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Human campylobacteriosis constitutes a zoonotic food-borne disease and a

progressively rising health burden of significant socioeconomic impact. We have recently

shown that conventional mice are protected from Campylobacter jejuni infection,

which was not the case for human microbiota associated (hma) mice indicating

that the host-specific gut microbiota composition primarily determines susceptibility

to or resistance against C. jejuni infection. In our present preclinical intervention

study we addressed whether gut microbiota changes in stably C. jejuni infected

hma mice following murine fecal microbiota transplantation (mFMT) could alleviate

pathogen-induced immune responses. To accomplish this, secondary abiotic C57BL/6

mice were generated by broad-spectrum antibiotic treatment, perorally reassociated with

a complex human gut microbiota and challenged with C. jejuni by gavage. Seven days

later C. jejuni infected hma mice were subjected to peroral mFMT on 3 consecutive days.

Within a week post-mFMT fecal pathogenic burdens had decreased by two orders of

magnitude, whereas distinct changes in the gut microbiota composition with elevated

numbers of lactobacilli and bifidobacteria could be assessed. In addition, mFMT resulted

in less C. jejuni induced apoptotic responses in colonic epithelia, reduced numbers of

macrophages and monocytes as well as of T lymphocytes in the large intestinal mucosa

and lamina propria and in less distinct intestinal pro-inflammatory cytokine secretion

as compared to mock challenge. Strikingly, inflammation dampening effects of mFMT

were not restricted to the intestinal tract, but could also be observed systemically

as indicated by elevated serum concentrations of pro-inflammatory cytokines such as

TNF-α, IL-12p70, and IL-6 in C. jejuni infected hma mice of the mock, but not the mFMT

cohort. In conclusion, our preclinical mFMT intervention study provides evidence that

changes in the gut microbiota composition which might be achieved by pre- or probiotic
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formulations may effectively lower intestinal C. jejuni loads, dampen both,

pathogen-induced intestinal and systemic inflammatory sequelae and may represent a

useful tool to treat continuous shedding of C. jejuni by asymptomatic carriers which is

critical in the context of food production, hospitalization and immunosuppression.

Keywords: Campylobacter jejuni infection, fecal microbiota transplantation, anti-inflammatory intervention

strategies, human microbiota associated mice, host-pathogen-interactions

INTRODUCTION

Human campylobacteriosis is among the four most
prevalent global causes of diarrheal morbidities, whereas
Campylobacter jejuni even constitutes the most common
bacterial etiologic agents of human gastroenteritis with
increasing prevalences worldwide (1, 2). In 2016, more than
250,000 cases of campylobacteriosis were reported in the
European Union and the European Economic Area with an
incidence of 66 cases per 100,000 subjects (3). One needs to take
into consideration, however, that the number of unreported
cases might be much higher due to asymptomatic carriers
and to difficulties in detection given the fastidious growth
requirements of the bacteria (4). The zoonotic pathogens are
part of the commensal gut microbiota of warm-blooded wild and
domestic animals. Humans become infected by consumption of
undercooked contaminated meat derived from Campylobacter
colonized livestock animals such as poultry, but also swine and
cattle or by ingestion of C. jejuni containing surface waters (5, 6).
Infected patients are either asymptomatic, present with rather
mild symptoms or suffer from abdominal cramps, fever, watery or
even inflammatory and bloody diarrhea (7, 8). Severely affected
intestinal tissues are histologically characterized by elevated
immune cell counts, crypt abscesses and ulcerations (9, 10). In
most cases, symptoms are self-limiting, resolve within 1 week
and require symptomatic therapy only (11). Antibiotic treatment
with macrolides or fluoroquinolones, however, might be
indicated in severe cases mostly affecting immunocompromised
patients (7, 8, 11). In rare cases, post-infectious sequelae such as
the Guillain-Barré syndrome, Miller Fisher syndrome, Reiter’s
syndrome, or reactive polyarthritis might arise (12–14). The
exact mechanisms underlying C. jejuni-host interactions are
yet only incompletely understood. One of the reasons for this
dilemma is that appropriate C. jejuni infection and inflammation
models have been missing for many years. Mice are convenient
in vivo vertebrate model organisms, but display a strong
physiological colonization resistance against C. jejuni infection
when bred and maintained under standard specific pathogen free
(SPF) conditions (15–17). Whereas, conventionally colonized
wildtype mice were protected from pathogenic colonization
following peroral C. jejuni challenge even of high loads, the

