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Abstract

Interspecific hybridization (i.e. mating between species) occurs frequently in animals.

Among cyclical parthenogens, hybrids can proliferate and establish through parthenoge-

netic reproduction, even if their sexual reproduction is impaired. In water fleas of the Daph-

nia longispina species complex, interspecific hybrids hatch from sexually produced dormant

eggs. However, fewer hybrid genotypes contribute to the dormant egg bank and their

hatching rate from dormant eggs is reduced, compared to eggs resulting from intraspecific

crosses. Therefore, Daphnia hybrids would benefit from adaptations that increase their sur-

vival over winter as parthenogenetic lineages, avoiding the need to re-establish populations

after winter from sexually produced dormant eggs. Here, we constructed a mathematical

model to examine the conditions that could explain the frequently observed establishment of

hybrids in the D. longispina species complex. Specifically, we compared the outcome of

hybrid and parental taxa competition given a reduced contribution of hybrids to hatchlings

from the sexually produced dormant egg bank, but their increased ability to survive winter as

parthenogenetic lineages. In addition, different growth rates of parental species and differ-

ences in average annual temperatures were evaluated for their influence on hybrid produc-

tion and establishment. Our model shows that increased overwinter performance as

parthenogenetic females can compensate for reduced success in sexual reproduction,

across all tested scenarios for varying relative growth rates of parental species. This pattern

holds true for lower annual temperatures, but at higher temperatures hybrids were less suc-

cessful. Consequently, hybrids might become less abundant as temperatures rise due to cli-

mate change, resulting in reduced diversity and faster differentiation of the parental species.
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Introduction

Interspecific hybridization occurs after secondary contact between partially reproductively

isolated species. Its implications for evolutionary and ecological processes have been widely

discussed in recent decades [1–4]. Hybrids can display extreme phenotypes due to the combi-

nation of genomes of two parental species, and are therefore sometimes able to establish in

extreme environments. For example, hybrids of spadefoot toads display longer development

times as tadpoles, a strategy beneficial during long dry periods [5], whereas sunflower hybrids

are able to establish on sand dunes, desert floors and salt marsh habitats [3]. Interspecific

hybrids often suffer reduced abilities to reproduce sexually [6, 7]; however, among cyclical

parthenogens, this can be compensated for by increased investment of hybrids into the parthe-

nogenetic part of a reproductive cycle [8, 9].

In the cyclically parthenogenetic water fleas of the Daphnia longispina species complex,

interspecific hybrids are found worldwide [10–12]. Hybrids are produced during the sexual

phase of the Daphnia reproductive cycle. In contrast to immediately born parthenogenetic off-

spring, sexual offspring hatch after diapause, from dormant eggs (ephippia). This is how Daph-
nia survive unfavourable conditions, for example winter. Fewer hybrid genotypes are present

in the dormant egg bank and their hatching rate is lower than for offspring resulting from

intraspecific crosses [8, 13]. As evident from the rarity of backcrosses and F2-hybrid genera-

tions in natural Daphnia communities [9, 13, 14], F1-hybrids are also rather unsuccessful in

further sexual reproduction [8]. However, F1-hybrids can successfully compete with their

parental species during the parthenogenetic part of the Daphnia life cycle [15–17]. They may

even survive winter without going through diapause; i.e. as parthenogenetic lineages [9]. In

our recent experimental study, Daphnia galeata × D. longispina F1-hybrids originating from

several shallow lakes (i.e. strongly influenced by harsh winters) had an increased rate of sur-

vival as parthenogenetic lineages under simulated winter conditions (4 ˚C, low food and 8:16

hours light-dark photoperiod [18]). The ability to overwinter as parthenogenetic lineages can

play an important role during recolonization of the water body in spring: individuals that are

present first in the water column might quickly dominate the entire community, inhibiting the

establishment of genotypes hatching from dormant eggs later in the season [19–21]. However,

the trade-off between reduced success in surviving winter as sexually produced dormant eggs,

and increased ability to survive as an active population, has not been evaluated previously in

terms of prospects for hybrid establishment.

