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Abstract. In this paper we propose and analyze a finite element method for both the harmonic map
heat and Landau–Lifshitz–Gilbert equation, the time variable remaining continuous. Our starting
point is to set out a unified saddle point approach for both problems in order to impose the unit
sphere constraint at the nodes since the only polynomial function satisfying the unit sphere constraint
everywhere are constants. A proper inf-sup condition is proved for the Lagrange multiplier leading to
the well-posedness of the unified formulation. A priori energy estimates are shown for the proposed
method.

When time integrations are combined with the saddle point finite element approximation some
extra elaborations are required in order to ensure both a priori energy estimates for the director or
magnetization vector depending on the model and an inf-sup condition for the Lagrange multiplier.
This is due to the fact that the unit length at the nodes is not satisfied in general when a time
integration is performed. We will carry out a linear Euler time-stepping method and a non-linear
Crank–Nicolson method. The latter is solved by using the former as a non-linear solver.
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1. Introduction

1.1. The model. In this paper we propose and analyze inf-sup stable finite element approximations
for the harmonic map heat and Landau–Lifshitz–Gilbert equation. The unified equations are given by















∂tu− γ∆u− γ|∇u|2u+ αu × ∂tu = 0 in Ω×R
+,

|u| = 1 in Ω×R
+,

∂nu = 0 on ∂Ω×R
+,

u(0) = u0 in Ω,

(1)

where u : Ω × R
+ → S

M−1, with M = 2 or 3 being the space dimension, Ω is a bounded domain of
R

M with boundary ∂Ω, SM−1 is the unit (M − 1)-sphere, ∂n is the normal derivative, with n being
the unit outward normal vector on ∂Ω, and γ, α ∈ R withγ > 0 and α ≥ 0; for M = 2 we assume that
α = 0, so that the last term in the right-hand-side of (1)1 appears only in the three-dimensional case.
The normalization condition (1)2, where | · | stands for the Euclidean norm for vectors and matrices
and which will be referred to as the unit sphere constraint, is assumed to be satisfied by the initial
condition u0, i.e. |u0| = 1; it can be verified that this assumption, together with (1)1, implies (1)2 for
every time t > 0.

Equations (1) arise in the phenomenological description of widely different physical systems. Ac-
cording to the theory developed by Ericksen [20, 21] and Leslie [32, 33], system (1) for α = 0 may
govern the dynamics of a nematic crystal fluid in the limit of low fluid velocity, where the coupling to
the fluid motion is negligible. Here, u represents the orientation of the liquid crystal molecules, which
are modeled as elongated rods tending to line up locally along a preferred direction, while γ stands
for a relaxation time constant. According to the theory by Landau and Lifshitz [31] and Gilbert [24]
(in his apparently unpublished first version in [23]), system (1) may also govern the dynamics of mag-
netization in ferromagnetic materials in the classical continuum approximation, where the relativistic
interactions are modeled by the damping term αu × ∂tu and the thermal fluctuations are negligible.
To be more precise, for such a case, the original equation takes the form

∂tu+ γu× (u×∆u) + αu× ∂tu = 0, (2)

which can be recast as (1) by using the identity

u× (u ×∆u) = −∆u− |∇u|2u. (3)

Here, u stands for the magnetization vector without the presence of an applied magnetic field, while
γ and α stand for the electron gyromagnetic radius and a damping parameter, respectively.

In constructing a numerical algorithm for approximating (1), one looks for an energy law which is
satisfied at the continuous level; such an energy law can be obtained as follows. Multiplying (1)1 by
∂tu and integrating over Ω, we obtain

∫

Ω

|∂tu(x)|2 dx− γ

∫

Ω

∆u(x) · ∂tu(x) dx− γ

∫

Ω

|∇u(x)|2u(x) · ∂tu(x) dx = 0.

