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Tensor network methods have become a powerful class of tools to capture strongly correlated matter, but
methods to capture the experimentally ubiquitous family of models at finite temperature beyond one spatial
dimension are largely lacking. We introduce a tensor network algorithm able to simulate thermal states of two-
dimensional quantum lattice systems in the thermodynamic limit. The method develops instances of projected
entangled pair states and projected entangled pair operators for this purpose. It is the key feature of this algorithm
to resemble the cooling down of the system from an infinite temperature state until it reaches the desired finite-
temperature regime. As a benchmark we study the finite-temperature phase transition of the Ising model on an
infinite square lattice, for which we obtain remarkable agreement with the exact solution. We then turn to study
the finite-temperature Bose-Hubbard model in the limits of two (hard-core) and three bosonic modes per site.
Our technique can be used to support the experimental study of actual effectively two-dimensional materials in
the laboratory, as well as to benchmark optical lattice quantum simulators with ultra-cold atoms.

Tensor network (TN) algorithms have become a powerful
tool in the study of quantum many-body systems [1–4]. They
build upon and further develop the so-called density matrix
renormalisation group (DMRG) approach [5, 6], that is able to
simulate ground states of one-dimensional strongly correlated
systems essentially to machine precision. Once the structure
of DMRG was understood as being a tensor network approach
[7], further method development followed. This prominently
included methods to capture time-dependent problems [8–10],
as well as a machinery to describe open dissipative systems
[11–15] and thermal states in one spatial dimension [16–18].

The study of two dimensional strongly correlated systems
with TN methods, however, comes along with serious numeri-
cal effort and conceptual challenges [19, 20]. Projected entan-
gled pair states (PEPS) allow to grasp pure ground states of
two-dimensional models [21, 22]. For thermal states, though,
the numerical challenge is even harder, where only few meth-
ods have been proposed for simple spin systems [23–25] in
sharp contrast to ground state calculations and much remains
to be explored. This is even more of a serious omission since
two-dimensional quantum systems at finite temperature are
ubiquitous in a number of context. This prominently includes
effectively two-dimensional quantum materials in real labora-
tory conditions as well as systems of ultra-cold atoms in opti-
cal lattices in instances of quantum simulations [26, 27] in the
quantum technologies [28].

In this work, we innovate an efficient tensor network algo-
rithm for capturing thermal states of quantum lattice systems
in two spatial dimensions and in the thermodynamic limit.
Our approach significantly further develops a core idea of Ref.
[13] in that it uses the vectorization of a PEPS together with
simple update and corner transfer matrix (CTM) techniques
[29–32]. The scheme starts from an infinite-temperature state
and simulates the annealing towards lower temperatures until
reaching the desired regime. Our method is particularly effi-

cient and practical in realistic situations. Compared to previ-
ous attempts to simulate 2D thermal states with TNs, it can go
well beyond Ising-type simulations of locally-purified thermal
PEPS [33], and is far more efficient than 2D TN algorithms
based on cluster updates and self-consistent environment cal-
culations [34]. To exemplify this point, equipped with this
powerful tool, we turn to simulating thermal Ising and Bose-
Hubbard models on an infinite square lattice. While the Ising
model is an excellent benchmark [35], the study of the Bose-
Hubbard model allows to compare with realistic lab settings
in optical lattice experiments performing quantum simulations
[26–28] of strongly correlated matter.

Methods. Our approach is a “cooling down” or “anneal-
ing” technique that we describe in what follows. A thermal
state in the canonical ensemble and for Hamiltonian H can be
written, up to normalization, as ρ = e−βH for some inverse
temperature β = 1/T > 0. This state can also be written as

ρ = e−βH/2 I e−βH/2, (1)

where I is the identity operator which, for a lattice system,
decomposes as the tensor product of identities for every site.
As such, this state can be understood, at least intuitively, as
an imaginary time evolution with respect to both the vector
(“ket”) and the dual vector (“bra”) degrees of freedom. The
identity I can easily be written as a projected entangled pair
operator (PEPO) of unit bond dimension. Moreover, I is also
the mixed quantum state (again up to normalization) at β =
0 (T = ∞). Thus, in order to obtain a thermal state at finite
temperature T , one can simply cool down, i.e. anneal, this
state. Ideally, this is done as “slowly” as possible in the sense
of a large number of steps in order to avoid getting stuck in
metastable states. To simulate this procedure, one can divide
the final anticipated β into positive integer m “temperature
slices” ∆β � 1, such that m∆β = β. The mixed state can
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then be written as

