genome 

sequences. A standard PCR profile was followed using a generic Taq polymerase 

(Invitrogen,USA). Detection of ACMV and EACMV was with series of primers described 

earlier (Ariyo et al., 2005; Pita et al., 2001a) and using PCR conditions as specified by 

the authors. 

 

 

3.3 Results 

3.3.1 Inoculation of GFP labelled EACMV/ACMV DNA-A genome components with 

cognate DNA-B 

When full length, multimeric infectious clones of wild type DNA-A mixed with DNA-B 

were introduced by particle bombardment into N. benthamiana, typical leaf curling 

symptoms of begomovirus infections appeared 18-21 days after inoculation. Similarly, 

multimeric clones of DNA-A and DNA-B of ACMV isolate DRC6 were highly infectious 
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and caused severe systemic infections that became visible already 12-14 days post 

inoculation (dpi). Infections were verified by PCR to detect DNA-A or DNA-B of ACMV 

and EACMV.  

DNA-A components of EACMV-GFP mutants were mixed with cognate DNA-B and 

introduced by particle bombardment or by agroinfiltration into N. benthamiana plants. 

None of the N. benthamiana plants inoculated with GFP replacement mutants developed 

symptoms of EACMV infections. When recombinant GFP constructs were 

complemented with wild type DNA-A, few plants developed systemic infections but GFP 

fluorescence was not detected. PCR amplification with DNA-A and DNA-B specific 

primers confirmed the presence of recombinant virus DNA but only in inoculated leaves 

(Fig. 3.10). 

 

 

Figure 3.10: PCR amplified fragments from N. benthamiana plants agroinoculated 
with GFP DNA-A replacement mutants and wild type EACMV. DNA-A specific 
PCR (A); PCR for detection of DNA-B (B). 

Lane 1, EA (inf); Lane 2, EA (sys); Lane 3, EA+EB (inf); Lane 4, EA+EB (sys) 
symptomatic plant; Lane 5, EA+EB (inf); Lane 6, EA+EB (sys) non-symptomatic 
plant; Lane 7, pSn93 (inf); Lane 8, pSn93 (sys); Lane 9&11, pSn93+EB (inf); Lane 
10&12, pSn93+EB (sys); Lane 13, pSn93+EA+EB (inf); Lane 14, pSn93+EA+EB 
(sys); Lane 15, pSn58 (inf); Lane16, pSn58 (sys); Lane 17, pSn58+EB (inf); Lane 
18, pSn58+EB (sys); Lane 19, pSn58+EA+EB (inf); Lane 20, pSn58+EA+EB (sys); 
Lane 21, positive vector control; Lane 22, mock inoculated plant; M, λ-DNA digested 
with Pst I. EA, pG_EACMV[Ca123]DNA-A; EB, pG_EACMV[Ca055]DNA-B; pSn93, 
EACMV[Ca123]DNA-A[AV2∆CPGFP]; pSn58, EACMV[Ca123]DNA-
A[∆CPAV2://GFP]. 

inf= infiltrated leaf samples; sys= systemic leaf samples 
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Similarly, in plants infiltrated with ACMV DNA-A GFP mutants, virus DNA was only 

detected in inoculated tissues (Figure 3.11, lane 1,7,13) while in leaves following the 

treated ones, DNA was not detected (Figure 3.11, lane 2, 8,14). Only when mutants 

were complemented with DNA genomic components reflecting wild type DNA (Figure 

3.11, lane 3, 4, 9-12) DNA was found in leaves above the inoculated ones. This was a 

confirmation however for infections initiated by wild type virus. Since fluorescence was 

not restored in systemic virus infections, trans-complementation cannot be assumed.  

 

 
 
Figure 3.11:PCR amplified fragments from N. benthamiana plants agroinoculated 

with recombinant and wild type ACMV. (A) DNA-A specific PCR (B) DNA-B 
specific PCR.  

Lane 1, pSn59 (inf); Lane 2, pSn59 (sys); Lane 3, pSn59+DB (inf); Lane 4, 
pSn59+DB (sys); Lane 5, pSn59+DA+DB (inf); Lane 6, pSn59+DA+DB (sys); Lane 
7, pSn60 (inf); Lane 8= pSn60 (sys); Lane 9, pSn60+DB (inf); Lane 10, pSn60+DB 
(sys); Lane 11, pSn60+DA+DB (inf); Lane 12, pSn60+DA+DB (sys); Lane 13, 
pSn61 (inf); Lane 14, pSN61 (sys); Lane15, pSn61DA+DB (inf); Lane 16, 
pSn61+DB (sys); Lane 17, pSn61+DA+DB (inf); Lane 18, pSn61+DA+DB (sys); 
Lane 19, pSn62 (inf); Lane 20, pSn62 (sys); Lane 21, pSn62+DB (inf); Lane 22, 
pSn62+DB (sys); Lane 23, pSn62+DA+DB (inf leaf); Lane 24, pSn62+DA+DB (sys); 
Lane 25, DA+DB (inf); Lane 26, DA+DB (sys); Lane 27, mock inoculated plant; M, 
λ-DNA digested with Pst I. DA, pG_ACMV[CaDRC6]DNA-A; DB, 
pG_ACMV[CaDRC6]DNA-B; pSn59, ACMV[CaDRC6]DNA-A_cloning; pSn60,  
ACMV[CaDRC6]DNA-A[AV2://GFP∆CP]; pSn61,  ACMV[CaDRC6]DNA-
A[AV2∆CPGFP]; pSn62, ACMV[CaDRC6]DNA-A[∆AV2∆CPGFP]; inf, infiltrated leaf 
samples; sys, systemic leaf samples. 

 

Only in case of inoculations with pSN58, a multimeric DNA-A construct carrying a 

carboxy-terminal AV2://GFP fusion (Figure 3.3), GFP fluorescence was detectable 48 

hours post inoculation (hpi) but in inoculated leaves only (Figure 3.14 C&D). GFP mainly 
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accumulated outside of the nucleus. Discrete GFP spots were regularly detected within 

the cells and in most cases were associated with the cell periphery indicating a possible 

plasmodesmata association of the AV2//GFP fusion. But this signal was found in few 

cells of inoculated leaves only. 

Inoculations of ACMV DNA-A GFP replacement mutants in combination with wild type 

DNA-B did not result in virus infections and only a weak GFP fluorescence was detected 

in cells of agro-infiltrated tissues. In one case (1/ 30) symptoms developed in a plant 

infiltrated with pSn60_ACMV[CaDRC6]DNA-A[AV2://GFP∆CP]. The appearance of 

symptoms was late and weak compared to wild type virus infections (Figure 3.12). In this 

case, GFP fluorescence was located exclusively in the infiltrated leaves but here it was 

detected until 19 dpi (Figure 3.14). 

 

 

 
Figure 3.12: Cassava mosaic disease symptoms shown on plants agroinoculated 

with mutant DNA-A and DNA-B clones of ACMV (A,B) and EACMV (D,E). A, B, 
pSn60_ACMV[CaDRC6]DNA-A[AV2://GFP∆CP] mixed with cognate wild type 
DNA-B; C, pSN60 mixed with wild type EACMV DNA-A and DNA-B; D, E, 
pSn68_EACMV[Ca055]-B[BC1/GFP] mixed with cognate DNA-A; F, infection 
with wild type EACMV DNA-A and DNA-B. 
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3.3.2 Inoculation of GFP labelled EACMV/ACMV DNA-B genome components with 

cognate DNA-A 

Since GFP replacement DNA-A mutants of EACMV and ACMV were not infectious in N. 

benthamiana hence did not result in systemic virus infections, GFP was also introduced 

into DNA-B for infectivity studies. Also in these cases, agroinfiltration of chimeric BV1 

DNA-B components mixed with cognate DNA-A, did not result in symptoms of virus 

infections. However, when DNA-B was complemented with the functional EACMV DNA-

B (pSn001), all inoculated plants developed systemic infections. Nevertheless GFP 

fluorescence remained confined to cells in/ around the infiltrated patches (Fig. 3.14 E). 

In agroinfection studies with pSn68_EACMV [Ca055]-B [BC1/GFP], presence of virus 

was confirmed by PCR in stems, leaves and petioles of a systemically infected plant by 

EACMV DNA-B specific PCR (Fig. 3.12 and Fig. 3.13, lane 13–16). However again, this 

was in one plant only, the experiment could not be repeated and furthermore plants 

failed to show any EACMV symptoms. GFP fluorescence was found only in infiltrated 

leaves and here until 18 dpi.  

 

 

Figure 3.13: Detection of EACMV DNA-B in N. benthamiana plants agroinoculated 
with recombinant GFP replacement DNA-B mutants and cognate DNA-A. 

Lane 1,4,7, EA+EB+pSn68 (systemic leaf samples); Lane 2,5,8, EA+EB+pSn68 
(petiole samples); Lane 3,6,9, EA+EB+pSn68 (stem samples); Lane 10,13&16, 
EA+pSn68 (systemic leaf samples); Lane 11&14, EA+pSn68 (petiole samples); 
Lane 12&15, EA+pSn68 (stem samples); Lane 17, EA + EB; Lane 18,  mock 
inoculated plant; M, λ-DNA digested with Pst I. EA, pG_EACMV[Ca123]DNA-A; B, 
pG_EACMV[Ca055]DNA-B; PSn68, EACMV [Ca055]-B_BC1/GFP. 

 



Results 

79 

3.3.3 GFP expression in N. benthamiana plants agroinoculated with recombinant 

GFP DNA-A and DNA-B clones  

Transient expression of GFP in N. benthamiana plants was studied by inoculation of 

GPF replacement constructs using as a control a GFP construct, pG-d35S_smRs-GFP 

under the control of a duplicate CaMV 35S promoter. Fluorescent signals for expression 

control was observed in CLSM approximately 48-hrs post inoculation. GFP fluorescence 

was restricted to cells of infiltrated patches only (Fig. 3.14 A). 

 

 
Figure 3.14: Confocal laser scanning microscope images of epidermal cells of N. 

benthamiana bombarded with various African and East African cassava 
mosaic virus GFP constructs.  

A, Transient expression of smRs-GFP in cells bombarded with GFP in a binary 
vector under the control of CaMV 35S, 48 hours post bombardment (hpb); B, GFP 
fluorescence in cell bombarded with pSn58_EACMV [Ca123]-A [∆CPAV2://GFP]  
13dpb; C and D, GFP fluorescence 15 dpb showing GFP fluorescence 
predominantly accumulating outside the nucleus as GFP patches and discrete 
spots; E, sub cellular localization of transiently expressed pSn68_EACMV [Ca055]-
B [BC1/GFP] mixed with wild type  EACMV DNA-A and DNA-B 15dpi; F, cellular 
localization of transiently expressed pSn68_EACMV [Ca055]-B [BC1/GFP] mixed 
with wild type EACMV DNA-A in epidermal cells of inoculated leaves, 7dpi.  
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None of the GFP replacement DNA-A or DNA-B mutants when co-inoculated with its 

cognate DNA resulted in systemic plant infections. However weak symptoms were 

observed and viral DNA was confirmed by PCR in few plants infiltrated with 

pSn60_ACMV[CaDRC6]DNA-A[AV2://GFP∆CP] or with pSn68_EACMV [Ca055]-B 

[BC1/GFP]. In those plants however GFP fluorescence was not detected spreading 

systemically.  

When GFP in pSN 58 and pSN 68 was bombarded onto plant tissues, fluorescence was 

found scattered and in single cells only (Figure 3.14). For all time points examined GFP 

remained confined within the single epidermal cells and there was no indication for 

spread of the GFP signal to neighbouring cells. Nevertheless, this signal persisted for up 

to 15 dpi (Figure 3.14 D) but during the observation period no further cells started to 

show fluorescence indicating for cell-to-cell transport and there were no symptoms of 

virus infection indicating for virus movement.       

3.4 Discussion  

In this study it was attempted to follow the infection processes of cassava 

begomoviruses in single and mixed infected N. benthamiana, to clarify the tissue tropism 

for EACMV and ACMV and to determine whether the viruses are capable of invading the 

same cells. This should shed light on the synergism phenomena observed when the two 

distinct virus species are invading the same plant (Fondong et al., 2000; Pita et al., 

2001b). In earlier studies with cassava viruses, ACMV was found almost in all tissue 

types (Wege et al., 2001) and hence not restricted to the phloem cells in N. benthamiana 

while Indian cassava mosaic virus was restricted to the phloem (Rothenstein et al., 

2007). For EACMV this was not yet determined and it was therefore of great interest to 

reveal the tissue tropism of EACMV in N. benthamiana and furthermore to dissect this in 

mixed EACMV/ ACMV infections. From such studies one could expect some insights into 

the level at which the viruses would interact. 
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For bipartite begomoviruses, cell to cell transport is provided by NSP and MP genes on 

DNA-B while a functional CP is not required for systemic infections (Gardiner et al., 

1988; Ingham et al., 1995; Padidam et al., 1995). Nevertheless dysfunctional CP result in 

reduced levels of ssDNA accumulation in infected plants (Briddon et al., 1989; 

Lazarowitz et al., 1989; Sunter et al., 1990). The dispensability of a functional CP was 

utilised in earlier studies, to construct infectious Bean dwarf mosaic virus (BDMV) clones 

containing a modified GFP in place of the CP by maintaining the size restrictions to form 

viable virus (Sudarshana et al., 1998). Using fluorescence analysis, cell-to-cell and long 

distance movement of BDMV was followed to reveal details of the infection process in 

Phaseolus vulgaris. The expression of the mGFP4 gene from DNA-A was stable through 

the life cycle of the bean plant hence providing evidence that this GFP gene was 

efficiently expressed from the CP promoter and stably maintained in the BDMV genome. 

Hence, this study, using GFP as a non invasive reporter of viral infection in plant tissues, 

presented the motivation to study cassava begomoviruses in N. benthamiana. 

