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Abstract: Model-based control techniques are commonly applied to control the greenhouse climate.
As well-known, these techniques require accurate models for adequate results. Several first-principle
models have been developed for the greenhouse climate control problem considering all the physical
and physiological processes. However, these models are too complex to be used for control purposes.
On the other hand, empirical models based on input/output real data allow to obtain better results and less
complex model structures. In the Mediterranean areas the main problem is cooling the greenhouse and
this leads to natural ventilation as a standard tool. This paper presents the development and the results of
a Volterra model for the greenhouse temperature including the crop effect and using natural ventilation.
© Copyright IFAC 2008.

1. INTRODUCTION

Crop growth requires greenhouse climate conditions achievable
by means of advanced control techniques based on reliable
models of the greenhouse climate. In the southeast (SE) of
Spain, one of the main problems is greenhouse cooling by
natural ventilation. During recent years, advanced control tech-
niques have been developed, such as adaptive control (Sigrimis
et al., 1999), feedforward control (Rodrı́guez et al., 2001),
optimal control (van Straten et al., 2002), feedback linearizing
control based on physical (Pasgianos et al., 2003) and empirical
(Berenguel et al., 2006) models. This list of references is evi-
dently limited and many important papers on the temperature
control (Tantau, 1993; Seginer and Sher, 1993; Martin-Clouaire
et al., 1996; Fuchs et al., 1997), etc. are not mentioned due
to space constraints. Two widely differing strategies for mod-
elling are those based on either first principles or input/output
experimental data (Pearson, 1995). These techniques use a
model of the greenhouse climate which links the output variable
(temperature) to the control variable (vent position) and to the
disturbances (mainly outside weather and crop). There exists a
correlation between vent position and output temperature that
can be ascribed to the ventilation rate. As a contributing factor,
other researchers have identified this relationship by construct-
ing semi-physical models, such as (Boulard and Baille, 1995)
and (Kittas et al., 1997), and input/output empirical models
(Rodrı́guez et al., 1999; Parra et al., 2004, 2006), and even by
using an on-line estimator of the ventilation rate based on an
unknown input observer with an output linearising feedback, as
done by (Bontsema et al., 2006). The authors have previously
used both physical and empirical models. In the first case, a
greenhouse climate model based on energy balances was de-
veloped. Fundamentally, it is a dynamic model represented by
a system of differential equations dX/dt = f (X ,U,P,V,C, t),
with X(ti) = Xi, where X(t),U(t), P(t),V (t) and C are respec-

tively vectors of state variables, input variables, disturbances,
system variables and system constants, t is the time, Xi is the
known initial state at the initial time ti. Hence, f = f (t) is a
nonlinear function based on mass and heat transfer balances.
The number of equations describing the system characteristics
depends on the greenhouse elements, the installed control actu-
ators and the type of cultivation method. The physical processes
included in the energy and mass balances are solar and ther-
mal radiation absorption, heat convection and conduction, crop
transpiration, condensation and evaporation (Rodrı́guez, 2002).

In order to model the natural ventilation rate, φven, of a green-
house equipped with sidewall and roof continuous actuators,
some proposals from other researchers such as (Boulard and
Baille, 1995) and (Kittas et al., 1997) have been tested. These
models suggest that the ventilation process is induced by the
stack effect due to thermal buoyancy (produced by the differ-
ence between internal and external air temperature, Xt,a and
Pt,e respectively) and the wind effect due to the wind speed
(Pws,e) action on the greenhouse structure. The best results were
obtained with the following proposal of (Kittas et al., 1997)

φven = cven,d

[(
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where cven,d is the discharge coefficient of the ventilators,
cven,w is the wind pressure coefficient, cg is the acceleration of

gravity, X̄t is the mean absolute temperature, cven,h is the vertical
distance between the midpoints of the lateral and roof vents.
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Vven,ar−lat and Vven,ar−r f are the areas of the sidewall and roof
ventilation openings, given by:

Vven,ar−lat = cven,long−latcven,wid−latUven (2)

