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Accurate modeling of split ring metamaterial lenses for magnetic
resonance imaging applications

L. Jelinek,a� R. Marqués,b� and M. J. Freirec�

Departamento de Electrónica y Electromagnetismo, Universidad de Sevilla, Sevilla 41012, Spain

�Received 12 August 2008; accepted 4 December 2008; published online 27 January 2009�

The usefulness of thin split ring metamaterial slabs for imaging applications, including magnetic
resonance imaging applications, has attracted some attention in the past years. However, the small
number of unit cells across these thin slabs prevents the direct application of continuous medium
models for its characterization. The main aim of this contribution is to provide a rigorous model for
these structures, also clarifying the usefulness of continuous medium approach for their
characterization. The proposed model is a generalization of the classical Lorentz procedure to two
dimensions and is able to deal with electrically thin slabs made of small resonant closed current
loops. The obtained results are validated by full-wave electromagnetic simulations and compared
with the continuous model approximation of the slab. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3067788�

I. INTRODUCTION

One of the most promising applications of left-handed
metamaterials is the Veselago–Pendry lens1,2 made of a
single slab of thickness d showing relative electric permittiv-
ity and magnetic permeability both equal to minus unity. In
principle, this device will be able to reproduce, with any
desired resolution, including subdiffraction resolution, the
electromagnetic field on a given plane �source plane� located
in front of the lens onto another plane �image plane� located
behind the lens at a distance 2d from the source plane.2

However, this effect is strongly limited by losses, which in
practice reduces it to a near field effect. In fact, it can be
shown �see Ref. 3 and references therein� that the minimum
resolution attainable from a lossy slab, having the real parts
of �r and �r both equal to minus unity, is given by

� �
2�d

ln�2/��
, �1�

where � is the loss tangent of the slab. It is clear from Eq. �1�
that ��d for any realistic metamaterial. This means that in
order to obtain subdiffraction resolution ���	� the slab
thickness must be substantially smaller than the wavelength.
In such case, electric and magnetic effects are decoupled and
we are in the realm of the quasielectrostatics or the quasi-
magnetostatics. Therefore, only slabs with �r=−1 or �r=−1
are necessary in order to obtain subdiffraction resolution in
the near field. The first possibility was actually analyzed in
Ref. 2 and then experimentally demonstrated using a thin
silver slab in Ref. 4. The second one was demonstrated in
Ref. 5 using a ferrite slab.

Regarding imaging in the quasimagnetostatic limit, a
promising application of metamaterial structures can be
found in magnetic resonance imaging �MRI� for medical
applications.6–10 In Ref. 6 a hexagonal array of metallic

Swiss rolls was used as a “magnetic flux guide” in order to
translate MRI images from a source to a distant receiving
coil. In Ref. 7 a Swiss roll �r=−1 lens was proposed for
MRI applications. In Refs. 8 and 9 the applications of split
ring magnetoinductive lenses8 for medical MRI were dis-
cussed. Later, a �r=−1 lens made of split rings was proposed
for the same application.10 These applications include im-
provement of surface coil sensitivity and acceleration of
measurement time in the frame of a parallel imaging process.
Split ring lenses with �r=−1 �Ref. 10� have the key advan-
tages over Swiss-roll lenses7 of three-dimensional �3D� isot-
ropy and sensitivity to axial magnetic fields. With regard to
magnetoinductive lenses,8,9 split ring �r=−1 lenses10 have
more complicated design, but this may be compensated by
smaller losses and improved sensitivity coming from the fact
that they do not operate at the split ring resonance, but well
above it, in the negative permeability frequency range.

Since nuclear MRI takes place in the megahertz fre-
quency range, a cubic array of capacitively loaded rings
�CLRs� �Ref. 11� is a suitable design in order to approach
ideal �r=−1 lenses in practice �CLRs were already used for
magnetoinductive lenses8 operating in the same frequency
range�. Since losses in the metamaterial are essentially given
by losses in its constitutive elements and vary inversely with
the electrical size of these elements,12 it is desirable from this
point of view to use electrically big CLRs for the design. On
the other hand, since according to Eq. �1� the minimum res-
olution cannot be made smaller than the slab thickness, there
is no reason to use more than two or three periods along the
slab width. From these considerations it comes out that the
better design for the implementation of an artificial �r=−1
lens for MRI applications contains only a few periods along
the slab thickness. Such system, however, can hardly be con-
sidered as a continuous medium and a specific description
must be developed in order to rigorously model its behavior.

