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Zusammenfassung

In der Dissertation geht es um die Berechnung der Picard-Fuchs Gleichung fiir spezielle 1-
Parameter Familien von invertierbaren Polynomen. Im besonderen betrachten wir fiir ein
invertierbares Polynom g(z1,...,z,) die Familie f(z1,...,2,) = g(z1,...,2,) + s - [] 2,
wobei s den Parameter bezeichnet. Fiir die durch diese Polynome definierten Familien von
Hyperfldchen berechnen wir in dieser Arbeit die Picard-Fuchs Gleichung, d.h. jene gewShnliche
Differentialgleichung, deren Losungsmenge genau die Periodenintegrale sind. Zum Beweis des
exakten Aussehens der Picard-Fuchs Gleichung benutzen wir die Griffiths-Dwork Methode
in einer kombinatorischen Form und die Theorie der GKZ Systeme. Als Folgerungen unserer
Arbeit und schon bestehender Literatur geben wir Beziehungen zwischen der Picard-Fuchs
Gleichung, der Poincaré Reihe und der Monodromie im Raum der Periodenintegrale an.

Schlagworte: Picard-Fuchs Gleichung, GKZ Systeme, Poincaré Reihe






Abstract

The thesis deals with calculating the Picard-Fuchs equation of special one-parameter families
of invertible polynomials. In particular, for an invertible polynomial g(x1, ..., x,) we consider
the family f(z1,...,2n) = g(x1,...,25) + s - [[ i, where s denotes the parameter. For the
families of hypersurfaces defined by these polynomials, we compute the Picard-Fuchs equation,
i.e. the ordinary differential equation which solutions are exactly the period integrals. For the
proof of the exact appearance of the Picard-Fuchs equation we use a combinatorial version
of the Griffiths-Dwork method and the theory of GKZ systems. As consequences of our work
and facts from the literature, we show the relation between the Picard-Fuchs equation, the
Poincaré series and the monodromy in the space of period integrals.
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Introduction

In this thesis we investigate the Picard-Fuchs equation of special one-parameter families of
Calabi-Yau varieties. Calabi-Yau varieties have been studied in much detail, especially in
Mirror Symmetry. Much of the early interest in this field focused on toric varieties. This is
mostly due to Batyrev [Bat94], who showed that for hypersurfaces in toric varieties duality
in the sense of Mirror Symmetry can be reduced to polar duality between polytopes of toric
varieties. This was the starting point for many achievements in Mirror Symmetry of Calabi-
Yau varieties. The work of Batyrev, however, does not cover the families in weighted projective
space that we consider in this thesis. In particular, Batyrev requires an ambient space that
is Gorenstein. This implies that every weight divides the sum of all weights. In the case
of hypersurfaces in weighted projective spaces this restricts the class covered by Batyrev’s
approach to polynomials of Brieskorn-Pham type.

The hypersurfaces we investigate are defined by invertible polynomials. These are weighted
homogeneous polynomials g¢(z1,...,2,) € C[z1,...,2,], which are a sum of exactly n
monomials, such that the weights q1,..., g, of the variables x1,...,z, are unique up to a
constant and the affine hypersurface defined by the polynomial has an isolated singular-
ity at 0. The class of invertible polynomials includes all polynomials of Brieskorn-Pham
type, but is much bigger. These polynomials were already studied by Berglund and Hiib-
sch [BH92|, who showed that a mirror manifold is related to a dual polynomial. For an
invertible polynomial g(z1,...,2,) = >0 [[i, xf” the dual polynomial ¢'(z1,...,7,)
is defined by transposing the exponent matrix £ = (E;;);; of the original polynomial, so
gt (z1,. .. ) = Py | :CZE“ If the polynomial is of Brieskorn-Pham type then the poly-
nomial is in the above sense self-dual. This work was made precise by Krawitz, et al. (cf.
[KPAT10], [Kra09]), where an isomorphism is given between the FJRW-ring of the polynomial
(cf. [EJR09]) and a quotient of the Milnor ring of the dual polynomial. In addition Chiodo and
Ruan [CRI10| have made progress by stating the so called Landau-Ginzburg/Calabi-Yau cor-
respondence for invertible polynomials. Among other things this includes the statement that
the Chen-Ruan orbifold cohomology of the Mirror Partners interchanges. Recently, Borisov
[Bor10] developed a theory combining his work with Batyrev on toric varieties [BB97| in
Mirror Symmetry and the work of Krawitz on invertible polynomials in Mirror Symmetry
[Kra09].



2 Introduction

In this thesis we analyse the Picard-Fuchs equations of the one-parameter families of hyper-
surfaces. The Picard-Fuchs equation is a differential equation that is satisfied by the periods
of the family, i.e. the integrals of a form over a basis of cycles. These differential equations
have been studied by many people and this can lead to several aspects of Mirror Symmetry.
For example, Morrison [Mor92| used the Picard-Fuchs equations of hypersurfaces to calculate
the mirror map and Yukawa couplings for mirror manifolds. In [CYY0S8]| Chen, Yang and Yui
study the monodromy for Picard-Fuchs equations of Calabi-Yau threefolds in terms of mon-
odromy groups. These give two potential applications of the results of this thesis to further
research.

We consider a special one-parameter family over an invertible polynomial and calculate
the Picard-Fuchs equation for this family. In detail we start with an invertible polynomial
g(z1,...,zy), and in addition we require that the weights ¢1, ..., ¢, of g add up to the degree
d of g. This is called the Calabi-Yau condition, because in [Dol82] Dolgachev showed that under
this condition the canonical bundle of the hypersurface {g(z1,...,2,) =0} C P(q1,...,qn) is
trivial. The special one-parameter family we are dealing with is given by

n
flxy, ... xn) =g(x1,...,2p) —i—sti,
i=1

where s is a parameter. We calculate the Picard-Fuchs equation for this one-parameter family
by using the Griffiths-Dwork method, which provides an algorithm to calculate the Picard-
Fuchs equation (cf. [CK99]). Unfortunately this method of calculations can be quite compu-
tationally expensive. Therefore we develop a combinatorial approach for the Griffiths-Dwork
method. This approach, among other things, allows us to prove the order of the Picard-Fuchs
equation. With this statement and the computation of the GKZ system satisfied by the same
periods, we can prove a general formula for the Picard-Fuchs equation. For a one-parameter
family f defined above the Picard-Fuchs equation is given by

n n gi—1 .7 -1
Gi gd j-d - ~d ‘ ~
o=]Ta TI T+ ]I6+07 - ' Tle - ]E -0
=1 i=1 j=0 Lel =0 vel

where qi,...,Q, are the weights of the dual polynomial g, d is the degree of ¢, and I =

{0,...,d— 130U, {oqi%d(qgi”d}
One interesting observation is that the Picard-Fuchs equation consists only of the data given
by the dual polynomial, namely the dual weights and the dual degree. As pointed out to us
by Stienstra, this Picard-Fuchs equation was already obtained in a work by Corti and Goly-
shev [CGO6] in the context of local systems and Landau-Ginzburg pencils. Our combinatorial
approach however is very constructive and yields not only the Picard-Fuchs equation itself
but computes a basis of the important part of the cohomology. These computations will again
relate to the duality between the polynomials. In addition we are able to show for certain
values of the parameter a 1-1 correspondence between the roots of the Picard-Fuchs equation
of f, the Poincaré series of the dual polynomial ¢' and the monodromy in the solution space
of the Picard-Fuchs equation.
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One important class that will be studied in detail in this thesis is the case of the 14 exceptional
unimodal hypersurface singularities that are part of Arnold’s strange duality [Arn75]. The
duality between these singularities was known before Mirror Symmetry, but was shown to fit
into the language of Mirror Symmetry (cf. [Dol96]). We will not only calculate the Picard-
Fuchs equation here, but also investigate the structure of the cohomology which is used in the

calculations for the Picard-Fuchs equation.

Structure of the thesis

This thesis starts with some preliminaries in Chapter [I] We recall definitions and relevant
statements needed for discussions and fix notation here. The first section of this chapter
is devoted to invertible polynomials and the duality among them. After that, in the second
section we concentrate on the Griffiths-Dwork method to calculate the Picard-Fuchs equations.
In Subsection we present the method in general for hypersurfaces in weighted projective
spaces and in Subsection we introduce a new combinatorial notation which will be used
to reconstruct the Griffiths-Dwork method in detail for one-parameter families f of the form

mentioned above.

The main goal of Chapter [2]is to prove the order of the Picard-Fuchs equation for a one-
parameter family. To achieve this goal we will investigate the structure of the underlying
combinatorics. This will shorten the calculations for the Griffiths-Dwork method, and also
allows us to construct explicitly the forms involved in the calculations of the Picard-Fuchs
equation. One important ingredient for the whole procedure to work nicely will be that the
Calabi-Yau condition holds, so the weights of the polynomial add up to the degree. In the last
section (Section of this chapter we calculate the complete Picard-Fuchs equation with
the Griffiths-Dwork method in one example.

Chapter [3] combines several results achieved so far in the thesis with results that can be found
in the literature. The main theorem (see Section presents the Picard-Fuchs equation for a
one-parameter family associated to an invertible polynomial in general. We already calculated
the order of the Picard-Fuchs equation and together with the GKZ system, computed in
Section [3.1], the theorem is proved. We take advantage of the constructive proof of the order
of the Picard-Fuchs equation in Section [3.3] where we investigate the cohomology of the
hypersurface defined by the one-parameter family. In Section we calculate the Picard-
Fuchs equations explicitly for the famous class of examples of the 14 exceptional unimodal
hypersurface singularities. In addition to this being an important class, this was the origin
of our work and most of the interesting phenomena can already be seen. In the last section
(Section we investigate the 1-1 correspondence between the Picard-Fuchs equation of a
one-parameter family, the Poincaré series of the transposed polynomial and the monodromy
in the solution space of the Picard-Fuchs equation.

Finally, the Appendix is divided into two parts. The first part (Appendix shows another
class of examples for which we calculated the Picard-Fuchs equation. This special class of
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examples is extracted from the list of 93 hypersurfaces stated in [Yon90|. In Appendix
one can find the code of the algorithm that is provided by the Griffiths-Dwork method. The
algorithm is written for Singular, but it can easily be adapted for any computer algebra
system.
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Chapter 1

Background on invertible polynomials
and the Griffiths-Dwork method

1.1 Invertible polynomials

We start this chapter by defining invertible polynomials and proving some properties we need

later.

Definition 1.1. Let

m n B
g(@) =Y ¢ ][ €Cla]
j=1 =1
be a quasihomogeneous polynomial with weights q1,...,q, € Z, where z = (x1,...,2,) and

E;; € N. Then g(z) is an invertible polynomial, if the following conditions hold:

(i) # variables = # summands , i.e. n =m,
(ii) the weights q1,...,q, are unique up to scaling by a multiple of ged(q1, .. .,q,) " and

(iii) the Milnor ring C[z]/J(g) has a finite basis, where J(g) = (2% ..., %) is the Jacobian

Ox1’"

ideal. This is equivalent to 0 being an isolated singularity of {g(z) = 0} C C".
Remark 1.2. We want to state some conventions we are using throughout the thesis:
e We require the weights to be reduced, i.e. ged(qq, ..., q,) = 1. This way the weights are
unique.

e Some authors call the polynomial g(x) invertible, if the first two conditions are satisfied
and a non-degenerate invertible polynomial, if g(x) satisfies all three conditions.

e Irom now on we assume that the coefficients c; are all equal to 1. This can always be

achieved by an easy coordinate transformation.
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e The weights are also defined by the smallest numbers q1,...,q, € N and d € N satisfying
the equation

En - By q1 d

En - Eng dn d

or concisely E'- g = d. We call E the ezponent matriz

M. Kreuzer and H. Skarke showed that the polynomials which are invertible are a composition

of only two types.

Theorem 1.3. (Kreuzer and Skarke [KS92|) Every invertible polynomial is a sum of polyno-

mials with distinct variables of the following two types

ko —
loop: xlflxz + $§2$3 + -+ :Bm_fxm + :cﬁ;"xl form > 2
- k1 ko km—1 km,
cham.xl T2+ Ty T3+ -+ T, 1 Tm + X forle

Example 1.4. We want to list two very famous class of examples here.

(i) A polynomial is of Brieskorn-Pham type if it is of the form g(z) = >"1" xfz with k; € N.
In this case the polynomial is always invertible and the exponent matrix is a diagonal

lem(kq,...,kn)
ki

matrix with the exponents k; on the diagonal. It follows that ¢; = and

d=lem(ky, ... kn).

(ii) For the 14 exceptional unimodal singularities, invertible polynomials can be chosen.
Table lists their name, invertible polynomial, reduced weights and degree in the first
four columns. In the last columns the dual singularity due to Arnol’d [Arn75| is listed.
In the next definition we will see how this duality fits into the context of invertible
polynomials which also explains the rest of the table. The example of Arnold’s strange
duality will be studied in detail in Section

In their paper [BH92| P. Berglund and T. Hiibsch proposed a way to define dual pairs of
invertible polynomials by transposing the exponent matrix.

Definition 1.5. If g(z) = 377, [[iL, xf” is an invertible polynomial then the Berglund-
Hiibsch transpose is given by

n n

g'(z) =Y T

j=1i=1

Example 1.6. As noticed before the dual singularities in the examples of Arnold’s strange

duality are given by transposed polynomials:
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Name g9(z,y,2) Weights Deg Dual weights gt (z,y,2) Dual
Eq2 T4yt 22 (6,14,21) 42 (6,14,21) 2 +y3+ 22 Ep
Ei3 Oy +y3+22 0 (4,10,15) 30 (6,8,15) D4 ayP 422 I
711 P +xyd+22 0 (6,815 30 (4,10,15) Py +y3+22 Epz
Ei4 slz 4P+ 22 (38,12) 24 (6,8,9) P+ 222 Qoo
Q1o zt g3 4 x2? (6,8,9) 24 (3,8,12) stz +y3+22 Eu
Z12 oty +ayd + 22 (46,11) 22 (4,6,11) oty +ayd + 22 T
Wi 20 4+ Pz 4 22 (4,5,10) 20 (4,10,5) o+ dy? Wy
Z13 vr+ayt+22 0 (359) 18 (4,6,7) y+y°+z? Qu
Qi1 By +yd+a22 0 (46,7) 18 (3,5,9) Bz 4zl + 22 73
Wiz aly+y22+22 (348 16 (4,6,5) ot 4 oy? + 922 Sp
S11 ot + %2 + x2? (4,5,6) 16 (3,8,4) 2tz +y? +yz2 Wi
Q12 2493 4222 (356) 15 (3,5,6) Bz4+17 +222 Qo
S12 wdy+ vz +x22 (3,4,5) 13 (3,5,4) 23z +xy? +yz2  Sio
Ui ot 4 22 + y2? (3,4,4) 12 (3,4,4) 4?2 +y2? Up

Table 1.1: Arnold’s strange duality

Remark 1.7. Notice that taking the transpose does not change the type of the polynomial. The
exponent matrix is a direct sum of matrices, where every summand belongs to a polynomial

of chain or loop type. Therefore we can transpose every chain and loop separately:

k K — k k
e g(z) =z + -+ 2, am + 2z = gl(z) = Tt + 21257 - + 21 2h and

k K — k k
o g(z) =ay'xa+ -+, T + xkm = gl(z) = it Fxan® -+ Tpp_pxhm,

Definition 1.8. Let g(z) be an invertible polynomial. We set f(z) to be the one-parameter
family associated to g(z) via

f(z) = g(x) + s [ [,
=1

where s denotes the parameter.

This one-parameter family f(x) will be one of the main objects of interest in this thesis.
Because we still want this family to be quasihomogeneous, we require that the weights of g(z)
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add up to the degree of g(x). In [Dol82] I. Dolgachev showed that this is the condition for a
quasihomogeneous polynomial to define a Calabi-Yau hypersurface.

Proposition 1.9. ([Dol82]) Let g(z) be a quasihomogeneous polynomial with weights
q1y---,qn. Then g(z) defines a hypersurface in P(qy,...,q,) that is Calabi- Yau, if

> g =d=degg(z).
=1

Lemma 1.10. If the Calabi- Yau condition holds for the weights of an invertible polynomial
then it also holds for the weights of the transposed polynomial.

Notation 1.11. For an invertible polynomial g(z) we denote the reduced weights with g1, ..., gy,
and degg = d. For the dual polynomial g* the weights are q,...,q, and degg’® = d. The
diagonal entries of the exponent matrix F are ky,...,k,. Notice that this are the same for g
and g°.

Proof. From Theorem [I.3|we know that every invertible polynomial is a sum of polynomials of
loop and chain type. We will without loss of generality only prove this lemma for polynomials
which are given by one chain or one loop. This is possible, because we can also write the
Calabi-Yau condition as 1 = > % and we have that 4k, = 1 or Lk; + %51 = 1. So the
summands in the Calabi-Yau condition only depend on the exponents in the chain or loop

they are in. Therefore it is enough to prove that for a chain and loop of arbitrary length the
sum over the % is the same as the sum over the % R

First let g(z) = 2 @y + 2223 4 - + :):mm__f:rm + xkm be a polynomial of the chain type of
length m. Then one can easily calculate that

Qﬂ _ i dm—-1 km —1 o 1 _ 1
d m7 d km lk km—l km lk
RIC] By
i=2 ] =2 kJ d i=1 H;'=1 kj
and the sum of all this can be written as
)OE TS SERTUTNULINES o ESTSY o i et
- i - I+i—1
i=1 d =1 i=l Hj:l kj = =1 H‘:l kj

If we look at the transposed polynomial g(z)! = xlfl + x;”:vl 4+ 4+ wm T2 + xhmy 1,
then analogously to the previous case we get

o _ 1 B_ b 11
d ki’ d kike  ky  kiko’
~ m—1 ~ m
m—-1 Z( )m—z—l 1 am Z(_l 1
~ - m— 1 -~ )
d =1 H] ) k d i=1 =1 k]

and therefore we get the sum

f:g S

=1 i=1 j=ij i=1




1.1 Invertible polynomials 9

This shows that > ", % = Z;ll%i and therefore, if the Calabi-Yau condition holds for
the weights of a polynomlal of chain type, it also holds for the weights of the transposed
polynomial.

Now we do the same for the loop type. Let g(z) = m]flxg + x§2x3 4+ m’:n”fllxm +xfnmm1 be
a loop of length m. Then we can write the weights as:

G ki-ockiikiy ke — ko kiakio kg 4o+ (=) g + (=17

d H;n=1 ki —1
1 m m—+i—1
_ I+1
= == D" I %6 mod m)-
Hj:l kj—1 =1 r=I4i
Therefore their sum is given by:
m q m m m—+i—1
i l+1
B A Vi kleZ LI o moam
i=1 i=1 =1 r=Il+1
m m m+i—Il+1

1
= Tm . 1 _ll+l krm m)-
H;’nzlkj_lg( ) ; rl;[Z ( od m)

But this is exactly the same as for the dual weights which are given by

G _ ki--kiakigy ke — ki kiokigy kw4 + (=)™ kg + (=)™
d H;nzl kj—1
1 i l mﬁ—l—i
= = ()™ K(r mod m)-
iz ki =1z r=it1

So also for the loop type we have ", & =37, %.
Because every invertible polynomial is a sum of polynomials of loop and chain type, we get
that if the weights of an invertible polynomial satisfy the Calabi-Yau condition so do the dual

weights. ]

We want to investigate another relation of the dual weights here, which has to do with the
partial derivatives of the one-parameter family f(z). This connection between the Jacobian
ideal of f(z) and the exponent matrix of g(z) occurs again in the next chapter.

km 11 Ty + wmyy is a loop of length m, then

Remark 1.12. First assume g(x ) = xl o+ F @,
we have f(z) = x’flwz + o+ xm_l T+ 2Fmry + sw1 - - 2. The dual weights of g(z) can be

calculated via the equation

ki 0 - 0 1 @ d
1k 0 - 0 : :
0 1 ks 0 - 0
0 0 1 ko4 O
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Because the dual weights of g(z) also satisfy the Calabi-Yau equation due to Lemma we
get the following equation:

ki 0 0 1 1 1 Q
1 ke 0 0
0 1 k3 O 0
0= _
0 0 1 kp O
0 0 1 km, 1 1 Tn
ki—1 -1 -1 0 qQ
0 ke —1 —1 - -1 :
-1 0 ks —1 —1 -1
—1 -1 0 kpq1—-1 -1 ;
-1 -1 0 kp — 1 Gn

This is interesting, because the ith column of this matrix is connected to % = kz’flffi_lxi_i_l +
Ti—1+ s H#i x; in the sense that the ith column is given by subtracting the exponent vector
of the summand kixf"'_lxi+1 by the exponent vector of the summand s H#i xj. Of course the
index is taken modulo m.

-1

The same happens if g(z) = 2% zy + - + :U:,Lm_l Ty 4 2Fm is a polynomial of chain type. The

equation from above is now given by

1 ky 0 - 0 Do : :
0 1 ks O -+ 0
0= i N
0 0 1 kpq O
0 0 1 kn 1 1 In
ki—1 -1 -1 -1 q
0 ky—1 —1 -1
-1 0 ks—1 -1 -1
-1 -1 0 kpq1—1 -1 :
-1 -1 0 kp — 1 Gn

and the partial derivatives of f(z) are ngl = klxlfl + s]_[ﬁ,é1 xj, g—gﬁ: = kii’?i_lxprl + xi_q1 +

SH#i zjfori=2,...,m—1and 82—7” = ml’%’”_l 4+ Tpp_1 + SH#m xj. If we again subtract
the exponent vector of the summand s H#i xj, for ¢t = 1,...,m, in the partial derivative from

krn_ 1

»m—% in the partial derivative

the exponent vector of the summand k:lzvlfl, kimfi_lxiﬂ or kn,x
then the result is exactly given by the columns of the matrix above.
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1.2 Introduction to the Griffiths-Dwork method

This section is divided into two parts. In the first part we explain the Griffiths-Dwork method,
which is a well-known method to calculate the Picard-Fuchs equation of a one-parameter
family of hypersurfaces. In the second part we will introduce our own combinatorial notation
to describe the Griffiths-Dwork method. Using this we are able to describe the Griffiths-Dwork
method in Chapter P|in a sufficiently abstract way. So we are able to present facts about the
Picard-Fuchs equation in general.

Before we start describing the Griffiths-Dwork method, we want to recall the definition of a
Picard-Fuchs equation.

Definition 1.13. The Picard-Fuchs equation of a one-parameter family f(z) of hypersurfaces
is defined as the ordinary differential equation with differential operator § = 3%, where s is
the parameter, which has as solutions exactly the period integrals. So the solutions are given
by f%_ w for a basis {y;} of Hy,_o(V(f)) and w € H" 2(V(f)).

1.2.1 The Griffiths-Dwork method

In this section we want to repeat how the Griffiths-Dwork method works. The method is due
to Griffiths [Gri69], Dwork [Dwo62] and the generalization to weighted polynomials was done
by Dolgachev [Dol82|. A good reference for this method in general is Chapter 5.3 of the book
by Cox and Katz [CK99]. We will not do everything in general but restrict ourselves to the
cases which are important to us. In particular we will only consider the one-parameter family
f(z) = g(z) + s[[i-, xi € C(s)[z] defined in [1.8) and explain the Griffiths-Dwork method for
these families.

We will recall and fix the notation we already used in the last section. We use this notation
throughout the rest of the thesis.