We constructed a mathematical model simulating Daphnia community dynamics between

two parental species, F1- and F2-hybrids, and their species-specific backcrosses, to determine

which biological features and/or which environmental conditions explain the frequently

observed dominance of F1-hybrids [10–12]. We evaluated the reduced probability of hybrid

genotypes to contribute to sexually produced dormant egg bank, but their increased ability to

overwinter as parthenogenetic lineages, using parameter values derived from published work [8,

13]. Here, we adjusted the seasonal function for F1-hybrids during winter and used the survival

data from our previous experimental study [18]; seasonal changes in temperature and light,

parameters strongly affecting Daphnia growth during the year, were simulated by applying a

sinusoidal function from [22]. Finally, we tested how establishment of F1-hybrids is influenced

by variation in relative growth rates of the parental species (phenomenon known to be driven by

ecologically realistic conditions, [23–26]) and by differences in average annual temperatures.

Model

Individuals were divided into six classes: two parental species (j = 1 and j = 2), F1-hybrids

(j = 3), backcrosses to respective parental species (j = 4 and j = 5) and F2-hybrids (j = 6). For
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each class the numbers of asexual individuals (A), sexual individuals (S) and dormant eggs,

ephippia (E), were modelled using the following differential equations:

dAj

dt
¼ rj s tð ÞAj tð Þ 1 �

P6

i¼1
ðAiðtÞ þ SiðtÞÞ

sðtÞK

� �
� sj tð ÞAj tð Þ þ 2 hjðtÞ Ej tð Þ ð1Þ

dSj

dt
¼ sj tð ÞAj tð Þ � m Sj tð Þ ð2Þ

dEj

dt
¼ 1 � ej

� �
f φj tð Þ � hjðtÞ Ej tð Þ ð3Þ

The number of sexual encounters was multiplied by f (number of ephippia produced per

day) and by the fraction of ephippia containing eggs (1-ej, Eq (3)), as unsuccessful mating

would result in empty ephippia, ej. The growth of asexual individuals is logistic with a specific

intrinsic growth rate rj for each class. The carrying capacity K is shared by all six classes, as well

as asexual and sexual individuals. During two periods of the year (two weeks in May and Sep-

tember, days: 151–165 and 273–287, [13]) a fraction sj(t) of asexual individuals switches to sex-

ual reproduction. Sexual individuals die at a fixed mortality rate m. At the beginning of April

(days 119–120), ephippia (containing two embryos) hatch at a rate hj(t) and result in asexual

individuals, mimicking a photoperiod-driven hatching of dormant eggs [27]. Seasonal forces

(seasonal cycle of light and temperature) were included by multiplying the carrying capacity

K (affected by resource availability, changing with light conditions) and the growth rate rj
(affected by metabolic rates, changing with temperature) by a periodic function of time t (Fig

1) with ε set to 0.7 as proposed by [22]:

s tð Þ ¼
1 � ε cos 2pt

365

� �

1þ ε
ð4Þ

Fig 1. Adjustment of seasonal forces in Daphnia by σ(t). The black line represents the standard curve for ε = 0.7 [22],

while the orange lines (ε = 0.1, 0.175, 0.25, 0.325) were used to obtain higher growth rates of F1-hybrids during winter

(120 days from October to February). Blue vertical lines mark the winter period during which σ(t) differs for

F1-hybrids. The red lines indicate the periods of sexual reproduction in early spring and autumn (May and

September). The green line shows the hatching period from ephippia in spring (April).

https://doi.org/10.1371/journal.pone.0200802.g001
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The production of ephippia was calculated using the harmonic mean developed by [28],

which accounts for the fact that both females and males have to be present. The model was set

up with equal fractions of males and sexual females for the different classes:

φ tð Þ ¼
2 k Si

2
tð Þ Sl

2
tð Þ

P
j

Sj
2

n o ð5Þ

Here, k is the number of ephippia produced per sexual encounter, which was set to one.

Si(t) and Sl(t) are the number of sexual individuals of class i and l (here i, l = class 1–3) at time t.
For simplification, sexual individuals of the backcrosses and F2-hybrids (classes j = 4, 5, 6, see

above) do not take part in sexual reproduction. Ephippia containing the F1-hybrid (or back-

cross) class are produced by encounters of sexual females of one parental species with males of

the other parental species, and vice versa (or by encounters of F1-hybrid females with males of

any parental species, and vice versa) (Fig 2). To simulate deviation from random mating, the

sexual encounters were divided into individuals that only mate with individuals from their

own class (fraction c) and individuals that mate randomly with any other individual (1-c).
The fraction c was set the same for all three classes (no empirical data exist for this parameter).

