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Preface 

This thesis represents original work which was conducted while I was a member of the 

scientific research staff at the “Gottfried Wilhelm Leibniz University Hannover”, under the 

supervision of Prof. Dr. Jürgen Caro from April 2009 until May 2011.  

During this period, I participated in the project “Mass Transfer in Metal-Organic 

Frameworks (MOFs): From Molecular Diffusion to Membrane Permeation”, which was 

financed by the “Deutsche Forschungsgemeinschaft” (DFG) within the priority program 

SPP1362 “Porous Metal-Organic Frameworks” that was organized by Prof. Dr. Stefan 

Kaskel. This project was a collaboration between the groups of Dr. Michael Wiebcke (In-

stitute of Inorganic Chemistry, Leibniz University Hannover), Dr. Christian Chmelik and 

Prof. Dr. Jörg Kärger (Institute of Applied Physics, Leipzig University), and Priv.-Doz. Dr. 

Siegfried Fritzsche (Institute of Theoretical Physics, Leipzig University). In addition to the 

very close partnership with Prof. Dr. Yanshuo Li (State Key Laboratory of Catalysis, Da-

lian Institute of Chemical Physics, Chinese Academy of Science), Priv.-Doz. Dr. Armin 

Feldhoff (Institute of Physical Chemistry and Electrochemistry, Leibniz University Han-

nover), Dr. Jasper M. van Baten, and Prof. Dr. Rajamani Krishna (Department of Chemical 

Engineering, University of Amsterdam) also contributed to the project.  

Seven research articles, in which I have participated as primary or co-author, are includ-

ed in this thesis. I wrote the article presented in Section 2.2 with the kind support of the co-

authors. My contribution was to prepare the membrane and crystalline powders from the 

MOF zeolitic imidazolate framework-8 (ZIF-8). I also performed the corresponding char-

acterization by scanning electron microscopy (SEM) and the energy-dispersive X-ray spec-

troscopy (EDXS). However, I kindly thank Frank Steinbach for sample preparation and 

technical support. Dipl.-Chem. Janosch Cravillon and Dr. Michael Wiebcke contributed 

the X-ray diffraction (XRD) analysis of the ZIF-8 membrane and the crystalline powder 

and the sorption analysis using the Brunauer-Emmett-Teller (BET) model. M. Sci. Fangyi 

Liang built the permeation measurement apparatus and helped me to perform the mass 

transfer experiments on the ZIF-8 membrane. 

 The article in Section 2.3 was written by Prof. Dr. Yanshuo Li. My contribution was to 

provide some experimental assistance, to share experimental knowledge, and to assist in 

writing the article.  
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I also wrote the article in Section 3.2 with the kind assistance of the co-authors. I con-

ducted the preparation of the oriented ZIF-8 membranes and the corresponding crystalline 

ZIF-8 powders, as well as the characterizations by SEM, EDXS, and XRD. I also per-

formed the mass transfer experiments on the ZIF-8 membrane. Priv.-Doz. Dr. Armin Feld-

hoff contributed the transmission electron microscopy (TEM) images of the cross-section 

of the oriented ZIF-8 membrane, and Prof. Dr. Yanshuo Li provided crucial impulses for 

the seeding process. Dipl.-Chem. Janosch Cravillon and Dr. Michael Wiebcke provided the 

synthesis of the ZIF-8 nanocrystals and advised me on the fields of XRD and crystallog-

raphy.  

The article in Section 3.3 was written by Prof. Dr. Yanshuo Li. My contribution was to 

perform permeation measurements on the oriented ZIF-7 membranes and to assist in writ-

ing the article.  

My contribution to the article in Section 4.2, which was written by Dr. Christian Chme-

lik, was the synthesis and corresponding SEM and XRD characterizations of large ZIF-8 

single crystals that were used to obtain diffusion and adsorption data of ZIF-8 by infrared 

microscopy (IRM), as well as support in writing.  

I wrote the article in Section 4.3 with the kind assistance of the co-authors. I performed 

the membrane preparation, the corresponding characterization by SEM, and the permeation 

measurements. In addition, I synthesized the large ZIF-8 crystals that were used for the 

IRM studies and performed the corresponding SEM characterization of the crystals. The 

above-mentioned IRM investigations were performed by Dr. Christian Chmelik, whereas 

Dr. Jasper M. van Baten and Prof. Dr. Rajamani Krishna contributed vital data from grand 

canonical Monte Carlo (GCMC) simulations.  

Prof. Dr. Jürgen Caro and I wrote the last article in Section 4.4 with kind support of the 

co-authors. I synthesized the large ZIF-8 single crystals for the IRM investigations that 

were carried out by Dr. Christian Chmelik. Additionally, I prepared the ZIF-8 membrane, 

conducted the corresponding membrane permeations measurements, and performed the 

SEM investigation on the membrane and the single crystals. Prof. Dr. Rajamani Krishna 

contributed the GCMC data.  

Finally, I kindly thank Prof. Dr. Jürgen Caro for his excellent and outstanding support 

during my time as a doctoral student in his group at the Leibniz University Hannover, and I 

appreciate my assignment to the above-mentioned project. This assignment provided an 
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opportunity for me to obtain valuable insight into two truly thrilling fields: metal-organic 

frameworks and microporous membranes. I also thank my project colleagues and collabo-

ration partners, namely, Prof. Dr. Yanshuo Li, Priv.-Doz. Dr. Armin Feldhoff, Dipl.-Chem. 

Janosch Cravillon, Dr. Michael Wiebcke, Dr. Christian Chmelik, Prof. Dr. Jörg Kärger, 

Dipl.-Phys. Loreen Hertäg, Dipl.-Phys. Markus Knauth, Priv.-Doz. Dr. Siegfried Fritzsche, 

Dr. Jasper M. van Baten, and Prof. Dr. Rajamani Krishna for the fruitful collaboration. In 

particular I thank Prof. Dr. Jörg Kärger for evaluating this work as second referee. A spe-

cial acknowledgement is given to Prof. Dr. Yanshuo Li for the lively discussions and the 

exchanges of knowledge.  

I thank all current and former members of the Caro group, particularly Dr. Daniel Al-

brecht, M. Sci. Fangyi Liang, Frank Steinbach, Dipl.-Chem. Konstantin Efimov, and Dipl.-

Chem. Oliver Merka for their kind support in technical aspects as well as Kerstin Janze and 

Yvonne Gabbey-Uebe for their administrative support. I also like to thank the technical 

staff of the institute, namely, Mr. Becker, Mr. Bieder, Mr. Egly, Mr. Ribbe, and Mr. Rogge.  

Finally, I thank my parents Elke Jacob-Bux and Hermann Bux, my brother Fabian Bux, 

and my partner in life Amanda Zen for providing me motivation.  
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Abstract 

The following thesis is dedicated to the preparation and characterization of microporous 

metal-organic framework (MOF) membranes on a laboratory scale. The prototypical 

MOFs ZIF-7 and ZIF-8 (ZIF = zeolitic imidazolate framework) were chosen for the inves-

tigations. The thesis includes seven articles, published in subject-specific, internationally 

renowned journals. The articles are reprinted and arranged in a logical, rather than a time-

based order.  

ZIF-7 and ZIF-8 membranes were prepared by two different routes. Continuous, poly-

crystalline layers of ZIF-8 could be solvothermally grown by in-situ crystallization on top 

of macroporous titania supports after finding a suitable, phase-pure synthesis in methanol. 

By microwave-assisted heating, the heat rate and temperature during the synthesis could be 

controlled, thus allowing a high reproducibility of the experiments. A more general prepa-

ration approach was obtained by seeding α-alumina supports from colloidal nanocrystal 

suspensions containing the polymeric additive polyethyleneimine. This method produced 

oriented, continuous thin-films of ZIF-7 and ZIF-8 after a subsequent secondary growth. 

The membranes and the secondary growth processes were studied in detail by analytical 

techniques such as ex-situ X-ray diffraction (XRD), scanning electron microscopy (SEM), 

energy-dispersive X-ray spectroscopy (EDXS), transmission electron microscopy (TEM), 

and selected-area electron diffraction (SAED). Unary and equimolar binary mass transfer 

experiments on the membranes were performed using the Wicke-Kallenbach technique. 

The latter technique was coupled with online gas chromatography (GC), which allowed the 

quantitative analysis of the permeate concentration in the sweep gas stream. In these exper-

iments, the pure component and gas mixture permeances as well as the corresponding sep-

aration factors of standard light gases (e.g., hydrogen, oxygen, carbon dioxide, and me-

thane) were investigated as a function of feed-pressure and temperature. The observed 

mass transfer through the ZIF-8 membranes was interpreted on the basis of diffusion and 

adsorption data, which were derived from a combination of infrared microscopy (IRM) on 

large ZIF-8 single crystals and grand canonical Monte Carlo (GCMC) simulations. The 

observed separation factors could be understood by a simple, Fick-based diffusion model. 