As with BDMV the smRs GFP gene introduced into DNA-A would upon complementation 

with their cognate DNA-B component reconstitutes to an infectious bipartite virus which 

expresses smRs-GFP during replication and can be followed by emission of a 

fluorescent signal. In preliminary experiments, essentially following the strategy of 

Sudarshana et al. (1998), the infectivity of EACMV ∆CP mutants was not successfully 

restored. Hence, in addition to the CP replacement mutants, several alternative routes 

were pursued.  

GFP was introduced into the DNA-A from infectious EACMV or ACMV clones either by 

utilising the AV2 start and entirely replacing AV2 and CP or, as translational fusion to 

AV2 replacing CP only. In a study to reveal tissue tropism of ICMV Rothenstein et al. 

(2007) used AV2://GFP fusion constructs to show association of fluorescence with the 

vascular system as discrete fluorescent foci while GFP expression under the control of 
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the coat protein promoter resulted in signals evenly distributed in the vascular system of 

leaf tissues. 

All GFP constructs generated during this study failed to induce begomovirus infections in 

N. benthamiana. While in the GFP recombinant BDMV DNA-A genome viability was not 

compromised and pathogenicity only slightly affected (Sudarshana et al., 1998), viability 

was completely lost in EACMV and ACMV constructs. The weak systemic symptoms 

found in rare cases in N. benthamiana (pSn60_ACMV[CaDRC6]DNA-A[AV2://GFP∆CP]) 

were due to presence of virus but GFP expression was not attributed to this. Since this 

observation was not reproducible it has to be considered artefactual and rather an effect 

of the inoculation procedure that may have resulted in efficient delivery of virus DNA 

deep in cells of the vascular system. Virus spread then would be a result of diversion 

rather than active movement.   

The parental infectious begomovirus clones represented EACMV-UG and ACMV viruses 

that are competent to cause infections in N. benthamiana and in cassava similar to wild 

type infections with no difference in pathogenicity. These infectious virus clones have 

been very efficiently used to screen for resistance in cassava germplasm (Ariyo et al., 

2006). In addition, DNA-A CP replacement vectors were initially designed for virus 

induced gene silencing (VIGS) to study gene function in cassava (Fofana et al., 2004; 

Muangsan et al., 2004; Pandey et al., 2009; Robertson, 2004). A number of gene 

constructs including endogenous genes (Mg-chelatase) and artificial miRNA genes were 

efficiently expressed using recombinant EACMV (pSN29_pG EACMV [Ca123]-A_DNA-

A) or ACMV (pSn59_ pG ACMV [CaDRC6]-A cloning) DNA-A in which CP was partially 

or entirely replaced by the foreign gene (Winter S, unpublished). Hence loss of function 

cannot be explained by either size constraints (Etessami et al., 1989; Gilbertson et al., 

2003) which would result in restoration of normal genome size or loss of infectivity or 

loss of pathogenicity. 
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Attenuated symptoms were found in N. benthamiana infected with ICMV GFP 

recombinant DNA-A constructs (Rothenstein et al., 2007) and in BDMV-GFP infected 

beans (Sudarshana et al., 1998). It was also evident from VIGS studies on cassava 

(Winter S, unpublished) where recombinant viruses carrying certain foreign gene 

sequences caused significantly weaker symptoms compared to symptoms of infections 

induced by the parent infectious virus clones. This however was less pronounced in N. 

benthamiana than in cassava. Lack of movement of chimeric ACMV and EACMV with 

truncated and deleted AV2 could also be explained by a function assigned to AV2 to 

support efficient virus movement in plants (Padidam et al., 1996).  

A suggested role of CP in the infection process of bipartite geminiviruses (Pooma et al., 

1996), is probably minimal for EACMV and ACMV since VIGS vectors derived from 

parental clones efficiently replicated and remained stable in cassava and even more so 

in N. benthamiana. The complete loss of infectivity inherent to recombinant GFP clones 

carrying translational fusions or free GFP translated from AV1 or CP start codons, 

cannot be explained.         

In this study, GFP fluorescence was observed in epidermal cells of N. benthamiana 

leaves inoculated with recombinant EACMV and ACMV DNA (Figure 3.14) but virus 

infections were not associated with this GFP fluorescence. GFP expression remained 

localised to few cells only albeit was stable and visible in CLSM for an extended time 

period (15 dpi). Even when labelled mutant constructs were complemented with 

infectious DNA-A and DNA-B clones of respective wild type viruses, systemic infections 

developed. But GFP fluorescence remained unaffected indicating that transreplication of 

mutant DNA-A did not occur. The GFP fluorescence observed in epidermal cells of N. 

benthamiana bombarded leave tissues observed over time did not change and similar to 

the GFP transient expression control, there was no spread of the signal to neighbouring, 

adjacent cells. It therefore can be speculated that the GFP fluorescence observed on 

bombarded tissues originated from an initial transcription event which was not followed 
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by even a limited transcription as a consequence of viral replication. Replication of 

recombinant ICMV expressing GFP and the association of GFP fluorescence with 

replicating virus was also not convincingly demonstrated by Rothenstein et al. (2007). 

Hence with BDMV representing an exception, it can be assumed that GFP expression 

from a replicating begomovirus is at most very inefficient hence alternative routes need 

to be pursued to study virus movement and tissue affiliation. 

In addition to GFP recombinant DNA-A clones, DNA-B mutants with GFP replacing 

either BC 1 or BV1 were generated. It was not assumed that DNA-B constructs would 

result in infectious viruses when co-inoculated with cognate DNA-A, however it was 

expected that functional DNA-A will transreplicate DNA-B. Since DNA-A components of 

certain bipartite geminiviruses are capable of systemically infecting plants when 

delivered by agroinoculation (Evans & Jeske, 1993; Klinkenberg & Stanley, 1990), 

dysfunctional BC1 or BV1 in DNA-B when transreplicated from cognate DNA-A would 

probably still support expression of GFP from either start. However, this was never 

observed and weak fluorescent signals (Figure 3.14, F) were most likely artefactual and 

most likely a result of transient expression of GFP in epidermal cells. 

Maintenance of genome size is highly significant for replication and movement of 

geminiviruses (Bisaro, 1994; Gilbertson et al., 2003). Although EACMV and ACMV DNA-

A CP replacement mutants were successfully used as VIGS vectors to express foreign 

gene sequences up to 800 nt in size (Winter S, unpublished), the increased genetic load 

in plant viruses carrying a fluorescence tag expressed as free or translationally fused 

protein might severely limit local as well as systemic spread (Toth et al., 2002). A newly 

developed fluorescent tag reporter, LOV (Light, oxygen or voltage sensing), reporter 

might overcome the limitations of using GFP for monitoring plant virus infections 

(Chapman et al., 2008). The coding sequence of iLOV (a domain of LOV, reporter of 

subcellular protein localization in both plants and mammalian cells) is only approximately 
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300 bp in size and has been successfully used as a superior reporter to GFP for 

monitoring local and systemic infections of plant RNA viruses.  

In summary, this study has shown that labelling of DNA-A or DNA-B of EACMV and 

ACMV with GFP inevitably results in loss of function of the constructs. It seems likely that 

the translatable GFP has a major impact on the infectivity/stability/fitness of the virus 

constructs. Despite the beauty of using non destructive methods to follow virus infections 

in planta, it also appears that even when mastered, such major interventions have 

serious impacts on the overall performance of viruses and create artificial systems which 

counterbalance advantages of real time in situ studies. 
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4. Studies on the role of AC2 and AC4 genes during 

pathogenesis of African cassava mosaic virus (ACMV) and 

East African cassava mosaic virus (EACMV-UG) in 

Nicotiana benthamiana 

Abstract 

To study the role of AC2 and AC4 genes in pathogenesis of ACMV and EACMV, the viral 

genes were isolated and introduced for gene expression into transgenic N. benthamiana 

plants. Transgenic plants harbouring AC2 or AC4 genes showed a variety of phenotypic 

alterations which were most pronounced with ACMV AC2 transgenes. Transient 

expression of AC2 and AC4 genes driven by a Cassava vein mosaic virus 35S promoter 

and subsequent infection of wild type plants showed a sharp increase of ACMV in plants 

infiltrated with either ACMV or EACMV AC2. In contrast, challenge inoculations of AC2 

transgenic N. benthamiana did not resolve any differences to wild type infections. An 

Agrobacterium based leaf infiltration assay was approached to reveal AC2 and AC4 

suppression activity on early stages of post-transcriptional gene silencing. In this study, 

while PTGS effects were confirmed for silencing suppressor genes, HcPro of Plum pox 

virus and P15 of Johnsongrass chlorotic stripe virus, in none of the approaches, an 

activity of AC2 was recorded. Hence it can be assumed that the activity of ACMV or 

EACMV AC2 to suppress post-transcriptional gene silencing (PTGS) is weak, while for 

AC4 silencing suppression was not confirmed in this study. Infection experiments with 

mutant viruses carrying dysfunctional AC2 and AC4 genes showed that AC4 is 

dispensable for plant infections while AC2 mutations are lethal and AC2 function cannot 

be complemented.      
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4.1 Introduction 

Plants have adopted a natural defence mechanism against viral pathogens, a pathway 

called post-transcriptional gene silencing (PTGS) (Baulcombe, 1999; Baulcombe, 1996; 

English et al., 1996). PTGS or RNA interference (RNAi), or RNA silencing is an active 

mechanism in genetic regulation of development processes and of gene expression in 

eukaryotes (Baulcombe, 2005). Likewise it is a protective mechanism for virus defense 

and in particular effective against RNA viruses, the most important and common 

pathogens of plants. „RNA silencing “is a process, which consists of 3 key reactions 

which can differ in mechanism and factors (Voinnet, 2008): 

I. Production of double stranded RNA (dsRNA), which represents an 

ubiquitous initiating cause for RNA silencing;  

II. RNAse III (Dicer) catalyzed processing into small single stranded RNA 

(small interfering RNA, siRNA) consisiting of 21-24 nt sense and anti-sense 

RNA;  

III. siRNA bind to an Argonaute (AGO) protein and is transferred into the RNA 

induced silencing complex “RNA interference specificity Complex”, (RISC) 

siRNA molecules are responsible for specificity and lead RISC to partial or 

entirely complementary RNA, which subsequently is specifically degraded.  

As a counter defence, viruses encode a range of silencing suppressor proteins which 

interfere with the silencing pathway and the RNA metabolism at distinct phases (Dunoyer 

& Voinnet, 2005; Endres et al., 2010; Vance et al., 2009; Voinnet, 2001; Voinnet & 

Baulcombe, 1997). Thus, systemic silencing is suppressed by P50 of Apple chlorotic leaf 

spot virus; P1 of Rice yellow mosaic virus (RYMV) and the coat protein (CP) of Citrus 

tristeza virus (Himber et al., 2003; Lu et al., 2003). These suppressors do not have 

effects on local gene silencing (Yaegashi et al., 2007). The P21 suppressor of the Beet 



Introduction 

89 

yellows virus like P19 of Tomato bushy stunt virus and HcPro of Potato virus Y (PVY) 

inhibit the RNA-induced silencing complexes (RISC) and target cleavage however, do 

not affect preassembled RISC. HcPro and P21 also do not prevent siRNA biogenesis 

from long dsRNA precursors (Chapman et al., 2004; Lakatos et al., 2006). In a different 

case, the expression of Hibiscus chlorotic ringspot virus CP, initiated sense RNA-

induced PTGS but has no effects on dsRNA-induced local and systemic PTGS (Meng et 

al., 2006). This is to illustrate that RNA viruses have developed a great diversity of 

counter defence strategies aimed at different aspects of gene silencing. 

Geminiviruses are DNA viruses replicating in the nucleus and hence have no specific 

vulnerable dsRNA stage in replication to be targeted by PTGS which is a cytoplasmic 

process. The geminivirus transcripts are however exposed in the cytoplasm and virus 

specific siRNAs are also induced as a consequence of transcriptional process in virus 

infection (Chellappan et al., 2004b; Vanitharani et al., 2005).  

PTGS of viral transcripts is led by pathogen derived RNAs (21-24 nt), a phenomenon 

that is nowadays used to introduce virus resistance in transgenic plants. Overexpression 

of virus-specific dsRNA induces RNA silencing and induces resistance in virus infected 

plants. Stable virus resistance already has been generated in a number of economically 

important plants by transgene expression of viral sequences as so-called “dsRNA 

hairpins” or ”inverted repeat RNA” (Horser et al., 2002; Wesley et al., 2001).The potential 

for achieving high level of resistance against geminiviruses using strategies similar to the 

“hairpin inverted repeat” dsRNA expression was demonstrated (Asad et al., 2003; 

Chellappan et al., 2004a). For geminiviruses, this silencing does not lead to complete 

immunity and this is also because of the activity of geminiviral suppressors of gene 

silencing (Bisaro, 2006; Lucioli et al., 2003).  

For begomoviruses, the AC2 (TraP) and AC4 have been functionally determined as viral 

silencing suppressor proteins (Vanitharani et al., 2004). Binding with siRNA and/or 

miRNA seems a general strategy of viral silencing suppressors (Bisaro, 2006; 
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Chellappan et al., 2005b; Lakatos et al., 2006; Li et al., 2010; Merai et al., 2006; Ruiz-

Ferrer & Voinnet, 2007) and for begomoviruses these genes are also implicated in 

replication and pathogenesis. Besides the replication initiation protein (Rep) which 

initiates viral DNA replication, the transcriptional activator protein (TraP) functions as the 

suppressor of PTGS while the AC4 protein which can interfere with host response to Rep 

expression might cause similar effects (Vanitharani et al., 2004). TraP is suppressor of 

gene silencing for a number of begomoviruses (Dong et al., 2003; van Wezel et al., 

2002b; Vanitharani et al., 2005; Voinnet et al., 1999) including EACMV. For ACMV, the 

AC4 protein was shown to interfere with the host response (Vanitharani et al., 2004). In 

mixed infections of cassava with cassava begomoviruses, the concerted action of both 

AC2 and AC4 genes might lead to synergism with serious implications for disease 

development. Thus, it is intriguing to speculate that viral synergism is a consequence of 

two viral suppressors interacting, probably at different sites, with the host silencing 

machinery. Since begomovirus DNA is translocated to the nuclei, an interaction between 

diverse DNA viruses in the nucleus can also be assumed (Morilla et al., 2004) 

The objective was to study AC2 (TraP) and AC4 genes of ACMV and EACMV in 

transgenic plants and their effects on challenge virus infections with homologous, related 

and unrelated RNA viruses. Similarly, a transient expression assay was conducted to 

determine more generally the general mode of silencing suppression of TraP and AC4 

expressed from a 35S promoter using GFP as a reporter in a “silencing on the spot 

assay” as described by Johansen & Carrington (2001).  
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4.2 Materials and Methods 

4.2.1 Gene constructs for transient and stable expression of AC2 and AC4 genes 

in Nicotiana benthamiana 

A pGreenII 0229 (John Innes Center, UK) based binary vector was used for 

Agrobacterium mediated transient gene expression and for stable plant transformation. 