Notation 1.14. The polynomial g(z) = > 7_ [[iL, xf“ is an invertible polynomial. The di-
agonal entries of the exponent matrix E are denoted by ki,...,k,. The polynomial g(z) is
quasihomogeneous with weights qi, ..., ¢, and degree d. We define f(z) = g(z)+s[[;-, z; to
be a one-parameter family with parameter s.

We want to calculate the Picard-Fuchs equation for f(z). The first step is to describe the
cohomology H" 2(V(f)) in more detail. For this we use the residue map

Res : H" "' (P(qu, .., an)\V (f)) - PH"*(V(f)) € H"*(V(f)),

where PH"2(V(f)) = {n € H" 2(V(f))|n- H = 0 for the hyperplane class H} is the prim-
itive cohomology. Note that PH" 2(V(f)) = H"2(V(f)) if n is even. The advantage of this
map is that the cohomology H" 1 (P(q1,...,q,)\V(f)) was explicitly described by Griffiths
in [Gri69] and we can use the Residue map to carry this description over to the cohomology
of the hypersurface. In detail, the classes in H" ' (P(q1,...,¢,)\V(f)) can be represented by

Q% n —

forms of the form T where Qo = >0 (=1)/djzjdzy A+ Adzj A -+ Adzy, | € N and
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Q € C(s)[z] is a polynomial with deg @ = (deg f)(l — 1). We can now define the residue map

0 0
LRes Qflo - Qflo (1.1)

for an (n — 2)-cycle v and T, a tubular neighbourhood around .

as follows:

Let us go back to our goal. The Picard-Fuchs equation is of the form

0= ()5 + -+ p1()5 + pos)) </ w) ,

where pi(s) € C(s). Suppose w € PH" 2(V(f)), so w = Res EX for some Q, f,1. Using

equation (1.1)) we get

0 =(pr(5)5" + -+ p1(5)3 + pols)) ( / Res Q]ffo)
Q Q
<pT s 1<s>5Qfl°+po<s>Qfﬂ)

_ / (s
T’Y

— [ oot )+ ().
Vi

because the integral commutes with the differential operator. This means if we find a differ-

ential equation satisfied by the (n 2)-form w, then this also holds for the period integrals of

fl fl 0 for a form in PH" 2(V(f)). The idea

is now to calculate §° Q;?O for i = 0,1,... until we find a linear relation between these forms.
Unfortunately this is not so easy to do, because as i increases, the pole order [ also increases.

w. From now on we will write 0 instead of Res £

The Griffiths-Dwork method tells us how to solve this problem. The primitive cohomology
can be compared with the Milnor ring by the following isomorphism

(C(s)[2]/I () deg fya-1) = PH" =MLV ()
Q8%
o
where the subscript (deg f)(I—1) denotes the graded piece of degree (deg f)(I—1) in the Milnor
ring. The fundamental ingredient to this isomorphism is the Griffiths formula (cf. Theorem

4.3 in [Gri69]) that tells us how and when to reduce the pole order of an (n — 2)-form:

n  O0G;
-V, Gl i, 520

7l = T (modulo exact forms). (1.2)
This can be seen easily from the following calculation:
(=15 Ggtae Y axj Qo
1l - -1
— fHZ e, Gi)dzo A+ Ndag A+~ Ndaj A -+ Ady,

1<)
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The big advantage is now that all computations can be done with a Grébner basis in the
Milnor ring and the Picard-Fuchs equation can be calculated with the following algorithm.

Algorithm 1.15. (¢f. Coz and Katz [CK99], Section 5.3) With the following steps one can
determine the Picard-Fuchs equation for the one-parameter family f(z) with parameter s:

(i) Find a basis B of the Milnor Ring C(s)[z]/J(f) in degree d(l —1) for 1 <1 <n—1
(this is equivalent to having a basis of the primitive cohomology).

(i) Write d'w = (s%)iw in the basis B for all 0 < i < |B|. This is done by writing §'w
as a sum of a part that is in the basis and a part that is in the Jacobian ideal and
can therefore be reduced with the Griffiths formula. After reducing this process can be

repeated until pole order 0 is reached.

(iii) Now there are | B| basis elements and |B|+1 derivatives of w, so there is a linear relation
between them. The linear relation between the 6w gives the Picard-Fuchs equation of

f
Remark 1.16. One could ask why it is still interesting to investigate the Griffiths-Dwork
method in even more detail. The reason is that some of the calculations done in the above
algorithm are very expensive. Furthermore, it very often happens that in the calculations not
all elements of the basis of the Milnor ring are needed. The goal is therefore to find an abstract
way to describe the steps in the Griffiths-Dwork method and try to restrict the calculations

to a minimum.

Remark 1.17. If we have an invertible polynomial g(x) that satisfies the Calabi-Yau condition
and the one-parameter family we are looking at is f(z) = g(x)+ s ][] s, then we can easily

calculate §'w for w = % and all i > 0:
5w :SQO B 82 HSUzQO
/ f?
520 :SQO B 352 [Tx:i0 n 253(TT 1)
/ f? f?
(53(4) :SSJ}O . 782 1—.[]6;7190 + 6283(1_50551')2Q0 _ 684(Hf,fi>390

. i . | em—+1 Am
St — Z(_l)mrinm.s (H ‘/I;]) Qo

+1 ’
m=0 fm
where rh, = —rj !y + (m+ 1)riy ! for i,m > 1,m < i with rj" = r7 = 1 for all m and 79 = 1.
m+1 \ym
This means in the second step of the Algorithm [1.15{we have to write every ™ fsﬂff) i

in the basis B of the Milnor ring.

Remark 1.18. In practice we are going to interchange the first and the second step in Algorithm
1.15] The basic idea is to first write the d'w with monomials of degree < d(n — 2) and then
see which of them are linearly independent in the Milnor ring and choose a basis this way.
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1.2.2 The Griffiths-Dwork method for invertible polynomials and its com-
binatorics

In this section we want to show a possibility how to give a diagrammatic version of the
Griffiths-Dwork method. This means we will develop diagrams for all the steps in the Griffiths-
Dwork method. This is helpful later to reduce the algorithm to the important parts and do
the steps in a clear way to see what is happening there.

From now on we restrict ourselves completely to invertible polynomials. So g¢(z) =
S I, xf” is an invertible polynomial with weights ¢1,...,q, and degg = d. We de-
note by ki, ..., ky the diagonal entries of the matrix F' = (E;j); ;. These are the only entries
# 0,1 in this matrix. The one-parameter family f is given by f(z) = g(z)+s ][, zi. We will
assume that the weights of g satisfy the Calabi-Yau condition so that f is still weighted
homogeneous.

First we will have a closer look at the Jacobian ideal J(f). We start with an invertible
polynomial, so every variable can appear in at most two terms of g or equivalently 3 terms of
f- The possibilities for the terms that contain the variable x; in g are the following:
(i) xfi, which occurs if z; is in a chain of length 1,
(i) 2% + a:ia:fi_ll, which occurs if z; is the end of a chain of length > 2,
(iii) .f?ixi_i_l, which occurs if x; is the beginning of a chain of length > 2 or

1

(iv) l‘?ifEiJrl + xlzvffl , which occurs if z; is in the middle of a chain of length > 3 or in a

loop of arbitrary length.

Therefore there are only 4 possibilities for the partial derivative of f with respect to x;:

: ki—1
(i) a%zf = kixy" " + SH#Z- ZLj,

(i) a%if = kv x5+ s,

ki—1
(iii) (ﬁif = kiz;" " wip1 +s[[zj, or

(iv) (%if =kix]" wip + x4+ SH#Z» xj.

Partial derivatives in a diagrammatic way

Now we want to write these partial derivatives in a diagrammatic way. To do this we will not
write down monomials, but restrict ourselves to the exponents. So instead of writing [ [, ;"
we write the tuple of exponents (a1, ag, ..., a,).

In the next step we want to write the sum of monomials in the diagrammatic notation. Because

the Jacobian ideal of f is only generated by sums of two or three monomials, we concentrate
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on how to write these sums of two or three monomials in the Jacobian ideal in a good way.
First let us assume our partial derivative with respect to x; is a sum of two monomials, e.g.
x; occurs in f as kia:f"'_l +s H#i Tj or k‘imfi_lxiﬂ +s H#i xj. Then we can identify the two
involved monomials by two points given by the exponents and indicate the fact that they are
in a sum by an arrow that points to the monomial which has the parameter s as coefficient.
The coefficient k; of the other monomial will be written at the beginning of the arrow. Later
on if it is not important we will omit all coefficients to reduce the notation to the essential
information. So we would write the partial derivative kﬁfiil +s H#i T; as

[0,...,o,ki-1,0,...,ojf§----——ﬁ>(i,...,1,0,1,...,1)

Figure 1.1: Diagram associated to kixf"_l + s H#i x;

and similarly the sum kixfflmiﬂ +s]] i T would be represented by

[0,...,0,ki—-1,1,0,...,ijﬁ--______4>(1,...,1,0,1,1,...,1]

Figure 1.2: Diagram associated to kixfi_lxi+1 + s H#i xj

Now let us study what happens if we multiply a partial derivative by a monomial. Multi-
plication with a monomial does not change the number of summands. So we still end up
with a sum of two or three monomials and the exponent of the monomial just gets added to
the exponents of the partial derivative. For example if we multiply kimfi_l + s H#i x; by a

monomial m = c[[z]* then the product is represented in our new notation, by

(ah ces@im1,0i ki — 1 a4, ... 7anj
k;

c

[1+a1,...,1+ai,1,ai,1+ai+1,...,1—|—an)

Figure 1.3: Multiplication of kixfi_l +s H#i x; by a monomial m = c[] "

We keep track of the coefficient ¢ next to the middle of the arrow. Again if the informa-
tion is not important, we will omit the coefficient. A sum of two monomials can be written
as a monomial times a partial derivative, if the difference between the two monomials is
(1,...,1,—k;+1,1,...,1) and there is a partial derivative of the form kixfﬁl +s H#i xj or
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if the difference is (1,...,1,k; —1,0,1,...,1), the (¢ + 1)th entry is > 0 and there is a partial
derivative of the form /ﬁilﬁfi_1$i+1 + s H#i xj. Of course the coefficients have to fit, but this
will not need extra attention here.

Now let us discuss the case that the partial derivative is a sum of three monomials, so it is
either kixf"_l + acfi‘ll + s]_[#i xj or k’im?i_ll'i_i_l + xfi‘ll + s H#i z;. As in the case of two
monomials, we connect all monomials that form the partial derivative. This is best understood
in an example. First consider the case k:ixfi_l + xfi‘ll + s H#i xj, this leads to the picture

(0,...,0,ki_1,0,0...,0]

[0,...,0,0,1@-—1,0,...,0]1” —(1,...,1,1,0,1,...,1)

Figure 1.4: Diagram associated to kixffl + xfi‘ll + s H#i xj

and for the case k:,-xfi_lu’ﬂiﬂ + xfi]l + s H#i x; the picture is given by

(0,...,o,k:i,l,o,o,o...,oj

(O,...,0,0,k:,-—1,1,0,...,0jki —>[1,...,1,1,0,1,1,...,1j

Figure 1.5: Diagram associated to kixfi_lxiﬂ + :Effll +s H#i T

We put the arrow in the direction where the difference is given by (1,...,1,—k; +1,1,...,1)
or (1,...,1,—k; +1,0,1,...,1) to indicate the sum between the monomial with the biggest
x; exponent and the monomial with coefficient s.

In the same way as before we can describe what happens if we multiply such a derivative
consisting of three monomials by another monomial m = ¢[]z*. The result of multiplying
kit 4 xfi‘ll + 8]1; %; by m would be

(al, ey @2, Q51 + ki_l,ai, .. .,anj

ki

(al,...,ai_l,ai—l—ki—1,ai+1,...,anj C—»[l—i—al,...,1—|—ai_1,ai,1+ai+1,...,1—|—an)

Figure 1.6: Multiplication of ka1 4 xfi‘ll + 8][4 zj by a monomial m = c[] 7"

In the same way as before we can state the conditions that the sum of three monomials is
given by multiplying a monomial to a partial derivative. In the case of kimf"_l + a:fi’ll +
SH#Z- x;j the pairwise differences between the three monomials has to be (1,...,1, —k; +
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1,1,...,1), (1,...,1,—k;—1 + 1,0,1,...,1) and (0,...,0,k;—1,—k; + 1,0,...,0). In the case
of k’il‘fi_ll‘i+1 —I—xfff +s H#i x; the differences of the summands have to be (1,...,1, —k; +
1,0,1,...,1),(1,...,1,—k;—1+1,0,1,...,1) and (0,...,0,k;—1, —k; +1,—1,...,0). Again we
ignore the fact that the coefficients have to match.

Remark 1.19. We will sometimes say that an arrow of one of the two above types which has
three adjacent vertices creates an extra vertex. This is meant in the sense that if we want to
connect two vertices with distance (1,...,1,—k;+1,1,..., 1) or (1,...,1,—k;+1,0,1,...,1),
then an extra vertex has to be created in order to get all the differences correct.

Remark 1.20. One should notice that the vertices adjacent to the same arrow all have the
same weighted degree, because all summands of the partial derivative have the same weighted
degree. This means in particular that if you know the degree of one vertex, you know the
degree of all others.

The role of chains and loops

Remark 1.21. The property of a chain and a loop is also represented in the partial derivatives.
In a loop wlflafg + -4 xﬁlmxl all partial derivatives are of the form 8% = kixi-“*la:iﬂ +

and s[[;,;z;
is (1,...,1,—k;—1 +1,0,1,...,1) which is exactly the difference of the arrow which belongs
to the partial derivative 8:2{1 = ki_lmfi‘ll_lmi + x?i_; + sHﬁéF1 x; with respect to x;_1.

We have to be a little bit careful that all exponents involved are positive, which means that

:cfi’ll + SH#i z;. Notice that the difference between the exponents of xfi’ll

% has to be at least multiplied by x;. In our notation this means that if the numbers are
big enough, i.e. all entries of the vertex at the arrow tip are > 1, the partial derivatives of a
polynomial of loop type form a loop. We show here the smallest possible example. In general
this works if all entries are at least as big as shown here:

f
of

; km -2

83?2

0,ks,1,0,...,0
( )

Figure 1.7: Partial derivatives of a loop

In the case of a chain x]flscg + e+ J:i;’ff Ty, + xFm of length > 3, there are three types of
partial derivatives involved. The partial derivatives of the variables in the middle of the chain



18 Background on invertible polynomials and the Griffiths-Dwork method

are of the form kizl 'z + xffll + s[1;4; 7; and the beginning and end are of the form
klxlfl_lxg + s ]_[#1 z; and kpxkm=t 4+ 2
for polynomials of loop type these partial derivatives match in our notation to give a chain.

kmfl

me1 T SH#m x; respectively. In the same way as

Again we show an example with the smallest non-negative entries.

(O,...,O,k:m_l,lj (o,...,o,k;m_Q,Loj

k1
k1,1,0,...,0

Figure 1.8: Partial derivatives of a chain of length m > 2

Of course this also works for chains of length 2, where only two partial derivatives are involved.
One is of the type ki_lei_ll_lxi +5 H#Fl x; and the other kixfi_l + xfi‘ll +5 H#i z;j. How

this matches is also shown in the following picture:

(0,...,0,/<;,~_1,1,0...,0]

[0,...,0,0,@,0,...,0]

Figure 1.9: Partial derivatives of a chain of length 2

Later one of the important parts is to know when an arrow is generated by a partial derivative.
We have seen before that for this to happen the difference between the monomials has to be

appropriate. To shorten the notation we define the following.

Notation 1.22. 9; is an abbreviation of the partial derivative in the new notation. In detail
0; is a short notation for the arrow connecting all vertices of the partial derivative of f with

respect to x;.
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Writing a monomial with the generators of the Jacobian ideal

Now let us see how our new way of writing the partial derivatives fits into the Griffiths-Dwork
method: We concentrate on the second part of the Algorithm [I.15]and repeat what there is to
do. We assume we have a basis of the Milnor ring in the appropriate degrees. From Remark

. m+1 \m
1.17, we know that all é*w are linear combinations of mis fﬁﬂ?ﬂ) D with m < 4. So all we

have to do is write every m!s™ " ([]z;)™ in the basis of the Milnor ring using the Griffiths
formula. We should notice that for m < n — 1 the monomial m!s™"([]z;)™ is not in the
Jacobian ideal. To make things easier we can without loss of generality assume that they are
basis elements. But for m > n — 1 the monomial m!s™ (] ;)™ is in the Jacobian ideal and
can be written as a linear combination of the partial derivatives. So for m > n — 1 one can
find polynomials pI"(z) for i = 1,...,n such that m!s™ ™ ([Jz;)™ = Z?zlp?‘@)%.

Let us see what this means in our notation. First we represent the monomial m!s™ ! ([]z;)™
by (m,...,m). On the other side we have a sum of p?(g)%. Here we get an arrow (maybe
with an additional vertex) for every monomial in p]*(z), but these arrows are not completely
independent in the following sense: If we expand p}™ (g)% than every monomial apart from
(ITx;)™ has to appear at least twice, because all monomials apart from ([[z;)™ have to
disappear after adding up everything. In the new notation this means that there are always
at least two arrows meeting at a vertex. Putting this information for every vertex together,
we can say that because there are only finitely many monomials involved, all arrows that
represent the sum " | pI” (@i% form not necessarily oriented cycles with the exception of a
line meeting one of the cycles at the one end and the point (m, ..., m), which corresponds to
the monomial ([]x;)™, at the other end. Notice that all cycles are connected otherwise they
can be omitted.

Summarizing the above we know that the monomial (]]x;)™ written as a linear combination
of partial derivatives must consist of connected cycles and maybe an additional line from
one of the cycles ending at (m,...,m). However, a representation of ([[x;)™ by the partial
derivatives is not given a priori and it is not necessarily unique. Therefore the goal is to find
such a linear combination of partial derivatives. Is it possible to arrange the arrows so that
we end up with a linear combination of partial derivatives giving ([[z;)"™? The answer is
yes, because otherwise the monomial is not in the Jacobian ideal. A first solution on how this
arrangement of arrows looks like will be given in the next chapter in Proposition After
that we develop an explicit method of finding such a representation with the arrows of partial

derivatives.

Using the Griffiths formula

Now let us return to Algorithm and assume we have found a way to write (m, ..., m) with
the arrows representing the partial derivatives. The Griffiths formula (1.2)) tells us that we can
reduce the monomial ([]x;)™ to a sum of monomials of degree d(m — 1) by differentiating
the coefficient polynomials in the representation by the partial derivatives. In other words,
if we can write m!s™ M ([Jz;)™ = m >, p?(g)g—i, then in the primitive cohomology the
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m

monomial m!s™([Tz;)™ can be identified with the polynomial >, %p?(@). Now we
want to translate this behaviour to our notation.

For every arrow belonging to the partial derivative we have to extract the information what
the coefficient monomial is, i.e. the monomial the partial derivative was multiplied with to
give this arrow, and then take the appropriate partial derivative. This means that using the

Griffiths formula every arrow gets contracted to a point in the following way:

at,...,0n H =(b1,...,bi7&0,...,bnj

Griffiths formula

(blfl,...,bnflj

Figure 1.10: Griffiths formula

This states that no matter which of the 4 types of partial derivatives we have, as long as
b; # 0 (all other b; # 0 anyway) the Griffiths formula maps the whole arrow to the point at
the arrow tip subtracted by (1,...,1). Let us see why this is correct: The point at the arrow
tip represents the exponents of the coefficient monomial times [ ] joti Ti therefore the coefficient
bj

monomial is given by xi-” H#i T, ~1. If we differentiate this monomial with respect to x; and

b; # 0 we end up with the monomial H;L:1 ac?j 1 If the entry b; = 0 then the conclusion that
the coefficient monomial is [] ki x?rl is still true, but if we differentiate this with respect to

x; it simply vanishes.

Summary of the diagrammatic Griffiths-Dwork method

We want to do a final summary of how the Griffiths-Dwork method and in particular Algorithm
work in our diagrammatic interpretation. We will skip the step of choosing a basis. This
issue will be addressed later in Chapter [2] and also we will not deal with finding the linear
relation. But these two steps are not the hard part of Algorithm The most difficult part
is to use the Griffiths formula So we want to write the derivatives §'w in the basis for
a given i. We have seen in Remark that they consist only of the monomials (J[]x;)™
for m < i. So we can restrict ourselves to write ([[z;)™ in a basis. For m > n — 2 these
monomials are in the Jacobian ideal ([[z;)™ € J(f) and for m < n — 1 we can assume
they are basis elements, because they are definitely linear independent. So we concentrate on
writing ([[x;)™ for m > n — 2 in the basis. First thing we have to do to achieve this goal is
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writing (J]«;)™ in terms of partial derivatives or, in our new diagrammatic notation, find a
way starting at (m,...,m) and using the arrows belonging to the partial derivatives in such
a way that there are always at least two adjacent arrows at each vertex. As mentioned before
this is not a sufficient condition, so if we have found such an arrangement of arrows we have
to check that it really works and the way does not end up to be trivial in the way that the
coefficients we ignored are trivial. If we have found a valid arrangement giving ([[x;)™ in
terms of partial derivatives we can use the Griffiths formula, which diagrammatically involves
replacing every arrow by a single point, namely the vertex at the arrow tip subtracted by
(1,...,1), if the appropriate entry is > 1, or if this entry is 0 the arrow just vanishes when
we use the Griffiths formula. After using the Griffiths formula once we end up with vertices
corresponding to monomials which are either in the basis or can be written as something in
the basis plus something in the Jacobian ideal. We then have to repeat the same procedure
for everything in the Jacobian ideal until we end up with monomials in the basis. This is the
idea, however, in practice it becomes slightly more complicated. We will come back to this in
Chapter [2]in the cases important to us. In particular we will see that we can restrict ourselves
to understanding the whole procedure for the monomial ([] ;)™ for just one m and from this
we can deduce what happens in all the other cases.






Chapter 2

Calculations for the Picard-Fuchs
equation with the Griffiths-Dwork
method

In this chapter we will analyse the Picard-Fuchs equation for our one-parameter family in a
lot more detail. We will simulate all steps of the Griffiths-Dwork method in our new notation.
The goal of this chapter is to calculate the order of the Picard-Fuchs equation. The proof
of the order of the Picard-Fuchs equation will also play a role in Chapter [3, where we will
use this result together with the calculation of the GKZ System to show exactly what the
Picard-Fuchs equation looks like.

We will use the same notation as before, but we want to recall it again here and use it
throughout this chapter without further notice.

Notation 2.1. Let g(z) = g(z1,22,...,2n) = > iy [y :):f” be an invertible polynomial
with reduced weights ¢1,¢2,...,q, and degg = d for which the Calabi-Yau condition, d =
> i1 ¢, holds. The diagonal entries of the exponent matrix E = (Ej;);; are defined as
ki,...,k,. We denote by g¢'(x) the transposed polynomial of g, the dual reduced weights
belonging to g¢ are denoted by @i, @, . . ., G, and the degree by deg ¢! = d.

The invertible polynomial consists of loops and chains of arbitrary length. For a variable z; we
always take z;_1 and x;11 to be the neighbouring variables in the loop or chain. The indices
are without further notice taken modulo the length of the loop or chain.