Since u · ∂tu = 0 by virtue of (1)2, the third term in this expression vanishes, while the second one
can be rewritten as

−
∫

Ω

γ∆u(x) · ∂tu(x) dx =
1

2

d

dt

∫

Ω

γ|∇u(x)|2 dx

by using the Green formula and the homogeneous boundary condition (1)3. Thus, the energy law for
(1) reads

∫

Ω

|∂tu(x)|2dx+
1

2

d

dt

∫

Ω

γ|∇u(x)|2dx = 0. (4)

The fact that, in the derivation of (4), the unit sphere constraint is invoked in a pointwise sense has
important implications at the time of deriving a numerical discretization for (1), where it turns out
being a major source of difficulties. In fact, two contradicting requirements must be accounted for: on
the one hand, using standard piecewise polynomial finite element spaces, the only possibility to satisfy
the unit sphere constraint in a pointwise sense, which would then allow repeating the derivation of (4)
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also at the discrete level, is using piecewise constant functions; on the other hand, (1)1 calls for more
regularity in the approximating space for u than is provided by a piecewise constant function.

To this end, we note that various approaches have been considered in the literature.
One first possibility was considering a projection step which, in its rudimental version [37], consisted

in enforcing the unit sphere constraint at the sole finite–element nodes. This resulted in a numerical
scheme using first order conforming finite elements which did not enjoying a discrete energy law.
In [2], a refined version of the method was proposed, where a finite–element approximation of ∂tu was
computed in a suitable tangent space and for which convergence to weak solutions could be proved
under the assumption that the space and time discretization parameters tend to zero in a specified
way. Such a restriction on the space and time discretization parameters was motivated by the use of an
explicit first-order time integrator; [1] then introduced a formulation which circumvented this drawback
using a θ-method. In this latter formulation, for θ ∈ (12 , 1], the algorithm was unconditionally energy
stable and convergent. Yet, the main limitation is that the projection step prevented the scheme from
being second order accurate in time; subsequent modifications addressing this have been considered
in [3, 4].

One second possibility was using closed nodal integration together with reformulation (2), in order
to avoid the projection step, required to enforce the nodal fulfillment of the unit sphere constraint.
This approach has been successfully used with a Crank–Nicolson time integration to obtain numerical
schemes which satisfied a discrete energy law and preserved the unit sphere constraint at the nodes
while converging toward weak solutions. The conditional solvability of this approach is the main
disadvantage with respect to the projection method. We refer to [8] for the Landau–Lifshitz–Gilbert
equation and [9] for the harmonic map heat flow equation.

One third option [37] was reformulating (1) at the continuous level introducing a penalization term
to enforce the unit sphere constraint, which also requires modifying the expression of the energy
law (4) including the potential of the penalization term itself. The penalty method was probably the
first strategy for approximating (1), and the most common penalty function is the Ginzburg–Landau
function. The key idea is that an energy law can be obtained without explicitly using the unit sphere
constraint. Yet, a significant drawback of this approach is that choosing a “good” value for the penalty
parameter is far from trivial.

One fourth possibility was based on introducing in (1) a Lagrange multiplier associated with the
unit sphere constraint, hence obtaining a saddle point formulation. To the best of our knowledge, the
only numerical scheme using such an approach can be found in [10], where the multiplier was chosen
so that the unit sphere restriction was enforced at the nodal points, taking advantage of a closed
nodal numerical integration rule. Regarding the time integration, a second-order algorithm based on a
Crank–Nicolson method was used to approximate the primary variable while the Lagrange multiplier
was implicitly computed in terms of the primary variable itself. An unconditional energy law was
obtained and convergence toward weak solutions established. No inf-sup condition was proved in [10],
because at the time the finite element spaces and the estimates for the Lagrange multiplier were not
well understood. In fact, the study of the inf-sup condition for the Lagrange multiplier in the saddle
point formulation of (1) is one of the main contributions of the present paper.

In addition to the above references, the interested reader is referred to [30, 17] for two numerical
surveys concerning specific topics for the Landau–Lifshitz–Gilbert equations.