Abbreviations: CFU, colony forming units; D, d, day; FMT, fecal microbiota
transplantation; Hma, human microbiota associated; HPF, high power field; IFN,
interferon; IL, interleukin; mFMT, murine fecal microbiota transplantation; MLN,
mesenteric lymph nodes; n.s, not significant; PBS, phosphate buffered saline; qRT-
PCR, quantitative real-time polymerase chain reaction; SPF, specific pathogen free;
TNF, tumor necrosis factor.

pathogen could stably establish alongside the gastrointesinal
tract of mice in which the gut microbiota had been depleted
following broad-spectrum antibiotic treatment (15, 16).
Reassociation of microbiota-depleted (i.e., secondary abiotic)
mice with conventional murine gut microbiota via peroral
fecal microbiota transplantation (FMT), however, could restore
the colonization resistance against the pathogen, which was
not the case when microbiota depleted mice were reassociated
with fecal microbiota derived from human donors (15, 16).
Stable intestinal C. jejuni colonization of microbiota depleted
as well as of human gut microbiota associated (hma) mice was
further associated with pronounced pro-inflammatory immune
responses mimicking key features of human campylobacteriosis
(15). In our present preclinical intervention study we therefore
addressed whether gut microbiota changes in stably infected
C. jejuni mice harboring a human gut microbiota by peroral
FMT derived from murine donors could lower intestinal
pathogenic loads and dampen induced pro-inflammatory
immune responses.

MATERIALS AND METHODS

Ethics Statement
After approval by the commission for animal experiments
headed by the “Landesamt für Gesundheit und Soziales”
(LaGeSo, Berlin, registration number G0097/12 and
G0039/15) mouse experiments were conducted in
accordance with the European Guidelines for animal welfare
(2010/63/EU). Clinical conditions of mice were assessed
once a day.

Introduction of Human Gut Microbiota Into
Murine Microbiota Depleted Mice
C57BL/6j mice were reared under SPF conditions in the same
unit of the Forschungseinrichtungen für Experimentelle Medizin
(FEM, Charité - University Medicine Berlin). In order to
override physiological colonization resistance and assure stable
gastrointestinal C. jejuni colonization upon peroral challenge
lateron (15), the murine gut microbiota was depleted by broad-
spectrum antibiotic treatment as stated earlier (15, 18, 19). In
brief, at the age of 6–8 weeks mice were treated with ampicillin
plus sulbactam (1 g/L; Ratiopharm, Germany), vancomycin
(500 mg/L; Cell Pharm, Germany), ciprofloxacin (200 mg/L;
Bayer Vital, Germany), imipenem (250 mg/L; MSD, Germany),
and metronidazole (1 g/L; Fresenius, Germany) via autoclaved
drinking water for 8 weeks (ad libitum). Three days before
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FIGURE 1 | Experimental setup. Secondary abiotic mice were generated by broad-spectrum antibiotic treatment for 8 weeks. Three days before human

fecal microbiota transplantation (FMT) the antibiotic cocktail was replaced by sterile tap water to guarantee antibiotic washout. Microbiota depleted mice were then

subjected to human FMT on 3 consecutive days [i.e., day (d) −7, d−6, d−5]. To assure stable establishment of the human gut microbiota within the murine host, mice

were kept for another 7 days before C. jejuni infection. On d0 and d+1, human microbiota associated (hma) mice were perorally subjected to C. jejuni by gavage. One

week later, C. jejuni infected hma mice were treated with oral FMT derived from murine donors (d+7, d+8, d+9) and surveyed until necropsy on d+14.

human fecal microbiota transplantation, the antibiotic cocktail
was replaced by autoclaved tap water (Figure 1).