We always denote by f(z1,...,x,) the one-parameter family with parameter s defined by
fl@) = f(z1,...,2n) = g(x1, ..., 2n) + s [[1oq @i

We will prove in Chapter [3| that the Picard-Fuchs equation has a very special form, which is
only dependent on the dual weights and the dual degree of the invertible polynomial. This
special form can be seen in the following theorem:
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Theorem The Picard-Fuchs equation for the one-parameter family f(x1,...,2,) =
g(z1,. .. m) + sz is given by

n n qul

0= Hq/s

a1
H(5+e H HJEe-07"

zl]O lel el
whereI:{0,...,c/l\—1}OU?:1{0,%,%,...,@€71,1)(1}.

So in this chapter we will prove that the order of the Picard-Fuchs equation in the theorem

above is correct.

2.1 Combinatorial ideas for the order of the Picard-Fuchs equa-

tion

Before we state the main theorem (Theorem of this chapter which presents what the order
of the Picard-Fuchs equation is, we will have a closer look at the Griffiths-Dwork method.
In Section we already discussed how one can see the Griffiths-Dwork method in an
diagrammatic way. But as promised we will be more concrete in this Chapter. The first thing
we want to make concrete is how to write (J]z;)""! with the generators of the Jacobian
ideal. We will see in the proof of Theorem [2.§] that this information is everything one needs to
determine ([]z;)™ for arbitrary m. We already know from Section that we need a path
using the arrows representing the partial derivatives and we know from Remark that all
vertices, or correspondingly monomials, on this path have the same degree. So in this case all
have degree d(n — 1). In the first lemma we will study all monomials of this degree.

Lemma 2.2. Suppose we have a monomial of weighted degree d(n — 1), the weights satisfy
the Calabi-Yau condition and the monomial is not [}, x . Then there is ani € {1,...,n}

such that x; has an exponent > k;.

Proof. Assume m(z) is a monomial, where for all 7 the exponent of z; is < k; — 1, then the

weighted degree of this monomial satisfies
n n
degm < Z%(kz —1) = Z%‘ki —d<nd—d=d(n-1).
i=1 i=1

This means the degree of m(z) is smaller than d(n —1) except if ¢;k; = d for all i (polynomial
of Brieskorn-Pham type) and m(z) =[] xfi—l_ 0

Using Lemma we can give a quite concrete construction of the path using the arrows
representing the partial derivatives.

Proposition 2.3. The shortest non-trivial way from (n—1,...,n—1) to itself in any diagram

that can be constructed using the arrows corresponding to the partial derivatives has length d.
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Furthermore there is a shortest way that has ot most one vertexr with a zero entry. We call

such a way Jacobi path.

Proof. The idea is to first restrict ourselves to a main path, which will be a cycle starting
and ending at (n —1,...,n — 1) and then we will take care of the extra vertices we created.
So first of all we forget about the extra vertices and treat every partial derivative as if it
would consist of one arrow and two vertices. If we use every step 0; (cf. Notation of the
Jacobian ideal exactly ¢; times, then in total we end up at the starting point. This can be
seen in the following calculation. We will look at the entries separately and show that after
adding all the steps all entries are zero. In the case when g;k; = J, the ith entry of adding up

all steps is

n
~Gi(ki D)+ G =—Gki+ Y G =—d+d=0.
J#i =1

Notice that if g;k; = d this means that in our polynomial g(z) the variable x; is only appearing
as the term :cfl or xfixi_l.

Now let q;ik; # d. This means that in g(z) the variable z; is either appearing as the term
ZL‘fl + a:ffllxi or $fi$i+1 + fﬁffll x;. So z; is the end of the chain or in the middle of a chain or
in a loop. In these cases the ith entry of adding up all steps is

n
—qiki— 1)+ > Gi=—qki+ > G=—d+> =0,
jAi,i—1 jAi—1 Jj=1
because 0;—1 will have 0 as ith entry.
According to Lemma we know that we can arrange the arrows in a way that at each vertex
all entries are > 0. The lemma states that we can always use some arrow, because at least for
one z; the exponent is bigger than k;, i.e. one entry in the vertex is bigger than k;, and we
can exclude that we have to use 9; more than g; times, because this would produce a negative
entry somewhere which is not possible.
Now we have to take care of the extra vertices but this is very easy because according to
Lemma all entries are > 1 in the case where an extra vertex appears. So we can use
Remark which shows that we can use the rest of the chain or the full loop here. This
means that all arrows of the rest of the chain or loop fit here with the arrow tip pointing at
the same vertex as can be seen in Figure and After doing this, every vertex has at
least two adjacent arrows.
There is obviously no non-trivial shorter way, because this means that there is a linear relation
between the rows of E and therefore the weights would not be reduced.
The last thing we have to exclude is that this path is trivial. This is not possible, because
we produced a path where every arrow on the main path points in the same direction. At
every vertex except (n—1,...,n—1) the coefficients are chosen in a way that they add up to
zero, but the arrow tip always carries the s as a coefficient so in order to add up to zero the
coefficient of the next arrow has to have a higher s exponent. This means that at the point
(n —1,...,n — 1) there is one arrow with a coefficient that contains s and one arrow with
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a coefficient containing s?. So they can never add up to zero, but we can easily normalise all

coefficients to get the coefficient 1 at this vertex. O

Remark 2.4. In regular notation the output of Propositionis that the monomial [[} x?‘l
can be written exactly as a sum >, (pi(z) + hi(z)) %, where p;(z) is a sum of exactly ¢;
monomials and with only one exception all of these monomials include all variables with a
positive exponent and h;(z) includes all monomials that come from the arrows of the chains

and loops to adopt the extra vertices we created on the Jacobi path.

Remark 2.5. We want to draw some attention on the fact that the dual weights and the

dual degree come into play in Proposition [2.3] The reason for that was already established in

Remark [1.12] There we found out that the differences in the exponent vectors are given by
1.1

the matrix E? — < Do > . Also in the equations in Remark |1.12| we can see that the relations
1...1

between these columns are given by the dual weights:

Et—|: : | =

This explains immediately why the dual weights give the relation between the steps done by

the partial derivatives.

Now we know exactly how many times we need each arrow 9;, corresponding to a partial
derivative, to have the shortest possible way of writing the monomial []}"_; x; with the partial
derivatives. However, we still don’t know in which order to use them. To achieve this, we will
define a few sets that will tell us exactly where to use each partial derivative (see in Lemma
and will also be used in the formulation of the main theorem, telling us the order of the

Picard-Fuchs equation.

Definition 2.6.

D:=1{1,2,...,d}

d d ~ d ~
QZ_{E’QE”(qI_l)E’ }
Ql:=QinzZ QY:=Q;n(Q\7Z)
vV:=D\(J) vi=1V|
=1

wi=S 1@l - Q%
=1 =1
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Remark 2.7. Since |D| = d and |Q;| = §;, we have

v=|Vl=d-|{JQ7

i=1

@) - 1Jer =1l -1 e7
=1 =1 =1

I
I ngE

)

U

~

and u = v > ¢(d), where ¢ is Euler’s phi function. In addition we have v > n — 1.

Now we have everything to state the main theorem of the chapter:

Theorem 2.8. Let g(x) be an invertible polynomial and f(x) = g(z)+s ][], i a one-parameter
family with parameter s. Then the Picard-Fuchs equation of f(x) has order u.

Before we prove this theorem we will work out some details about the polynomial g(z) and the
one-parameter family f(z). We will need this information to prove Theorem Especially
we need to know in more detail how our Jacobi path looks like. We know which steps have to
be done, but we do not know in which order they are used. But this is important to keep track
of which monomials vanish when we use the Griffiths formula. As before we will concentrate
on the monomial (J]/_; ;)" ! and try to figure out everything in this case first.

We already know that the Jacobi path has length d. So there are o/i\positions on our path that
have to be filled. We want to figure out now at which position a partial derivative produces
a vertex where at least one entry is 1. This is important, because we know with only one
exception, that all entries on our Jacobi path are > 1. So if a partial derivative produces
a vertex where at least one entry is 1 then this is the earliest position where this partial
derivative will be used. The following lemma tells us in detail where these earliest positions

are.

Lemma 2.9. The smallest position a partial derivative 9; can be used is where it produces an
entry 1 in the vertexr at the arrow tip. To state the smallest positions we distinguish between

two cases. The smallest positions for the partial derivative 0; are

(i) g —n+2 forqe Q; Cmd@-ki:c/l\or

(i) g —n+2 for g € QY and q—n+1 for g € QF, if Gik; # d.

Remark 2.10. The numbers ¢g—n+2, ¢—n+1 and |¢| —n+2 can be < 0. If this happens, this
obviously means that we cannot use this partial derivative at a position where we produce an
entry 1. We have to move these partial derivatives at least to position 1. But this will become
clear later.

Proof. Let us assume we are in case (i), so gik; = d. This means that in g(z) the variable x;
k;
i

appears only as ;° or xfimiﬂ. It follows now that all 0; for I # 4 have 1 as ith entry. So if we
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assume that all other positions are taken, then the first time we can use 9; is when the ith
entry is k; = %, but because we started with the monomial (n —1,...,n — 1) and at every
step # 0; we add 1 in the ith entry this happens after k; — (n — 2) steps. Now the next time
we can use 0; is after k; steps of adding 1 to the ith entry. So in total we can use J; at the
positions ¢ — n + 2 for ¢ € @Q;. This proves case (i).

For case (ii) we assume qik; + gi—1 = d. The numbers in Q; are evenly spread between 0
and d. These numbers minus n — 2 nearly give the smallest positions of 0;. But we have to
investigate this a little bit more to see what is happening. Similar to the other case it follows
that the only terms that consist of z; in g(z) are 2% + z;273" or a2,y + 2,275 But this
time not all of the other partial derivatives add 1 to the ith entry. The partial derivative 9;_1
adds 0 to the ith entry. We can use 9; for the first time if the ith entry is k;, so we have to
use k; —n+2= %}” —n + 2 of the partial derivatives with respect to x; where j # 4,7 — 1.
In addition we have to count how often 0;_1 got used before we use 0;. Since for both partial

derivatives the numbers in Q; and Q;_1 are evenly spread, the relation between ¢; and ¢;_1

tells us exactly the relative position of both numbers on the Jacobi path. The term @il tells
us exactly how often 9;_1 is used before we used 0; for the first time. If this is not a natural
number we have to round down and get |¢] —n + 2 as position for J; and as before the other

positions are the multiples of these. If q"q%l is a natural number, then this means that 9; 1

can be used at the same position. But because this does not contribute anything in the entry

i, we can use 0; one position earlier. This proves part (ii). O

Remark 2.11. Notice that all partial derivatives 0; with g;k; = d are at position d—mn+2
and all partial derivatives 0; with g;k; # d are at position d — n + 1, which agrees with the
fact that after using every partial derivative 0; exactly ¢ — 1 times we always end with the

: k-1 ks
monomial Hquk#d x; H@ki:d x;t

We want to draw a picture illustrating the Jacobi path and indicating where to use the partial

derivatives. We want to explain this using an example.

Example 2.12. Consider the one-parameter family f(x1,z2, 73, 74) = 21 + 2323 + x§$4 +
x5 + sz1moxswy With weights (q1,q2,q3,q4) = (1,7,4,6) and weighted degree deg f = d = 18.
The dual weights and the dual weighted degree are given by (q1, ¢2,q3,q1) = (1,9,3,5) and

d=18.
The sets needed for calculating the path in the Jacobian ideal are given as follows:

O ={18), Qs ={2,4,6,8,10,12, 14,16, 18}, (2.1)
18 36 54 72
={6,12,18 ={ - = = 18
Q3 { ) ) }7 Q4 { 5 P 5 ) 5 P 5 ) }

We know that the Jacobi path has length 18 = c?, so we will make a table where every position
can be entered. The table stops at position 16 = d—n+2 because that is the biggest number

that can occur as a smallest position.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Oy Oy Oy 03 02 Oy O dy 03 O Oy O3 O

a4 34 84 82

Figure 2.1: Smallest positions for the partial derivatives

The idea is that because we know where the smallest position is where we can use 9;, we
get a Jacobi path by just shifting the positions until we have one partial derivative at every
position. Proposition tells us that this is always possible. Basically we should only shift
the partial derivatives to the right, because shifting to the left is only possible by one position
and this might disconnect the path. The only position where we allow to shift to the left will
be from position d—n+2to position d — n + 1. The reason for this becomes clear later. We

will have a look what to do in the example and indicate the shifts by arrows in the table.

Example 2.13. (Continuation Example The shifting we have to do can be seen in the

following picture:

1 2 3 4 5 6 7 8 9
Oy — Oy — O — O3 o)) 0y — O — 1)) 03 —
04
10 11 12 13 14 15 16 17 18
\82/ ” / > ” .
84 84 82

Figure 2.2: Shifting of positions on the Jacobi path

At this point it is not entirely clear why we choose to shift exactly like this. But the important
point here is that we have exactly one partial derivative at each position and apart from the
partial derivative 0y at position 16 we shifted all arrows to the right.
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The above picture tells us which partial derivative we have to use at every position. So we can
use the above picture to write down the Jacobi path in the diagrammatic notation introduced
in Section [I.2.2] The only thing we have to take care of in addition is to complete the loops
and chains so that the coefficients can be chosen such that after adding up everything else
but (T, #;)"~! vanishes. From Remark we know that this is nearly always possible
without any difficulties. We will go back to the Example now to see how this works.

Example 2.14. (Continuation Ezample We will write down how the Jacobi path looks
like explicitly. We start with the monomial (3, 3,3, 3) and use the partial derivatives as shown
in Figure 2.2] which gives the order

627 847 827 827 837 847 827 627 847 82, 83) 82, 841 82782783784761'

This leads to the following picture, where we wrote down every monomial on the Jacobi path.
Notice that we neglected all the coefficients here.

[4,2,6,2] [4,4,4,1]

s
:?%EE§ZE,1,4
[i§2§,3,4

o))
Y
(17,1,3,3 10,2,3,3
62 82
?2 v
95(16,2,3,2 11,1,3,4

(1502 02 (14,2,2,3) (051,492 (22,1,7

0 &
13,3,2,2

Figure 2.3: The Jacobi path for Example 2.12]
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At this point we can build a Jacobi path for every invertible polynomial. So we will go one step
further. We will make use of the Griffiths formula. From Section [1.2.2] we know that using the
Griffiths formula means contracting every arrow to the point at the arrow tip minus (1,...,1)
or if the point has 0 as an entry the arrow vanishes completely. But from Proposition we
know that the Jacobi path starting at (n —1,...,n — 1) has at most one vertex with 0 as an
entry. This means that after using the Griffiths formula at most one vertex will vanish. The
vertices that are still there after the use of the Griffiths formula have the same differences as
before. So we can basically put the arrows in again, but we have to be a little bit careful.
If the partial derivative belongs to a loop or a chain, then all entries belonging to another
variable of the loop or to the rest of the chain have to be > 0. If an arrow fits in between two
vertices together with the rest of the chain, or the loop as can be seen in Figure and
then we can adjust all coefficients. This means we only need one basis element for every part
of a path. But we have to be careful that our shifting did not disconnect two vertices which
are not linearly dependent. Therefore we want to investigate what a good and what a bad
way of shifting is. This means we want to find out how to shift the partial derivatives such
that if a path gets disconnected there is no other connection between two vertices. The last
n positions play a special role here and we will take care of them in the end. We distinguish
between the following cases:

(i) Two partial derivatives 0;, and 0;, are at the same position p, where

(a) 0;, and 0;, are not neighbouring elements in a chain or a loop or

(b) 05, and 0;, are neighbouring elements in a chain or a loop.

(ii) Two partial derivatives 0;, and 0;, are at two succeeding positions p and p+ 1 and the
first one 0;, gets shifted, where

(a) 0;, and 0;, are not neighbouring elements in a chain or a loop or

(b) 05, and 0;, are neighbouring elements in a chain or a loop.

Step by step we will show how to shift in all these cases. Before we take care of all special cases,
we will state a lemma that shows us that for some partial derivatives it is always possible to
shift them.

Lemma 2.15. Let M C {1,...,n} be the set of all indices with Gmkm # d form € M.
Y1 with oy = ky, for m € M and
a; < ki forie {1,...,n}\ M, has degree < d(n — 1). The only exception is the monomial

ki1
[Tz [Lignrzi

Then, without one exception, every monomial [[;_ |

Proof. Assume the statement is false. This means that there is a monomial [] , " with
am = km for m € M and o; < k; for ¢ € {1,...,n} \ M that has weighted degree d(n — 1).
Notice that 3# Gmkm means that either zfm + xilmj
polynomial g(z), where the indices are taken modulo the length of the appropriate chain or

m—1

"2 or kma, )+ 2", is in the
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%)
7

loop. It follows that g, + ¢m—1km—1 = d. If we calculate the degree of the monomial H?:l x

we get:

n n
deg (H m?) => G = Y gmkm+ > Gy
i=1 i=1

meM &M
< Zkam+ZQZ(kz_1):_d+ qu+Zsz1
meM ¢M meM =1
=—d+ Z (Qm + Qm—lkm—l) + Z Qiki
meM —d Gi+1¢M  _—y

= —d+dM|+d(n— M) =d(n—1).

%)

It follows that the degree of the monomial ]_[?:1 x; " with oy, = ky, for m € M and o < k;
forie{l,....,n}\ M is <d(n—1) unless a; = k; — 1 for all i ¢ M. O

We want to relate Lemma to what we know. The lemma states in particular that if 0;
creates an extra vertex, then there is, with one exception, no monomial where z; has exponent
k; and for all other x; it is smaller than k;. This means that on the Jacobi path there is no
position, apart from d—n+1 (cf. Remark , where we can use 0; exclusively. In other
words: There is always the possibility to shift 0; if it produces an extra vertex.

To make the notation a little bit easier, we state two extra definitions.

Definition 2.16. For a fixed Jacobi path, we denote by

k(p) == 1r<n‘i£1 {ai|(a1,...,ay) is the pth vertex on the Jacobi path}.
Stsn
So k(p) is the smallest entry of the vertex at position p.
The second number we define is 9(p). For every position on a fixed Jacobi path d(p) := 9;, if
0; is the arrow connecting the vertices at position p and p 4+ 1 and 9(p) := 0, if there is no

arrow connecting the vertices at position p and p + 1.

Now we want to investigate how to shift in case (i). So we have two partial derivatives 0;, and
0;, that are possible at the same position p. If the variables z;, and x;, are not neighbours in
a loop or a chain, then they are independent of each other. This is subcase (a). Assume we
shifted 0;,, so we assume J(p) = 9;, and d(p + 1) = 0;,. This means that x(p + 1) = 1 and
k(p+2) = 2. If we used the Griffiths formula once, we have k(p+2) = 1 and therefore we still
have d(p + 1) = 0;,. After using the Griffiths formula twice the vertex at position p + 1 will
vanish, because after the first use of the Griffiths formula, we had x(p+ 1) = 0. For the arrow
at position p it can make a difference what partial derivative we use here. If k(p) = k(p + 1),
then after the first use of the Griffiths formula there is an arrow between the two vertices if
and only if the partial derivative belongs to a chain of length 1 or is the beginning of a chain.
So if only one of the two partial derivatives belongs to the middle or end of a chain or to a
loop than this should be shifted to position p+ 1 otherwise it does not matter. Now we get to
subcase (b), which means that the two partial derivatives 9;, and 0;, at position p belong to
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neighbouring variables in a loop or chain. This is the case that needs most work. First of all
we will prove that if this is the case, then the rest of the loop or the beginning of the chain is
also at this position, this will be done in the following lemma. After that we will state directly
what the best way of shifting for a chain or a loop is.

Lemma 2.17. Let 2@y + - 4 akmaxy be a loop of length m in g(z).
(i) q € Q% for somei € {l,....m} = q€ QF forallic {1,...,m}.

(’L”Z) q= I_CIZJ = \_(jiJrlJ with (jz € Qi,(jprl S Qi+1 = qc QlZ fOT all 1 € {1, ... ,m}.

Let xlflﬂcz +oot km m + xkm be a chain of length m in g(z).

Lyp—
(i) q € QF fori e {1,...,m} = qGQ]Z- forallje{l,... i}
(iv) ¢ = 1G] = [Gir1] with §; € Qi,Giv1 € Qiy1 = q € Q]Z forallje{l,...,i}.
Proof. (i): If x’flxg + -+ 2Fmz; is in g(z) then this means that
@ik + G = dy Gk + Gnor = d, .., Goka + G1 = d.

Ifqg= Cd € Q% then ; | cd and it follows 1mmed1ately that @; | cGi—1,-..,Cq1, CQmy - - -, CQit1, cd.

Define BJ = CqJ then we have ﬁjq ﬂjﬁ - = ¢ and therefore ¢ € QZ forall j € {1,...,m}.
(11): Let ¢; = as 4 and Giv1 = ;Tl , then ¢ = qj‘” = Cl“qifl“ with a;,a;11 € Z, a; < @; and

air1 < Qit1- Because d= Qi+1ki+1 + @ the following calculation holds

Gi1(cid — a;) = @(Cz+167— ait1)

Giv1(cid — a;) = (d — GirKig1)(cisad — aip)

Gis1(cid — a;) = d(cird — aig) — Giprkir1(civ1d — ais)
cic/i\— a; = dg — ki+1(ci+1d — Qjt1)-

It follows that d | (a; — aiy1kis1) < Gip1kiz1 + G = d. Therefore a; = a; 11 = 0 and with (i)
the result follows.
(#13): If J,’]flllig +-+ fnm o Ty + 2k s in g(z) then it follows that

~

Qik1=dGoko+ G =d,...,Gki+G1 = d.

If g = Cd € QF then qi | cd and it follows that G | ¢Gi—1,...,cq1. Define 8 := % then we

have ﬁ]q = ﬁjﬁ ==4q and therefore ¢ € Q]Z- for all j € {1,...,i}.
(iv): The proof is essentially the same as in (77). The only extra case is if i = 1, but ¢; € Z
and this just means a; = 0 from the beginning. O

We proved that if we are in case (ib), where two partial derivatives are at the same position

and they belong to neighbouring variables in a chain or loop, then the loop is completely at



34 Calculations for the Picard-Fuchs equation with the Griffiths-Dwork method

this position or the chain until ending at one of the two variables or later is at this position.
To be more precise, if two neighbouring variables 0; and 9;_1 of a chain have the same number
q € QiNQ;_1, then ¢ € Q; for j < as long as x; is part of the chain. According to Lemma
this means that the beginning of the chain is at position ¢ —n + 2 and at least everything
in the chain between the beginning and 0; is at position ¢ —n + 1. We will show now in detail
what to do if a loop or a chain of arbitrary length is at one position. In the first remark we will
see how to shift a complete loop and what the linear dependencies between the monomials
are. In Remark we will do the same for a chain of arbitrary length.

Remark 2.18. Assume the loop xlflxg + -+ aFmzy is in g(z) and there is an element ¢ €
Ni~; Q. This means all partial derivatives with respect to a variable in the loop have the
same smallest position ¢ — n + 1. In the pictures below we want to see what happens if we
use the partial derivatives in order, i.e. starting with J;, then Js until in the end we use 9,,.
the polynomial g(z) might have variables zp,4+1,... which are not in the loop, but we will
omit all entries in the vertices that do not belong to the loop, i.e. all other variables in the
monomials, because they will only increase by 1 in every step and do not have any effect on
the partial derivatives we use here. All partial derivatives have the same smallest position, so
the starting monomial has to be (ki +c¢,. .., k, + ¢), where ¢ depends on how often the whole
loop got shifted. We will start at ¢ = —1 because this is the first time 0 appears as entry, so
if ¢ is bigger nothing interesting is happening until we have used the Griffiths formula several
times. So we start with the vertex (k1 —1,..., k&, — 1) and use every partial derivative of the
variables in the loop exactly once. The picture we get is now the following.