This model provided predictions of the membrane selectivity as function of pressure and 

temperature, which were in good agreement with the experimental measurements.  
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Zusammenfassung 

Die folgende Dissertation behandelt die Präparation und Charakterisierung von mikro-

porösen Membranen aus metallorganischen Gerüststrukturen (MOFs). Die prototypischen 

MOFs ZIF-7 und ZIF-8 (ZIF = zeolithartige Imidazolat-Gerüststrukturen) wurden für die 

Untersuchungen ausgewählt. Die Arbeit enthält sieben Artikel, welche in international re-

nommierten Fachzeitschriften veröffentlicht wurden und hier in logischer statt chronologi-

scher Reihenfolge nachgedruckt sind.  

Durch unterschiedliche Methoden konnten ZIF-7 und ZIF-8 Membranen präpariert 

werden. Polykristalline, durchgängige Schichten von ZIF-8 konnten in-situ mittels Sol-

vothermalsynthese auf makroporösen Titandioxid-Trägern gezüchtet werden, nachdem 

eine geeignete, phasenreine Synthese in Methanol gefunden worden war. Durch dielektri-

sches Heizen mittels Mikrowellenstrahlung konnten während der Synthese die Aufheizrate 

und die Temperatur kontrolliert und entsprechend gut reproduzierbare Ergebnisse erzielt 

werden. Ein genereller Ansatz zur Synthese von MOF-Membranen stellte schließlich die 

Tauchbeschichtung von porösen Korund-Trägern mit nanokristallinen Keimkristallen aus 

entsprechenden Suspensionen dar, nachdem den Suspensionen das Polymeradditiv Po-

lyethylenimin zugesetzt worden war.  Nach anschließendem Wachstum der Keimkristalle 

unter solvothermalen Bedingungen konnten polykristalline Dünnfilme erhalten werden. 

Der Wachstumsprozess der Membranschichten sowie die Membranen selbst wurden ex-

situ durch Röntgendiffraktometrie (XRD), Rasterelektronenmikroskopie (REM), energie-

dispersive Röntgenspektroskopie (EDXS), Transmissionselektronenmikroskopie (TEM) 

und Feinbereich-Elektronenbeugung (SAED) untersucht. Unäre und equimolar-binäre 

Stofftransport-Experimente an den ZIF-Membranen wurden mittels der Wicke-

Kallenbach-Methode durchgeführt. Die Permeat-Konzentrationen im Spühlgas wurden 

„online“ mittels Gaschromatographie gemessen. In den Experimenten wurden sowohl die 

Einzelstoff- und Gemischpermeanzen als auch die entsprechenden Stofftrennungsfaktoren 

als Funktion der Temperatur und des Speisedruckes bestimmt. Der beobachtete Stofftrans-

port durch ZIF-8-Membranen wurde auf Basis von Adsorptions- und Diffusionsdaten in-

terpretiert, welche aus Infrarot-Mikroskopie (IRM) an großen ZIF-8 Einkristallen sowie 

großkanonischen Monte Carlo (GCMC) Simulationen ermittelt wurden. Die beobachtete 

Trennung an den ZIF-8 Membranen konnte aus den Diffusions- und Adsorptionsdaten mit-

tels einem auf dem 1. Fick’schen Diffusionsgesetz basierenden, einfachen Modell hinrei-

chend genau vorhergesagt werden.    



 

VIII 

 

 

 

 

 

 

 

 

 

 

 

Stichwörter: 

Membranen, Metall-organische Gerüststrukturen, Zeolitische Imidazolat-Gerüststrukturen, 

Diffusion, Adsorption 

  



 

IX 

Contents 

1   Introduction 1 

1.1   Motivation 1 

1.2   Metal-Organic Frameworks 4 

1.2.1   Introduction and Terminology 4 

1.2.2   Naming and Classification into Subtypes 5 

1.2.3   Structure Principles of MOFs 6 

1.2.4   Chemical and Physical Properties 7 

1.2.5   Structure and Properties of the Zeolitic Imidazolate Frameworks  

ZIF-7 and ZIF-8 
8 

1.2.6   ZIF-7 and ZIF-8 as Promising Materials for Molecular Sieving 11 

1.3   Mass Transport in Microporous MOF Membranes 12 

1.3.1   General Aspects 12 

1.3.2   Adsorption in Microporous Materials 13 

1.3.3   Transport Diffusion through Microporous Membranes 16 

1.4   Preparation of MOFs by Microwave-Assisted Heating 18 

1.4.1   Theoretical Aspects of Dielectric Heating of Liquids 18 

1.4.2   Practical Aspects of MW-Assisted Heating 19 

1.5 Bibliography 22 

2   Preparation and Characterization of ZIF-7 and ZIF-8 Membranes  29 

2.1   Summary 29 

2.2   Zeolitic Imidazolate Framework Membrane with Molecular Sieving 

 Properties by Microwave-Assisted Solvothermal Synthesis 
30 

2.3   Molecular Sieve Membrane: Supported Metal-Organic Framework with 

 High Hydrogen Selectivity 
34 

3   Understanding Oriented Growth Processes in Polycrystalline MOF Films    39 

3.1   Summary 39 

3.2   Oriented Zeolitic Imidazolate Framework-8 Membrane with Sharp 

 H2/C3H8 Molecular Sieve Separation 
40 

3.3   Controllable Synthesis of Metal-Organic Frameworks: From MOF Nano- 

 rods to Oriented MOF Membranes 
50 

4   Understanding Mass Transfer through MOF Membranes on the Basis 

of ZIF-8 
57 

4.1   Summary 57 

4.2   Mass Transfer in a Nanoscale Material Enhanced by an Opposing Flux 58 

  



 

X 

4.3   Novel MOF-Membrane for Molecular Sieving Predicted by IR-Diffusion 

 Studies and Molecular Modeling 
64 

4.4   Ethene/Ethane Separation by the MOF Membrane ZIF-8: Molecular Cor- 

 relation of Permeation, Adsorption, Diffusion 
68 

5   Closing Remarks 75 

  

Appendix 79 

Publications  79 

Contributions to Conferences 80 

Curriculum Vitae 83 

Erklärung zur Dissertation 85 

 

 



 

1 

1 Introduction 

1.1 Motivation 

The selective removal of one or more chemical species from fluid (liquid or gas) mix-

tures by membranes is established in various industrial fields of separation, replacing clas-

sical purification processes in chemistry (e.g., distillation) [1]. Membranes are applied in 

reverse osmosis (RO; e.g., sea water desalination), nanofiltration (NF; e.g., water removal 

to concentrate sugars), ultrafiltration (UF; e.g., oil/water emulsions separation), and micro-

filtration (MF; e.g., wastewater treatment) [1, 2]. Industrial fields, in which membranes 

more recently were introduced are gas separation (GS; e.g., natural gas refining) and per-

vaporation (PV; e.g., alcohol extraction from organic solvents) [2]. Membranes allow sim-

ple, continuous, and low-energy separation processes that can be used in combination with 

chemical reactions in one step for process intensification (membrane reactors). In addition, 

membranes can outperform the classical distillation because they are capable of separating 

azeotropic mixtures or species with similar boiling points that are distillatively in-separable.  

Membranes may consist of dense materials, such as organic polymers
i
, or inorganic ma-

terials, such as perovskites
ii
 or palladium alloys

iii
. However, a more reasonable approach is 

the concept of using porous materials that are applicable for the separation of a broad range 

of chemical species. Within the divergent group of porous materials, two types may gener-

ally be distinguished: a) non-crystalline (non-regular) porous materials, such as porous 

carbons or silica prepared by the sol-gel route, and b) crystalline (regular) porous materials, 

such as microporous
iv

 zeolites or mesoporous
iv

 MCMs (MCM = Mobile crystalline materi-

als). Micropores may exhibit three kinds of separation mechanisms: a) favored or exclusive 

adsorption of a species from a mixture, b) diverging mobilities of species within the pores, 

or c) steric or size exclusion, known as molecular sieving. The latter is the simplest and the 

most efficient mechanism because, theoretically, it shows 100% selectivity. However, mo-

lecular sieving reliably works only through a regular micropore network without any size 

distribution, as it is inherent to the crystallographic structure of the above mentioned zeo-

lites.  

                                                 
i
 Similar to a liquid, a polymer can absorb molecular species from fluid phases in its bulk matrix. 

ii
 Perovskites exclusively incorporate and transport ionic oxygen by lattice vacancies. 

iii
 Palladium alloys exclusively incorporate and transport atomic hydrogen in their crystal lattice. 

iv
 Micropores and mesoporous are considered here according IUPAC regulations with < 2 nm and 2 ≤ 50 

nm pore diameter, respectively. 
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The application of molecular sieve zeolite membranes has been intensively investigated 

for more than 20 years on the laboratory scale and has primarily focused on GS. Though 

the membranes partly show remarkable selectivities, zeolite membranes have failed to find 

their place in industrial GS until recently. This apparent contradiction can be related to the 

intrinsic properties of zeolites and practical issues in transferring the idealized, laboratory 

scale model system to practice relevant process conditions. In contrast to the widely used 

polymer membranes, zeolite membranes are much more expensive, and their method of 

production and their operation is more challenging. Zeolite membranes represent compo-

sites consisting of a thin and brittle polycrystalline layer that is mechanically stabilized 

against cracking on top of a macroporous stiff support
v
. Once grown, the polycrystalline 

zeolite layer is inflexible. Consequently, the shape of the composite membrane is restricted 

to the original shape of the support that is commonly flat, tubular, or in the geometry of a 

capillary or hollow fiber. In contrast, polymers can be spun as flexible hollow fibers or 

tape-casted as thin-films. Polymer foils can be easily shaped subsequent to the preparation, 

for example, as spiral-wound membrane module that has higher surface areas per unit vol-

ume in comparison with conventional membrane geometries [1].  

