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ABSTRACT

In addition to functional aspects web services also expose non-functional properties, which
describe how the offered functionalities are delivered. In service-oriented systems with real
business settings, the non-functional properties play an important role in the service life
cycle, including discovery, selection and operation of services. This PhD thesis focuses on
two research challenges related to the non-functional aspects of web service composition.

The first part of the thesis addresses the problem of selecting web services for a composite
application such that the end-to-end Quality of Service (QoS) values perceived by the user
meet his/her requirements. This problem is often modeled as a Multiple-Choice Multi-
Dimensional Knapsack problem, which is known to be NP-hard. Therefore, it is expected
that any exact solution to this problem will have an exponential computation time. In order
to solve this problem, new selection algorithms are presented in this thesis, which are able
to satisfy all user’s constraints much faster than exact solutions, while achieving close-to-
optimal results. More specifically, a novel hybrid approach is presented, which combines
global optimization with local selection in order to benefit form both worlds. In addition,
skyline-based algorithms are presented to prune non-interesting services from the search
space and thus reducing the computation time dramatically. Several experiments have
been conducted using both real and synthetic datasets to evaluate the proposed selection
methods. The results of these experiments indicate a significant improvement in performance
compared to the state-of-the-art solutions.

Another important non-functional aspect that needs to be taken into account when
dealing with service compositions is the transactional characteristics of the involved ser-
vices. A transactional coordination of the composed services is needed in order to ensure
a consistent outcome in case of service failures. Due to the inherent autonomy and het-
erogeneity of web services, current standards for web service transactions relax the ACID
properties and rely on compensation models for failure recovery. However, due to relax-
ing the isolation property transactional dependencies start to emerge between concurrent
long-running web service transactions. The second part of this thesis addresses this prob-
lem and proposes an extension to the standard framework for web service transactions to
enable detecting and handling such transactional dependencies. Moreover, an optimistic
protocol for concurrency control and decentralized solutions for handling global dependency
cycles are presented. The proposed methods have the advantage that they can be deployed
in a fully distributed fashion within the proposed architecture. Experimental evaluation
of the concurrency control protocol using extensive simulation of long running web service
transactions are also presented.

Keywords: Web Services, Quality of Service, Transactions.



ZUSAMMENFASSUNG

Neben funktionalen Aspekten besitzen Web Services nicht-funktionalen Eigenschaften,
die bei der Entdeckung, Auswahl und Erbringung von Dienstleistungen in Service-orientierte
Architekturen (SOA) mit realen Geschäftsbedingungen eine wichtige Rolle spielen. Diese
Dissertation konzentriert sich auf zwei Forschungsherausforderungen im Zusammenhang mit
der Problematik der Berücksichtigung von nicht-funktionalen Aspekten bei Web Service
Kompositionen.

Der erste Teil der Dissertation befasst sich mit der Problematik der Auswahl von
geeigneten Web Services für Kompositionen auf Basis von ihre Qualitätseigenschaften, so
dass alle Anforderungen vom Benutzer erfüllt werden. Dieses Problem wird oft als Multiple-
Choice Multi-dimensional Knapsack Problem modelliert, von dem bekannt ist, dass es NP-
hard ist. Daher ist davon auszugehen, dass jede exakte Lösung für dieses Problem eine
exponentielle Zeitkomplexität haben wird. Um dieses Problem zu bewältigen, werden in
dieser Arbeit effiziente Lösungen für die Auswahl von Web Services vorgeschlagen, die im
Vergleich zu vorhandenen Lösungen viel schneller sind und dabei nahezu optimale Ergebnisse
erzielen können. Zunächst wird eine hybride Lösung vorgestellt, die globale Optimierung mit
lokalen Selektion von Services kombiniert um von den Vorteilen beider Welten zu profitieren.
Darüber hinaus werden Skyline-basierte Algorithmen vorgestellt, um uninteressante Services
aus dem Suchraum auszuschließen und damit die Rechenzeit drastisch zu reduzieren. Die
vorgestellte Lösungen wurden mit Hilfe von echten und synthetischen Datensätze evaluiert.
Die Ergebnisse zeigen eine deutliche Verbesserung der Gesamtleistung im Vergleich zu den
vorhandenen Lösungen.

Der zweite Teil dieser Arbeit befasst sich mit der Problematik der Berücksichtigung von
den nicht-funktionalen transaktionalen Eigenschaften der Web Services bei der Ausfhrung
im Rahemn einer Komposition. Die Lockerung der ACID-Anforderungen in der vorhan-
denen Standards für Web Service Transaktionen wegen der Autonomie und Heterogenität
der Web Services fhrt oft dazu, dass transaktionale Abhängigkeiten zwischen nebenläufigen
Geschäftsprozesse entstehen. Ohne vernnftige transaktionale Koordination der involvierten
Web Services kann der konstistenzsicherung der gefassten Daten im Fehlerfall nicht gewärleistet
werden. In dieser Arbeit wird eine Erweiterung des Transaktions-Frameworks für Web Ser-
vices vorgeschlagen, die das Verfolgen von solche transaktionalen Abhängigkeiten ermöglicht.
Darüber hinaus wird ein optimistisches Protokoll für Concurrency Control vorgestellt, das
vollständig verteilt in die vorgeschlagene Architektur eingesetzt werden kann. Die Ergeb-
nisse einer Evaluierung des vorgeschlagenen Protokolls mit umfangreichen Simulationen von
langlaufenden Web Service Transaktionen werden vorgestellt.

Schlagwörte: Web Dienste, Qualität von Services, Transaktionen.
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1
Introduction

Recently, there has been a growing trend for web-based businesses to outsource parts

of their processes by delegating the operation and responsibility of these parts to a

third-party service providers, so as to focus more on their core activities. In addition,

there is often a need to combine different services to achieve a more complex task

that cannot be fulfilled by an individual service. The Service-Oriented Architecture

paradigm (SOA) and its realization through standardized Web Service technologies

provide a promising solution for seamless integration of web applications. Industry

standards, such as WSDL, UDDI, WS-BPEL, exist for describing, locating and com-

posing web services. Semantic web based technologies like OWL-S, WSDL-S and

WSMO have also been proposed to enrich the descriptions of the offered service func-

tionalities and service requests with semantics and hence, improve the accuracy of

the matchmaking algorithms.

In addition to the functional aspects, which describe what the service does, web

services also expose non-functional properties, which describe how the offered func-

tionalities are delivered. The non-functional aspects include quality of service (QoS)

in terms of quantifiable attributes such as responsiveness, availability etc. as well as

other non-quantifiable properties such as transactional support, privacy and security.

In SOA based applications with real business settings non-functional properties of

the invoked web services play a major role in determining the success or failure of the

system. The performance of a composite application, for example, as perceived by

the user (e.g. in terms of response time) strongly depends on the performance of the

outsourced services. Therefore, modeling, provisioning and managing services based

on non-functional properties become fundamental challenges in Service-Oriented Ar-

chitectures.

1



Chapter 1 Introduction

1.1 Problems Addressed in this Thesis

This thesis focuses on two research challenges, which are related to the non-functional

aspects of web service composition. In the following, we give a brief description of

these research problems.

1.1.1 Problem 1: Service Selection for Compositions with

End-to-End QoS Requirements

Quality of Service (QoS) properties play a major role in distinguishing similar services.

Therefore, in applications with real business settings, service requests are usually

associated with some requirements on the expected QoS level (e.g. response time,

availability, throughput etc). QoS requirements are specified in terms of upper and/or

lower bounds on the numerical values of the different QoS attributes. The goal of a

QoS-based web service selection is to locate the best services that satisfy the given set

of QoS constraints in addition to the functional requirements. The best service in this

context is the service that satisfies all requirements and at the same time maximizes

a given user’s utility function.

Users of composite applications, however, are typically unaware of the involved ser-

vices, and they specify their QoS requirements in terms of end-to-end QoS constraints

(e.g. average end-to-end response time, minimum overall throughput, maximum total

cost etc). Selecting the best service from a list of alternative services for each task

such that all user’s QoS requirements are satisfied, is a non-trivial task as the number

of possible combinations can be very huge. This problem is a combinatorial problem,

which is known to be NP-hard in the strong sense. Any exact solution to this prob-

lem is expected to have an exponential computational complexity with respect to the

number of candidate services, which can be out of the run-time requirements.

The problem of QoS-based service selection for compositions with end-to-end con-

straints (or shortly QoS-based service composition) becomes especially important and

challenging as the number of functionally-equivalent services offered on the web at

different QoS levels increases. According to [AMM08], there has been a more than

130% growth in the number of published web services in the period from October

2006 to October 2007. The statistics published by the web services search engine

2



1.1 Problems Addressed in this Thesis

Seekda!1 also indicate an exponential increase in the number of web services over the

last three years. Moreover, it is expected that with the proliferation of the Cloud

Computing and Software as a Service (SaaS) concepts [CLPZ09], more and more web

services will be offered on the web at different levels of quality. The pay-per-use busi-

ness model promoted by the cloud computing paradigm will enable service providers

to offer their (software) services to their customers in different configurations with

respect to QoS properties. Therefore, it is expected that service requesters will be

soon faced with a huge number of variation of the same services offered at different

QoS levels and prices, and the demand for an automatic and scalable service selection

method will increase.

The problem of designing efficient and scalable algorithms for QoS-based service

compositions will be addressed in the first part of this thesis (in Chapter 3).

1.1.2 Problem 2: Transactional Management for Web Ser-

vice Compositions

Business web applications very often involve activities that possess transactional char-

acteristics, such as, placing an order, buying a product, charging a bank account etc.

Web services that provide such activities are referred to as transactional web ser-

vices. A key requirement of successful web service-based business applications, is to

ensure reliable and consistent execution of their transactional web services despite the

presence of concurrency and system/network failures. Similar to transaction manage-

ment in database systems, it is important that handling concurrency and failures are

factored out from the diversity of the applications, and are delegated to a generic

run-time transactional management system. Such a clear separation of responsibili-

ties enables seamless and rapid development of web services as developers do not need

to take care of concurrency and failure issues. Following this separation of concerns

principle, the transactional management of web services is typically considered as one

of the non-functional aspects of web service compositions.

Several specifications have been proposed by industry and academia in the recent

years for establishing a set of standards and protocols for managing and coordinating

transactional web service compositions. The current de facto standards are the WS-

Coordintaion [Comg], WS-AtomicTransaction [Come] and WS-BusinessActivity [Comf],

1http://webservices.seekda.com/

3



Chapter 1 Introduction

which were proposed by industrial companies such as IBM, Microsoft BEA Systems

among others and approved by the Organization for Advancement of Structured In-

formation Standards (OASIS). These standards focus mainly on handling failure re-

covery be means of a locking-based solution for short running transactions (e.g. WS-

AtomicTransaction) and a compensation-based solution for long-running transactions

(e.g. WS-BusinessActivity).

However, the concurrency problem is largely overlooked in the current specifica-

tions. In the open and dynamic web service environment, business transactions enter

and exit the system independently. Under isolation relaxation transactional depen-

dencies can emerge among independent business processes, which need to be taken

into account when compensation is required in order to avoid inconsistency problems.

Such transactional dependencies are currently overlooked in the web service transac-

tion models and standards. Therefore, there is a need for extending the current web

service transactions framework to handle such transactional dependencies and ensure

consistency of the accessed data by concurrent web service transactions.

The concurrency control problem for composite web service transactions will be

the focus of the second part of this thesis (in Chapter 4).

1.2 Contribution of the Thesis

In this section we briefly describe the contribution of this thesis in addressing the

aforementioned research problems.

1.2.1 Efficient QoS-aware Service Selection for Service Com-

positions

The contribution of this thesis in addressing the performance and scalability issues

of QoS-based service selection is twofold.

Firstly, we propose a novel hybrid and distributed solution that combines global

optimization with local selection techniques. This method is more suitable for open

web service environments, where centralized QoS-based selection is not desirable. For

this purpose, we propose reformulating the QoS-aware service composition problem

into two sub-problems that can be solved more efficiently in two subsequent phases:

1) Decomposition of end-to-end QoS constraints into local constraints on the com-

4



1.2 Contribution of the Thesis

ponent service level, and 2) selection of best service candidates that satisfy all local

constraints and optimize the overall value of a given utility function. The local search

is performed in parallel for each service group to further improve the performance.

Secondly, we define QoS-based dominance relationship between services, following

the skyline query model [BKS01], to determine the most relevant candidates, which

we denote as skyline services. By pruning all non-skyline services from the search

space we are able to reduce the computation time significantly. In order to handle

situations, where the number of skyline services may still be too large, we present a

clustering-based method for selecting representative services from the skyline. More-

over, we present a skyline-based method for extracting local quality levels of a group of

candidate service to improve the success rate of the aforementioned hybrid approach.

In addition, we provide a mechanism for assisting the providers of non-skyline

services in improving the competitiveness of their service, by measuring the required

improvement in QoS attributes (and the associated cost) in order to bring their ser-

vices into the skyline set.

1.2.2 Decentralized Concurrency Control for Web Service

Compositions

The contribution of this thesis for maintaining consistency of concurrent web service-

based business transactions is twofold.

Firstly, we propose extending the current standard web service transactions frame-

work by introducing a new component, the WS-Scheduler, to implement the service-

level concurrency control. The WS-Scheduler resides on the web service providers

side and is responsible for managing the transactional dependencies and ensuring the

consistency of concurrent invocations to local web services. The new architecture

is grounded to a solid well-known multi-level transaction model, which allows the

separation of the concurrency control responsibilities among the different layers in a

multi-layer architecture.

Secondly, we present an optimistic concurrency control mechanism that can be

deployed in a fully decentralized fashion in the extended web service transaction

framework. More specifically, we propose a distributed serialization graph testing

protocol, which applies a commit-differing policy for concurrency control in order to

ensure global consistency of concurrent transactions.

5



Chapter 1 Introduction

In addition, distributed algorithms for handling global dependency cycles are also

presented. Unlike existing solutions, our algorithms avoid any direct communication

between independent business transactions, and thus prevent disclosing any possibly

confidential business relationships among the participants of a business activity.

1.3 Structure of the Thesis

The rest of the thesis is organized as follows. In Chpater 2 we introduce general

notions from the area of Service-Oriented Architecture and web services. We also

review relevant industrial standards for web service composition. Related work and

existing solutions to the research problems addressed in this thesis are also reviewed.

In Chapter 3 we present our contribution in addressing the first problem, i.e. QoS-

based service composition problem. We start by a short motivation and introduction

to the problem in Section 3.1 and provide a formulation of the problem in Section 3.2.

We then introduce our novel hybrid approach for tackling the problem in Section 3.3.

Next, in Section 3.4 we show how using the skyline model can help in further improv-

ing scalability of both the standard QoS optimization approach as well as our hybrid

approach. In Section 3.4.4 we tackle the problem from the service provider’s side and

present algorithms for assisting service providers in improving the competitiveness of

their services. Finally, in Section 3.5 we provide a performance study of the proposed

solutions based on extensive experimental evaluation.

In Chapter 4 we address the second problem, i.e. transactional management

for web service-based processes. We start by introducing a motivating scenario in

Section 4.1. We then describe the current transaction framework for web services

and introduce our proposed extension based on the multi-level transaction model in

Section 4.2. In Section 4.3 we present our optimistic protocol for distributed concur-

rency control as well as algorithms for detecting global dependency cycles. Finally,

in Section 4.4 we describe our experimental evaluation of the presented solutions and

detailed analyses of the results.

In Chapter 5 we give a short summary of the contribution of the thesis and an

outlook to future research directions and possible improvements to the presented

solutions.
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2
Background and State-of-the-art

This chapter will introduce background information of the research problems ad-

dressed in this thesis. We will also clarify some general terms used in this thesis such

as Quality of Service and Web Service Transactions and explain their relation to web

service composition. A review of the state-of-the-art in both industrial standards as

well as related research work will also be presented.

2.1 SOA and Web Services

Services are first-class citizens in Service-Oriented Architectures (SOA). According to

SOA principles, functionalities are exposed as services that can be described, discov-

ered and consumed by different users. There are three main roles and associated set

of operations in the service life cycle as illustrated in Figure 2.1: a service provider,

a service client and a service broker [Tea, TP02].

Figure 2.1 Main Roles and Operations in SOA
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Chapter 2 Background and State-of-the-art

• Service provider : From the business perspective, this is the owner of the

service. Service providers encapsulate parts of their business activities and ex-

pose them as programmatically accessible components using standard interfaces.

Providers then publish the functional descriptions of their services in order to

make them available for potential users.

• Service client : From the business perspective, this is the party that has a

need that can be fulfilled by using one of the published services. Service clients

send their inquiries to the service brokers, who in turn perform a matchmaking

between the requests and the offers and return a list of matching services to the

client. The clients then contact the service providers directly to use the offered

functionalities.

• Service broker : This is the party that provides storage, indexing and search

functionalities for service providers and requesters. Service brokers maintain ser-

vice descriptions in searchable repositories and apply matchmaking algorithms

for finding relevant service offers for each service request.

Web services have recently been widely accepted by both industry and academia

as a means of realizing the SOA concepts. The World Wide Web Consortium (W3C)

defines a web service as follows [BHM+]:

’A Web service is a software system designed to support interoperable

machine-to-machine interaction over a network. It has an interface

described in a machine-processable format (specifically WSDL). Other

systems interact with the Web service in a manner prescribed by its

description using SOAP messages, typically conveyed using HTTP

with an XML serialization in conjunction with other Web-related stan-

dards.’

Using standard web service technologies for implementing the basic interactions

and communications between the different parties allows developers to design SOA-

based applications in a language and platform independent way. Figure 2.2 shows

the conceptual architecture stack of web services [BHM+]. The first layer in this

stack is the communication layer. Web services use standard transport protocols like

HTTP for communication over the web. The Messages, Description and Composition

layers use XML-based standard formats. In the messages layer, service clients and
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2.1 SOA and Web Services

service providers use the Simple Object Access Protocol (SOAP) [BEK+], which is

an XML-based protocol for exchanging messages. Service providers use the Web

Service Description Language (WSDL) [CCMW] to describe the web interface of

their services, and publish them in public or enterprise service registries such like

Universal Description, Discovery and Integration (UDDI) [Coma] repositories. Service

clients define processes and compositions that involve several services using XML-

based process modeling languages such as the Business Process Execution Language

for Web Service (WS-BPEL) [Comb].

Figure 2.2 Web Services Architecture Stack

In addition to the standards and specifications that support the basic activities for

describing, publishing and interacting with web services, there has been also a wide

range of specifications for supporting non-functional aspects such as security, man-

agement and coordination and Quality of Service (QoS). These aspects are of great

importance for building reliable web service-based applications. Examples of indus-

trial specifications that deal with the non-functional properties of web services are the

Web Services Coordination (WS-Coordination) [Comg], Web Service Atomic Trans-

actions (WS-AtomicTransaction) [Come] and Web Service Business Activity (WS-

BusinessActivity) [Comf] for transactional management of web services. There is also

Web Services Security (WS-Security) [Comd] and Web Service Reliable Messaging

(WS-ReliableMessaging) [Comc] for supporting secure and reliable service execution

respectively. In addition, Web Services Policy (WS-Policy) [VOH+] extends WSDL
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to allow the encoding and attachment of QoS information to service descriptions and

Web Services Agreement (WS-Agreement) [ACD+] provides an XML-based language

for establishing a contractual agreement on the expected services level between service

clients and service providers .

2.2 Web Service Composition

One of the important features of web services is their reusability and composability,

i.e. the ability to combine a set of available services in order to solve more complex

problems and create new value-added services. The services that are created by

aggregating other services are referred to as composite services, while the process of

aggregating and combining services is referred to as service composition. Web service

composition accelerates the development of complex applications and allows providers

of business applications to focus on their core activities and delegate the execution

of other activities to third-party services. For example, the providers of on-line shop

applications usually delegate the delivery of the sold products to transport companies

and focus on their core activities such like the management of the orders, products,

billing and accounting issues. In this section we give an overview of the web service

composition process and discuss some related issues and research problems.