The first three methods mentioned above share one main drawback, namely the fact that they
are can not be easily modified when a coupling term comes into play. For instance, the Ericksen–
Leslie equations consist of the Navier–Stokes equations with an additional viscous stress tensor and
a convective harmonic map heat flow equation. In [11], a numerical scheme is proposed for solving
them following the ideas in [8] and [9]. However, the presence of the convective term in the harmonic
map heat flow equation prevents fulfilling the discrete unit sphere condition, despite the possibility
to obtain a priori energy estimates. Instead, in [6], a saddle point formulation is presented for the
Ericksen–Leslie equations enjoying a discrete energy law and allowing a nodal enforcement of the unit
sphere constraint. Yet, the inf-sup condition was not well understood at the time of writing [6]. In this
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work we present some ideas which lead to an inf-sup condition for the associated Lagrange multiplier
of the scheme described in [6]; thereby, the numerical analysis may be concluded.

The goal of the present paper is to provide a saddle point framework for approximating (1) in which,
using appropriate numerical tools, an inf-sup stable finite element method can be constructed. In this
regard, it should be stressed that a proper choice of the finite element spaces for the saddle point
problem, namely one which results in favorable estimates for the Lagrange multiplier, is extremely
important in order to ensure stability and avoid the so-called locking of the numerical solution, i.e.
an unphysical stiffness of the computed u field [12]. To deal with the contradictory requirements
mentioned above concerning the regularity of the numerical solution on the one hand and, on the
other hand, the fulfillment of the unit sphere constraint, we propose to use first order, conforming
finite elements and to enforce the unit sphere constraint at the finite element nodes. We show that,
when combined with a suitable closed quadrature rule, this ansatz results in a discrete version of the
energy low (4). Hence, summarizing, we are interested in a numerical algorithm which uses low-order
finite elements, preserves the unit length at the nodal points and satisfies a discrete energy law and a
discrete inf-sup condition for the discrete Lagrange multiplier.

Moreover, we discuss two time integrators for our finite element saddle point formulation. Indeed,
it seems that there are very few time integrators available which preserve a discrete energy law. In
particular, we will present one first-order time integrator based on a semi-implicit Euler method and
one second-order time integrator based on the Crank–Nicolson method.

The rest of the paper is organized as follows. In section 2, some notation is introduced, then we
present the saddle-point formulation for (1) and prove an energy law for such formulation. Moreover,
some inf-sup conditions for the Lagrange multiplier are established. In section 3 we set out our
assumptions concerning the finite element spaces used to approximate the saddle-point formulation,
and conclude with some results required in proving an inf-sup condition at the discrete level. In
section 4 we present our numerical scheme discretized in space with the time being continuous. In
section 5 we end up with some time realizations of the semi-discretized scheme that preserve the desired
properties. Section 6 deals with some specific implementation aspects of the fully discretized scheme.
Finally, section 7 is devoted to various computational experiments.

2. Statement of the saddle-point problem

2.1. Notation. We will assume the following notation throughout this paper. Let O ⊂ R
M , with

M = 2 or 3, be a Lebesgue-measurable domain and let 1 ≤ p ≤ ∞. We denote by Lp(O) the space
of all Lesbegue-measurable real-valued functions, f : O → R, being pth-summable in O for p < ∞ or
essentially bounded for p = ∞, and by ‖f‖Lp(O) its norm. When p = 2, the L2(O) space is a Hilbert
space whose inner product is denoted by (·, ·).

Let α = (α1, α2, ..., αd) ∈ N
M be a multi-index with |α| = α1 + α2 + ... + αM , and let ∂α be the

differential operator such that

∂α =
( ∂

∂x1

)α1

...
( ∂

∂xd

)αd

.

For m ≥ 0 and 1 ≤ p ≤ ∞, we define Wm,p(O) to be the Sobolev space of all functions whose m
derivatives are in Lp(O), with the norm

‖f‖Wm,p(O) =





∑

|α|≤m

‖∂αf‖pLp(O)





1/p

for 1 ≤ p < ∞,

‖f‖Wm,p(O) = max
|α|≤m

‖∂αf‖L∞(Ω), for p = ∞,

where ∂α is understood in the distributional sense. In the particular case of p = 2, Wm,p(O) = Hm(O).
We also consider C0(Ō) to be the space of continuous functions on Ō.