These lead to the following equations:

φjðtÞ ¼

1

2
c SjðtÞ c Sj tð Þ

c SjðtÞ
þ

1

2
1 � cð ÞSjðtÞ ð1 � cÞSj tð Þ

ð1 � cÞ ðS1ðtÞ þ S2ðtÞþS3ðtÞÞ
¼

¼
SjðtÞ ðSjðtÞ þ cð S1ðtÞ þ S2ðtÞ þ S3ðtÞ � SjðtÞÞÞ

2 ðS1ðtÞ þ S2ðtÞ þ S3ðtÞÞ
for j ¼ 1; 2 ð6Þ

φ
3ðtÞ ¼

ð1 � cÞ S1ðtÞ ð1 � cÞS2ðtÞ
ð1 � cÞ ðS1ðtÞ þ S2ðtÞþS3ðtÞÞ

¼
ð1 � cÞ S1ðtÞ S2ðtÞ
S1ðtÞ þ S2ðtÞþS3ðtÞ

ð7Þ

φ
4ðtÞ ¼

ð1 � cÞ S1ðtÞ ð1 � cÞS3ðtÞ
ð1 � cÞ ðS1ðtÞ þ S2ðtÞþS3ðtÞÞ

¼
ð1 � cÞ S1ðtÞ S3ðtÞ
S1ðtÞ þ S2ðtÞþS3ðtÞ

ð8Þ

Fig 2. Possible encounters within and between the two parental species (class 1 and 2) and F1-hybrids (class 3)

during the phase of sexual reproduction, resulting in ephippia of parental species, F1-hybrids, both backcrosses

and F2-hybrids (Ej, j = 1–6). m: fraction of males, f: fraction of sexual females. S1-S3: sexual individuals of class 1–3.

https://doi.org/10.1371/journal.pone.0200802.g002
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φ
5ðtÞ ¼

ð1 � cÞ S2ðtÞ ð1 � cÞS3ðtÞ
ð1 � cÞ ðS1ðtÞ þ S2ðtÞþS3ðtÞÞ

¼
ð1 � cÞ S2ðtÞ S3ðtÞ
S1ðtÞ þ S2ðtÞþS3ðtÞ

ð9Þ

φ
6ðtÞ ¼

1

2
c S3ðtÞ c S3 tð Þ

c S3ðtÞ
þ

1

2
1 � cð ÞS3ðtÞ ð1 � cÞS3 tð Þ

ð1 � cÞ ðS1ðtÞ þ S2ðtÞþS3ðtÞÞ
¼

S3ðtÞ ðS3ðtÞ þ cðS1ðtÞ þ S2ðtÞÞÞ
2 ðS1ðtÞ þ ðS2ðtÞ þ S3ðtÞÞ

ð10Þ

Several scenarios were evaluated by solving the differential Eqs (1)–(3) numerically using

Mathematica 10.3 [29]. Unless otherwise stated, parameter values are as described in Table 1.

Starting densities were set to 0.001 individuals per litre for each parental species and zero indi-

viduals for the other classes. Carrying capacity was set to 150 individuals per litre [18].

Lower contribution of hybrids to hatchlings from the dormant egg bank,

but their increased overwinter performance as asexual females

A 100-year time span has been chosen for simulations, as F1-hybrids’ increased overwinter

survival as asexual females has been observed in a man-made lake of similar age [18]. Hatching

rate hj was set 50% lower and the number of empty ephippia ej was set about 15% higher in

hybrids compared to parental species [8, 13]. The fraction of sexual individuals that mate

within their own class was set at 75% (c = 0.75). Growth rates were set the same for parental

species, F1-hybrids and backcrosses (rj = 0.35 for j 6¼ 6). The growth rate for F2-hybrids was

set lower, assuming a hybrid breakdown (r6 = 0.3, scenario A). Unfortunately, no data on fit-

ness of F2-hybrids exist, as too few F2-hybrids are found in natural communities [9, 12] to be

successfully established in laboratory cultures. We tested to what extent the better overwinter-

ing success of F1-hybrids as asexual lineages changes their establishment success. Therefore,

the ε of the seasonal force function (4) was set lower than in the original function (ε = 0.1,