Figure 2.3 gives a conceptual overview of the web service composition. At design-

time the design and structure of the composition is defined either manually or auto-

matically. In the latter case, AI planning and Semantic Web techniques are often used

to describe the pre-conditions and goals of the composition, decompose the overall

task into sub-tasks and locate appropriate web services for implementing these sub-

tasks. The automatic composition methods are useful for composing web services

on the fly in order to fulfill arbitrary complex tasks that are not known a priori. A

survey of such methods can be found in [RS04].

On the other hand, there are many (business) applications, which have a pre-

defined set of tasks and activities structured in a pre-defined set of (business) pro-

cesses. Each process is designed for a specific goal (e.g. purchasing a product from an

online shop). In such applications, automatic composition of services is not needed.

A workflow-like language (e.g. WS-BPEL [Comb] and WSML [Gro]) is usually used

to model the abstract representation of the composition including a functional de-

scription of the required services and the expected inputs and outputs etc. Next,
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2.2 Web Service Composition

Figure 2.3 Conceptual Overview of Web Service Composition
* Focus of 1st part of the thesis
** Focus of 2nd part of the thesis

service discovery is performed by exploiting the existing infrastructure (e.g. UDDI)

to locate available web services for each task in the workflow using syntactic (and

probably semantic) functional matching between the tasks and service descriptions.

As a result, a list of functionally-equivalent web services (referred to as candidate

services) is obtained for each task.

Unlike static composition, where abstract services are bound to concrete web ser-

vices already at design-time, in dynamic composition the decisions about service selec-

tion are made at run-time based on users’ requirements. This increases the flexibility

and adaptability of the designed system. At run-time, users of the dynamic com-

posite service specify their QoS requirements in terms of end-to-end constraints on
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the different QoS parameters (e.g. total average response time, supported security

protocols, total cost etc.). The goal of QoS-aware service selection in this stage is

to select one component service from each list of candidate services such that the

aggregated QoS values satisfy the user’s end-to-end QoS requirements. The efficiency

of the QoS-aware service selection methods will be the focus of the first part of

this thesis.

After binding the selected services, the actual execution of the composite service

can start. Process execution engines are usually used for monitoring and controlling

the execution of the service composition (eg. BPEL Engine for WS-BPEL models and

WSMX 1 for WSML models). This activity is referred to as the orchestration [GA04]

of the involved services. As the interactions between web services in a composi-

tion may span distributed applications and/or organizations, and result in long-lived

distributed transactions, careful coordination and transactional management of the

involved services is usually needed. The distributed coordination of concurrent trans-

actional web service compositions will be the focus of the second part of this

thesis.

2.3 State-of-the-art

This section will give a review of the state-of-the-art in the area of web service compo-

sition. A special focus will be given to the key related work addressing the problems

addressed by this thesis. We will discuss the advantages and disadvantages of the

related work and explain why do we need to readdress the same problems.

2.3.1 Quality of Service

Quality of Service (QoS) is one of the most important subsets of the non-functional

properties of web services. The term QoS is traditionally used to refer to network

related issues such as bandwidth, reliability, message routing etc. In the context of

SOA the term is used to refer to the quality of the service delivery in terms of some

indicators such as response time, availability of the service, throughput (i.e. number

of processed requests per sec) etc. These properties can have a great impact on

user’s experience and thus play an important role in differentiating between similar

1http://www.w3.org/Submission/WSMX/
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web services. Consequently, managing and optimizing QoS levels of the offered web

services becomes also important for service providers to stay competitive.

In the recent years, several, solutions, specifications and frameworks have been

proposed for modeling, monitoring and negotiating the different QoS aspects of web

services. In the following we give a brief review of the state-of-the-art in this field.

In general, QoS metrics can be classified into three categories, based on the ap-

proaches to obtaining them [ZLC07]:

• Provider-advertised metrics: this type of metrics is usually provided by service

providers, which is subjective to service providers. An example is the execution

prices advertised by service providers.

• Consumer-rated metrics: this type of metrics can be computed based on service

consumer’s evaluations and feedback, which is therefore subjective to service

consumers. For example, the service reputation according to service consumers’

evaluations.

• Observable metrics: this type of metrics can be observed, i.e., computed, based

on monitored service operational events, which is objective to both service

providers and consumers.

The monitoring can be conducted at the service consumer and/or service provider

side or by a third-party. In [MRLD09] a framework that combines the advantages

of client- and server-side QoS monitoring was presented. A service QoS monitoring

system, which provides a user-friendly programming model that allows users to define

the QoS metrics and associated evaluation rules is presented in [ZLC07].

In [LNZ04] the authors propose an extensible QoS computation model that sup-

ports open and fair management of QoS data. Figure 2.4 gives an conceptual overview

of a QoS-aware service infrastructure as suggested in [LNZ04]. The QoS information

of web services are stored in a QoS repository, which is maintained by a service broker

and associated to the published service descriptions. The QoS information are either

published by the service providers as part of the service description or collected from

service consumers’ feedback.

As WSDL does not provide a means for describing the non-functional properties

of web services, there have been some proposals for extending the WSDL model

to support QoS descriptions. An example is the work presented in [D’A06], where
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Figure 2.4 QoS-Aware Service Infrastructure

the WSDL extension is carried out as a meta-model transformation, according to

principles and standards recommended by the Model Driven Architecture (MDA).

In [ZCL04, BS04] ontology-based representations for describing QoS properties and

requests were proposed to support semantic and dynamic QoS-based discovery of web

services. Another solution is the WS-Policy framework [VOH+], which can be used

for expressing the QoS attributes of web services. A policy is defined as a collection

of alternatives which is, itself, defined as a collection of assertions. An assertion is

used to represent a requirement, capability or a behavior of a Web service. Example

of such a solution is the work presented in [CBB08].

Standards and frameworks for modeling and expressing Service Level Agreements

for web services also exist. Examples are the Web Service Service Level Agreement

(WSLA) language and framework and the Web Services Agreement Specification

(WSAgreement). The WSLA framework was mainly proposed by IBM [LKD+],

whereas the WS-Agreement was developed by the Global Grid Forum [ACD+]. The

WS-Agreement specification provides a more expressive language for specifying ex-

pected quality levels. It defines an extensible XML language and protocol for es-

tablishing Service Level Agreements (SLA) between service consumers and service

providers. It allows specifying the nature of the agreement and agreement templates

to facilitate discovery of compatible agreement parties. An agreement specifies one

or more service level objectives (SLO), which state the requirements and capabilities
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of each party on service qualities [ACD+, OVSH06]. For example, an agreement may

provide assurances on the bounds of service response time and/or service availability.

WS-Agreement is more expressive than previous policy standards because it allows

defining scopes for which the guarantees on service level holds, preconditions for the

guarantees on SLO to be valid and business values such as penalties and rewards,

which incur if the SLO is not satisfied [ACD+, OVSH06].

A key difference between the WS-Agreement and WSLA is that the former does

not provide a means to specify the metrics associated with parameters used in the

agreement. Instead, metrics are defined in any structure required by a domain-specific

extension.

Related Work

In addition to the above mentioned web service specifications and standards, Quality

of Service management has been widely discussed in the area of middleware sys-

tems [ACH98, CS01, CN01, GWW02]. Most of these works focus on QoS specifica-

tion, representation, monitoring and management. However, the focus of the work

presented in this thesis is not on these issues, rather on the design of web service

selection algorithms for composite applications with end-to-end QoS constraints. Re-

cently, the QoS-based web service selection and composition in service-oriented ap-

plications has gained the attention of many researchers [ZBD+03, ZBN+04, LNZ04,

AP05, AP07, YZL07a, KP09, ZZL09].

Two general approaches exist for the QoS-aware service composition: local selec-

tion and global optimization.

Local Selection: The local selection approach is especially useful for distributed

environments where central QoS management is not desirable and groups of

candidate web services are managed by distributed service brokers [BSND02,

LYSS07]. The idea is to select one service from each group of service candidates

independently on the other groups. Using a given utility function, the values of

the different QoS criteria are mapped to a single utility value and the service

with maximum utility value is selected. This approach is very efficient in terms

of computation time as the time complexity of the local optimization approach

is O(l), where l is the number of service candidates in each group. Even if the

approach is useful in decentralized environments, local selection strategy is not
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suitable for QoS-based service composition, with end-to-end constraints (e.g.

maximum total price), since such global constraints cannot be verified locally.

Global Optimization: The global optimization approach was put forward as a so-

lution to the QoS-aware service composition problem [ZBD+03, ZBN+04, AP05,

AP07, KP09]. This approach aims at solving the problem on the composite ser-

vice level. The work of Zeng et al. [ZBD+03, ZBN+04] focuses on dynamic and

quality-driven selection of services. The authors use global planning to find the

best service components for the composition. They use Integer Linear Program-

ming techniques (ILP) [NW88] to find the optimal selection of component ser-

vices. Similar to this approach Ardagna et al. [AP05, AP07] extend the Integer

Linear Programming model to include local constraints. In [KP09] Kritikos and

Plexousakis claim that (mixed) Integer Linear Programming should be used as

a matchmaking technique instead of Constrained Programming (CP) [RBW06]

and provide experimental results proving it. In [ZZL09] Zhai et al. propose

a solution for repairing failed service compositions by replacing the failed ser-

vices only and reconfiguring the composition in a way that still meets the user’s

end-to-end QoS requirements. The reconfiguration of the composition and the

suggestion of new services is based on ILP. Generally, ILP methods are very

effective when the size of the problem is small. However, these methods suf-

fer from poor scalability due to the exponential time complexity of the applied

search algorithms [Mar03]. Already in larger enterprises and even more in open

service infrastructures with a few thousands of services the response time for a

service composition request could already be out of the real-time requirements.

Heuristic Solutions:

As discussed earlier, the problem of QoS-aware service selection can be modeled as

a Multiple-choice Multi-dimensional Knapsack Problem (MMKP). In MMKP prob-

lem, a set of groups of items, where each item has a profit value and consumes some

resources exist. The goal of this problem is to select exactly one item from each

group such that the total profit value is maximized under some constraints on the

total resource consumptions. The groups and items in this problem correspond to

the service classes and the candidate services in the web service scenario respectively.

The profit value of an item corresponds to the utility value of a web service and the

constraints on the resource consumption correspond to the QoS constraints.
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There exist a number of heuristics in the literature for solving the Knapsack

Problem in general and the MMKP variant of this problem in particular. In [Kha98] a

heuristic named HEU for solving the MMKP was presented. HEU uses a measurement

called aggregate resource consumption to decide upon which item from each group

should be upgraded in each round of selection. In [KLMA02] a modified version of

HEU named M-HEU was presented, where a pre-processing step to find a feasible

solution and a post-processing step to improve the total value of the solution with

one upgrade (i.e. item selection that increases the total profit value) followed by one

or more downgrades (i.e item selection that decreases the total profit value) were

added. In [ARK+06] the authors propose another heuristic for solving the MMKP

named C-HEU and evaluate its performance and optimality against several heuristics

including the M-HEU algorithm. The results of their evaluation show that C-HEU

outperforms M-HEU in terms of computation time. However, the experiments have

also shown that M-HEU produces the nearest to the optimal solution among all

the heuristics, while the optimality of C-HEU decreases as the number of items in

each group increases. Furthermore, the results have shown that the C-HEU algorithm

performs better in systems, where the objective value to be maximized (i.e. the utility

value in the web service scenario) is not proportional to the resource requirements

(i.e. the QoS values of web services). Since the utility value if a given web service is

proportional to the QoS level of the service, the C-HEU algorithm is not applicable

to the QoS-aware service selection problem.

A modified version of the M-HEU algorithm named WS-HEU, designed for the

QoS-aware service selection problem was proposed in [YZL07a]. The authors propose

two models for the QoS-based service composition problem: 1) a combinatorial model

and 2) a graph model. A heuristic algorithm is introduced for each model: the WS-

HEU algorithm for the combinatorial model and the MCSP-K for the graph model.

The time complexity of WS-HEU is polynomial, whereas the complexity of MCSP-K

is exponential. Despite the significant improvement of these algorithms compared to

exact solutions, both algorithms do not scale with respect to an increasing number

of web services and remain out of the real-time requirements. In our experimen-

tal evaluation, which we present in Section 3.5.2 we compare our hybrid approach

(Section 3.3) against the WS-HEU algorithm. The results indicate the the hybrid

approach outperforms the WS-HEU.

Moreover, the WS-HEU algorithm is not suitable for the distributed setting of
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web services. This due to the fact that WS-HEU (following the original M-HEU

algorithm) starts with a pre-processing step for finding an initial service combination

that satisfies all constraints but not necessarily is the best solution, and improves

this solution in several rounds of upgrades and downgrades of one of the selected

component services. Applying this algorithm in a distributed setting where the QoS

data of the different service classes is managed by distributed service brokers would

raise very high communication cost among these brokers to find the best composition.

The hybrid approach, which we propose in this thesis solves the composition problem

more efficiently and fits well to the distributed environment of web services.

2.3.2 Web Service Transactions

A business transaction can be defined as a consistent change in the state of the busi-

ness that is driven by a well-defined business function [Pap03]. Ordering some product

from a company is an example of a business transaction. The state of the back-end

database of the selling company is affected by the execution of this transaction. More

complex business transactions may involve a sequence of several activities such as

processing orders, managing payments and shipping products. A web service trans-

action is a business transaction that is implemented as a web service composition and

executed by invoking one or more web services.

In composite web services, transactional dependencies may occur among the in-

volved services. Such dependencies can affect the overall outcome of the composite

service. Consider for example a travel planning application that is composed of two

basic services: a web service for booking flight tickets and a web service for booking

hotel rooms. Although each of these services can be provided by a different business

partner, there exists a strong dependency relation between them within the context

of the invoking application. If, for example, the payment for booking the flight ticket

fails, any successful reservation of the hotel rooms need to be canceled. Given that

web services are inherently autonomous, heterogeneous and loosely-coupled, the co-

ordination and transactional management of services that share a common context

becomes essential.

For this purpose, the Organization for the Advancement of Structured Information

Standards (OASIS) 2 has approved a set of specifications as the de facto standards

2http://www.oasis-open.org
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for managing and coordinating web service transactions. In the following we give an

overview on these standards and the relations between them (see Figure 2.5).

Figure 2.5 Web service transactions framework

• WS-Coordination [Comg] defines a framework that provides a coordination

context for loosely coupled partners in a distributed application. The framework

defines two key concepts:

1. The coordinator is responsible for creating the context and coordinating

the different partners according to the applied protocol. The coordinator

role can be taken by the initiator of a distributed application or by a

(trusted) third party.

2. The participant is an entity that resides on the web service provider side

and represents an instance of the web service that has been invoked within

the distributed application. This entity is responsible for communicating

with the coordinator according to the applied protocol on behalf of the

web service.

The WS-Coordination framework enables participants to reach consistent agree-

ment on the outcome of distributed activities. The coordination protocols that

can be defined in this framework can accommodate a wide variety of activities,

including protocols for simple short-lived operations and protocols for complex

long-lived business activities. There are currently two transactional coordina-

tion types: WS-AtomicTransaction [Come] and WS-BusinessActivity [Comf].

• WS-AtomicTransaction [Come] is intended for short-duration interactions

among trusted partners, which is referred to as Atomic Transactions. Atomic

transactions have an all-or-nothing property. The actions taken by a transaction
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participant prior to commit are only tentative; typically they are neither per-

sistent nor made visible outside the transaction. When an application finishes

working on a transaction, it requests the coordinator to direct all participants

to either all commit or all cancel using the well known Two Phase Commit

(2PC) protocol. The coordinator determines if there were any processing fail-

ures by asking the participants to vote. If the participants all vote that they

were able to execute successfully, the coordinator commits all actions taken. If

a participant votes that it needs to abort or a participant does not respond at

all, the coordinator aborts all actions taken. Commit directs the participants to

make the tentative actions final so they may, for example, be made persistent

and be made visible outside the transaction. Abort directs the participants to

make the tentative actions appear as if they never happened.

• WS-BusinessActivity [Comf] on the other hand is intended for long-duration

activities that apply business logic to handle exceptions that occur during the

execution of activities of a business process. Actions in such long-running busi-

ness activities are applied immediately and their effects are made immediately

visible. Compensating actions may be invoked in the event of an error. How-

ever, the assumption that all service operations can always be compensated

is not realistic. When the number of transactions having access to intermedi-

ate results increases, the compensation of some operations becomes either too

expensive or even impossible. This raises the need to a concurrency control

mechanism for web service transactions.

Related Work

Ensuring a fault-tolerant execution of Web service transactions has been the focus of

recent research work (e.g. [BPG05, MM06, SDN08, CKJ+08]). The adopted trans-

action models in these works rely on the notion of compensations [Elm92, AAA+96,

Gra88] which are triggered whenever a subset of a transaction fails. Compensa-

tions are introduced either at the client level as part of the business process execu-

tion [KHC+05] or on both, client and participant sides [SDN08]. However, maintain-

ing consistency of the concurrent transactions is neither addressed by these papers

nor by the existing industrial specifications. An advanced database transaction model

that deals with both atomicity and consistency of distributed applications is the Con-
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Tract model [Elm92]. This model provides a user defined mechanism to control the

correctness of the distributed transaction. The transaction initiator specifies so-called

invariant predicates which have to remain unchanged from his application specific

view to insure correctness. However, this model is not practical for loosely-coupled

and autonomous Web services, where service providers cannot accept such predicates

on their local resources by the clients. Moreover, as the service implementation is usu-

ally not visible to the service consumers, it is difficult to specify the right invariant

predicates.

Similar to our work in addressing the concurrency control problem of Web services

is the work in [CJK+05] and [HST05]. Both solutions share the idea of handing over

the concurrency control to the transaction coordinators, who in turn maintain and

update local partial views of the global serialization graph by direct communication

among them. The main disadvantage of these approaches is that they rely on in-

formation exchange among independent transactions to decide upon committing or

aborting transactions. We argue that the assumption that independent transactions

would like to exchange information about their own business relations and activities

is unrealistic. The exchanged dependency information can be interpreted as mission-

critical information such as confidential contracts between organizations. In contrast

to this approach, the solution presented in this thesis separates the roles of the trans-

action coordinators (commitment protocol) and transaction schedulers (concurrency

control protocol) and does not require any direct communication or information ex-

change between independent transactions. Deciding upon committing or canceling

transactions as well as detecting possible global dependency cycles are accomplished

in our approach without disclosing any business related information.
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3
Efficient QoS-aware Service Selection

In this chapter we will address the problem of QoS-aware web service composition.

More specifically, we will focus on improving the efficiency of the web service selection

algorithms. We start in Section 3.1 by introducing the problem and presenting a

motivating example. Then, in Section 3.2 we provide a formulation of the problem

and definition of what is considered as an optimal selection for a given composition

request. After describing the problem, we introduce our contributions in solving

this problem in Sections 3.3, 3.4, 3.4.4. In Section 3.5 we present the results of our

experimental evaluation of the proposed solutions. The presented solutions in this

chapter have been mainly published in [AR09] and [ASR10].

3.1 Introduction

In Section 2.2 we presented the conceptual overview of web service composition and

discussed all the steps starting from the abstract modeling of the composition at

design-time until the execution and delivery of the services outcome. For the ease of

reference we show the conceptual overview here in Figure 3.1 with the focus on the

service selection part.

The run-time QoS-aware service selection aims at providing an adapted instan-

tiation of the composed service to the users based on their QoS preferences. Given

an abstract representation of the service composition, which can be stated as an

abstract process using any process modeling language, and a list of candidate web

services for each task in the process, the goal of the QoS-aware service selection is

to select one service from each list such that the aggregated QoS values satisfy the
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user’s end-to-end QoS requirements.

However, as the number of similar services providing the same functionality in-

creases, the total number of possible combinations to be considered by the selection

algorithm increases exponentially. Performing exhaustive search to find the best com-

bination of services is, therefore, impractical.