Vven,ar−r f = 2cven,long−r f cven,wid−r f sin(Uven/2)

where cven,long−lat and cven,long−r f are the lengths of the lateral
and roof ventilation, cven,wid−lat and cven,wid−r f are the widths
of the lateral and roof ventilation, and Uven is the control signal
of the ventilation openings in [%]. The leakage term, φlosses,
represents loss through leaks when the vents are closed, approx-
imated by an imposed threshold between high and low wind
speed. It was clear that the direct application of this kind of
model to model-based control strategies entailed severe com-
plications for techniques that required model inversion in order
to obtain vent aperture (Uven) from ventilation rate estimates
(Rodrı́guez et al., 2001). Thus, empirical ventilation rate mod-
els were developed, both artificial neural-network based models
(Rodrı́guez et al., 1999) and static empirical ones (Parra et al.,
2006) to try to avoid the mentioned problems. In this last case,
some studies were conducted in the greenhouse used in this
work, where the well established logarithmic transformations
of the mass balance equation for the decay-rate of a tracer
gas (N2O) were employed by (Baptista et al., 1999), although
that method cannot be used during crop production. One of
the main results obtained by applying regression techniques
to actual measurements on the effect of combined roof and
sidewall ventilator actions was the fact that the expected ven-
tilation rate per unit ventilator area and wind speed, followed
an exponential expression of the combined aperture set point,

φ(Uven) = Pws,eαU
β
ven + φlosses, where Uven is the percentage

aperture of the ventilators. The quantities α and β are tuning
parameters which, according to actual measurements, show
subtle variations between leeward and windward ventilation.
φlosses is the calculated inherent ventilation leakage due to
greenhouse aerodynamics and layout. Further studies were car-
ried out in order to achieve an approximate, but well-tuned
practical model, suitable for automatic control. Anyway, as
pointed out by (Bontsema et al., 2006), since in practice the
greenhouse climate is never in steady state, due to the external
disturbances, the error is large due to neglecting the dynamic
storage term.

In all the previous models, it can be seen how the models of
the natural ventilation rate are quite difficult to obtain, so that,
an approach based on Volterra models has been developed in
order to find a trade-off between the difficulty for obtaining
the model and the potential use for control purposes, applied
for diurnal temperature control and applied to the typical par-
ral greenhouse structure of the SE of Spain. Volterra models
represent the logical extension of convolution models which
have been applied successfully in linear model-based predictive
control (MPC) (Doyle et al., 2002; Maner et al., 1996). These
models exhibit generically a good behaviour and their structure
can be exploited in the design of controllers, especially in the
case of second order models. A second order Volterra model,
with the truncation of terms (truncation orders N1 and N2), can
be defined as:

y(k) = h0 +
N1

∑
i=1

a(i)u(k− i)

+
N2

∑
i=1

N2

∑
j=1

b(i, j)u(k− i)u(k− j) (3)

which corresponds to a linear convolution model with a nonlin-
earity as additional and additive term, as described in section 2.
In that model y(k) and u(k) represent the last measured output
and input to the system, respectively (k is the actual sampling
instant). Notice that Volterra models have been frequently used
to model bilinear systems in such a way that it seems to be
a good idea to use this formulation for modelling greenhouse
temperature dynamics, including the disturbances in the nomi-
nal formulation of second order Volterra models.

In a previous work, a preliminary Volterra model was developed
to model the inside temperature of an empty greenhouse (with-
out crop) in order to evaluate the behavior of this modelling
technique for this kind of systems (Gruber et al., 2007). Sev-
eral PRMS (Pseudo Random Multilevel Sequence) tests were
performed using natural ventilation to obtain adequate data for
identification purposes, because typical PRBS (Pseudo Ran-
dom Binary Sequence) and RBS tests do not sufficiently excite
nonlinear systems (Braun et al., 2001). The resulting model
adequately fitted the real data but the number of parameters was
excessively high. Furthermore, the crop has an important effect
on the greenhouse temperature and thus it is a key factor to
be included in the system model. Therefore, the present work
faces the previous drawbacks reducing the number of model
parameters and considering the crop effects.

The paper is organized as follows. It begins with materials
and methods used where both equipment and the identification
and modelling procedures are explained. Next, representative
results are outlined. Finally, the conclusions section will sum-
marize the achievements and propose intended applications.