According to the previous discussion, the main aim of
this work will be to develop a specific model for the analysis
of electrically thin periodic slabs of resonant split rings
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�which may include the aforementioned CLRs, as well as
split ring resonators �SRRs� �Ref. 13� or other similar ele-
ments� with the sight on imaging applications. At the present
state of the art it is possible to find, apart from the specific
models developed for the analysis of magnetoinductive
lenses,8,9 some attempts of homogenization of thin metama-
terial slabs or layers. One of the directions is the analytical
calculation of the interaction constant inside double dipole
arrays,14,15 which finally leads to the definition of the effec-
tive material parameters for thin metamaterial slabs.16 This
method is not appropriate for the proposed application be-
cause it only takes into account normal incidence. Further-
more, it was developed for point dipole scatterers, which is
not appropriate for the analysis of practical lenses with
strongly coupled elements. Other possibility of homogeniza-
tion of thin slabs was proposed in Ref. 17. This method
derives the effective material parameters of a slab from the
effective material parameters of a 3D infinite lattice. Also
this method has two drawbacks for our purpose. First, the
homogenization of a 3D lattice is in many cases of the same
difficulty as the homogenization of a slab. Second, in order
to calculate the transmission and reflection by a slab, spatial
dispersion has to be taken into account.

To overcome the difficulties of the aforementioned ap-
proaches we will develop a model, which essentially is a
kind of two-dimensional �2D� generalized Lorentz procedure
including a detailed analysis of the magnetoinductive cou-
plings between nearest neighbors. The results obtained from
this model will be compared with those obtained from full-
wave electromagnetic simulations in order to validate the
analysis. They will also be compared with the results ob-
tained from the continuous medium approach in order to find
the limits of such approximation.

II. THE CONTINUOUS MEDIUM APPROACH

Figure 1�a� shows an ideal �r=−1 lens for MRI applica-
tions. A practical implementation of this lens using CLRs,
which, according to our previous discussion, has only two
periods along the slab thickness, is sketched in Fig. 1�b�. In
order to find the effective parameters of the ideal lens in Fig.
1�a� we can follow the homogenization procedure developed
in Ref. 18 �Eq. �13��, which takes into account magnetoin-
ductive couplings between rings. Let us then suppose that

this homogenization procedure applies and let us compute
the transfer function of the lens, that is, the transmission
coefficient between two planes at opposite sides of the lens,
separated by a distance 2d, where d is the lens width.
Clearly, in the ideal case of �r=−1, this transfer function
must be equal to unity for any value of the transverse wave
number ky of the incident wave.

As mentioned above, the lens is supposed to operate in
the quasimagnetostatic limit, where all fields are almost
purely composed of evanescent TE modes. Let us then ana-
lyze the incidence of a TE plane wave, evanescent in the
z-direction, on the slab in Fig. 1�a�. Fields of such wave are

E0
inc = E0

incej�kyy+kzz�x0,

H0
inc =

E0
inc


�0
�− kzy0 + kyz0�ej�kyy+kzz�, �2�

where kz=�k0
2−ky

2, with Re�kz��0 and Im�kz��0. Taking
the reference planes on the source and image planes �i.e., at
two parallel planes located at both sides of the lens and sepa-
rated by a distance 2d=4a� the transmission coefficient of
the lens can be written as

T =

4�r
kzs

kz
ejkzd

� kzs

kz
+ �r�2

e−jkzsd − � kzs

kz
− �r�2

ejkzsd

, �3�

where kzs=��rk0
2−ky

2 is the longitudinal wave number inside
the slab with Re�kzs��0 and Im�kzs��0. Making use of this
approach, we have designed a �r=−1 split ring lens for op-
eration in a MRI 1.5 T machine �f �63.85 MHz� according
to the design sketched in Fig. 1�b� with the lattice constant
a=15 mm. The CLRs were made of copper with metallic
strips etched on a nonmagnetic dielectric board. The CLRs
were loaded with lumped capacitors with normalized capaci-
tance C / �a�0�=354 �470 pF�. The normalized mean radius of
the CLRs was r0 /a=0.329 �4.935 mm� and the normalized
width of the strips was w /a=0.145 �2.17 mm�. The self-
inductance of the CLRs was obtained from the measured
value of the frequency of resonance in free space, whose
normalized value was k0a=0.0199 �63.28 MHz�. From this
value, the CLR self-inductance L=
0

2 /C was computed, hav-
ing the normalized value L / �a�0�=0.714 �13.5 nH�. By mea-
surement of the quality factor of the resonator, the normal-
ized resistance R / �
0L�=0.008 69 �0.0465 ��, which
includes the effects of the ring and the capacitor, was ob-
tained. The permeability of a simple cubic lattice of such
SRRs was then calculated using the homogenization proce-
dure developed in Ref. 18 �Eq. �13��, and introduced in Eq.
�3� in order to compute the transfer function of the lens. It is
worth to note that strictly speaking, the analyzed CLR ar-
rangement is not isotropic as it does not follow the necessary
symmetries19 due to the asymmetric location of the capaci-
tors on the rings. However, the electrical size of the CLRs is
so small �diameter /	=1 /394� that they can be practically
seen as resonant closed current loops, supporting a uniform
current distribution. Therefore, the analysis reported in Ref.
18 can be applied to the proposed structure.