Figure 3.1 QoS-based Selection - Conceptual Overview

The QoS-aware service selection for web service compositions problem is a com-

binatorial problem [YZL07b], which can be modeled as a Multiple-choice Multi-

dimensional Knapsack Problem (MMKP) (a variant of the classical 01 Knapsack

Problem) [MT90]. Given a set of n groups of items. Each item has a particular value

and it requires some resources. The objective of the MMKP is to pick exactly one

item from each group for maximum total value of the collected items, subject to a

set of resource constraints of the knapsack. Similarly, the goal of QoS-aware service

selection is to pick exactly one service from each list of candidate services for each

task in the composition model. The aggregated QoS values of the selected services

must meet the user’s QoS constraints. The MMKP is known to be NP-hard prob-

lem [MT90], therefore, any exact solution to the QoS-aware service selection problem

is expected to have a n exponential computational complexity with respect to the
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size of the problem, i.e. the number of composed tasks and the number of candidate

services per task.

As the selection and binding of web services has to be performed at run-time, the

efficiency of the applied selection mechanism becomes crucial to the performance of

the composition engine, and hence, affects the user’s experience of the system.

Example 1. Consider the example shown in Figure 3.2 of a web application for

finding used car offers. The users submit their requests to the system, specifying some

criteria for selecting the cars (e.g. brand, type, model). The system then returns a

list of the best offers along with a credit and an insurance offer for each car on the list.

The composed application can be exposed to users as a web service, API or widget,

programmatically accessible or directly integrated into their web applications using

a Mashup tool for example.

Figure 3.2 Example of Service Composition

In this example, some tasks, illustrated as gray boxes in Figure 3.2, are outsourced

and integrated via web service calls. For these outsourced tasks, multiple services may

be available providing the required functionality but with different QoS values such

as response time, maximum number of requests per minute and price.

Users of the composed service (i.e. the used cars application in our example)

are typically unaware of the structure of the application and, therefore, specify their

QoS requirements in terms of end-to-end constraints in a the format of a Service

Level Agreement (SLA). In order to fulfill the user’s QoS requirements, the provider

of the composed service creates an adapted instance of the composed application

by selecting appropriate service providers for each of the outsourced services, (i.e.

the UsedCars Search WS, CreditOffer WS and InsuranceOffer WS). The selection is

performed by matching the QoS information of the candidate services with the uesr’s

QoS constraints and, therefore, has to be carried out at run-time. Furthermore, a

re-selection of the services may be required at run-time to adapt to any changes in

the QoS of the selected services (e.g. some services become slower because of the

load or some of the selected services become unavailable). A quick response to such
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adaptation requests is important in order to continue delivering the services at the

promised quality level in the SLA.

3.2 Problem Formulation

Assume a set S of service classes, which classify the universe of available web services

according to their functionality. Each service class Sj = {sj1 , ..., sjn
}, Sj ∈ S, consists

of all web services that deliver the same functionality (e.g. used car search) but

potentially differ in terms of non-functional properties. Some service providers might

provide the same service in different quality levels, e.g. at different response times

and different prices. For the sake of simplicity, we model each variation of the service

as a different service. According to the SOA principles, descriptions of functional and

non-functional properties of web services are stored and managed by service registries

(e.g. UDDI registries), which are maintained by service brokers [LNZ04, LYSS07]. We

assume that service brokers maintain and update information about existing service

classes and candidate services of each class in their registries, making them accessible

to service requesters.

3.2.1 Abstract vs. Concrete Composite Services

As shown in Figure 3.1 we distinguish in the context of web service composition

between the following two concepts:

• An abstract composite service P = {S1, . . . , Sn}, which is an abstract represen-

tation of a service composition. P describes the structure of the composition

and the service classes S1, . . . , Sn, which are required to achieve the different

tasks in the composition.

• A concrete composite service CS = s1, . . . , sn, which is an instantiation of an

abstract composite service P . CS is obtained by binding each abstract service

class Sj in P (e.g. used car search service) to a concrete web service sj (e.g.

AutoScout24 WS or Mobile.de WS), such that sj ∈ Sj.
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3.2.2 QoS Parameters

We consider a set quantitative non-functional properties of web services Q, which

describe the quality criteria of a web service [ZBD+03, LNZ04]. These can include

generic QoS attributes like response time, availability, price, reputation etc, as well

as domain-specific QoS attributes, for example bandwidth for multimedia web ser-

vices, as long as these attributes can be quantified and represented by real numbers.

QoS attributes may be positive or negative. The values of positive attributes need

to be maximized (e.g. throughput and availability), whereas the values of negative

attributes need to be minimized (e.g. price and response time). For simplicity, in

this thesis we assume that all attributes are negative (positive attributes can be eas-

ily transformed into negative by multiplying their values by -1). We use the vector

Qs = {q1(s), . . . , qr(s)} to represent the QoS values of service s. The function qi(s)

determines the value of the i-th attribute of the service s. These values can be ei-

ther collected from service providers directly (e.g. price), from previous execution

monitoring records (e.g. average response time), or from user feedbacks (e.g. reputa-

tion) [LNZ04].

3.2.3 QoS Computation of Composite Services

The QoS vector for a composite service CS = {s1, ..., sn} is defined as QCS =

{q′1(CS), . . . , q′r(CS)}, where q′i(CS) is the estimated end-to-end value of the i-th

QoS attribute and can be aggregated from the QoS values of the component services

{s1, ..., sn}. The computation of the end-to-end QoS values depends on the structure

of the composite service.

In our study we consider the following four elementary composition constructs,

which can be used for building more complex compositions:

1. Sequential : a sequence of services {s1, ..., sn} are executed in a strict sequential

order one after another.

2. Loop: a block of one or more services is executed repeatedly up to a maximum

number of k executions. The aggregated QoS values of a loop construct are

computed based on the worst case scenario, where the number of iterations

equals k.
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3. Parallel (and split/and join): multiple services {s1, ..., sn} are executed concur-

rently and merged synchronization.

4. Conditional (exclusive split/exclusive join): a set of services {s1, ..., sn} are

associated with a logical condition, which is evaluated at run-time and based on

its outcome one service is executed. The estimated QoS values of a conditional

construct are the worst values of the services {s1, ..., sn}. For example, the

estimated execution price of the conditional construct is computed as the price

of the most expensive service among the services {s1, ..., sn}.

Depending on the QoS attribute and the composition pattern, there can be three

different types of aggregation relations: 1) summation, 2) product or 3) minimum/maximum

relations. Table 3.1 shows examples of these aggregation functions.

Figure 3.3 Composition Patterns

3.2.4 Global QoS Constraints

Global QoS constraints represent user’s end-to-end QoS requirements. These can be

expressed in terms of upper (and/or lower ) bounds for the aggregated values of the

different QoS criteria. As mentioned earlier, we only consider negative QoS criteria.
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QoS Attribute

Aggregation Function

Sequential Loop Parallel Conditional

Response Time
∑n

j=1
q(sj)

∑k

i=1
q(s) maxn

j=1 q(sj) maxn
j=1 q(sj)

Price
∑n

j=1
q(sj)

∑k

i=1
q(s)

∑n

j=1
q(sj) maxn

j=1 q(sj)

Availability
∏n

j=1
q(sj)

∏k

i=1
q(s)

∏n

j=1
q(sj) minn

j=1 q(sj)

Throughput minn
j=1 q(sj) q(s) minn

j=1 q(sj) minn
j=1 q(sj)

Table 3.1 Examples of QoS aggregation functions

Therefore in our model we only have upper bound constraints.

Definition 1. (Feasible Selection) For a given abstract composition P = {S1, . . . , Sn}

and a given vector of global QoS constraints C ′ = {c′1, . . . , c
′
m}, 1 ≤ m ≤ r, we con-

sider a selection of concrete services CS to be a feasible selection, iff it contains exactly

one service for each service class appearing in P and its aggregated QoS values satisfy

the global QoS constraints, i.e. q′k(CS) ≤ c′k,∀k ∈ [1,m].

3.2.5 Utility Function

Since each web service is typically characterized by several QoS attributes, a utility

function is used to evaluate the overall, multi-dimensional quality of a given service.

In particular, it maps the quality vector Qs of the service into a single real value, to

enable sorting and ranking of the alternative services. In this paper, we use a Multiple

Attribute Decision Making approach for the utility function, and in particular the

Simple Additive Weighting (SAW) technique from [YH95]. The utility computation

involves scaling the QoS attributes’ values to allow a uniform measurement of the

multi-dimensional service qualities independent of their units and ranges. The scaling

process is then followed by a weighting process for representing user priorities and

preferences. In the scaling process, each QoS attribute value is transformed into a

value between 0 and 1, by comparing it with the minimum and maximum possible

value according to the available QoS information about alternative services. For a
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composite service CS, the aggregated QoS values are compared with minimum and

maximum possible aggregated values, which can be easily estimated by aggregating,

respectively, the minimum or maximum possible value of each service class in CS. For

example, the maximum execution price of a given composite service can be computed

by summing up the execution price of the most expensive service in each service

class in CS. Formally, the minimum and maximum aggregated values of the k-th

QoS attribute for a given composite service CS = {s1, . . . , sn} of an abstract process

P = {S1, . . . , Sn} are computed as follows:

Qmin′(k) = F n
j=1(Qmin(j, k))

�

�

�

�3.1

Qmax′(k) = F n
j=1(Qmax(j, k))

with

Qmin(j, k) = min
∀s∈Sj

qk(s)
�

�

�

�3.2

Qmax(j, k) = max
∀s∈Sj

qk(s)

where Qmin(j, k) is the minimum value (e.g. minimum price) and Qmax(j, k)

is the maximum value (e.g. maximum price) that can be expected for the k-th QoS

attribute of the service class Sj, according to the available information about the

service candidates in this class. The function F denotes an aggregation function that

depends on QoS criteria e.g. summation, multiplication (s.a. Table 3.1). Now the

utility of a component web service s ∈ Sj is computed as

U(s) =
r

∑

k=1

Qmax(j, k)− qk(s)

Qmax(j, k)−Qmin(j, k)
· wk

�

�

�

�3.3

and the overall utility of a composite service is computed as

U ′(CS) =
r

∑

k=1

Qmax′(k)− q′k(CS)

Qmax′(k)−Qmin′(k)
· wk

�

�

�

�3.4

with wk ∈ R+

0 and
∑r

k=1
wk = 1 being the weight of q′k to represent user’s priorities.
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3.2.6 Problem Statement

QoS-based service composition is a constraint optimization problem which aims at

finding the composition that maximizes the overall utility value, while satisfying all

the global QoS constraints. Formally:

Definition 2. (Optimal Selection) For a given abstract process P and a vector of

global QoS constraints C ′ = {c′1, . . . ,c′m}, 1≤m≤r, we consider as optimal selection

the feasible selection (see Definition 1) that maximizes the overall utility value U ′.

A straightforward method for finding the optimal composition is enumerating

and comparing all possible combinations of candidate services. For a composition

request with n service classes and l candidate services per class, there are ln possible

combinations to be examined. Hence, performing an exhaustive search can be very

expensive in terms of computation time and, therefore, inappropriate for run-time

service selection in applications with many services and dynamic needs.

The global optimization approach has been recently widely accepted by researches

as a solution for the QoS-aware service composition problem (e.g. [ZBD+03, ZBN+04,

AP05, AP07]). The problem is modeled as a (Mixed) Integer Linear Program [NW88]

(ILP) and solved using existing well-optimized ILP solvers such as CPLEX1, MAT-

LAB2, LP SOLVE3, etc.

Each candidate service is represented in the mathematical ILP model by a binary

decision variable. The end-to-end QoS constraints are specified as a set of equalities

and/or inequalities over these variables.

A service candidate sij is selected in the optimal composition if its corresponding

variable xij is set to 1 in the solution of the model and discarded otherwise. By

re-writing (3.4) to include the decision variables, the problem of solving the model

can be formulated as a maximization problem of the overall utility value given by

r
∑

k=1

Qmax′(k)−
∑n

j=1

∑l

i=1
qk(sji) · xji

Qmax′(k)−Qmin′(k)
· wk

�

�

�

�3.5

subject to the global QoS constraints

n
∑

j=1

l
∑

i=1

qk(sji) · xji ≤ c′k, 1 ≤ k ≤ m
�

�

�

�3.6

1http://www-01.ibm.com/software/integration/optimization/cplex/
2http://www.mathworks.com/products/matlab/
3http://lpsolve.sourceforge.net/5.5/
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while satisfying the allocation constraints on the decision variables as

l
∑

i=1

xji = 1, 1 ≤ j ≤ n.
�

�

�

�3.7

Because the number of variables in this model depends on the number of service

candidates (number of variables = n · l), this ILP model may not be solved satis-

factorily, except for small instances. Another disadvantage of this approach is that

it requires that the QoS data of available web services be imported from the service

broker into the ILP model of the service composer, which raises high communication.

Since the QoS values (e.g. response times, throughput or availability) are only

approximate, in this thesis we argue that finding a “reasonable” set of services that

avoid obvious violations of constraints at acceptable costs is more important than

finding ”‘the optimal”’ set of services with a very high cost. Therefore, we advocate

developing approximate selection algorithms that are able to achieve close-to-optimal

solutions very efficiently. An approximate selection algorithm in this sense is a se-

lection algorithm that is able to find a combination of services that satisfy all user

QoS requirements while maximizing the overall utility value but does not guarantee

finding the selection with maximum utility value. The closer the utility value of the

found selection to the maximum utility value the closer the selection to the optimal

selection.

The research problem we are addressing in this part of the thesis can be stated

as follows: ”develop an approximate QoS-aware service selection algorithm that, for a

given abstract composition and a set of user’s QoS end-to-end constraints, produces a

close-to-optimal selection of services much faster than producing the optimal selection

by an exact algorithm.”

In the rest of this chapter we describe our contributions in solving this problem.
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3.3 The Hybrid Approach

To cope with the limitations of the global optimization approach, we propose a hy-

brid approach for solving the QoS-aware service composition problem. The hybrid

approach combines global optimization with local selection techniques in order to

benefit from the advantages of both worlds.

Figure 3.4 gives an overview of our approach. The hybrid approach divides the

QoS-aware service composition problem into two sub-problems that can be solved

more efficiently in two subsequent phases. In the first phase, the service composer

decomposes the end-to-end SLA into local SLA’s on the component service level. In

other words, global QoS constraints in the end-to-end SLA are decomposed into local

constraints on the component services’ level and sent to the corresponding service

brokers. In addition, user’s preferences, which are expressed in terms of weights of

the QoS attributes are also sent to the service brokers. In the second phase, each

service broker performs local selection to find the best component service that satisfy

the local SLA. The two phases of our approach are described in the next subsections

in more details.

Figure 3.4 Distributed QoS-aware Service Selection
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3.3.1 Decomposition of Global QoS Constraints

In the first phase of the hybrid approach, each QoS global constraint c′ is decomposed

into a set of n local constraints c1, . . . , cn (n is the number of abstract service classes

in the composite service). The local constraints serve as conservative upper bounds,

such that the satisfaction of local constraints guarantees the satisfaction of global

constraints.

A naive decomposition method would be to divide each global constraint c′ equally

into n local constraints such that: cj = c′/n, 1 ≤ j ≤ n. However, as different service

classes can have different QoS levels, a more sophisticated decomposition algorithm

is required.

To this end, we analyze the QoS data of the available web services and extract a

set of discrete values that better represent the various QoS levels in the collection,

which we call quality levels. The decomposition of global QoS constraints is then

performed by mapping them to the local quality levels. For example, given a set of

candidate web services and their execution prices, we create a list of price levels for

that service class. The global constraint on total execution price is then mapped to

the appropriate price level of each service class.

In the following we first present our method for extracting local quality levels.

After that, we describe how we formulate the QoS constraints decomposition problem

as an optimization problem and use Integer Linear Programming to solve it.

Extracting Quality Levels

The goal of this step is to determine a small set of discrete QoS values that represent

a collection of services. Figure 3.5 gives an overview of this method. The method

takes for each attribute qk ∈ Q as input the QoS values of all l services in a certain

service class Sj and outputs a set of d discrete values QLjk = {q1
jk, . . . , q

d
jk} such that:

Qmin(j, k) ≤ q1

jk ≤ . . . ≤ qd
jk ≤ Qmax(j, k).

In this thesis we use a simple and effective method for selecting the quality levels,

which we describe in Algorithm 1. This algorithm is executed for each QoS attribute

qk ∈ Q separately. The first step in this algorithm is to sort the candidate services in

class Sj based on their respective qk value. Then the minimum and maximum values

are directly added to the set of quality levels. Next, the rest of the sorted set of
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Figure 3.5 Quality Level Selection- Overview

services is divided into d sub-sets. From each sub-set we randomly select one sample

service and use its QoS value as a quality level.

Algorithm 1 SelectQualityLevels(Sj, qk, d)

Input : Sj : a set of l candidate services of a certain class, qk: the QoS attribute to be

considered, d: the required number of quality levels

Output : QLjk: a set of d QoS values

1: QLjk ← {}

2: Sj ← sort(Sj , qk) (sort the services w.r.t. qk)

3: Let qmin
jk ← Sj [1], qmax

jk ← Sj [l]

4: QLjk ← QLjk

⋃

{qmin
jk , qmax

jk } (add the min and max values to the list of QoS levels)

5: index← 2

6: offset← l − 2/d

7: for z = 1 to d do

8: Sz ← {si|i ∈ [index, index+offset−1]} (divide the set of services int d sub-sets)

9: sz ← randomSelection(Sz) (randomly select one service from each sub-set)

10: qz
jk ← qk(sz) (use the QoS value of the selected service as a QoS level)

11: QLjk ← QLjk

⋃

{qz
jk}

12: index← index + offset

13: end forreturn QLjk

We further explain this method by an illustrating example, which is depicted in

Figure 3.6. In this example, there are 32 candidate services in one service class. The

values of a certain QoS attribute q are shown for each service (e.g. q(s1) = 1, q(s10) =

4 and so on). The goal is to determine d QoS levels for this QoS attribute that better

represent the whole set of services (d = 5 in this example). The first step is to sort

the whole list according to the value of q. Next, the minimum and maximum values
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are selected directly and the rest of the whole set is divided into 5 equal sub-sets (e.g.

s2 − s7, s8 − s13, s14 − s19, s20 − s25 and s26 − s31). Finally, one service is selected

randomly from each sub-set and its value is used as a QoS level.

Figure 3.6 Quality Level Selection - Example
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Note, that we do not remove duplicate values (i.e. services with the same QoS

value). Therefore, the more frequent a given value is, the higher the probability that

it is selected as a quality level. This ensures that the selection method takes into

account the distribution of the QoS values in the collection. Figure 3.7 depicts the

distribution of the QoS values in this example. The horizontal dashed lines represent

the selected QoS level. We observe that most of the selected levels lie in the range

[1, 10] (i.e. q1, q2, q3 and q4), which conforms with the fact that the QoS value of the

majority of the services also lie in this range.

Figure 3.7 Distribution of the QoS data in the Quality Level Selection
Example

Intuitively we can infer that the smaller the number of quality levels d, the faster

the search for a mapping between global constraints and local quality levels will be.

However, we can also infer that there is a trade-off between performance and optimal-

ity with respect to the selected number of selected local quality levels. Experimental

results, which we present in Section 3.5.2 confirm this conclusion. The optimal num-

ber of local quality levels to be used (i.e. d) depends heavily on the data set as well

as on the user’s constraints. In some scenarios with too many very tight constraints,

the decomposition of global constraints into local constraints might fail when using

a small number of quality levels. Therefore, finding the optimal value of d is a very
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difficult task. To handle this issue, we propose an iterative method that starts always

with a small number of quality levels (like 10 levels) and iteratively duplicates the

number of quality levels when needed (i.e. if no feasible decomposition of the global

constraints is found). This process continues until a solution is found or d reaches a

certain limit. According to our performance analysis (see Section 3.3.3), the hybrid

approach outperforms the global optimization approach as long as d << l
m

, where l

is the (average) number of candidate services in a service class and m is the number

of QoS constraints. Therefore, the iterative method is applied as long as the num-

ber of QoS levels does not exceed this limit. In the extreme cases, where d reaches

the maximum number of l
m

before a solution is found, the process is stopped and

the global optimization method is applied. However, the results of the experimental

evaluation, which we conducted on different data sets that include some real-world

data set as well as some synthetic datasets that represent the extreme cases of QoS

distributions (correlated, anti-correlated and independent distributions) have shown

that in average a solution is found after less than 4 iterations (see Section 3.5.2).