ρ = (e−∆βH)m/2 I (e−∆βH)m/2, (2)

see Fig. 1(a). The exponential e−∆βH can be well approx-
imated via a Suzuki-Trotter expansion. For instance, for a
local Hamiltonian made of two-body non-commuting terms
H =

∑
i,j hi,j with ‖hi,j‖ = O(1), one has ‖e−∆βH −∏

i,j e
−∆βhi,j‖ = O(n2∆β2) for a system size n. In order

to simulate Eq. (2), we build on the vectorization approach
from Ref. [13], i.e., we consider vectors and dual vectors to-
gether, and implement the thermal state as an imaginary-time
evolution of a vectorized mixed state |·〉] as

|ρ〉] = (e−∆βH⊗1)m/2(e−∆β1⊗HT

)m/2|I〉], (3)

using an isomorphism between mixed states ρ and state vec-
tors |ρ〉]. This equation means that the calculation of the ther-
mal state is formally equivalent to the imaginary-time evolu-
tion of a state vector |I〉]. The key point is that, for a Hamilto-
nian H consisting of local interactions on a two-dimensional
lattice, we can actually implement such an evolution using
the full machinery of algorithms that has been developed for
pure states. We do this by choosing to work with the so-
called “simple update” [36] scheme for tensor updates with
∆β = 10−4, and CTM techniques [31, 32] for the evaluation
of expectation values. The simple update scheme assumes
a ‘mean-field’ like environment while making the tensor up-
dates. The effect of the whole environment is then included
while calculating the observables using the CTM techniques
as illustrated in Fig. 1(c).

Our method has a number of advantages with respect to
other approaches in two spatial dimensions. First, and as
said above, we can straightforwardly apply everything we
already know about imaginary-time evolution of PEPS, in-
cluding different schemes of tensor updates, this one turn-
ing out to be particularly feasible. Second, it is much more
efficient than schemes based on TNs for purifications of the
mixed state [11, 12, 33], because we only need a single
2D layer of tensors to describe expectation values and ef-
fective environments, as compared to the double-layer ap-
proach of purification schemes. The scaling in our case is
O(dD4 + χ2D4 + χ3D3) where d and D corresponds to the
physical and bond dimension of the PEPO and χ is the bond
dimension of the CTM. Moreover, it is known that such pu-
rifications may lead to lower accuracies (on top of slower per-
formance) in TN algorithms because of intrinsic limitations
[37, 38]. Additionally, we choose to use the “simple update”
of tensors throughout the evolution because it is particularly
fast and efficient when dealing with gapped systems. The sim-
ple update has a cost of O(d4D5 + d12D3). Given the large
degree of complexity of simulating two-dimensional thermal
states, we find that this degree of efficiency is important, and
it makes the algorithm way faster than those developed us-
ing other types of tensor updates, even without purifications
[34]. All in all, and as we shall see, our method provides
fast and accurate results for the studied systems not just in

(a) (b)

(c)

FIG. 1: (a) “Slicing” of an unnormalized thermal state ρ = e−βH

in m steps with inverse temperature change ∆β, as explained in
the main text, and for an infinite 2D square lattice. The evolution
operator e−∆βH is applied to both bra and ket indexes simultane-
ously, starting from the infinite-temperature mixed state I. After each
“slice”, the outcome can be approximated by a PEPO as in (b). In
(c) we show the contraction needed to compute a one-site reduced
density matrix, needed to evaluate local expectation values on that
site. This contraction is done using CTM methods. The structure of
the tensors leading to the CTMs is shown in the shaded region.

the limiting cases of infinite and zero temperature, but also
in the intermediate-temperature regime, where strong thermal
and quantum fluctuations are simultaneously present.