[kl—l,...,km—lj

(O,kg—l,kg,...,km) (k:l,o,kgfl,kz;,...,km)

1))

A\

[1,0,k3,k4+1,...,km+1j

03

4

(2,1,1,k:4+1,k;+2,...,km+2j

[m—2,m—3,...,;n—3,km+m—3j

Figure 2.4: The case of a complete loop with the same smallest position



2.1 Combinatorial ideas for the order of the Picard-Fuchs equation 35

We want to point out that an arrow with a dot in the middle indicates that an extra vertex
is created and all entries of the vertex at the arrow tip are > 0. Therefore we can take care
of the extra vertices with the rest of the partial derivatives as we have seen in Figure [I.7] So
there are a lot of extra vertices that we do not write down because this is the normal case
as in Remark In the above picture all arrows starting from the third vertex until the
end point to a vertex with positive entries and therefore we marked the arrows with a dot in
the middle. Also in this part of the picture the smallest number increases by 1 in every step.
So there is nothing to worry here. The part that needs more attention is between the first
and the second vertex and the second and the third vertex. In both cases the vertex that the
arrow would point to has a zero entry. So the situation looks the same in both cases. We can
use the arrow 01 between the first two vertices and we can use dy between the second and the
third vertex. However, we are in both cases not able to use all other partial derivatives such
that they point to the second or third vertex, which means that there would be a vertex with
just one adjacent arrow. What we will see in the following part is that the problem can be
fixed for the arrow between the second and the third vertex, but not for the arrow between
the first two vertices. Therefore in Figure we draw the arrow 9o but not the arrow 0.
In the next picture we see that there is a path which is on the one end connected with the
extra vertex (k1,0,ks — 1,kq, ..., ky) from Figure and on the other end with the vertex
(m — 2,...,m — 2), where the part of the path we are looking at ends. Now we draw the
complete picture of the part of the path. After that we will show the interesting part of this
picture again in more detail. The original path from Figure is shown in the first row of
the following picture.

O

Um—l,m—

N o, b Om—1
(('1.,],,1) ~(l'g.,,,)_e_> ..................
0
['l.m\ (Vo 1\ U39}

O "

Figure 2.5: The case of a complete loop at one position

To show the structure of what is happening, we used the following abbreviations for the

vertices:
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’U():(kil—l,...,k‘m—l)

Um:(m—2,...,m—2)
Vi = (v} j,. .., vf) with
ki+i—2 ifl=j+1 (modm)
o ki+i—1 ifl=j+2,...,5—1i (modm)
irj i—1 ifl=j—i+1 (modm)

i—2 ifl=j—i+2,...,5 (modm)

In the picture we marked in light grey the vertices which are not produced by the Jacobi
path, so which are not included in Figure [2.4] but which we can put in extra in order to have
two adjacent arrows at every vertex. Again the dot in the middle of an arrow indicates that
there is actually an extra vertex and this extra vertex can be adopted with a normal loop as
in Remark [T.2I] To have a better view what is happening here, we draw a detailed picture
of the second and the third vertex on the original path, which includes the extra vertices we
have to put in additionally to take care of the extra vertex created by Js.

1))

(0,9 — 1, ks, ... (1,0, ks, ka+ 1, o + 1)

\
) km)

(kl,o,kg—l,k4,...,km [kl+1,1,0,k4,k5+1,...,km+1j

(kl,kg,o,k4—1,k5,...,km [k:l+1,k:2+1,1,0,k5,k6+1,...,kzm—1—1)

Om
(kl, e k1,0, oy — 1} {kl,kg + 1, ks + 1, 1,0]

{o,kg,k;g + 1, ke + 1,1]

2]

Figure 2.6: The second and third vertex of a complete loop at one position

Here we can see in detail that the extra vertex from Figure[2.4and all other vertices on the left
side have two adjacent arrows. This means that it is always possible to adjust the coefficients
and therefore the extra vertex is linear dependent to the vertices that are already on the path.
The vertices on the right side have also another adjacent arrow: For every vertex on the right
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side the next arrow gives an independent path to the vertex (m — 2,...,m — 2). This was
shown in Figure [2.5] above.

We will recall now the important facts of this remark which we will also need later. The
vertices on the Jacobi path can be seen in Figure 2.4l and we want to summarize the relations
of the vertices on this path. First of all starting from the third vertex until the end we have
k(p)+1 = k(p+1). This is all information we need for these vertices. We also see that between
the first and the second vertex there is a gap as soon as a 0 appears in the second vertex. The
special behaviour is between the second and the third vertex. Here we found out that even
if a 0 appears in the third vertex and although the arrow connecting the two vertices creates
an extra vertex, the second vertex is still linear dependent to the rest of the path. The extra
vertices we put in to make the second vertex linear dependent to the already existing path
do not really play an extra role here. The reason is that we were able to find a path starting
at every of these extra vertices ending at (m — 2,...,m — 2). It follows that after using the
Griffiths formula we will loose the beginning of these paths and they will always be connected
to (m — 2,...,m — 2). Therefore we can ignore all the extra vertices we put in and just keep
in mind that the second vertex is linear dependent despite the fact that the smallest number
of the third vertex is 0.

Another important fact to notice is that nothing changes if we change the order in the positions
of the partial derivatives, because we will always have an arrow that connects two vertices
with the same smallest numbers. So the basic idea is the same.

The above picture does not work if m = 2, but there something similar happens. One of the
important facts in the above picture was that the second vertex did not stand alone. The
same thing will happen in the special case of a loop of length 2. This time we will not omit
the coefficients, because they are the key ingredient in this case. We will mark the coefficients
from inside the partial derivatives in purple and the ones we can choose in blue. So assume
aM o + 2h?21 is in g(x). Then we get the following picture:

(Fy, bz > (1, ks ) - (1,1
\ 2
%)

Griffiths formula

Figure 2.7: The case of a loop of length 2 at one position
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Here « is the coefficient that comes from the arrow before the loop starts. The following
coefficients are chosen such that we get 0 at this vertex. If this is not the first time we used
the Griffiths formula, which means that the coefficients should not add up to 0 at a vertex
but to a certain constant, it is very easy to adjust the coefficients. We can see in the picture
that the second vertex vanishes after the use of the Griffiths formula, because of the fact that
the coefficient is 0. This means again that the second vertex does not stand alone. In other
words, if we have a loop of length 2 everything is linear dependent as long as all entries are
bigger than 0. If we used the Griffiths formula and the entries become 0, we get only one gap
and not 2 gaps as one might expect.

With this remark we know what to do if there is a complete loop at one position. Now we will
show what happens if a chain (or a part of a chain) is at one position. This partially involves
part (ii), because the beginning of the loop and the partial derivative before are never at the
same position. In the case that occurs in Lemma the partial derivative belonging to the
beginning of the chain is at position p 4+ 1 and the rest of the part of the chain is at position
.

Remark 2.19. From Lemma we know that if two partial derivatives of neighbouring
variables x; and x;_1 in a chain have the same element p in @); and );_1, then this element
is also in all @; for j € {1,...,7}. This means that we can use d; at position p and 9; at the
position p — 1 for all 2 < j < 4. So let xlflscg +- 4 w];lm__llwm + xFm be a chain in g(z) and
assume 0y, ..., 0; are at the same position. Let a;+1 > k;+1. Then the picture is the following

(kﬁl - 1,k2,...,ki,ai+1,...)

o

Y

(O,k?g,kg—l—l,...,ki—l-l,aiJrl—|—1,...j

o))

Y

[LL@+4J4+z”wm+2@Hy+znj

03

Y

(zzzm+aig+&”wm+3ﬂHy+&“j

@—z”qi—zm+£—zmﬂ+i—L“j

2

Y

@—L”wi—L%H+i—L”J

Figure 2.8: The case of a chain at one position



2.1 Combinatorial ideas for the order of the Picard-Fuchs equation 39

Again it makes no sense to change the order of the partial derivatives, because we know from
Lemma [2.15| that everything apart from the beginning of the chain gets shifted. As mentioned
earlier it is important to use 0; first, because otherwise one of the arrows creating an extra
vertex would connect two vertices with the same smallest numbers and therefore disconnect
the path earlier. The question in which order to use the rest of the partial derivatives is
similar. The answer is that doing if we use them in a different order, then there is an arrow
0; where for the vertex at the arrow tip (ai,...,a,) we have a; = q; for an i < j and a; is
also the smallest number. If we use the Griffiths formula several times such that a; = a; =0,
then the partial derivative 0; does not fit here and therefore we are not able to take care of
the extra vertex produced by 0;. For later purposes the important part of this remark is that

the smallest number increases at every position.

Now let us investigate the last two cases, listed under (ii). So the smallest possible positions
for 0;, and 0;, are p and p+1 respectively and the first partial derivative 0;, gets shifted. First
assume that we are in subcase (a) and the two partial derivatives do not belong to neighbouring
variables of a chain or loop. Then we can choose d(p+ 1) = 0;, and d(p+2) = 9;,. This way
k(p+2) = k(p+ 3) and the vertices only get disconnected if 0;, is in a loop, a middle or end
of a chain and the smallest number is 0 and after the next Griffiths step everything vanishes.
If we choose d(p+ 1) = 9;, and d(p+ 2) = 0;,, then k(p+2) < k(p+ 3) = 2, because 9;, was
shifted further than 0;,. So the connection gets cut earlier or at the same time. So we should
use the first way of shifting to be on the safe side.

The last case to consider is (iib), so as before the two partial derivatives 0;, and 0;, can
be used first at position p and p + 1 and the first partial derivative 0;, gets shifted. This
time, however, they correspond to neighbouring variables in a loop or a chain. If 9;, is the
beginning of a chain then this is the case of Remark and we should choose d(p+1) = 9,
and J(p + 2) = 0;,. Otherwise, both partial derivatives are either from a loop, or from the
middle or end of a chain, then we should choose d(p + 1) = 9;, and d(p + 2) = 0;,. The
argument is the same as in the case (iia). If we use the partial derivatives as indicated then
k(p+2) = k(p+ 3), so the diagram disconnects first when s(p + 2) = k(p + 3) = 0. If we
change the positions, then x(p+2) =1 and x(p+ 3) = 2 and the connection is cut earlier, so
we stick to the first way of ordering the partial derivatives.

Now we know where to shift everything and this explains most of the shifting we did in
Example and the shifting we have to do in general. But as mentioned before we still have
to look closer at the last n positions. In Remark we saw that all partial derivatives are
at the positions d—n+2and d—n+1. At all the positions p > d —n + 2 there is no partial
derivative that produces 1 as an entry here. So we have to spread all partial derivatives over
the positions d—n+ 1,. d There we have to use every partial derivative exactly once. In
order to see all linear dependenc1es between the monomials this should be done in the same
way as before. So every chain and every loop itself should be used in the order suggested in
Remark and [2.19] Because separate chains and loops do not interact, the order between
the loops and chains does not matter. Notice that at position d —n + 1 there is either an

arrow with an extra vertex and H(C/Z\ —n+1) = 1 or an arrow without extra vertex and
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H(C/l\ —n+1) = 0. In the second case we have to shift this partial derivative to the left, which
also explains the shift to the left in Example 2.12] This means, no matter what the rest of
the path looks like, after the first use of the Griffiths formula there will be a gap behind the
vertex at position d— n, SO 6(3— n) = 0. In the first case the vertex at position d—n+1
will not vanish but the arrow will not fit with the complete loop anymore and in the second
case the vertex at position d—n+1 simply vanishes. Because of Remark and the
smallest numbers never decrease between the position d—n+ 1 and d. Therefore the vertex
at position p 4+ 1 always vanishes after the vertex at position p and it follows that only the
beginning of the path from d—n+1 to d vanishes. So the last n steps and what is left after
all the Griffiths steps is always linear dependent to the vertex (a,...,a),a < n —1, where we
started.

2.2 Proof of the order of the Picard-Fuchs equation

First we will prove a weak form of the main theorem of this chapter. We will show that one
needs u basis elements to write one special form of the forms appearing in the Picard-Fuchs
equation of f(z). In the proof of Theorem we will see that these are all basis elements
we need for all forms appearing in the Picard-Fuchs equation, which means that u is also the
order of the Picard-Fuchs equation.

sy )™ 10 . . . . .
M 18 a linear combination of u basis elements of

Proposition 2.20. The form
the primitive cohomology with coefficients in C(s). In other words, using the Griffiths formula,
(TTry z:)™ ! can be written as a combination of u basis elements of the Milnor ring C(s)/J(f)

with coefficients in C(s).

Notice that the ([T}, ;)" ! can never be a basis element in the Milnor ring itself, because we
have (T, z:)? € J(f) for j > n — 1. Before we prove this proposition we want to calculate
an example to have a better understanding what we have to do in the proof. We will continue
the example we already used throughout the whole chapter. The notation for this can be
found in Example In order to show the proposition in this example, we will start with

n—1

(TT"; z;)" ! and count how many basis elements we need to write ([T, x;) as a linear

combination of them. We will do this by following the steps in the Griffiths-Dwork method.

Example 2.21. (Continuation FEzample We want to calculate the number of basis
elements we need to write (wzyz)? in this example. We know that (wzyz)? is an element of
the Jacobian ideal. Following the Griffiths-Dwork method we have to write down the Jacobi
path, which we already did in Example We start with this Jacobi path and use the
Griffiths formula once. This means we subtract (1,1,1,1) from every vertex. Again we do not
mention the various coefficients one needs to do the actual calculations because they do not
give any interesting input for the calculation of the number of basis elements. The important
part for us is to count the disconnected parts of the Jacobi path in every degree. We want to
note that for counting the basis elements we would not need to write down the extra vertices.
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It would be enough to focus on the 18 vertices on the Jacobi path and remember which of the
arrows produces an extra vertex. So after using the Griffiths formula once Figure[2.3|becomes:

[3,1,5,1] [3,3,3,0]

N

3,1,2,3——(4,2,3,1 5,1,3,2
) )

4 2
0o
6,0,3,3
03
7,1
O4
8,2
0o
Y
(16,0,2,2) 9,1,2,2
A
82 a2
14,2,2,0102 v
~
95(15,1,2,1 10,0,2,3
A
14,0,4,1 O, Oy 1 10,0,5,1

O 03 O A
(14,0,1,3) 13,1,1,2 )«—=—112,0,3,2 11,1,3,1)%

) 2
12,2,1,1

Figure 2.9: The Jacobi path for Example after the first use of the Griffiths formula

As we can see from the picture, all monomials are still connected. We only have one gap
between the 14th and the 16th vertex. But we knew before that we will create a gap after the
vertex at position d —n =18 — 4 = 14. This means we need one basis element in this degree
(indicated by a purple colour) in order to be able to choose all coefficients appropriately. Let
us assume we add this basis element with the appropriate coefficient, such that the resulting
path is in the Jacobian ideal. Now we can use the Griffiths formula again and see how much
gaps we get in the next degree. We end up with the following picture:
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O
(18,0,0,0)

14,0,1,0

Figure 2.10: The Jacobi path for Example after the second use of the Griffiths formula

Again we coloured a choice for basis elements we need in purple. This means we need 7 basis
elements in this degree. If we use the Griffiths formula again, we are left with (0,0, 0, 0), which
therefore has to be a basis element as well. So in total we counted 1 basis element in degree 0
and degree 2- 18 and 7 basis elements in degree 18, which adds up to 9 basis elements overall.
If the theorem is true, then it should hold that v = 9. So we will calculate u with the @Q;
calculated in (2.1)):

u=d— || JQ¥ =18 — {18} U{2,4,6,8,10,12,14,16,18} U {6,12,18} U {18}
=1
—18—-9=0.

Lemma 2.22. Let

Then

u = |m|+ 2|n2| + |n3] :=1n.
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Condition (x)

e 0; creates an extra vertez, i.e. g;k; # d.

o If z; 1s part of the loop x; " xi, + - - - —l—xi;m xi, and the partial derivatives are used in the
order 0;,, 05y, ..., 0,

im

whenever they have the same smallest position, then ¢ should not

equal 1s.

Proof. First recall that u = Y71, Q] — UL, Q7 = X7, |Q9‘ + 2 Q] = Uiz, @71
Part 1: u<n

First assume q € QS for j = 1...,¢, this means we have the summand ¢ in u. But this also
means that position p = |¢] —n + 2 is the smallest possible position for d;,,...,0;, and due
to Lemma none of the z;; are neighbouring variables in a loop or a chain. Therefore they
are all independent and 0;; adds 1 to all entries iy,..., 4, except i;. Let us assume that 0;
got shifted to position p (according to Lemma it has to be shifted) and all others where
shifted correspondingly, i.e. d(p+j —1) = 9;; for 1 < j < £. This means that after completely
shifting we get k(p+¢) =w(p+{l—-1)+1=---=r(p+2)+(l—-2)=rs(p+1)+(—-1)
and therefore p+1,...,p+¢—1 € n. In addition we get that x(p) < k(p + 1), which means
P € 13, because each 9;; creates an extra vertex, or x(p) + 1 = x(p + 1), which means p € 7.
In total this means that we also sum up £ in 7.

Now assume g € QiZj for j =1...,¢+1, this means that we sum up £ in u. But this also means
that whole loops are at position ¢ — n + 1 or the beginning of a chain is at position ¢ —n + 2
and the rest of the chain stopping somewhere is at position ¢ — n + 1 as shown in Lemma
[2.17 Remember that we saw in Lemma that all partial derivatives at position ¢ —n + 1
get shifted anyway. So assume that everything gets shifted to position p. Now we additionally
shift every loop and every chain according to Remark and respectively and we want
to look at k(p),...,k(p+ ). Therefore suppose a loop of length m got shifted to p+ a. Then
Remark [2.18) tells us that k(p+a+m) =c(p+a+m—1)+1=---=r(P+a+2)+m—2
and k(p+a+1) = k(p+ a+ 2). In addition we get that kK(p +a) +2 = k(p+a + 1),
because either there is another loop at the positions before p and as we can see in this
loop k(p+a+1)+m —2 = k(p+ a+ m) so the smallest numbers increase by m — 2 in
m — 1 steps and in addition the partial derivative at position p — 1 got shifted one less which
leads to k(p + a) + 2 = k(p + a + 1). If there is a chain at the positions before p, then the
beginning of the chain was originally possible at position ¢ — n 4+ 2 and the loop at position
q—n++1 and now the loop is at one position later, therefore the loop got shifted two more and
k(p+a)+2=r(p+a+1). Now we can calculate n: We have p+a+m—1,...,p+a+2 €
and p 4+ a € 19, which means adding up m — 2+ 2-1 = m in 7. Now let us assume that
there is the beginning of a chain which now has length m at position p + a. Then Remark
2.19] tells us that k(p+a+m) = k(P+a+m—-1)+1=---=rs(P+a+1)+m—-1.1In
addition k(p 4+ a) + 1 = k(p + a + 1), because if there is a chain at the positions before, we
just shifted one more and if there is a loop at the positions before, this got shifted the same
amount, but as mentioned before the smallest numbers increased one less. In total this gives
p+a+m—1,...,p+a € n and therefore we added m in 7. The last thing to do is to look at
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the chain or loop at position p. The smallest numbers at position p+ 1 and the later ones are
as above. But the arrow at position p — 1 got shifted at least as much as the one at position
D, s0 k(p) > k(p+ 1). If there is a chain at position p, we definitely get no contribution to n
from this position. If there is a loop at position p, then p € n3. So in general this means the
chain or loop at position p adds up one less then its length and all others add up exactly their
lengths in 7. Since the lengths add up to £+ 1, we add up £ in 7.

Part 2: u>n

We start with a position p in n;. This means that x(p) +1 = x(p+1) and therefore d(p) = 0;

and O(p + 1) = 0;, have the same smallest possible position p. This means either p+n—2 €
Qi NQiy, gl =DP+n—2withqge Qi;, NQs, or p+n—2€ Q;, and |g| =p+n — 2 with
q € Q;,. But in all cases we add up 1 in u.

Now let p € n2. So k(p) + 2 = k(p + 1), this only happens if we shifted d(p + 1) over 9(p)
which we only do if a full loop is at the same position and as we saw in part 1, this leads to
adding up 2 for this position in w.

The last possibility is p € n3. Here we have x(p) > x(p + 1) and Jd(p) = 0; creates an extra
vertex. It follows that either 0; comes from a position p with || =p+n —2 and ¢q € Q;Q or
p+n—2¢€ Q% and this is the first position of a complete loop. But in both cases we have
added up 1 in wu. O

Proof of Proposition[2.20. We will now start proving Proposition using all the results we
achieved so far. The rough idea is the following: We count the holes that occur after using the
Griffiths formula and relate them to the sets 1,72 and 13 and therefore with Lemma to
the number u, because for each hole on the Jacobi path we need an extra basis element.

So we investigate all cases when a path becomes disconnected. This depends on the smallest
numbers occurring in a monomial, or correspondingly vertex. Given that a vertex vanishes if
the smallest number was 0 before using the Griffiths formula. If two vertices are neighbours in
the Jacobi path we distinguish between 3 cases of relations between their smallest numbers.
Let p and p+ 1 be two positions on the Jacobi path, then the following situations can occur:

(i) £(p) = K(p+1),
(ii) k(p) < k(p+1) or

(iii) k(p) > k(p+1).

We should notice that the maximal gap between the smallest numbers in (i) is 2 because in
the way we shift, the arrow used before is at most shifted two less than the arrow we use
between the two vertices. We already investigated this in the proof of Lemma [2.22

We will count one basis element for every start of a disconnected part of the path. First
consider case (iii), so k(p) > k(p+ 1). If 9(p) does not create an extra vertex, then this will
only shorten a path after using the Griffiths formula the appropriate number of times, but
this will never be the beginning of a path. So we can neglect this case. But if 9(p) does create
an extra vertex and we get to the point that x(p + 1) = 0 the arrow J(p) does not fit here
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together with the whole loop or the beginning of the chain. So the path gets disconnected and
after the next use of the Griffiths formula the vertex p + 1 vanishes. So we have to count one
basis element for every time that x(p) > k(p + 1) and 9(p) creates an extra vertex. But this
is done in |n3].

Now consider case (ii). As long as k(p) > 1 the positions p and p + 1 are always connected
by an arrow. So assume that we used the Griffiths formula several times until x(p) = 0 and
k(p+1) > 0. Then there is still an arrow connecting the two vertices no matter which kind of
partial derivative it is, but after the next use of the Griffiths formula the vertex at position p
will vanish and the one at position p 4+ 1 will still be there. This means that at position p+ 1
a disconnected part of the path starts, which shows that we need an extra basis element here.
The vertex at position p+ 1 will stay until K(p+ 1) = 0, so we need an extra basis element in
every degree until the vertex vanishes. So we need 1 basis element if k(p) + 1 = k(p+ 1) and
2 basis elements if k(p) +2 = k(p + 1). The set 71 counts exactly the first case and 27y the
second case.