To introduce a complex gut microbiota of human origin into
the murine host, microbiota-depleted mice were subjected to
peroral human FMT on 3 consecutive days as described earlier
(20, 21). In brief, fresh fecal samples free of enteropathogenic
bacteria, viruses and parasites were collected from five individual
healthy human donors, dissolved in sterile phosphate buffered
saline (PBS, Gibco, Life Technologies, UK), aliquoted and
stored at −80◦C as state elsewhere (15, 22–24). Immediately
before FMT, individual fecal aliquots were thawed, pooled and
applied to mice perorally by gavage in a total volume of 0.3mL
(15, 22–24). To assure proper establishment of the complex
human microbiota in the murine host, mice were kept for 7 days
after the initial human FMT until C. jejuni infection (Figure 1).

C. jejuni Infection and Fecal Loads
For infection, a stock solution of C. jejuni 81–176 strain that
had been stored at −80◦C was thawed, aliquots streaked onto
karmali agar (Oxoid, Wesel, Germany) and incubated in a
microaerophilic atmosphere at 37◦C for 48 h. Immediately before
peroral infection of mice, bacteria were harvested in sterile PBS
to a final inoculum of 109 bacterial cells.

Female and male hma mice (4 months of age) were perorally
infected by gavage (in a total volume of 0.3mL PBS) on 2
consecutive days starting on day (d) 0 and d1 (Figure 1). C. jejuni
loads were monitored in fecal samples over time post-infection
as reported previously (15, 25). In brief, serial dilutions of fecal
samples were dissolved in sterile PBS, streaked onto karmali
agar and quantitatively assessed 48 h following incubation in
a microaerophilic atmosphere at 37◦C. The detection limit of
viable pathogens was≈100 CFU per g.

Murine Fecal Microbiota Transplantation
At days 7, 8, and 9 post-infection, C. jejuni infected hma
mice were treated with FMT from murine donors (Figure 1)

as described earlier (15, 22–24, 26). In brief, fresh murine
fecal samples were collected from 10 age and sex matched
conventionally colonized (i.e., SPF) mice, pooled, dissolved
in 10mL sterile PBS and the supernatant used as murine
donor suspension. Sex and age matched C. jejuni infected
hma mice were either perorally treated with 0.3mL of
murine donor suspension by gavage or received PBS only
as mock control animals (15, 22–24, 26). Immediately
before either FMT, aliquots from both, human and murine
donor solutions were collected for quantitative molecular
analyses of main intestinal bacterial communities as described
elsewhere (15, 18, 27).

Gut Microbiota Composition
DNA was extracted from fecal samples or fecal donor
suspensions as stated earlier (18, 28). In brief, DNA was
quantified by using Quant-iT PicoGreen reagent (Invitrogen,
UK) and adjusted to 1 ng per µL. Then, total eubacterial loads
as well as the main bacterial groups abundant in the murine
and human intestinal microbiota including enterobacteria,
enterococci, lactobacilli, bifidobacteria, Bacteroides/Prevotella
species, Clostridium coccoides group, Clostridium leptum
group, and Mouse Intestinal Bacteroides were determined by
quantitative real-time polymerase chain reaction (qRT-PCR)
with species-, genera- or group-specific 16S rRNA gene primers
(Tib MolBiol, Germany) as described previously (15, 27, 29)
and numbers of 16S rRNA gene numbers per ng DNA of each
sample assessed.

Sampling Procedures
At day 14 post-infection, mice were sacrificed (Figure 1)
by isofluran inhalation (Abbott, Germany). Ex vivo biopsies
from colon and mesenteric lymph nodes (MLN) were taken
under sterile conditions. Large intestinal samples were
collected from each mouse in parallel for microbiological,
immunohistopathological, and immunological analyses.
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FIGURE 2 | Kinetic survey of fecal C. jejuni shedding following murine fecal

microbiota transplantation of infected mice harboring a human gut microbiota.

Mice with a human gut microbiota were perorally infected with C. jejuni on day

(d) 0 and d1 (Infect) and subjected to (A) vehicle (mock) treatment or to (B)

murine fecal microbiota transplantation (mFMT) on d7, d8, and d9

post-infection (arrows; D0, D+1, D+2). Immediately before and after mFMT

fecal samples were taken at defined time points as indicated to assess

intestinal pathogenic loads by culture (expressed as colony forming units per

gram, CFU/g). Box plots represent the 75th and 25th percentiles of medians

(black bar inside the boxes). The total range, significance levels (p-values)

determined by the Kruskal-Wallis test and Dunn’s post-correction and the

numbers of C. jejuni positive mice out of the total number of animals (in

parentheses) are given. Data were pooled from four independent experiments.