For any space X , we shall denote the vector space Xd by its bold letter X. For example, (L2(O))d

is denoted by L2(O), (Hm(O))d by Hm(O), etc. Consistently, in order to distinguish scalar-valued
fields from vector-valued ones, we denote them by roman letters and bold-face letters, respectively. To
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shorten the notation, the norms ‖ · ‖L2(Ω) and ‖ · ‖L2(Ω) are abbreviated ‖ · ‖; moreover, the dual space
of X is denoted by X ′, with 〈·, ·〉 indicating its dual pairing.

2.2. Saddle-point formulation. The saddle-point formulation for (1) reads as follows: Find u :
Ω×R

+ → S
N−1 and q : Ω×R

+ → R satisfying














∂tu− γ∆u+ γqu+ αu× ∂tu = 0 in Ω×R
+,

|u|2 = 1 in ∂Ω×R
+.

∂nu = 0 on ∂Ω×R
+,

u(0) = u0 in Ω.

(5)

The energy estimate associated with problem (5) was derived in [6]. If we multiply (5)1 by ∂tu, and
integrate over Ω, we have

‖∂tu‖2 +
1

2

d

dt
‖∇u‖2 +

∫

Ω

∂tu(x) · q(x)u(x) dx = 0.

To control the third term on the left hand side of the above equation, we take the time derivative of
|u|2 = 1. Thus, it follows that ∂tu · u = 0, i.e. ∂tu and u are orthogonal. Therefore,

‖∂tu‖2 +
1

2

d

dt
‖∇u‖2 = 0. (6)

The method under consideration is based on a variational formulation for (5) with u and q as
primary variables, where the unit sphere constraint is satisfied only at the nodes. This requirement is
enough to prove a discrete version of an inf-sup condition.

2.3. Inf-sup conditions. The natural inf-sup condition for problem (5) is

‖q‖L∞(Ω)′ ≤ sup
ū∈L∞(Ω)\{0}

〈q,u · ū〉
‖ū‖L∞(Ω)

∀ q ∈ L∞(Ω)′, (7)

since q = −|∇u|2 ∈ L∞(0, T ;L1(Ω)) and L1(Ω) ⊂ L∞(Ω)′. To prove such an inf-sup condition (7) one
needs to make the assumption that |u| = 1 holds a.e. in Ω. Under this assumption, let us first see that
the mapping u· : L∞(Ω) → L∞(Ω) is surjective. Indeed, let e ∈ L∞(Ω), then choose ū = u e. Clearly,
e = u · ū ∈ L∞(Ω). Next, observe that ‖ū‖L∞(Ω) ≤ ‖e‖L∞(Ω). Thus, we have

‖q‖L∞(Ω)′ = sup
e∈L∞(Ω)\{0}

〈q, e〉
‖e‖L∞(Ω)

≤ sup
ū∈L∞(Ω)\{0}

〈q,u · ū〉
‖ū‖L∞(Ω)

for all q ∈ L∞(Ω)′. This inf-sup condition however is not applicable because, due to the presence of
−∆u in (5)1 which can not be bounded in L∞(Ω)′. Therefore, we need to weaken the norm for the
Lagrange multiplier q. Now, the mapping u · : L∞(Ω) ∩ H1(Ω) → L∞(Ω) ∩ H1(Ω) is surjective by
assuming u ∈ L∞(Ω) ∩H1(Ω) such that |u| = 1 a.e. in Ω. Moreover, there exists a positive constant
C = C(u) such that ‖∇ū‖ ≤ C‖∇e‖ for e ∈ L∞(Ω) ∩H1(Ω). Thus, if q ∈ (H1(Ω) ∩ L∞(Ω))′, then
one can prove

‖q‖(H1(Ω)∩L∞(Ω))′ ≤ C sup
ū∈H1(Ω)∩L∞(Ω)\{0}

〈q,u · ū〉
‖∇ū‖+ ‖ū‖L∞(Ω)

. (8)

From a numerical point of view, one must be aware that the difficulty lies in establishing the
counterpart of such an inf-sup condition at the discrete level.