Constraint Decomposition as an Optimization Problem

Given a global QoS constraint c′k for a composite service CSabstract = S1, ..., Sn, and a

set of d local quality levels of the respective QoS attribute QLjk = v1
jk . . . vd

jk for each

service class Sj, the goal of the constraint decomposition is to select an ”‘appropriate”’

quality level vjk from each service class such that the aggregation of the selected levels

satisfy the global constraint.

To avoid discarding any service candidate that might be part of a feasible com-

position, the decomposition method needs to ensure that the local constraints are

not more restrictive than needed. In other words, it is required that the local con-

straints are relaxed as much as possible while not violating the global constraints.

Therefore, we model the QoS constraint decomposition problem as an optimization

problem. The goal of this optimization problem is to find a set of local constraints

for each service class that cover as many as possible service candidates, while their

aggregation does not violate any of the global constraints.

We model this optimization problem as a Integer Linear Program (ILP) [NW88]

and use ILP solving techniques to find the best mapping of global constraints to

local quality levels. The objective function of the ILP is to minimize the number

of discarded candidate services, when selecting local quality levels. Furthermore,
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we want to eventually maximize the overall utility value of the selected services.

Therefore, we assign each quality level vz
jk a weight pz

jk between 0 and 1, which

estimates the benefit of using this quality level as a local constraint. This value is

computed as follows. First, we compute h(vz
jk), i.e. the number of candidate services

that would qualify if vz
jk was used as local constraint. Second, we calculate the utility

value of each service candidate in the service class using the utility function (3.3) and

determine g(vz
jk), i.e. the highest utility value that can be obtained by considering

these qualified services. Finally, pz
jk can be calculated as

pz
jk =

h(vz
jk)

l
·
g(vz

jk)

umax

�

�

�

�3.8

where l is the total number of service candidates of service class Sj, and umax is

the highest utility value that can be obtained for this class by considering all service

candidates.

In the following we describe the formulation of the constraints decomposition

problem as a Integer Linear Program. For the sake of simplicity, we consider here

only the sequential composition pattern. In next section, we will show in details how

other composition patterns can be handled.

A binary decision variable xz
jk is used for each local quality level vz

jk such that

xz
jk = 1 if vz

jk is selected as a local constraint for the QoS attribute qk at the service

class Sj, and xz
jk = 0 otherwise.

Therefore, we use the following allocation constraints in the model:

∀j,∀k :
d

∑

z=1

xz
jk = 1 , 1 ≤ j ≤ n , 1 ≤ k ≤ m

�

�

�

�3.9

Unlike the ILP model in the exact solution, i.e. the global optimization approach

described in [ZBD+03, ZBN+04, AP05, AP07], our ILP model has much less number

of variables (i.e. the quality levels instead of actual service candidates) and can be,

therefore, solved much faster. The total number of variables in the model equals to

n ·m · d, i.e. it is independent of the number of service candidates. By keeping the

number of quality levels d satisfies m · d ≤ l we can ensure that the size of our ILP

model is smaller than the size of the model used in the exact solution (where the

number of decision variables is n · l), thus can scale better with respect to the number

of available web services.
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The objective function of our ILP model is to maximize the p value (as defined

in 3.8) of the selected local constraints to minimize the number of discarded feasible

selections and maximize the expected utility value. Therefore, the objective function

can be expressed as follows:

maximize
n

∏

j=1

m
∏

k=1

pz
jk , 1 ≤ z ≤ d

�

�

�

�3.10

We use the logarithmic function to linearize (3.10) in order to be able to use it in

the ILP model:

maximize
n

∑

j=1

m
∑

k=1

d
∑

z=1

ln(pz
jk) ∗ xz

jk

�

�

�

�3.11

In order to ensure that the aggregation of the selected levels satisfy the global

constraint, we need to add corresponding constraints into the created ILP model.

As the ILP model only supports linear constraints, nonlinear aggregation functions

(e.g. multiplication, and minimum functions) need to be transformed into linear

constraints.

To this end, we add the following constraint to the model for each QoS attribute

that can be aggregated using a summation relation:

n
∑

j=1

(
d

∑

z=1

vz
jk · x

z
jk) ≤ c′k , 1 ≤ k ≤ m

�

�

�

�3.12

For QoS attributes with a product aggregation function we use the logarithmic

function to transform the product relation to a summation relation. We write the

constraint as follows:

n
∑

j=1

(
d

∑

z=1

ln(vz
jk) · x

z
jk) ≤ ln(c′k) , 1 ≤ k ≤ m

�

�

�

�3.13

For QoS attributes with a minimum aggregation function we add one constraint

for each component service:

∀j :
d

∑

z=1

vz
jk · x

z
jk ≤ c′k , 1 ≤ k ≤ m

�

�

�

�3.14

By solving this model using any ILP solver, we get a set of local quality levels.

These quality levels are then sent to the service brokers to use them as local thresholds

when performing local selection.
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Handling Complex Composition Models

Recall that the ILP model formulation we described in the previous section assumes

a sequential composition model. This assumption was made to simplify the descrip-

tion of the proposed ILP formulation. However, in many practical applications, the

composition structure can be very complex involving different types of constructs,

like for example, conditional branching or multiple parallel execution paths. In order

to be able to formulate the ILP model as described in the previous section, we reduce

arbitrary composition structures into a sequential one by replacing each of the loop,

parallel and conditional constructs by a single virtual service. The local constraints,

which are assigned to a virtual service after solving the constraint decomposition

problem, serve as global constraints for the services it represents.

Consider the example shown in Figure 3.8. This is an example of a complex

composition structure that involves both sequential and parallel executions of services.

It can be transformed into an equivalent sequential structure in two steps as shown

in Figure 3.8. In the first step we replace the sequence S2 and S3 by a virtual service

S ′. In the second step we replace the parallel construct involving S ′ and S4 by a

virtual service S ′′. The resultant structure is a sequence of services S1, S ′′ and S5.

Applying the ILP formulation steps from previous section we can decompose global

QoS constraints into local constraints for S1, S ′′ and S5. The local constraints of S ′′

are then used as global constraints for the services S ′ and S4. By further decomposing

these constraints we obtain local constraints for S ′ and S4. Finally, by decomposing

the constraints of S ′ we obtain local constraints for S2 and S3.

For substituting a set of random variables (i.e. service classes in a construct) with

a single random variable (i.e. a virtual service class) we need to define the domain

of the new random variable (i.e. quality levels) based on the domains of the replaced

variables (i.e. quality levels of the replaced service classes). For this purpose, we use

the same QoS aggregation functions, which are used to estimate the end-to-end QoS

values of a given construct (see Table 3.1).

Given a set of service classes in a composition construct S = {S1, ..., Sn}, and a

set of quality levels QLjk = {v1
kj, ..., v

d
kj} for each Sj ∈ S and qk ∈ Q, we define the

quality levels of the virtual service class S ′ that substitutes for S as follows:

QLkS′ = {vkS′|vz
kS′ = Fk

n
j=1(v

z
kj) ∧ pz

kS′ =
n

min
j=1

(pz
kj), 1 ≤ z ≤ d}

with the function Fk denoting the aggregation function of the k-th QoS attribute.
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Figure 3.8 Transforming Complex Composition Patterns into Sequential
Patterns

In other words, the i-th quality level of S ′ is defined by aggregating the i-th quality

level of each service s in the construct, and its weight p is set to the minimum weight

of the aggregated levels.

3.3.2 Local Selection

Using the method described in previous section for decomposing global QoS con-

straints, the end-to-end Service Level Agreement between the provider and consumers

of the composite web service can be automatically decomposed into separate bilat-

eral SLA’s between the composite service’s provider and each of the service brokers.

Hence, the actual selection of services is carried out locally by the service brokers

based on the constraints specified in the bilateral SLA’s. Service brokers match the

specified QoS constraints with the QoS information of the candidate services and re-

turn a reference to the best available web service at the request time. More specifically,

the local constraints are used as upper bounds for the QoS values of the candidate

services. A list of qualified services is created and sorted by their utility values.

The use of (3.3) for this purpose is not appropriate for the following reason. This

utility function compares the distance Qmax(j, k)− qk(sji) between the quality value
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of a service candidate sji and the local maximum value in its class Sj with the distance

Qmax(j, k) − Qmin(j, k) between the local minimum and maximum values. This

scaling approach can be biased by local properties leading to local optima instead

of global optima. Therefore, we compare the distance Qmax(j, k)− qk(sji) with the

distance between the maximum and minimum overall quality values: Qmax′(k) −

Qmin′(k). This scaling method ensures that the evaluation of service candidates is

globally valid, which is important for guiding local selection in order to avoid local

optimum. The scaling process is then followed by a weighting process for representing

user’s over the different QoS attributes. We compute the utility U(sji) of the i-th

service candidate in class Sj as

U(sji) =
r

∑

k=1

Qmax(j, k)− qk(sji)

Qmax′(k)−Qmin′(k)
· wk

�

�

�

�3.15

with wk ∈ R
+

0 and
∑r

k=1
wk = 1 being the weight of qk to represent user’s priorities.

Service brokers sort the candidate services based on this utility value and select the

service with the highest value for the composition.

At run-time, in case of failure to deliver the promised Quality of Service at the

composition level ( e.g. due to changes in the QoS of some of the selected services or

because some services become unavailable) it is sufficient to perform local selection to

find a replacement for the failed services only, as opposite to the global optimization

approach, where a re-optimization of the whole composition is required. In the hybrid

approach, the brokers of the failed services can quickly and independently respond

to such changes by updating the list of candidate services and replacing the failed

service by the top service on the list that fulfills the local SLA.

3.3.3 Performance Analysis

As discussed earlier in Section 3.1, the QoS-based service composition problem is a

combinatorial problem, which can be modeled as a Multiple-choice Multi-dimensional

Knapsack Problem (MMKP) [MT90]. The MMKP is known to be NP-hard [MT90],

which means that any exact algorithm to solve this problem is expected to have an

exponential time complexity with respect to the size of the problem. There are three

factors that determine the size of the composition problem: 1) the number of global

QoS constraints m, 2) the number of different service classes n, and 3) the number

of candidate services per class li, 1 ≤ i ≤ n. For the sake of simplicity and without
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loss of generality we assume that the number of candidate services is equal for all

classes, i.e. l1 = l2 = ... = ln = l. As m and n can be assumed to be small for most of

the real life scenarios, while the number of functional equivalent services is growing

rapidly and is expected to grow even faster in the future with the proliferation of the

Software as a Service business model on the web, the focus of this study is on the

scalability of the service selection methods with respect to the number of candidate

web services.

Existing global optimization solutions model the service selection problem as a

standard Integer Linear Program (ILP). The worst case time complexity of ILP solvers

using the Simplex method and Branch and Bound algorithms is an exponential func-

tion with respect to the problem size (i.e. n, l and m) [Mar03]. Therefore, ILP based

solutions are only applicable for small size composition problems, where the number

of service candidates l is very limited. In addition, a quick response to changes in

the QoS values of the selected services is not possible as the global optimization ap-

proach requires re-considering all possible combinations for satisfying the end-to-end

constraints.

In our hybrid approach, we use Integer Linear Programming to solve part of the

problem, namely, the decomposition of the global QoS constraints into local ones.

The actual selection of services, however, is done using distributed local selection

strategy, which is very efficient and scalable. The local utility computation for service

candidates has a linear complexity with respect to the number of service candidates,

i.e. O(l). As service brokers can perform the local selection in parallel, the total time

complexity of this step is not affected by the number of service classes, hence, the

complexity of the second step remains O(l).

The time complexity of our approach is dominated by the time complexity of the

constraint decomposition part. The number of decision variables in our ILP model is

n ·m · d, where d is the number of quality levels. As a result, the time complexity of

our approach is independent on the number of candidate web services, which makes it

more scalable than existing solutions that rely solely on “pure” global optimization.

By selecting a small number of quality levels d with 1 < d << l
m

we ensure that the

size of the ILP is much smaller than the size of the ILP model used in the global

optimization approaches in [LNZ04, ZBN+04, AP07], and hence, can be solved much

faster. The results of our extensive experimental evaluation, which we show in next

section confirm these finding.
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3.4 The Skyline Approach

Motivated by the fact that the selection of services for QoS-aware service composition

is inherently a multi-criteria decision-making problem, and inspired by the success of

the skyline query model [BKS01] in solving such problems for databases, we introduce

in this section our skyline-based approach for efficient QoS-aware service composition.

By considering dominance relationships between web services based on their QoS

values, we observe that only those services that belong to the skyline [BKS01], i.e.

are not dominated by any other functionally-equivalent service, are valid candidates

for the composition. All non-skyline services can be, therefore, safely pruned from

the search space, thus, speeding up the selection process.

However, it is realistic to assume that specific QoS parameters are typically anti-

correlated (e.g. execution time and price), which results in a large number of skyline

services. To overcome this problem, we propose a method for clustering skyline

services and selecting a small set of representatives to consider for the composition.

In Section 3.3 we presented the hybrid approach for addressing the QoS-aware

service composition problem, and in Section 3.3.1 a greedy method for extracting QoS

levels from the QoS information of service candidates was presented. However, the

proposed method deals with each QoS dimension independently and does not take

potential dependencies and correlations among these dimensions into account. In

some scenarios with very constrained QoS requirements, this leads to very restrictive

decompositions of the global constraints to local constraints that cannot be satisfied

by any of the service candidates, although a solution may actually exist. In this section

we propose a new skyline-based method for extracting QoS levels, which always leads

to a feasible decomposition of end-to-end constraints.

In addition, from the service provider perspective, we describe how we can exploit

the information about the skyline services to provide a clear distinction whether a

given service is a promising candidate or not. In the latter case, we provide a strategy

that proposes which QoS parameters of the service should be improved and how, so

that it becomes more competitive, i.e. it is no longer dominated by other services.

3.4.1 Skyline Services

Given a set of points in a d-dimensional space, a skyline query [BKS01] selects those

points that are not dominated by any other point. A point Pi is said to dominate
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another point Pj, if Pi is better than or equal to Pj in all dimensions and strictly

better in at least one dimension. Intuitively, a skyline query selects the “best” or

most “interesting” points with respect to all dimensions. In this work, we define and

exploit dominance relationships between services based on their QoS attributes. This

is used to identify services in a service class that are dominated by other services in

the same class. These services can then be pruned, hence reducing the number of

combinations to be considered during service composition.

Definition 3. (Dominance) Consider a service class S, and two services x, y ∈ S,

characterized by a set of Q of QoS attributes. x dominates y, denoted as x ≺ y, iff x

is as good or better than y in all parameters in Q and better in at least one parameter

in Q, i.e. ∀k ∈ [1, |Q|] : qk(x) ≤ qk(y) and ∃k ∈ [1, |Q|] : qk(x) < qk(y).

Definition 4. (Skyline Services) The skyline of a service class S, denoted by SLS,

comprises the set of those services in S that are not dominated by any other service,

i.e., SLS = {x ∈ S|¬∃y ∈ S : y ≺ x}. We refer to these services as the skyline

services of S.

Figure 3.9 shows an example of skyline services of a certain service class. Each

service is described by two QoS parameters, namely execution time and price. Hence,

the services are represented as points in the 2-dimensional space, with the coordinates

of each point corresponding to the values of the service in these two parameters. We

can observe that the service a belongs to the skyline, because it is not dominated by

any other service, i.e. there is no other service that offers both shorter execution time

and lower price than a. The same holds for the services b, c, d and e, which are also

on the skyline. On the other hand, service f is not contained in the skyline, because

it is dominated by the services b, c and d.

3.4.2 Composing the Skyline Services

As discussed earlier in Section 3.1, the problem of QoS-based service composition can

be formulated as a constraint optimization problem, and ILP techniques [NW88] can

be employed [ZBN+04, AP07] to solve it. However, as the number of variables in this

model depends on the number of candidate services, it may only be solved efficiently

for small instances. To cope with this limitation, we propose pruning all non-skyline

services from the ILP model in order to keep its size as small as possible. By focusing
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Figure 3.9 Example of Skyline Services

only on the skyline services of each service class, we speed up the selection process,

while still being able to find the optimal selection, as formally shown below.

Lemma 1. Each service si in the optimal selection of services (as defined in

Definition 2) for a web service composition CS = {s1, . . . , sn} belongs to the skyline

of the corresponding class Si, i.e. ∀si ∈ CS : si ∈ SLSi
.

Proof 1. Let si be a service that is part of CS and does not belong to the

skyline of its class Si. Then, according to the definitions for service skyline and

service dominance (see Section 3.4.1), there exists another service s′i that belongs

to the skyline of Si and dominates si, i.e. s′i is better than (or equal to) si in all

considered QoS parameters. Let CS ′ be the composite service that is derived by CS

by substituting si with s′i. CS ′ also satisfies the request, in terms of the delivered

functionality, since the two services si and s′i belong to the same class Si. Moreover,

given that the QoS aggregation functions (see Table 3.1) are monotone, i.e. higher

(lower) values produce a higher (lower) overall result, CS ′ also satisfies the constraints

of the request. In addition, given that the utility function is also monotone, CS ′ will

have a higher overall utility than CS. Hence, CS ′ is a better solution than CS for

this request.

According to Lemma 1, it is sufficient to focus on the skyline services of each

service class to find the optimal selection of services. By discarding non-skyline

services from the search space, we can improve the efficiency of the QoS-based service

selection algorithms.

However, the size of the skyline set can significantly vary for each dataset, as it

strongly depends on the distribution of the QoS data and correlations between the
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different QoS parameters. Figure 3.10 shows an example of 3 types of datasets in

the 2-dimensional space: (a) in the independent dataset, the values on the two QoS

dimensions are independent to each other; (b) in the correlated dataset, a service that

is good in one dimension is also good in the other dimension; (c) in the anti-correlated

dataset there is a clear trade-off between the two dimensions. The number of skyline

services is relatively small in correlated datasets, large in anti-correlated and medium

in independent ones.

Figure 3.10 Skyline of Different Dataset Types

In the following section we present a method for handling the cases, where the

number of skyline services is too large.

3.4.3 Representative Skyline Services

There has been a lot of work done in the literature for controlling the size of skylines

in order to address one or some of the drawbacks of conventional skyline compution

methods [JHE04, CJT+06a, CJT+06b, BGL07, BGS07, XZT08]. While the work pre-

sented in [JHE04] aims at increasing the size of the returned skyline (by adding close

neighbors of skyline objects to the skyline) in order to satisfy more users in case of

limited number of skyline objects, [CJT+06a] and [CJT+06b] propose a relaxed def-

inition of the dominance relation in order to decrease the number of skyline objects

in highly anti-correlated datasets. A more generic solution was presented in [XZT08]

that allows both increasing and decreasing the size of the skyline. In [BGL07, BGS07]

the authors focus on a more realistic and more complicated variation of the skyline

computation problem, namely computing skylines on partial order domains, where

users can have preferences on non-numerical attributes that do not have a total order-

ing. In such scenarios the returned skyline can be very large and the computation can

be very expensive. The authors propose in [BGL07] an incremental computation of
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the skyline by exploiting the input of the user on the different attributes and thus step

by step prune more and more items from the results set. In [BGS07] the authors relax

the Pareto semantics and introduce the concept of weak Pareto dominance relation,

which yields an efficient computation of the skylines.

More recently, the concept of representative skyline services has been proposed to

solve this problem [LYZZ07, TDLP09]. The idea is to determine a small set of skyline

objects that best represent the whole skyline set. In [LYZZ07] the authors define the

set of representative skyline objects as the minimum set of objects that dominate all

other non-skyline objects. In [TDLP09] the propose a distance-based definition of the

representative skyline that minimizes the distance between each non-representative

skyline object and its nearest representative.

However, the main challenge that arises in the web service selection scenario is

how to identify a set of representative skyline services that best represent all trade-offs

of the various QoS parameters, so that it is possible to find a solution that satisfies

the constraints and at the same time has a high utility score (recall our problem

formulation in Section 3.2.6). The aforementioned general methods for reducing the

number of skyline objects can only capture one aspect of the problem, namely repre-

senting the different trade-offs, but do not necessarily return services that maximize

the utility value. Here, our goal is to select a set of representative skyline services,

providing different trade-offs for the various QoS parameters, and use this reduced

set as input for the ILP model, whose objective function is to maximize the overall

utility value (after satisfying all user constraints).