***p < 0.001 comparing bacterial loads in mock vs. mFMT treated mice at

identical time points (Mann Whitney U-test).

Immunohistochemistry
Colonic ex vivo biopsies were immediately fixed in 5%
formalin, embedded in paraffin, and subjected to in situ
immunohistochemical analyses as reported previously (27,
30–32). In brief, for detection of apoptotic epithelial cells,
macrophages/monocytes and T lymphocytes paraffin sections
(5µm) were stained with primary antibodies directed against
cleaved caspase 3 (Asp175, Cell Signaling, Beverly, MA, USA,
1:200), F4/80 (# 14-4801, clone BM8, eBioscience, San Diego, CA,
USA, 1:50), and CD3 (#N1580, Dako, 1:10), respectively. Then,
positively-stained cells were quantitatively examined by a blinded
independent investigator (light microscopy, magnification 100x
and 400x). The average number of respective positively-stained
cells for each individual section was determined within at least
six high power fields (HPF, 0.287 mm2, 400x magnification).

Pro-inflammatory Cytokine Secretion
Large intestinal ex vivo biopsies were cut longitudinally and
washed in PBS. MLN (3 lymph nodes) or strips of approximately
1 cm2 colonic tissues were placed in 24-flat-bottom well culture
plates (Nunc, Germany) with 500 µL serum-free RPMI 1640
medium (Gibco, life technologies, UK) and supplemented with
penicillin (100 U/mL) and streptomycin (100µg/mL; PAA
Laboratories, Germany). After 18 h at 37◦C, culture supernatants
and serum samples were tested for TNF-α, IFN-γ, IL-6, and IL-
12p70 by the Mouse Inflammation Cytometric Bead Assay (CBA;
BD Biosciences, Germany) on a BD FACSCanto II flow cytometer
(BD Biosciences).

Statistical Analysis
Medians and levels of significance were determined using
Mann-Whitney test (GraphPad Prism v7, USA) for pairwise
comparisons of not normally distributed data and using the
one-sided ANOVA with Tukey post-correction or the Kruskal-
Wallis test with Dunn’s post-correction for multiple comparisons
as indicated. Two-sided probability p ≤ 0.05 were considered
significant. Experiments were reproduced three times.

RESULTS

Lower Intestinal Pathogenic Burdens
Following Murine Fecal Microbiota
Transplantation of C. jejuni Infected Mice
Harboring a Human Gut Microbiota
Mice with a human gut microbiota were perorally infected
with C. jejuni on days 0 and 1 and subjected to murine fecal
microbiota transplantation (mFMT) or received vehicle only on
3 consecutive days starting at day 7 post-infection (Figure 1).
Immediately before and after the mFMT we surveyed the
intestinal pathogenic loads over time by cultural analyses of fecal
samples. Following peroral infection,mice from themock control
group harbored more than 108 C. jejuni cells until the end of
the observation period (Figure 2A). As early as 72 h following
the latest mFMT (D+5), however, fecal C. jejuni burdens had
declined (p < 0.001; Figure 2B), whereas 1 week following the
initial mFMT (D+7), the median fecal pathogen loads were
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approximately two orders of magnitude lower as compared to
those obtained before the intervention (p < 0.001; Figure 2B).
Notably, single animals had even completely lost the pathogen
from their intestines as early as 5 days following the initial mFMT
(D+5; Figure 2B). Furthermore, in mice from the mFMT cohort
fecal C. jejuni loads were lower at individual time points post-
intervention as compared to mock counterparts (p < 0.001;
Figure 2). Hence, mFMT could sufficiently lower pathogenic
burdens in the intestines of hma mice.