3. Spatial discretization

3.1. Finite element spaces. Herein we introduce the hypotheses that will be required along this
work.

(H1) Let Ω be a bounded domain of RM with a polygonal or polyhedral Lipschitz-continuous bound-
ary.
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(H2) Let {Th}h>0 be a family of shape-regular, quasi-uniform triangulations of Ω made up of tri-
angles in two dimensions and tetrahedra in three dimensions, so that Ω = ∪K∈Th

K, where
h = maxK∈Th

hK , with hK being the diameter of K. Further, let Nh = {ai}i∈I denote the set
of all nodes of Th.

(H3) Conforming finite-element spaces associated with Th are assumed for approximating H1(Ω).
Let P1(K) be the set of linear polynomials on K; the space of continuous, piecewise polynomial
functions on Th is then denoted as

Xh =
{

vh ∈ C0(Ω) : vh|K ∈ P1(K), ∀K ∈ Th
}

.

For vh ∈ Xh, we denote the nodal values by vh(a) = va. Also, we identify the Lagrangian basis
functions of Xh through the node where they do not vanish, using the notation ϕa, so that

vh =
∑

a∈N vaϕa and, for vector valued functions, vh =
∑M

i=1 ei
∑

a∈N vi
a
ϕa =

∑

a∈N vaϕa,

with ei being the unit vectors of the canonical basis in R
M .

(H4) We assume that u0 ∈ H1(Ω) with |u0| = 1 a.e. in Ω. Then we consider u0h ∈ Uh such that
|u0h(a)| = 1 for all a ∈ Nh and ‖∇u0h‖ ≤ ‖∇u0‖.

We choose the following continuous finite-element spaces

Uh = Xh and Qh = Xh

to approximate the vector field and the Lagrange multiplier, respectively.
In proving a discrete inf-sup condition we will need to set out some commuter properties for the

nodal projection operator into Uh. Although these properties were already obtained in [28], the proof
of such properties will be helpful to see that the above assumptions are enough for our purpose.

To start with, some inverse inequalities are provided in the following proposition (see e.g. [13, Lm
4.5.3] or [22, Lm 1.138]).

Proposition 3.1. Under hypotheses (H1)–(H3), it follows that, for all xh ∈ P1(K),

‖∇xh‖L2(K) ≤ Cinvh
−1
K ‖xh‖L2(K), (9)

and

‖∇xh‖L∞(K) ≤ Cinvh
−1
K ‖xh‖L∞(K), (10)

where Cinv > 0 is a constant independent of h and K.

For each K ∈ Th, let iK be the local nodal interpolation operator defined from C0(K) into P1(K),
and let iXh

be the associated global nodal interpolation operator from C0(Ω̄) into Xh, i.e. iK := iXh
|K ,

for all K ∈ Th. Moreover, let π0
K be the L2(K) orthogonal projection operator from L1(Ω) onto P0,

where P0 is the set of constant polynomials on K. Next we give some local error estimates for these
two local interpolants. See e.g. [13, Th 4.4.4] or [22, Th 1.103].

Proposition 3.2. Suppose that hypotheses (H1)–(H3) hold. Then the local nodal interpolation operator
iK satisfies

‖ϕ− iKϕ‖L2(K) ≤ Capp h
2
K‖∇2ϕ‖L2(K) for all ϕ ∈ H2(K) (11)

and

‖ϕ− iKϕ‖L∞(K) ≤ Capp hK‖∇ϕ‖L∞(K) for all ϕ ∈ W 1,∞(K), (12)

where Capp > 0 is a constant independent of K and hK.