To make use of the bar gene as a selective marker, a promoter-terminator cassette was 

amplified by PCR from a cloning vector carrying a double Cauliflower mosaic virus 

(CaMV) 35S promoter, a CaMV polyA terminator and multiple cloning sites for gene 

insertion in an optimised transcription/translation context (Dizadji et al., 2008). The 

primer pair used to amplify the cassette incorporated restriction sites to facilitate 

subcloning and the amplified product was subsequently inserted into pGreenII to result in 

pSN40 (Fig. 4.1A). This vector carries nptI for Kanamycin selection in bacteria and bar 

as a selective marker in planta conferring tolerance to the herbicide phosphinotricin (ppt). 

pSN40 has a multiple cloning site downstream the enhanced 35S promoter sequence 

into which the PCR amplified  AC2 and AC4 genes from EACMV and ACMV were 

inserted. The putative silencing suppressor genes AC2 and AC4 of EACMV and ACMV 

were amplified from DNA-A genome components of infectious virus clones using primers 

given in Table 4.1.  

Table 4.1: Oligonucleotide primer sequences used for the amplification of AC2 and AC4 
genes of specific EACMV and ACMV strains 

 

Primer Nucleotide sequence (5’-3’) Annealing Tm 

Ca-055 AC2_F GGATCCTAGGAGATATAACAATGCCACCTTCATCAC 69.5 

Ca-055 AC2_R AAGCTTCTAAATACTCTTAAGAAACGACCAGTCTGAGGC 69.5 

Ca-123 AC2_F GGATCCTAGGAGATATAACAATGCCACCTTCGTC 69.5 

Ca-123 AC2_R AAGCTTCTAAATACTCTTAAGAAAAGACCAGTCTGAGGCC 69.5 
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DRC6 AC2_F GGATCCTAGGAGATATAACAATGCAATCTTCATCACC 68.4 

DRC6 AC2_R AAGCTTCTAAAGACCCTTAAGAAAAGACCAGTCTGAGG 69.5 

DRC6 AC4_F GGATCCTAGGAGATATAACAATGTATTTCTCACATACCC 68.4 

DRC6 AC4_R AAGCTTTTACATTAAGAGCTCCCGACTTACTGCC 68.3 

F: Forward primer, R: reverse primer 

Specific restriction sites are shown underlined 

Subsequent cloning via BamH 1 and Hind III into pSN40 brought the respective genes in 

an optimal eukaryotic translation context (Lütcke et al., 1987). All gene constructs used 

for gene expression assays and plant transformation were confirmed by sequence 

analysis and expression constructs (Fig. 4.1B) were numbered according to the virus 

isolate as shown in table 4.1.  

 

 

 
Figure 4.1: (A) Map of pSN40 (pGreenII with enhanced 35S CaMV promoter and bar 

resistance). (B) Map of transformation construct based on pSN40 containing 
AC2 gene of EACMV-UG isolate Ca055 

 

4.2.2 Electroporation of Agrobacterium tumefaciens 

All gene constructs were transformed into LBA 4404 which already carried the plasmid 

pSoup, a helper plasmid that provides replicase function for the replication origin of 



Materials and Methods 

93 

pGreen which will not replicate in Agrobacterium if pSoup is not present (Hellens et al., 

2000). 1 μl of the plasmid (conc. 1 μg/μl) was incubated with 40 μl of competent bacterial 

cells, mixed, transferred to an ice-cold cuvette (Eurogentec) and electroporated in an 

Easyjet optima Equibio electroporator (Peqlab) using resistance at 335 Ω, voltage at 2.5 

kV and capacitance set at 15 μF. Following electroporation (approx. 4.5 s) 1 ml of SOC 

medium was added and the cells were incubated at 28°C on a rotary shaker for 3 hours. 

Serial dilutions (10-100 μl) of bacteria were spread on YEB plates containing the 

corresponding antibiotics for selection. Plates were incubated for 48 hours at 28°C 

(Sambrook & Russel, 2001). 

 

4.2.3 Transient gene expression in N. benthamiana 

Agrobacteria with the respective plasmid constructs were grown overnight at 28 °C to an 

OD of ~1.0. Following OD measurement, cells were harvested and re-suspended in a 

medium containing 2% sucrose, ½ MS basal salts (Murashige & Skoog, 1962) to which 

10 mM MgCl2, 10 mM MES and 200 µM Acetosyringone (Sigma) was added and left to 

settle for 3 hr at RT. Bacterial suspensions were infiltrated by gently pressing a 1 ml 

disposable syringe to the abaxial surface of fully expanded leaves of 3-week-old N. 

benthamiana plants, followed by gentle release of the bacterial suspension in the syringe 

until the leaves had a water-soaked appearance (Schob et al., 1997). Following agro-

infiltration, plants were maintained in a greenhouse at 26 °C with a 16 h photoperiod. 

Suspensions of Agrobacterium carrying the pSN40 and cultures with the silencing 

suppressors P15 from JCSMV, HcPro from Plum pox virus (PPV) and AC2 from SLCMV 

were also infiltrated as negative and as positive controls, respectively.  
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4.2.4 Transgenic plant lines expressing AC2 and AC4 of ACMV and EACMV AC2 

4.2.4.1 Plant material and transformation 

Leaf disc transformation of N. benthamiana was done essentially following standard 

procedures (Fraley et al., 1985; Horsch et al., 1985). The N. benthamiana plants to 

deliver leaf material for plant transformation were grown in the greenhouse with a 14/10 

h light/dark photoperiod at 25 °C. Leaves obtained from 6 week old N. benthamiana 

plants were sterilized for 30 minutes with a 1.2% sodium hypochlorite solution + 1 drop 

Tween 20. Following sterilisation, leaves were thoroughly washed 5-6 times in sterile 

water, midribs were removed and leaves were cut into discs of 1.0 cm x 1.0 cm. This 

was done one day prior to the agro-inoculation. Agrobacterium LBA 4404 harbouring the 

plasmids with respective DNA constructs were grown at 28 °C for 28-36 hrs in YEB 

medium containing Kanamycin (Kn) and Rifampicin (Rif) while shaking at 180 rpm. 

Growth of culture was measured by determination of OD600. Bacterial cultures were 

subsequently adjusted to OD600 = 0.6-0.8 and cultures were harvested by centrifugation 

at 4000g for 10 min at 4 oC. Pellets were resuspended in one volume of MS-Medium. 

The suspension was diluted 1:100 (v/v) and leaf discs were immersed for 30 min while 

slowly shaking on a rotary shaker. The discs were removed from the broth, tapped dry 

on sterilized filter paper, and carefully transferred onto solid MS medium containing 0.1 

mg/l NAA + 1 mg/l BAP (MS-T0). The plates were incubated in dark at 26 °C for 48 

hours. Following incubation leaf discs were washed twice with sterile liquid MS-Medium 

containing Ticarcillin, dried on sterilized filter paper and transferred to MS agar plates 

containing 0.1 mg/l NAA + 1 mg/l BAP + 500 mg/l Ticarcillin + 6 mg/l PPT (MS-T1). Leaf 

discs were incubated at 24 °C for 16/8 h light/dark photoperiod, respectively and 

monitored every day for presence of bacteria or possible contamination. Subculturing 

was done after every 2 weeks to fresh MS-T1 medium. After approximately 4 weeks, 

developing calli were subjected to selective MS medium 0.1 mg/l BAP + 300 mg/l 

Ticarcillin + 6 mg/l PPT (MS-T2). Following shoot development (16th week) the plantlets 
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were subcultured on root induction medium containing 300 mg/l Ticarcillin + 6 mg/l PPT 

(MS-T3). Once the plantlets had developed strong roots they were removed from agar, 

roots were carefully washed with tap water and plants were transferred to pots in the 

greenhouse and covered to maintain high humidity. After one week, the humidity trays 

were opened periodically to allow air circulation. After 2 to 3 weeks plants (T0) were 

hardened and grown under glasshouse conditions at 24°C/18°C day/night temperature 

conditions. 

4.2.4.2 Selection of transgenic seeds and propagation of T1 and T2 

generations 

From each of the constructs including the Sn40 control, 10 putative transgenic plants 

were grown in the glasshouse for flowering and production of seeds. Seeds obtained 

from self-fertilized plants were taken, dried and kept at 4 °C prior to use. Surface 

sterilized seeds (70% ethanol for 2 minutes followed by 5 times rinsing in sterile water) 

were placed onto MS medium containing 6 mg/l ppt for germination (100 seeds/ line) and 

kept in a growth chamber at 25/18 °C for 3 to 4 weeks with a 18h daylight period. PPT 

resistant seeds germinated and comprised T1 generation. Five independent T1 lines 

were selected for another round of seed germination on ppt containing MS medium and 

to produce T2 generation seeds. These T2 seeds were sown directly in soil. 

 

4.2.5 Screening of transgenic plants with RT-PCR 

For evaluation of transgene expression, RNA transcripts of the respective genes were 

amplified by RT-PCR. For this, total RNA was isolated from putative transgenic plants 

and treated with DNase to remove all contaminating DNA.  
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4.2.5.1 Total RNA extraction from N. benthamiana 

Total RNA was extracted essentially following the RiboZol™ purification protocol 

(ribozol-OLS, Omni Life Science, Bremen). Prior to RNA extraction, all materials used for 

RNA extraction were treated with DEPC before autoclaving. For RNA extraction, 100  

mg of plant material was collected in plastic sample bags (BIOREBA) and immersed in 

liquid nitrogen. RiboZol™ was activated with ß-mercaptoethanol and 2 ml added directly 

to the thawing leaf tissues which were ground in BIOREBA bags using a manual grinding 

device (BIOREBA AG, Switzerland). 1 ml of the homogenate was then removed and total 

RNA was extracted following the protocol. The final nucleic acid pellet was dissolved in 

50 µl DEPC-treated water.  

4.2.5.2 RT-PCR 

Aliquots of 8 µl plant RNA were DNAse (Invitrogen) treated, to remove residual DNA 

which would lead to erroneous PCR amplification. This was achieved by adding 1 µl 

DNase buffer and 1 µl DNaseI Amp Grade (1U/µl) and incubating at 37 °C for 30 min. 

After the treatment, DNase was inactivated by heating at 65 °C for 10 min and total RNA 

was subsequently subjected to a one step RT-PCR using the SuperScript III One-Step 

RT-PCR system (Invitrogen). RT-PCR was carried out for 30 min at 45 °C for cDNA 

synthesis followed by an initial denaturing step for 2 min at 94°C and further 30 cycles of 

94°C for 15 sec, annealing at 55°C for 30 sec and polymerisation at 72 °C for 30 sec. A 

final extension at 72 °C for 5 min terminated the reaction cycles. Primers used for 

amplification/detection of each gene construct are shown in table 4.2.  

 

Table 4.2: Oligonucleotide sequences used as primers for RT-PCR verification of gene 
expression in transgenes 

 

        Primer         Nucleotide sequence (5’-3’) 

sn_055AC2det_F CTCCACGAGCCATTGTTCTCTAGT 
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sn_055AC2det_R CTTGTGAATCCCCAATGCCTT 

sn_DRC6AC2det_F ATGCAATCTTCATCACCCTCACA 

sn_DRC6AC2det_R TGTGATTGAATCGAACCTGGACT 

sn_DRC6AC4det_F CATTCATTCAAACACTCTCTCTCCC 

sn_DRC6AC4det_R CGTAAGCATCATTCGCTGATTGT 

F: Forward primer, R: reverse primer 

 

RT-PCR products were analyzed in a 1% agarose gel electrophoresis. In each RT-PCR 

detection series, DNA isolated from non transformed N. benthamiana and a water control 

was included. 

 

4.2.6 Virus infectivity tests, inoculation methods and sample collection  

To study the activity of AC2 genes expressed in transgenic N. benthamiana on 

challenging virus infections, 20 plantlets of each of the transgenic N. benthamiana lines 

expressing AC2 of ACMV and EACMV-UG respectively were inoculated with ACMV 

DRC6 and with Potato virus A serving as control. Transgenic pSN40 vector only and wild 

type N. benthamiana plants were used as controls.  

For virus assays, ACMV DRC6 and PVA (DSMZ PV-535) were propagated in N. 

benthamiana to use systemically virus-infected leaves as inoculum for mechanical 

inoculations. For inoculum preparation, symptomatic leaves of N. benthamiana were 

ground in ice cold Norit buffer (0,05M Na/K phosphate, pH 7.0, 1mM EDTA, 5mM 

DIECA, 5 mM Thioglycolic acid, pinch of charcoal). Celite 535 was added as an abrasive 

and transgenic N. benthamiana in the 3 to 5 leave stage were infected by gently rubbing 

leaf homogenates onto 2 to 3 fully expanded leaves. Following inoculation, leaves were 

washed with tap water to remove debris and to prevent excessive drying out. Inoculated 

plants were kept at 26 °C and viral symptoms were monitored every other day starting 5 

days after inoculation. For virus analysis, samples were collected from leaves showing 
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symptoms of systemic infection and subjected to ELISA, to quantify virus and to monitor 

the effect of silencing suppressors on viral replication. 