Gut Microbiota Changes Following Murine
Fecal Microbiota Transplantation of C.
jejuni Infected Mice Harboring a Human
Gut Microbiota
We further addressed to what extent the commensal gut
microbiota composition of mice harboring a human gut
microbiota had changed upon the mFMT applying culture-
independent molecular methods. Seven days after the start of
the intervention (D+7), mice from the mFMT cohort displayed
higher numbers of lactobacilli (p < 0.01), bifidobacteria (p <

0.05–0.001), and Mouse Intestinal Bacteroides (p < 0.01–0.001)
as compared to mice from the mock group and naive control
animals, whereas fecal loads of Bacteroides/Prevotella species (p
< 0.001), and Clostridium coccoides (p< 0.001) were lower in the
former as compared to the latter (Figure 3). Furthermore, mFMT
treated mice displayed lower fecal Clostridium leptum loads as
compared to naive mice (p < 0.001; Figure 3). As expected,
marked quantitative differences in the main commensal bacterial
group abundant in the intestinal tract could be assessed
when comparing the fecal solutions from human vs. murine
donors (Figure S1). Hence, within 1 week mFMT results in
distinct changes of the intestinal microbiota composition of
hma mice.

Less Pronounced Intestinal Apoptotic Cell
and Immune Cell Responses Following
Murine Fecal Microbiota Transplantation of
C. jejuni Infected Mice Harboring a Human
Gut Microbiota
We next addressed whether mFMT resulted in less pronounced
C. jejuni induced inflammatory responses in the intestinal tract.
C. jejuni infection was associated with multifold increased
numbers of colonic apoptotic epithelial cells (p < 0.001),
unless infected hma mice had been subjected to mFMT
(n.s. vs. naive; Figure 4A; Figure S2A). At day 14 post-
infection, mock control mice exhibited increased numbers
of innate immune cell subsets such as macrophages and
monocytes (p < 0.001; Figure 4B; Figure S2B) as well as of
adaptive immune cells including T lymphocytes (p < 0.001;
Figure 4C; Figure S2C) in their colonic mucosa and lamina
propria, whereas respective immune cell populations were
lower in infected mice after mFMT vs. mock application
(p < 0.001; Figures 4B,C; Figures S2B,C). Hence, mFMT
dampens C. jejuni induced apoptotic cell and immune cell

responses in the large intestines of mice with a human
gut microbiota.

Less Intestinal Pro-inflammatory Cytokine
Secretion Following Murine Fecal
Microbiota Transplantation of C. jejuni
Infected Mice Harboring a Human Gut
Microbiota
We further addressed whether the dampened C. jejuni induced
immune responses upon mFMT were associated with less pro-
inflammatory cytokine secretion in the intestinal tract. In fact,
elevated TNF-α concentrations could be measured in colonic
ex vivo biopsies taken from mock controls at day 14 post-
infection (p < 0.05 vs. naive), which was, however, not the
case when mice had been challenged with mFMT (p < 0.001
vs. mock; Figure 5A). In support, multifold increased IFN-γ
concentrations were determined in MLN when taken from mock
animals (p < 0.001 vs. naive), but not from mice following
mFMT at day 14 post-infection (p < 0.001 vs. mock; Figure 5B).
Hence, mFMT resulted in less distinct pathogen induced pro-
inflammatory cytokine secretion in the intestinal tract in C. jejuni
mice with a human gut microbiota.

Less Systemic Pro-inflammatory Cytokine
Secretion Following Murine Fecal
Microbiota Transplantation of C. jejuni
Infected Mice Harboring a Human Gut
Microbiota
We further addressed whether the anti-inflammatory effects of
mFMT in C. jejuni infected mice was restricted to the intestinal
tract or also effective in the systemic compartment. Remarkably,
serum concentrations of TNF-α, IL-12p70, and IL-6 were all
elevated at day 14 following C. jejuni infection of mice in the
mock cohort (p < 0.01–0.001 vs. naive; Figure 6), but not in the
mFMT intervention cohort (p < 0.05–0.01 vs. mock; Figure 6).
Hence, the anti-inflammatory properties of mFMT in C. jejuni
infected mice were not restricted to the intestinal tract, but were
also effective systemically.