Proposition 3.3. Under hypotheses (H1)–(H3), it follows that, for all xh, yh ∈ Xh,

‖xhyh − iK(xhyh)‖L2(K) ≤ Capp hK‖∇(xhyh)‖L2(K), (13)

where Capp > 0 is a constant independent of K and hK.

Proof. Estimate (13) follows readily from (11) and (9), upon observing that the components of∇(xhyh)
belong to P1(K). �
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Proposition 3.4. Suppose that hypotheses (H1)–(H3) hold. Then π0
K satisfies

‖ϕ− π0
Kϕ‖L2(K) ≤ Capp hK‖∇ϕ‖L2(K) for all ϕ ∈ H1(K), (14)

and
‖ϕ− π0

Kϕ‖L∞(K) ≤ Capp hK‖∇ϕ‖L∞(K) for all ϕ ∈ H1(K), (15)

where Capp > 0 is constant independent of hK .

Let πQh
denote the L2(Ω)-orthogonal projection operator from L2(Ω) into Qh. The following

proposition deals with the stability of πQh
. See [14] and [22, Lm 1.131].

Proposition 3.5. Suppose that assumptions (H1)–(H3) are satisfied. Then there exists a positive
constant Csta, independent of h, such that

‖πQh
ϕ‖L∞(Ω) ≤ Csta‖ϕ‖L∞(Ω) for all ϕ ∈ L∞(Ω), (16)

and
‖∇πQh

ϕ‖ ≤ Csta‖∇ϕ‖ for all ϕ ∈ H1(Ω). (17)

We will prove discrete commuter properties for iXh
, following very closely the arguments of [28].

Proposition 3.6. Assume that hypotheses (H1)–(H3) hold and let xh, yh ∈ Xh. Then there exists a
constant Ccom > 0, independent of h and K, such that

‖xhyh − iK(xhyh)‖L∞(K) ≤ Ccom hK‖xh‖L∞(K)‖∇yh‖L∞(K), (18)

and
‖∇(xhyh − iK(xhyh))‖L2(K) ≤ Ccom‖xh‖L∞(K)‖∇yh‖L2(K) (19)

hold for all K ∈ Th.
Proof. Using the triangle inequality, we bound

‖iK(xhyh)− xhyh‖L∞(K) ≤ ‖iK(xhyh)− iK(xhπ
0
K(yh))‖L∞(K)

+‖iK(xhπ
0
K(yh)− xhπ

0
K(yh))‖L∞(K)

+‖xhπ
0
K(yh)− xhyh‖L∞(K).

(20)

The first term on the right-hand side of (20) can be estimated as follows:

‖iK(xhyh)− iK(xhπ
0
K(yh))‖L∞(K) = ‖iK(xhyh − xhπ

0
K(yh))‖L∞(K)

≤ ‖iK(xhyh − xhπ
0
K(yh))− (xhyh − xhπ

0
K(yh))‖L∞(K)

+‖xhπ
0
K(yh)− xhyh‖L∞(K).

(21)

Thus, by (12), (15) and (10), we have

‖iK(xhπ
0
K(yh)− xhyh)− (xhπ

0
K(yh)− xhyh)‖L∞(K) ≤ ChK‖∇(xhπ

0
K(yh)− xhyh)‖L∞(K)

≤ ChK‖xh‖L∞(Ω)‖∇yh‖L∞(K)
(22)

and
‖xhπ

0
h(yh)− xhyh‖L∞(K) ≤ ChK‖xh‖L∞(K)‖∇yh‖L∞(K).

Therefore,
‖iK(xhyh)− iK(xhπ

0
K(yh))‖L∞(K) ≤ ChK‖xh‖L∞(K)‖∇yh‖L∞(K).

Now observe that the second term in the right-hand side of (20) is zero since iK(xhπ
0
K(yh)) =

xhπ
0
K(yh). And the third term can be easily estimated as before. In view of the above computations,

one can conclude that (18) holds.
Similarly, we have

‖∇(iK(xhyh)− xhyhyh)‖L2(K) ≤ ‖∇(iK(xhyh)− iK(xhπ
0
K(yh)))‖L2(K)

+‖∇(iK(xhπ
0
K(yh))− xhπ

0
K(yh))‖L2(K)

+‖∇(xhπ
0
K(yh)− xhyh)‖L2(K).