FIG. 1. �a� Ideal slab of an effective magnetic medium with �=−�0. �b� A
sketch of the proposed CLR implementation.
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The computed amplitude of the transmission coefficient
�3� is plotted in Fig. 2, as a function of the normalized fre-
quency k0a and the normalized transverse wave number kya.
In the lossless case it can be seen that the transmission co-
efficient forms a flat valley between two steep cliffs, which
corresponds to the surface waves that can be excited at both
interfaces of the lens.8 The frequency bandwidth of the val-
ley increases from zero width at kya=� to some finite width
when the incident wave exhibits normal incidence. The
transmission coefficient inside the entire valley has a value
very close to unity, which reflects the imaging properties of
the slab. The middle frequency of the valley corresponds to
permeability �r=−1. When realistic losses are included, the
transfer function is strongly affected: both cliffs disappear
�for smaller losses, for instance, R=0.01 �, we can still find
some trace of them� and the spatial bandwidth �the allowed
values of kya� becomes smaller. Since the resolution of the
lens is limited by the minimum value of the allowed trans-
verse wavelength 	y =2� /ky, the presence of losses reduces
the resolution of the lens in agreement with our previous
discussion. Nevertheless, the results shown in Fig. 2 are still
very promising for MRI applications, as it will be shown in
Sec. IV. However, as it was mentioned above, this conclusion
is conditioned by the validity of the continuous medium
model, which is not clear for the analyzed structure. In Sec.
III we will develop a more accurate model and compare the
results with those obtained in this section.

III. THE THIN SLAB MODEL

In this section a theoretical model of electrically thin
slabs made of 2D periodic arrays of SRRs will be developed.
The model will be particularized for the specific geometry
discussed in Sec. II. However, it will become apparent that
the analysis can be easily generalized to other similar con-
figurations, including one or more layers of resonant current
loops. The only limitations are a small electrical size of the
loops and slab thickness. In our particular example, the slab
is composed of a regular array of the unit cells shown in Fig.
3, which are periodically arranged in a square lattice of pe-
riodicity a over the x-y plane. It can be seen that each unit
cell contains seven resonators �in our specific example they
are CLRs, but other configurations, such as small SRRs, can
also be considered�. Figure 3�b� shows the current loop

model of the real structure in Fig. 3�a�, where it is assumed
that each loop forms an RLC circuit20 having self-impedance
Z0=1 / �j
C�+ j
L+R.

A. Circuit model of the slab

Let us assume now the incident wave �2� impinging on
the slab. This polarization was selected due to the particular
purpose of the example; however the analysis can be easily
modified for incident plane waves of any polarization and
phase shift in any direction. According to the model, each
unit cell of the slab is described by a current vector Imn,
where superindices m and n indicate the location of the unit
cell in the x-y plane. Due to the assumed form of the incident
field it is Imn=I00ejkyna. The currents in the unit cell at origin
are driven by the magnetic flux across the different loops
according to

Z0Ii
00 = − j
�i

00, i = 1, . . . ,7, �4�

where the magnetic flux �i
00 through the loops includes the

flux of the external magnetic field as well as the magnetic
flux created by all other loops in the lattice. Therefore, it can
be then written that

�i
00 = �i

ext + 	
j�i

Mij
00Ij

00 + 	
mn�00

	
j

Mij
mnIj

mn, �5�

where Mij
mn is the mutual inductance between ith loop in 00th

cell and jth loop in mnth cell, and the summations extend
over all the unit cells. Although Eq. �5� is formally correct,
the last series are only conditionally convergent and cannot
be used in practice. To overcome this difficulty, the well
known Lorentz local field procedure21 will be applied. This
procedure, which for 3D structures leads to the well known

FIG. 2. �Color online� Transfer func-
tion through the �r=−1 lens of Fig. 1
calculated using the continuous me-
dium model in Ref. 18. �a� Losses are
ignored �R=0 ��. �b� Realistic losses
�R=0.0465 �� are included in the
model.

FIG. 3. �a� Considered unit cell made of CLRs. �b� Current loop model of
the unit cell.
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Clausius–Mossotti formula, has been successfully applied in
the past to the analysis of 3D metamaterial structures �see,
for instance, Ref. 3 and references therein� and, more re-
cently, it has been applied to the analysis of 3D metamateri-
als made of resonant current loops.18 In this paper, a straight-
forward generalization of this procedure to the analyzed 2D
structure will be applied to compute the last summation in
Eq. �5�.

Following the aforementioned Lorentz approach, the
whole metamaterial is divided in two regions: inside and
outside a circle �actually a flat cylinder� of radius R around
the 00th unit cell, i.e.,

�i
00 = �i

ext + 	
j�i

Mij
00Ij

00 + 	
j

Ij
00 	

mn�00

m2+n2�R2/a2

Mij
mnejkyna

+ 	
j

Mij

Ij

00, �6�

where the term 	 j
�Mij


Ij
00 represents the magnetic flux com-

ing from all the loops outside the circle.
Substitution of Eq. �6� into Eq. �4� then gives

�Z01 + j
M + j
M
�I00 = − j
�ext,

Mii = 	
mn�00

m2+n2�R2/a2

Mii
mnejkyna,

M ij

i�j
= Mij

00 + 	
mn�00

m2+n2�R2/a2

Mij
mnejkyna. �7�

This equation can be solved provided M, M
, and the exter-
nal magnetic flux �ext are known. Calculation of matrix M is
straightforward as its terms are given by summations of mu-
tual inductances between two current loops, which are ex-
plicitly calculated in Appendix A. The expression for M


will be given in Sec. III C, assuming that the radius R is big
enough so that the contribution coming from all the unit cells
outside the circle can be seen as a continuous distribution of
magnetization. The details of these computations are left to
Sec. III C and to Appendix B; however, it is worth to men-
tion that the proposed procedure avoids all the problems re-
lated to the slow convergence of the last summation in Eq.
�5� because all series and integrals involved in the final ex-
pressions will be finite.