The fabrication process of zeolite membranes necessarily includes a calcination step to 

remove the structure directing agent (SDA) that forms the pores, except for a few zeolites 

that can be prepared without SDA such as LTA and FAU
vi

. Because the support must 

withstand calcination at temperatures of 450 - 500 °C in air and for material compatibility, 

ceramics, such as alumina or titania, are commonly used. However, stress may be induced 

in the membrane-support boundary region during calcination and dehydration due to dif-

ferent expansion coefficients, which form cracks within the membrane layer [3]. A general 

problem of membranes is the filter cake-like aggregation of macroscopic particles on top 

of the membrane (membrane fouling), which results in a reduced performance [1, 4]. Zeo-

lites, however, with their small channels, are additionally subject to internal pore-blocking. 

Small molecules, which are normally highly mobile within the pores as a pure component, 

may be substantially hindered in their diffusion while in mixture with a second, bulky spe-

cies that blocks the pores. This phenomenon can reduce drastically the efficiency of mo-

lecular sieving [5-7]. Because of the above-mentioned drawbacks of microporous zeolite 

                                                 
v
 Usually macroporous alumina or metal supports are fabricated by sintering particles that are a few µm in 

size. 
vi
 The three-digit letter code stands for LTA = Linde type A or FAU = faujasite, see ref [36]. 
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membranes, it is not surprising that GS is currently still dominated by polymer membranes 

[1, 2].  

Nevertheless, ultra-hydrophilic LTA zeolite membranes have recently found their niche 

in steam permeation, as demonstrated by the industrial pilot plant of Mitsui for the de-

watering of bioethanol beyond the azeotropic point [8]. The process is, however, based on 

the strong and exclusive adsorption of water in defect-pores (thus blocking these pores for 

non-selective transport) rather than by true molecular sieving. Whereas the hydrated LTA 

membrane shows water/ethanol selectivity > 1000 under process operation, no shape-

selectivity is found for the dehydrated LTA membrane after Ca
2+

 exchange
vii

 in the n-

butane/i-butane separation.   

Metal-organic frameworks (MOFs), which are new types of microporous hybrid materi-

als, have recently emerged from intersecting the classically divided fields of organic and 

inorganic chemistry [9]. MOFs can be pre- and post-modified with functional groups, 

while the basic structure is not altered (isoreticular design) [10-13]. The modification al-

lows the fine-tuning of pore size and the control of adsorption affinities, resulting an in a 

previously unattainable pore customizability. MOFs show unique properties, such as ultra-

high inner surfaces and structural flexibility (e.g., pore or “gate” opening for only specific 

molecular species). These remarkable properties of MOFs are of great interest for mem-

brane applications. The critical and energy-intensive calcination step, as necessary for most 

zeolites, may be avoided because most syntheses are template-free, and only the solvent 

must be removed for activation. To avoid any damage of the MOF upon solvent removal, it 

is crucial to develop specific MOF syntheses with volatile solvents that are easy to remove 

(e.g., methanol), thus eliminating the need to work with more bulky solvents such as dime-

thylformamide (DMF) or diethylformamide (DEF). The hybrid organic-inorganic nature of 

MOFs is expected to be compatible with a broad range of support materials, which conse-

quently allows to use low-cost, non-ceramic supports as mechanic stabilization. MOFs, as 

crystalline microporous materials with hybrid properties, fill a gap between pure inorganic 

zeolites and pure organic polymers, and thus might be a revolutionary material for mem-

branes in GS.  

                                                 
vii

 In LTA, Na
+
 ions are located directly at the 8-ring windows that connect adjacent large cages (α-

cavities). Because Ca
2+

 ions occupy different positions away from the windows within the cages, ion-

exchange of Na
+
 against Ca

2+
 opens these windows for hydrocarbon diffusion. 
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1.2  Metal-Organic Frameworks 

1.2.1 Introduction and Terminology 

Although there is no IUPAC definition thus far [14], the term “metal-organic frame-

work” is commonly used in the literature for the entire class of crystalline hybrid organic-

inorganic compounds, consisting of metal cations or metal clusters (including metal oxide 

clusters) connected at least partly with each other by organic, multidentate ligands (linkers) 

[9]. Figure 1 shows the basic construction principle of MOFs. It should be noted that, par-

ticularly for large-pored MOFs, interpenetration or interweaving of MOF networks may 

occur [15]. 

The term “MOF” itself can be traced back
viii

 to publications from Yaghi et al. in 1995 

[16, 17]. In their work, Yaghi et al. reported the syntheses and characterizations of 

Cu(I)(4,4'-BPY)1.5·(NO3)(H2O)1.25 (BPY = bipyridine) and Co(II)(BTC’) (PYR)2·(PYR)0.67 

(BTC’ = single protonated 1,3,5-benzenetricarboxylate, PYR = pyridine). The former met-

al-organic compound was reported to exhibit an ordered network with open cavities, 

formed from Cu
+
 and BPY. The charge of the network is balanced by NO3

-
 anions hosted 

                                                 
viii

 According to a search of the term “metal-organic framework” in the ISI Web of Knowledge 

(www.isiknowledge.com). 

 

Figure 1. Structure principle of MOFs, which is demonstrated by the example of a 

bidentate linker that is octahedrally coordinating the inorganic centers, thus forming a 

simple cubic network. MOF-5 (Zn(II)4O(BDC)3, BDC = 1,4-benzenedicarboxylate) 

exhibits this type of simple network, where the inorganic building units and the linker 

resemble tetrahedral (Zn4O)
6+

 clusters and BDC, respectively. 
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in the cavities, whose accessibility was validated by ion-exchange experiments. The latter 

metal-organic compound was reported to exhibit a charge-neutral, layer-like structure. Ac-

cording Yaghi et al., the framework showed selective and reversible uptake of aromatic 

molecules, such as benzonitrile, whereas acetonitrile was not adsorbed. However, it should 

be noted that, by this time, polymeric metal-organic coordination compounds had been 

well-known for 30 years [9, 18, 19]. By 1959, Kinoshita et al. published the metal-organic 

compound Cu(I)(ADN)2·(NO3) (ADN = adiponitrile), which, according to their structural 

analysis, crystallizes in a distorted, diamond-like framework topology [20]. However, no 

sorption or ion-exchange experiments were performed to validate the pore accessibility.  

 

1.2.2 Naming and Classification into Subtypes 

Following the nomenclature of zeolites, MOFs are often denoted by a three-digit letter 

code and a number, for instance, MIL-53 (Cr(III)(OH)(BDC), BDC = 1,4-

benzenedicarboxylate) [21]. The code may indicate the origin, for example, MIL stands for 

“Materials of Institute Lavoisier” [9]. Yaghi et al. exclusively label some of their com-

pounds by the abbreviation MOF, such as MOF-5 (Zn(II)4O(BDC)3) or MOF-177 

(Zn(II)4O(BTB)2, BTB =  1,3,5-benzenetribenzoate) [22, 23].  

There are some basic approaches to divide MOFs into certain classes and sub-groups. 

Kitagawa et al. [18] classified MOFs into different generations: The 1
st
 MOF generation 

includes all types of networks that are instable and collapse if guest species, originated 

from the synthesis process, are removed; the 2
nd 

generation includes MOFs with rigid net-

works, showing no degradation of the network during the reversible adsorption of guests; 

the 3
rd

 generation exhibits stable networks such as generation 2 but reversible structural 

changes (flexibility) during guest uptake (see Section 1.2.4). Furthermore, Férey character-

ized MOFs based on the dimension in connectivity of the inorganic sub-network [9]. Fol-

lowing this classification, networks, as shown in Figure 1, would be characterized as 0D 

MOF because the inorganic building units are spaced by linkers. In contrast, the network of 

MIL-53 [21] consists of 1D-chains of corner sharing, octahedral coordination polyhedrons 

(Cr(III)(OR)4(OH)2, R = C8H4O2), and these chains are connected by the BDC-linkers. 

Consequently, MIL-53 is classified as 1D MOF.  