DISCUSSION

The specific gut microbiota composition of the vertebrate
host primarily determines susceptibity to or resistance against
infections with enteropathogens including C. jejuni (15–
17). The FMT as therapeutic application dates back to the
Chinese Dong-jin dynasty in the fourth century and has
very recently experienced a renaissance for the treatment of
recurrent and refractory infections with enterotoxin-producing
Clostridioides difficile strains, of inflammatory bowel diseases
and of the chronic fatigue syndrome, for instance (33–
39). Furthermore, FMT constitutes a promising antibiotics-
independent therapeutic approach to combat carriage with
(opportunistic) pathogens, particularly with multi-drug resistant
strains. In support, we were able to show very recently that
mFMT in hma mice on 3 consecutive days could effectively
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FIGURE 3 | Changes in intestinal microbiota composition following murine fecal microbiota transplantation of C. jejuni infected mice harboring a human gut

microbiota. Mice with a human gut microbiota were perorally infected with C. jejuni on day (d) 0 and d1 and subjected to murine fecal microbiota transplantation

(mFMT) or to mock treatment on d7, d8, and d9 post-infection (i.e., D0, D+1, D+2) or received vehicle (mock). Seven days later (i.e., D+7), the fecal commensal

microbiota composition was assessed applying culture-independent 16S rRNA methods quantitating the total eubacterial load and main bacterial groups as indicated

(expressed as gene numbers per ng DNA). Box plots represent the 75th and 25th percentiles of medians (black bar inside the boxes). The total range and significance

levels (p-values) determined by the Kruskal-Wallis test and Dunn’s post-correction and numbers of analyzed animals (in parentheses) are indicated. Data were pooled

from four independent experiments.
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FIGURE 4 | Colonic apoptotic epithelial and immune cell responses following murine fecal microbiota transplantation of C. jejuni infected mice harboring a human gut

microbiota. Mice with a human gut microbiota were perorally infected with C. jejuni on day (d) 0 and d1 and subjected to murine fecal microbiota transplantation

(mFMT) on d7, d8, and d9 post-infection (p.i.) or received vehicle (mock). On day 14 p.i., the average numbers of (A) caspase3+ (Casp3+) apoptotic epithelial cells,

(B) F4/80+ macrophages and monocytes and of (C) CD3+ T lymphocytes were assessed from six high power fields (HPF, 400x magnification) per mouse in

immunohistochemically stained colonic paraffin sections. Naive mice with a human gut microbiota served as uninfected and untreated controls. Box plots represent

the 75th and 25th percentiles of medians (black bar inside the boxes). The total range, significance levels (p-values) determined by the one-sided ANOVA test with

Tukey post-correction and the numbers of C. jejuni positive mice out of the total number of animals (in parentheses) are indicated. Data were pooled from four

independent experiments.

FIGURE 5 | Intestinal pro-inflammatory cytokine secretion following murine fecal microbiota transplantation of C. jejuni infected mice harboring a human gut

microbiota. Mice with a human gut microbiota were perorally infected with C. jejuni on day (d) 0 and d1 and subjected to murine fecal microbiota transplantation

(mFMT) on d7, d8, and d9 post-infection (p.i.) or received vehicle (mock). On day 14 p.i., (A) TNF-α and (B) IFN-γ concentrations were measured in ex vivo biopsies

derived from the colon and mesenteric lymph nodes (MLN), respectively. Naive mice with a human gut microbiota served as uninfected and untreated controls. Box

plots represent the 75th and 25th percentiles of medians (black bar inside the boxes). The total range, significance levels (p-values) determined by the one-sided

ANOVA test with Tukey post-correction and the numbers of C. jejuni positive mice out of the total number of animals (in parentheses) are indicated. Data were pooled

from four independent experiments.

reduce intestinal burdens of multi-drug resistant Pseudomonas
aeruginosa by almost four orders of magnitude, whereas
individual mice had even completely lost the opportunistic
pathogen (40).