B. Transmission and reflection coefficient of the slab

The scattering of a plane wave by the considered slab is
characterized by the transmission T and reflection R coeffi-
cients. At the present stage of the analysis, Eq. �7� only gives
the currents on the loops along the periodic array. In order to
calculate T and R, the far field radiated by the loops has to be
calculated. In the far field region, the lens can be seen as
seven parallel magnetized surfaces, each of them carrying
the magnetization connected to each one of the seven loops
in the unit cell, altogether with its periodic repetitions along
the slab. Magnetization of each surface has the form

M = M0ejkyy��z − zi� , �8�

where zi stands for the location of the layer along the z axis,
that is, z1=a, z2=0, z3=−a, z4=z6=a /2, and z5=z7=−a /2.

Radiation of these sources can be easily obtained by di-
rect inversion of Maxwell equations. Assuming a magnetiza-
tion layer at z=zi and B=�0�H+M�, this results in

Ex =
j
�0

2
� kyM0z

kz
− M0y sgn�z − zi��ejkyyejkz
z−zi
,

Ey =
jk0

2M0x

2
�0
sgn�z − zi�ejkyyejkz
z−zi
,

Ez = −
jkyk0

2M0x

2
�0kz
ejkyyejkz
z−zi
,

Hx =
− k0

2M0x

2jkz
ejkyyejkz
z−zi
,

Hy =
j

2
�− kyM0z sgn�z − zi� + kzM0y�ejkyyejkz
z−zi
,

Hz =
jky

2
� kyM0z

kz
− M0y sgn�z − zi��ejkyyejkz
z−zi


− M0ze
jkyy��z − zi� . �9�

Now, according to the indices in Fig. 3�b�, it can be easily
realized that only surfaces corresponding to loops 1, 2, 3, 4,
and 5 contribute to the radiated Ex field component through

Ex
1,2,3,4,5 =

j
�0A

2a2 � ky

kz
I1ejkz
z−a
 +

ky

kz
I2ejkz
z
 +

ky

kz
I3ejkz
z+a


− sgn�z −
a

2
�I4ejkz
z−a/2


− sgn�z +
a

2
�I5ejkz
z+a/2
�ejkyy , �10�

and only surfaces corresponding to loops 6 and 7 contribute
to the radiated Ey and Ez field components through

Ey
6,7 =

jk0
2A

2
�0a2ejkyy�sgn�z −
a

2
�I6ejkz
z−a/2


+ sgn�z +
a

2
�I7ejkz
z+a/2
� ,

Ez
6,7 = −

jkyk0
2A

2
�0kza
2ejkyy�I6ejkz
z−a/2
 + I7ejkz
z+a/2
� , �11�

where A states for the surface of the current loop.
Now, taking into account the presence of the incident

wave, the reflection and transmission coefficients for the ref-
erence planes z=−2a and z=2a are given by
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Rxx =
Ex

1,2,3,4,5�z = − 2a�
E0

incej�kyy−2kza� =
j
�0A

2a2E0
inc� ky

kz
I1e2jkza +

ky

kz
I2ejkza

+
ky

kz
I3 + I4e3jkza/2 + I5ejkza/2�e3jkza,

Ryx =
Ey

6,7�z = − 2a�
E0

incej�kyy−2kza� =
− jk0

2A

2
�0a2E0
inc�I6e−jkza/2 + I7ejkza/2� ,

Rzx =
Ez

6,7�z = − 2a�
E0

incej�kyy−2kza� =
jkyk0

2A

2
�0kza
2E0

inc�I6e−jkza/2 + I7ejkza/2� ,

Txx =
Ex

1,2,3,4,5�z = 2a� + E0
incej�kyy+2kza�

E0
incej�kyy−2kza�

=
j
�0A

2a2E0
inc� ky

kz
I1 +

ky

kz
I2ejkza +

ky

kz
I3e2jkza − I4ejkza/2

− I5e3jkza/2�e3jkza + e4jkza,

Tyx =
Ey

6,7�z = 2a�
E0

incej�kyy−2kza� = − Ryxe4jkza,

Tzx =
Ez

6,7�z = 2a�
E0

incej�kyy−2kza� = Rzxe4jkza. �12�

In Eq. �12� superindices sign the co- and cross-polar compo-
nents. The presence of cross-polar components, not found in
homogeneous material slabs, is a consequence of the lack of
periodicity in the z-direction. The transmission and reflection
coefficients for the cross-polarized wave are, however, very
small in the analyzed structure, as it will be shown in Sec.
IV.