 

4.2.7 Enzyme-Linked Immunosorbent Assays (ELISA) for detection and 

quantification of viruses 

Virus infections were monitored using ELISA tests with antibodies specific for ACMV and 

PVA. This was done essentially following the ELISA protocols recommended by DSMZ 

using a TAS-ELISA for detection of ACMV (DSMZ-TAS AS-0421-421/2) and a DAS-

ELISA (DSMZ AS-0535) for PVA detection. 

4.2.8 Viral DNA quantification by real time PCR 

To estimate the absolute quantity of virus molecules in transgenic and non-transgenic N. 

benthamiana plants inoculated with ACMV DRC6, a real time quantitative PCR (qPCR) 

was performed following the qPCR protocol and procedure as described in chapter 2. 

 

4.2.9 Transient expression of AC2 and AC4 genes in N. benthamiana plants  

To evaluate gene silencing activity of AC2 and AC4 genes from ACMV and AC2 from 

EACMV-UG in transient agro-infiltration assays, AC2 and AC4 genes were amplified by 

PCR using primers listed in table 4.3.  

 

Table 4.3: Oligonucleotide primer sequences used for amplification of AC2 and 
AC4 genes, adding a HA Tag (HCA) sequence and Kpn I and Xba I restriction 
sites. 

 

Primers Nucleotide sequence (5’-3’) 

Sn_055_AC2_HCA_F ATGGTACCAGGAGATATAACAATGCCACCT 

Sn_055_AC2_HCA_R AAGACTCTAGAACTAGGCATAATCTGGCACATCATAAGGGTAAATACTCTTAA 

Sn_055_AC2_pIng_R AAGACTCTAGAACTAAATACTCTTAAGAAACGACCA 
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Sn_055_AC4_HCA_F ATGGTACCAGGAGATATAACAATGGGGTGC 

Sn_055_AC4_HCA_R AAGACTCTAGAACTAGGCATAATCTGGCACATCATAAGGGTAAATGTTGG 

Sn_055_AC4_pIng_R AAGACTCTAGAACTAAATGTTGGCCCTCTCC 

Sn_DRC6_AC2_HCA_F ATGGTACCAGGAGATATAACAATGCAATCTTCAT 

Sn_DRC6_AC2_HCA_R AAGACTCTAGAACTAGGCATAATCTGGCACATCATAAGGGTAAAGACCCTTA 

Sn_DRC6_AC2_pIng_R AAGACTCTAGAACTAAAGACCCTTAAGAAAAGACCA 

Sn_DRC6_AC4_HCA_F ATGGTACCAGGAGATATAACAATGTATTTCTCA 

Sn_DRC6_AC4_HCA_R AAGACTCTAGAACTAGGCATAATCTGGCACATCATAAGGGTACATTAAGAGCT 

Sn_DRC6_AC4_pIng_R AAGACTCTAGAACTACATTAAGAGCTCCCG 

F: Forward primer, R: reverse primer; Specific restriction sites are underlined 
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During PCR, restriction sites Kpn I and Xba I and further sequences to generate 

carboxyterminal fusions to an influenca hemagglutinin epitope tag (YPYDVPDYA) were 

incorporated into the newly synthesized DNA for directional cloning. 

PCR amplified genes were cloned into pING71 (kindly provided by Dr. Ivan Ingelbrecht, 

Biotech unit IITA, Nigeria), a pCAMBIA 2300  derived vector (Hajdukiewicz et al., 1994) 

in which a Cassava vein mosaic virus (CaVMV) 35S promoter and the 35S Cauliflower 

mosaic virus terminator (CaMV) cassette was inserted for highly efficient protein 

expression (Fig. 4.2).  

 

Figure 4.2: Map of pING 71_55AC4Ha (a modified pCambia 2300 vector carrying a 
35S Cassava vein mosaic virus promoter for transgene expression. Open and 
blue arrow indicate gene for expression and the carboxterminal fusion of 
hemagglutinin. 

 

For expression of GFP a pING71_16cGFP containing the coding region of the 16c GFP 

while an inverted repeat hairpin dsGFP construct in pBin19 (kindly provided by Prof. M. 

Varrelmann, University of Göttingen) contained a 16c GFP fragment under the control of 

a 35S promoter in sense/antisense orientation separated by an intron (Frisch et al., 

1995). The constructs in their respective binary vectors were introduced by 
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electroporation into A. tumefaciens  C58C1 (Deblaere et al., 1985). To study sense RNA 

silencing, AC2 and AC4 constructs were mixed with equal concentrations of GFP 

constructs, left at room temperature for 3 hours in MES medium for activation of Vir 

genes and co-introduced by agroinfiltration (Bendahmane et al., 2000; Johansen & 

Carrington, 2001; Llave et al., 2000) into N. benthamiana (Fig. 4.3).  

 

 
Figure 4.3: Agro- infiltration of N. benthamiana plants with needless syringe for 

transient expression assay. A 1 ml syringe (no needle) is pressed onto the 
underside of a leaf and arrested by counter-pressure on the other side.  

 

To study silencing suppression activity on dsRNA, the virus constructs were mixed with 

agrobacteria carrying plasmids with GFP and with dsGFP respectively. Infiltration of the 

putative viral suppressors with GPF and dsGFP should inactivate the silencing activity 

from dsGFP expression. For control of function, expression vectors containing HcPro 

from Plum pox virus (kindly provided by M. Varrelmann) and P15 from Johnsongrass 

chlorotic stripe mosaic virus (DSMZ Plant Virus Department) and pSN40 were similarly 

used for transient expression studies.  
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Plants were examined daily for GFP fluorescence development under long- wavelength 

UV light using a high intensity 365nm UV lamp (B-100AP, LTF Germany) and 

photographed with a digital camera (Nikon D90) mounted with a yellow filter. Images 

were processed electronically. 

 

4.2.10 EACMV DNA-A mutants with dysfunctional AC2 and AC4 genes 

To study complementation of gene function, mutations were introduced into AC2 and 

AC4 genes of EACMV-UG isolate Ca123 DNA-A. For construction of AC2 knock out 

mutants, primer pairs AC2F/R (Table 4.4) introduced stop codons at two positions in 

AC2. Similarly, primer pair AC4F/R created a G to A transversion, removed the start 

codon of AC4 and introduced a stop (TGA) without affecting the amino acid sequence of 

the overlapping ORF AC1.  

 

Table 4.4 Oligonucleotide primer sequences for sdm to generate dysfunctional AC2 and 
AC4 and for sequencing 

 

Primer Nucleotide sequence (5’-3’) 

AC2_F  TAATGAGGCTGCTCGTTCTATCTCCATATCGACTG 

AC2_R  GAGGTCTACCCGCCTACGTCTGATGGCCCTG 

AC4_F  TCCATGTTCTGATCCAATTCGAAGGCAAGTTCCAATG 

AC4_R  GATGAGGCACCCCGTCCTGATGTAGTTCTCTGCAAAC 

AC2_seq  ACGGGAAGCCGATTCAAATTAAAGG 

AC4_seq  AAGCTTTTTCTTATCCGACGAATATC 

EACMV_P1 AAGTACAGTGTTAATGGAAATAACGC 

  F: Forward primer, R: reverse primer, seq: sequencing primer 

For sequence confirmation, AC2_seq and AC4_seq were used for PCR amplification. 

Agrobacteria harbouring DNA-A mutants were mixed with bacteria containing cognate 

wild type DNA-B and agroinoculated to establish systemic infections in N. benthamiana. 
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Plants were subsequently maintained in the greenhouse at 25oC with a 16 h photoperiod 

and monitored for development of symptoms. 

 

4.2.11 Detection of viral DNA 

Total DNA was extracted from newly emerging and/or symptomatic leaves approximately 

21-23 dpi using a DNeasy plant DNA extraction kit following the manufacturer’s 

instructions (Qiagen, Germany). PCR to confirm AC2 and AC4 mutations was carried out 

with EACMV_P1 and AC4_seq and PCR products of approximately 1375bp were 

subsequently sequence analysed for presence of the respective mutations using specific 

sequencing primers (Table 4.4).  

 

4.2.12 Protein isolation and analysis 

Protein extracts were prepared from N. benthamiana leaves 48 h after agroinfiltration 

using TriFast Gold following the manufacturer’s prototol (Peqlab, Erlangen, Germany). 

The final protein pellet was redissolved in 5 M urea, 50 mM DTT and after centrifugation 

at 10,000 g for 10 min at 4˚C, a volume containing between 30 and 150 μg of protein 

was mixed 1:1 (v/v) with loading buffer (0.025M Tris-HCl, 4% SDS and 20% Glycerin) 

incubated at 95°C for 10 min and loaded onto a 12% discontinuous SDS polyacrylamide 

gel for electrophoretic separation of proteins. Following electrophoresis, the SDS gel was 

placed in a 0.5 g/l H2O Coomassie brilliant blue R-250 (SIGMA) dye solution to which 

100 ml glacial acidic acid and 250 ml isopropyl alcohol were added. After a 30 min to 1 h 

incubation at room temperature, the dye solution was exchanged with H2O to destain the 

gel by 2 microwave radiations for 5 min, refreshing the destaining H2O after each step. 
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4.3 Results 

4.3.1 Phenotypic aberrations from transgene expression of AC2 and AC4 genes 

expression in N. benthamiana 

N. benthamiana was transformed with AC2 from ACMV and EACMV-UG and AC4 from 

ACMV only. About 100 transgenic events were generated for each of the viral gene 

constructs. From those regenerating ppt resistant calli, 64 for EACMV-UG AC2 and 52 

for ACMV AC4 were positive in RT-PCR indicating AC2 and AC4 mRNA. In ACMV AC2 

transformations, most plantlets regenerating from calli did not develop roots and from 5 

recovered and regenerating into plants only one remained and proved RT-PCR positive 

expressing AC2.  

Total proteins of certain transgenic lines were analysed to assess whether an additional 

15 kDa band in the protein profile would provide an indication for translation of mRNA 

into AC4 or AC2 (TraP) proteins (Fig. 4.4).  
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Figure 4.4: SDS PAGE of total leaf extracts from AC2 of EACMV transgenic R0 
plants of N. benthamiana line SN48 expressing EACMV AC2 (TraP). A 15 kDa 
protein (arrow) in transgenic R0 plants (line 48/9 1,2; line 48/1, 1-6) was absent 
in wild type N. benthamiana (C). M, Invitrogen-Bench Marker Prestained 
Protein Ladder. 

 

An additional 15 kDa protein band was only observed in transgenic plants expressing 

EACMV AC2 while in no other case, a considerable protein expression, indicated by an 

additional 15 kDa band, was found. Transgenic plants that had germinated on ppt 

containing medium were transferred to soil and kept in the greenhouse for flowering and 

production of T1 seeds. During plant development and growth, transgenic N. 

benthamiana plants expressing AC2 and AC4 however showed altered phenotypes. 

Most striking changes were observed with transgenes expressing ACMV AC2 while 

phenotypic aberrations associated with AC2 expression of EACMV or ACMV AC4 

expression were relatively mild. In ACMV AC2 transgenic plants, leaf deformation and 

lanceolate spiralling leaves with missing petioles were formed and only three plants 

developed until flowering. From the limited flower settings only one plant produced seeds 

while all others were sterile.  
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Transgenic lines expressing AC2 of EACMV-UG had twisted stems, showed leaf rolling, 

and developed only few flowers from which seeds were produced. Plants expressing 

ACMV AC4 were generally stunted and had dark green heavily haired leaves and stems 

(Fig. 4.5).   

 

 
Figure 4.5: Expression of ACMV and EACMV AC2 and AC4 genes in N. 

benthamiana. EACMV AC2 transgenic plants (A-D) with severe leaf curling and 
rolling, stem bending and reduced or missing petioles; ACMV AC2 transgenic 
plants (E-I) with chlorotic blistering (E-F), malformed and hairy leaves and 
stem, sterile flowers (G), stunted growth and cup shaped leaves (H); ACMV 
AC4 transgenic line (J-L) with dark green and severely malformed leaves; M, 
leaf of transgenic plant, transformed with pSN40 only.  

 

Three independent R2 lines of EACMV-AC2, ACMV-AC2 and ACMV-AC4, respectively, 

were subjected to RT-PCR to monitor expression of specific transcripts. mRNA for each 

of the genes was verified in all plants selected (Fig. 4.6) which subsequently were 

chosen for challenge infection with ACMV. 
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Figure 4.6: RT-PCR detection of AC2 and AC4 transcripts in selected R2 lines of 
transgenic N. benthamiana plants. M= λ DNA digested with Pst I; 1-3 R2 lines, 
V= vector transformation control, C= Wild type N. benthamiana, N= PCR 
negative control. 

 

4.3.2 Effects of transient expression of AC2 and AC4 genes on replication of 

ACMV and PVA   

Transient gene expression of AC2 and AC4 constructs in wild type N. benthamiana was 

pursued to evaluate whether effects of suppression/ enhancement inherent to a specific 

gene are already evident and measurable in a transient assay. Gene constructs in their 

respective binary vector and known viral suppressor genes from different viruses were 

infiltrated into N. benthamiana leaves for transient expression assays. To study 

interference of the transiently expressed genes with host defence, three days post 

agroinoculation, infiltrated plants were infected with either ACMV or with the potyvirus 

PVA, as control. In these experiments only transient expression of EACMV AC2 and 

ACMV AC2 resulted in sharp increase of ACMV replication (Fig. 4.7), while AC4 

expression had no enhancing effects on virus replication.  

Transient expression of viral suppressor genes did not have significant effects on PVA 

replication and pathogenesis. Virus replication was only slightly enhanced compared to 

wild type infections (Fig. 4.7 PVA). In contrast to infections with ACMV, transient 

expression of HcPro practically had no effects on plant infections with PVA.   
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Surprisingly, while expression of AC2 of both African cassava viruses resulted in 

significant increases of virus replication (Fig. 4.7 ACMV, EACMV), AC2 expression of 

SLCMV, a virus related to ACMV was not different from ACMV wild type infection as it 

was also almost negative in inoculated control plants. Expression of HcPro resulted in an 

increase of ACMV concentrations while ACMV replication was practically unaffected by 

the expression of the strong silencing suppressor P15 of JCSMV.       