0.175, 0.25 and 0.325) to increase the growth rate of F1-hybrids (r3) during winter (120 days;

November till February, Fig 1). These changes in ε result in 50 to 80% higher growth rates of

F1-hybrids at the minimum of the seasonal function (at day 365). In laboratory experiments,

growth rates during winter conditions (4 ˚C, low food and short photoperiod) were found to

be seven times higher for F1-hybrids compared to parental species [18]. We opted for more

conservative values to exclude laboratory artefacts (e.g. experimental clones were sampled

in spring, when only successful survivors were present). Additionally, the growth rate of

Table 1. Parameters of the model. The phrase “empty ephippia” refers to ephippia not containing any eggs.

parameter value unit Description Reference

m 0.15 day-1 death rate [30]

K 150 no. L-1 carrying capacity [18]

sj 0.5 day-1 fraction of individuals of class j switching to sexual reproduction [13]

f 0.14 day-1 number of ephippia produced per day [31]

e1,2 0.7 fraction of empty ephippia of class j = 1,2 [13]

e3 0.8 fraction of empty ephippia of class j = 3 [13]

e4,5 0.75 fraction of empty ephippia of class j = 4,5 [13]

e6 0.85 fraction of empty ephippia of class j = 6 [13]

c 0.75 fraction of sexual individuals mating within own class [8]

h1,2 0.1 day-1 hatching rate from ephippia of class j = 1,2 [8]

h3,4,5,6 0.05 day-1 hatching rate from ephippia of class j = 3,4,5,6 [8]

https://doi.org/10.1371/journal.pone.0200802.t001
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F1-hybrids (r3) was varied for different calculations (range: 0.30 to 0.35), to estimate whether

increased winter performance may compensate for a generally lower fitness of asexual individ-

uals in F1-hybrids. For example, hybrids in the laboratory had lower growth rates compared to

parental species when raised at 20 ˚C [24].

Different growth rate scenarios for the parental species

In addition to scenario (A) in which both parental species have the same growth rates (which is

unlikely in nature), we evaluated four other scenarios for successful F1-hybrid establishment;

B) one parental species has a higher intrinsic growth rate than the other [24]; here: r1 = 0.35

and r2 = 0.3;

C) the intrinsic growth rates of the parental species alternate every second year (for exam-

ple, because of changing parasite pressure, [26]); here: r1 = 0.3 then 0.35 and r2 = 0.35 then 0.3;

D) the intrinsic growth rates of the parental species change within a year (because species

might have reverse fitness under different seasonal conditions, [25]); here: switch at day 166,

r1 = 0.3 then 0.35 and r2 = 0.35 then 0.3;

E) the second parental species enters with a higher intrinsic growth rate, after the system

has been dominated by a single parental species for 100 years (for example, due to eutrophica-

tion, [23]); here: r1 = 0.3 and r2 = 0.35;

The growth rates of backcrosses (r4 and r5) were set to the average of the respective parental

species and F1-hybrids. The growth rate of F2-hybrids was set lower (r6 = 0.3), whereas the

growth rate of F1-hybrids (r3) was varied for different calculations (range: 0.30 to 0.35).

Different average annual temperatures

For all scenarios (A)–(E), the effect of decreased/increased average annual temperature (by

x ˚C) on the establishment of hybrids was tested by multiplying the growth rate of Eq (1) by

the parameter:

q ¼ 2
x
10 ð11Þ

The formula is derived from the temperature coefficient Q10, which measures the change of

biological processes induced by a temperature increase of 10 ˚C. The coefficient Q10 has been

evaluated for Daphnia [32] and applied in zooplankton-phytoplankton models [33, 34]. Simi-

larly to [33, 34], the following values of decreased/increased average annual temperature were

tested: x = -5 ˚C / -3 ˚C / +3 ˚C / +5 ˚C.