In addition, some authors organize MOFs in sub-groups, depending, for example, on 

structural motifs or the structural relation to other crystalline materials. Two closely related 
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groups are the “zeolite-like metal-organic frameworks” (ZMOFs) [24, 25] and “zeolitic 

imidazolate frameworks” (ZIFs) [26-30], which are both characterized by their networks, 

which assemble zeolite-related topologies. ZIFs are limited to tetrahedrally N-coordinated, 

metal-imidazolates as structure-building elements (detailed information can be found in 

Section 1.2.5). ZMOFs consist of carboxy-imdazolates that coordinate the metals with both 

their heterocyclic nitrogen and their carboxylate groups. In comparison to the above-

mentioned ZIFs, this results in an extended coordination sphere and higher metal coordina-

tion numbers of 6 or 8. Another sub-group is referred to as paddle-wheel MOFs, which are 

most typically represented by HKUST-1
ix

 (Cu(II)3(BTC)2, BTC = 1,3,5-benzene-

tricarboxylate) [31]. The name of the group is derived from the structure forming motif 

that visually resembles the paddle-wheel of a steamship. The motif consists of a diatomic 

metal-cluster, which is coordinated by 4 multidentate carboxylate-linkers. Both metal cati-

ons are square-planar coordinated by 4 oxygen, and both square-planar coordination 

spheres are aligned parallel and ecliptic. 

 

1.2.3 Structure Principles of MOFs 

Though there are a vast number of MOFs with different networks, the complex struc-

tures may be reduced to basic structure principles that are originally derived for pure inor-

ganic crystalline materials, such as zeolites. O’Keeffe et al. proposed to simplify MOF 

structures to a number of highly symmetrical, (n, m)-connected nets [32-34]. Here, n and m 

denote the number of connections from two separate nodes, N and M, to neighboring nodes. 

The nodes and the edges of a net are not limited to single atoms or single bonds, respec-

tively. Nodes may be “decorated” with, for example, clusters or complex polyhedrons, and 

edges may be “expanded” to include multiple bonds or linker molecules (for a detailed 

explanation of the terms, see ref.
 
[32]). A special form of “decoration” is the replacement 

of an n-connected node by a polyhedron of n-vertices, which is termed “augmentation”. 

Following the principle proposed by O’Keeffe, MOF-5 could be denoted as a decorated, 

expanded, 6-connected, simple cubic network. A net within a group of n-connected nets is 

additionally denoted by its vertex symbol that is derived by identifying the angles per node, 

the sizes of the smallest rings adjacent to the angles, and the number of rings equal in size 

shared by an angle [35]. It is denoted as follows: AX · BY · … · NM, where each place repre-

                                                 
ix

 HKUST = Hong Kong University of Science and Technology. 
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sents a specific angle α from the total amount of q angles (opposed angles are paired to-

gether). The value N is the smallest ring size at α, and M denotes the number of N-rings 

sharing this angle [36]. The number of angles q per node can be calculated from the con-

nectivity n to be 3 for a 3-connected net, 6 for a 4-connected and q = 0.5n·(n-1) for a n-

connected net. 

In contrast to O’Keeffe’s approach, Férey proposed to characterize MOF networks by 

dissecting structures into smaller building units (BUs), defined as the smallest single unit 

that can describe the framework by periodically arranging or condensing [37]. This con-

cept is widely used to describe zeolite structures, where three types of BUs are classified: a) 

primary building units (PBUs; tetrahedral SiO4 polyhedra for zeolites), b) secondary build-

ing units (SBUs; representing the above-mentioned BUs), and c) composite building units 

(CBUs; motifs that frequently appear in more than one structure) [36]. The arrangement of 

the BUs, regardless whether they resemble single atoms, clusters, or more complex poly-

hedrons, may be topologically described by known, simple patterns. For example MOF-5 

(and isoreticular frameworks [38]) may be described by an octahedral BU, which consists 

of a Zn4O-cluster coordinated by 6 linkers. Condensing and arranging of 8 BUs by a sim-

ple cubic structure produces the MOF-5 network.   

 

1.2.4 Chemical and Physical Properties 

MOFs are light materials with low densities and may exhibit high inner surface areas. In 

particular, MOF-177 [23, 39, 40] and UMCM-2
x
 (Zn4O(TDC)(BTB)4/3, TDC = 1,4- 

thieno[3,2-b]thiophene-2,5-dicarboxylate) [41] exhibit extraordinary high inner surfaces of 

3200 - 4500 m
2
 g

-1
 and ~ 5200 m

2
 g

-1
, respectively

 
(determined using the model of Brunau-

er, Emmett, and Teller, BET model, see Section 1.3.2), and thus outperform microporous 

zeolites, mesoporous MCMs, and even activated carbons.  

A number of MOFs exhibit network dynamics or network flexibilities [42] that can be 

generally divided into two types: i) the dynamic tilting, flipping or rotation of linkers 

around a bond axis; and ii) the entire reversible contraction or relaxation of the network 

(often termed “breathing”) that is accompanied by major structural changes, however, 

without breaking bonds or the loss of the crystallinity. The latter breathing effect is often 

                                                 
x
 UMCM = University of Michigan Crystalline Material. 
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triggered only by specific kinds of strongly interacting molecular species. For example, 

carbon dioxide is absorbed at low pressures in Cu(II)(4,4’-BIPY)(DHBC)2·2H2O (DHBC 

= 2,5-dihydroxybenzoate, BIPY = 4,4′-bipyridine) [43]. However, nitrogen is not able to 

trigger the “gate opening” within the same pressure range, and adsorption is observed only 

at high pressures above 50 atm. It is assumed that the above-mentioned linker dynamics 

occur in a broad range of MOFs, and have been experimentally demonstrated for the ben-

zene-rings in MIL-47, MIL-53 [44], and MOF-5 [45] by 
2
H-NMR.  

Although the thermal stability of MOFs greatly depends on the specific compound, 

MOFs can be thermally stable roughly up to 300 °C under air. However, in a non-oxidizing 

N2 atmosphere the decomposition temperatures can be up to 500 °C [26, 46]. It should be 

noted that these values are derived either by using thermogravimetric analysis (TGA) or in-

situ X-ray diffraction (XRD), but strictly speaking, only the latter method allows a valid 

statement because it directly shows the structural degradation. With regard to their chemi-

cal stability, MOFs often show resistance against organic solvents, even at elevated tem-

perature [26, 47]. The chemical resistance of MOFs against acids, however, suffers from 

the basic sites of the metal-organic coordination bonds, and even contact with humidity 

may lead to amorphization, such as for MOF-5 [48]. Recently, Tan et al. [49] summarized 

the mechanical properties of a number of selected MOFs, including measurements of the 

Young’s modulus
xi

, which is reciprocally related with the elasticity of a compound, and the 

hardness
x
, which indicates the plasticity. Generally, the Young’s moduli and hardnesses of 

MOFs overlap at the upper boundary with those of the more stiff and brittle zeolites and at 

the lower boundary with the more elastic and ductile polymers.  

 

1.2.5 Structure and Properties of the Zeolitic Imidazolate Frameworks ZIF-7 

and ZIF-8 

As mentioned in Section 1.2.2, ZIFs are a sub-group of MOFs constructed from single 

metal cations (Me) that are N-coordinated and connected by imidazolates (IM). The PBUs 

are tetrahedral MeIM4 polyhedrons, and the angle in the bridging IM3Me-IM-MeIM3 ele-

ments is close to 145° [26]. These two geometrical settings are also found for O3Si-O-SiO3 

                                                 
xi

 The Young’s modulus is defined as the axial stress necessary per amount of axial deformation relative 

to the original dimension. According to Tan et al. [49] it was derived from relaxation measurements by 

using nanointendation. The latter method was also used for determination of the hardness that is the ratio 

of the applied load and the imprint area from the plastic deformation [49].  
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in zeolites. Therefore, it is not surprising that ZIF networks frequently resemble zeolite 

structures topologically. The networks of ZIF-7 (Zn(BIM)2, BIM = benzimidazolate) and 

ZIF-8 (Zn(MIM)2, MIM = 2-methylimidazolate) are both topologies of the sodalite struc-

ture [26, 29, 30]. Following the structure principles described in Section 1.2.3, the cubic 

sodalite structure may be dissected into a truncated octahedron. This SBU is often termed 

as β-cage and consists of six 4-membered rings and eight 6-membered rings, which are 

connected by edge-sharing. The sodalite structure emerges by face-sharing and the cubic 

centered arrangement of the β-cages. Alternatively, the entire net can be denoted by the 

vertex symbol (4·4·6·6·6·6) [32, 36]. Within the ZIF-7 and ZIF-8 topologies, the 24 cor-

ners of the β-cage are occupied by Zn
2+

, whereas the bridging MIM
-
 linkers represent the 

edges. Therefore, the structure can be described as an expanded sodalite network. Whereas 

the structure of ZIF-8 (Figure 2) is cubic (space group   ̅  ), the structure of ZIF-7 (Fig-

ure 3) exhibits a hexagonal distorted sodalite topology (space group   ̅).  