  

 

 
Figure 4.7: Virus replication measured by ELISA of PVA (A, left) and ACMV (B, 

right) in N. benthamiana infiltrated with Agrobacterium suspensions 
transiently expressing AC2 and AC4 constructs or silencing suppressor 
genes P15 of Johnsongrass chlorotic stripe mosaic virus P15, HcPro of Plum 
pox virus or AC2 of Sri Lankan cassava mosaic virus. pSn40 vector only 
construct as control. Box plots reflect mean median from ELISA obtained from 
each plant within a group.  

 

4.3.3 Analysis of AC2 and AC4 RNA silencing suppressor activity  

To identify RNA suppression activity, AC2 and AC4 HA tagged proteins were tested in 

two sets of transient Agrobacterium co-infiltration assays in wild type N. benthamiana 

leaves (Llave et al., 2000). In the first assay (Figure 4.8) the effect of the silencer genes 

on sense PTGS (Wassenegger & Krczal, 2006) initiation were studied by co-infiltration of 
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agrobacteria containing constructs expressing GFP mixed with pING71 constructs 

expressing AC2 or AC4. Examination of infiltrated leaves over a period of 15 days dpi 

revealed that the expression level of GFP was not altered by co-infiltration with AC2 (Fig. 

4.8) or AC4 genes (not shown) while GFP expression level was highly increased by P15 

expression and by co- expression of HcPro used as silencing suppression controls (Fig. 

4.8). Thus it can be assumed that the putative silencing suppression of the begomovirus 

genes AC2 or AC4 does not interfere with early events of sense PTGS. 

 

 
Figure 4.8: Transient expression of GFP co-infiltrated with suppressor constructs 

in N. benthamiana leaves. P15, silencing suppressor of JCSMV; 55AC2_HA, 
silencing suppressor of EACMV-UG expressed with a HA tag; HcPro, silencing 
suppressor of PPV. UV light images were taken 7 dpi.  

 

To determine whether AC2 or AC4 could effectively suppress PTGS initiated by dsRNA 

and thus acting further downstream in the silencing process, plasmids expressing GFP 

plus plasmids expressing dsGFP were further mixed with silencing suppressor plasmids 

to reveal whether suppressor proteins interact with dsRNA from GFP inverted repeat 

expression.  

Examination of infiltrated leaves over a period of 15 dpi showed that in patches of dsGFP 

co-infiltrated with GFP, green fluorescence was completely eliminated. In contrast in 

patches where P15 was co-infiltrated in a tri-plasmid mix, GFP fluorescence was 

maintained and intensity was high indicating for binding of P15 to dsRNA (Fig. 4.9). 

Similarly, but to a much lesser extend HcPro was able to interfere with dsRNA confirming 

that it also acts as suppressor of hairpin PTGS. In contrast neither EACMV-UG AC2 (Fig. 

4.9) nor co-infiltration of ACMV AC2 or AC4 (not shown) interfered with GFP dsRNA 
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expression and consequently, none of those genes was able to act as suppressor of hp 

PTGS.   

 

 
Figure 4.9: Transient expression of GFP and dsGFP mixtures co-infiltrated with 

suppressor constructs in N. benthamiana leaves. P15, silencing suppressor of 
JCSMV; 55AC2_HA, silencing suppressor of EACMV-UG expressed with a HA tag; 
HcPro, silencing suppressor of PPV. UV light images were taken 7 dpi.  

 

To determine whether AC2 and AC4 proteins were actually present in patches infiltrated 

for transient gene expression, total proteins were isolated from treated areas and 

subjected to protein analysis. In western blot assays using a HA antibody an however 

weak immunological reaction was found hence confirming expression of functional 

proteins. 

 

4.3.4 Virus replication in transgenic N. benthamiana plants expressing AC2 of 

ACMV and EACMV 

To study interference from expression of homologous ACMV AC2 and heterologous 

AC2, with virus infection, ACMV infections were introduced into transgenic N. 

benthamiana by mechanical inoculation of leaf sap from systemically infected plants. 

ACMV infections were readily established and the plants responded with symptoms of 

systemic infections similar to ACMV infections in wild type non transgenic plants. Severe 

systemic infections established in a similar time course and neither enhanced virus 

replication nor spread was recorded compared to vector only transgene controls or wild 

type N. benthamiana. Real time quantitative PCR performed to calculate and compare 
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the absolute amounts of virus in transgenic and control plants did not show any 

difference in ACMV loads in the different N. benthamiana lines infected with ACMV (Fig. 

4.10). 

 

 

Figure 4.10: Quantification of ACMV [DRC6] in infected transgenic N. benthamiana 
carrying EACMV and ACMV AC2 genes, repectively, assessed 4 weeks dpi. 

 

4.3.5 Trans-complementation of EACMV AC2 and AC4 knock-out mutants in AC2 

transgenic N. benthamiana 

To study whether a dysfunctional gene could be complemented by transgene expression 

in planta of its corresponding wild type gene, multimeric DNA-A clones with AC2 or AC4 

mutants were introduced with their cognate DNA-B for agroinoculation to infect N. 

benthamiana. For control of infectivity, wild type EACMV DNA-A and DNA-B were also 

introduced. The plants inoculated with wild type virus showed mild systemic symptoms 

which later became obvious 18-21 dpi as mosaic patterns and mild leaf curl on 

systemically infected leaves. Plants inoculated with a dysfunctional EACMV AC4 
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developed systemic symptoms in same time course as wild type plants however with 

symptoms slightly weaker. EACMV AC2 failed to produce any symptoms and PCR from 

those plants was negative indicating that AC2 mutations resulted in loss of viability. 

Infectivity of AC2 mutants also was not restored by inoculations onto transgenic plants 

expressing wild type AC2. Hence it can be assumed that AC2 function cannot be 

complemented in trans.  

EACMV mutant AC4 infections in AC2 transgenic N. benthamiana were subjected to 

PCR to analyse to confirm from those infections that a dysfunctional AC4 is stable and 

not reverted to wild type. Besides, from verification of the mutation in AC4, it could also 

be concluded that a functional AC4 is not necessarily required for plant infection.  

 

4.4 Discussion 

Eukaryotes including plants contain an RNA-directed gene regulatory system, RNA 

silencing as a wide spread and fundamental component of gene expression. It is 

activated by dsRNA which subsequently is cleaved into short (21-24 nt) fragments which 

mediated a number of regulatory and also defense functions in the cells (Brodersen & 

Voinnet, 2006). RNA silencing also is an inducible defense pathway whereby invading 

nucleic acids such as viruses are silenced. To invade and replicate in plants, viruses 

have special silencing suppressor proteins which counteract the plants defense 

mechanism (Dunoyer & Voinnet, 2005). These virus silencing suppressor proteins are 

very diverse and unrelated in sequence or structure suggesting separate origins and 

diverse functional mechanisms. While a large number of studies focused on silencing 

suppressors of RNA viruses and their interaction with the silencing pathway, suppressors 

from DNA viruses are much less understood. For the largest group of DNA viruses, the 

geminiviruses, several proteins have been directly demonstrated to have silencing 

suppression activity (Raja et al., 2010) and for the bipartite Cassava mosaic viruses, 
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AC2 for EACMV and AC4 for ACMV, were proven to suppress PTGS (Vanitharani et al., 

2004).  

The study presented here should provide insights into the mode of action of AC2 and 

AC4. Transgenic models were generated expressing either of the genes in N. 

benthamiana to study effects on replication of homologous or heterologous or entirely 

unrelated viruses. The role of AC2 (TraP) and AC4 genes in the pathogenesis of ACMV 

and EACMV-UG infections was further assessed in transient expression assays using 

GFP to monitor silencing suppression activity.  

N. benthamiana transformed with AC2 or AC4 showed various degrees of disturbances 

from stable expression of the genes. Absent root formation in T0, leaf malformations and 

reduced flowering and seed setting were frequent with ACMV AC2 plants showing the 

most striking alterations in phenotype. This was also found in a recent study by Siddiqui 

et al. (2008b) further describing variable effects from expression of silencing suppressor 

genes in different plant species, N. benthamiana and N. tabacum. Developmental 

abnormalities from stable expression of viral suppressor proteins in planta were found in 

a number of studies (Anandalakshmi et al., 2000; Mlotshwa et al., 2005; Pruss et al., 

2004) while others apparently did not find phenotypical alterations due to expression of 

viral suppressor proteins in N. benthamiana or tobacco (Mlotshwa et al., 2002; Savenkov 

& Valkonen, 2002).  

The disturbed phenotypes in the transgenic plants are likely from interference of these 

suppressors with endogenous RNA silencing pathways. This has been shown for virus 

suppressors interfering with miRNA biosynthesis in Arabidopsis (Chapman et al., 2004; 

Kasschau et al., 2003; Llave et al., 2002; Mallory et al., 2002). This interference at an 

early step in the silencing pathway would impair the regulation of multiple genes that are 

regulated by miRNA. It is not clear which steps in the silencing pathway are targeted 

however, the questions this study tried to address was interference with plant defense 
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reactions. For these virus infection experiments transgenic plants reflecting a normal 

phenotype were chosen and infected with ACMV and PVA respectively.  

The results of the virus study showed that ACMV and EACMV-UG AC2 expression 

increased the level of ACMV in plant infections while ACMV AC2 and AC4 genes 

expressed in transgenic plants had no effects. A similar response was reported for 

expression of AC2 on infection with Tobacco ring spot virus and on a Tobacco mosaic 

virus which expresses GFP (Siddiqui et al., 2008a; Siddiqui et al., 2008b). While spread 

and brightness of GFP was greatly enhanced by AC2 expression, an increased 

concentration of TRSV was only confirmed for infections of N. tabacum while TRSV 

replication and also the recovery phenomenon in N. benthamiana remained unaltered in 

transgenic plants. A likely explanation is provided from studies to characterise AC2 from 

MYMV and AC2 from ACMV (Trinks et al., 2005) drawing a functional connection 

between silencing suppression and transcription activation by AC2. Suppression of 

silencing by the transcriptional activator protein AC2 required transactivation of host 

genes which may code for components of an endogenous network that controls 

silencing. Hence it is a host specific process. 

Expression of ACMV AC4 did not interfere with ACMV infections which is somewhat 

surprising considering its role as gene silencing suppressor gene (Vanitharani et al., 

2004) and major determinant of pathogenesis for monopartite begomoviruses carrying a 

positional homologue C4 (van Wezel et al., 2002a). However, silencing suppression is a 

feature of viral proteins and in transgenic plants generated in this study, TraP or AC4 

protein was not unequivocally confirmed. Thus, a conclusive statement on interaction of 

expressed protein with replication of viruses cannot be drawn pending the unambiguous 

confirmation of the proteins expressed.  

Virus replication and titre and symptoms severity are probably not adequate to 

characterise silencing suppression activity. Argument is provided from expression of the 

AL2 (syn. AC2) gene of TMGMV and virus infection studies (Sunter et al., 2001). Here it 
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was found that AL1 acting as pathogenicity factor by inhibiting host stress or defence 

responses acting against DNA and also RNA viruses. Upon infection with viruses, 

transgenic plants did not show enhanced symptoms or virus replication, however, 

susceptibility of AL2 transgenes was evident from reduction of latent period and a 

decrease of inoculum concentration required to infect transgenic plants. These 

parameters were however not considered in this study. 

AC2 and AC4 proteins and silencing suppressor proteins from other viruses were 

transiently expressed functional assignment of their RNA silencing suppression activity 

to a respective phase of the process. The results of this experiment proved that RNA 

silencing suppression is triggered by a variety of inducers like HcPro and P15 acting on 

sRNA silencing thus reflecting early events and counteracting silencing induced by 

expression of dsRNA. These results are in sharp contrast to experiments conducted by 

Vanitharani et al. (2004) reporting a reversal of silencing in 16c GFP transgenic plants 

from expression of either AC2 of EACMCV or AC4 of ACMV. Despite the fact that 

silencing suppressor genes of different viruses show different behaviour, AC2 

suppression was not observed in this study and an effect of SLCMV AC2, reported 

earlier as a weak silencing suppressor, also was not confirmed. Nevertheless, it has to 

be stated that the experiments reported here and those by Vanitharani et al. (2004) are 

parallel observations and not directed to a synchronous phase in silencing. While the 

silencing suppression experiments from this study reflect on early events, the 16c GFP 

silencing reversal showed that AC2 and AC4 can reverse an already established 

silencing. This is a later event; hence both observations are independent and 

consequently not comparable.  

The silencing suppression experiments in this study were conducted in analogy to those 

characterising RNA virus suppressor genes. A direct interaction is presumed, however 

begomovirus AC2 (AL2) does not bind siRNA or miRNA. Thus silencing suppression by 

these genes appears to function rather by activation of cellular genes which regulate the 
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silencing pathway. AL2 alters the host transcriptome, stimulates transcription and 

activates cellular genes in a transcription-dependent mode (Dong et al., 2003; Trinks et 

al., 2005; van Wezel et al., 2002b). From studies on pathogenicity functions and 

interactions with adenosine kinase (ADK), an enzyme required for methyl-cycle 

maintenance, evidence for transcription-independent silencing suppression is also 

provided  (Hao et al., 2003; Wang et al., 2003; Wang et al., 2005) (Hao et al., 2003; 

Trinks et al., 2005; Wang et al., 2003; Wang et al., 2005). AL2 reduces ADK activity in 

geminivirus infections leading to suppression of silencing in a transcription–independent 

manner. Chromatin methylation is a defence system in plants against geminivirus 

infections. With AL2 (AC2) inhibiting methylation by interacting with ADK suppression 

transcriptional gene silencing (TGS) by these genes is likely (Buchmann et al., 2009; 

Raja et al., 2008). This mechanism or parts thereof however were not studied as direct 

effects of AC2 expression on viral replication were assumed. Silencing suppression from 

AC2 transgene expression to dissect TGS and PTGS now is warranted.  