Selecting representative skyline services also involves essentially a trade-off re-

garding the number of representatives to be selected: the number of representative

services should be large enough to allow finding a solution when performing the to

the composition request, but also small enough to allow for efficient computation.

In the following, we present a method for selecting representative skyline services

in order to address the situation where the number of skyline services K of a certain

service class S is too large and thus cannot be handled efficiently.

To address this challenge, we use divisive clustering. The main idea is to cluster

the skyline services into k clusters with k = 2, 4, 8, 16, ..., K, where K is the number

of skyline services of a certain class S, and select one representative service from

each cluster. In our case, we select as representative the service with the best utility

value. In particular, we build a tree structure of representatives, as shown in the
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Figure 3.11 Selecting Representatives via Clustering of Skyline Services

example of Figure 3.11. Each leaf node of this tree corresponds to one of the skyline

services in SL, whereas the root and intermediate nodes correspond to the selected

representatives of the created clusters.

We use the well-known k-means clustering algorithm [Llo82] for building the repre-

sentatives tree, as described in Algorithm 2. The algorithm takes as input the skyline

set SL of class S and returns a binary tree structure of representative services. The

algorithm starts by determining the root s, which is the service with maximum util-

ity value in SL. The algorithm then clusters SL into two sub-clusters CLS[0] and

CLS[1] and adds the representatives of these two sub-clusters to the children list of

s. The process is then repeated for each sub-cluster until no further clustering is

possible (i.e. until the size of new created clusters is lower than 2).

At run-time, when a service composition request is processed, we start the search

from the root node of the tree, i.e. we first consider only the top representative service

of each class (e.g. service s3 for class S in the example). These selected representatives

are inserted into the mixed integer program and the optimization problem is solved.
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Algorithm 2 BuildRepresentativesTree(SL)

Input : a set of skyline services SL

Output : a tree of representatives with service s as a root

1: s← maxUtilityService(SL)

2: CLS ← KMeansCluster(SL, 2)

3: for i = 1 to 2 do

4: if (CLS[i].size > 2) then

5: C ← BuildRepresentativesTree(CLS[i])

6: else

7: C ← CLS[i]

8: end if

9: s.addChild(C)

10: end for

11: return s

In the case that no solution is found using the given representatives, we proceed to

the next level, taking two representatives for each class (s3 and s6 for class S in the

example). This process is repeated until a solution is found or until the lowest level

of the tree, which consists of all skyline services, is reached. In the latter case, it

is guaranteed that a solution will be found (if one exists), and this solution is the

optimal solution according to Lemma 1. However, if a solution is found earlier, i.e.

before reaching the skyline level, we proceed by examining those services that are

descendants of the selected representatives for further optimization. This expanding

of the search space is continued until no further optimization in terms of utility value

is achieved, or the skyline level is reached.

3.4.4 Improving Service Competitiveness

As described previously, focusing on skyline services can be useful for improving the

performance and scalability of QoS-aware service selection methods. As non-skyline

services are filtered out early and cannot be in the result set of any request, regardless

of the given QoS requirements or preferences, it is important for service providers to

know whether their services are in the skyline, given their current QoS levels. Even

more importantly, if this is not the case, providers should be guided in determining

which QoS levels of their services should be improved and how, in order to become
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skyline services. Such information is valuable for service providers to analyze the

position of their services in the market compared to other competing services.

To address this issue, we present an algorithm that proposes how to improve the

competitiveness of non-skyline services. Clearly, there are various modifications that

can lead a non-skyline service to the skyline. Our goal is to identify the minimum

improvement in each QoS dimension that is required in order to bring a non-skyline

service into a position where it is not dominated by any other service, thus becoming

part of the skyline.

Figure 3.12 Measuring the Distance to the Skyline

Consider the example in Figure 3.12, where service f is dominated by the skyline

services b, c and d. According to Definition (3), this means that each of these services

are better or equal to f in all QoS dimensions and strictly better than f in at least

one QoS dimension. In order to improve the competitiveness of f , the provider must

ensure that it is not dominated by any other service. To achieve this, it is sufficient to

make f better than each of its dominating services in (at least) one QoS dimension.

By analyzing the skyline structure in Figure 3.12, we can identify four partitions of the

2-dimensional space, in which f can fulfill this requirement. The first two partitions

are shown in Figure 3.12-a, and can be reached by improving only one of the QoS-

dimensions, while the other two are shown in Figure 3.12-b, and can be reached by

improving both QoS dimensions at the same time. We call each of these partitions

a no-dominance partition for this service. A service in any of these partitions is

incomparable with all the skyline services, as it is not dominated by any of them nor

is dominating any of them.

Improving the QoS of provided services to a certain level, typically incurs some
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cost. For example, reducing the execution time of the service might require using

faster servers or more CPU computation power, if the service is running on the cloud.

Thus, service providers would be interested in determining the best (set of) QoS

dimension(s) to optimize, while minimizing the required cost. We assume that the

cost of improving any QoS dimension increases monotonically in the sense that more

improvement always implies more cost. We use the weighted euclidean distance for

estimating the cost of moving a service s in the QoS multi-dimension space from its

current position to a new position s′:

d(s, s′) =

√

√

√

√

|Q|
∑

i=1

wi(qi(s)− qi(s′))2
�

�

�

�3.16

The weight w is specified by the service provider to express his preferences over the

QoS dimensions. Higher weight implies higher cost for improving the corresponding

dimension.

In order to minimize the cost of improving the service position in the QoS multi-

dimensional space, we first need to identify the no-dominance partitions. Then, we

measure the distance from the service to be improved to each of these partitions using

Equation 3.16, and we select the one with the minimum distance.

Algorithm 3 locates the no-dominance partitions that can be reached by improving

only one QoS dimension. It takes as input a non-skyline service s and the list of skyline

services SL of the corresponding class, and it returns a list I = {p1, . . . , p|Q|}, where

each entry pi denotes the improvement required in the i-th QoS dimension for the

service to become part of the skyline (keeping all the other dimensions fixed).

Algorithm 3 OneDimImprovements(s, SL)

Input : a service s, the set of skyline services SLof its class

Output : a list I of the required amount of improvement for each single dimension

1: DS ← {r ∈ SL : r ≻ s}

2: for all qi ∈ Q do

3: I[i]← max
r∈DS

|rqi − sqi|

4: end for

5: return I

Algorithm 4 locates the coordinates of the maximum corner (i.e. top-right) of

each no-dominance partition (e.g. the points x and y in Figure 3.12-b). Modifying
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the QoS values of the service to values that are slightly better than the values of

one of these points, ensures that it is not dominated by the skyline services. The

algorithm takes as input a non-skyline service s and the list of skyline services SL

of the corresponding class, and suggests a new position s′ that can be reached with

minimum cost, in order to make s not dominated by any other services. First, the

algorithm computes the list DS of services dominating s. Then, DS is sorted for each

QoS dimension separately. The coordinates of the maximum corners are determined

by taking the maximum QoS values of each two subsequent services in each sorted list.

For example, the coordinates of the maximum corners x and y in Figure 3.12-b, are

determined by sorting the dominating services b, c and d by execution time and then

taking the maximum price and execution time of the services b and c. This process is

repeated for each other dimension and only new discovered points are added to the

list M . Finally, Equation 3.16 is used to estimate the cost of moving s to any of the

positions listed in M and the position with minimum cost is returned.

Algorithm 4 MultiDimImprovements(s, SL)

Input : a service s, the set of skyline services SL of its class

Output : a new not dominated position s′, with minimum improvement cost

1: DS ← {r ∈ SL : r ≻ s}

2: M ← {}

3: for all qi ∈ Q do

4: DSi ← DS.sortBy(qi)

5: for j = 1 to DS.size− 1 do

6: sj ← DSi[j]

7: sj+1 ← DSi[j + 1]

8: m← newQoSV ector

9: for all qk ∈ Q do

10: qk(m)← max(qk(sj), qk(sj+1))

11: end for

12: M ←M ∪m

13: end for

14: end for

15: return s′ = agr min
m∈M

d(s,m)
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Figure 3.13 Example of Unsuccessful Constraints Decomposition

3.4.5 Skyline-based Decomposition of QoS Constraints

In Section 3.3, we proposed a hybrid approach for QoS-based web service composition,

using ILP for decomposing the end-to-end SLA into bilateral SLA’s with the involved

service brokers. The variables in the ILP model of the hybrid approach represent the

local QoS levels of each service class rather than the actual service candidates, making

it more scalable to the number of services than the global optimization approach.

However, the greedy method presented in Section 3.3.1 for extracting local quality

levels and the mapping of global constraints into these local quality levels does not

take into account potential correlations and dependencies among the different QoS

attributes. Therefore, it is possible that the local constraints in the resulted bilat-

eral SLA cannot be fulfilled by any of the candidate services. In other words, the

intersection of the subsets of services that satisfy each of the local constraints is an

empty set. Consider the example shown in Figure 3.13. This is a two dimensional

QoS space that represents the collection of candidate web services in a certain ser-

vice class. The values indicated on the X and Y axis in Figure 3.13-a represent the

quality levels of the respective QoS attribute. Figure 3.13-b shows an example of

an unsuccessful decomposition of the global constraints. In this example the global

constraints on price and execution time are mapped to the local quality levels 0.05$

and 300 msec respectively. This mapping is considered unsuccessful as none of the

candidate services can fulfill both of the local constraints.

To overcome this limitation we present in the following a new method for extract-

ing local quality levels and decomposing global QoS constraints. A quality level in

the new method is in the form of a QoS vector, which translates to one point in the
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Figure 3.14 Extracting Quality Levels via Clustering of Skyline Services

multidimensional QoS space. To ensure that the set of services that satisfy a quality

level is not empty, we need to make sure that its position in the QoS space is either

on or above the skyline. We use Algorithm 5 for this purpose. The main idea is

similar to the representatives selection method described earlier. First, we determine

the skyline services of each service class, and we recursively cluster them using the

k-means clustering algorithm. However, instead of selecting one representative ser-

vice from each sub-cluster, we create a virtual point in the QoS multidimensional

space, whose coordinates are calculated as the maximum (i.e. worst) QoS values in

the sub-cluster, as illustrated in the example of Figure 3.14. The virtual point y1

in Figure 3.14-a has the maximum execution time and maximum price of all skyline

services, i.e the execution time of service s8 and the price of service s1.

Hence, we use the created points (y1 to y7 in the example) to represent the various

QoS levels of the service class. We also assign each of the QoS levels a utility value,

which is the best utility value that can be obtained by any of the services of the

corresponding sub-cluster. We then use ILP to map each of the end-to-end constraints

into one of the local QoS levels (i.e. one of the virtual points) of each class in the
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Algorithm 5 SelectQoSLevels(SL)

Input : a set of skyline services SL

Output : a tree of QoS levels with y as a root

1: y ← newQoSLevel

2: for all qi ∈ Q do

3: qi(y)← max qi(s),∀s ∈ SL

4: end for

5: y.utility ← maxUtilityV alue(SL)

6: CLS ← KMeansCluster(SL, 2)

7: for i = 1 to 2 do

8: if (CLS[i].size > 2) then

9: C ← SelectQoSLevels(CLS[i])

10: else

11: C ← CLS[i]

12: end if

13: y.addChild(C)

14: end for

15: return y

composition problem. A binary decision variable xij is used for each local QoS level

yij such that xij = 1 if yij is selected as a local constraint for the service class Sj, and

xij = 0 otherwise. Thus, we reformulate the ILP model presented in 3.3.1 as follows:

maximize
n

∑

j=1

l
∑

i=1

U(yij) · xij

�

�

�

�3.17

subject to the global QoS constraints

n
∑

j=1

l
∑

i=1

qk(yij) · xij ≤ c′k, 1 ≤ k ≤ m
�

�

�

�3.18

while satisfying the allocation constraints on the decision variables as

l
∑

i=1

xij = 1, 1 ≤ j ≤ n.
�

�

�

�3.19

where the number of variables l equals the number of QoS level in each service

class. We solve this ILP model for l = 1, 2, 4....K, where K is the total number of
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skyline services. In the given example, this corresponds to the levels from 0 to 3 of

the QoS levels tree in Figure 3.14-d. The process stops when a solution is found, i.e.

a mapping of all end-to-end constraints to local QoS levels is found. In the worst

case, the process will continue until the lowest level is reached. In this case, each

skyline service represents a local QoS level, and the problem becomes similar to the

original global optimization problem we discussed earlier. According to Lemma 1, if

a solution to the original problem exists, a successful decomposition of the end-to-end

constraints will be found. In other words, it is guaranteed that the set of services

that satisfy the obtained local constraints is always a non-empty set.

3.5 Experimental Evaluation

The aim of this evaluation is to validate our hypothesis that our approximate solutions

achieve close-to-optimal results with a much lower computation time compared to the

exact solutions as proposed by [LNZ04, ZBN+04, AP07]. For this purpose, we have

conducted extensive simulations to evaluate the performance of the proposed QoS-

aware service selection algorithms, which we describe in this section.

3.5.1 Experimental Setup

In our evaluation we experimented with two types of datasets: real and synthetic

datasets. The first is the publicly available dataset QWS4, which comprises mea-

surements of 9 QoS attributes for 2500 real-world web services. These services were

collected from public sources on the Web, including UDDI registries, search engines

and service portals, and their QoS values were measured using commercial benchmark

tools. Table 3.2 lists the QoS attributes in this dataset and gives a brief description

of each attribute.

In order to make sure that the results of our experiments are not biased by the

used QWS dataset, we also experimented with three synthetically generated datasets

with larger number of services and different distributions. For this purpose, we used

a publicly available synthetic generator5 to obtain three different datasets: a) a cor-

related dataset (cQoS), in which the values of the QoS parameters are positively

4http://www.uoguelph.ca/ qmahmoud/qws/index.html/
5http://randdataset.projects.postgresql.org/
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Table 3.2 QoS attributes in the QWS dataset

QoS Attribute Description Unit

Response Time Time taken to send a request and receive a response msec

Availability Number of successful invocations/total invocations percent

Throughput Total number of invocations for a given period of time invocations/sec

Successability Number of response/number of request messages percent

Reliability Ratio of the number of error messages to total messages percent

Compliance To which extent a WSDL document follows the WSDL spec. percent

Best Practices
To which extent a web service follows the Web Services
Interoperability (WS-I) Basic Profile

percent

Latency Time the server takes to process a given request msec

Documentation Measure of documentation (i.e. description tags) in WSDL percent

correlated, b) an anti-correlated (aQoS) dataset, in which the values of the QoS pa-

rameters are negatively correlated, and c) an independent dataset (iQoS), in which

the QoS values are randomly set. Each dataset comprises 10K QoS vectors, and each

vector represents the 9 QoS attributes of one web service.

We used the open source Mixed Integer Programming solver lpsolve version 5.5 [MB]

for solving the ILP model in both approaches. The experiments were conducted on

a HP ProLiant DL380 G3 machine with 2 Intel Xeon 2.80GHz processors and 6 GB

RAM. The machine is running under Linux (CentOS release 5) and Java 1.6.

3.5.2 Evaluation of the Hybrid Approach

For the purpose of this evaluation, we considered a scenario, where a composite appli-

cation comprises services from n different service classes (n varies in our experiments

between 10 and 50 classes). Users of the composite application submit a set of nu-

merical constraints on (a sub-set of) the 9 QoS attributes shown in Table 3.2. The

goal of this evaluation is to measure how fast the hybrid approach can find the best

service from each service class to instantiate the composite application, while meeting

the given QoS constraints and maximizing the overall utility value (U’) as given in

formula 3.4.

Thus, we randomly partitioned each of the aforementioned datasets into n sub-
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sets. Each sub-set represents the service candidates of one service class. We then

created several vectors of up to 9 random values to represent the users end-to-end

QoS constraints. Each constraints vector corresponds to one composition request.

We solved each composition request using the following methods:

• Global : this is the global optimization method [LNZ04, AP07] with all service

candidates represented in the ILP model. This method returns the optimal

selection of services, and therefore is used as a baseline in our experiments.

• Hybrid : this is our proposed method in this paper for combining global opti-

mization with local selection, based on the concept of constraint decomposition.

• WS-HEU : this is the heuristic method proposed in [YZL07a], which is a mod-

ification of the original heuristic M-HEU [KLMA02] for solving multi-choice

multi-dimensional Knapsack problems.

We then recorded the required computation time (we report here the average of

50 executions with the same parameters) by each of the aforementioned methods to

return the selection of services. Recall that the service selection problem has been

defined as an optimization problem, whose goal is to maximize the objective function

(i.e. the utility function in our scenario). Therefore, we also record the overall utility

value of the selected services by each method. In order to evaluate the optimality of

the returned solution by one of the heuristic solutions (i.e. Hybrid or WS-HEU ), we

measure how close is its utility value u to the utility value of the optimal solution

umax obtained by the exact method (i.e. the Global method), as follows:

optimality = u/umax

Effect of Number of Quality Levels

Before evaluating the performance and optimality of the Hybrid approach, in the first

experiment we investigate the effect of the chosen number of quality levels d in the

Hybrid approach. For this purpose we created a test case of a composition request

with 5 service classes with 500 candidate services per class. We then randomly created

a vector of end-to-end QoS constraints. We solved the selection problem using both

the Global approach and the Hybrid approach, while in the Hybrid approach we

solved the problem several times, each time with a different number of quality levels:
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i.e. 10, 20, 30, 40 and 50 quality levels. The results of this experiment are shown

in Figure 3.15. To the left side of this figure a performance comparison of the two

methods is shown. We notice that the Hybrid method is much faster than the Global

method, while still able to achieve a very close-to-optimal results as shown on the

second chart to the right side of Figure 3.15. We also notice that using more quality

levels improves the optimality if the selection, but on the other hand, it also imposes

more overhead in terms of computation time.

Hence, there is a trade-off between performance and optimality with respect to

the chosen number of quality levels. Moreover, in some cases with very constrained

composition requests, the decomposition of global constraints into local constraints

might fail when using a small number of quality levels. To handle this issue, we apply

the iterative method, which we described in Section 3.3.1. The iterative method

starts always with a small number of quality levels (10 levels in this case) and if no

feasible decomposition of the global constraints is found, the number of QoS levels is

iteratively duplicated. The method continues until a solution is found. This approach

is applied in the following experiments, and the practice shows that in almost all cases,

with all different types of datasets, a solution is found after a few number of iterations

(up to 3 iterations, i.e the number of levels used are 10, 20 or 40 levels).

Figure 3.15 Performance and Optimality vs. Number of QoS Levels

Performance Comparison

• Performance vs. Number of Candidate Services: In Figure 3.16 we compare

the performance of our hybrid approach with the performance of the Global and

WS-HEU approaches with respect to the number of candidate services. The graphs

show the measured average computation time of each of the three selection methods.
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The number of service candidates per class l in this experiment varies between 100

to 1000 services per class, while the number of service classes n is set to 10 classes

and the number of QoS constraints to 5 end-to-end constraints.

We observe that, in general, increasing the number of candidate services, increases

the computation time of the Hybrid approach very slowly (if at all) compared to

the Global and WS-HEU, which makes our solution more scalable to the number of

available web services. Although slightly slower than WS-HEU with the correlated

dataset, our Hybrid approach remains significantly faster than WS-HEU in the

other datasets, and far faster than the Global approach in all datasets.

Figure 3.16 Performance vs. Number of Candidate Services

The reason for this scalable behavior of the Hybrid approach is that the decomposi-

tion of the global constraints into local ones using ILP is not directly affected by the

number of available services, rather by the distribution of the QoS values among

them. Consequently, increasing the number of available services does not necessar-

ily lead to increasing the computation time as in the Global approach (where the

number of variables to consider in the ILP increases) or in the WS-HEU algorithm

(where the number of options also increases). Instead, increasing the number of
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services in the Hybrid approach affects only the process of extracting quality levels.