Results

Lower contribution of hybrids to hatchlings from the dormant egg bank,

but their increased overwinter performance as asexual females

Analysis of the model showed that under a scenario of non-random mating and reduced

hatching success from sexually produced dormant eggs for F1-hybrids (i.e. 50% lower hatching

rate (h3 = 0.05) and about 15% more empty ephippia (e3 = 0.8) compared to parental species

(h1,2 = 0.1 and e1,2 = 0.7)), F1-hybrids were present at low numbers (< 20 Daphnia / L, propor-

tion of 13%, Fig 3a). However, in the case of an increased overwinter performance of F1-

hybrids as asexual females, the number of established F1-hybrids increased under all simulated

differences in the seasonal function (4) (i.e. 50%, 60%, 70% and 80% higher growth rates of

F1-hybrids during winter compared to parental species, S1 Fig). Backcrosses as well as

F2-hybrids were present in low numbers (S2 Fig). After an increase of the F1-hybrids’ growth

rate to 80% during winter (ε = 0.475 in Eq 4), F1-hybrids reached abundances of more than
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Fig 3. Total numbers of individuals (asexual and sexual) of the two parental species and F1-hybrids over 36500 days (100 years)

with: F1-hybrids having reduced hatching success from sexually produced dormant eggs (50% lower hatching rates and about 15%

higher fraction of empty ephippia, compared to parental species), no increased/enhanced overwinter performance for F1-hybrids

(left column), increased overwinter performance of F1-hybrids (ε = 0.1 in φ(t) for an 80% higher growth rate during winter, middle
column), and F1-hybrids having increased overwinter performance and reduced growth rate during the year (right column). The top
row represents scenario A, where parental species have the same growth rate, the mid top row represents scenario B, where parental

Success of hybrids in the D. longispina complex explained in mathematical model
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50% in the Daphnia community (S1 Fig). Therefore, the seasonal function with ε = 0.1 leading

to 80% higher growth rate during winter was applied for F1-hybrids. If the general growth rate

of hybrids was reduced by about 15% (r3 = 0.31) over the whole year, F1-hybrids were still

detected, but below five Daphnia individuals per litre. They then coexisted with the parental

species but were not able to dominate the system (Fig 3c) as they otherwise did when their

growth rate was equal to the growth rate of the parental species (Fig 3b). Backcrosses and

F2-hybrids were no longer present (S3c Fig).

Different growth rate scenarios for the parental species

If F1-hybrids experienced reduced hatching success from sexually produced dormant eggs,

they could not establish in two of the four further tested scenarios (i.e. additional to scenario

A): in scenario B (where one parental species had a lower growth rate than the other parental

species, Fig 3d) and scenario E (where the second species with a higher growth rate was intro-

duced after 100 years). In scenario E, F1-hybrids occurred for about 20 years but then vanished

(Fig 3m). When the growth rates of the parental species alternated, either between (scenario

C) or within years (scenario D), F1-hybrids were detectable after ten years and quickly domi-

nated the system (proportions of 60–75%, Fig 3g and 3j). However, the smaller the difference

in the average growth rates was between F1-hybrids and parental species in these scenarios (C,

D), the smaller the numbers of hybrids (data not shown). In the case of parental species having

altered growth rates within the year (scenario D), the parental species with a higher growth

rate in the second half of the year was more abundant in the system than the parental species

that had a higher growth rate at the beginning of the year (Fig 3j).

If the overwinter performance of F1-hybrids was increased (seasonal function with ε = 0.1

for 160 days: from November till February), then F1-hybrids occurred in all four scenarios of

different growth rates for the parental species (B–E, Fig 3). In scenario B (where one parental

species had a lower growth rate than the other parental species, Fig 3e) F1-hybrids coexisted

with the parental species, while in the other scenarios they dominated the system. In scenario

B, the growth rate of F1-hybrids could only be reduced by 0.9% (r3 = 0.347) over the whole

year while still facilitating their abundance, compared to 12% in scenario A (Fig 3c). In scenar-

ios C and D (growth rates of the parental species alternating between or within years, respec-

tively), F1-hybrids achieved dominance more rapidly (proportions of 85% after 5 years) as is

the case when overwinter performance was not increased via the seasonal function (Fig 3h and