2. MATERIALS AND METHODS

2.1 Greenhouse

The data were acquired in a Parral greenhouse located in Las
Palmerillas Experimental Station (El Ejido, Almerı́a, Spain,
Figure 1). It is a symmetric curved flat roof greenhouse with five
North-South oriented spans of 7.56×23.2 m (877 m2 total soil
surface) and height from 2.8 m to 4.4 m. The covering material
is a 200-micron thick PE film, laid on a galvanized steel struc-
ture 1 . The control actuators installed in the greenhouse are
automated flap roof and rolling lateral continuous ventilators,
the former with a maximum aperture angle of 45o and the
latter with 37 m length and 1.2 m aperture. Both have insect
screens installed in the ventilation openings. Soil temperature
measurements were made using semiconductor sensors at dif-
ferent depths, i.e., on both side of the mulch, immediately under
the soil surface layer and at a depth of 50 mm. The greenhouse
air temperature thermoresistance sensor and the air relative
humidity capacitive sensor were placed at the top of the crop. A
meteorological station was installed outside at a height of 6 m
for measurements of temperature, relative humidity, solar and
photosynthetically active radiations, rain, and wind speed and
direction. Some additional crop data were logged, i.e., substrate
water content, water supply, amount of drainage, electrical con-
ductivity of the substrate, plant transpiration measured with an
electronic weight, leaf temperature and CO2 concentration. A
uniform sampling time of one minute was established.

1 http://aer.ual.es/CJPROS/engindex.php?Opcion=5
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Fig. 1. Greenhouse used for the experiences.

2.2 Models, data and parameter identification

As the main objective of the work presented in this paper was
to evaluate the potential use of Volterra models to account for
the main dynamics describing changes in inside air temperature
to outside weather using only natural ventilation, the data used
for identification purposes was collected with crop (tomatoes)
inside the greenhouse (April/May, 2006). The influence of the
crop was taken into account as a disturbance to the green-
house temperature. The mentioned disturbance was modeled
by means of the the Leaf Area Index (LAI). Thus, the main
variables considered for modelling purposes are:

• Output: Xt,a inside air temperature.
• Input: alat,r f aperture of the roof and lateral ventilations.
• Disturbances: Pt,e outside temperature, Pws,e outside wind

speed, Pt,ss soil surface temperature, Psol,e outside global
solar radiation, PLAI Leaf Area Index.

During the identification process, additional inputs were tested
(not included in this document), as the product alat,r f Pws,e, but
no large improvements in the parameter identification stage was
detected while the number of parameters did increase. More-
over, the selection of these modulated variables will prevent the
use of model predictive controllers.

A second order truncated Volterra models that represented in
equation (3). In the case of autoregressive (AR) models, the
structure is:

y(k) = h0 +
Ny

∑
i=1

h1(i)y(k− i)+
N1

∑
i=1

a(i)u(k− i)

+
N2

∑
i=1

N2

∑
j=i

b(i, j)u(k− i)u(k− j) (4)

where h0 is the offset and h1(·), a(·) and b(·), the AR pa-
rameters, the linear parameters and the nonlinear second order
parameters, respectively. Second order AR terms have not been
included, as the selection allows obtaining adequate results. In

the theoretical case the upper limit of the convolution sum will
be ∞, but in a stable system as the greenhouse, the number of
terms can be truncated (sum limits Ny, N1 and N2) to reduce the
number of parameters to identify, in such a way that h1(i) =
0, ∀i > Ny,a(i) = 0, ∀i > N1,b(i, j) = 0, ∀i > N2, j > N2. Di-
agonal models are often used to reduce the number of param-
eters to estimate (b(i, j) = 0, ∀i �= j), but in the case treated
in this paper only non-diagonal second order Volterra models
have been used. Notice that, although the disturbances could
be distinguished from the manipulable variables (for instance,
when using these models for control purposes), there is no
difference between them for identification purposes, and then,
both manipulable variables and disturbances will be denoted by
u(·) in this work without loss of generality.

As the system under consideration is MISO (Multiple Input -
Single Output), the model in the AR case (in the non-AR case
h1(i) = 0, ∀i) is given by:

y(k) = h0 +
Ny

∑
i=1

h1(i)y(k− i)+
n

∑
l=1

N1,l

∑
i=1

al(i)ul(k− i)

+
n

∑
l=1

N2,l

∑
i=1

N2,l

∑
j=i

bl(i, j)ul(k− i)ul(k− j) (5)

In order to identify the parameters of the Volterra models, data
in the period from 19 April to 02 May, 2006 have been used
(Figure 2, only a period of 5 days is shown, time scale in days),
while data from 03 May to 07 May, 2006 have been used for
validation purposes (Figure 3). Obviously, more data should
be necessary to obtain more reliable results, but the selected
data are enough for assessing the validity of the technique
for greenhouse temperature modelling. The sample time was
2 minutes and the data were adequately filtered through first
order filters before using them for calibration purposes.