PTGS suppression activity of ACMV and EACMCV AC2 and AC4 genes were reported 

by Vanitharani et al. (2004). This study showed that related viruses have different 

suppressors which act on different silencing pathways. AC4 unlike AC2 can bind single 

strand siRNA and is able to suppress PTGS by binding small RNA (Chellappan et al., 

2005a). This silencing suppressor effect was however not studied in transient assays, as 

AC4 was not included in the study. Geminiviruses must be able to counteract PTGS and 

TGS to successfully infect plants (Raja et al., 2010). From evidence provided, including 

this study, AC2 proteins are at most weak PTGS suppressors and from the body of 

available evidence, it can be argued that AC2 by opposing methylation are strong 

suppressors of TGS. Perhaps the role of AC4 then is, to counteract PTGS.  

It can be summarized from the results of this study that AC2 of ACMV is a pathogenicity 

determinant as described by Voinnet et al., (1999) but not a suppressor of PTGS. 
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Pathogenicity is not related with gene silencing suppression activity (Diaz-Pendon & 

Ding, 2008).  

To study the gene function of ACMV and EACMV mutants with dysfunctional AC2 and 

AC4 genes respectively were generated and tested for their infectivity in N. 

benthamiana. The AC2 knock out mutant of EACMV failed to produce systemic 

symptoms. This was expected since TraP coded for by AC2 of begomoviruses is 

essential for efficient transcription of the late viral sense genes, AV1 and BV1 (Sunter & 

Bisaro, 1992; Sunter & Bisaro, 1997b). Etessami et al., (1991) have shown that 

disruption of ACMV AC2 prevents plant infections and from this study also cannot 

functionally be complemented by co-expression of AC2 from DNA-A of a functionally 

intact virus. In contrast, a dysfunctional AC4 still resulted in plant infection and hence 

was dispensable for virus infection. AC4 proteins of bipartite begomoviruses are highly 

variable and somewhat transient in that they exist only in some DNA-A while missing in 

others. The results of this present study are consistent with finding of other groups that a 

functional AC4 of bipartite geminiviruses is not essential for infectivity (Bull et al., 2007; 

Etessami et al., 1991) and has not effects on viral replication or symptom development.  
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5. General discussion 

This study was conducted in the framework of the ongoing cassava virus research at the 

DSMZ Plant Virus Department. In earlier studies (Ariyo et al., 2005; Were et al., 2003; 

Were et al., 2004) cassava virus collections from Africa were established and viruses 

and the diseases they cause in cassava were characterised. Results and knowledge 

gained from those previous projects provided the impetus for the underlying hypotheses 

followed in this dissertation. 

Virus species in the genus Begomovirus, family Geminiviridae, are the main and most 

significant viruses infecting cassava in Africa. The considerable genetic diversity of these 

viruses (Ndunguru et al., 2005; Sserubombwe et al., 2008) is a result of recombination 

and intensive genome rearrangements which also include the acquisition of new genome 

components (Seal et al., 2006b). For recombination to arise, mixed infection is the 

prerequisite and consequently geminiviruses which replicate in the nuclei of infected 

cells, have to meet there (Morilla et al., 2004). Mixed begomovirus infections have been 

reported for many crops (Mansoor et al., 2003a; Mansoor et al., 2003b; Sanz et al., 

2000; Xie & Zhou, 2003) and frequently occur in cassava  (Ogbe et al., 2003b; Pita et al., 

2001b; Tadu et al., 2006). As a consequence very severe symptoms become evident 

strikingly demonstrating synergistic interactions. Some mixed infections like those 

reported for ACMV/EACMCV (Fondong et al., 2000) are found at constant frequencies   

in CMD field situations with ACMV single infections however dominating. In contrast, as 

is the case of ACMV/EACMV-UG mixed infections, a severe synergistic phenotype 

(Legg, 1999; Legg & Thresh, 2000; Owor et al., 2004) marks a new virus 

invasion/combination and this transient phase then is leaving EACMV-UG as the 

dominant and single virus causing the disease. The epidemiological impact of EACMV-
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UG as a key cassava virus in Africa is evident although the parameters for its selective 

advantage thus driving its dissemination are largely unclear.  

One key question addressed in the second chapter was whether virus replication and 

movement differ in mixed virus infections of ACMV and EACMV-UG compared to single 

infections with either of the viruses. If in mixed infections the concentrations of EACMV-

UG reach high concentrations, asymmetric to ACMV, the epidemiology of EACMV-UG 

could probably be explained. A further aspect of this study was to assess synergism in 

relation to virus concentrations and cassava genotype.  

In a quantitative assessment, the copy numbers of the genome components DNA-A and 

DNA-B of the respective viruses in single and mixed infections of cassava were 

determined. For this a real-time quantitative PCR system based on TaqMan® probes 

was developed. The cassava β-actin gene of which several copies are present in the 

genome proved an excellent endogenous control gene to validate the analytical 

procedure, from DNA extraction to qPCR. Thus a precise comparison among virus 

genome components was possible and as a spin-off, a highly specific real time qPCR for 

detection and quantitation of EACMV-UG and ACMV is now available for sensitive and 

rapid differential diagnosis of the viruses in samples with extremely low virus 

concentrations.  

In cassava landraces, generally, virus concentration corresponded with severity of 

disease symptoms. Considerably lower amounts of virus were recorded when symptoms 

were absent (recovery phase). This is consistent with earlier studies on ACMV (Fargette 

et al., 1996; Ogbe et al., 2003a) where higher virus concentrations correlated with the 

severity of the disease phenotype. However, when the assessment was extended to 

cassava genotypes with improved resistance/tolerance features, the virus status was 

evaluated differently. In the moderately resistant cassava cv. TMS 30572 despite the 

milder symptoms, virus concentration was not too different from that of a highly 

susceptible cassava cv.TME 117 expressing severe symptoms. From a virological point 
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of few, considering virus replication and movement, the classification of this cv. TMS 

30572 as a moderately resistant cultivar hence is not warranted and the use of this cv. 

as parent for resistance breeding should probably be revised. Resistance still was 

confirmed for the cv. Albert which was immune against ACMV but supported a limited 

replication of EACMV-UG. This was accompanied with virus spread and the expression 

of mild but transient symptoms.  

A differential assessment of DNA genomic components by qPCR revealed striking 

differences between the viruses. The DNA-A to DNA-B ratios recorded for EACMV-UG 

were B>A while for ACMV the reverse was true and higher concentrations of DNA-A 

compared to DNA-B were measured. Symptom type and plant invasion (movement) are 

predominant features of DNA-B. From studies of with plant infections induced by 

pseudorecombinant viruses (Hou & Gilbertson, 1996; Unseld et al., 2000) the severity of 

symptoms coincided with accumulation of DNA-B genomic components while plants 

showing attenuated symptoms had reduced levels of DNA-B. High levels of virus 

accumulation and consequently more severe symptoms were considered as better 

adaptability of the virus to the host (Hou et al., 1998). Thus from this quantitative study, 

EACMV-UG appeared to be the better adapted virus than ACMV reaching far higher 

virus concentrations in all cultivars than what was recorded for ACMV. The increased 

DNA-B levels in EACMV-UG infections, indicated for a highly efficient invasion of the 

“adapted” host while the limited virus movement of EACMV-UG in cassava cv. Albert 

was a characteristics of a “non adapted” host. A considerable although quite variable 

level of virus was recorded in non symptomatic leaves but only rarely virus freedom 

could be assumed. Notwithstanding, symptomless phases and recovery were attributed 

to a response of the host to, at least in phases, impair virus replication.  

Much higher virus titres were generally recorded for EACMV-UG in infected plants 

compared with ACMV, however when natural and artificial mixed infections in cassava 

were studied, ACMV concentrations only reached levels comparable to single infections. 
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Similarly, EAMCV-UG DNA-A concentrations remained more or less unchanged in mixed 

infections compared to single infections while EACMV-UG DNA-B was drastically 

reduced. This observation based on qPCR is in strong contrast to reports of synergism 

among ACMV and East African cassava mosaic Cameroon virus (EACMCV) where 

accumulation of EACMCV was very high for both DNA genome components with 

greatest increase of DNA-B compared to single EACMCV infections (Fondong et al., 

2000).  

In a study by Pita and co-workers (Pita et al., 2001b), a higher accumulation of both 

EACMV genomes in mixed infections was found indicating for strong synergism between 

ACMV and EACMV-UG. This was regarded as a driver for EACMV-UG epidemics and 

preferable spread of this virus by whiteflies. In contrast, the results from this study cannot 

confirm these earlier reports and ACMV appeared to be unaffected by presence of 

EACMV-UG. Moreover the low accumulation of EACMV-UG DNA-B rather indicates for 

negative interference. As shown for TYLCV/TYLCSV mixed infections (Morilla et al., 

2004) increased symptoms in dual infections are not necessarily bound to higher DNA 

accumulation.  

The objective dealt with in the third chapter of this dissertation was to study movement 

and distribution of ACMV and EACMV-UG in infected N. benthamiana plants. This study 

should in parallel follow the quantitative assessment of virus infections and intended to 

resolve tissue tropism of viruses in mixed and single infected cassava. DNA-A and DNA-

B genomic components of infectious clones of ACMV and EACMV-UG (Ariyo et al., 

2006) were modified by insertion of the gene for green fluorescent protein (GFP) in place 

of CP or BV1 or BC1 sequences and to express this reporter gene from transcription 

during virus infection. The dispensability of a functional CP for infectivity and movement 

within the plant was utilised to construct infectious bean dwarf mosaic virus (BDMV) 

clones containing a modified GFP in place of the CP (Sudarshana et al., 1998). By using 
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fluorescence analysis, cell-to-cell and long distance movement of BDMV was followed to 

reveal details of the infection process in Phaseolus vulgaris. 

In preliminary experiments, the strategy of Sudarshana et al. (1998) was followed to 

develop CP mutants of EACMV-UG, however infectivity of EACMV ∆CP mutants was not 

restored. Consequently, several alternative routes were pursued. GFP was introduced 

into the DNA-A from infectious EACMV or ACMV clones either by utilising the AV2 start 

and entirely replacing AV2 and CP or, as translational fusion to AV2 replacing CP only. 

In a study to reveal tissue tropism of ICMV, Rothenstein et al. (2007) used AV2:GFP 

fusion constructs to show association of fluorescence with the vascular system. None of 

the GFP constructs generated during this study induced begomovirus infections in N. 

benthamiana. Whereas, in a GFP recombinant BDMV DNA-A genome viability was not 

compromised and pathogenicity only slightly affected (Sudarshana et al., 1998), viability 

of recombinant EACMV and ACMV constructs was completely lost. The weak systemic 

symptoms found in rare cases in N. benthamiana with one construct (AV2://GFP∆CP) 

were due to presence of virus but GFP expression was missing and hence considered 

artefactual. 

The parental Infectious begomovirus clones of EACMV-UG and ACMV cause infections  

in N. benthamiana and in cassava. These infectious virus clones have been very 

efficiently used to screen for resistance in cassava germplasm (Ariyo et al., 2006). In 

addition, DNA-A CP replacement vectors were initially designed for virus induced gene 

silencing (VIGS) to study gene function in cassava (Fofana et al., 2004; Muangsan et al., 

2004; Pandey et al., 2009; Robertson, 2004). A number of gene constructs including 

endogenous genes (Mg-chelatase) and artificial miRNA genes were efficiently expressed 

using recombinant EACMV-UG DNA-A in which CP was partially or entirely replaced by 

the foreign gene. Hence loss of function cannot be explained by either size constraints 

(Etessami et al., 1989; Gilbertson et al., 2003) or loss of pathogenicity. Attenuated 

symptoms were also found in N. benthamiana infected with ICMV GFP recombinant 
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DNA-A constructs (Rothenstein et al., 2007), in BDMV-GFP infected beans (Sudarshana 

et al., 1998) and in infections with EACMV VIGS vectors in cassava (Winter S, 

unpublished) where recombinant viruses carrying foreign gene sequences caused 

significantly weaker symptoms than the parent virus clones. Lack of movement of ACMV 

and EACMV chimeras with truncated and deleted AV2 could also be explained by a 

function of AV2 in efficient virus movement in plants (Padidam et al., 1996). A role of CP 

in the infection process of bipartite geminiviruses, as suggested by Pooma et al., (1996), 

is probably minimal for EACMV and ACMV since VIGS vectors derived from parental 

clones efficiently replicated and remained stable in cassava and even more so in N. 

benthamiana. The complete loss of infectivity inherent to recombinant GFP clones 

carrying translational fusions or free GFP translated from AV1 or CP start codons can 

thus not be explained.         

Replication of recombinant ICMV expressing GFP and the association of GFP 

fluorescence with virus replicating virus was not convincingly demonstrated by 

Rothenstein et al. (2007). Hence besides BDMV, it can be assumed that GFP expression 

from a replicating begomovirus is at most very inefficient hence alternative routes need 

to be pursued to study virus movement and tissue affiliation. 

An alternative to GFP recombinant DNA-A clones, DNA-B mutants with GFP replacing 

either BC 1 or BV1 were generated. It was not assumed that DNA-B constructs would 

result in infectious viruses when coinoculated with cognate DNA-A however it was 

expected that functional DNA-A will transreplicate DNA-B. Since DNA-A components of 

certain bipartite geminiviruses are capable of systemically infecting plants when 

delivered by agroinoculation (Evans & Jeske, 1993; Klinkenberg & Stanley, 1990), 

dysfunctional BC1 or BV1 in DNA-B when transreplicated from cognate DNA-A would 

probably still support expression of GFP. However, this was never observed. 