 

 

Figure 2. View along [111], showing the structure-forming SBU (β-cage) in the cu-

bic ZIF-8 unit cell. The turquoise tetrahedrons represent ZnN4 units, which are spaced 

by the MIM linkers. This result in a topological expansion with respect to the original 

sodalite structure, in that the SiO4 tetrahedrons are directly connected by corner sharing. 

(The structure image was rendered according to crystallographic data from ref. [26])  
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ZIFs commonly exhibit rigid frameworks, and thus far, no breathing effects accompa-

nied by major structural changes have been observed for ZIF-7 or ZIF-8. Nevertheless, 

recent studies indicate that ZIF-7 and ZIF-8 are both subject to linker dynamics, for in-

stance, Zhou et al. [50] found quasi-free rotation of the methyl-group at C2 in ZIF-8 by 

using neutron scattering. In addition, Gücüyener et al. [51] postulated from measured 

ethane/ethene isotherms a gate-opening effect that was attributed to the linker rotation. 

Though both ZIF-7 and ZIF-8 are even at elevated temperatures chemically long-term 

stable against organic solvents, such as boiling benzene and methanol, ZIF-7 undergoes a 

phase transition in boiling water [26]. As shown by Park et al. [26] using ex-situ powder 

XRD, ZIF-8 retains its crystallinity in boiling water for at least one week, and also seem to 

be resistant at least for 1 day in 8 M sodium hydroxide solution. Low et al. [52] studied the 

hydrothermal stabilities of a selected number of MOFs by high-throughput screening in 

combination with quantum mechanical calculations of activation energies Edisp, which are 

 

Figure 3. The β-cage of ZIF-7 within the hexagonal unit cell, exhibiting both non-

distorted and distorted 6-membered rings. The turquoise and red tetrahedrons consist of 

ZnN4 units spaced by BIM linkers (for clarity, the BIM linkers are drawn here as rods). 

Panel a): Top view on a distorted 6-membered ring (highlighted in red). Panel b): View 

along the c-axis, showing a non-distorted 6-membered ring. (The structure image was 

rendered according to crystallographic data from ref. [26]). 
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necessary to detach the ligands from the metals or metal-clusters and insert water between 

the coordination bonds. Among the studied MOFs, ZIF-8 shows the highest activation en-

ergy and highest stability against hydrothermal treatment
xii

. In addition to the thermody-

namic stability against water, ZIF-8 shows a strong hydrophobicity that prevents water 

from being absorbed. The thermal stabilities of ZIF-7 in air and nitrogen are apparently 

very similar, and the decomposition in both atmospheres indicated by TGA was found at ~ 

500 °C [26, 53]. In contrast, ZIF-8 shows a lower decomposition temperature in air (~ 

350 °C) [54] compared to nitrogen (~ 450 °C) [26].  

According to Tan et al. [49], ZIF-8 is one of the most elastic MOFs showing a Young’s 

modulus E of ~ 3 GPa (also see Section 1.2.4). By comparison, ceramic alumina shows a 

Young’s modulus of E ~ 300 GPa. In contrast, ZIF-7 appears to be more stiff (E ~ 6 GPa) 

and exhibits a moderately higher hardness H of ~ 0.7 GPa compared to ZIF-8 (H ~ 0.4) 

[49]. 

The micropore properties of ZIF-8 have been well investigated. The calculated inner 

surfaces by the BET model (see Section 1.3.2) and the micropore volumes, respectively, 

range from ~ 950 m
2
 g

-1 
and ~ 0.36 m

3
 g

-1
 for nanocrystals [55] up to ~ 1600 m

2
 g

-1
 and ~ 

0.77 cm
3
 g

-1
 for microcrystalline powders [26, 29, 54]. The nitrogen and argon adsorption 

isotherms of ZIF-8 at 77 K and 87 K, respectively, show a characteristic 2-step behavior 

that was interpreted by Yaghi et al. [26] as a reorganization of the guest molecules within 

the pores. Furthermore, Wu et al. [56, 57] identified hydrogen and methane adsorption 

sites within the ZIF-8 network by neutron-scattering experiments. The preferred sites of 

hydrogen and methane in ZIF-8 were found near the C4-C5 π-bond of the linker, which is 

contrary to their findings for MOF-5, where preferred adsorption sites were determined to 

be near the Zn4O-clusters. For ZIF-7, such detailed studies have yet to be performed. 

 

1.2.6 ZIF-7 and ZIF-8 as Promising Materials for Molecular Sieving 

The zeolite sodalite is only of minor relevance for molecular sieving because the origi-

nal zeolitic structure exhibits very narrow pores (~ 2.8 Å for the hydroxy-form [58]) that 

                                                 
xii

 Low et al. [52] specify Edisp for ZIF-8 with ~ 245 kJ/mol and for MOF-5 (as one of the less water-stable 

MOFs) with ~ 49 kJ/mol. 
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barely allows the passing of the smallest molecule, i.e. hydrogen (molecule size ~ 2.9 Å)
xiii

. 

In contrast, the expanded sodalite network of ZIF-7 and ZIF-8 shows larger pores. The 

pore diameters of ZIF-7 and ZIF-8 can be estimated from the crystallographic structure 

determined by single-crystal X-ray diffraction to be ~ 3.0 Å and ~ 3.4 Å, respectively [26]. 

Both diameters prove themselves to be very convenient for molecular sieving in two im-

portant industrial processes: a) the water gas shift (WGS) reaction and b) natural gas refin-

ing. The former process is used for large-scale hydrogen production by transforming car-

bon monoxide with water into hydrogen and carbon dioxide. Finally, hydrogen (~ 2.9 Å) 

must be separated from the by-product carbon dioxide (~ 3.3 Å) to be used in further pro-

cesses (e.g., as a supply in the Haber-Bosch process
xiv

 for large scale ammonia synthesis 

[59]). In the latter process, raw natural gas is refined by separating the gaseous alkanes as 

methane (3.8 Å) from the by-products that primarily consist of corrosive carbon dioxide 

(3.3 Å), and also, for example, nitrogen (3.6 Å) [60]. 

1.3 Mass Transport in Microporous MOF Membranes 

1.3.1 General Aspects 

Following the IUPAC definition, membranes broadly include all types of flat structures 

that allow the (selective) mass transfer if some undefined driving force is applied [61]. 

Based on the broad definition, a driving force, for instance, could be electric or even mag-

netic in its origin. However, the following discussion is restricted to the mass transfer of a 

gaseous species through microporous membranes by applying a constant pressure differ-

ence Δp between the two interfaces of the membrane. 

As already described in Section 1.1, crystalline, microporous membranes, such as zeo-

lite membranes, are commonly prepared as composites that consist of a thin, polycrystal-

line zeolite layer grown on top of a mechanically stabilizing, macroporous support. Alt-

hough the support layer of the composite membranes may influence the mass transfer [62], 

                                                 
xiii

 The following sizes for molecules represent kinetic diameters according to D.W. Breck, Zeolite Mo-

lecular Sieves, Wiley, New York, 1974. The kinetic diameter is defined as the closest approach of two 

molecules at zero kinetic energy. For nonpolar molecules, σ may be derived by the Lenard-Jones potential 

from the location of the potential well minimum rmin as σ = rmin · 2
-1/6

. The value rmin can be determined by 

the Van der Waals radius of the molecule. 
xiv

 In the Haber-Bosch process, ammonia is directly synthesized from the elements of hydrogen and nitro-

gen. Even though the exothermal equilibrium reaction can be catalyzed by α-iron, high temperatures (~ 

500 °C) are necessary to obtain sufficiently high reaction rates. High pressures (~ 350 bar) prevent the 

shift of the equilibrium to the reactant side. The catalyst, α-iron, is generated in-situ from magnetite (in-

verse spinel structure Fe(III)(Fe(II)Fe(III))O4) by the reduction with hydrogen at 500 °C [59].  
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Figure 4. Schematic drawing of the mass transfer of a species i through a mi-

croporous membrane in steady state. The gas phases A and B correspond to constant 

pressures p1 and p2, respectively. The sorption of i on both membrane faces at different 

partial pressures results in equilibrium concentrations ci,1 and ci,2 and corresponding 

chemical potentials μi,1 and μi,2, respectively. Consequently, a concentration gradient ∇ci 

exists within the bulk membrane. The thermodynamic driving force of the mass transfer 

of i (denoted by the flux Ji) is the gradient in chemical potential ∇µi.  

here, any effects from the support are neglected. Consequently, only mass transfer through 

the microporous layer is considered in the following discussion. For the discussion below, 

this process is divided in two steps: a) mass exchange of i between the gas phase and the 

membrane interface by adsorption from the gas phase in the boundary region, and b) 

transport diffusion of i within the bulk membrane. However, it should be noted that the 

adsorption in micropores is necessarily tied to diffusion and the divide in two processes 

only of exemplary nature. Figure 4 schematically shows the mass transfer of a species i 

through a microporous layer in steady state. 