Before performing the identification and validation, the filtered
data are also normalized,
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truncation orders
︷ ︸︸ ︷

Name Method Order alat,r f Pt,e Pws,e Psol,e Pt,ss PLAI Xt,a ∑parameters εid εval lb, ub A, b

0 lsq
1st 30 1 10 5 10 1 0

234 0.6024 0.6994 = [], = [] = [], = []
2nd 15 1 10 0 0 0 0

A fmin
1st 30 1 10 5 10 1 0

234 0.7710 0.9450 �= [], �= [] = [], = []
2nd 15 1 10 0 0 0 0

B fmin
1st 20 1 2 5 10 1 0

99 0.8297 1.1358 �= [], �= [] = [], = []
2nd 10 1 2 0 0 0 0

E fmin
1st 20 1 2 5 10 1 0

99 0.8909 1.1680 �= [], �= [] �= [], �= []
2nd 10 1 2 0 0 0 0

C ar
1st 1 1 1 1 1 1 1

13 0.5976 0.7357 = [], = [] = [], = []
2nd 1 1 1 1 1 0 0

D ar
1st 2 2 2 2 2 2 2

30 0.5961 0.7264 = [], = [] = [], = []
2nd 2 2 2 2 2 2 0

Table 1. Main numerical results
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Fig. 2. Raw data for identification.
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Fig. 3. Raw data for validation.

V nor
id =

Vid −V min
id

V max
id −V min

id

; V nor
val =

Vval −V min
id

V max
id −V min

id

where V is each one of the used input/disturbance/output sig-
nals both in the identification (id) and validation (val) data
sets, supra-index min means the minimum value in that set and
max the maximum one. In this way, the identification data are

normalized to the interval [0,1] and the validation data to an
interval close to that. With these normalized values, the output
of the Volterra model is also normalized (ynor), in such a way
that the real output is given by y = ynor(Xmax

t,a−id − Xmin
t,a−id) +

Xmin
t,a−id . To identify the parameters of the Volterra models, both

least squares methods and constrained nonlinear optimization
using sequential quadratic programming have been used.

3. REPRESENTATIVE RESULTS

In this section several representative results are shown, both
in tabular and graphical ways. Both non-AR and AR models
have been identified and validated. The meaning of the abbre-
viations used in Table 1 are: lsq (least squares method), fmin
(constrained nonlinear optimization), ar (AR model), lb, ub
(lower and upper bounds of the parameters) A,b (matrices defin-
ing linear constraints of the form Ax≤B), εid ,εval (mean square
error for identification and validation:

ε =
∑

n
i=1(Xt,a(i)− ŷ(i))2

n
where ŷ is the output of the model. Table 1 shows the main
results of the identification and validation stages.

3.1 Non-AR models

Identification test 0: the first identification was performed
using the least squares method. One of the initial problems was
to select the truncation orders for the six variables influencing
the greenhouse inside temperature. Due to this reason, in a
first step identifications were performed in such a way that for
each variable a long truncation order was selected, while the
truncation order for the rest was zero. In these identifications
the truncation orders of the second order terms were also
zero. In a second step, six new identifications were carried
out to determine the second order truncation orders, using
the truncation orders for the linear terms selected in the first
step. Finally, once the truncation orders were determined, the
identification using the least-squares method was done. The
used truncation orders are shown in Table 1, as well as the
number of parameters (234, including the offset) and the mean
square errors.

Identification test A: As the plots of the parameters obtained in
the previous case did not show a consistent convergence (many
parameters have noisy profiles), constraints have been included
in the identification process, then using nonlinear optimization
techniques. The number of parameters is the same than in the
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Order Const. alat,r f Pt,e Pws,e Psol,e Pt,ss PLAI

1st lb – – 0 0 0 –

ub 0 – – – – –

2nd lb 0 – – – – –

ub – – 0 – – –

Table 2. Constraints for identification A

previous case (see Table 1) but with the constraints shown in
Table 2. The results of the identification and validation are
shown in Table 1. With the constraints, the linear parameters
have more reasonable values, and the parameters corresponding
to the second order terms that are not zero are close to the main
diagonal (not shown for the sake of space).

Identification test B: In the previous experience, it was de-
tected that several of the linear terms parameters (specially
those related to Pws,e and alat,r f ) were equal to zero, in such
a way that the corresponding truncation orders could be de-
creased to 20 and 2, respectively. In the same way, the trun-
cation order of the second order terms of Pws,e were reduced
to 2, providing a total number of 99 parameters. The same
constraints were used and the mean square errors were slightly
higher than in test A.