This study has shown that labelling of EACMV and ACMV genomes with GFP inevitably 

results in loss of infectivity and it seems likely that the translatable GFP has a major 
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impact on the infectivity/ stability/ fitness of the virus constructs. Despite the beauty of 

using non destructive methods to follow virus infections in planta, it appears that even 

when mastered, such major interventions have serious impacts on the overall 

performance of viruses and create artificial systems which counterbalance advantages of 

real time in situ studies.  

Virus-virus interaction in mixed infections and synergism has been postulated as a result 

from suppression of the host defence mechanism. In the third part of the experiments (4th 

chapter) AC2 and AC4 genes of ACMV and EACMV which are implicated in suppression 

of gene silencing were characterized for their effects on the post transcriptional gene 

silencing (PTGS) pathway. A preliminary transient gene expression assay showed that 

the activity of AC2 to suppress PTGS was weak while expression of AC4 had no effects 

on PTGS. Silencing suppressors from plant viruses when expressed from transgenes in 

model hosts can cause serious developmental abnormalities (Anandalakshmi et al., 

2000; Mlotshwa et al., 2005; Pruss et al., 2004). AC2 and AC4 genes introduced into 

transgenic N. benthamiana resulted in abnormal growth and a series of phenotypic 

aberrations in this plant. Absent root formation in T0, leaf malformations and reduced 

flowering and seed setting were frequent with ACMV AC2 plants. Similar effects from 

expression of silencing suppressor genes in two different tobacco species were 

described in a recent study by Siddiqui et al. (2008b) thus indicating interference of viral 

suppressors with plant development. Interference at an early step in the silencing 

pathway would impair the regulation of multiple genes that are regulated by miRNA. It is 

not clear which steps in the silencing pathway are targeted however, the questions this 

study tried to address was interference with plant defence reactions. For these virus 

infection experiments transgenic plants reflecting a normal phenotype were chosen and 

infected with ACMV and PVA respectively. 

The results of the virus tests showed that ACMV and EACMV-UG AC2 expression 

increased the level of ACMV in plant infections while ACMV AC2 and AC4 genes 
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expressed in transgenic plants had no effects on virus concentration and symptoms. A 

similar response was reported for expression of AC2 on plant infections with Tobacco 

ringspot virus or Tobacco mosaic virus (Siddiqui et al., 2008a; Siddiqui et al., 2008b). 

From studies to characterize AC2 of MYMV and AC2 from ACMV (Trinks et al., 2005) a 

functional connection between silencing suppression and transcription activation by AC2 

was drawn. Suppression of silencing by the transcriptional activator protein AC2 requires 

transactivation of host genes which may code for components of an endogenous 

network that controls silencing.  

It was surprising to see no effect of ACMV AC4 expression on ACMV infections 

considering its postulated role as silencing suppressor gene (Vanitharani et al., 2004) 

and major determinant of pathogenesis in monopartite begomoviruses [C4 gene] (van 

Wezel et al., 2002a). In virus infection studies with plants expressing AL2 [syn. AC2] 

(Sunter et al., 2001) it was found that AL2 acts as a pathogenicity factor by inhibiting 

host stress or defence responses against DNA and also RNA viruses. This was not 

evident from enhanced symptoms or increased virus replication but rather from a 

reduction of latency period and increased sensitivity to inoculation in transgenic plants. 

The evaluation of virus replication and symptoms severity in this study thus was probably 

not adequate to characterise silencing suppression activity since latency and inoculum 

concentration was not considered. 

Transient expression of silencing suppressor proteins from several viruses triggers RNA 

silencing suppression. Inducers like HcPro (potyvirus) or P15 (tombusvirus) act on early 

events by counteracting silencing induced by expression of dsRNA. Experiments 

conducted by Vanitharani et al. (2004) report a reversal of silencing in 16c GFP 

transgenic plants by transient expression of either AC2 of EACMCV or AC4 of ACMV.  

Despite the fact that silencing suppressor genes of different viruses show different 

behaviour, AC2 suppression was not observed in this study. Furthermore effects of 

SLCMV AC2 reported earlier as weak silencing suppressor, was also not confirmed. 
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Nevertheless, it has to be stated that the experiments reported here and those by 

Vanitharani et al. (2004) are parallel observations and not directed to a synchronous 

phase in silencing. While the silencing suppression experiments from this study reflect 

on early events, the 16c GFP silencing reversal showed that AC2 and AC4 can reverse 

an already established silencing. This is a later event; hence both observations are 

independent and consequently not comparable.  

PTGS suppression activity of ACMV AC4 genes were reported by Vanitharani et al. 

(2004). This study showed that related viruses have different suppressors which act on 

different silencing pathways. AC4 unlike AC2 can bind single stranded siRNA and is able 

to suppress PTGS by binding small RNA (Chellappan et al., 2005a). This silencing 

suppressor effect was however not studied in transient assays since AC4 was not 

included in the study. Geminiviruses must be able to counteract PTGS and TGS to 

successfully infect plants (Raja et al., 2010). From evidence provided, including this 

study, AC2 proteins are at most weak PTGS suppressors and from the body of available 

evidence, it can be argued that AC2 by opposing methylation are strong suppressors of 

TGS. Perhaps the role of AC4 then is, to counteract PTGS.  

The summary of the experiments of this study is that AC2 of ACMV is a pathogenicity 

factor as described by Voinnet et al., (1999) but not a suppressor of PTGS and hence 

pathogenicity is not related to gene silencing suppression activity (Diaz-Pendon & Ding, 

2008).  

Knock out mutants of ACMV and EACMV with dysfunctional AC2 and AC4 genes 

respectively were generated and tested for their infectivity in N. benthamiana. Infection 

experiments with mutant virus carrying dysfunctional EACMV AC2 failed and loss of 

viability from mutated AC2. This was expected since TraP coded by AC2 is essential for 

efficient transcription of the late viral sense genes, AV1 and BV1 (Sunter & Bisaro, 1992; 

Sunter & Bisaro, 1997b). Disruption of ACMV AC2 resulted in loss of infectivity and as 
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shown in this study cannot functionally be complemented by co-expression of AC2 from 

DNA-A of a functionally intact virus. In contrast, a virus with dysfunctional AC4 still is 

infectious and hence AC4 is dispensable for virus infection and has no effects on viral 

replication or symptom development.  
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9. Appendix 

Appendix Table 2.5: Relative concentrations of ACMV [DRC6] DNA-A and DNA-B in virus infected (non-symptomatic) and uninfected cassava 
plants (genotype TME 117) calculated using the relative standard curve method 
 

    ACMV [DRC6]  β- actin gene of cassava         

Test sample 
TME 117_NS 

genome 
component 

Ct ± Std. 
Dev. 

Mean 
Log 

Conc. 

Mean 
Conc. 

(copies) 

Ct ± Std. 
Dev. 

Mean 
Log 

Conc. 

Mean 
Conc. 

(copies) 

Normalized 
target 

Fold 
difference in 
target with 
Calibrator 

A:B A vs. 
B 

Ca 24 DNA-A 28.77±0.1 3.05 1.11E+03 24.34±0.03 7.18 1.53E+07 7.28E-05 1.89E+02 1.29 A > B 

 DNA-B 29.09±0.11 3.26 1.81E+03 24.34±0.03 7.18 1.53E+07 1.19E-04 1.46E+02   

Ca 26 DNA-A 18.38±0.05 6.31 2.06E+06 24.52±0.23 7.13 1.37E+07 1.50E-01 3.90E+05 2.94 A > B 

 DNA-B 18.73±0.21 6.17 1.48E+06 24.52±0.23 7.13 1.37E+07 1.08E-01 1.33E+05   

Ca 28 DNA-A 26.47±0.14 3.77 5.91E+03 24.29±0.15 7.20 1.59E+07 3.72E-04 9.66E+02 2.27 A > B 

 DNA-B 27.38±0.2 3.74 5.49E+03 24.29±0.15 7.20 1.59E+07 3.46E-04 4.26E+02   

Ca 24.2 DNA-A 31.64±0.15 2.14 1.39E+02 24.18±0.04 7.23 1.70E+07 8.18E-06 2.12E+01 1.41 A > B 

 DNA-B 32.49±0.43 2.30 2.07E+02 24.18±0.04 7.23 1.70E+07 1.22E-05 1.50E+01   

Ca 26.2 DNA-A 26.8±0.11 3.66 4.62E+03 24.35±0.03 7.18 1.52E+07 3.05E-04 7.92E+02 2.39 A > B 

 DNA-B 27.84±0.13 3.61 4.06E+03 24.35±0.03 7.18 1.52E+07 2.68E-04 3.31E+02   

Ca 28.2 DNA-A 29.9±0.05 2.69 4.89E+02 24.29±0.06 7.20 1.58E+07 3.09E-05 8.03E+01 0.66 A > B 

 DNA-B 29.32±0.22 3.19 1.57E+03 24.29±0.06 7.20 1.58E+07 9.92E-05 1.22E+02   

Ca 91.1 DNA-A 36.07±0.63 0.75 5.94 24.33±0.1 7.19 1.54E+07 3.85E-07 1.00E+00 1.00 A = B 

(Calibrator) DNA-B 36.79±0.03 1.10 12.49 24.33±0.1 7.19 1.54E+07 8.10E-07 1.00E+00     
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Appendix Table 2.6: Relative concentrations of ACMV [DRC6] DNA-A and DNA-B in virus infected (symptomatic) and uninfected cassava 
plants (genotype TME 117) calculated using the relative standard curve method 

  

 

    ACMV [DRC6]  β- actin gene of cassava         

Test sample 
TME 117_S 

genome 
component 

Ct ± Std. 
Dev. 

Mean 
Log 

Conc. 

Mean 
Conc. 

(copies) 

Ct ± Std. 
Dev. 

Mean 
Log 

Conc. 

Mean 
Conc. 

(copies) 

Normalized 
target 

Fold 
difference in 
target with 
Calibrator 

A:B A vs. 
B 

Ca 25 DNA-A 21.84±0.02 5.23 1.68E+05 24.25±0.15 7.21 1.63E+07 1.04E-02 2.69E+04 3.17 A > B 

 DNA-B 22.72±0.1 5.05 1.12E+05 24.25±0.15 7.21 1.63E+07 6.87E-03 8.48E+03   

Ca 27 DNA-A 17.3±0.2 6.65 4.53E+06 24.32±0.14 7.19 1.55E+07 2.92E-01 7.58E+05 3.53 A > B 

 DNA-B 17.79±0.07 6.43 2.70E+06 24.32±0.14 7.19 1.55E+07 1.74E-01 2.15E+05   

Ca 29 DNA-A 12.82±0.01 8.06 1.15E+08 24.86±0.2 7.04 1.10E+07 1.05E+01 2.73E+07 5.60 A > B 

 DNA-B 13.49±0.03 7.64 4.34E+07 24.86±0.2 7.04 1.10E+07 3.95E+00 4.87E+06   

Ca 25.2 DNA-A 16.19±0.06 7.00 1.01E+07 24.43±0.13 7.16 1.44E+07 6.98E-01 1.81E+06 6.36 A > B 

 DNA-B 17.47±0.1 6.52 3.34E+06 24.43±0.13 7.16 1.44E+07 2.31E-01 2.85E+05   

Ca 27.2 DNA-A 16.88±0.12 6.78 6.09E+06 24.6±0.09 7.11 1.30E+07 4.70E-01 1.22E+06 5.43 A > B 

 DNA-B 18±0.08 6.37 2.36E+06 24.6±0.09 7.11 1.30E+07 1.82E-01 2.25E+05   

Ca 29.2 DNA-A 17.14±0.11 6.71 5.08E+06 24.44±0.06 7.16 1.44E+07 3.54E-01 9.20E+05 4.58 A > B 

 DNA-B 18.01±0.1 6.37 2.34E+06 24.44±0.06 7.16 1.44E+07 1.63E-01 2.01E+05   

Ca 91.1 DNA-A 36.07±0.63 0.75 5.94E+00 24.33±0.1 7.19 1.54E+07 3.85E-07 1.00E+00 1.00 A = B 

(Calibrator) DNA-B 36.79±0.03 1.10 1.25E+01 24.33±0.1 7.19 1.54E+07 8.10E-07 1.00E+00     
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Appendix Table 2.7: Relative concentrations of EACMV-UG DNA-A and DNA-B B in virus infected (non-symptomatic) and uninfected cassava 
plants (genotype TMS 30572) calculated using the relative standard curve method 

 

    EACMV [Ug] Ca055  β- actin gene of cassava         

Test sample 
TMS 

30572_NS 

genome 
component 

Ct ± Std. 
Dev. 

Mean 
Log 

Conc. 

Mean 
Conc. 

(copies) 

Ct ± Std. 
Dev. 

Mean 
Log 

Conc. 

Mean 
Conc. 