The last case to consider is (i). Here we have to distinguish between several cases: First
assume that the two vertices are connected by an arrow 0; with g;k; = (f, i.e. the arrow has
no additional vertex. In this case we can put the arrow in as long as x(p + 1) > 0 and then
the vertices at position p and p + 1 vanish at the same time, so we don’t need an extra basis
element here. Remember that if 0; belongs to the beginning of a chain of length > 2 there
is an arrow as long as the (i + 1)th entry of the vertex at position p + 1 is > 0. This can
only occur if 0;11 was used at the position before. But we already discussed in Remark
that if 0,41 is at the position before 09; we shift 9;11 over J;. So this case never occurs and
we can assure that we never need an extra basis element if 0; is between two vertices with
the same smallest numbers and g;k; = d. Assume now that we are still in case (i), so the
smallest numbers are the same, but the arrow 0; between the two vertices produces an extra
vertex. As long as k(p + 1) > 1 the arrow and all the other arrows from the chain or loop
can be used here, which means that we can always choose the coefficients in a way that the
additional vertices vanish and the vertex on the path has the appropriate coefficient. If we
use the Griffiths formula until x(p + 1) = 0 we might still be able to put in the arrow but
the next arrow in the loop or chain does not fit anymore. So we need an extra basis element
except if we are in the situation of Remark where all partial derivatives of the loop or
chain are at the same position. This is exactly what is counted in |n3| in addition to case (iii).
In total we see that counting basis elements is the same as 11| 4 |212| 4 13| and therefore the

number of basis elements is w. O

Remark 2.23. We have n — 1 basis elements for sure, because we need at least 1 basis element
k Nk—1
in every degree. We choose this to be W for 1 < k < n —1, because we need this

anyway to write the first (n — 1) derivatives of w.

Now we are able to put everything together and prove Theorem

Proof of Theorem[2.8 To prove Theorem [2.8| we will show that all the powers of []_, x; can

)n—l

be written as a combination of the same u basis elements we needed for (], x; seen in
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Proposition If we have done that, it is clear that d’w can be written as a combination
of u basis elements for all 5. So if we take all d’w up to i = u, then we get a linear relation
between them. So the Picard-Fuchs equation has order u.

We will show by induction that ([]}-, #;)’ can for all j be written as a combination of the same
basis elements. Therefore we first look at ([]i_; z;)™: We know how to write (J]i~, z;)" ! in
terms of the partial derivatives, so if we multiply this by [[; z; we get an expression for
(IT~; =)™ In our notation this means adding (1,...,1) to every monomial that appears on
the Jacobi path. Now we can use the Griffiths formula and because all entries were bigger
than 1 all monomials are still there. Now we can use the Griffiths formula again, the only
thing we have to add is a multiple of (J]:, 2;)" 1. From now on everything works as in the

n

case for ([]i; z;)" !. This means we can write ([[\_; ;)" as a linear combination of the u

basis elements and ([]; z;)" !, but this monomial is itself a linear combination of the u
basis elements. So ([]/_; z;)" can be written with the same u basis elements as (i, ;)" !
Now look at ([]i; ;) for a j > n — 1 then again we get the expression of ([]\-; z;)/ in
the partial derivatives by multiplying the expression of ([]/; ;)" by ([Tl ;) "*!. And
again we can use the Griffiths formula once and no monomial will vanish until we used the
Griffiths formula j —n + 2 times. This means that we can write ([, ;)7 as a combination
of the u basis elements and all (]}, z;)! with [ < j, but by induction all these powers can
themselves be written as a linear combination of the same u basis elements. So in total we get
that we can write all powers of [[;_; z; as a linear combination of the same u basis elements.

This leads to our statement that the Picard-Fuchs equation of f(x) has order w. O

2.3 Detailed example for the Picard-Fuchs equation

In this section we want to calculate in all details an example of computing the Picard-Fuchs
equation with the Griffiths-Dwork method. We will choose a slightly smaller example as in
the section before. Theorem tells us immediately how many calculations we have to do,
because we know how many basis elements we need and therefore how many of the §%w we have
to calculate. We will prove the actual appearance of the Picard-Fuchs equation of Theorem [3.6]
not by using these calculations, but we want to show how this can be done using the Griffiths-
Dwork method and especially that with the help of Theorem and our new diagrammatic
notation it can be done relatively quick.

Example 2.24. Let g(v1, v9, 73, 74) = 2372 + 7373 + x% + z2. This is the polynomial we are
looking at. The reduced weights for this polynomial are given by (g1, ¢2,¢3,q4) = (5,7,4,16)
and the degree is d = 32. The transposed polynomial is given by ¢'(w,z,y, 2) = w® + wz* +
xy® + 2% and has weights (31,3, 33, 1) = (2,2, 1,5) and the degree is d = 10. So according to
Theoremthe Picard-Fuchs equation of f(z1,z2,23,24) = :1:?562 +x§x3+x§+xi+sx1x2$3x4
has order
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n
u=d— || JQ¥ =10 |{5,10} U {5,10} U {10} U {2,4,6,8,10}| = 10 — 6 = 4.
i=1

This means we have to calculate §'w for i = 0,...,4 and w = 2. We know from Remark

241 4
1.17|that the derivatives of w can be written as a sum of 22 (w}ﬁf?’“) D for 0 < ¢. In detail

we get:

SQQ 82x1$2$3$4Q0

dw = —
f f?
52 s s2x1wow3raQo 283 (z1m22374) %)
w = -
/ f? f3
5 — s B 732x1x2x23x490 n 6253(x1x2§3x4)2(20 B 634(x1x2x43x4)390
/ / / /
S — sQ 158%11'29023:13490 . 25233(1619623333564)290 B 10684(1619629;3964)390
f f / /
2485(.%11'21'3.%4)490
f? '

We are looking at the Milnor ring in degree 0,10 and 20. Therefore we can choose
@ 821‘112333:)3490 and 253($1$2x3$4)
o f? f?

respectively. Then the above expression reduces to

*Q to be basis elements. We define them as by, b; and by

W = bo
ow = b() - b1
0%w = by — 3b1 + by
4 30 (2.2)
6% = by — Thy + By — 2= <x1$;ﬁ3x4) 0
4 . 30 2455 . 40)
5% = by — 15b; + 25b, — 1005 (@1220374) Mo | 25 (@1207524) o

ft fo

. 6s? 334)30Q 24s° 10
Now we have to figure out how to write 8- (#1722324)°00 )\ q 24s (xlw;ff‘u) 0

Milnor ring. From Proposition we already know that we need 4 basis elements. So the
three we had so far are not enough. We will find out what the extra basis element should

in a basis of the

be in the process of calculating. We want to shorten the notation for numbers that occur
throughout the whole calculation.

~

Notation 2.25. The number A is defined as A := Hq;"s‘?— (—d)‘i: 5524510 — 100 and will
occur as a normalization factor in the calculations. We also want to define ¢, := [[ g} = 5°2*

and ¢q := (—a/l\)gz 1010 separately. So A = c;s? — cq.
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Calculating (z1797374)°

We start by calculating w. The first step for this is to write down the Jacobi path
with all coefficients. This is done in the following picture. In the last two sections we mostly
ignored all coefficients, but now we have to calculate all of them. In the diagram the coefficients
are marked in three ways, which is distinguished by three colours. The blue number near each
vertex is the coefficient that the corresponding monomial should have after adding everything
up. The green number next to each arrow is the coefficient the corresponding partial derivative
needs such that after adding up we get the blue numbers as results. In addition in purple we
marked the exponents k; which appear as coeflicients inside the partial derivative.

3

Figure 2.11: The Jacobi path for (z1z2x324)

In this first step the goal is to get a description of (wzyz)3. So after adding up all other
monomials should vanish. Therefore the blue numbers , i.e. coefficients of the monomials, are
all 0 except the first one. In Figure the green numbers are relatively easy to find. he last

d—1
one is always Cqu and the others can be calculated inductively. The basic idea is that from

one arrow to the next one has to divide by d and multiply by the appropriate ¢;. One needs
to put more effort in doing this in general and we will not do this here. Nevertheless, it is easy
to find these coefficients, because they only consist of powers of c?, sand g fori=1,...,n. If
one translates the above picture in normal notation it tells us that the form ch

can be written in the following way as a linear combination of the partial derivatives:
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65t (z1027374)3Q _ 6510 <_10752252 45 1075%2s% , o 5 103512350 . o

B 103542357xmggg2 B 102542488:1;29;2:53953 af
4-5A 7 5.4.8A 71 1) 0y
6510 (10752253 103542357
+ Iz ( 1A xlx%xf’;xi + me%xi
102542448 0
I 8A SAS xw%w,azi) 87]0
. :L'2
6510 [ 102542148 9 3\ Of
f4 — SA T1T2X3X4 87373
650 1095 10852 105532254
(- etetelet + O tateel - T et

104512265 o o o 552480 o, L\ Of
T$1x2$3$4 + AJJ1$2$3$4> 871'4

Now we use the Griffiths formula (1.2]). Because we have just written everything in terms of
the partial derivatives we can do this directly and get the following result:

65t (r1z0m374)300 258 [ 107522 , 10752253
71 B <_ A 2T TETEA
103542357 ¢ 5, _1025%24s® 3
~TIEA T3xy — 275 1 8A x1x2x3$4>

4 7529 .3
N 2sf§20 <210 45A28 ryaale? +

N 2102542458 3
—————11X2X3%
488 THEE
2510 2102542458
f3 8A
251Q) 10%5 10852 107532254
+ Sf3 0 <—2 A x%x%x%m Tsx%xgxg— Tsx%x%xgm

104542255 4 o o 5%2%s% o 5 o
A T + 3A:c19:2113x4> .

.7}1.172:615))1'421

103542357 ¢
AA T3Ty

$1$2$3ZL‘2)

We can also very easily do this step in our picture and the advantage is that we directly get a
decomposition of the result as a linear combination of partial derivatives. We want to stress
that in this new picture the coefficients are closely related to the coefficients from before. The
blue number, i.e. coefficient of the monomial, in the second picture is the green number next
to the arrow pointing to the vertex in the last picture multiplied by a constant, because the
Griffiths formula contracts an arrow to the vertex at the arrow tip. The factor one has to
multiply is given by the ith entry if the arrow pointing to the vertex is the partial derivative
with respect to x;. The green numbers in the second picture can now be calculated such that
all blue numbers are correct after adding up. This is possible everywhere but at a vertex
corresponding to a basis element. At these vertices we will have to add a multiple of the basis
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element. The factor of the basis element is written down next to the vertex with the comment

“extra’”.

949051 2 2
ey H0eus ™ g (2,2,2,2 3,3,3,1 (4.4,4,0)

A

Figure 2.12: The Jacobi path for (z12ew324)% after the first use of the Griffiths formula

6s5%(z1222374)3Q0
t————

Interpreting the picture we get a description o in terms of the basis in degree

253 (z1127324)%Q0
3

20, which is only given by by = , and a linear combination of the partial

derivatives:

634(;1513:21’3:64)390 i 2s 3(%11’2.1:3.734)290 <6C 810 + 96d>

f4 A
25490 075225 e 10752252 102542457 L\ Of
— 57 - .
< ToTs T O A T T IRA T ) By
23490 51075223 A 102542457 af
TR~ TR T ) G
25490 1025424 T\ of
xr3x -
34 Ox3
2 49 1095 -1 10852
5200 < 9 i :L‘ﬁ%:n%u + 7T:U‘Z’:L'g:x§
1055322 3 1045422 4 5524 8 o
— A — =" aixexdwg + Tw%x%x? - 3Assc1w2x3xi> E)"xf;.
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Again with the Griffiths formula we can lower the degree for everything in the Jacobian ideal,
so for the linear combination of the partial derivatives. Doing this we end up with the following

expression:

654 (z1221324)3Q0 B 6cys'0 + 9cy
i -\ )
510 1075%2s% +102542457 5
— Tal o —— 1
12 45N T 5 e
510 < 10752252 102542457 2)
5 — " gl

f? 1A BT TRA
510y (102542457
Ly
f2 8A
4 9x —1 55392 .3 5948
5*Q 10°5s 10°5°2<s 522%s
+ f20 <9 A x%x%x% — BTxlxgxg -6 A $1$2$3934) .

In total there are still 5 monomials apart from by in the formula, but this is not the end,

because some of them are linear dependent to each other. This is not always easy to see in

the normal notation, but it is very easy to see in our new notation. We can see this if we go

6cqs'0+9¢cq
A

back to our picture. After subtracting ( ba we get a polynomial in the Jacobian

ideal and we can use the Griffiths formula which leads to the following picture:

ZTegs 4 9eas 2 otra (1,1,1,1 2,2,2,0

A

(0,0,0,2)

(0,0,4,1) g10°572%% oxry

Y

(1,1,5,0)

Figure 2.13: The Jacobi path for (x1z9w324)? after using the Griffiths formula twice
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6292 .6,..4
Before we do further calculations, we define a fourth basis element b3 = w. We

know from Theorem that we need a fourth basis element and from the picture above, we
can see this is a good way of choosing b3, because we can immediately see the coefficients of
this element in the picture. Choosing a good basis is another reason why our construction
helps making the computations faster. If one has bigger examples and uses a computer algebra
system to compute the coefficients, knowing a good basis makes it more efficient. So in total
we have one basis element in degree 20, which is by, two basis elements in degree 10 which
are by and b3 and we will get one basis element in degree 0 denoted by bg. Now translating
back gives

684(l‘1l‘2$31}4)390 <66q810 + 90d> b
- A 2

f4 A
—7cqs™ + 9cq 8
+(A bt Rhs
51 —910955_2$1$2563—3105532282334 552457%4 af
f A A 3 A Oxy’

It is very easy to use the Griffiths formula here, because there is only a multiple of the partial

derivative with respect to x4 left and because two of the terms vanish when one takes the

. o . . 4 30
partial derivative, we end up with a rather short expression for 65(1‘1“32f+z4)0:

Iz A A

8 cyst0
—b l bo.
+A3+<A>O

654(131392%3114)390 ﬁcqsm + 9¢q —7cq510 + 9¢q
= b+ | ————— |

Of course the same happens in the picture. Every vertex except (1,1,1,1) in Figure has
a zero entry and therefore vanishes after the use of the Griffiths formula. The only remaining

vertex is (0,0,0,0) and the coefficient is just the same as the coefficient next to the arrow
pointing at (1,1,1,1) in Figure So the picture is given by

Figure 2.14: The Jacobi path for (z12ex324)? after using the Griffiths formula three times

It is obviously not necessary to translate back in between the pictures and formulas the whole
time. We can do the whole calculations in the pictures and it is less work to draw all pictures
first and after that translate back to the formulas. We will do this in the next step, where we
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5 4
calculate the expression in the basis elements for 22 (xlxﬁf 324)° % YWe will also see that we

can use some of the calculations we have already done for computing a linear combination

5 3 5 4
of w in a basis of the Milnor ring for the case of 25 (zlmﬁéﬂ sza) o, Especially we

already chose all basis elements we need and now the goal is to find the correct coefficients
here.

Calculating (12,7324)"

Again we start with writing down the Jacobi path, because (z122x374)* € J(f) and therefore
this is possible. This can be done very easy, because we just have to add (1,1,1,1) to the
Jacobi path in Figure In addition the coefficients are all the same as in Figure [2.11]
This does not hold for the rest of the pictures, because the factors we have to multiply to the
coefficients after using the Griffiths formula are bigger as in the earlier pictures, because the
entries in the vertices and therefore the exponents of the monomials are bigger. However, the
coefficients will not be to far from each other. From Figure we get that the Jacobi path
for (4,4,4,4) is given by

4

Figure 2.15: The Jacobi path for (xjzow324)

Now we use the Griffiths formula for the first time. The picture looks very similar to the one
in the first case before we used the Griffiths formula. The vertices are exactly like they were
before, but of course the coeflicients are different. But one should notice that throughout all
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calculations the denominator of the coeflficients is always the same, i.e. A. The reason is that
the denominator A always appears in the first step of writing (wzyz)" as a normalising factor
and gets carried on afterwards. We will see below that this gives rise to the fact that A is also

the leading coefficient of the Picard-Fuchs equation.

10cg5°+15cqs ™" 3,3,3,3 4,4,4,2 9,5,5,1
—2a2 T202 extra | 959, 9, -, ) % 1959,
A ;

A

Figure 2.16: The Jacobi path for (m1x2x3m4)4 after the first use of the Griffiths formula

654 (1 127324)382

10cqs'0+15 .
%w of the form ﬁo extra in order to have an expres-

Here we have to take

654(x1932:03x4)3
1

sion in the Jacobian ideal. The form o itself can be written with the monomials

appearing on the path as we already calculated, so we could adjust the coefficients in the pic-
10
ture by adding W times the coefficients from Figure , but then the picture gets

4 _\3
much bigger and this is not necessary because we already know how to write 8- (#122234)"¢%

in the basis. So there is no need to put this information in the picture and do the calculations
. . . 10cqs'0+15¢y 10cqs'0+15¢y .
again. It is enough to remember the coefficient —~<—= and add —~x—— times formula

4 4
1} to the description of 2% ("””1””]%;”3“) % in the end. We want to mention here that in the

4 3
description of ch in formula, 1} all coefficients already have A as denominator,

10
so after multiplying with w we have A? as denominator. This is true in general: In

£4+1 . 4
the description of &2 (x}ﬁf““) 2 the denominator A1 will appear and £— 1 is the biggest

exponent that appears. This means that we have at least to multiply everything by A to get

a relation between the partial derivatives. This explains why A is the leading coefficient of
the Picard-Fuchs equation.



2.3 Detailed example for the Picard-Fuchs equation 55

Now we can use the Griffiths formula for the above picture and the appropriate coefficient at
the vertex (3,3,3,3) for the second time. Again the monomials that occur are the same we
had for the calculations of (wxyz)3, but the coefficients are bigger. The Jacobi path we get
after using the Griffiths formula two times is the following:

w extra 2327272 3’3’3’1 (4’ 4’ 4’ 0)

A

Figure 2.17: The Jacobi path for (z1z9x324)* after the second use of the Griffiths formula

As expected we have one gap in this picture after the 6th vertex. So we have to use the basis

3 2 8 __ -2
element by = WCM here. If we add W of this basis element to the above
picture, we are ending up with an expression in the Jacobian ideal and we are able to use
the Griffiths formula again. There are only two steps until we have everything to write down

5 324) 0 - .
the linear combination of 222 (xlxﬁf““) 20 ip the basis and because we already know what the

basis is, we can concentrate on the coefficients at the corresponding vertices. Especially in the
last step we only have to figure out the coefficient at the vertex (0,0,0,0). Now we will show
the pictures after the third and fourth use of the Griffiths formula:
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W extra 1717171 272>270

A

0,0,0,2

(0,0,4,1) 4010°522%s exiry

(1, 1‘,'5, 0)

Figure 2.18: The Jacobi path for (z12ox324)* after using the Griffiths formula three times

Figure 2.19: The Jacobi path for (z129w324)? after using the Griffiths formula four times

5 10
£ 24s (xlx;érgz4) Qo in the

Now we can put everything together and write down the expression o
basis {bo, b1, be,b3}. First the formula we got from the Jacobi path starting and ending at
(4? 47 47 4):

245° (z1w02374)* D B 1Ocq$10 +15¢4\ 65*(z120m324)3Q0
f? A fA

—IOCqslo + 80c¢y 5¢qs'0 + 80cy
b L
+ < A 2+ A 1

40 —c, 810
—b d bo.
+A3+( A > 0
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And now we put in formula (2.3)) and get the final expression in the basis:

245° (x1w92314)* Q) B 10c,s'0 + 15¢4 6cys'0 + 9cy b
f5 - A A 2

—7Cq810 + 9¢cy4 8 cq510
+ <A by + KbS + A bo

—25¢,510 4+ 80 15¢,510 + 80
+( cqs™? + Cd>b2+< cqs + Cd)bl

A A
40 —cgs'0
+ Zbg + < Z ) bo
2.4
1 60cys?Y + 180cqcqs™® + 135¢3 n —25¢45™0 + 80cqy (24
e A2 A
o —700q520 — 15Cd6q810 + 13503 n 15cqs10 + 80cq
A2 A
80cys'0 4 120¢, 40
+ b3 < A2 + A
1Ocq520 + 15cdcq310 —cqslo
+ bo A2 + A .

From Theorem we know that the Picard-Fuchs equation should be
0= (5°2%s1963(6 + 5) — 1096 — 1)(6 — 3)(6 — 7)(6 — 9))(w)
= (cqs10 — cd)54w +(5- cqs10 + 20 - cd)63w — 130 - ¢g6%w + 300 - cgdw — 189 - cqw.

Now we can put equation (2.2) in this Picard-Fuchs equation and end up with the following
formula to check

6s* 300 24s° 10
0 = (cg5° — cq) (bo 15y + 25by — 105122300 N | 25 (@1250534) °>

f4 f5
654 (z1zox324)3Q
+ (5 cgs™ 420 - cq) <bo—7b1+6b2— (21 }43 1) 0)
— 130 - cg(bo — 3b1 + ba) + 300 - cg(bo — b1) — 189 - c4bp
2455 40)
(5™ — cg) (95133;5373954) 0
651 (z1222324)3Q

+ (=15 ¢4 — 10 - ¢y)

f4
+ (55 - cgs' — 35 - cg)ba + (=50 - ¢45™ — 35 - cq)by + 6 - c45™bg.

4 3
Now we can put in the expression of Gs(mlw'}w in the basis 1)
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0= A2455(931:132x3x4)490
75
+ (‘90%320 - 195A' cacgs’” =90¢5 o cgs'? =35 Cd> by
+ <105cq320 - 65'Acdcq3m —90cj — 505" — 35 Cd) by

Finally we put in formula 1' which describes 2435(:1513:;51 324)'% i the bagis and we check
that the Picard-Fuchs equation holds:

0= <—306q820 — 15 - cqcqs® + 45¢3

A + 30 - cqslo +45- cd> by

< Cq$ CaCqS~ +40¢; 35 - cgs'0 + 45 - cd) by
40 - 510 — 40 - —5cqs? +5 - v
< €5 €d + 40) b3 < = +A e 5 cq810> bo

1
:Z(O'bz—l—O‘bl—FO-bo—FO'bg).



Chapter 3

The Picard-Fuchs equation for
invertible polynomials and

consequelnces

In this Chapter we focus on the Picard-Fuchs equation of the one-parameter family f(z) and
discuss some consequences of the results achieved so far. From the last chapter we already
know the order of the Picard-Fuchs equation. In the first section of this chapter we calculate
the GKZ system and in the second section we see how this fits together with the result
on the order of the Picard-Fuchs equation to prove Theorem which states the Picard-
Fuchs equation for the one-parameter family f(z). In the Section we will also see how
this relates to a paper by Corti and Golyshev [CG06|, where the same differential equation
appears. This is also the starting point for Section [3.3] where we concentrate on relations
between the cohomology of the hypersurface defined by the one-parameter family f(z) and
the cohomology of the solution space of the Picard-Fuchs equation. In Section we will
discuss the results in an important class of examples given by Arnold’s strange duality. This
was also the starting point of the research done in this thesis. Finally, in the last section we
cover the relation between the zero sets of the Picard-Fuchs equation of f for special choices
of the parameter, the Poincaré series of the dual polynomial ¢g¢ and the monodromy in the
solution space of the Picard-Fuchs equation.