(23)

From (9), (13), (10) and (14), we obtain

‖∇(iK(xhyh)− iK(xhπ
0
K(yh)))‖L2(K) ≤ Ch−1

K ‖iK(xhyh)− iK(xhπ
0
K(yh))‖L2(K)

≤ C‖xh‖L∞(K)‖∇yh‖L2(K),
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where we have argued as in estimating (21), but for the L2(K)-norm. The second term on the right-
hand side of (23) is zero again. To control the last term of (23), we have, by (10) and (14), that

‖∇(xhπ
0
K(yh)− xhyh)‖L2(K) = ‖∇(xh(π

0
K(yh)− yh))‖L2(K)

≤ ‖∇xh‖L∞(K)‖π0
K(yh)− yh‖L2(K)

+‖xh‖L∞(K)‖∇(π0
K(yh)− yh)‖L2(K)

≤ C‖xh‖L∞(K)‖∇yh‖L2(K).

�

Remark 3.7. The global version of the above propositions holds due to the assumed quasi-uniformity
for the mesh Th.

Let us define

(uh, ūh)h =

∫

Ω

iQh
(uh · ūh) =

∑

a∈Nh

uh(a) · ūh(a)

∫

Ω

ϕa

for all uh, ūh ∈ Uh, with the induced norm ‖uh‖h =
√

(uh,uh)h.

4. Numerical scheme

In this section we will propose our numerical method and will prove a discrete energy law and
a discrete inf-sup condition for the Lagrange multiplier similar to (6) and (8), respectively, at the
continuous level. The main results are given in Lemma 4.5 and Corollary 4.8 which is a consequence
of Lemma 4.7.

The numerical approximation under consideration is based on a conforming finite element method for
the variational formulation of (5). Then we want to find (uh, qh) ∈ C∞([0,+∞);Uh)×C∞([0,+∞);Qh)
such that, for all (ūh, q̄h) ∈ Uh ×Qh,

{

(∂tuh, ūh)h + γ(∇uh,∇ūh) + γ(qh, iQh
(uh · ūh)) + α(uh × ∂tuh, ūh)h = 0,

(iQh
(uh · uh), q̄h) = (1, q̄h),

(24)

with
uh(0) = u0h in Ω,

where u0h ∈ Uh is defined as in (H4).

Remark 4.1. How to obtain an approximate initial condition u0h ∈ Uh such that ‖∇u0h‖ ≤ C‖∇u0‖
and |u0h(a)| = 1 for all a ∈ Nh is rarely explicitly mentioned in numerical papers. It seems that this
condition is overlooked. Nevertheless, it is very important as it can be checked in the proof of Lemma
4.2 below. For instance, these conditions can be achieved by appling the nodal interpolation operator
iUh

to u0 ∈ C0(Ω̄) and by assuming (H5) in Section 5.
Avoiding the C0(Ω̄)-regularity to obtain (H4) is an interesting open problem in the numerical frame-

work of the Landau–Lifshitz–Gilbert and harmonic map heat flow equation.

Next we consider the local-in-time well-posedness of (24).

Lemma 4.2. There exists Th > 0, depending possibly on h, such that there is a unique solution to
problem (24) on [0, Th).

Proof. The proof includes two steps: first we show that (24) is equivalent to a system of ordinary
differential equation, then we show that such a system has a unique solution.

Let us assume that uh, qh is a solution of (24). Pick ā ∈ Nh and take ūh = uh(ā, t)ϕā = uāϕā

in (24)1 to get

(ϕā, ϕā)
d

dt
|uā|2 + γ

∑

a∈Nh

ua · uā(∇ϕa,∇ϕā) + γ
∑

a∈Nh

qa(ϕa, |uā|2ϕā) = 0.