When new candidate web services become available (or some existing services be-

come not available) the set of quality levels need to be updated accordingly. Since

extracting and updating the set of quality levels of each service class can be carried

out offline by the responsible service broker, this step has no direct impact on the

performance of the service selection algorithm at run-time.

• Performance vs. Number of Service Classes: In this experiment we evaluate

the scalability of the three approaches with respect to the number of service classes

n in the composition. For this purpose, we fixed the number of candidate services

per class l to 500 and the number of end-to-end constraints to 5 constraints, while

varying the number of service classes in each composition instance between 10

and 50. The results of this experiment shown in Figure 3.17 indicate that the

performance of all three methods degrade as the number of service classes increases.

However, the Hybrid approach still outperforms the Global approach in all datasets.

Again, we observe that the Hybrid approach outperforms the WS-HEU approach

in all datasets except the correlated dataset, where it performs slightly slower than

WS-HEU.

Optimality Comparison

The results presented so far have shown that the Hybrid outperforms the Global

approach in terms of computation time. This improvement in the performance is

due to the fact that the Hybrid approach is an approximate approach, i.e. it cannot

guarantee finding the optimal selection of services. Therefore, it is important to

evaluate how good are the results obtained by this approximation method compared

to the exact method that guarantees returning the optimal selection. As the objective

function of the optimization problem in hand is to maximize the overall utility value

of the selected services according to Definition 2 of the optimal solution, in this

evaluation we compare the utility value u of the selected services by the Hybrid

approach with the maximum utility value umax obtained by Global approach. Ideally,

the quality of the obtained selection could be evaluated by computing the utility

value of all the feasible selections and analyzing the distribution of these values. The

smaller the distance between u and umax is (and the farther the distance between u

and the worst value umin is), the better the selection is. However, computing the

63



Chapter 3 Efficient QoS-aware Service Selection

Figure 3.17 Performance vs. Number of Service Classes

utility value of all possible selections is very expensive in terms of time, especially

when the number of possible combinations to consider is huge.

Therefore, we conducted a small experiment with small number of services (10

service classes, 100 service per class) and measured only the utility value u of the

selection obtained by the Hybrid approach, the maximum utility value umax of the

optimal selection and the minimum utility value umin of the worst solution (which we

get using the Global approach after changing the objective function of the optimizer

from maximizing to minimizing the utility value). We then computed the optimality

of the selection obtained by the Hybrid approach and the optimality of the worst

solution as follows:

optimality(Hybrid) = u/umax

optimality(WorstCase) = umin/umax

The measured optimality of 100 instances of the selection problem are shown in

Figure 3.18. This experiment shows that the selections obtained by the Hybrid ap-
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proach are very close to the optimal selection and far enough from the worst selections.

In the following larger experiments we will focus only on the distance to the optimal

selection and thus only compare value u of the obtained selections with umax.

Figure 3.18 Optimality Measurement

• Optimality vs. Number of Candidate Services: Figure 3.19 shows the mea-

sured optimality of the Hybrid and WS-HEU approaches with different datasets

and a varying number of candidate services. The results indicate that the Hybrid

approach was able to achieve very close-to-optimal results (always above 98%). The

results also show that the WS-HEU approach was able to achieve even a higher

optimality than the Hybrid approach.

• Optimality vs. Number of Service Classes: Figure 3.20 shows the measured

optimality of the Hybrid and WS-HEU approaches with different datasets and a

varying number of service classes. Again, we observe that the Hybrid approach was

able to achieve very close-to-optimal results in all cases (above 98% in average),

while the optimality achieved by the WS-HEU was still higher than the Hybrid

approach.
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Figure 3.19 Optimality vs. Number of Candidate Services

Figure 3.20 Optimality vs. Number of Service Classes

Communication Cost Comparison

In this experiment we investigate the communication overhead of deploying either of

the service selection methods (i.e. Hybrid and WS-HEU ) in a distributed setting. We

measure the overhead in terms of the number of messages that need to be exchanged

between the composer and the distributed service brokers. Without loss of generality,

in this experiment we assume that each service class is managed by a separate service

broker. In the results shown in Figure 3.21 we see that while the number of exchanged

messages in the Hybrid approach (for obtaining local quality levels) remains very

limited, the number of exchanged messages in the WS-HEU method is much higher

and is constantly increasing. The results of this experiment prove our hypothesis that

the WS-HEU method is not suitable for distributed environments. This is due to the

fact that WS-HEU optimizes the service selection by undertaking several iterations of

downgrading and upgrading of local selections (i.e. replacements of already selected
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services) until no further optimization is possible. This process requires extensive

message exchange with the service brokers in each round, which in a distributed

environment can lead to a high communication cost.

Figure 3.21 Communication Cost vs. Number of Service Classes

Summary of the Results

The results of the experimental evaluation have shown that the Hybrid approach

significantly outperforms the Global approach in terms of computation time, while

being able to achieve close-to-optimal results. The results have also shown that

the Hybrid approach is more scalable than the WS-HEU approach with respect to

the number of candidate services and service classes in the composition, except for

strong correlated datasets, where the WS-HEU approach performs slightly better

than the Hybrid approach. In addition, we observe that the WS-HEU approach

is able to achieve higher optimality in most of the cases. On the other hand, our

Hybrid approach imposes much less communication overhead in comparison with

WS-HEU when applied in a fully distributed setting, while it is still able to achieve

a reasonable level of optimality (above 98% in average). This makes the Hybrid

approach fits better to the open and distributed environment of web services, where

central brokerage of all service classes is not possible. It also fits well to the SLA

decomposition scenario, where the goal is to find a feasible decomposition of the

composition’s SLA to local bilateral SLA’s with the involved service brokers, rather

than directly selecting concrete services for the composition. Both the Global and

WS-HEU approaches are not appropriate for this scenario, as they can only be used

for finding a concrete service for each service class in the composition. The Hybrid

approach, on the other hand, can be used for both scenarios.
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3.5.3 Evaluation of the Skyline Approach

In this section, we present the results of our experimental evaluation of the skyline

approach we presented in Section 3.4. In this part of the evaluation we compare

between the following QoS-aware service composition methods:

• Global : this method is the standard global optimization approach with all can-

didate services represented in the ILP model.

• GlobalSykline: this method is similar to the Global method, except that only

skyline services are considered in the ILP model.

• SkylineRep: this method uses representative skyline services as described in

Section 3.4.3.

• Hybrid : this is the Hybrid approach we presented in Section 3.3, which maps

end-to-end constraints into local QoS levels.

• HybridSkyline: this is the modified version of the Hybrid approach, which uses

a skyline-based method for determining local QoS levels as described in Sec-

tion 3.3.1.

The aim of this evaluation is to measure the improvement in performance and

success rate achieved by applying the skyline-based solutions. For this purpose, we

compare between the performance of the Global method and the performance of the

GlobalSkyline and SkylineRep methods in terms of the execution time required to find

a solution, and compare between the success rate of the Hybrid method with the suc-

cess rate of the HybridSkyline method. We experimented with the same four datasets

we described in the previous section, i.e. the real dataset (QWS), the correlated

(cQoS), anti-correlated (aQoS) and independent dataset (iQoS).

Performance Comparison

For this evaluation we considered a scenario, where a composite application involves

services from 10 different service classes. Therefore, we randomly partitioned each

of the aforementioned datasets into 10 service classes. We then created 100 vectors

of 5 random values to represent the users end-to-end QoS constraints. Each vector

corresponds to one composition request, for which one concrete service needs to be

selected from each class, such that all end-to-end constraints are satisfied, while the
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overall utility value is maximized. We solved each composition request using the

different service selection methods and measured the average computation time of

each method. To evaluate the scalability of these methods against the number of

available candidate services, we repeated the experiment with different number of

candidate services varying between 100 and 1000 service per class.

The results of this experiment are presented in Figure 3.22. Comparing the per-

formance of Global and GlobalSkyline methods, we can observe that a significant gain

is achieved when non-skyline services are pruned.

Figure 3.22 Performance vs. Number of Service Candidates

However, as expected, this gain in performance differs for the different datasets,

based on the size of the skyline, with the lowest gain being recorded for the anti-

correlated dataset. On the other hand, the SkylineRep method clearly outperforms all

other methods, which shows that we can cope effectively with this limitation by using

skyline representatives as described in Section 3.4.3. In general, the performance of

the HybridSkyline method is comparable with the performance of the Hybrid method

as long as the size of the skyline is not very large (see the performance of both methods

with the QWS and correlated datasets). Although less efficient than the original

Hybrid method with the independent and anti-correlated datasets, the HybridSkyline

method still outperforms the Global method with more than an order of magnitude
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gain in performance. Moreover, the HybridSkyline method outperforms the Hybrid

method in terms of success rate as we will see in the next subsection.

Optimality Comparison

In order to evaluate the quality of the obtained results in the previous experiment, we

also measured the optimality of the returned selection by comparing its overall utility

value (u) with the overall utility value (uoptimal) of the optimal selection obtained by

the Global approach, i,e.:

optimality = u/uoptimal

The measured optimality of the SkylineRep, Hybrid and HybridSkyline methods are

shown in Figure 3.23. The results show that the SkylineRep. The optimality achieved

by the HybridSkyline method was in all cases above 90%, althogh still lower than

the optimality of the Hybrid method with some datasets such as the anti-correlated

dataset. On the other hand, with the real dataset QWS, the HybridSkyline method

was able to achieve about 97% optimality.

Figure 3.23 Optimality vs. Number of Service Candidates
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Success Rate Comparison

Clearly, the number of feasible selections for a given composition request decreases

as the number of end-to-end QoS constraints increases. This can affect the perfor-

mance of all methods as more computation time is required to find a solution. More

specifically, with very constrained problems the probability that the iterative algo-

rithm of SkylineRep and HybridSkyline will need to go through more iterations until

a solution is found increases. In this experiment, we measured the performance of

the different methods with respect to the number of end-to-end QoS constraints. For

this purpose, we fixed the number of service candidates per class to 500 services, and

we varied the number of QoS constraints from 1 to 9 (notice that the total number

of QoS parameters in the QWS dataset is 9). In addition, we measured the success

rate, i.e., the percentage of scenarios where a solution is found, if one exists. In

Figure 3.24, Figure 3.25, Figure 3.26 and Figure 3.27 we show the results of this

experiment with the different datasets. We observe that SkylineRep clearly outper-

forms all other approaches. We also observe that the computation time of Hybrid

and HybridSkyline methods increases as the number of QoS constraints increases. In

general, the Hybrid approach is less scalable to the number of constraints compared

to the HybridSkyline. As shown in the right-hand side of each of the figures, Sky-

lineRep and HybridSklyine always find a solution. This is because SkylineRep and

HybridSklyine iteratively expand the search space by examining more representative

services or local QoS levels,respectively, until a solution is found or until the whole

set of skyline services has been examined. In the latter case, a solution is guaranteed

to be found (if one exists) according to Lemma 1. On the other hand, the success rate

of the Hybrid method degrades significantly as the difficulty of the composition prob-

lem increases. The reason for this behavior is that the Hybrid method decomposes

each of the end-to-end constraints independently, which in such difficult composition

problems may results in a combination of local constraints that cannot be satisfied

by any candidate service.
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Figure 3.24 Performance and Success Rate vs. QoS Constraints - QWS

Figure 3.25 Performance and Success Rate vs. QoS Constraints - iQoS

Figure 3.26 Performance and Success Rate vs. QoS Constraints - cQoS

Figure 3.27 Performance and Success Rate vs. QoS Constraints - aQoS
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4
Decentralized Concurrency Control for

Transactional Web Services

In this chapter we address the problem of ensuring reliable transactional management

of web service transactions. In particular, we focus on maintaining consistency of con-

current invocations of web services in the context of independent business processes.

We start in Section 4.1 by introducing to the problem and describing a motivating

scenario. In Section 4.2 we provide a formal description of web service transactions

and transactional dependencies. We also show how a multi-level transaction model

can be adopted for supporting concurrency control on the web services’ level and

propose an extension to the current web service transactions’ framework to imple-

ment this model. In Section 4.3 we introduce an optimistic and fully decentralized

concurrency protocol for web service transactions that can be employed in the pro-

posed architecture. Algorithms for handling global transactional are also presented

in this section. Finally, in Section 4.4 we describe our experimental evaluation of the

proposed solutions and present the results of this evaluation. The presented solutions

in this chapter have been published in [ADN06], [ABDN07] and [ADBN09].

4.1 Introduction

Web service-based business-to-consumer (B2C) and business-to-business (B2B) ap-

plications usually involve invocations of services running on different heterogeneous

back-end systems managed by autonomous service providers. A key requirement

for successful web service-based business applications is to ensure reliable execution

of their processes with respect to the partners’ transactional requirements. A reli-
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able transaction processing should provide the illusion that each transactional pro-

cess executes as if no other process were executing concurrently (serializability) and

as if there were no failures (recoverability) [AAA+96]. In contrast to traditional

ACID transaction models, which assume short lived transactions, transactional web

service-based processes are usually long-running processes (in the order of hours or

even days). Therefore, strict isolation requirements to guarantee serializability of

distributed transactions have to be relaxed. A bank service provider, for example,

would not accept locking its local resources (customer accounts) on behalf of some

client application for unbounded time.

Advanced Transaction Models (ATM) have been proposed in the literature to

address the new requirements of advanced applications (see [Elm92] for a comprehen-

sive overview). The Open Nested Transaction Model [Gra88] was widely adopted by

industry (e.g. [Comg, Come, Comf]) and academia (e.g. [AAA+96, Pap03, BPG05,

KHC+05]) for web service transactions. The main feature of this transaction model

is the possibility to relax the isolation property by exploiting semantic properties of

operations, which allows participants to commit independently (thus, preserving au-

tonomy). The concept of compensation plays a major role in this model to ”‘repair”’

the semantic effects of already completed activities in the case of failures or trans-

action abort requests. Many commercial companies nowadays (e.g., Amazon.com)

that provide transactions without isolation in their online services, also provide se-

mantic compensation mechanisms (usually in the form of canceling an order within

a given time limit). However, in the open and dynamic web service environment,

business transactions enter and exit the system independently. Under isolation relax-

ation transactional dependencies can emerge among independent business processes,

which need to be taken into account when compensation is required in order to avoid

inconsistency problems. Such transactional dependencies are currently overlooked in

the web service transaction models and standards.

Motivating Scenario

The following example demonstrates the problem of maintaining global consistency in

the presence of concurrent service invocations and motivates the need for concurrency

control at the web services level. In the example shown in Figure 4.1 two independent

business processes (Process 1 and Process 2 ) concurrently access the web service

of some online banking system. The interface of this online banking web service
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Figure 4.1 Example of a Transactional Dependency Between Two Processes

provides operations for transferring money from or to bank acoounts. Both processes

update the same account (account A) through two subsequent calls to the deposit

and withdraw operations respectively.

Assume that the initial balance of account A at time t0 is b$ and that the bank

does not allow overdrafts (i.e. A$ > 0 must always be true). Process 1 invokes the

web service at time t1, requesting depositing account A with x$. The balance of

account A is now updated to (b + x)$. Due to the isolation relaxation policy, the

new balance is immediately made visible to other processes, even before Process 1 has

been completed. At time t2 Process 2 invokes the web service requesting a Withdraw

operation of y$ (y > b) from the same account. Accordingly, the balance of account

A is updated to (b + x− y)$. Note that without Process 1 ’s deposit operation being

successfully executed, the withdrawal operation of Process 2 cannot be accepted by

the online banking system as it would lead to an overdraft. Assume now that later,

due to the failure of some activities of Process 1, its coordinator decides to cancel the

whole process and issues a compensation request of its previous deposit operation.

Process 1 ’s compensation request is received by the banking system at time t3. The

compensation is done by a semantically reverse operation (withdraw in this case) on

account A with the same amount of x$. However, such operation is not allowed by

the banking system as this would lead to an overdraft (b− y < 0).

This scenario points to the following problems:
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1. Transactional dependencies can occur dynamically between autonomous pro-

cesses due to concurrent access to transactional web services.

2. The transactional processes are usually coordinated by independent coordina-

tors. The transactional dependencies are therefore invisible to the coordinators.

3. With the absence of a mechanism for detecting and managing such dependencies

among concurrent invocations to transactional web services, dependency con-

flicts such as the one described in this scenario can lead to inconsistent overall

outcome of the executed processes.

These problems raise the need for a concurrency control mechanism for transac-

tional web services in order to ensure reliable execution of web service-based business

processes. In the following sections we will show how the current solutions for web

service transactional management can be extended to enable concurrency control. We

will also present and compare two distributed solutions for handling global depen-

dency cycles: the edge chasing approach for detecting global cycles at commit time,

and the pre-scheduling approach for avoiding global dependency cycles.

4.2 Transaction-aware Architecture

The current standard for transactional management of long-running and loosely-

coupled web service business transactions is the WS-BusinessActivity specifications [Comf].

The theoretical foundation of the WS-BusinessActivity is based on the open nested

transaction model [Gra88, Mos81]. Transactions in this model can form a tree (of ar-

bitrary height) of sub-transactions. The sub-transactions may commit independently

of each other without having to wait for the root transaction to commit. In case of

a sub-transaction failure, the client driving this business process may decide whether

the overall transaction should abort or simply ignore the failed sub-transaction. The

open nested transaction model, and hence, the WS-BusinessActivity coordination

type also relaxes the isolation property. It permits disclosing intermediate results by

autonomous participants instead of locking local resources until the end of the (global)

transaction. In the case of transaction abort, the effects of already committed sub-

transactions are undone by means of compensating sub-transactions. However, the

assumption that all service operations can always be compensated is not realistic.
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When the number of transactions having access to intermediate results increases, the

compensation of some operations becomes either too expensive or even impossible.

Supporting concurrency control for the WS-BusinessActivity is challenging for

the following reasons. First, business activities are usually long-running, which yields

locking-based solutions (e.g. 2PL protocol) unacceptable. Second, participants of

a business activity are loosely-coupled and highly autonomous, which makes solu-

tions based on centralized concurrency control (e.g. global serialization graph testing

protocol) inapplicable.

4.2.1 A Multi-level Transaction Model

In this section we introduce an architecture that supports web service concurrency

control in a modular way. The architecture distinguishes between service-level and

resource-level concurrency control. Figure 4.2 shows the conceptual view of this multi-

layered architecture. Resource-level transactional conflicts (e.g. select/update queries

to a DBMS) are managed by the Resource-level Concurrency Control component (e.g.,

the transaction manager of the DBMS). Transactional dependencies between inter-

leaving processes, caused by service-level semantic conflicts (e.g. deposit/withdraw

conflicts), are managed by the Service-level Concurrency Control component. This

separation allows supporting any back-end system and concurrency control protocol

(e.g. 2PL, multiversion, etc.) [WV01].

Figure 4.2 The Multilayered architecture

77



Chapter 4 Decentralized Concurrency Control for Transactional Web Services

The proposed architecture can be elegantly modeled with the multilevel nested

transaction model from [Wei86, Wei91]. This model has a sound theoretical founda-

tion and fits well to multi-layered architectures where each layer has its own level-

specific semantics of the set of operations. The model is a special case of the open

nested transaction model with the requirement that all leaf nodes in a transaction

tree have the same distance to the root. The nodes in a transaction tree correspond

to operations at particular levels of abstraction, where the edges represent the imple-

mentation of each operation at level Li by a sequence of operations at the next lower

level L − i− 1 (for i = 1, , n in bottom-up order of a n-level system). In the archi-

tecture shown in Figure 4.2 we have a 3-level system (L1= resource level, L2=service

level and L3=process level). To map it onto our scenario, at the process level (L3)

there can be a set of business processes that invoke the online banking service in the

context of some business activities. In the service level (L2) we have the web service

interface, which provides an access to the customers’ accounts for online banking. For

the sake of simplicity, we assume that each activity on the process level is mapped to

one web service operation (e.g. a deposit/withdrawal operation). The resource level

(L1) is a level of some database where the customers’ accounts are managed. Each

web service operation is mapped to a database transaction on the resource level. The

consistency of the overall system can only be guaranteed, if the produced schedule at

each level is guaranteed to be serializable (i.e. equivalent to some serial execution of

the involved transactions) [Wei86]. We restrict our focus on process-level transactions

with web service level operations as elementary operations of these transactions. The

correctness of access to low level resources is then left to the resource-level transaction

manager (e.g., a DBMS).