Results for the Ising model. We start by benchmarking the
validity of our approach with the ferromagnetic Ising model
on an infinite square lattice at finite temperature, which can
be exactly solved as famously proven by Onsager [35]. It is
easy to show that the thermal density matrix of this model can
be written as a PEPO with bond dimension D = 2. In order
to see this, consider the Hamiltonian of the model, given by

H = −
∑
〈i,j〉

σzi σ
z
j (4)

where σz is the Pauli-Z matrix supported on site j. The ther-
mal density matrix at inverse temperature β can be written as

ρ = eβ
∑

〈i,j〉 σ
z
i σ

z
j =

∏
〈i,j〉

(coshβ I + sinhβσzi σ
z
j ). (5)

The expression in Eq. (5) is nothing but a product over the
links of two-site matrix product operators (MPO) with bond
dimension two. The product of all such MPOs on a square lat-
tice amounts to an exact PEPO with bond dimension D = 2,
as claimed. Thus, the fact that this model allows for an exact
PEPO representation for any β > 0 implies that it is an excel-
lent model to benchmark our numerical method. Following
this idea, we obtain the PEPO for the thermal density matrix
by using our numerical technique. The results are depicted
in Fig. 2, where one can see that our algorithm produces re-
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FIG. 2: Finite-temperature phase diagram of the ferromagnetic Ising
model on an infinite square lattice. The red curve is obtained by
using our approach with bond dimension D = 2. The blue curve is
the exact solution obtained by Onsager [39]. In the inset we show the
relative error. Notice that the error increases around the critical value
of β, as expected from CTM contraction methods when dealing with
large amount of correlations.

markably good results when compared to the exact solution.

Results for Bose-Hubbard models. Next, we apply our
method to study the finite-temperature properties of a non-
integrable model, specifically the Bose-Hubbard model on the
infinite square lattice. The model is itself very relevant in
the context of ultra-cold atom experiments with optical lat-
tices. Moreover, real-life laboratory conditions imply small
thermal fluctuations, which we can conveniently target via
our method. The ground state properties of this model have
been widely studied with a variety of methods. For finite-
temperature, quantum Monte Carlo methods are still applica-
ble providing benchmark results [40, 41], but not in case of a
sign-problem, in contrast to the method used here [42].

We start by considering the hard-core limit, i.e., the situ-
ation when only one boson per site is allowed at most and
therefore we have a local Fock space of local dimension two
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FIG. 3: Phase diagram of the hard-core Bose Hubbard model for
different values of T . The x-axis corresponds to µ/J with J = 1
where µ is the chemical potential and J is the hopping parameter.
Results are for bond dimensions D = 2 (above) and D = 3 (below).
Circles correspond to the superfluid parameter (SFP) and crosses to
the number of particles (PD) per site. We can see that the superfluid
phase shrinks in size as we increase the temperature until it disap-
pears completely at T ≈ 1 and T ≈ 2 for D = 2 and D = 3
simulations respectively.

(empty/occupied state). The Hamiltonian is given by

H = −J
∑
〈i,j〉

(a†iaj + a†jai)−
∑
i

µn̂i (6)

where the real J is the hopping strength, a†i , ai are the hard-
core bosonic creation and annihilation operators at site i, µ is
the chemical potential and n̂i := a†iai is the number density
operator. In this limit the model is equivalent to the quantum
spin-1/2 XY model in the presence of an external field. This
is because the hard-core bosonic creation and annihilation op-
erators can be written in terms of spin raising and lowering op-
erators as a†i := Ŝ+ = 1

2 (σxi +iσyi ), ai := Ŝ− = 1
2 (σxi −iσ

y
i )

and n̂i := a†iai = 1
2 (σzi + I). Using this mapping, the model

can be written in terms of the spin-1/2 Hamiltonian

H = −J
2

∑
〈i,j〉

(
σxi σ

x
j + σyi σ

y
j

)
+
µ

2

∑
i

σzi . (7)

We have computed the thermal phase diagram of this model
using our annealing algorithm, and for completeness and
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comparison, also the zero-temperature properties with infinite
PEPS (iPEPS) [22, 43]. The particle density 〈n̂j〉 is shown in
Fig. 3 for bond dimension D = 2 and different temperatures
T , as a function of the chemical potential µ and taking J = 1.
For very low temperatures T ≈ 0, we see that 〈n̂j〉 = 0 for
µ ≤ −4 and 〈n̂j〉 = 1 for µ ≥ 4. These regions in the
phase diagram contain thus an integer number of bosons per
site and correspond to a Mott insulating (MI) phase, whereas
the region −4 < µ < 4 is in the super-fluid (SF) phase. As
the temperature increases, the size of the SF phase shrinks,
until eventually disappearing around T ≈ 1. We conclude
that the SF-MI transition is not just a property of the zero-
temperature state, but it also shows clear signatures at low but
finite temperatures. At larger temperatures T > 1, though, we
see that this transition is no longer visible. Additionally, we
have computed the order parameter ρ0 = |〈aj〉|2, which re-
veals the broken U(1) symmetry of the SF phase and provides
information on the “condensate fraction”. This is also shown
in Fig. 3. Clearly, the order parameter is vanishing for large
enough temperatures, as expected for the breaking down of
the condensate when the temperature of the system increases.
The finite bond dimension D seems to induce a finite corre-
lation length in the system, thus imposing an effective length
scale. The physics that we are observing, thus, may also be
more compatible in some situations with the expected behav-
ior for a finite system: this concerns, e.g., the appearance of a
finite condensate fraction at T 6= 0 [44]. The correct thermo-
dynamic limit is then recovered doing finite-D scaling.