3k). F1-hybrids were even able to coexist with the parental species when their growth rate was

reduced by as much as 13% (r3 = 0.31) and 9.5% (r3 = 0.32), respectively (Fig 3i and 3l). In sce-

nario E (where the second species with a higher growth rate was introduced after 100 years),

increased overwinter performance of F1-hybrids facilitated their appearance shortly after the

addition of the second parental species, and led to their dominance after about 20 years (66%,

Fig 3n, the graph shows the 100 years after the new parental species was introduced). Further-

more, successful establishment of F1-hybrids was facilitated if their growth rates were reduced

by up to 3% (r3 = 0.34). However, time until establishment was longer in such a case and the

abundance of F1-hybrids decreased after 50 years to low numbers (Fig 3o). In all scenarios,

backcrosses and F2-hybrids occurred at low numbers (below ten individuals per litre) when

overwinter performance of F1-hybrids was increased (S3 Fig).

species 1 has a higher growth rate than parental species 2, the mid row represents scenario C, where the absolute growth rate of

parental species alternates every two years, the mid bottom row represents scenario D, where growth rate of parental species

alternates within the year and the bottom row represents scenario E, where the second species was introduced after 100 years, having

a higher growth rate (graphs show the 100 years after parental species 2 had entered the system).

https://doi.org/10.1371/journal.pone.0200802.g003
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Different average annual temperatures

Under lower average annual temperatures (differences of -3 ˚C and -5 ˚C), F1-hybrids estab-

lished as fast or faster compared to the previous analyses with x = 0 ˚C (Fig 4). The only excep-

tion was a temperature difference of -5 ˚C in scenario A, where F1-hybrids did not establish

(Fig 4a). In addition, the number of F2-hybrids was higher, whereas the number of backcrosses

was lower, than in the analysis with x = 0 ˚C (S4 Fig). Higher average annual temperatures (dif-

ferences of +3 ˚C and +5 ˚C) resulted in the failure of hybrids to establish in scenarios A, B

and E (Fig 4). The numbers of F2-hybrids and backcrosses were lower, or these classes did not

exist at all, when temperatures increased (+3 ˚C and +5 ˚C, S4 Fig).

Discussion

Lower contribution to hatchlings from the dormant egg bank is a clear disadvantage for Daph-
nia hybrids. Our model indicates that F1-hybrids sometimes do not establish or establish only

at low numbers. Studies on reproductive barriers in Daphnia have shown that time differences

in production of sexual stages [35], as well as occupation of different habitats within a lake by

the two parental species [36], both reduce encounter probability, and thus the possibility to

hybridize. Consequently, fewer F1-hybrid dormant eggs are produced than if mating was ran-

dom, and the viability of these eggs is anyway reduced [8]. However, if only F1-hybrids have

increased overwintering performance as parthenogenetic females, they are not only able to

become established, but can dominate the system.

The results of our model can explain patterns of Daphnia hybrid occurrence observed in

nature. For example, although F1-hybrids were shown to have reduced success in surviving

winter as dormant eggs, in some years they dominated the entire Daphnia community of lake

Greifensee (Switzerland) [8, 13]. F1-hybrids first occurred in that lake in the 1950s, when the

level of phosphorus rose and the second parental species D. galeata invaded the lake [23]. This

is consistent with scenario E in our model, where the introduction of a second species resulted

in the quick establishment of F1-hybrids, with their increased overwinter performance as asex-

ual females. Across several shallow lakes (Germany), F1-hybrids occurred together with only

one parental species [9, 10]. This confirms that hybrids do not need to be produced newly

every season; otherwise both parental species would need to be present to allow hybrid persis-

tence. Once created, hybrids can be maintained in the population through asexual reproduc-

tion, including surviving winter as parthenogenetic lineages. Indeed, F1-hybrids collected

from these lakes had a higher overwintering survival probability than lineages of parental spe-

cies, as demonstrated experimentally [18]. Moreover, genotype data of the aforementioned

communities also suggest that F1-hybrids survive winter mainly as parthenogenetic females

[9]. Our model predicts coexistence or dominance of F1-hybrids as long as the overwinter

performance of F1-hybrids as parthenogenetic females is increased, even if only one parental

species is present in the long-term. Interestingly, only low numbers of F2-hybrids and back-

crosses are usually present in natural habitats [8–10], again consistent with the results of the

model.