Transactional Dependencies

There is a dependency relation between two process-level transactions T1 and T2 if

the outcome of T2 is influenced by the outcome of T1. We formally define this relation

s follows:

Definition 5. (Transactional Dependency)

There is a transactional dependency between two transactions T1 and T2, from

level L3 if there are two activities (service operations) a1 ∈ T1 and a2 ∈ T2 from level

L2 such that:
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• the failure of a1 causes the failure of a2, or

• the success of a1 causes the failure of a2.

We refer to T1 as the dominant transaction and to T1 as the dependent transaction.

In our online banking scenario, Process 2 is dependent on Process 1. The transac-

tional dependency relation is analogous to the semantic conflict relation in database

transactions terminology [Wei91]. Ensuring consistency of business transactions re-

quires tracking these dependencies and handling them appropriately. This can be

achieved by building and maintaining the so-called dependency graph (analogous to

the serialization graph in databases) and ensuring it contains no cycles.

Dependency Graphs

A dependency graph is a directed graph where the nodes represent transactions and

the edges represent transactional dependencies between them. Each edge points from

the dependent transaction to the dominant one. Dependency graphs are updated

whenever a new transaction enters or leaves the system. A transaction with no

outgoing edges (i.e., it has no dominants) is said to have an exclusive lock on the

shared resources. All its dependent transactions are said to have shared locks on these

resources. Figure 4.3 depicts an example of a dependency graph composed of three

active transactions. In this example, transactions T1 and T2 have exclusive locks,

whereas T3 has shared locks with T1 and T2. The direction of the edges indicates

that the outcome of T3 depends on the outcome of both T1 and T2. Therefore, a

concurrency control mechanism is required to detect such dependencies and ensure

that T3 does not leave the system before T1 and T2 successfully terminate.

Figure 4.3 Example of a dependency graph

Global Consistency through Local Guarantees

In the distributed and open environment of web services, independent business pro-

cess transactions can co-exist without knowing about each other. Under the absence
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of a global transaction manager, maintaining the global dependency graph is there-

fore not feasible, and a distributed management of the transactional dependencies is

required. To this end, we refer to the results of extensive research in the databases

field (see [WV01] for a comprehensive overview). It has been shown that global con-

sistency can be achieved through strong local guarantees: i.e., by ensuring that each

local transaction schedule satisfies either the Rigorousness (RG) or the Commit-Order

preservation (CO) criteria [WV01].

The Rigorousness criterion requires isolating the intermediate results of active

transactions until the termination (commit or abort) of all preceding transactions.

As a result of this strict policy, the concurrency level of the system decreases sig-

nificantly, which negatively influences the overall performance. A de facto standard

implementation of a rigorous concurrency control strategy is the well-known (strict)

2PL protocol.

On the other hand, the Commit-Order preservation criterion permits accessing

data processed by active transactions under the constraint that the commit order

of any two semantically conflicting transactions must preserve their execution or-

der. This practically means delaying the commit of transactions in conflict till after

the commitment of their preceding transactions. Commit-order preserving schedules

therefore allow higher level of concurrency than rigorous schedules, which leads to bet-

ter performance and higher overall throughput. However, this gain in performance

does not come without costs. Commit-order preserving schedules run under the risk

that distributed transactions might get blocked by other relatively longer transac-

tions at commit time which can lead to unacceptable waiting times. In this paper,

we adopt the Commit-Order preserving policy for concurrency control and propose

solutions to cope with the aforementioned limitations.

4.2.2 Extending the Web Service Transaction Framework

In Section 2.3.2 we presented the standard framework for web service transactions,

and its associated industrial specifications: WS-Coordination [Comg], WS-Atomic-

Transaction [Come] and WS-BusinessActivity [Comf] for managing and coordinating

distributed web service transactions. We also pointed to the limitation of this frame-

work in handling transactional dependencies that occur due to the relaxed isolation

among concurrent transactions in the WS-BusinessActivity specification. In this sec-

tion we introduce our proposal for extending the current web service transactions’
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framework in order to solve this problem.

WS-Scheduler

We extend the current web service transactions’ framework by introducing the WS-

Scheduler to implement the service-level concurrency control according to the the

multi-level transactions model we presented in Section 4.2. The WS-Scheduler resides

on the web service provider’s side and is responsible for managing concurrent instances

of the WS-Coordination (and WS-BusinessActivity) protocol. Figure 4.4 shows how

the WS-Scheduler is integrated into the standard framework.

The WS-Scheduler maintains a list of active participants, and the transaction con-

texts they are involved in. This can be easily implemented as part of the invocation

mechanism. As every service request within a global transaction is associated with

the coordination context according to the WS-Coordination standard [Comg], the

context is extracted from the received message and a new participant is created. The

control is then transferred to the Scheduling Service of the WS-Scheduler, which (on

behalf of the created participant) registers itself as a participant of the given context.

This is done by invoking the registration service at the given coordinator address.

The Scheduling Service then checks if there are transactional dependencies between

the requested service operation and previously executed operations of active transac-

tions. The WS-Scheduler maintains a dependency graph and decides (based on the

deployed concurrency control mechanism) when transactions are allowed to commit

their activities and leave the system. This ensures that commit and compensation

requests are handled consistently. In the following sections we describe in detail how

potential transactional conflicts are detected and handled.

In the extended framework all coordination (response) messages from the coordi-

nator are received and processed by the WS-Scheduler before forwarding them to the

participant. For example, when a commit message is received from the coordinator,

the WS-Scheduler has to check first whether this transaction is allowed to commit

before forwarding this message to the respective participant. Consequently, all the

states of the web services in the different contexts (e.g. completing, compensating,

aborted etc) as defined by the WS-BusinessActivity specification are kept by the WS-

Scheduler. Similarly, all responses by the participants to the coordination messages

are sent through the WS-Scheduler, and the WS-Scheduler updates the dependency

graph accordingly.
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Figure 4.4 Extended web service transaction framework

In Figure 4.5 we refer back to the use case scenario of Section 4.1. The two

processes Process 1 and Process 2 access the online banking service within two inde-

pendent contexts. The two contexts are coordinated by two autonomous coordinators

WS-Coordinator 1 and WS-Coordinator 2 and represented locally by two participants

P1 and P2 respectively (Figure 4.5-a). Potential transactional dependencies between

the two contexts cannot be detected as they are not visible to the two coordinators.

With the deployment of the WS-Scheduler as shown in Figure 4.5-b, such depen-

dencies can be easily detected and appropriately handled. Upon the invocation of

the deposit operation by Process 1 a new node (P1) is added to the transactional

dependency graph to represent the instance of the service, which is participating in

the context of Process 1. Another node (P2) is also added to the graph as Process

2 invokes the withdrawal operation of the service, and an edge between the two

instances (P1 and P2) is added to the graph to represent the dependency relation

between the two processes. Keeping this linkage between the two instances and using

a concurrency control mechansim (as we will describe later in this chapter), enables

the WS-Scheduler to ensure that conflict between the two processes such as the one

described in the motivating scenario not occur.

Detection of Transactional Dependencies

The conflict matrix, which is used by the WS-Scheduler at run-time to detect poten-

tial transactional dependencies between two subsequent service invocations, is built

at design-time by the service provider based on his knowledge about the implemen-
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(a): Using the current framework (b): Using the extended framework

Figure 4.5 The Online Banking Service with the extended framework

tation of the services. The conflict matrix is an N ×N matrix, where N is the total

number of operations that can be invoked via web service calls. The conflicts can be

defined based on the semantics of these operations (i.e. based on their behavior and

effects) to reflect their execution commutativity relations [Wei91]. Two operations

do semantically conflict if they do not commute, i.e. if changing the order of their

execution results in different final state. Consider our Banking web service example,

and assume that the service has three operations: deposit(A, x$), withdraw(A, x$)

and getBalance(A). A deposit (or withdraw) operation performs a credit (or debit)

action on the requested account A with the specified amount of money (i.e. x$). A

getBalance operation returns the current balance of the specified account and writes

the returned value into a log record. According to this functional description a with-

draw operation would semantically conflict with a deposit operation if it was called

while the transaction that invoked the deposit operation is still active (i.e. neither

committed nor aborted). On the other hand, invoking the deposit operation after

a withdraw operation can be tolerated. The operation getBalance does not conflict

with any other operation in this example.

However, this definition of semantic conflicts has its limitation: decisions about

conflicts are made independently on the accessed resources and their status at run

time. Therefore, we extend the commutativity-based conflict definition to capture

the dynamic nature of semantic conflict relations. We use conflict predicates, which
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can be defined by the service provider at design time and evaluated at request time

to detect any transactional conflicts. The conflict predicate takes input parameters

(e.g. account number) and the current status of the targeted resources (i.e. cur-

rent balance) as parameters and returns either a TRUE (i.e. conflicting) or FALSE

(i.e. not conflicting). For example, in our Banking web service example, a conflict

predicate for the deposit(A1, x1)/withdraw(A2, x2) operations would check if the two

operations access the same bank account (i.e. if A1 == A2), and also compare the

requested amount of money (x2) with the last committed balance (b − x1). If the

requested amount of money is greater than the current balance a conflict is detected

and the predicate evaluates to TRUE and it evaluates to FALSE otherwise. The

conflict predicate for state-independently non-conflicting operations always returns

a TRUE, while the conflict predicate for state-independently conflicting operations

always returns a FALSE. Table 4.1 gives an example of a conflict matrix for the

Banking web service including the conflict predicates. In this paper we assume that

semantic conflict matrices are built and updated by the service provider and made

accessible to the WS-Scheduler.

Request operation

Last executed operation

withdraw (A1, x1) deposit(A1, x1) getBalance(A1)

withdraw (A2, x2) FALSE A1 == A2 ∧ x2 > b− x1 FALSE

deposit(A2, x2) FALSE FALSE FALSE

getBalance(A2) FALSE FALSE FALSE

Table 4.1 Conflict Matrix of the Banking Web Service

4.3 Concurrency Control For Web Services

Extending the standard Web service transactions framework with WS-Schedulers

enables the detection of transactional dependencies between concurrent processes.

However, once detected, these dependencies need to be handled appropriately to

ensure consistent outcome of the dependent processes. In this section we present a

concurrency control mechanism for this purpose. We introduce a concurrency control

protocol, which is a distributed variant of the conventional Serialization Graph Testing
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protocol [WS84] and implements the Commit-Order preservation policy [WV01]. We

also present a distributed solution for handling global dependency cycles.

4.3.1 Optimistic Decentralized SGT Protocol

The proposed protocol is a distributed variant of the original Serialization Graph

Testing protocol (SGT) [WS84]. The SGT protocol maintains a graph representation

of the transactional conflicts among active transactions, called serialization graph

(i.e. dependency graph in our case). The global serializability of the concurrent

transactions is guaranteed by ensuring that the graph always remains acyclic. We

implement a distributed variant of the SGT protocol, in which every WS-Scheduler

maintains a local view of the global dependency graph. The local sub-graphs cap-

ture dependency relations among transactions that have active invocations to local

services. Each WS-Scheduler ensures that its local dependency sub-graph remains

acyclic. WS-Schedulers applying the Commit-Order preserving policy to control the

commit order of concurrent transactions. As discussed earlier in Section 4.2.1, this is

an optimistic concurrency control policy, in which concurrent access to local services

is accepted immediately, while a consistency check is made at the commit time. The

consistency of transactions’ outcome is ensured by the WS-Schedulers by applying

the following two rules:

1. A transaction is only allowed to commit after all its dominant transactions have

committed.

2. If a transaction aborts or compensates its local activities, the local activities of

its dependent transactions are compensated as well.

As a consequent of the first rule, any commit request issued by a dependent

transaction is delayed until all its dominants have committed. Therefore, we add a

new state, i.e. the waiting state, to the defined states of the WS-BusinessActivity

specification [Comf]. An extended version of the abstract state diagram of the WS-

BusinessActivity’s BusinessActivityWithCoordinatorCompletion protocol including

the new waiting state is shown in Figure 4.6. In addition to the defined message

types, we add the message WAIT in our protocol to inform the coordinators that their

commit request hast to be delayed due to consistency reasons. The WS-Scheduler

keeps track of the current state of all concurrent participants and their transactional
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Figure 4.6 Abstract state diagram of BusinessAgreementWithCoordinator-
Completion with the new waiting state

contexts. As soon as all dominants of a waiting transaction commit, the delayed

commit request is forwarded to the web service and the transaction’s coordinator is

informed by a COMPLETED message.

The example shown in Figure 4.7 shows how the WS-Scheduler controls the com-

mitment of transactions based on the local dependency graph. The commit requests

(i.e. COMPLETE messages) from transaction coordinators are received by the WS-

Scheduler on behalf of the participants. The WS-Scheduler then checks his local

dependency graph to determine whether this transaction has outgoing edges. In Fig-

ure 4.7-a the WS-Scheduler finds some outgoing edges of the transaction node (i.e.

the transaction is holding a shared lock) and decides to delay the commitment of

this transaction until all its dominants terminate. The COMPLETE message is not

forwarded to the participant and a WAIT message is sent to the coordinator. This

is important to avoid conflicting situations like the one given in the Online Banking

Service scenario from Section 4.1. The dependency relation between the deposit and

withdrawal operations can be defined in the conflict matrix at design time. Using

this information, the WS-Scheduler can detect at run time the dependency between

Process 1 and Process 2. Accordingly, an edge from Process 2 to Process 1 is added
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(a): delayed commit (b): immediate commit

Figure 4.7 WS-Scheduler decides upon commit requests

to the local SGT sub-graph. The WS-Scheduler delays the commitment of Process 2

until Process 1 terminates. This ensures that Process 1 can compensate its deposit

operation safely when required. The compensation of Process 1 ’s deposit operations

triggers the compensation of Process 2 ’s withdrawal operation automatically, in order

to preserve the overall consistency of the system. Figure 4.7-b depicts another situa-

tion, in which the WS-Scheduler finds that the transaction node in the sub-graph has

no outgoing edges (i.e. holding an exclusive lock). The commit request is accepted

and forwarded to the corresponding participant immediately. Upon receiving the

completed message from the participant, the WS-Scheduler removes the node from

its graph and forwards the COMPLETED message to the coordinator.

WS-Scheduler Protocol

The WS-Scheduler protocol is presented in Algorithm 6. The WS-Scheduler maintains

the SGT local sub-graph, a list of local web services and a list of active participants

and their transactional contexts including their current states. The WS-Scheduler

takes the Conflict Matrix as an input and uses this matrix for detecting potential

dependencies at run time.

Lines 16-33 in Algorithm 7 describe how the WS-Scheduler updates its SGT sub-

graph upon receiving new service invocation requests. A new node is added to the

graph if the invoking transaction (i.e. process) has not yet been added to the graph.

Using the Conflict Matrix, the WS-Scheduler detects potential dependencies and adds

a new edge from the invoking transaction’s node to every conflicting node. The edges

indicate that the new transaction is not allowed to commit before all its dominant
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transactions terminate. The WS-Scheduler then checks if the local dependency graph

remains acyclic after adding the new edges. If a cycle is found in the graph, the new

service invocation request is rejected and the new added node and all its outgoing

edges are removed from the graph.

Lines 35-50 in Algorithm 8 describe how the WS-Scheduler responds to coordi-

nation messages from transaction coordinators. When a COMPLETE message is

received (i.e. a commit request) the WS-Scheduler forwards the message to the cor-

responding participant only if the transaction does not have any dominants (i.e. its

node does not have any outgoing edges). Upon receiving the COMPENSATE mes-

sage from a transaction coordinator the WS-Scheduler triggers the compensation of

all its dependent transactions before forwarding the message to the participant.

Lines 52-61 in Algorithm 9 describe how the WS-Scheduler responds to internal

messages from the participants. All messages are forwarded immediately to the cor-

responding transaction coordinator. In addition, after forwarding a CANCELED or

CLOSED or COMPENSATED message, the WS-Scheduler removes the transaction

node as well as the calling participant from the dependency graph and the participants

list respectively as this indicates that the transaction has terminated.

Algorithm 6 WS-Scheduler Protocol - Main Procedure

Input :
SG = {} // local serialization graph
S = {s1, ..., sn} // list of local services
CM = n× nMatrix // Conflict Matrix
P = {} // list of active participants

1: while (true) do

2: if (newRequestReceived(Tt, sj)) then

3: // process new request from transaction Ti for service sj

4: execute Algorithm 7
5: end if

6: if (externalMessageReceived(m,Ti)) then

7: // process message m received from coordinator of Ti

8: execute Algorithm 8
9: end if

10: if (internalMessageReceived(m,Pi)) then

11: // process message m received from participant Pi

12: execute Algorithm 9
13: end if

14: end while
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Algorithm 7 WS-Scheduler Protocol - Part I

15: // processing new request from transaction Ti for service sj

16: if (¬ SG.contains(Ti)) then

17: SG.addNode(Ti)
18: Pi = createParticipant(Ti)
19: P+ = Pi

20: SG.setStatus(Ti, ACTIV E)
21: end if

22: D = getDominants(CM,SG, sj)
23: for all Tk such that Tk ∈ D do

24: SG.addLink(Ti, Tk)
25: end for

26: if (SG.isCyclic) then

27: rejectRequest(Ti, sj)
28: SG.removeNode(Ti)
29: P− = Pi

30: sendMessage(Ti, CANNOTCOMPLETE)
31: else

32: execute(sj)
33: end if

Algorithm 8 WS-Scheduler Protocol - Part II

34: // processing message m from coordinator of Ti

35: Switch (m)
36: case COMPLETE:
37: if (¬SG.hasDominant(Ti)) then

38: forward(m,Pi)
39: else

40: sendMessage(Ti, WAIT)
41: end if

42: EndCase

43: case COMPESATE:
44: compensateDependentOf(Ti)
45: forward(m,Pi)
46: EndCase

47: case CANCEL or CLOSE:
48: forward(m,Pi)
49: EndCase

50: EndSwitch
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Algorithm 9 WS-Scheduler Protocol - Part III

51: // processing message m from participant Pi

52: Switch (m)
53: case COMPLETED:
54: forward(m,Ti)
55: EndCase

56: case CANCELED or CLOSED or COMPENSATED:
57: forward(m,Ti)
58: SG.remove(Ti)
59: P− = Pi

60: EndCase

61: EndSwitch

4.3.2 Handling Global Dependency Cycles

By preserving the commit order of transactions, WS-Schedulers can guarantee consis-

tency of their accessed data. However, the distributed implementation of the commit

differing policy has a side effect, namely global waiting cycles. These cycles occur

as a result of dependency cycles that are neither visible to WS-Schedulers, nor to

WS-Coordinators. Figure 4.8-a depicts an example of such dependency cycles. In the

worst case, such cycles can lead to having the transactions waiting for ever.

Definition 6. (Waiting Cycle) A waiting cycle is a dependency cycle involving k

transactions T1, , Tk, k > 1, such that: 1) Ti depends on Ti+1 for 1 ≤ i ≤ k − 1 2) Tk

depends on T1 3) Ti is ready to commit, 1 ≤ i ≤ k

According to this definition, we consider only dependency cycles in which all in-

volved transactions have already reached the ready-to-commit state. In the following

we present two methods for for handling global waiting cycles in a fully distributed

manner: the Edge Chasing approach and Pre-Scheduling approach.

Edge Chasing Approach

In order to detect global waiting cycles in the absence of global knowledge we need

a distributed solution that leverages local knowledge of the involved transactions.

The edge chasing method [Kna87], which was designed for detecting deadlocks in

distributed databases, has been proposed in [CJK+05] and [HST05] for this pur-

pose. The transaction coordinators maintain local versions of the dependency graph

and update it based on the conflict information they receive from the web service
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(a): Example of a global dependency cycle (b): Edge chasing-based detection

Figure 4.8 Dependency cycle detection using Edge Chasing

providers. Conflicts are then resolved by direct communication among the conflicting

transactions. Although successful in detecting global waiting cycles, this approach

suffers from several problems. First, the exchanged dependency information can re-

veal some business relations and activities, which might be confidential. Therefore

the assumption that each transaction initiator would like to exchange these informa-

tion is unrealistic. Second, handing over the concurrency control and maintaining

transactional dependency graphs to the transactions’ coordinators is not practical,

since it requires extensive communication between independent coordinators in order

to keep their versions of the graphs up-to-date.