 

1.3.2 Adsorption in Microporous Materials 

The adsorption of a gaseous species i at the inner surface of microporous materials is an 

equilibrium process during which species i is bound to the inner surface either by chemi-

sorption (covalent binding) or physisorption (van der Waals interactions). However, the 

latter is the general rule for gas adsorption. Both adsorption mechanisms can be distin-
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guished by the heat of adsorption that is for chemisorption and physisorption, typically 200 

and 20 kJ/mol, respectively [63]. For physical adsorption, there are six types of prototypi-

cal adsorption isotherms classified by the IUPAC definition [64]. Pure microporous mate-

rials typically exhibit type-I isotherms, which show a steep (almost linear) slope at low 

pressure ranges. However, the slope gradually decreases with increasing pressure. At high 

pressures the micropores are completely filled, and consequently, further uptake is not ob-

served.  

Two physically based models, namely, the Langmuir model and the BET model, are 

commonly used to describe the measured adsorption isotherms. Both models are actually 

not explicitly designed for adsorption in micropores and completely fail to describe more 

complex system accurately (e.g., the breathing effects in MOFs).  

The simpler Langmuir model describes the adsorption of a monolayer on top of a sur-

face with discrete adsorption sites of the same energy. The model assumes a stationary 

equilibrium between the adsorption of i at a pressure pi from the gas phase at a free adsorp-

tion site ○ and desorption of the condensed i from an occupied site ● into gas. Each sorp-

tion process corresponds to its own rate constant k.  

 

Adsorption: i(g) + ○  adsk   ● 

Desorption: ●   desk

 i(g) + ○ 

 

Formulating the kinetics at a steady state and by the introduction of the degree of cover-

age θi as a ratio of the amount of occupied sites ni and the monolayer filling mi yields the 

well-established Langmuir isotherm [63]:  
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The equilibrium constant K is the ratio of the rate constants kads / kdes. The basic Lang-

muir model sufficiently shows the physical background of the non-linear relation of pres-

sure and loading in microporous materials. However, the small regime at low pressures of 
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Kipi << 1 may be linearly approximated by using Henry’s law
xv

, and is thus named the 

Henry region. The temperature dependency of the Langmuir isotherm is given by the equi-

librium constant K that follows the van’t Hoff equation
xvi

, and accordingly, the equilibrium 

is shifted from adsorption to desorption with increasing temperature. 

The advantage of the Langmuir model is that it can be easily modified, for example, to 

support two adsorption sites A and B with different energies (dual-site model) [65], or 

competing multi-component adsorption from a binary mixture of two species i and j [66]: 

 

Dual-site Langmuir:  
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Multicomponent Langmuir: 
jjii
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     (3) 

 

Although the shape of the simple Langmuir isotherm resembles the experimentally ob-

served type-I isotherm for micropores, the Langmuir model results in errors if it is used to 

calculate the inner surface area from the filling of a monolayer mi because the complete 

filling of the micropores does not necessarily correspond with the filling of a monolayer. 

Although it does not take into account the limiting micropore filling, the multilayer model 

of Brunauer, Emmett, and Teller (BET) is often used for the determination of the surface 

area [67]:  
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xv

 Henry’s law describes originally the relation between the vapor pressure pi and the mole fraction xi of a 

species i in solution:  pi = xi · κi, where κi is the Henry constant [63]. 
xvi
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 , where H°ads is the heat of adsorption at standard temperature and pressure. 
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where Vi, V0, Ci, and p0 denotes the adsorbed gas volume of i at equilibrium pressure, 

the gas volume necessary for filling a monolayer, the adsorption constant of i, and the satu-

ration pressure of i at the specific temperature for surface area measurements (that is com-

monly the boiling point of i at 101.3 kPa), respectively. However, because the micropore 

filling is commonly obtained at very low relative pressures p/p0 < 0.01, a valid analysis can 

only be performed below this region. Nevertheless, the BET surface areas are only indica-

tive values and should not be taken as true quantities [68]. 

 

1.3.3 Transport Diffusion through Microporous Membranes 

Following the adsorption principles explained in Section 1.3.2, if a constant pressure 

drop     is established across a microporous membrane, both membrane faces show dif-

ferent, constant θi values in the steady state (Figure 4). The term θi can be expressed as a 

surface concentration ci in the unit molecules/cage by ci = θi·ci,0, whereo ci,0 denotes the 

total amount of surface sites per cage. Consequently, a gradient ∇ci is established across 

the membrane, and i diffuses from the membrane face at ci,2 to ci,1. If there are no external 

barriers that limit the mass transfer through the membrane surface, diffusion through the 

bulk membrane is the rate limiting step [69]. The mass transfer between both membrane 

faces then may be quantitatively described by the empirically founded Fick’s 1
st
 law, 

which can be simplified for a linear, 1D cross-sectional concentration profile [70]:  

 

z

c
DcDJ i

ii





        
(5) 

 

where Ji, D,
 
and Δz denote the flux of i through the membrane, the Fickian transport diffu-

sion coefficient of i, and the thickness of the membrane, respectively. It should be noted 

that D, though ideally constant, can show a strong concentration dependency experimental-

ly and, therefore, should be denoted as D(c). Though Fick’s 1
st
 law may be used for the 

multicomponent diffusion of, for instance, two species i and j, the corresponding mixture 

diffusivity Di,j(c) may significantly deviate from the pure component Di(c). However, the 

law can be extended for the diffusion of i in the presence of n multiple species j by using a 

diffusion matrix Dij instead of a single diffusion coefficient [71]: 
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Nevertheless, Fick’s law may prove to be inadequate in understanding the experimental 

findings, for example, in counter diffusion experiments, where i may even be “dragged” by 

a another species in direction of its concentration gradient [72].  

In contrast, the Maxwell-Stefan approach for the steady state diffusion is physically de-

rived by the consideration of the equilibrium between a driving and a frictional force on i. 

The thermodynamic driving force for the situation described in Figure 4 is the gradient of 

the chemical potential ∇µi. The above-mentioned, opposed frictional force results from 

interactions of i with, for instance, the immobile pore surface or a mobile, second species. 

The frictional force is linearly related to the corresponding mole fractions x, the velocities 

v, and the friction coefficients that are commonly reciprocally expressed as Maxwell-

Stefan diffusivities D [72]: 
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where R is the ideal gas constant. For the single component diffusion of i through a mi-

croporous matrix s, the Maxwell-Stefan equation might be formulated to resemble Fick’s 

1
st
 law: 
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where Di,s denotes the Maxwell-Stefan diffusivity of i and s. In this simple case, the 

Fickian diffusivity D is related to the Maxwell-Stefan diffusivity D by the thermodynamic 

factor: 
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For the binary mixture diffusion of i and j within the same matrix, the Maxwell-Stefan 

equation becomes much more complex to solve, but may be still written in the convenient 

form as follows [73-75]: 
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where csat denote the total concentration at the complete micropore filling.  

 

1.4 Preparation of MOFs by Microwave-Assisted Heating 

1.4.1 Theoretical Aspects of Dielectric Heating of Liquids 

As electromagnetic radiation with frequencies ν of 300 MHz to 300 GHz, microwaves 

(MWs) may induce an oscillating orientation polarization in liquids containing dipolar 

molecules. On a molecular level, this means that the dipolar molecules try to align them-

selves with the oscillating electric field. However, the typical relaxation time for molecule 

rotation is in the range of 10
-12

 s. Therefore, if the frequency is increased above 100 GHz, 

the orientation of the dipolar molecules cannot follow the rapidly oscillating electric field. 

Consequently, the total polarizability and the relative permittivity εr dramatically drop [63, 

76]. Within a transition region at higher frequencies, the dipolar molecules may still re-

spond to the electric field but lag behind in their orientation. This out-of-phase polarization 

results in a dielectric loss ε´´ that manifests in a dielectric heating. The dielectric loss ε´´ is 

commonly expressed as an imaginary part of the complex relative permittivity εr = ε´+ iε´´ 

[76, 77]. 

The efficiency of the dielectric heating depends on the balance between a) the permittiv-

ity ε´ (that decreases at higher frequencies) and b) the loss factor ε´´ (that runs through a 
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maximum at the turning point of the slope of ε´). The efficiency may be evaluated for a 

specific ν by the loss tangent tan δ = ε´´/ ε´ [77].  

In most household and laboratory MW ovens, the MWs are generated by a magnetron at 

a fixed ν of 2.45 GHz, even though the maximum loss tangent for pure water is not reached 

until 18 GHz at ambient temperature [76]. The frequency, however, is deliberately chosen 

to balance heating effectiveness and penetration depth, which reciprocally depends on ε´´ 

[78]. At a constant frequency but with increasing temperature, ε´ and ε´´ may run through 

maxima. The thermal motion weakens the intermolecular dipole interactions. Consequently, 

the inertia against aligning within the electric field is reduced but, simultaneously, the ran-

dom, thermal motion counteracts the polarization [79-81]. For water in the temperature 

range of 0 to 40 °C
xvii

, these maxima appear only for frequencies above 2.45 GHz and shift 

with increasing ν to higher temperatures [81]. 