C. Calculation of the magnetic flux created by far
neighbors

The last step before using Eq. �7� to calculate the in-
duced currents and, subsequently, Tij and Rij coefficients, is
the calculation of matrix M
, which represents the coupling
of each unit cell with its far neighbors. For this purpose we
must evaluate the magnetic field over the unit cell at origin
created by unit cells outside a circular hole of radius R. This
situation is illustrated in Fig. 4.

Let us assume, following the procedure outlined in Sec.
III A, that the hole is big in comparison to unit cell �R�a�,
that the unit cell is electrically small �k0a�1, kya�1�, and
that the slab is electrically thin �k0d�1�. In such case it is
possible to say that the field over the unit cell at origin,
created by neighbors outside of the hole, is almost uniform.
Therefore, the magnetic flux through the loops of the unit
cell will be �i�A�0ni ·H

M�0,0 ,0�, where ni is the normal
to the ith loop and HM�0,0 ,0� is the magnetic intensity at
origin. Furthermore, since the slab is electrically thin, it can
be said that the field HM�0,0 ,0� is radiated by a surface with
magnetization

M = A
�I6 + I7�x0 + �I4 + I5�y0 + �I1 + I2 + I3�z0

a2 ejkyy��z�

= M0ejkyy��z� , �13�

having a circular hole of radius R at the center. It may seem
that the field HM can be calculated by using free space
Green’s function for magnetic currents22 and integrating over
the surface with the hole. Although this is possible, it has to
be taken into account that such approach leads to very poorly
convergent integrals that prevent any numerical solution.
This approach was used, for example, in Ref. 23 in case of
ky =0, where the poor convergence was overcome by finding
an analytical solution. Unfortunately, in the general case of
ky �0 there is no closed form solution of such integrals,
which prevents the generalization of such procedure. There
is, however, another possible approach that can be described
as follows: calculate the field created by a magnetized annu-
lus of outer radius R and inner radius � and subtract it from
the field created by a magnetized surface with a hole of ra-
dius �, assuming that � is negligibly small. Making then the
limit �→0 leads to the desired field HM. This procedure
slightly differs from the standard Lorentz procedure since the
field created by a surface of uniform magnetization has a
singularity on the surface. This singularity is avoided by the
subtraction of the fields created by a small circle of radius
�→0. The advantage of this procedure is that since �→0,
the magnetization of this last disk can be considered uni-
form, and therefore the fields can be easily computed. The
mathematical details of outlined procedure can be found in
Appendix B, where it is shown that

M
 =
�0A2

a2 

Fz


 Fz

 Fz


 0 0 0 0

Fz

 Fz


 Fz

 0 0 0 0

Fz

 Fz


 Fz

 0 0 0 0

0 0 0 Fy

 Fy


 0 0

0 0 0 Fy

 Fy


 0 0

0 0 0 0 0 Fx

 Fx




0 0 0 0 0 Fx

 Fx




� , �14�

where Fx

, Fy


, and Fz

 are given by integrals �B8�, which can

be easily evaluated.

FIG. 4. Illustration of the slab with a hole of radius R.
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IV. NUMERICAL VALIDATION AND COMPARISON
WITH THE CONTINUOUS MEDIUM MODEL

In this section the results of the model developed
through Sec. III will be compared to full-wave numerical
simulations, carried out by the numerical CST Microwave
Studio electromagnetic solver. The comparison will be pro-
vided via the calculated transmission coefficient between
planes z=−2a and z=2a and the reflection coefficient at
plane z=−2a. For all the following calculations of the cou-
pling matrices M
 and M a radius R=10a will be used. The
simulated slab is made of CLRs with normalized mean ra-
dius r0 /a=0.34 and normalized width w /a=0.13. The nor-
malized self-inductance L=
2 /C was computed from the
simulated frequency of resonance for several values of the
capacitance C, and the value L / �a�0�=0.79 was obtained.
The losses in CLRs will be neglected at this moment so that
all the resonance peaks are well visible.

First of all, the limits of the proposed model will be
studied. For this purpose the capacitance of the CLRs is var-
ied so that the mean diameter of the CLRs at resonance is
d /	=1 /30, 1/50, 1/100, and 1/440. The transmission coeffi-
cients for all the above situations obtained from the theoret-
ical model, full-wave simulations, and effective medium
model �see Sec. II� are depicted in Fig. 5. In all plots of Fig.
5 a normalized transversal wave number kya=� /18 was im-
posed. The plots for CLRs with d /	=1 /30 are depicted in
Fig. 5�a�. It can be seen that although the theoretical model
reproduces the simulation better than the effective medium
model, the quantitative agreement is very poor. This is ex-
pected since it is known24 that the current induced on a con-
ducting loop can be considered approximately uniform only
if the circumference of the loop is smaller than 	 /10. There-

fore, the quantitative disagreements can be attributed to the
imprecise assumption of a uniform current over the CLRs.
This hypothesis is confirmed by the remaining panels of Fig.
5, where it can be clearly observed that as the CLRs become
electrically smaller, the quantitative agreement between
theory and simulation improves, reaching a practically per-
fect matching in Fig. 5�d�. Noticeably, Fig. 5 also shows that
the effective medium model provides a reasonable first order
approximation for small CLRs, even though it shows a sys-
tematic frequency shift with regard to simulations. This fre-
quency shift is present for any electrical size of the CLRs.
Therefore it seems to be a consequence of the small number
of unit cells through the slab, regardless of the size of the
CRLs.