In contrast to this approach, our solution separates the roles of the transaction

coordinators (commitment protocol) and transaction schedulers (concurrency control

protocol). Maintaining the dependency graph by a WS-Scheduler does not require

any extra communication with other transactions than those who are actually using

the services managed by this WS-Scheduler.

We apply the edge chasing algorithm in a way that avoids direct communication

between independent transactions as in the example shown in Figure 4.8-b. The cycle

detection process can be started by a WS-Coordinator upon the receipt of a WAIT

message. The WS-Coordinator creates a unique token (e.g. using the transaction id

and client IP address). We call this token a WaitingCycleCheck. The token is then

sent to the WS-Scheduler that sent the WAIT message. The WS-Scheduler forwards

the token to the sender’s dominants (according to its local dependency graph). Each

of the receiving WS-Coordinators in turn checks the status of its web services and

responds as follows. If the WS-Coordinator has no services in the waiting state, it

replies by sending a NoWaitingCycle. Otherwise, the WS-Coordinator propagates
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the WaitingCycleCheck token to the (WS-Schedulers of the) waiting web services.

This policy ensures that the token is only propagated when all involved transactions

are in a waiting state and ready to commit. This is an important condition that

adheres to Definition 6 and is useful for the cycle resolution as we will see later. As

a result of the cycle detection process, the initiator of this check either receives a

NoWaitingCycle token or its own WaitingCycleCheck token. While the former case

indicates that some of the dominant transactions are still busy, which means that the

WS-Coordinator has to wait, the latter case indicates the existence of a waiting cycle,

which needs to be resolved. Conventionally, waiting cycles are resolved by means of

either a complete or partial roll back of (some of) the involved transactions [Kna87].

A victim selection policy is usually applied to select the transactions to be restarted.

Note that in the context of Web Services-based business transactions restarting al-

ready completed transactions can reduce the performance dramatically. Therefore,

we use a forward cycle resolution policy instead. Based on the strong condition that

WS-Coordinators forward the WaitingCycleCheck token only if they are ready to

commit, we allow WS-Coordinators to commit their activities once a waiting cycle is

detected, as long as all involved transactions are ready to commit. The readiness to

commit is implicitly confirmed by the transaction coordinators when forwarding the

WaitingCycleCheck token instead of responding with a NoWaitingCycle token. As

soon as a WS-Coordinator receives his own WaitingCycleCheck token, it knows that

t is involved in a dependency cycle and that all involved transactions are ready to

commit. By committing and closing own activities, the dependency cycle is resolved

and other transactions can safely commit as well.

Pre-Scheduling Approach

In contrast to the edge chasing approach, pre-scheduling of transactions solves the

waiting cycle’s problem without high communication costs. This is useful for envi-

ronments where the probability of getting into transactional conflicts is very high.

For example, when some web services are heavily used by many concurrent busi-

ness transactions. In such case, using the edge chasing approach would raise a high

communication cost for detecting and resolving global dependency cycles. The basic

idea of the pre-scheduling approach is to impose some time constraints on using Web

services and communicate this information with service requesters. By checking the

time constraints of all Web services in a transaction, WS-Coordinators detect timing
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conflicts that can lead to blocking the transaction at commit time and handle them

appropriately prior the actual execution of the transaction.

Recall the concept of exclusive and shared locks from Section 4.2. A transaction

that does not depend on the outcome of any other transaction is said to have an

exclusive lock. This means that this transaction can commit its local changes imme-

diately without any delay. A transaction holding a shared lock, on the other hand,

is not allowed to commit until all its dominant transactions terminate and its shared

lock is upgraded to an exclusive lock. In the pre-scheduling approach, WS-Schedulers

impose time constraints on holding exclusive locks. Any timing conflict between the

participating Web services can lead to blocking the transaction at commit time.

In the following we give a formal definition of a transaction schedule.

Definition 7. (Transaction Schedule) Let T be a business transaction composed of

n Web services WS1, ...,WSn. Let Li be the expected time for acquiring the exclusive

lock of WSi and Ri be the deadline for releasing this exclusive lock. A transaction

schedule S of T is a schedule in which Li and Ri are defined for all WSi ∈ T ,

1 ≤ i ≤ n.

Both the expected time for acquiring an exclusive lock of a Web service and the

deadline for releasing the lock are specified by the corresponding WS-Scheduler. The

WS-Schedulers specify these time constraints based on the concurrency policy of the

service provider, the current status of the local SGT sub-graph and statistical informa-

tion about the expected service execution duration (i.e. mean and standard deviation

values). WS-Schedulers provide the necessary interface for WS-Coordinators (e.g. via

a Web service interface) to inquiry about these time constraints when required. In

the following we give a formal definition of blocking and nonblocking schedules.

Definition 8. (Blocking vs. Nonblocking Schedule) Let T = {WS1, ...,WSn} be a

business transaction. Let Lmax = maxn
i=1(Li), be the latest exclusive lock acquisition

time and Rmin = minn
j=1(Rj), be the earliest deadline for releasing an exclusive lock

in a schedule S of T . Schedule S is nonblocking iff: Rmin > Lmax and is blocking

otherwise.

In other words, a transaction schedule is blocking if the acquisition of the required

exclusive locks cannot be synchronized, i.e. not all needed exclusive locks can be ac-

quired before the earliest release deadline. The synchronization of the exclusive locks

acquisition ensures that all web services are able to commit at the same time. Con-
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(a): conflict-free schedule (b): conflict between WS1 and WS3

Figure 4.9 Avoiding Dependency Cycles via Pre-Scheduling

sequently, the invoking business transaction is not going to be blocked (i.e. delayed)

by any of the participating WS-Schedulers at commit time.

We explain this further in the following example. Figure 4.9 illustrates two exam-

ple schedules for a transaction with three Web services. The schedule in Figure 4.9-a

is an example of a nonblocking schedule. We see that the exclusive lock holding spans

(i.e. time span between lock acquisition L and lock release R) of all web services are

overlapping, i.e. locks can be acquired (and released) before the earliest provider’s

deadline Rmin s expired. Recall that these lock holding spans are given by the partic-

ipating WS-Schedulers based on the current status of their local dependency graphs.

Hence, the overlap between the exclusive lock holding spans implies that the trans-

action’s node in all distributed dependency sub-graphs has no outgoing edges at the

period between Lmax and Rmin. The WS-Coordinator can safely commit and close its

transaction at all sites within this period without any delay. This also implies that

the transaction is not involved in any global dependency cycle.

The schedule shown in Figures 4.9-b, on the other hand, is an example of a blocking

schedule. There is a conflict between the lock holding spans of WS1 and WS3 as the

activities of WS3 cannot be committed before Lmax, which is later than the deadline

Rmin imposed by WS1. When such a blocking schedule is detected, WS-Coordinators

have to handle this by re-scheduling the execution of the transaction at a later point

of time that does not lead to the same conflict as described in Algorithm 10.

This pre-scheduling algorithm is executed by the WS-Coordinator prior the ac-

tual execution of the business transaction. First, the WS-Coordinator inquiries about
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the timing constraints for acquiring and releasing the exclusive locks of each of the

involved services (Lines 1-5 in Algorithm 10). The queries are sent to the schedul-

ing service of the corresponding WS-Schedulers. Each WS-Scheduler responds to

this query by checking its local dependency graph and makeing an offer for the WS-

Coordinator based on the current load at the moment of the request (i.e. based on

the list of active transactions). The WS-Coordinator then checks these constraints to

detect any timing conflict (Lines 6-11 in Algorithm 10). There is a conflict if the lock

holding spans of all the involved services do not overlap. The WS-Schedulers verifies

this by comparing Lmax and Rmin, i.e. the latest acquisition time and the earliest

release deadline respectively. There is an overlap between all lock holding spans if

Lmax < Rmin, i.e. all locks can be acquired, before the earliest deadline expires. Oth-

erwise, a conflict is detected and the WS-Coordinator repeats the previous steps in

randomly set time intervals until a conflict-free (i.e. nonblocking) schedule is found.

Once a conflict-free schedule is found, the WS-Coordinator uses the overlapping inter-

val Lmax to Rmin for all web services in the transaction in order to synchronize their

commit (Lines 12-15 in Algorithm 10). The WS-Coordinator communicates these

values establishes a service Level Agreement (SLA) with all involved WS-Schedulers.

Algorithm 10 Transaction PreScheduling

Input :
T = {WS1, ...,WSn} // a transaction composing n services

1: for all WSi ∈ T do

2: Scheduleri = WS-Scheduler of WSi

3: Li = Scheduleri.getLockAcquisitionTime(WSi)
4: Ri = Scheduleri.getLockReleaseDeadline(WSi)
5: end for

6: Lmax = maxn
i=1(Li)

7: Rmin = minn
i=1(Ri)

8: if (Lmax > Rmin) then

9: wait for a random amount of time
10: goto step
11: end if

12: for all WSi ∈ T do

13: Li = Lmax

14: Ri = Rmin

15: end for
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4.4 Experimental Evaluation

The purpose of this evaluation is to study the performance of our distributed and op-

timistic variant of the SGT protocol in comparison with the conventional distributed

Two Phase Locking protocol (2PL). We experimented with both global cycle handling

methods: the edge chasing method and the pre-scheduling method. The performance

is measured in terms of average response time (as perceived by the business trans-

action’s initiator) and overall throughput of the system (i.e. number of terminated

transactions per second). Our hypothesis that we want to validate, is that our solu-

tion outperforms the distributed 2PL in terms of both criteria. For the purpose of

this evaluation, we implemented a prototype for the WS-Coordination and the Busi-

nessActivityWithCoordinatorCompletion protocol according to the BusinessActivity

specifications [23]. On the service provider’s side, we implemented the WS-Scheduler

component and extended the participant’s functions to be able to communicate with

it. On the client-side, we extended the coordinator’s functions to be able to support

the cycle detection service as well as the pre-scheduling algorithm.

4.4.1 Experiment Settings

For experimental evaluation purposes we simulated the environment of concurrently

running Web service-based processes. In each experiment we ran a number of con-

current transactions each of them is assigned to a coordinator. Every transaction is

composed of a (randomly set) number of tasks; each of them can be accomplished by

one of several alternative Web services from different providers. Every call to a service

starts a new thread, which performs some transactional operations (read/write) on

some local resources (text files). To simulate variant execution lengths of the Web

services, we delay the return of the results by a randomly set amount of time following

a Pareto distribution. Table 4.2 summarizes the different parameters of the simula-

tion setup in our experiments. All experiments were conducted on a machine with a

2GHz Genuine Intel CPU, T2500 processor and 2GB RAM equipped with Microsoft

Windows XP Professional Version 2002. The JVM used is J2SE 1.5.

In this experiment we measure the average response time and overall throughput

of the concurrency control methods under different concurrency levels. We execute

the transactions in several runs with a different number of alternative web services

in each run. By varying the number of alternative web services (from 200 to 40),

96



4.4 Experimental Evaluation

number of concurrent transactions 100

number of web services per transaction 5 to 30

number of providers per service 40 to 200

service execution length 5 to 30 seconds

distribution of service execution length Pareto

shape parameter of Pareto distribution α = 3

scale parameter of Pareto distribution β = 5

service execution mean value 7.5 seconds

service execution standard deviation 4.3 seconds

Table 4.2 Simulation setup

the probability that transactions invoke the same web service increases, hence, the

probability that transactional dependencies among them occur also increases.

In the experiments we compare between the following three methods:

• 2PL: the distributed Two Phase Locking protocol used in distributed database.

• DSGT EdgeChasing: our proposed distributed Serialization Graph Testing pro-

tocol with edge chasing for handling global dependency cycles.

• DSGT PreScheduling: our proposed distributed Serialization Graph Testing

protocol with pre-scheduling for handling global dependency cycles.

4.4.2 Response Time vs. Concurrency Level

In Figure 4.10, we compare the average response time of the three methods, 2PL,

DSGT EdgeChasing and DSGT PreScheduling. The measured response time of 2PL

is the required time for acquiring all the requested locks. The response time of

DSGT EdgeChasing involves waiting times that are caused by the commit differ-

ing policy and the response time of DSGT PreScheduling is the required time for

finding a nonblocking schedule. The results shown in Figure 4.10 indicate that the

average response time of all methods increases as the concurrency level increases

(as the number of alternative services decreases). However, the response time of

DSGT in both cases increases much slower than the response time of 2PL, which

indicates that DSGT is much more efficient and scalable. We also notice that the

response time of DSGT PreScheduling is in average lower than the response time of
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DSGT EdgeChasing. This is because in the DSGT PreScheduling transactions avoid

unnecessary waiting times by ensuring that the transaction schedule is conflict-free

prior the actual execution. In DSGT EdgeChasing on the other hand, transactions

start execution immediately and delay the dependency check till the commit time.

This quite often leads some transactions being blocked by other dominant ones due

to the Commit-order preserving policy.

Figure 4.10 Response time versus concurrency level

4.4.3 Throughput vs. Concurrency Level

In this experiment we compare the overall throughput of the DSGT protocol and the

conventional 2PL protocol under different concurrency levels. The overall throughput

is measured by the number of terminated transactions per second. Figure 4.11 shows

that DSGT EdgeChasing and DSGT PreScheduling in average have a much higher

throughput than 2PL. We also observe that the throughput of DSGT EdgeChasing

and DSGT PreScheduling decreases as the number of available web services decreases

and, hence, the conflict probability increases. The throughput of DSGT EdgeChasing

however, decreases much faster than the DSGT PreScheduling, as more and more

transactions get delayed at commit time.

4.4.4 Communication Cost vs. Concurrency Level

The use of edge chasing algorithm for detecting global waiting cycles imposes some

overhead in terms of communication cost for propagating the tokens. Similarly, the
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Figure 4.11 Throughput versus concurrency level

use of pre-scheduling to avoid dependency cycles requires communication with the

involved WS-Schedules to detect potential timing conflicts. In the experiment shown

in Figure 4.12 we measure the communication cost in terms of average number of

messages exchanged between coordinators and schedulers. The number of messages

increases dramatically with the edge chasing approach as the dependency conflicts

among transactions increase. The communication overhead of pre-scheduling is in

average much less than the overhead of the edge chasing approach.

Figure 4.12 Communication cost comparison
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4.4.5 Throughput vs. Transaction Complexity

In this experiment we study the impact of the transactions complexity (i.e. number

of involved services) on the throughput of the applied concurrency method. There-

fore, we repeated the experiment three times with the maximum number of com-

posed services equals to: 10, 20 and 30 per transaction. The results shown in Fig-

ure 4.13 indicate that the throughput of all methods decreases when the number of

involved services per transaction increases. However, in all cases, the throughput of

the DSGT EdgeChasing and DSGT PreScheduling remains higher than the through-

put of the 2PL protocol.

Figure 4.13 Throughput versus transaction complexity

4.4.6 Throughput vs. Service Execution Duration

In this experiment we study the impact of the service execution duration on the

throughput of the applied concurrency method. For this purpose, we repeat the

experiment with the standard deviation of the service duration distribution equals

to: 4.3, 7.6, 13, 17.3 seconds (see Figure (a)). The results shown in Figure (b)

indicate that the throughput of all methods decreases as the standard deviation in-

creases. The throughput of the DSGT EdgeChasing decreases much faster than the

DSGT PreScheduling. However, in all cases the throughput of the DSGT PreScheduling

remains higher than the throughput of the 2PL protocol in all cases.

100



4.4 Experimental Evaluation

(a): Distribution of web service execution (b): Throughput

Figure 4.14 Throughput versus execution distribution

4.4.7 Summary of the Results

The results of the experimental evaluation have shown that the distributed serializa-

tion testing graph protocol outperforms the conventional distributed 2PL protocol in

terms of overall throughput and average response time. The results have also shown

that using edge chasing approach for detecting and resolving global dependency cycles

performs well with low level of conflicts. The performance of this approach decreases

as the conflict level increases, while its communication overhead increases signifi-

cantly. Therefore, this method for handling global dependency cycles is only useful

in small environments like enterprise-enterprise business transactions where the prob-

ability that concurrent transactions get into transactional conflict is not very high.

The pre-scheduling method performs better than the edge chasing method in all cases

even with high levels of conflict. The pre-scheduling method, therefore, fits well to

open and dynamic environments, where the level of conflicts is not predictable. This

method is also useful for business applications with tight time constraints. A disad-

vantage of the pre-scheduling method lies in the complexity of its implementation,

as it requires extending the WS-Coordinator’s and WS-Scheduler’s functionality to

schedule service invocations in a timely manner.
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Conclusion and Future Work

5.1 Summary of Contribution

This thesis addresses two challenging research problems related to the non-functional

aspects of web service composition.

The first research problem addressed in this thesis is the problem of efficient QoS-

aware service selection for web service compositions with end-to-end QoS constraints.

The contribution of this thesis is in developing approximate solutions for service se-

lection that outperforms the exact solutions in terms of computation time while still

able to achieve close-to-optimal results. A hybrid approach that combines global op-

timization with local selection techniques has been presented to solve this problem

more efficiently than existing solutions that relies solely on global optimization solu-

tions. The hybrid approach reformulate the QoS-aware service selection problem to

a problem of end-to-end QoS constraints decomposition. By solving the latter prob-

lem, end-to-end QoS constraints are mapped into local constraints on the component

service level, which in turn can be used by service brokers to find the best suitable ser-

vice for the composition among a list of functionally-equivalent ones. A skyline based

solution has been also presented to improve the scalability of the applied selection

method by focusing on the set of skyline services (or a subset of it called representative

skyline services) instead of the whole set of candidate services during the selection

process. A skyline-based algorithms for decomposing QoS constraints has also been

presented, which has been shown to perform better than the original greedy method

used by the hybrid approach. In addition, a method for assisting service providers to

improve the QoS of their services and, hence, their competitiveness with minimum
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cost was presented. Extensive experimental evaluation of the proposed solutions with

both real and synthetic datasets have been presented. The results of this evaluation

have shown significant improvement by the proposed solutions in comparison with

existing solutions.

The second research problem addressed in this thesis is the problem of ensuring

reliable execution of transactional web services. The contribution of this thesis is

in proposing an extension to the current web service transaction’s framework that

enables providing concurrency control on the web services’ level in a modular way,

by adopting a multi-level transaction model. In the new framework, the concept of

WS-Scheduler was introduced for detecting and handling transactional dependencies

among concurrent web service transactions. Moreover, an optimistic and fully de-

centralized concurrency control protocol was presented and complemented with two

distributed methods for detecting and handling global transactional dependencies

among concurrent web service transactions. Experimental evaluation of the perfor-

mance of the proposed concurrency control protocol in terms of response time and

throughput were presented. The results have shown that the proposed concurrency

control mechanism outperforms the conventional distributed two phase locking pro-

tocol in terms of response time and throughput.
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5.2 Outlook to Future Work

A possible continuation of the work presented in this thesis for QoS-aware service

selection is to relax the assumptions made about the QoS data of web services. For

example it would be interesting to consider the uncertainty of QoS data and develop

a probabilistic model for estimating the expected QoS level based on some statistical

data. Using such a probabilistic model, we would be able to select the services that

are more likely to meet the requested QoS level.

Another direction for continuing this work could be to generalize the models and

solutions we have presented to cover not only non-functional QoS criteria but also

other criteria that are directly related to the functionality delivered by the service,

like for example, the quality of the results delivered by a hotel search web service.

Such generalization brings more challenges that need to be addressed such as defining

a unified model for describing and evaluating functional QoS attributes.

A possible direction for continuing the work presented in this thesis for transac-

tional web services could be to develop a cost model for assisting service providers in

estimating the benefit/overhead of scheduling a service request. Such a model could

help the service providers in making decisions about accepting or rejecting service

requests in a way that maximizes the utilization of their resources.
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