In our model, average annual temperatures of lakes had an important effect on the occur-

rence of F1-hybrids. Colder temperatures result in faster establishment and dominance of

F1-hybrids, because only very low numbers of parental species survive as asexual females. Con-

sequently, F1-hybrids reach high abundances before the parental species hatch from ephippia.

Surviving as asexual females can lead to a competitive advantage in spring, when surviving

Daphnia can quickly reproduce parthenogenetically, and their offspring are born during an

algal bloom [21], resulting in later dominance (i.e. priority effects, [37]). Interestingly, in sce-

nario A no F1-hybrids were detected when the average annual temperature was reduced by 5
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Fig 4. Total numbers of individuals (asexual and sexual) of the two parental species and F1-hybrids over 36500 days (100 years) with F1-hybrids

having reduced hatching success from sexually produced dormant eggs (50% lower hatching rates, and about 15% higher fraction of empty

ephippia, compared to parental species) and parental species having different growth rates. The ε of the seasonal function of F1-hybrids differed

during winter to simulate their increased/enhanced overwinter performance as asexual individuals (ε = 0.1 for an 80% higher growth rate). The growth

rate of F1-hybrids is 0.35. Differences in the average annual temperature (changes of -3 ˚C, -5 ˚C, +3 ˚C, and +5 ˚C) were applied for each scenario of

different parental growth rates. The top row represents scenario A, where parental species have the same growth rate, the mid top row represents

scenario B, where parental species 1 has a higher growth rate than parental species 2, the mid row represents scenario C, where the absolute growth rate

of parental species alternates every two years, the mid bottom row represents scenario D, where growth rate of parental species alternates within the year

and the bottom row represents scenario E, where the second species was introduced after 100 years, having a higher growth rate (graphs show the 100

years after parental species 2 had entered the system).

https://doi.org/10.1371/journal.pone.0200802.g004
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˚C, suggesting that below a certain temperature, no asexual females survive over winter. In this

case, hatchlings from ephippia become the main colonization source in spring, resulting in a

disadvantage to hybrids. Hybrids are also at a disadvantage at the opposite end of the tempera-

ture range, though for a different reason: high temperatures lead to large numbers of parental

species surviving as asexual females, therefore hybrids lose their priority advantage after the

winter and cannot establish. The model thus predicts that hybrids thrive at an intermediate

temperature range (cold, but not too cold). Indeed, we have observed previously that a success-

ful F1-hybrid clone (with experimentally proven increased overwinter survival as asexual

females) was replaced in its natural habitat by the parental species after a warm winter [18].

One limitation of this study is that our model assumes that F2-hybrids have single low val-

ues for asexual reproductive rate (r6) and hatching rate (h6), and a single high ratio of empty

ephippia (e6). This simplifies the real situations because F2 hybrids (and backcrosses) can

potentially show high variation in fitness between individuals [38, 39] and theoretically pro-

duce very fit lineages. However, across several dozen lakes sampled multiple times (work of

our group and those of Petrusek, Schwenk and Spaak–ca. 20 published papers), such highly fit

(i.e. highly abundant) F2- or backcross lineages have not been observed. This is in contrast to,

for example, sometimes highly abundant F1- lineages [18]. Then, our model assumes that a

constant fraction (c = 0.75) of individuals in species 1, species 2 and F1-hybrid class mate with

individuals of the same class. Unfortunately, no data exist on that parameter, and this is why

we set similar value for all three classes, to reduce potential bias.

Overall, our model shows that hybrids’ increased overwinter performance as asexual

females might explain their frequently observed establishment and dominance in natural D.

longispina communities. Even if F1-hybrids contribute little to hatchlings from the dormant

egg bank, their increased overwinter performance through asexual reproduction can compen-

sate for that. As the strength of hybrids’ increased overwinter performance depends on average

annual temperatures, and temperatures of lakes are rising throughout the world [40] [41], the

number of parental species surviving winter will likely increase. Consequently, F1-hybrids

may become less abundant, leading to faster genetic differentiation of the parental species.