3.1 The GKZ system for invertible polynomials

This section is devoted to GKZ systems. We will give a short introduction to GKZ systems
and do the calculations for invertible polynomials afterwards.
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Introduction to GKZ systems

In this first part we want to give a short introduction to GKZ systems as far as we need it.
The theory on GKZ systems is much larger than the part we present here. Good references
for an introduction as well as an overview on several aspects of GKZ systems are the article
by Stienstra [Sti07], which has a large part on solutions of GKZ systems, the book by Katz
and Cox [CK99|, which among other things embeds GKZ systems in a bigger context, and
the article of Hosono [Hos98|, which focuses on the case of toric varieties. The theory of GKZ
systems was originally established by a series of articles of Gelfand, Kapranov and Zelevinsky
IGZK89, IGZK93l IGKZ90, IGKZ91] as a generalisation of hypergeometric differential equations.
This also explains the name GKZ systems.

Notation 3.1. Let A C Z" be a finite subset which generates Z™ as an abelian group and for
which there exists a group homomorphism h : Z" — Z such that h(A) = 1, i.e. A lies in a
(n — 1)-dim. hypersurface. Let v € C™ be an arbitrary vector.

Let |A| = N, then L := {(I1,...,In) € Z" : lya1 + --- + Iyay = 0,a; € A} denotes the
lattice of linear relations among A. Because of A lying in a hypersurface, _ l; = 0 holds for
(l1,...,ly) € L.

Remark 3.2. We will calculate the GKZ system for the one-parameter family f(z) later.
Keep in mind that for these calculations A will be the set of all exponent vectors of our

one-parameter family. The reasons for this will also become clear later.

Definition 3.3. The GKZ system (sometimes also called A system) for A and - is a system

of differential equations for functions ® of N variables vy, ..., vy given by
H (;}i)li@ = H (;}i)_li@ for every | € L and (3.1)
;>0 ;<0
Y o0
Zaijvia— = ’}/j(I) forall j=1,....,k+1 and (ail, - ,aik+1) e A. (32)
(7
i=1

The above definition gives a system of partial differential equations. We stated the basic
definition of a GKZ system. From this point on we will continue in the special case of invertible

polynomials.

Calculation of the GKZ system for invertible polynomials

We will now start calculating the GKZ system for the one-parameter family f(z) = g(z) +
s[[; i, where g(z) is an invertible polynomial. The notation in this section is the same as

before and can be found in and In addition we will define some extra notation:
Notation 3.4. We define the rows of the exponent matrix E to be e; = (€;1,...,€;,) for
n e

i =1,...,n. Then we can write g(z) as g(z) = Y.;_; 2%, where 2% = [[j_, 2}’ Now we
define a general n 4 l-parameter family fu(z) = fu, o, (z) = o0 vzt + szbD with
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parameters vy ..., v, and s. So in the previously used notation we have N = n+1 and we set
Un+1 := S. In this way the notation is consistent with the previous chapters, because we have
that

Frooal@) =Y a% + salbV = g(a) + s [ 2i = f(2).
i=1 i-1

We will now start calculating the GKZ system for A = {ef,... ¢!, (1,...,1)'} and v =
(—1,...,—1)% The reason for the choice of v will become clear when we look at the solutions of
the GKZ system. For the first equation we need to calculate the lattice of linear relations
L among the vectors in A. If we define A to be the matrix with columns et ... €%, (1,...,1),

then A is an n x (n + 1)-matrix and L is 1-dimensional. We know that

~

Q1 .

. ¢ 0

Al =B ] - =1:
q .

o5 Gn 0

and therefore L = ((q1,. .., qn, —c?)t>. Now we are able to write down equation 1' for this

lattice L:
2\ o\ o\
(5) o= (o) () @ 32

In the end we want to compare the GKZ system to the Picard-Fuchs equation from Theorem
To do this we will write the GKZ system with the differential operators § = 3% and

0; = Uia%i for i =1,...,n by inserting s~1§ = % and vi_lél- = 8%1_.
_1ad _ 0] _ n
(5 15) b = (vl 151)q1 ----- (vnlén)q d.

Now we move s~! and v, ! to the front and the product rule gives us an easy way to interchange

the differential operators 9, d; with the variables s, v;:

dsP =sP(6+p) for p € Z and (3.4)
60 =vP(6;+p) fori=1,...,nand p€Z. '

Using these equations we can move every s and every v; very quickly to the front of the
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equation:

(3_16)(7: slos7t. .57t s 6
s—1(6—1)
=5 tos78...s7h 8572 (6—1)8
s72(6-2)

=56 —(d-1))- (5 1)5
and in the same way we get

(v;léi)@ = vi_lo'ivi_léi .. .vi_l (51)1-_1 0;
| M—
v (8 -1)
= Uzﬁl(sﬁlfl(gi .. .U-ﬁl 5iUf2 (51 — 1)5z
—_

3 3 K3 3

07 2(8;—2)

G —(d—1)) - (6 —1)0® = ﬁv;%(@ (G 1) (6 — 15D, (3.5)

We will work with this equation later on and calculate the second part (3.2)) of the GKZ system
next. The second system of equations of the GKZ system is given by putting v = (—1,...,—1)¢

in (2

o)
1our o 5 1 -1
A- ia d=A-| |o=FE|:|o+]|:|od=|: |® (3.6)
1, On 5 1 1
Q 6 n
595

Before we do any further calculations, we focus on solutions of the GKZ system. There is
a whole theory on solutions of GKZ-System which, for example, is explained in [Sti07]. We
however, do not need the full strength of this, because to compare the GKZ system to the
Picard-Fuchs equation in Theorem it is enough to know that the form w = ;&0) is a
solution of the GKZ system shown in equation and . This is the goal, but we will

start with a slightly different solution in the next lemma.

Lemma 3.5. The form & = fi)((;) s a solution for the above GKZ system.
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Proof. We will calculate the differentials for & = va(O&) and see that the equations 1) and

(3:6) hold. For equation (3.3) we need the partial derivatives with respect to s and v; for
t=1,...,n. They are easy to calculate:

o\? ~ i Q
<as> o = (-1) '(Hx> (fv(m)O)J“
) Qo

e

{7 S

O =—zx
i T (f@)?

ﬁ <ai‘>qiq):(_1)zzl\i (Z@)!szﬁgi Qo

=1 (fg(g))lJrZ?]\z '

Because of the Calabi-Yau condition we have > g = d and from the definition of the dual

~

weights and degree we get > gie; = E' - (q1,...,qn)! = (d, . .. ,c?)t. Therefore we have

This proves that ® is a solution for equation (3.3)). Now we check the second equation, where

we need 0® and §;® for ¢ = 1,...,n, because the system of equations is given by:
1 01 1 0
SO+ E | |+ |e=]:].
1 On 1 0
So for every j = 1,...,n we have the following equation:

n 0 n Q Q
0D+ eij0i®+ @ = —spllt) —L o 4 N ey (—vigh) ——— +

pat T (@) I (ful@))”  ful)
(sl 3T eqjuia) Qo
(£)° (@) Jo(@)
zj%fy@)ﬁo Qo
T (W) LW
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where the last expression is an exact form due to the Griffiths formula and is therefore zero. [

As mentioned before ® is not the solution we want to have. A solution that would fit our

purposes would be w, = fig();)’ because wy, .1 = ;&O) = w. So we insert & = s}

equations [3.5 and [3:6] So equation (B.5) leads to:

wy in the

5_3(5 - (c?f D) (6 —1)ds tw, = Hv;qi(&- — (G = 1)) - (6 — 1)3is Ly

We can use equation ([3.4)) as earlier to move the variable s to the front and get the following

equation.

1 01 -1
SO+ E' | |d= P
1 on -1
1 01 -1
Sslwy +EN | 1 | sTlwy = s wy
1 On, -1
1 01 -1
sl 0 —Dwy+s B : Jwpy=s] ¢ |ws
1 On -1
1 1 0
Swy+E | Jwy = | we
1 on 0
Solving this equation for (d1,...,d,)" gives
51 1 4
= —(EHY™! d= J

[«%)

S

—_ e
e
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In other words we can write each of the differential operators d1,...,d, in terms of . For all
1=1,...,n we have
5 = —Ls.
d

We can use this equation to write equation (3.7) as an ordinary differential equation with
differential operator d:

Now we set v; = 1, which brings us back to our one-parameter family f(z). Because the

solutions of the differential equation before are given by w,, we get a differential equation for

w= ;&0) So our final expression is given by

3.2 The Picard-Fuchs equation

In the last chapter we already proved the order of the Picard-Fuchs equation. If we look

at examples such as those in Section [2.3] and [3.4] and in Appendix [A] we can also conjecture
exactly what the Picard-Fuchs equation looks. We can use the GKZ system that we calculated
in the last section to confirm that this is true.
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Theorem 3.6. Let g(x1,...,xy,) be an invertible polynomial with weighted degree degg =
d and reduced weights qi,...,qn for which the Calabi-Yau condition, d = ) q;, holds.
Let g'(z1,...,x,) be the transposed polynomial with reduced weights qu,...,qn and degree
degg' = d. Then the Picard-Fuchs equation for the one-parameter family f(z1,...,z,) =

g(x1,...,xn) + sz is given by

n n Gi—1 d-1
o=TTa " [T [T+ H(H@*l—(—?d -Hle-07"
i=1 i=1 j=0 tel =0 tel

7 d 2d Gi—1)d
whereI:{0,...,d—1}OU?:1{O,E,%,...,M}.

Proof. From Lemma we know that w = f(ﬂ) is a solution for the equation (3.8)). It follows

that all period 1ntegrals are solutions of (3.8) and therefore the Picard-Fuchs equatlon divides

:Siﬁ(@)@5<5+;>.....(5.{_@)@—(—@3(5—1) ----- ((5—(?)&).

We also know from Theorem that the order of the Picard-Fuchs equation is given by

- oo g —1)d
w=d ({0,1,...,d—1}mU{0,a,...,M}).
i=1 v

qi

So we try to find common factors in the summands of (3.8) until the order of the equation
is u. If we multiply equation 1) by s~% and use the commutation relations 1} to pass it
through the differential operators we get

L d G —1)d s -

0=1]@)"s (5 + a) """ (5 + ((]/\) w—(=d) NS+ (d—1))----- (6 4+ 1)6s %w.
i=1 !

Now it is easy to see that every linear factor § + j with j € {0,1,..., d — 1} N

U?:l{O,q%...,L} is in both summands and can therefore be deleted. This leads us

to the equation

n n g1 . c/l\—
0=]Ta"s" [ (5+‘7'.d)H(5+e ]_] HIE-07"

E tel

WheI‘eI:{O,...,C/l\—l}ﬂU?:I{ u;lz ?;fl "’@Eiil)d}

Finally, this equation is divisible by the Picard-Fuchs equation and has the degree of the

Picard-Fuchs equation (cf. Theorem [2.8)). O

We give another class of examples here, which are the simple elliptic singularities. There are

only 3 examples and their Picard-Fuchs equation is known.
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Example 3.7. In the following table we can see 3 polynomials that define the simple elliptic
singularities, their weights, the degree and the Picard-Fuchs equation, which can easily be
calculated with Theorem [3.6] or with the Griffiths-Dwork method directly.

Name Invertible polynomial Degree Weights Picard-Fuchs equation

Eg TP 3 (1,1,1) 8262+ 336 — 1)(0 — 2)
E; at + oyt + 22 4 (1,1,2)  s*%% —43(6 —1)(06 — 3)
Eg 28+ y3 + 22 6 (1,2,3) %62 —2.63(6 —1)(0 — 5)

Table 3.1: Simple elliptic singularities and their Picard-Fuchs equations

A gimilar result, but approached from a different point of view, can be found in a paper by
Corti and Golyshev [CGO6|. In this paper the differential equation that they look at is the
same as our Picard-Fuchs equation, but they start with a local system, which is given in the
following way:

nowi )
Y = { %nl Yi . c(CcHxcr (3.9)
i=1Y% =
If we insert y; = —s 2%~ (L1 and w; = §;, then we get that Y consists of the following two
equations:

n

T T =TT sty _ (-5 p S G (S )
o ) o )

i=1

So, from the first equation we get (—s)~% = X and the second equation can easily be rewritten
as

0= Zfi + sz = f(z).
=1

This shows the direct connection to our hypersurface V(f). It is very easy to write the Picard-
Fuchs equation with differential operator D = )\8%, because the relation between D and § is
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just given by

0 ~ ; 0 ~ 0 ~
§=s-—=—d(—s) ' ———= = —d\~- = —dD.
“9s (=9) d(—s)—d oA
So in terms of D the Picard-Fuchs equation is given by
n n ¢—1 (/i\—
O—Hq/sdHH H(5+E H H5 Ot
i=1 j=0 el 7=0 lel
no n gi—1 A AAcT—l R
=TIax T T1¢ _ip+? H(—dD+£)—1—d (—dD —j) [[(-=dD - 0)
i=1 i=1 j=0 G Lel j=0 Lel
n n g—1 ; o~ d—1 . /
o_Hq;HH HD—;)*l—dd)\H(DJr]) (D+ =) (3.10)
i=1 =1 j=0 q’ tel d §=0 ey d

which agrees with formula (1) in [CGO06].

In Theorem 1.1 of the article [CGO6] it is stated that the solutions of the Picard-Fuchs equation
come from the local system and in Conjecture 1.4 and Proposition 1.5 the Hodge numbers
for the solution space are given. This brings us to the next section where we will investigate
this in detail.

3.3 Statements on the cohomology of the solution space

We want to relate already known statements to the work we have done so far in the thesis.
First we continue the last section. We will relate our results to work of Corti and Golyshev
[CGO6]. In their paper there is a result that calculates the Hodge numbers of the solution
space of the Picard-Fuchs equation. We will state their result in form, which is compatible
with our setting.

Proposition 3.8. (J[CG06] Conjecture 1.4 and Proposition 1.5) Consider the sets A :=

L ((Qi \ {J}) U {0}) and Dy = (D\ {d}) U {0} (cf. Definition |2.6). Set {ar, ..., an} ==
A\ (AN D) with o < i1 for all i and {1, ..., Bu} := D\ (AN D) with 5; < Bit1 for alli.
Now consider the differential equation , which is with the above nolalion given by

sgﬁ(/]?ﬁ(s—i-az ﬁd Bi) =

=1 =1

Now define the following function

p(k) == {jlaj <Be}—(k—=1) for k=1,...,u

and let py = max{p(k)} and p_ := min{p(k)}.
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Then the local system of solutions of the ordinary differential equation above supports a real
polarised variation of Hodge structure of weight p+ — p— and Hodge numbers

hi—P-P+—J — |p_1(j)\.

Corollary 3.9. It follows easily from the calculations in Chapter|[d that the following numbers

coincide:

e py=p(l)=n—1
o p—=p(u) =1

I 1
* Z?:l [ :Z;’L:1 P~ ()| =

We are able to make the relation between u and the above Hodge numbers even more precise.

Proposition 3.10. Let u = ug+ - - - + up_2, where u; denotes the number of degree i - d basis

elements of the u basis elements one needs to write the Picard-Fuchs equation as calculated in

the proof of Theorem[2.8, Then

Ui = hzfl,nfzfl — BiTP—p+ 1

Remark 3.11. Notice that u; > 1 for all 4, because we have at least one basis element in every
degree, and ug = u,—2 = 1, because in degree 0 and n — 2 we have exactly the basis elements

n—1 An—2
% and 3(1}%% respectively.

Proof. We will relate the function p(k) to the u basis elements. In particular we show that
for every 1 < k < u with p(k) = i we need one basis element in degree (n — ¢ — 1)d. Notice
that p(k) can be written recursively as follows:

plk+1) = {jlaj < Br}l — k= Hjla; < Bt — (k= 1)+ [{j| Br < aj < By} — 1
=p(k) + |{j| Bk < j < B4} — 1.

Now we will show the statement via induction. If p(k) = i corresponds to a basis element in
degree (n — i — 1)d, then p(k + 1) corresponds to a basis element in degree (n —i — 1)d +
({4l Bek=1 < aj < Br}| + 1)d. For the correspondence between the function p and the basis
elements, we just view the «o; and (; as potential positions on the Jacobi path, where the «;
correspond to positions which have multiple possibilities or which are occupied by a partial
derivative that creates an extra vertex and the [3; correspond to free positions before shifting.
Notice that in contrast to the proof of Theorem the p(k) count the end of a connected
part on the Jacobi path and not the beginning.

First we investigate k = 1. We know that aj = --- = a1 =0and 1 =1, s0 p(l) =n — 1.
This makes sense, because at position 1 we have the vertex (n—1,...,n—1) and when we have
used the Griffiths formula (n—1)-times, we reach (0, 0,0, 0) and there is definitely a connected
part of the path ending here and we need one basis element in degree 0 = (n — (n — 1) — 1)d.
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Now assume that p(k) = i and we already know that this corresponds to the fact that after
using the Griffiths formula the appropriate number of times, there is a connected path ending
at position Sy with a vertex of degree (n — i — 1)d. Consider the next number k + 1, then

p(k+1) =p(k)+ |{j| B < a5 < Brg1} — 1 =i+ |{j| Bx < oj < By} —1

and we want to show that this leads to a basis element in degree (n—i—|{j| Br < oj < Br+1}])d.
To prove this, we have 3 distinct cases:

(i) p(k+1) =p(k) -1
(ii) p(k+1) = p(k)

(iii) p(k+1) > p(k)

In the first case, there are no a; between B and Si.1, so every position in between is covered
by exactly one partial derivative, therefore the smallest number drops by one at position
Br + 1, 1.e. k(Br) — 1 = k(B + 1), and stays the same until B4 is reached. This marks the
end of the connected part of the path. Since the smallest number is one less in this case we
have to use the Griffiths formula one time less before we reach the basis element and therefore
the degree of the basis element for this part of the path is d times bigger than before, so the
degree of this basis element is (n — i)d = (n — (¢ — 1) — 1)d which agrees with the fact that
plk+1)=1i—1.

In case (ii) there is exactly one oy between i and fri1. If a; € Z, then this means there
is one position between [ and Biy1 that is occupied by two partial derivatives. So again
k(Br) —1 = k(Br + 1), but before this part of the path ends, the smallest number increases by
one due to the double occupation. So with the argument from before, we get a basis element
of the same degree (n —i—1)d = (n —p(k+ 1) — 1)d. If a; € Q\ Z, then either the partial
derivative corresponding to «; is at position B + 1 and the smallest number did not drop, or
it is somewhere between B and Bi41. In this case it is in the same place as another partial
derivative, because every number not in the set {/3;} is occupied and we are back to the first
consideration. So either way we have a basis element with the same smallest number as before,
which therefore also has degree (n —i—1)d = (n —p(k+1) — 1)d.

Finally, the third case is just an expansion of the previous case. Let us define the number of
a; between By, and B4 as ap == |{j| Bx < @j < Br41}|, then with the same argumentation as
before, we can see that the smallest number increases by a; — 1 on the path between £ and
Bra1, i-e. k(Br) +ar —1 = Kk(Br+1)- It follows that the degree of the basis element of this part
of the path is (ay — 1)d times smaller than the previous basis element. So this basis element
has degree (n —i—1)d — (axy — 1)d = (n — (i + ax — 1) — 1)d = (n — i — ag)d, which agrees
with the above formula and ends the proof. O

Remark 3.12. We have p(k) + p(u — k + 1) = n. This is due to the fact that the a; # 0
and the B; are evenly spread between 1 and d — 1. This implies il Br < aj < Brs1}| =
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{J] Bu—k < aj < By—k+1}| for 1 < k < u/2 and therefore

k—1
p(k) +pu—k+1) = {jlay < B} + D Wil Bi < aj < Bipa}| — (k—1)

=1

u—k
+1{ilay < B} + D il Bi < ay < Bipa}| — (u—k)

=1
u—1
=2 -1+ > WilBi<a; <P}l
i=u—k+1
u—k
+ ) Wil Bi < oy < B} — (w—1)
=1

=2n—-1)4+u—(n—1)—(u—1) =n.

This also implies

hi—l,n—i—l _ hn—i—l,i—l

In [CGO6] one can also find a more detailed description of the Hodge numbers that appear
here. This relies mainly on the work of Danilov [DKS86] on Deligne-Hodge numbers and Newton

polyhedra.

Remark 3.13. The Hodge numbers h*~1"~"=1 — 4, that appear in our work as well as
in [CGO6] are the Deligne-Hodge numbers of the cohomology with compact support of a
hypersurface defined by a Laurent polynomial with Newton polyhedron A, where A =
<<%l, ce %ﬁ) ,(1,0...,0),...,(0,...,0, 1)> In particular from this viewpoint the wu; are
Deligne-Hodge numbers of a toric variety with polytope A in the lattice Z (%, cee %ﬁ) +Z".

3.4 The case of Arnold’s strange duality

In this section we will show all the results and some more details for the exceptional unimodal
hypersurfaces singularities known as Arnold’s strange duality. This is a class of examples first
discovered by Arnol’d in [Arn75|. He already stated that these hypersurfaces are closed under
some dualities, e.g. interchanging the Gabrielov and the Dolgachev numbers. The consequences
of this duality between the 14 exceptional unimodal hypersurface singularities have been
studied by a number of people. An overview on a lot of aspects of this duality can be found
in a paper by Ebeling [Ebe99|. These examples were also the starting point for the analysis
of the Picard-Fuchs equations in this thesis. We want to concentrate in this section on the
duality between the invertible polynomials of Arnold’s strange duality and the consequences

we get from the results achieved so far.
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In the following table we list important data of the 14 exceptional unimodal hypersurface
singularities we need. The table consists of the polynomial defining the compactification of
the singularity, the degree of this polynomial, the weights and the dual singularity due to
Arnol’d. So this is the compactified version of Table We have already seen the duality
of the singularities in Table [I.1I] because this duality can be seen as a duality of invertible
polynomials.

Name g(w,z,y, z) Deg  Weights  Dual
Ei9 w? + 27 + 3 + 22 42 (1,6,14,21) Eqo
Ei3 w3 4 2Py + 3 4 22 30 (1,4,10,15) Z13
711 w0 + 2% +ayP+ 22 30 (1,68,15) Eg3
Eus w? +atz 493 + 22 24 (1,3,8,12) Qo

Q10 w4+ 2t + o3+ x2? 24 (1,6,8,9) Euu
712 w2+ aty a4+ 22 22 (14,6,11)  Zio
Wig w?0 + 25 4 922 + 22 20 (1,4,5,10) Wi

Z13 w2 +xyP+22 18 (1,3,5,9) Q11
Q1 w® + 23y + o a2 18 (146,7) Zis

Wis wl® 4 2ty + y?2 + 22 16 (1,3,4,8) S11
S11 w2t 2z +222 16 (14,56) Wi

Q12 w4+ 22+t a2 15 (1,356) Qo
Sia wB 4 23y Pz + 22?2 13 (1,345) Sio

Ui w2+t 2z +y22 120 (1,344) Up

Table 3.2: The Compactification of Arnold’s strange duality

We will now list the sets {a1,...,a,} = A\ (AN Dy) and {p1,...,Bu} = Do \ (AN Dy),
where A =[], ((Q@ \ {(f}) U {O}) and Dy = (D\ {E}) U {0} as in Proposition and the
resulting order of the Picard-Fuchs equation w. Remember from Definition that the sets
@; and D are defined via the dual weights. Notice that d + a; and § — 5; are the linear factors
in the two summands of the Picard-Fuchs equation. Together with the dual weights and the
dual degree they completely determine the Picard-Fuchs equation. We want to mention that
{B1,...,Bu} contains all numbers 1 <b < d which are coprime to d. The set {a1,...,ay,}UZ
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on the other hand contains only elements which are not coprime to d.