Identification test E: In the three previous cases, the linear
parameters associated to variable alat,r f did not achieve co-
herent values, in such a way that additional conditions were
added. The same truncation orders and constraints than in the B
case were used, but it was imposed that aalat,r f

(k) ≥ aalat,r f
(k−

1) fork = 2, . . . , 20, this conditions being quite easily imple-
mentable in the nonlinear constrained optimization problem. In
an analogous way the conditions aPsol,e

(k)≤ aPsol,e
(k−1) fork =

2, . . . , 5 and aPt,ss(k)≤ aPt,ss(k−1) fork = 2, . . . , 10 for the out-
side global solar radiation and the soil surface temperature were
used. A plot of the results of the identification and validation is
shown in Figure 4. The resulting linear parameters are shown
in Figure 5, while the second order term parameters are shown
in Figure 6. It can be seen that the linear terms corresponding
to the variables Psol,e, Pt,ss and alat,r f are smooth curves. A
further reduction of the truncation order for the corresponding
variables is not possible anymore. Furthermore, with the impo-
sition of the additional conditions for the linear parameters, the
nonlinear parameters of the model input alat,r f show a coherent
and reasonable shape. Diagonal models were also tested, but
the mean square errors increased.

3.2 AR models

Two identification tests are shown using AR models with non-
linear open loop identification.

Identification test C: In a first step, all the truncation orders
were set to 1 for the linear parameters of the six variables
influencing the greenhouse temperature. For the disturbance
PLAI no second order terms were used, for the remaining five
variables a nonlinear truncation order of 1 was chosen. With
regards to the AR terms, a truncation order equal to 1 was used
for the linear part and 0 for the nonlinear one. The offset has
been also added, with a total of 13 parameters (Table 1).

Identification test D: Finally, a second identification is shown
where the truncation orders for the linear and nonlinear param-
eters related to the input and disturbance variables are set to 2,
except for the second order terms of PLAI which were not used
as in the previous identification. The AR part of the model has
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Fig. 4. Test E: identification (up) and validation (down) results
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a truncation order with 2 parameters in the linear part and 0
parameters in the second-order terms (nonlinear AR terms have
been neglected). Again, the offset is included, providing a total
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of 30 parameters. The main results are shown in Table 1 and in
Figure 7 (plot of the results of the identification and calibration
with the AR model). It can be seen that the mean square error
is reduced to εid = 0.5961 and εver = 0.7264.
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Fig. 7. Test D: identification (up) and validation (down) results

4. CONCLUSIONS

This paper has presented results on the application of Volterra
models for the modelling of greenhouse temperature evolution
using natural ventilation and including the crop effect. The
main interest was to see how these models cope with the nonlin-
ear behaviour inherent in the relationship between temperature
and vents aperture, through the ventilation rate, which is one of
the most difficult dynamics to be modelled in the greenhouse
as discussed in the introduction section. Future works will in-
clude the application of model predictive control schemes for
greenhouse temperature control using the models obtained in
this work.
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J. Pérez Parra. Greenhouse diurnal temperature control
with natural ventilation based on empirical models. Acta
Horticulturae 179, pp. 205-211, 2006.

J. Bontsema, E.J. van Henten, J. Hemming, J. Budding, and
T. Rieswijk. On-line estimation of the ventilation rate of
greenhouses. ISHS Acta Horticulturae 718, 2006.

T. Boulard and A. Baille. Modelling of air exchange in a
greenhouse equipped with continuous roof vents. J. Agri.
Eng. Res. 61, pp. 37-48, 1995.

M.W. Braun, D.E. Rivera, and A. Stenman. A model-on-
demand identification methodology for nonlinear process
systems. Int. J. of Control, 74(18), pp. 1708-1717, 2001.

F.J. Doyle, R.K. Pearson, and B.A. Ogunnaike. Identification
and Control Using Volterra Models. Springer, London, 2002.

M. Fuchs, E. Dayan, D. Shmuel, and Y. Zipori. Effects of
ventilation on the energy balance of a green house with bare
soil. Agricultural and Forest Meteorology, 86, pp. 273-282,
1997.

J. K. Gruber, F. Rodrı́guez, C. Bordóns, J. L. Guzmán, and
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