After the validation of the proposed model, the analysis
will be focused on the slab made of CLRs with d /	
=1 /440, which is close to the slab proposed in Sec. II for
MRI applications. To study the imaging properties of this
slab, the transmission coefficient will be plotted for several
values of the transversal phase shift. Figure 6�a� shows the
result of the effective medium model and Fig. 6�b� shows the
results of the model of Sec. III. As it was already mentioned
in Sec. II, a T�1 valley appears between two peaks in both
cases. These peaks are approaching each other when the
transverse phase shift increases; however it can be seen that
there is always a region common to all curves. When dealing
with effective medium model, this common region precisely
corresponds with permeability around �r=−1 and lies just in
the middle between both peaks. The model in Sec. III cor-
rects this scenario, showing that this common region is
shifted to lower frequencies when the transverse phase shift
increases and it is no more centered. However, in both cases,

FIG. 5. Amplitude of the transmission
coefficient for several electrical sizes
of the CLRs in the lens of Fig. 1�b�.
The transmission coefficient was ob-
tained by simulation �solid lines�, the-
oretical model of Sec. III �dashed
lines�, and effective medium model
�dashed-doted lines�. The considered
normalized transversal wave number
is kya=� /18 in all figures.
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a frequency band of T=1 is present for moderate values of
the transverse phase shift, which confirms the usefulness of
the proposed design for MRI applications. Figure 7 shows
the transmission and reflection coefficient of the lens. It re-
veals that an optimal point of minimum reflection appears
just at the expected frequency of operation of the lens.

Finally, cross-polarization effects will be investigated.
As it was already mentioned in Sec. III B, the analyzed slab
produces not only copolar but also cross-polar components
of the transmitted and reflected waves, as it can be seen from
Eq. �12�. In order to illustrate this effect, the transmission
coefficients Txx and Tyx are plotted in Fig. 8 for a normalized
transversal wave number kya=� /18. It can be observed that
especially in the region of interest, the cross-polar compo-
nent is approximately two orders of magnitude smaller that
the copolar one, having thus a negligible influence. Similar
conclusions are reached for other transversal wave numbers.

V. CONCLUSION

A rigorous model has been proposed for the description
of electrically thin metamaterial slabs made of resonant cur-
rent loops. This includes electrically small capacitively
loaded loops, SRRs, and other related configurations. This
model allows for the computation of the transmission and
reflection coefficients of any kind of propagative and/or eva-
nescent incident plane wave, and is specifically well suited
for the analysis of imaging applications of such slabs.

The reported model has been compared with numerical
full-wave electromagnetic computations, and a good agree-
ment has been found provided the hypothesis underlying the
approximation is fulfilled. Specifically, it has been found that
the proposed model remains valid, provided the size of the
current loops is small enough to guarantee an approximately
uniform current distribution along the loop. It has been also
compared with the continuous medium model of the slab.
The main conclusion of this comparison is that this last
model provides a qualitative description of the electromag-
netic behavior of the slab, even for thicknesses including a
number of unit cells so small as two. Quantitatively, the con-
tinuous medium model fails by a small amount even for very
small current loops, as a consequence of the small number of
unit cells across the slab. In such situations, the main braw-
back of the continuous medium model is a non-negligible
frequency shift in the transmission and reflection coefficients
through the slab.

Applications of the above concepts in the design of
metamaterial magnetic superlenses are envisaged. Specifi-
cally, medical applications in MRI can be foreseen. These
applications could result in a meaningful increasing of the
sensitivity of surface coils, reduction in image acquisition
times, and improvement of parallel imaging techniques.

FIG. 6. �Color online� Amplitude of
transmission coefficient for various
transversal wave numbers obtained
from the effective �a� medium model
and the �b� model of Sec. III.

FIG. 7. Amplitude of transmission and reflection coefficient obtained from
the model of Sec. III. The normalized transversal wave number is kya
=� /18.