Given that conventionally colonized mice as well as
microbiota depleted mice that had been reassociated with a
complex murine gut microbiota were protected from even high-
dose C. jejuni infection as opposed to hma counterparts (15),
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FIGURE 6 | Systemic pro-inflammatory cytokine secretion following murine fecal microbiota transplantation of C. jejuni infected mice harboring a human gut

microbiota. Mice with a human gut microbiota were perorally infected with C. jejuni on day (d) 0 and d1 and subjected to murine fecal microbiota transplantation

(mFMT) on d7, d8, and d9 post-infection (p.i.) or received vehicle (mock). On day 14 p.i., (A) TNF-α, (B) IL-12p70, and (C) IL-6 concentrations were measured in

serum samples. Naive mice with a human gut microbiota served as uninfected and untreated controls. Box plots represent the 75th and 25th percentiles of medians

(black bar inside the boxes). The total range, significance levels (p-values) determined by the one-sided ANOVA test with Tukey post-correction or by the

Kruskal-Wallis test and Dunn’s post-correction and the numbers of C. jejuni positive mice out of the total number of animals (in parentheses) are indicated. Data were

pooled from four independent experiments.

we here evaluated mFMT as a potential intervention strategy to
combat C. jejuni infection and pathogen-induced inflammatory
sequelae. In order to mimick human gut microbiota conditions
we had subjected microbiota depleted mice to peroral FMT
from human donors before C. jejuni infection. As any other
experimental model also the here applied hma mouse model
has its limitations. We cannot exclude, for instance, that some
members of the human fecal donor samples, in particular
obligate anaerobic and other fastidious bacterial species, might
be reduced during asservation and processing including freezing,
thawing and FMT and/or did not fully establish within the
gastrointestinal ecosystem of the murine host (20, 24). Moreover,
several host-related and environmental factors might further
affect the fate of the human fecal transplant over time
such as the genetic background, the anatomical and mucosal
immunological repertoire within the respective gastrointestinal
compartment, the intraluminal milieu, as well as the housing
conditions including diet of the challenged mice (24, 41–
43). Under consideration of both, the limitations and the
strengths of the applied experimental model, hmamice constitute
worthwhile measures to reliably unravel the interactions between
pathogens, gut commensals and host immune responses in
health and disease. In fact, with respect to their microbiota
“humanized” mice have been successfully used as tools to
investigate the interactions between the vertebrate host and
enteropathogens including C. difficile, Salmonella, and C. jejuni
(15, 44, 45).

In our actual preclinical intervention study applying C. jejuni
infected hma mice we were able to show that mFMT (i) resulted
in changes of the gut microbiota composition, (ii) could lower

the intestinal pathogen burdens by two log orders of magnitude,
(iii) dampen C. jejuni induced apoptotic cell and immune cell
responses in the large intestine that were associated with (iv)
less distinct pro-inflammatory cytokine secretion in both, the
large intestines and MLN. Strikingly, (v) the anti-inflammatory
properties of mFMT were not restricted to the intestinal tract,
but could also be observed systemically.

Our molecular survey of the main abundant intestinal
bacterial groups and species revealed that the mFMT on
3 consecutive days did in fact result in changes of the
gut microbiota composition of hma mice within 1 week
post-intervention. In line with the observed quantitative
differences of bacterial taxa from fecal suspensions derived
from human vs. murine donors, the fecal microbiota at day
7 post-mFMT of hma mice was characterized by higher
numbers of lactobacilli, bifidobacteria and Mouse Intestinal
Bacteroides, whereas Bacteroides/Prevotella species and
clostridia were lower as compared to pre-mFMT conditions.
Comparable gut microbiota shifts could be observed following
mFMT of hma mice that were carrying multi-drug resistant
Pseudomonas aeruginosa in their intestines (40). It is tempting
to speculate that (yet to be identified) specific “health-beneficial,”
immune-modulatory bacterial commensal species within the
complex gut luminal ecosystem might make the difference
and provide anti-inflammatory properties following infection
with enteropathogens including C. jejuni. Lactobacilli and
bifidobacteria may be potential candidates since they are
well known for their probiotic effects due to production of
bacteriocins and short chain fatty acids subsequently creating
hostile conditions for invading pathogens (46, 47). In support,
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we were able to show recently that peroral application of a
single Lactobacillus johnsonii strain that had been isolated from
a fecal sample taken from a healthy C57BL/6 mouse could
effectively alleviate intestinal, extra-intestinal and, remarkably,
even systemic pro-inflammatory immune responses upon C.
jejuni infection of secondary abiotic mice (48). Additional
studies further revealed potent anti-inflammatory effects of L.
johnsonii in enteric including infectious diseases (49) mounting
in commercial probiotic application (e.g., Nestlé LC1).