Although MWs can be used to excite the rotational states of molecules (e.g., in rotation-

al spectroscopy in the gas phase), in the liquid state, the free rotation of solvent molecules 

would contradict that the frequency of 2.45 GHz is energetically far too low to i) excite 

even the lowest rotational states of molecules [82], and ii) to break hydrogen bonds that 

prevent free rotation in liquid state [78].  

 

1.4.2 Practical Aspects of MW-Assisted Heating  

Though there are various non-classical preparation routes for crystalline MOFs [55, 83-

85], the most relevant technique for MOF preparation is solvothermal synthesis, which is 

commonly performed by convectional heating in air-circulated ovens. The process of heat 

transfer from a surrounding medium (usually air) through the walls of the autoclave (usual-

ly a stainless steel housing containing a Teflon insert) to the enclosed synthesis solution is 

slow. Therefore, the solution is almost heated homogenously with time because the heat 

dissipation is faster than the heat transport into the solution. In MW-assisted heating, the 

material of the autoclave is commonly chosen to be transparent for MW radiation (e.g., 

Teflon), and the heat release generated within the solvent (as described in Section 1.4.1) is 

much faster. The absorption profile of the MWs within the solvent may be approximated 

                                                 
xvii

 According to the graphs of ref. [81] and the corresponding model in ref. [80], for pure water and 2.45 

GHz ε´ and ε´´ at T = 0 °C or T = 40 °C can be specified as ε´ ~ 82 and ε´´ ~ 21 or ε´ ~ 74 and ε´´ ~ 6, re-

spectively. This clearly shows that the dielectric loss decreases with increasing temperature at least for the 

given temperature range and frequency. 
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Figure 5. Cross-section schematic drawing of a solvent filled MW-autoclave show-

ing the absorption of microwave energy and resulting temperature profiles at different 

times during the dielectric heating process. Following the Lambert-Beer law, with in-

creasing distance d from the walls, the intensity I of the MWs exponentially decreases 

from its initial value I0 symmetrically to the mirror plane (black, dotted line). The tem-

perature dependencies of the absorption process and the loss tangent are neglected here. 

In the beginning of a rapid heating process at t1 in panel a) the profile of the temperature 

T is spatially inhomogeneous within the solvent. However, at steady state conditions at 

t2 > t1, as shown in panel b), the temperature may be almost equally distributed. This is 

particular true if I0 is dynamically controlled by a temperature regulator, as in modern 

laboratory microwaves. The exact heat transfer profile through the walls of the auto-

clave is not relevant here and shown only as a dotted line to reflect it’s unknown pro-

gress.  

by the Lambert-Beer law, which predicts the exponential decay in intensity I of transmitted 

MWs with increasing distance d from the incident MW intensity I0 [63, 78]: 

 

dk
I

I












0

log           (11) 

 

where k summarizes the molar extinction coefficient ε and the concentration c. Conse-

quently, the spatial temperature profile as a function of time is inhomogeneous for short 

time periods during the initial heating process because the absorption of MWs occurs at the 
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outer solvent region near the walls of the autoclave. At the beginning of MW-heating, a 

few molecular layers directly attached to the Teflon wall will remain at a lower tempera-

ture because they become quenched by the cold Teflon walls (Figure 5). This effect can 

reduce crystallization at the walls, which is often observed in Teflon-lined, stainless-steel 

autoclaves. In contrast to convectional heating, the autoclave walls transfer heat from the 

solution to the surrounding medium outside. The maximum of temperature is consequently 

shifted slightly away from the absorption maximum. If steady state is established (e.g., by 

temperature-regulated control of the MW power), the temperature is approximately homo-

geneously distributed within the solution.  

Though MW-assisted heating is reported to produce higher yields and to result in faster 

chemical reaction rates [86], a specific “microwave”-effect by electromagnetic interaction 

with the solvent as proposed by some authors could not be verfied thus far [82, 87-90]. For 

instance, Obermayer et al. [91] performed 18 different reactions, each in a MW-

nontransparent SiC vessel and a MW-transparent glass autoclave. The comparative analy-

sis revealed no differences in the yields regardless of whether MWs directly heated the 

solvent or just the autoclave walls. 
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2 Preparation and Characterization of ZIF-7 
and ZIF-8 Membranes 

2.1 Summary 

As described in Sections 1.2.5 and 1.2.6, ZIF-7 and ZIF-8 are both prototypical MOFs 

with excellent thermal and chemical stabilities, which make them promising for the molec-

ular sieving of light gases. The following two publications describe the preparations of the 

first ZIF-8 and ZIF-7 membranes by growing polycrystalline layers on top of porous ce-

ramic supports under solvothermal conditions. The separation factors of different light gas-

es for both membranes were measured as significantly above the expected value of the 

separation through cracks or pinholes, thus showing the successful formation of crack-free, 

continuous layers. The preparations exemplarily demonstrate the feasibility of MOF mem-

branes that show true molecular sieving. Though both materials are closely related, com-

pletely different preparation routes were necessary to obtain single crystals or to grow con-

tinuous ZIF layers on top of the ceramic substrates. For the preparation of ZIF-8 mem-

branes, described in Section 2.2, it was necessary to replace the solvent dimethylforma-

mide (DMF) by methanol to obtain a phase pure crystallization. It was possible to repro-

ducibly grow dense, polycrystalline layers of ZIF-8 on top of titania supports by using in-

situ crystallization. However, the same method could not produce dense layers on top of α-

alumina supports. Although the ZIF-8 synthesis in methanol could not be transferred to 

ZIF-7, phase-pure ZIF-7 could be conventionally obtained in DMF (Section 2.4). However, 

seeding and subsequent secondary growth were necessary to obtain gap-free layers of ZIF-

7 on top of porous supports. Both membranes were carefully characterized by scanning 

electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDXS) and X-ray dif-

fraction (XRD). Unary and equimolar binary component mass transfer experiments were 

performed using a modified Wicke-Kallenbach method. Whereas the ZIF-8 membranes 

(synthesized in methanol and dried at ambient temperature) directly showed permeation, it 

was necessary to online-activate the ZIF-7 membranes at 150 °C to remove water. Alt-

hough both membranes showed selectivities higher than expected from Knudsen diffusion 

through defects, surprisingly, both membranes allowed the passing of molecules with ki-

netic diameters larger than the estimated pore sizes, such as methane (see Section 1.2.6). 

After careful consideration, this behavior was related to the framework flexibility rather 

than the undefined mass transport through grain boundaries.  
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3 Understanding Oriented Growth Processes 
in Polycrystalline MOF Films    

3.1 Summary 

In an attempt to find a general approach for MOF membrane preparation, the seeding 

procedure for ZIF-7 membranes (described in Section 2.3) could be successfully trans-

ferred completely to ZIF-8, as shown in Section 3.2. The subsequent secondary growth 

surprisingly resulted in a highly {100}-oriented, continuous polycrystalline layer on top of 

porous α-alumina supports. For ZIF-7, crystals with a well-defined morphology could be 

obtained after substitution of the classical zinc source, zinc nitrate hexahydrate, against 

anhydrous zinc chloride. The hexagonal prismatic, rod-like ZIF-7 crystals were observed 

to grow c-out-of-plane on top of previously seeded α-alumina supports. The growth pro-

cess as function of time was studied in detail for both, ZIF-7 and ZIF-8, by ex-situ XRD, 

SEM, transmission electron microscopy (TEM), and selected area electron diffraction 

(SAED). The observed preferred crystal orientation within the ZIF layers could be consist-

ently explained by the evolutionary growth model of van der Drift, which predicts the 

dominance (or “survival”) of only those seed nuclei with their directions of fastest growth 

perpendicular to the starting plane. For ZIF-7, it could be shown that the direction of fast-

est growth is perpendicular to {003} under equilibrium conditions, which results in a rod-

like morphology with an elongated c-axis. For ZIF-8, the rhombic dodecahedral equilibri-

um morphology indicated growth rate dominance in the direction <100>, thus forming a 

“coniferous forest”-like texturized, polycrystalline layer surface, consisting of intergrown 

pyramidal tops. The crystal preferred orientation (CPO) index (which is a quantitative val-

ue of the quality of orientation) indicated a high degree of orientation for the ZIF-8 layers. 

Though ZIF-7 grows much more anisotropically, a moderate distribution of the c-axis tilt 

angle relative to the support was found in SEM. These observations are consistent with 

simulations for zeolites that demonstrate a direct correlation between lateral growth and the 

distribution of orientations surviving during evolutionary growth (Section 3.2). Both stud-

ies provided insight into the growth process of ZIFs. However, in terms of membrane per-

formance, the orientations of the membrane layers were either in the best case negligible 

for ZIF-8 or even disadvantageous for ZIF-7. Nevertheless, the importance of control of 

the growth process and crystal orientation in MOF membrane preparation could be demon-

strated exemplarily.  
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4 Understanding Mass Transfer through MOF 
Membranes on the Basis of ZIF-8 

4.1 Summary 

This section is dedicated to macroscopic, microscopic, and theoretical investigations to 

gain basic insight into the complex mechanism of mass transfer through ZIF-8 membranes. 