FIG. 8. Amplitude of transmission coefficient obtained from the model of
Sec. III. The solid line represents direct copolar transmission, while dashed
line represents transmission through cross-polar component. The normalized
transversal wave number is kya=� /18.
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APPENDIX A: MUTUAL INDUCTANCE OF TWO
CURRENT LOOPS

For orthogonally oriented loops the parametrization of
each current loop can be written as

x = r0�nz cos � + ny sin �� + xs,

y = r0�nz sin � − nx sin �� + ys,

z = r0�ny cos � + nx cos �� + zs,

� � �0,2�� , �A1�

where nx, ny, and nz are the components of the unit vector
normal to the loop; xs, ys, and zs are the coordinates of its
center; and r0 is the radius of the loop. The element of length
in parametrization �A1� is given by

dl = r0�x0�− nz sin � + ny cos �� + y0�nz cos � − nx cos �� − z0�ny sin � + nx sin ���d� . �A2�

The mutual inductance between two loops can now be calculated using the Neumann formula22 as

M =
�0

4�
�

l2

�
l1

e−jk0�

�
dl1 · dl2,

� = ��x1��1� − x2��2��2 + �y1��1� − y2��2��2 + �z1��1� − z2��2��2. �A3�

For numerical calculations it is very convenient to rewrite
Eq. �A3� as

M =
�0

4�
�

l2

�
l1

e−jk0� − 1

�
dl1 · dl2 +

�0

4�
�

l2

�
l1

1

�
dl1 · dl2.

�A4�

In Eq. �A4� the second integral �static part� does not depend
on frequency and can be evaluated only once in whole fre-
quency sweep. The first integral �dynamic part� has to be
evaluated for each frequency. However the integrand is a
very slow varying function �especially when k0��� /2, the
integrand is practically a linear function�, so only a few in-
tegration points are needed, which drastically fasten the cal-
culation.

APPENDIX B: CALCULATION OF THE FIELD
HM

„0,0,0…

Let us assume a problem of negligibly small hole of
radius � cut in the magnetized surface. Such problem can be
solved by subtracting the field of a disk of radius � from the
field of a full magnetization surface given by Eq. �9�. Since
the disk is negligibly small it is ky��1, and the field in its
center can be approximated by the field of a uniformly mag-
netized disk, a problem that is solved in Appendix C. It can
be found that the field at the center of such disk is

Hx
disk � =

− jk0M0x

2
+

1

4
� jk0 −

1

�
�M0xe

−jk0�,

Hy
disk � =

− jk0M0y

2
+

1

4
� jk0 −

1

�
�M0ye

−jk0�,

Hz
disk � = − M0z��z = 0� +

1

2
� jk0 +

1

�
�M0ze

−jk0�. �B1�

In Eq. �B1� it can be seen that the z-component of the field is
divergent. However, it will be shown that this fact does not
introduce any difficulty if the term ��z=0� is treaded in sym-
bolic way. Subtracting Eq. �B1� from Eq. �9� we can write
the field in the center of hole of radius � as

Hx
hole � =

− k0
2M0x

2jkz
+

jk0M0x

2
−

1

4
� jk0 −

1

�
�M0xe

−jk0�,

Hy
hole � =

j

2
�− kyM0z sgn�z = 0� + kzM0y� +

jk0M0y

2

−
1

4
� jk0 −

1

�
�M0ye

−jk0�,

Hz
hole � =

jky

2
� kyM0z

kz
− M0y sgn�z = 0�� −

1

2
� jk0 +

1

�
�M0ze

−jk0�. �B2�

The problem of the terms sgn�z=0� in Eq. �B2� can be
solved as follows: assume that there is only magnetization
M0z. In such case there is an x-y magnetic wall at z=0 and
Hy must vanish on it. This means that we can take sgn�z
=0�=0 for Hy components. In a similar way, when there is
only magnetization M0y, there must be an x-y electric wall at
z=0 and Hz must vanish on it. This means that we can take
sgn�z=0�=0 for Hz component. Finally we obtain
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Hx
hole � = � jk0

2

2kz
+

jk0

2
−

1

4
� jk0 −

1

�
�e−jk0��M0x,

Hy
hole � = � jkz

2
+

jk0

2
−

1

4
� jk0 −

1

�
�e−jk0��M0y ,

Hz
hole � = � jky

2

2kz
−

1

2
� jk0 +

1

�
�e−jk0��M0z. �B3�

The final step is now to subtract from Eq. �B3� the field in
the center of an annulus with outer radius R and inner radius
�. The field of such annulus can be solved by direct integra-
tion of the magnetic current Green’s function, which leads to

Hx
annulus =

M0x

2
�

�

R �k0
2�J0�ky�� −

J1�ky��
ky�

�
+

�1 + jk0��
�2 �3

J1�ky��
ky�

− J0�ky����e−jk0�d� ,

Hy
annulus =

M0y

2
�

�

R �k0
2J1�ky��

ky�
+

�1 + jk0��
�2 �2J0�ky��

−
3J1�ky��

ky�
��e−jk0�d� ,

Hz
annulus =

M0z

2
�

�

R �k0
2 −

�1 + jk0��
�2 �J0�ky��e−jk0�d� .