Supporting information

S1 Fig. Total numbers of individuals (asexual and sexual) of the two parental species and

F1-hybrids over 36500 days (100 years), with F1-hybrids having reduced success in hatch-

ing success from sexually produced dormant eggs (50% lower hatching rates and about

15% higher fraction of empty ephippia, compared to parental species). Parental species

and F1-hybrids have the same growth rates during the year (r1,2,3 = 0.35). The ε of the seasonal

function of F1-hybrids differed during winter to simulate increased/enhanced overwinter per-

formance of F1-hybrids as asexual females, compared to parental species: a) ε = 0.325 (50%

higher growth rate, b) ε = 0.25 (60% higher growth rate), c) ε = 0.175 (70% higher growth

rate), d) ε = 0.1 (80% higher growth rate).

(EPS)

S2 Fig. Total numbers of individuals (asexual and sexual) of the two backcrosses and

F2-hybrids over 36500 days (100 years), with F1-hybrids having reduced hatching success

from sexually produced dormant eggs (50% lower hatching rates and about 15% higher

fraction of empty ephippia, compared to parental species). Parental species and F1-hybrids

have the same growth rates during the year (r1,2,3 = 0.35). The ε of the seasonal function of

F1-hybrids differed during winter to simulate increased/enhanced overwinter performance of

hybrids as asexual females, compared to parental species: a) ε = 0.325 (50% higher growth rate,

b) ε = 0.25 (60% higher growth rate), c) ε = 0.175 (70% higher growth rate), d) ε = 0.1 (80%

Success of hybrids in the D. longispina complex explained in mathematical model

PLOS ONE | https://doi.org/10.1371/journal.pone.0200802 July 19, 2018 11 / 14

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0200802.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0200802.s002
https://doi.org/10.1371/journal.pone.0200802


higher growth rate).

(EPS)

S3 Fig. Total numbers of individuals (asexual and sexual) of the two backcrosses and

F2-hybrids over 36500 days (100 years) with: F1-hybrids having reduced hatching success

from sexually produced dormant eggs (50% lower hatching rates and about 15% higher frac-

tion of empty ephippia, compared to parental species), no increased/enhanced overwinter

performance of F1-hybrids as asexual females (left column), increased overwinter perfor-

mance of F1-hybrids (ε = 0.1 for a 80% higher growth rate during winter, middle column),

and F1-hybrids having increased overwinter performance and reduced growth rate during

the year (right column). The top row represents scenario A, where parental species have the

same growth rate, the mid top row represents scenario B, where parental species 1 has a

higher growth rate than parental species 2, the mid row represents scenario C, where the

absolute growth rate of parental species alternates every two years, the mid bottom row repre-

sents scenario D, where growth rate of parental species alternates within the year and the

bottom row represents scenario E, where the second species was introduced after 100 years,

having a higher growth rate (graphs show the 100 years after parental species 2 had entered

the system).

(EPS)

S4 Fig. Total numbers of individuals (asexual and sexual) of the two backcrosses and

F2-hybrids over 36500 days (100 years) with F1-hybrids having reduced hatching success

from sexually produced dormant eggs (50% lower hatching rates and about 15% higher

fraction of empty ephippia, compared to parental) and parental species differing in

growth rates. The ε of the seasonal function of F1-hybrids differed during winter to simulate

increased/enhanced overwinter performance of asexual individuals, compared to parental spe-

cies (ε = 0.1 for an 80% higher growth rate). The growth rate of F1-hybrids and backcrosses is

0.35, while F2-hybrids have a growth rate of 0.3. Differences in the average annual temperature

(changes -3 ˚C, -5 ˚C, +3 ˚C, +5 ˚C) were applied for each different scenario of different paren-

tal growth rates. The top row represents scenario A, where parental species have the same

growth rate, the mid top row represents scenario B, where parental species 1 has a higher

growth rate than parental species 2, the mid row represents scenario C, where the absolute

growth rate of parental species alternates every two years, the mid bottom row represents sce-

nario D, where growth rate of parental species alternates within the year and the bottom row
represents scenario E, where the second species was introduced after 100 years, having a higher

growth rate (graphs show the 100 years after parental species 2 had entered the system).

(EPS)
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