(copies) 

Normalized 
target 

Fold 
difference in 
target with 
Calibrator 

A:B A vs. 
B 

Ca 36 DNA-A 30.15±0.23 3.11 1.30E+03 24.49±0.06 7.14 1.39E+07 9.39E-05 5.40E+02 0.04 A < B 

 DNA-B 25.48±0.13 4.52 3.31E+04 24.49±0.06 7.14 1.39E+07 2.39E-03 1.37E+04   

Ca 38 DNA-A 28.89±0.06 3.49 3.09E+03 24.99±0.04 7.00 1.01E+07 3.06E-04 1.76E+03 2.18 A > B 

 DNA-B 29.85±0.16 3.15 1.42E+03 24.99±0.04 7.00 1.01E+07 1.41E-04 8.10E+02   

Ca 40 DNA-A 29.69±0.08 3.25 1.77E+03 24.95±0.18 7.00 1.01E+07 1.75E-04 1.01E+03 0.44 A < B 

 DNA-B 28.41±0.27 3.60 4.05E+03 24.95±0.18 7.00 1.01E+07 4.00E-04 2.31E+03   

Ca 42 DNA-A 30.97±0.10 2.86 7.30E+02 25.09±0.01 6.97 9.43E+06 7.74E-05 4.46E+02 0.44 A < B 

 DNA-B 29.64±0.17 3.22 1.67E+03 25.09±0.01 6.97 9.43E+06 1.77E-04 1.02E+03   

Ca 36.2 DNA-A 21.51±0.36 5.71 5.23E+05 24.69±0.18 7.09 1.22E+07 4.28E-02 2.46E+05 2.66 A > B 

 DNA-B 23.00±0.06 5.29 1.97E+05 24.69±0.18 7.09 1.22E+07 1.61E-02 9.27E+04   

Ca 38.2 DNA-A 21.72±0.04 5.65 4.42E+05 24.82±0.19 7.05 1.13E+07 3.91E-02 2.25E+05 0.59 A < B 

 DNA-B 21.13±0.04 5.88 7.54E+05 24.82±0.19 7.05 1.13E+07 6.68E-02 3.84E+05   

Ca 40.2 DNA-A 25.41±0.19 4.53 3.44E+04 24.77±0.13 7.06 1.16E+07 2.97E-03 1.71E+04 1.16 A > B 

 DNA-B 25.64±0.10 4.47 2.95E+04 24.77±0.13 7.06 1.16E+07 2.55E-03 1.47E+04   

Ca 42.2 DNA-A 23.34±0.34 5.16 1.46E+05 24.92±0.21 7.02 1.06E+07 1.38E-02 7.97E+04 0.24 A < B 

 DNA-B 21.45±0.30 5.78 6.12E+05 24.92±0.21 7.02 1.06E+07 5.78E-02 3.33E+05   

Ca 88.2 DNA-A  - 1.00 1.00E+00 25.86±0.14 6.76 5.76E+06 1.74E-07 1.00 1.00 A = B 

(Calibrator) DNA-B  - 1.00 1.00E+00 25.86±0.14 6.76 5.76E+06 1.74E-07 1.00     
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Appendix Table 2.8: Relative concentrations of EACMV-UG DNA-A and DNA-B B in virus infected (symptomatic) and uninfected cassava 
plants (genotype TMS 30572) calculated using the relative standard curve method 

 

    EACMV [Ug] Ca055  β- actin gene of cassava         

Test sample 
TMS 30572_S 

genome 
component 

Ct ± Std. 
Dev. 

Mean 
Log 

Conc. 

Mean 
Conc. 

(copies) 

Ct ± Std. 
Dev. 

Mean 
Log 

Conc. 

Mean 
Conc. 

(copies) 

Normalized 
target 

Fold 
difference in 
target with 
Calibrator 

A:B A vs. 
B 

Ca 37 DNA-A 16.21±0.14 7.30 2.02E+07 24.42±0.66 7.16 1.54E+07 1.31E+00 7.54E+06 0.37 A < B 

 DNA-B 15.19±0.06 7.74 5.45E+07 24.42±0.66 7.16 1.54E+07 3.53E+00 2.03E+07   

Ca 39 DNA-A 20.18±0.17 6.11 1.29E+06 24.89±0.07 7.03 1.07E+07 1.20E-01 6.93E+05 0.24 A < B 

 DNA-B 18.42 ± 0.09 6.73 5.34E+06 24.89±0.07 7.03 1.07E+07 4.98E-01 2.86E+06   

Ca 41 DNA-A 16.46 ± 0.09 7.23 1.69E+07 24.8±0.1 7.06 1.14E+07 1.49E+00 8.55E+06 0.28 A < B 

 DNA-B 15.04 ± 0.24 7.78 6.13E+07 24.8±0.1 7.06 1.14E+07 5.37E+00 3.09E+07   

Ca 43 DNA-A 17.29 ± 0.17 6.98 9.56E+06 25.06±0.09 6.98 9.63E+06 9.93E-01 5.72E+06 0.25 A < B 

 DNA-B 15.68 ± 0.02 7.58 3.83E+07 25.06±0.09 6.98 9.63E+06 3.98E+00 2.29E+07   

Ca 37.2 DNA-A 16.59 ± 0.12 7.19 1.55E+07 24.95±0.11 7.01 1.03E+07 1.50E+00 8.63E+06 0.20 A < B 

 DNA-B 14.68 ± 0.05 7.89 7.84E+07 24.95±0.11 7.01 1.03E+07 7.60E+00 4.38E+07   

Ca 39.2 DNA-A 18.38 ± 0.02 6.65 4.47E+06 24.55±0.15 7.12 1.34E+07 3.35E-01 1.93E+06 0.17 A < B 

 DNA-B 16.22 ± 0.09 7.41 2.60E+07 24.55±0.15 7.12 1.34E+07 1.94E+00 1.12E+07   

Ca 41.2 DNA-A 20.22 ± 0.17 6.10 1.25E+06 24.91±0.09 7.02 1.06E+07 1.18E-01 6.81E+05 0.12 A < B 

 DNA-B 17.48 ± 0.00 7.02 1.05E+07 24.91±0.09 7.02 1.06E+07 9.90E-01 5.70E+06   

Ca 43.2 DNA-A 17.27 ± 0.17 6.98 9.70E+06 24.77±0.17 7.06 1.17E+07 8.32E-01 4.79E+06 0.29 A < B 

 DNA-B 15.88 ± 0.05 7.52 3.30E+07 24.77±0.17 7.06 1.17E+07 2.84E+00 1.63E+07   

Ca 88.2 DNA-A  - 1.00 1.00E+00 25.86±0.14 6.76 5.76E+06 1.74E-07 1.00 1.00 A = B 

(Calibrator) DNA-B  - 1.00 1.00E+00 25.86±0.14 6.76 5.76E+06 1.74E-07 1.00     
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Appendix Table 2.9: Relative concentrations of ACMV [DRC6) DNA-A and DNA-B B in virus infected (non-symptomatic) and uninfected 
cassava plants (genotype TMS 30572) calculated using the relative standard curve method 

 

    ACMV [DRC6]  β- actin gene of cassava         

Test sample TMS 
30572_NS 

genome 
component 

Ct ± Std. Dev. Mean 
Log 

Conc. 

Mean Conc. 
(copies) 

Ct ± Std. Dev. Mean 
Log 

Conc. 

Mean Conc. 
(copies) 

Normalized 
target 

Fold difference in 
target with 
Calibrator 

A:B A vs. B 

Ca 44 DNA-A 26.02±0.2 3.91 8.18E+03 24.15±0.21 7.24 1.74E+07 4.71E-04 3.30E+02 1.70 A > B 

 DNA-B 27.86±0.18 3.60 4.04E+03 24.15±0.21 7.24 1.74E+07 2.33E-04 1.94E+02   

Ca 46 DNA-A 18.86±0.13 6.16 1.46E+06 25.06±0.08 6.98 9.60E+06 1.52E-01 1.06E+05 1.63 A > B 

 DNA-B 19.77±0.12 5.88 7.53E+05 25.06±0.08 6.98 9.60E+06 7.84E-02 6.53E+04   

Ca 48 DNA-A 28.95±0.12 2.99 9.79E+02 25.05±0.04 6.98 9.66E+06 1.01E-04 7.09E+01 1.61 A > B 

 DNA-B 31.06±0.26 2.70 5.11E+02 25.05±0.04 6.98 9.66E+06 5.29E-05 4.41E+01   

Ca 50 DNA-A 27.17±0.15 3.55 3.54E+03 25.04±0.03 6.99 9.76E+06 3.63E-04 2.54E+02 0.49 A < B 

 DNA-B 27.21±0.12 3.79 6.12E+03 25.04±0.03 6.99 9.76E+06 6.27E-04 5.22E+02   

Ca 52 DNA-A 30.6±0.08 2.47 2.94E+02 25.72±0.1 6.80 6.32E+06 4.66E-05 3.26E+01 0.87 A < B 

 DNA-B 31.95±0.15 2.45 2.86E+02 25.72±0.1 6.80 6.32E+06 4.52E-05 3.77E+01   

Ca 44.2 DNA-A 24.94±0.03 4.25 1.78E+04 25.34±0.3 6.91 8.15E+06 2.19E-03 1.53E+03 9.53 A > B 

 DNA-B 29.31±0.07 3.20 1.57E+03 25.34±0.3 6.91 8.15E+06 1.93E-04 1.61E+02   

Ca 46.2 DNA-A 23.39±0.19 4.74 5.52E+04 25.45±0.25 6.87 7.55E+06 7.30E-03 5.11E+03 0.50 A < B 

 DNA-B 23.02±0.25 4.96 9.23E+04 25.45±0.25 6.87 7.55E+06 1.22E-02 1.02E+04   

Ca 48.2 DNA-A 26.85±0.05 3.65 4.46E+03 25.3±0.15 6.92 8.27E+06 5.40E-04 3.78E+02 0.53 A < B 

 DNA-B 26.99±0.16 3.85 7.07E+03 25.3±0.15 6.92 8.27E+06 8.55E-04 7.12E+02   

Ca 50.2 DNA-A 27.37±0.83 3.49 3.49E+03 25.28±0.22 6.92 8.39E+06 4.16E-04 2.91E+02 1.41 A > B 

 DNA-B 28.9±0.34 3.31 2.08E+03 25.28±0.22 6.92 8.39E+06 2.47E-04 2.06E+02   

Ca 52.2 DNA-A 30.21±0.11 2.59 3.91E+02 25.26±0.22 6.93 8.51E+06 4.59E-05 3.21E+01 0.57 A < B 

 DNA-B 30.87±0.08 2.76 5.73E+02 25.26±0.22 6.93 8.51E+06 6.74E-05 5.61E+01   

Ca 88.2 DNA-A 35.55±0.19 0.91 8.22E+00 25.86±0.14 6.76 5.76E+06 1.43E-06 1.00 1.00 A = B 

(Calibrator) DNA-B 38.39±1.74 0.65 6.91E+00 25.86±0.14 6.76 5.76E+06 1.20E-06 1.00     
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Table 2.10: Relative concentration off ACMV [DRC6] DNA-A and DNA-B in virus infected (symptomatic) and uninfected cassava plants 
(genotype TMS 30572) as calculated using the relative standard curve method 

    ACMV [DRC6]  β- actin gene of cassava         

Test sample TMS 
30572_S 

genome 
component 

Ct ± Std. Dev. Mean 
Log 

Conc. 

Mean Conc. 
(copies) 

Ct ± Std. Dev. Mean 
Log 

Conc. 

Mean Conc. 
(copies) 

Normalized 
target 

Fold difference in 
target with Calibrator 

A:B A vs. B 

Ca 45 DNA-A 17.23±0.11 6.68 4.75E+06 25.19±0.08 6.95 8.87E+06 5.35E-01 3.75E+05 1.27 A > B 

 DNA-B 17.56±0.1 6.50 3.14E+06 25.19±0.08 6.95 8.87E+06 3.54E-01 2.95E+05   

Ca 47 DNA-A 17.48±0.01 6.60 3.96E+06 25.11±0.1 6.97 9.31E+06 4.25E-01 2.97E+05 0.91 A < B 

 DNA-B 17.31±0.01 6.56 3.67E+06 25.11±0.1 6.97 9.31E+06 3.94E-01 3.29E+05   

Ca 49 DNA-A 18.39±0.11 6.31 2.06E+06 25.11±0.05 6.97 9.33E+06 2.20E-01 1.54E+05 0.88 A < B 

 DNA-B 18.29±0.05 6.29 1.96E+06 25.11±0.05 6.97 9.33E+06 2.10E-01 1.75E+05   

Ca 51 DNA-A 18.22±0.21 6.37 2.34E+06 25.02±0.14 6.99 9.87E+06 2.37E-01 1.66E+05 0.94 A < B 

 DNA-B 18.19±0.2 6.32 2.09E+06 25.02±0.14 6.99 9.87E+06 2.12E-01 1.76E+05   

Ca 53 DNA-A 20.47±0.01 5.66 4.56E+05 25.11±0.17 6.97 9.37E+06 4.86E-02 3.40E+04 1.09 A > B 

 DNA-B 20.94±0.05 5.55 3.51E+05 25.11±0.17 6.97 9.37E+06 3.75E-02 3.12E+04   

Ca 45.2 DNA-A 18.39±0.02 6.31 2.05E+06 25.5±0.23 6.86 7.33E+06 2.80E-01 1.96E+05 1.12 A > B 

 DNA-B 18.59±0.43 6.18 1.53E+06 25.5±0.23 6.86 7.33E+06 2.09E-01 1.74E+05   

Ca 47.2 DNA-A 16.5±0.12 6.90 8.05E+06 25.48±0.03 6.86 7.33E+06 1.10E+00 7.69E+05 1.24 A > B 

 DNA-B 16.7±0.06 6.74 5.46E+06 25.48±0.03 6.86 7.33E+06 7.45E-01 6.21E+05   

Ca 49.2 DNA-A 16.47±0.02 6.91 8.22E+06 25.49±0.17 6.86 7.33E+06 1.12E+00 7.86E+05 1.31 A > B 

 DNA-B 16.76±0.04 6.72 5.26E+06 25.49±0.17 6.86 7.33E+06 7.18E-01 5.99E+05   

Ca 51.2 DNA-A 16.65±0.08 6.86 7.22E+06 25.41±0.06 6.88 7.67E+06 9.42E-01 6.59E+05 0.68 A < B 

 DNA-B 15.95±0.15 6.95 8.91E+06 25.41±0.06 6.88 7.67E+06 1.16E+00 9.68E+05   

Ca 53.2 DNA-A 16.57±0.04 6.88 7.65E+06 25.37±0.16 6.90 7.91E+06 9.67E-01 6.77E+05 2.04 A > B 

 DNA-B 17.55±0.04 6.50 3.15E+06 25.37±0.16 6.90 7.91E+06 3.98E-01 3.32E+05   

Ca 88.2 DNA-A 35.55±0.19 0.91 8.22E+00 25.86±0.14 6.76 5.76E+06 1.43E-06 1.00 1.00 A = B 

(Calibrator) DNA-B 38.39±1.74 0.65 6.91E+00 25.86±0.14 6.76 5.76E+06 1.20E-06 1.00     
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