�B4�

Subtraction of Eq. �B4� from Eq. �B3� gives the field
HM�0,0 ,0� at the center of the circular hole of radius R. The
integrals in Eq. �B4� can be solved numerically; however the
numerical solution is difficult due to the divergent behavior
of the integrands for �=0 �note that it is assumed that ky�
�1�. However, this problem can be easily solved. The inte-
grals in Eq. �B4� have a closed form solution in the case of
ky =0, which reads

Gx =
M0x

4
�

�

R �k0
2 +

�1 + jk0��
�2 �e−jk0�d� =

M0x

4
�� jk0

−
1

R
�e−jk0R + �− jk0 +

1

�
�e−jk0�� ,

Gy =
M0y

4
�

�

R �k0
2 +

�1 + jk0��
�2 �e−jk0�d� =

M0y

4
�� jk0

−
1

R
�e−jk0R + �− jk0 +

1

�
�e−jk0�� ,

Gz =
M0z

2
�

�

R �k0
2 −

�1 + jk0��
�2 �e−jk0�d� =

M0z

2
�� jk0

+
1

R
�e−jk0R + �− jk0 −

1

�
�e−jk0�� . �B5�

Now, we can add the right-hand part and subtract the left-
hand part of Eq. �B5� from Eq. �B4�, which leads to

Hx
annulus =

M0x

2
�

�

R �k0
2�J0�ky�� −

J1�ky��
ky�

−
1

2
�

+
�1 + jk0��

�2 �3
J1�ky��

ky�
− J0�ky��

−
1

2
��e−jk0�d� +

M0x

4
�� jk0 −

1

R
�e−jk0R +

�− jk0 +
1

�
�e−jk0�� ,

Hy
annulus =

M0y

2
�

�

R �k0
2� J1�ky��

ky�
−

1

2
�

+
�1 + jk0��

�2 �2J0�ky�� −
3J1�ky��

ky�

−
1

2
��e−jk0�d� +

M0y

4
�� jk0 −

1

R
�e−jk0R +

�− jk0 +
1

�
�e−jk0�� ,

Hz
annulus =

M0z

2
�

�

R �k0
2 −

�1 + jk0��
�2 ��J0�ky�� − 1�e−jk0�d�

+
M0z

2
�� jk0 +

1

R
�e−jk0R + �− jk0 −

1

�
�e−jk0�� .

�B6�

Field �B6� is identical to Eq. �B4�, but now all the integrands
tend to zero for �→0 and all integrals in Eq. �B6� can be
numerically evaluated without difficulty. Finally the subtrac-
tion of Eq. �B6� from Eq. �B3�, taking into account Eq. �13�,
leads to

M
 =
�0A2

a2 

Fz


 Fz

 Fz


 0 0 0 0

Fz

 Fz


 Fz

 0 0 0 0

Fz

 Fz


 Fz

 0 0 0 0

0 0 0 Fy

 Fy


 0 0

0 0 0 Fy

 Fy


 0 0

0 0 0 0 0 Fx

 Fx




0 0 0 0 0 Fx

 Fx




� , �B7�

where

Fx

 = �� jk0

2

2kz
+

jk0

2
−

1

4
� jk0 −

1

R
�e−jk0R�

−
1

2
�

�

R �k0
2�J0�ky�� −

J1�ky��
ky�

−
1

2
�

+
�1 + jk0��

�2 �3
J1�ky��

ky�
− J0�ky�� −

1

2
��e−jk0�d�� ,
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Fy

 = �� jkz

2
+

jk0

2
−

1

4
� jk0 −

1

R
�e−jk0R�

−
1

2
�

�

R �k0
2� J1�ky��

ky�
−

1

2
� +

�1 + jk0��
�2 �2J0�ky��

−
3J1�ky��

ky�
−

1

2
��e−jk0�d�� ,

Fz

 = �� jky

2

2kz
−

1

2
� jk0 +

1

R
�e−jk0R� −

1

2
�

�

R �k0
2

−
�1 + jk0��

�2 ��J0�ky�� − 1�e−jk0�d�� . �B8�

All integrals in Eq. �B8� converge even for �=0. Making �
→0 leads to the exact solution.

APPENDIX C: MAGNETIC FIELD IN THE MIDDLE OF
A UNIFORMLY MAGNETIZED DISK

Assume that the disk of radius � carries a uniform mag-
netization

M = M0��z� . �C1�

The magnetic intensity produced in the disk center will be
obtained in two steps. First of all, setting ky =0 in Eq. �9�, we
obtain the magnetic field intensity radiated by an infinite
surface of magnetization M,

Hx =
− jk0M0x

2
e−jk0
z
,

Hy =
− jk0M0y

2
e−jk0
z
,

Hz = − M0z��z� . �C2�

Then, it is assumed that there is a circular hole of radius � on
the surface of magnetization �C1�. Since ky =0, this problem
can be solved directly by integration of the magnetic Green’s
function. Introducing polar coordinates and using the identity

�

��
� e−jk0�

�
� = −

1 + jk0�

�2 e−jk0�,

it is found that the magnetic field intensity in the middle of
the hole is

H =
1

4�− jk0
1 0 0

0 1 0

0 0 2
� +

1

�
1 0 0

0 1 0

0 0 − 2
��M0e−jk0�. �C3�

Now, by subtracting Eq. �C3� from Eq. �C2� we can easily
obtain the field in the middle of uniformly magnetized disk
of radius �.
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