We now turn to relaxing the hard-core condition in order to
allow for larger particle numbers per site. Here, we consider
the simplest soft-core example, allowing up to two bosons per
site, i.e., local Fock space of dimension three. This could in-
terestingly be achieved as the limiting case of strong three-
body dissipation [15, 45, 46] or by a proper tuning of the
super-exchange regime of spin-1 particles [47]. Such a re-
stricted Bose-Hubbard model might disclose paths towards in-
teresting fractional quantum Hall states, once decorated with
synthetic magnetic fluxes. The Hamiltonian is given by

H = −J
∑
〈i,j〉

(a†iaj + a†jai)− µ
∑
i

n̂i +
U

2

∑
i

n̂i(n̂i − 1),

(8)
which takes the same form as the hard-core Hamiltonian, but
with the extra term of the on-site repulsive density-density in-
teractions of strength U (and which are zero in the hard-core
limit U →∞). We perform a similar study as the one done in
the hard-core case, focusing on the small-hopping regime for
demonstrative purposes. In particular, we set the parameters
to J = 1, U = 100, and we study the phase diagram as a
function of the chemical potential µ. Our results are shown in
Fig. 4, where we find similar results as for the hard-core limit,
but with MI phases at 〈n̂j〉 = 0, 1, 2 and SF phases at interme-
diate regions between these occupation numbers which shrink
in size as the temperature increases and eventually tend to dis-
appear at sufficiently large T . Interestingly, the fluctuations of
the on-site occupation number, 〈n̂2

j 〉−〈n̂j〉2 (not shown here),
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FIG. 4: Phase diagram of the three-level Bose Hubbard model, a
softer version of the hard core constraint for different values of T ,
for U/J = 100. The plots with circular data marks correspond to
the superfluid parameter which is the square of the expectation value
of ai. The plots with cross data marks correspond to the number
of particles per site. The Mott insulating phase has integer particle
density (n = 1 and n = 2) while the superfluid phase (appearing
in between/between plateaus) breaks particle number conservation
symmetry. At sufficiently high temperatures, the superfluid disap-
pears in both intermediate regions, though most slowly in the second
one. The upper panel is for D = 2 and the lower panel for D = 3.
This time we observe very similar features for both values of the
bond dimension.

retain their qualitative behavior at all considered temperatures:
i) They vanish where 〈n̂j〉 exhibit plateaus, thus signaling a
certain robustness of the Mott features versus thermal fluctu-
ations. ii) They are sizeable in the intermediate regions, even
when the order parameter ρ0 vanishes, thus indicating that the
system is compressible but not coherent there. For example,
we have found that for µ/U = 0.4, the variance is of the or-
der of 10−3 confirming the robustness of the MI phase even at
T = 2. Moreover, the results of Fig. 4 also justify our approx-
imation of low occupation number (i.e., up to two bosons per
site, so that for larger µ the simulations are no longer reliable),
for the studied regime of chemical potential [48].

Conclusions. In this work we have introduced and dis-
cussed an efficient tensor network algorithm to compute finite-
temperature properties of two-dimensional quantum lattice
systems in the thermodynamic limit. The method uses an an-
nealing procedure which is simulated via vectorization of pro-
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jected entangled pair operators describing the thermal state.
We have benchmarked the algorithm with the exact solution of
the 2D Ising model on the square lattice, and applied it sub-
sequently to study finite-temperature properties of the Bose
Hubbard model on the square lattice, in the hard-core limit as
well allowing up to two bosons per site. Our method is fast
and easy to implement, whenever PEPS expertise is available
for ground state calculations. Because of this, it is our belief
that it will become a versatile tool in future studies of finite-
temperature properties of two-dimensional quantum matter, as
well as in the benchmarking of optical-lattice experiments in
two dimensions under real-life laboratory conditions.
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