Name at, ..., 0 B, Bu u

E12 0,0,0,6,12,14,18,21,24,28,30,36 1,5,11,13,17,19, 23,25,29,31,37,41 12

Ei3 0,0,0,%2 15.10,42,15, 25,20, 42, 105 1,3,7,9,11,13,17,19,21,23,27,29 12

y 40 2 y 40 y 40 » 9
711 0,0,0,6,%3,12,15,18, 45 24 1,5,7,11,13,17,19, 23, 25, 29 10
Es 0,0,0,%,45,8,32 12,40 16,58 ¢! 1,2,5,7,10,11,13,14,17,19,22,23 12
Q1o 0,0,0,6,8,12,16,18 1,5,7,11,13,17,19,23 8
Z12 0,0,0, 4, 4 22 17 41 33 5 1,3,5,7,9,13,15,17,19,21 10
Wio 0,0,0,4,8,10,12, 16 1,3,7,9,11,13,17,19 8
713 0,0,0,%8 9 36 54 g 72 90 27 108 1,2,4,5,7,8,10,11,13,14,16,17 12
Qi1 0,0,0,%% 6,30 24 12 72 1,3,5,7,9,11,13,15,17 9
Wi 0,0,0,8,46 16 32 g 48 32 64 40 1,2,3,5,6,7,9,10,11,13,14,15 12
S11 0,0,0,4,38 8,32 12 1,3,5,7,9,11,13,15 8
Q12 0,0,0,2,5,1 10,2 1,2,4,7,8,11,13,14 8
Si2 0,0,0,43 13 13 26 "13 139 36 39 52 1,2,3,4,5,6,7,8,9,10,11,12 12

> 5747375722573 475

Uia 0,0,0,3,6,9 1,2,5,7,10,11 6

Table 3.3: The sets defining the linear factors of the Picard-Fuchs equation

With the table above and Proposition we are able to state how many basis elements we
need in every degree. Using the methods from Chapter [2] we can give an exact basis of the
part of the cohomology that is used in the calculations. This can be done by relating the
numbers «; and §; to the positions on the Jacobi path, where a basis element can be chosen.
In the examples we have h?? = h%2 = 1 and we can choose the basis elements % and
% respectively. This means we have to find u — 2 basis elements in degree d. We will
only list a basis for the part of the middle cohomology we used and not a basis for the whole
cohomology, or equivalently Milnor ring. We show how to calculate these basis elements in an

example. The rest of the basis elements in Table [3.4] can be calculated the same way.
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Example 3.14. We concentrate on the singularity Si1, so f(z) = w!® + z* +y?2 + 222 with
weights (1,4,5,6) and degree d = 16. The dual weights are (1,3,8,4) and d = d = 16. We
have

16 22
Q= {16}, Q= {5516}, @3 = {2,4,6,8,10,12,14,16} and Qs = {4,8,12,16}.

We can read off from the above table what the «; are and we can see that we need 6 basis
elements in the middle cohomology. Apart from 0, the «; consist of the elements in the disjoint
union of the ); which are rational or appear twice. So the number «; tells us the position of
the basis element on the Jacobi path. This becomes clear in the calculation:

We start with ay = 4. To calculate the corresponding basis elements we need to check which
arrows have already been used, in other words how many numbers in Q; are < 4. In 1 there
is no element, so d,, does not appear on the Jacobi path before the vertex of the basis element
we are looking for. The set Q2 has also no element < 4, but ()3 contains 2 and 4 and Q4
contains also 4. This means 0, was used twice and 0, was used once on the Jacobi path before
we arrive at the basis element. So starting at (1,1,1,1) we have to add up (1,1, —1,0) twice

and (1,0,1,—1) once and we end up at the vertex

(1,1,1,1)+2-90,+0.=(1,1,1,1) +2-(1,1,-1,0) + (1,0,1,-1) = (4, 3,0,0)

which means that the basis element we are looking for is given by wa?.
For a5 = ?, we check that counting the elements < % in every Q;, we have to use 0, once,

0y twice and 0, once to get the basis element. We calculate that

(1,1,1,1)+0,+2-0,+0.=(1,1,1,1) + (1,-3,1,1) + 2-(1,1,—-1,0) + (1,0,1, —1)
:(5?07]‘7]‘)

which leads to w®yz as basis element. In the same way one gets that ag = 8 corresponds to
the basis element w8x?, ay = % gives w'% and finally ag = 12 leads to w'?z. Now we have

5 basis elements and in addition we have wzyz which corresponds to one of the zeroes in A.

With this construction we are able to calculate the basis in the middle cohomology for all
examples, and this is listed in the following table. So the table includes the name of the
singularity, the number A"! = « — 2 from Proposition and a basis for the part of the
Milnor ring in degree d, which gives also a basis of the part of the middle cohomology we are

using.
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Name wu —2 basis elements in the Milnor ring in degree d
Eo 10 wryz, wz, w02 wad, wBzt, w'22%, wbz8 Wy, wiy?, w2
Eis 10 wryz, wzr, w?x? W, wly, w! y w2, whlez, wa?z, wiedz
711 8 wryz, w?e, wBz? w?a?, wat, w??y, w2, wyz
Eq4 10 wryz, wz, wBz? wlby, wiy?, wl?z, wbry, w0y, wry?, wa?y?
Q1o 6 wryz, wBz, w?x?, w3, w'by, wiy?
712 8 wryz, wdz, wia?, wy, w2z, wrz, wirz, wdyz
Wis 6 wryz, woz, w?x?, wla?, wirt, wl'y?
713 10 wryz, wPz, w?a?, w! y,w9z wOry, w2y, wry?, w?z?y?, whyz
Q11 7 wryz,wie, w022, wy, wby?, wirz, wii?z
Wis 10 wryz, w3z, w02, wa? w12y,ngy,w%?y,w3x3y,w5:cz,w2:c2z
S11 6 wryz, w2z, wir? w3, w''z, wiyz

12 10,, 25,2 )7 2.2
Qi2 6 wryz,w'r,wy, wy, wry, wiry
S12 10 wryz, w2z, w22, wy, wdz, Wy, w3y, Wiz, Wx?z, Wwhyz
Uio 4 wayz, wz, wbr?, wiz3

Table 3.4: Basis elements for the middle cohomology

Of course from the previous work we can immediately calculate the Picard-Fuchs equation,
either with the Griffiths-Dwork method as shown in Section with a computer algebra
system as shown in Appendix or by inserting in the o; and 3; as linear factors as in

Theorem The output for all singularities we investigated in this section is shown in the

next table.



Name Picard-Fuchs equation for f
- s1263(5 +6) (6 + 12)(6 + 14)(5 + 18) (5 + 21) (5 + 24) (5 + 28)(5 + 30)(5 + 36)

B2 _92231597(5 — 1)(5 — 5)(5 — 11)(6 — 13)(5 — 17)(8 — 19)(6 — 23)(5 — 25)(8 — 29)(6 — 31)(5 — 37)(6 — 41)
. s3003(5 + 2)(6 4+ L) (6 + 10) (5 + 45)(5 + 15)(6 + ) (6 +20) (6 + L)(5 + 19)

B 395155 — 1) (6 — 3)(5 — 7)(5 — 9)(6 — 11)(6 — 13)(6 — 17)(6 — 19)(6 — 21)(5 — 23)(5 — 27)(5 — 29)
. s3003(5 4+ 6)(6 + L2) (0 + 12)(5 + 15)(6 + 18)(6 + 2) (5 + 24)

M 91231555 (5 — 1)(5 — 5)(8 — 7)(5 — 11)(5 — 13)(5 — 17)(5 — 19)(6 — 23)(6 — 25)(6 — 29)
. s2453(6 + 8)(6 + 1) (0 + 8) (8 + 32)(6 + 12)(5 + 20) (5 + 16)(6 + 38) (5 + &)

M 082(5 _ 1)(6 — 2)(6 — 5)(6 — T)(6 — 10)(5 — 11)(5 — 13)(5 — 14)(5 — 17)(5 — 19)(5 — 22)(5 — 23)
Qo %8354+ 6)(5 4+ 8) (5 +12)(6 +16)(6 + 18) — 22439(5 — 1)(§ — 5)(d — 7)(6 — 11)(6 — 13)(6 — 17)(6 — 19)(5 — 23)
- 3052530+ 0+ (6 + B+ 1)+ )0+ ) (6 + )

—28111 (6 = 1)(0 = 3)(6 = 5)(6 — 7)(6 — 9)(6 — 13)(6 — 15)(6 — 17)(d — 19)(d — 21)

Wio 820630 +4) (5 +8)(6 + 10)(6 + 12)(6 + 16) — 22255(5 — 1)(6 — 3)(6 — 7)(6 — 9)(6 — 11)(6 — 13)(6 — 17)(5 — 19)
. 778530+ B) 6+ 56+ 36+ 20+ 96+ B) 6+ )0+ F) (6 + 18)

B _94330(5 — 1)(6 — 2)(6 — 4)(6 — 5)(6 — 7)(8 — 8)(5 — 10)(5 — 11)(5 — 13)(5 — 14)(5 — 16)(5 — 17)
o 5°51863(6 + ) (0 +6)(6 + 20) (0 + 2) (6 + 12)(6 + )

—218315(5 — 1)(6 — 3)(6 — 5)(6 — 7)(6 — 9)(6 — 11)(6 — 13)(d — 15)(6 — 17)

9.
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Name

Picard-Fuchs equation for f

365°51663(6 + 3)(0+ 2) (6 + )0+ ) (6 +8)(0+ B) (6 + )0+ )6+ %)

Wis —250(5 — 1)(6 — 2)(5 — 3)(8 — 5)(6 — 6)(5 — 7)(5 — 9)(6 — 10)(6 — 11)(5 — 13)(6 — 14)(5 — 15)
S11 33510630+ 4)(0+ 1) (6 +8)(6 + 22) (6 +12) —232(6 — 1)(6 — 3)(6 = 5)(6 — 7)(6 — 9)(6 — 11)(6 — 13)(6 — 15)
Q2 25sB63(0+ 2)(0+5)(0+ L2)(6 +10)(6 + £) — 355106 — 1)(6 —2)(6 — 4)(6 — 7)(6 — 8)(6 — 11)(5 — 13)(6 — 14)
- 3B (5 + )0+ )6+ )+ B)0+ )6+ 2)(6+ )6+ ) (6 + 2)

+1383(5 = 1)(§ —2)(6 = 3)(§ —4)(§ = 5)(§ —6)(d — 7)(5 — 8)(d — 9)(d — 10)(§ — 11)(6 — 12)
U  s2830+3)(0+6)(6+9)—2832(6 —1)(6 —2)(6 — 5)(6 — 7)(6 — 10)(6 — 11)

Ayjenp aSueils s pjouly jo ased ay| p'g

L2
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We give another viewpoint on the Picard-Fuchs equation. From Theorem [3.6] we know that
the Picard- Fuchs equation always consists of exactly two summands. They can be separated

by setting s = 0 or 1 =

= 00. We already know that if we view the Picard- Fuchs equation as a
polynomial with variable § then the zeroes of these polynomials after setting s = 0 are given
by 81,..., By and the zeroes for s? = 00 are given by —aq, ..., —ay. Now we want to focus on
a polynomial that has related zeroes. Namely, we define xq to be the polynomial with zeroes
exp (2771%) for i = 0,...,n and X the polynomial with roots exp ( 27i<% ) for i = 0,.

and notice that multiple roots in the Picard-Fuchs equation lead to multlple roots of Yoo and
Xo- Equivalently, we can first write the Picard-Fuchs equation for the variable A = (—s)_‘i

and then start with the zeroes of this equation for A = oo and A = 0.
Notation 3.15. We will shorten the notation for a rational function with only roots of unity
as zeroes and poles. We will write vy -+ vy, /11 -+ - N, for the rational function
B (1_751/1) ..... (1_t'/m1)
(1—tm)--... (1 — tm2)

With this notation we write down the functions xo and X in the following table.

Name Deg Weights X0 Xoo

E12 42 (1,6,1421) 2-3-7-42/1-6-14-21 2-3-7

Eis 30 (1,4,10,15) 3-30/6-15 1-3-8
VAR 30 (1,6,8,15) 5-30/10-15 1-4-5
Ei4 24 (1,3,8,12) 2.24/6-8 1-2-9
Q10 24 (1,6,8,9) 4-24/8 12 1-3-4
AP 22 (1,4,6,11) 1-22/2-11 1-1-4-6/2
Wia 20 (1,4,5,10) 2-20/4-10 1-2-5
713 18 (1,3,5,9) 18/6 1-4-7
Qun 18 (1,4,6,7) 18/9 1-3-5
Wis 16 (1,3,4,8) 16/4 1-5-6
S 16 (1,4,5,6) 16/8 1-3-4
Q12 15 (1,3,5,6) 1-15/3-5 1-1-6
Si2 13 (1,3,4,5) 13/1 3-4-5

U 12 (1344) 1-12/3-4 1-1-4
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The functions xo and X are in all cases a little bit different, but the interesting thing is that
the quotient of the two functions is always the same.

Remark 3.16. The rational functions g and y~ described in the above table have always the
property that

xo(t) _ (1—t9)

Xoo(t) (1 —t0)(1 —1®)(1 —ds)(1 — ti4)

In the next section we will look at this phenomenon in more generality and we will also see that
the roots of xo and Yoo are the eigenvalues of the local monodromy around (—1)4\~! = s =0
and (—1)4\7! = 5% = 0o respectively.

3.5 Relations to the Poincaré series and monodromy

In this section we want to relate the numbers in the Picard-Fuchs equation of f(z) to the
Poincaré series of ¢g'(x) and to the monodromy around 0 and oo in the solution space of
the Picard-Fuchs equation. The last remark in the previous chapter already showed us the

direction.

Poincaré series

First we want to investigate the relation to the Poincaré series. Therefore we consider the
Picard-Fuchs equation in the form of which is a differential equation with parameter
A= (—3)_(?. If we view this differential equation as a polynomial with variable D, then we
can immediately read off the zeroes for A = 0 and A = oo:

A=0: a—i, ,a—f
d d
A=00: —ﬁ—i,...,—@
d d

Remark 3.17. Because of the symmetry of the o; and (;, the sets {exp (2#1%)} and

{exp (27ri%)} are closed under complex conjugation.

We will now relate these numbers «; and j3; or exp <27ri%) and exp (27ri%) respectively to

the Poincaré series of g*(z). Let us recall first how the Poincaré series is defined.

Definition 3.18. Let A := C[z]/(g9(z)) be the coordinate algebra of the hypersurface
{g(z) = 0}. Then A admits naturally a grading A = @, _, Am, where A, is generated
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by the monomials in A of weighted degree m. The Poincaré series for this hypersurface is

given by

pa(t) :==py(t) := Z dim¢ A,,t™

m=0
Remark 3.19. (c¢f. [AGZV8J]) If g(x) is quasihomogeneous with weights ¢i,...,q, and
weighted degree d, then the Poincaré series is given by
(1-t4)
t) =
Py(t) (1—tar)..... (1 — tan)

A rational function of this form is of course uniquely determined by the set of poles and
zeroes. So we study these sets for the Poincaré series of g'(z), because as mentioned before
this will be related to the Picard-Fuchs equation of f(z). So we study the zeroes and poles of
the function

DPgt (t) =

The zeroes of (1 — tg) are given by the set {exp (27r1 ) |0<j < d— 1} and the zeroes of
(1—ta). ... (1 — t@n) are given by the set J}_, {eXp (27r1A ) 10<j<qr-— 1} So putting

this together, the zeroes of the Poincaré series of g(z) are given by

{ow (2ri2) 13 e 2 ({exp (2rid) 15 e 2} kL:J Low (2 ) 1 Z})
_ {exp <2mb> be D} \ <{exp (27r1 A) be D} {exp <2m ) lac A})
= {ow (2n2) 1 =0,

and the poles are given by the set

l,ill {exp (zmqk> je z}\ ({exp (zmd) je z} n H {exp (zmql) je z})
_ {exp (zmd> lae A} \ ({exp (zmd) be p} {exp <2m%> lae A})
{0

where the disjoint union indicates that poles occur in this set counted with multiplicity. Notice
that the notation {exp <27r1 ) la € A}, where A = | |}_; ((Qk \ {c/l\}> U {0}), is short for

s 1{exp (271'1 >|ak € <Qk\{d}> u{O}}

In the above we can see clearly the relation between the zeroes of the Picard-Fuchs equation
of f(z) for A = 0 and A = oo and the Poincaré series of g'(z). We summarize this in the

following corollary.
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Corollary 3.20. The zeroes of the Poincaré series of g'(x) are in 1 — 1 correspondence with
the zeroes of the Picard-Fuchs equation of f(z) for X = oo or s = 0 and the poles of the
Poincaré series of g'(x) are in 1—1 correspondence to the zeroes of the Picard-Fuchs equation
of f(z) for A\ =0 or s = 0.

Equivalently the same holds for the Picard-Fuchs equation of f'(z) = g'(z) + s[] x; and the

Poincaré series of g(z).

Monodromy

Now we want to explain why the roots of the Picard-Fuchs equation for A = (—s)_‘i =0
and A = (—s)‘g: oo are in 1-1 correspondence with the eigenvalues of the local monodromy
around 0 and oo in the solution space of the Picard-Fuchs equation, i.e. the space of the
period integrals. More precisely, the eigenvalues of the monodromy around 0 and oo are equal
to the poles and zeroes of the Poincaré series respectively. First we recall monodromy in the
context of Picard-Fuchs equations in as much generality as we need. References for the relation
between monodromy and the Picard-Fuchs equation are [CK99|, [Mor92| and [Del70].

In this subsection we will always regard the Picard-Fuchs equation in D = /\%, SO we are
working with the differential equation (3.10))

U s ¢ ¢
o_HqZZHH HD—g) 1o — ddAH D+d H(D+g)*1<1>.
=1 j=0 Lel 7=0 el

Due to [Del70] this Picard-Fuchs equation has only regular singular points. This can for
example be seen by the fact that in the Picard-Fuchs equation, written as

D"® + > hi(\)D'® =0, (3.11)

all coefficients h;(\) are holomorphic functions of A. Now we can define the residue matrix for

A

Definition 3.21. Let wq,...,w, be a basis of the solution space of the Picard-Fuchs equation
and define the connection matrix (I');; via Dw; = 3, I';jw;. Then the residue matrix is given
by Res = Resy—o ((I')4;).

Remark 3.22. In the cases we consider (I');; has no poles at A = 0, so the residue matrix is
just given by Res = ((I')i;),_-

Theorem 3.23. ([Del70|) The following relations between the residue matriz and the mon-
odromy around A = 0 in the solution space of the Picard-Fuchs equation hold.

(i) n is an eigenvalue of Res < exp(2win) is an eigenvalue of the monodromy.
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(7) exp(—2wiRes) is conjugate to the monodromy.

(#5i) The monodromy is unipotent < Res is nilpotent.

We cannot be sure that w, Dw, ..., D* lw, with w a solution of the Picard-Fuchs equation,
is a basis for the solution space, but we can easily write down the connection matrix for this
basis:
0 1 0 0
0 0 1 0 0
r— : . . :
0 e 0 1 0
0 0 e 0 1
—hi(A) —ha(A) —hs(A) - —hy—1(N)
A theorem by Morisson gives a condition for these elements w, Dw, ..., D" w to be a basis

of the solution space. The condition depends on the eigenvalues of the matrix I'.

Theorem 3.24. ([Mor92|) Let DJ(N\) = T'W(N) be a system of ordinary differential equations
with a reqular singular point at X = 0. If distinct eigenvalues of U'x—g do not differ by integers,
then wi, ... ,wy withd = (w1, ...,wy) s a basis for the solution space of the system of ordinary

differential equations.

So we calculate the eigenvalues of I'y—g. For this purpose we only have to remember that the
equation (3.11]) or equally equation (3.10]) has the following solutions for A = 0:

" 1 G —1 1 d—1 " 1 G —1
|_|{0,A,...,qA }\ 0,%,... 2= mU{o,A,...,qA } .
P 4qi i d d i1 qi i

This means that no distinct eigenvalues differ by an integer and therefore I'y\—=g = Res is
a residue matrix by Theorem [3.24] In addition it follows from Theorem that for every
eigenvalue ) of I" we get an eigenvalue exp(27in) of the monodromy. So together with Corollary
we get the following statement.

Corollary 3.25. The poles of the Poincaré series of g'(x) are the eigenvalues of the mon-
odromy around A = (—3)*3 = 0 in the solution space of the Picard-Fuchs equation of
f(z) = g(z) + s[];z; and the zeroes of the Poincaré series of g'(x) are the eigenvalues
of the monodromy around \ = (—s)*g: 0.

The second part of this statement is proved analogously to the first part, substituting only A
by AL



3.5 Relations to the Poincaré series and monodromy 83

Remark 3.26. For the calculations in the last section this means that the eigenvalues of the
monodromy around A = 0 are given by the roots of x, and the eigenvalues of the monodromy
around A = oo are given by the roots of yg.

Remark 3.27. Notice that the monodromy around 0 and oo is not unipotent, but it is quasi-

unipotent, i.e. a power of the monodromy is unipotent. This agrees with Theorem 2.3 in
[Del70].

We want to mention that the points 0 and oo are not the only points with monodromy. At A =
HZ]? / d? the Picard-Fuchs equation degenerates and therefore we can consider monodromy
around this point in the solution space as well. But the monodromy around this point is just
a combination of the monodromy around the other two points. This can be seen from the fact
that the parameter can be considered on a projective line (cf. [Mor01]).

Also we want to mention that the critical points of A in the solution space of the Picard-Fuchs
equation apart from A = oo are in 1-1 correspondence with the critical values of f(z) in s.

~ ~ ~q;
Namely A = (—s) ¢ =0and A = (—s)"¢ = % are the critical values of f(z) in s.






Appendix A

Examples: Simple K3 singularities

In this first part of the appendix we will state some famous examples. These were additional
examples leading to Theorem [3.6]

The following examples were all calculated with the Griffiths-Dwork method using Singular.
The code for these calculations can be found in the second part of the appendix. The polyno-
mials given below are those from the list of 95 polynomials in [Yon90] that can be described as
invertible polynomials by considering an involution on the corresponding hypersurface. The
polynomials that can be achieved by the involution are due to personal communication with
Noriko Yui and will be published soon in a joint paper with Yasuhiro Goto and Ron Livné
IGLY].

In all the examples below Theorem can be checked. This can easily be done by comput-
ing the dual weights and dual degree and comparing them to the numbers appearing in the
Picard-Fuchs equation we calculated.