Bifidobacteria are considered key players in maintaining
intestinal homeostasis. In fact, a delay in intestinal colonization
with bifidobacteria rendered individuals more susceptible for
morbidities during infancy and later in life (50). Several intestinal
immunopathological conditions including inflammatory bowel
diseases, celiac disease and irritable bowel syndrome have been
associated with a perturbed gut microbiota (i.e., dysbiosis) with
decreased or even absent intestinal bifidobacteria (51). Due to
their anti-inflammatory properties defined bifidobacteria as well
as lactobacilli strains have been introduced into commercial
probiotic formulations such as VSL#3 and have been shown to
effectively alleviate clinical symptoms and maintain remission in
inflammatory bowel diseases (51). Furthermore, and supporting
our results obtained from our actual mFMT intervention
study, we demonstrated recently that VSL#3 application did
not only dampen pro-inflammatory immune responses in the
intestinal tract, but also in extra-intestinal and even systemic
compartments upon C. jejuni infection of microbiota depleted
mice (52).

It is thus highly likely that synergistic effects between different
commensal bacterial species are more sufficient to exert potent
anti-inflammatory in the combat of enteropathogenic including
C. jejuni infections than single strains alone. In support, we
were able to show previously that mFMT in microbiota depleted
mice could induce more prominent anti-inflammatory responses
than reassociation with a commensal murine L. johnsonii strain
alone as indicated by more pronounced anti-inflammatory CD25
expression in intestinal as well as systemic immunological
compartments following the former as compared to the latter
intervention (26). It would therefore be utmost appreciable to
characterize the gut luminal milieu in more detail in order to
define distinct bacterial strains and/or metabolites that might
be promising candidate molecules for future prophylactic or
therapeutic application in humans and food animals.

In conclusion, our preclinical mFMT intervention study
provides evidence that changes in the gut microbiota
composition which might be achieved by pre- or probiotic
formulations may effectively lower intestinal C. jejuni
loads and dampen both, pathogen-induced intestinal
and systemic inflammatory sequelae. Furthermore, the
applied infection model provides a valuable tool to identify
luminal intestinal molecules mediating colonization
resistance for future treatment and prevention of C. jejuni
infection and colonization in the vertebrate host and
may represent a promising option to treat continuous
shedding of C. jejuni by asymptomatic carriers which is
critical in the context of food production, hospitalization,
and immunosuppression.
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Figure S1 | Microbiota composition of suspensions derived from human and

murine donors used for fecal microbiota transplantation. Immediately before fecal

microbiota transplantation from human and murine donors, the commensal

microbiota composition was assessed in respective fecal suspensions (n = 3

each) applying culture-independent 16S rRNA methods quantitating the total

eubacterial load (TL) and main bacterial groups including enterobacteria (EB),

enterococci (EC), lactobacilli (LB), bifidobacteria (BB), Bacteroides/Prevotella

species (BP), Clostridium coccoides group (CC), Clostridium leptum group (CL),

and Mouse Intestinal Bacteroides (MIB) and expressed as gene numbers per ng
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DNA. Box plots represent the 75th and 25th percentiles of medians (black bar

inside the boxes) and the total range is indicated. Data were pooled from three

independent suspensions.

Figure S2 | Representative photomicrographs illustrating colonic apoptotic

epithelial and immune cell responses following murine fecal microbiota

transplantation in C. jejuni infected mice harboring a human gut microbiota. Mice

with a human gut microbiota were perorally infected with C. jejuni on day (d) 0 and

d1 and subjected to murine fecal microbiota transplantation (mFMT) on d7, d8,

and d9 post-infection (p.i.) or remained untreated (mock). Photomicrographs

representative for four independent experiments illustrate the average numbers of

(A) apoptotic epithelial cells (caspase3+), (B) macrophages and monocytes

(F4/80+), and (C) T lymphocytes (CD3+), in at least six high power fields (HPF) as

quantitatively assessed in colonic paraffin sections applying in situ

immunohistochemistry at day 14 p.i. (100x magnification, scale bar 100µm).
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