For the uptake studies from the gas phase by using infrared microscopy (IRM), large 

rhombic dodecahedral ZIF-8 single crystals were synthesized in methanol under sol-

vothermal conditions by diffusion controlled in-situ mixing of the reactants (Section 4.2). 

The IRM investigations reported in Section 4.2, 4.3, and 4.4 shows the adsorption of mole-

cules larger than the estimated fixed pore size of 3.4 Å, thus demonstrating the flexible 

nature of the pores (see section 1.2.6). Even more fascinating is the uptake behavior of the 

dipolar molecules, such as methanol and ethanol. The experimental sorption isotherms 

were found to exhibit S-shaped progressions, resembling IUPAC type-III or -V isotherms 

rather than the classical type-I isotherm, thus indicating strong guest-guest but weak host-

guest interactions. Unusually, the transport diffusion coefficient for methanol was meas-

ured to run through a minimum at medium loadings and was even surpassed by the self-

diffusion coefficient that was derived from tracer exchange experiments with deuterated 

methanol. Section 4.3 focuses on the unary and equimolar binary component mass transfer 

of methane/carbon dioxide as function of temperature through a ZIF-8 membrane. As a 

consequence of the framework flexibility, the separation factor was measured as 3.5, alt-

hough a sharp cut-off separation would be expected from the estimated pore size for a rigid 

structure (see Section 1.2.6). In Section 4.4, ethane/ethene permeation experiments on a 

ZIF-8 membrane were performed as functions of pressure. The corresponding separation 

factor was calculated to be ~ 2. The observations of the above-mentioned mass transfer 

experiments could be understood on the basis of IRM adsorption and diffusion data com-

bined with the grand canonical Monte Carlo (GCMC) simulations. The low separation fac-

tors could be explained by opposed diffusion and adsorption selectivities. A simple, Fick-

based model (see Section 1.3) could be used to estimate with sufficient accuracy the pure 

gas fluxes and mixed gas separation factors for the ZIF-8 membrane, potentially allowing a 

screening of MOF materials for suitable candidates.  
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5 Closing Remarks  

This work is dedicated to the preparation and characterization of microporous metal-

organic framework (MOF) membranes, demonstrated by the examples of ZIF-7 and ZIF-8. 

As described in Section 1.1, molecular sieve membranes, although at the moment un-

derrepresented in the membrane market, possess great potential to improve a broad range 

of industrial separation processes and can be used in membrane reactors for process inten-

sification. Currently, and in the near future, membranes designed for clean environmental 

processes are increasingly important, for instance: the removal and subsequent storage of 

greenhouse gases, the carbon neutral production and concentration of bio fuels, and the 

large-scale hydrogen production as a clean energy source.  

MOFs, with their remarkable properties, such as ultra-high inner surface areas, modifia-

ble functionalization, customizable adsorption affinities, and directly accessible metal cen-

ters (see Section 1.2), are currently revolutionizing the field of porous materials and can 

introduce new aspects to molecular sieving. Although, not yet suitable for scale-up in the 

present form, this work demonstrates that the preparation of ZIF-7 and ZIF-8 membranes, 

at least on laboratory scale, is possible by different routes. The presented methods result in 

continuous, polycrystalline layers that are mechanically stabilized by macroporous, stiff 

ceramic supports. Oriented crystal growth relative to the support was observed for ZIF-8 

after the secondary growth of previously seeded alumina supports (Section 2.2). The ori-

ented growth for ZIF-7 was initially not observed for secondary growth, but took place 

after the modification of the synthesis recipe, which allowed the synthesis of crystals with 

a well-defined morphology (Section 2.3). Both processes could be consistently explained 

by the extended evolutionary selection model of van der Drift. The same model has been 

already be successfully used to explain the experimental findings of oriented growth of 

zeolite membranes, thus demonstrating that known principles from zeolite science are 

transferable to MOFs.  

The unary and binary component mass transfer through MOF membranes was investi-

gated in detail for ZIF-8. In this study, the presented membranes exhibit separation behav-

iors based on mass transport through micropores rather than exclusively through grain 

boundaries or other defects, such as cracks or pinholes. On the basis of the mass transfer 

studies, it was determined that the framework flexibility of MOFs is more relevant than 

originally expected. This flexibility is highly relevant and must be carefully considered for 
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possible applications that aim at sharp molecular sieving. Even though ZIF-7 and ZIF-8 are 

not subject to major breathing effects, which result in changes of the framework topology 

and related cage and pore geometries, both revealed only a “soft” micropore separation 

rather than a sharp cut-off in mass transport experiments of guests larger than the estimated 

pore sizes. This finding was explained by the apparently incorrect assumption of rigid 

pores and the consequently wrong estimation of pore sizes from the crystallographic struc-

ture derived from X-ray diffraction (XRD). XRD only provides averaged atomic positions 

and is not able to reflect the true rotational dynamics of the linkers in the framework.  

The linker dynamics seem to limit the application of ZIF-8 in molecular sieving (e.g., 

carbon dioxide from methane). The corresponding, equimolar binary mass transfer experi-

ment on a ZIF-8 membrane showed a separation of carbon dioxide from methane by a fac-

tor ~ 3.5 (at ambient temperature and 1 bar partial pressure difference, see Section 4.2). In 

theory, 100% separation of carbon dioxide from methane was expected because the kinetic 

diameter of methane (~ 3.8 Å) is much larger than the pore size of ZIF-8 (~ 3.4 Å; estimat-

ed for a rigid framework, see Section 1.2.6). The adsorption data from infrared microscopy 

(IRM) and grand canonical Monte Carlo (GCMC) simulations clearly show that methane 

and even larger molecules (e.g., propane) are adsorbed, thus demonstrating that the exper-

imental finding on the ZIF-8 membrane was not an artifact. The corresponding diffusion 

coefficients, also obtained by IRM and GCMC, provided a detailed understanding of the 

experimentally observed separation. At low framework loadings, methane diffuses slightly 

slower than carbon dioxide but shows much higher transport diffusion coefficients with 

increasing loading than carbon dioxide. The preferred adsorption of carbon dioxide is op-

posed to the faster diffusion of methane, thus reducing the separation factor of the ZIF-8 

membrane for carbon dioxide.  

The finding of methane diffusing faster than carbon dioxide is in contrast to the expecta-

tion that the rate-limiting step in diffusion (which is the passing of the 6-membered ring 

pore windows) should at least exhibit a higher activation energy for the bulky methane 

compared to the slim carbon dioxide. Eventually, the GCMC simulations indicated a pre-

ferred adsorption of methane at sites near the pore windows. This possibly allows methane 

to jump more frequently through the pore windows, thus increasing its mobility within the 

framework. These findings demonstrate that insight on the molecular level is necessary to 

understand and optimize MOFs for molecular separation.  
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Although the very slow mass transfer of propane through the ZIF-8 membrane (Section 

4.2) resulted in high separation factors > 300 for hydrogen in equimolar mixtures, this sep-

aration does not represents true molecular sieving because propane can still be adsorbed by 

ZIF-8. However, the experiment demonstrates that the structural concept of very large cav-

ities (~ 11.6 Å in diameter for ZIF-8) connected by small windows can substantially reduce 

pore blocking in molecular sieving. Hence, from the perspective of molecular sieving, the 

focus should be to develop MOFs with large cavities that are connected by small pores. 

In contrast to molecular sieving, another route used to separate molecules in a “soft” 

manner was demonstrated in Section 4.3. The ZIF-8 membrane showed the micropore sep-

aration of ethene from ethane by a factor of ~ 2. As in the above-mentioned case of carbon 

dioxide and methane, the separation factor was interpreted as the result of opposing selec-

tivity selectivities: ethene diffuses faster, whereas ethane was preferentially adsorbed. 

Nevertheless, this provides hope that MOFs can be fine-tuned to interact with π-bonds (e.g., 

by accessible metal centers or specific linker functionalization), and consequently show 

much better separation by improved adsorption of the olefin component.  

As already mentioned in Section 1.1, gas separating membranes currently represent a 

relatively small, but growing field within the membrane market, whereas liquid separation 

dominates. Hence, the next reasonable step will be understanding the mass transfer from 

the liquid phase through MOF membranes (e.g., in laboratory scale pervaporation experi-

ments). Microporous membranes in liquid phase separations operate at values close to the 

saturation range of the adsorption isotherm. Similar conditions can be achieved in gas sep-

aration (GS) only at high pressures. Hence, it can be expected that these completely differ-

ent molecular situations result in a different, primarily adsorption-dominated behaviors. 

Especially with respect to related problems of the framework flexibility in molecular siev-

ing of gases through MOF membranes, adsorption-controlled mass transfer might result in 

much higher separation factors than observed in GS. By specific functionalization, 100% 

selectivity can potentially be reached by exclusive adsorption (e.g., of alcohols from water 

in hydrophobic MOF frameworks, such as ZIF-8).  
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