The number in the first column of the table is the index given in the article of Yone-
mura [Yon90|. The second column contains the invertible polynomial that was stated as
g(z1,22,23,24) before. The third and fourth column contain the weights of the invertible
polynomial and the order of the Picard-Fuchs equation respectively. The order can also be
calculated with the result of Theorem which is a fast computation once the dual weights
and the dual degree are known. Finally in the last column the result of the calculations,
namely the Picard-Fuchs equation of f(x1, zo,x3,24) = g(x1, 2, 3, 14) + ST1T2T324, IS given
and this is exactly the formula given in Theorem



Nr. invertible polynomial weights order PF  Picard-Fuchs equation
1 ol +ad+ 25+ 2] (1,1,1,1) 3 s493 —28(5 — 1)(6 — 2)(0 — 3)
2 S+ o+ i+l (2,3,3,4) 6 s1263(5 +4)(6 +6)(6 +8) — 2M36(5 — 1)(6 — 2)(6 — 5)(6 — 7)(6 — 10)(6 — 11)
3 2§ + 2§ + 23 + 23 (1,1,2,2) 4 s503(6 +3) —2235(6 — 1)(6 — 2)(6 — 4)(6 — 5)
4 P4 af4ad+ad (1,3,4,4) 6 s1263(6 +3)(0 +6)(6 +9) — 21039(6 — 1)(0 — 2)(§ — 5)(6 — 7)(6 — 10)(d — 11)
5  a$+af+af+ a3 (1,1,1,3) 3 5503 —2633(6 — 1)(6 — 3)(6 — 5)
6 2% +a3+ 2]+ 23 (1,2,2,5) 4 s1063(6 +5) —2655(6 — 1)(6 — 3)(6 — 7)(6 — 9)
7 b+ af +ad a2 (1,1,2,4) 4 8030 4+4) =20 —1)(6 —=3)(6 = 5)(6 = T7)
8 w24 a§+a2i+22 (1,2,3,6) 6 $126%(6 +4)(6 +6)(0 +8) — 21633(5 — 1)(6 — 3)(6 — 5)(6 — 7)(6 — 9)(0 — 11)
9 230 + 25 + 28 + 23 (1,4,5,10) 8 j;gjég(;f)(f(—gE)g(;ﬁ)g(—i_ 10))(? +_1121))(5 —13)(8 — 17)(5 — 19)
10 2P+ 22+ a3 + a3 (1,1,4,6) 4 51263(6 +6) —21936(5 — 1)(6 — 5)(6 — 7)(0 — 11)
53063(5 +6)(0 + 10)(6 + 12)(6 + 15)(5 + 18)(5 + 20) (3 + 24)
1 2P +2i%+23+27  (2,3,10,15) 10 —21831255(§ —1)(6 — 5)(6 — 7)(6 — 11)(6 — 13)(6 — 17)(6 — 19)(5 — 23)
(6 —25)(6 — 29)
12 28 +2) + 23 + 23 (1,2,6,9) 6 s883(5 +6)(0 +9)(6 +12) — 219312(§ — 1)(6 — 5)(6 — 7)(6 — 11)(6 — 13)(§ — 17)
ol asiy s T 0RO 0%
s4263(6 +6)(0 + 12)(6 + 14) (6 + 18)(8 + 21) (5 + 24) (5 + 28)(6 + 30)(5 + 36)
14 2P+ a2l + 23+ a3 (1,6,14,21) 12 —22231577(5 —1)(6 — 5)(6 — 11)(6 — 13)(6 — 17)(6 — 19)(5 — 23)(5 — 25)

(5 — 29)(6 — 31)(8 — 37)(5 — 41)

98
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Nr. invertible polynomial weights order PF  Picard-Fuchs equation
251963(5 4 3)(8 +6)(6 + ) (5 +9)(6 + 12)
15 2} + a5 S+ a3 3,3,4,5 8 2
Htoterta (33,45 131255(5 — 1)(6 — 2)(6 — 4)(5 — 7)(6 — 8)(5 — 11)(6 — 13)(5 — 14)
16 2 +a5+z2d+23  (3,6,7,8) 6 s1263(6 +3)(0 +6)(6 +9) —2839(5 — 1)(6 — 2)(6 — 5)(6 — 7)(6 — 10)(6 — 11)
19 2 +a25+ 25+ 2207 (1,2,2,3) 4 $893(64+4) =26 —1)(6 = 3)(6 = 5)(6 = 7)
24535 4 6) (5 + 8)(6 + 12)(d + 16)(5 + 18)
20 22+ 2l + o 2 (1,6,8,9 8 §
w ey taste; (1,6,8,9) _9239(5 — 1)(5 — 5)(6 — T)(5 — 11)(5 — 13)(5 — 17)(5 — 19)(5 — 23)
s3063(6 +6)(0 + 10)(6 + 12)(8 + 15)(5 + 18)( + 20)( + 24)
22 o+ a5+ a3 + a9 (1,3,5,6) 10 —21831255(5 — 1)(6 — 5)(6 — 7)(6 — 11)(§ — 13)(6 — 17)(6 — 19)
(6 — 23)(8 — 25)(6 — 29)
24 2P+ aS+ a3 +aerl (1,2,4,5) 4 s1263(6 4+ 6) — 21035(5 — 1)(6 — 5)(6 — 7)(d — 11)
s2063(5 4 4)(6 + 8)(6 + 10)(d + 12)(5 + 16)
26 210+ 25+ 3 2 (2,4,5,9 8
e tastae; (24,59 _92255(5 — 1)(5 — 3)(8 — 7)(5 — 9)(6 — 11)(6 — 13)(6 — 15)(6 — 17)(6 — 19)
s2163(5 4 6)(5 + 8)(6 + 12)(d + 16)(6 + 18)
27 w1+ 2§+ 23 2 (2,3,8,11 8
et to oy (2,3,8,10) —9239(5 — 1)(5 — 5)(6 — 7)(5 — 11)(5 — 13)(5 — 17)(5 — 19)(5 — 23)
s4263(6 +6)(0 + 12)(6 + 14) (6 + 18)(86 + 21)(5 + 24) (5 + 28)(5 + 30)(5 + 36)
28 ¥+l 423+ 22l (1,3,7,10) 12 —22231577(§ —1)(6 — 5)(6 — 11)(6 — 13)(5 — 17)(6 — 19)(6 — 23)(5 — 25)(6 — 29)
(6 —31)(5 — 37)(6 — 41)
29 aSz3+ a8+ a3 +22  (4,5,6,15) 3 $663 —2633(6 — 1)(0 — 3)(6 — 5)
30 af+xad+ai+a23 (5,7,8,20) 4 s1083(5 +5) —2055(6 — 1)(6 — 3)(6 — 7)(6 — 9)
31 af+al+xord+22 (3,4,5,12) 4 $893(54+4) — 26 —1)(6 = 3)(6 — 5)(6 — 7)

L8



Nr. invertible polynomial weights order PF  Picard-Fuchs equation
3352863(0 +4) (0 + 8) (8 + 2)(6 + 12)(6 4 14)(5 + 16)(5 + 22)(5 +20)(6 + 24)
32 zl4al+mxd+a? (2,2,3,7) 12 —23477(§ —1)(6 = 3)(6 = 5)(6 — 9)(6 — 11)(6 — 13)(6 — 15)(6 — 17)(5 — 19)
(6 —23)(6 — 25)(6 — 27)
33 ) +al+mad+a2 (2,3,4,9) 6 s1263(6 +4)(0+6)(6 +8) —21633(6 — 1)(6 —3)(6 — 5)(0 — 7)(6 — 9)(6 — 11)
20§35 4 4)(6 + 8)(6 + 10)(d + 12)(5 + 16)
34 21443 1442 (2,6,7,15 8 °
ot nw ey (2,6,7,15) —92255(5 — 1)(6 — 3)(6 — 7)(5 — 9)(5 — 11)(5 — 13)(5 — 17)(5 — 19)
§xo + 28 + 25 + 23 4 8935 +4) — 215 —1)(6 —3)(6 —5)(6 — 7)
35 7 7 4 2 (3’4’7’ 14) 31483 14 28\ _ 9l0~7(5 _ _ _ _ _
rlxs + xd + 25 + 23 6 3BsMGB(E+ )+ 76+ 2) —21977(5 — 1)(6 — 3)(6 — 5)(6 — 9)(6 — 11)(513)
26 210+ 2128 + 23 + 23 (2.3.5.10) 6 s1263(6 +4)(0+6)(6 +8) —21633(6 — 1)(6 —3)(6 — 5)(6 — 7)(6 — 9)(6 — 11)
ri0+ adzs +ad+22 VT 4 s1063(6 +5) —2655(6 — 1)(6 — 3)(6 — 7)(6 — 9)
2053
% s 4 s2063(5 4+ 4)(6 + 8)(6 + 10)(d + 12)(5 + 16)
8
s MR L) —92255(5 — 1)(6 — 3)(6 — 7)(5 — 9)(5 — 11)(8 — 13)(5 — 17)(5 — 19)
T 3351653(0 +4) (0 + 25) (0 +8)(0 + 22)(0 + 12)
x%‘i + 1’33]"21 + m§ + a:i 8 3 3
—232(6 = 1)(6 = 3)(6 = 5)(0 — T)(6 — 9)(0 — 11)(6 — 13)(6 — 15)
22530535 + 6)(0 + 22) (0 + 12)(6 + 15)(6 + 18)(5 + 2)(5 + 24)
38 230+ a5+ woxd + 22 (1,6,8,15) 10 —2M431555(5 — 1)(6 — 5)(6 — 7)(6 — 11)(§ — 13)(6 — 17)(6 — 19)
(6 —23)(6 — 25)(6 — 29)
39 o8+ a§+zexd +27  (1,3,5,9) 6 s1863(6 +6)(0 +9)(6 +12) — 219312(§ — 1)(6 — 5)(6 — 7)(6 — 11)(6 — 13)(6 — 17)
2251263(5 4 6)(6 + 21) (6 4 12)(0 + 14) (6 + 18)(8 + 21)(5 + 24) (6 + 28)
b 5§+
40 2 el el 422 (1,2,4,7) o (0+30)(0+ )0+ 36)

—22231877(5 —1)(§ — 5)(6 — 7)(6 — 11)(d — 13)(6 — 17)(6 — 19)
(6 —23)(6 —25)(0 —29)(6 — 31)(6 — 35)(6 — 37)(§ — 41)

88

sanenduis ¢y o|dwig :sajdwexy



Nr. invertible polynomial weights order PF  Picard-Fuchs equation
41 2P 42l +aoxd +23 (2,3,7,12) 4 $1263(6 +6) —21936(5 — 1)(6 — 5)(6 — 7)(6 — 11)
s3063(6 +6)(0 + 10)(6 + 12)(6 + 15)(6 + 18)(8 + 20)(d + 24)
42 20+ 20+ waad+ 2 (1,1,3,5) 10 —21831255(6 — 1)(6 — 5)(6 — 7)(6 — 11)(6 — 13)(6 — 17)(6 — 19)
(6 —23)(6 — 25)(6 — 29)
43 i+ a)+mad+ a3 (3,4,11,18) 6 s1863(6 +6)(0+9)(6 +12) — 219312(§ — 1)(6 — 5)(6 — 7)(6 — 11)(6 — 13)(6 — 17)
5354 6) (0 + 8)(6 + 12)(5 + 16)(5 + 18)
16 8 3 2 1.9 s
Moaltmtnegto o (1,2,5.8) 8 924395 — 1)(6 — 5)(6 — 7)(6 — 11)(6 — 13)(6 — 17)(5 — 19)(5 — 23)
s4263(5 4 6) (6 + 12) (5 + 14) (8 + 18) (5 + 21) (8 + 24)(5 + 28)(5 + 30) (5 + 36)
45 P 42l 4zl + 27 (1,4,9,14) 12 —22231577(5 — 1)(6 — 5)(6 — 11)(§ — 13)(6 — 17)(6 — 19)(6 — 23)(5 — 25)(6 — 29)
(6 —31)(6 — 37)(6 — 41)
46 ailro+ a2t + a3+ 23 (5,6,22,33) 4 s1263(6 +6) —21936(6 — 1)(6 — 5)(6 — 7)(0 — 11)
47 a4 2lzs+ a3+ 23 (3,4,14,21) 6 2251836 + D)6+ T)(0+ %) —2677(6 — 1)(6 — 3)(6 — 5)(6 — 9)(6 — 11)(6 — 13)
48 i+ xad + a3+ 27 (3,5,16,24) 6 s1863(6 +6)(0+9)(6 +12) — 219312(§ — 1)(6 — 5)(6 — 7)(6 — 11)(6 — 13)(6 — 17)
24535 4 6) (5 + 8)(6 + 12)(d + 16)(5 + 18)
19 2P aad+ad+ad (2,5,14,21 g 7
9 er tmetaitay (25,14,21) —92439(5 — 1)(5 — 5)(6 — 7)(5 — 11)(6 — 13)(5 — 17)(5 — 19)(5 — 23)
21053063 (5 + 15)(6 + L2)(6 4+ 10) (3 + £2)(6 + 15)(6 + ) (5 + 15)
5+ 75)(5+ 105)
30 5 3 2 10.1 12 (
50 ol tegm oy tan (1,4,10,15) —91039515(5 — 1)(5 — 3)(6 — 7)(5 — 9)(5 — 11)(5 — 13)(5 — 17)(5 — 19)(6 — 21)
(6 —23)(0 —27)(0 — 29)
s4263(5 4 6) (6 + 12) (5 + 14)(8 + 18) (5 + 21) (5 + 24)(5 + 28) (5 + 30) (5 + 36)
51 230 +amal+ 23+ 27 (1,5,12,18) 12 —22231577(5 — 1)(6 — 5)(6 — 11)(§ — 13)(6 — 17)(6 — 19)(6 — 23)(5 — 25)(5 — 29)

(6 — 31)(6 — 37)(5 — 41)

68



Nr. invertible polynomial weights order PF  Picard-Fuchs equation
52 aixe +adwa+as+2d (7,8,9,12) 3 5493 —28(5 — 1)(6 — 2)(6 — 3)
55 210+ 2 + 223 + 2322 (2,5,6,7) 6 s1263(0 +4)(0 +6)(0 +8) — 21633(5 — 1)(6 — 3)(6 — 5)(6 — 7)(6 — 9)(6 — 11)
56 a9 +2) + xoxd + w323 (5,6,8,11) 3 5963 —2033(6 — 1)(6 — 3)(6 — 5)
s2463(6 +6)(0 + 8)(6 +12)(5 4 16)(0 + 18

9 il towhtagtacy (L5,78) 8 —ﬂéﬁgjgépﬁx:—%(t1§@t1$w—1mw—1w@—2@
60  x{®+afws +af + i (1,4,6,7) 9 1;;5;”?(55;(—518)(;5(;— 6)3555(; 365))((5 ! 54))((55 +91)2(25(6t17)2(25 —13)(6 — 15)(6 — 17)
61  z] + 223 + 24 + 2023 (4,6,7,11) 4 $803(0+4) =210 —1)(6 —=3)(6 = 5)(d —T7)
65 i +x12§+ 23 + 202 (3,5,11,14) 4 s1263(6 4+ 6) — 21936(5 — 1)(0 — 5)(6 — 7)(6 — 11)
68 10+ 2jzs + 23 + 2] (3,4,10,13) 5 3351063(6 4+ 1) (0 + 22) — 21955(6 — 1)(6 — 3)(6 = 5)(6 — 7)(6 — 9)
73 aSzo +adws + a3+ 2% (7,8,10,25) 3 5563 —2033(6 — 1)(0 — 3)(6 — 5)
74 a8+ 2dxs + s + 23 (4,5,7,16) 4 s1053(6 +5) — 2655(6 — 1)(6 — 3)(6 — 7)(6 — 9)
76 a3+ adrs + x1x§ +x2  (2,5,6,13) 8 ?f;:sljfs(_d :_)(45)<_5 ?;(361(55;581((;;;5%2_) g(—g 1_611)(5 —13)(5 — 15)

22530653(6 + 6) (0 + L2)(5 +12)(6 + 15)(6 + 18) (5 + ) (5 + 24)
77 22 4 pad + woxd + 22 (1,5,7,13) 10 —2M1431555(5 — 1)(§ — 5)(6 — 7)(6 — 11)(§ — 13)(6 — 17)(6 — 19)

(6 —23)(8 — 25)(0 — 29)

223052263(6 + L) (0 + )6+ )0+ 11)(6 + 4 (0 + 2)(6 + F)
78 2P+ xirg+ woxd + 27 (1,4,6,11) 10 210115 — 1) (6 - 3)(5 5)(6 —7)(6 —9)(6 — 13)(6 — 15)(6 — 17)

(6 —19)(6 — 21)
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Nr. invertible polynomial weights order PF  Picard-Fuchs equation
1853(6 4+ 6)(0 + 9)(6 + 12)
79 16 ¢ 3y a2 2,5,9,16 6 °
R R A (2.5,9,16) —910312(5 _ 1)(§ — 5)(5 — T)(6 — 11)(5 — 13)(5 — 17)
80  al + xaf + zoad + 23 (4,5,13,22) 4 s1263(6 +6) —21936(5 — 1)(6 — 5)(6 — 7)(6 — 11)
5951853 (0 + ) (6 +6)(6 + 28) (6 + ) (6 +12)(6 + B)
81 13 6 3 2 2.3.8.13 9 5 5 5 5
Tt Ty (2,3,8,13) _218315(§ — 1)(5 — 3)(5 — 5)(6 — T)(6 — 9)(5 — 11)(5 — 13)(5 — 15)(6 — 17)
21053088(5 4+ 10)(6 + 12)(6 + 10)(6 + %) (6 + 15)(6 + 2)(5 + 20)
5+ 45)<5+ 105)
82 2%+ 3+ a2 1,3,7,11 12 ( 4
T s Tyt (1,3,7,11) _91039515(5 — 1)(5 3)( (6 = 9)(5 — 11)(5 — 13)(5 — 17)(5 — 19)
(6 —21)(0 — 23)(6 — 27)(6 — 29)
83  xfw3 + w20 + 23 + 22 (4,5,18,27) 5 3351063(6 + ) (6 + 2) — 21955(6 — 1)(6 — 3)(6 = 5)(6 — 7)(6 — 9)
84  zizs + w3T4 + T9TH + T3 (5,6,7,9) 3 5103 —28(6 — 1)(6 — 2)(0 — 3)
85  af + x3ry + 1123 + w303 (2,3,4,5) 6 225963(6 +3)(6 + 3) (0 +6) +3'2(0 — 1)(6 — 2)(6 — 4)(6 = 5)(6 — 7)(0 — 8)
283355513630+ 2) (6 + )0+ )6+ B)0+ P66+ )0+ %)
5+ 36+ %2)
87 i+ a3 2 2 1,3,4,5 12 (0+7% >
o oyt asrat ey (13,4,5) F1313(5 — 1)(6 — 2)(6 — 3)(5 — 4)(5 — 5)(5 — 6)(5 — 7)(5 — 8)(6 — 9)
(6 —10)(0 — 11)(6 — 12)
92 23 + 28 + 2973 + 27 (3,5,11,19) 5 3351963(6 + ) (6 + 2) — 21955(6 — 1)(6 — 3)(6 = 5)(6 — 7)(6 — 9)
94 afwy 4+ z128 + 203 + 2327 (3,4,5,7) 4 225503(6 + 3) +5°(6 — 1)(6 — 2)(6 — 3)(0 — 4)
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Appendix B

The Griffiths-Dwork method in
Singular

Below we show the algorithm for the Griffiths-Dwork method in Singular, which can be used
for calculating the Picard-Fuchs-equation of a special one-parameter family associated to
an arbitrary polynomial in C[w,z,y,z]. Of course it can easily be adjusted to a different
number of variables, but because most of the examples in this thesis are K3-surfaces this is
not necessary here. This method of calculation was used for all computations in this thesis
unless the calculations are given explicitly. First we fix the notation:

Let g(x1,x9,23,24) be any polynomial defining a hypersurface in P(q1, g2, ¢3,¢4). Then in
this case the algorithm calculates the Picard-Fuchs equation of the one-parameter family
f(x1, e, w3, 24) = g(x1, 22,23, 24) + ST1222374 using the Griffiths-Dwork method. But one
can do it the same way for any other one-parameter family.

The output is the polynomial pf(x1), which is the Picard-Fuchs equation if one replaces
the variable z1 by the differential operator § = s%. The splitting of the summands of the
Picard-Fuchs equation into linear factors has to be done by hand afterwards.

> ring r=(0,s),(x1,x2,x3,x4) ,wp(ql,q92,93,94); // the ring r is

// C(s)[x1,x2,x3,x4] with a weighted order
LIB "general.lib";
intvec gq=(q1,92,93,q94); // the weight vector is defined
poly f=g(x1,x2,x3,x4)+s*x1*x2*x3*x4; //defining the one-parameter family f
ideal j=jacob(f); // defining the Jacobian ideal of the family
ideal sj=std(j); // calculates a Gridbner basis of the Jacobian ideal
int d=q[1]+q[2]1+q[3]+q[4]; // this number is the degree of f
ideal kbO=weightKB(sj,0,q); // here the basis of the Milnor ring
ideal kbl=weightKB(sj,d,q); // in degree 0,d and 2d is calculated
ideal kb2=weightKB(sj,2*d,q);
list k1=kb0,kbl,kb2;

VvV V V V V V V V V VvV



94 The Griffiths-Dwork method in Singular

> int kn=ncols(kb0)+ncols(kbl)+ncols(kb2);

> matrix m[kn+1] [kn]; // the matrix m stores the important

> m[1,1]=s; // information derived below

> for(int k=1;k<=kn;k++)

.o

. poly p=factorial(k)*(-1)"k*s~ (k+1)*(x1*x2*x3*x4)"k; // These are the
. while(deg(p)>0) // polynomials that need to be written in the basis
A // of the Milnor ring

. while(reduce(p,sj)==0) // If p is in the Jacobian,

. { // use the Griffiths formula to reduce the degree

. poly h=0;

. ideal 1=1ift(j,p);

. for(int jj=1;jj<=4;jj++)

- {

. h=h+diff(1[jjl,var(jj)); // this is the Griffiths formula

-}

. p=hx*1/(deg(h)/d+1);

. if(deg(p)==0) {break;}

.

. if(deg(p)==0) {break;}

. int u=deg(p)/d+1l; // If p is not in the Jacobian, calculate the degree to
. ideal kb=kl[u]; // use the correct degree of the Milnor ring and

. ideal 1i=1ift (kb,reduce(p,sj)); //reduce with respect to the basis
. if(u==1) // In the following part we store in the matrix m the coefficients
. { // of the basis elements we have used so far

. m[k+1,1]=m[k+1,1]+1i[1];

-}

. if (u==3)

.o

. m[k+1,kn]=m[k+1,kn]+1i[1];

.

. if(u==2)

.o

. for(int jl=1;jl<=ncols(kb);jl++)

.o

. m[k+1,j1+1]=m[k+1,j1+11+1i[j1];

-}

-}

. p=p-reduce(p,sj);

-}

. m[k+1,1]=m[k+1,1]+p;

.
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matrix wlkn+1] [kn+1]; // The matrix w consists of the coefficients of the
for(int kk=1;kk<=kn+1;kk++) // partial derivatives of the holomorphic form
-1 // omega we began with

. will,kk]=1;

. wikk,kk]=1;

. if (kk>=3)

o
. wl2,kk]=w[2,kk-1]+2" (kk-2);

-}

. for(int 11=3;11<=kk-1;11++)

A

. wlll,kk]=11%w[11,kk-1]+w[11-1,kk-1];

.
.

matrix en=transpose(w)*m; //the matrix en now contains the coefficients of
// the partial derivatives of omega in the basis of the Milnor ring

. module end=transpose(en);

. module ende=syz(end); // The module ende gives all linear relations between

// the partial derivatives

poly pf=0;
for(int 1lk=1;lk<=nrows(ende) ;1k++) // The coefficients of the Picard-Fuchs
. q{ // equation are put in a polynomial with variable x1

. pf=pf+ende[lk,1]*x1~(1k-1);

.}

pt;
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