Using now (24)2, we conclude |uā| = 1, so that the first term vanishes and we obtain
∑

a∈Nh

ua · uā(∇ϕa,∇ϕā) +
∑

a∈Nh

qa(ϕa, ϕā) = 0. (25)
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The coefficients multiplying qa in (25) define a nonsingular matrix (the mass matrix of Qh), so that
this equation can be used to compute qa uniquely in terms of ua. Next take ūh = eiϕā in (24)1 to
obtain

µā(u
i
ā
)′ + γ

∑

a∈Nh

ui
a
(∇ϕa,∇ϕā) + γ

∑

a∈Nh

qa(ϕa, u
i
ā
ϕā) + αµāuā × (uā)

′ · ei = 0,

where we have introduced µā =
∫

Ω ϕā. Observe that

uā × (uā)
′ · ei = U×,ā(uā)

′ · ei =
M
∑

j=1

(U×,ā)ij(u
j
ā)

′,

where U×,ā is the skew-symmetric matrix representing the vector product, i.e.

U×,ā =





0 −u3
ā u2

ā

u3
ā

0 −u1
ā

−u2
ā u1

ā 0



 .

Using now (25) one arrives at

µā (I + αU×,ā) (uā)
′ + γ

∑

a∈Nh

(∇ϕa,∇ϕā)ua − γ
∑

a∈Nh

ua · uā(∇ϕa,∇ϕā)uā = 0, (26)

with I being the identity matrix. One can easily verify that (I + αU×,ā) is a nonsingular matrix with
determinant 1+α2|uā|2, so that (26) defines a system of ordinary differential equation which is locally
Lipschitz continuous in the coefficients ui

ā
, for all ā ∈ Nh.

Conversely, let us assume that uh, qh are defined by the nodal coefficient solving (26) and (25).
Substituting (25) in (26) immediately provides (24)1. To see that in fact also (24)2 is verified, proceed
as follows. For each ā ∈ Nh, multiply (26) by uā and observe that uT

ā
U×,ā vanishes, so that

µā

2

d

dt

(

1− |uā|2
)

+ γ(1− |uā|2)
∑

a∈Nh

ua · uā(∇ϕa,∇ϕā) = 0.

Define now

gā(t) =
2

γµā

∑

a∈Nh

ua(t) · uā(t)(∇ϕa,∇ϕā)

so that
d

dt

(

1− |uā|2
)

+ gā(1− |uā|2) = 0,

with solution

(1− |uā(t)|2) = e

∫ t

0

gā(s)ds
(1− |uā(0)|2).

Hence, assuming that |uā(0)| = 1, (24)2 holds for any time.
To complete the proof we need to show that (26) has a unique solution on [0, Th), which follows

from Picard’s theorem. �

Remark 4.3. As a result of the a priori estimates for (uh, qh) in the next section, the approximated
solution (uh, qh) will exist globally in time on R

+.

Remark 4.4. Equation (26) gives us a way to compute uh without using the Lagrange multiplier qh.
This way qh is somehow an approximation of −|∇uh|2.

In the following lemma, we prove a pointwise estimate and a priori energy estimates for (24).

Lemma 4.5. Assume that assumptions (H1)–(H4) hold. Then the discrete solution uh of scheme (24)
satisfies

|uh(a)| = 1 for all a ∈ Nh, (27)
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and
∫ t

0

‖∂tuh(s)‖2hds+
γ

2
‖∇uh(t)‖2 =

γ

2
‖∇u0h‖2 for all t ∈ R

+. (28)

Proof. The nodal equality (27) follows easily from (24)2 since iQh
(uh · uh)(a) = 1 for all a ∈ Nh.

Selecting ūh = ∂tuh in (24)1, we obtain

‖∂tuh‖2h +
γ

2

d

dt
‖∇uh‖2 + γ(qh, iQh

(uh · ∂tuh)) = 0. (29)

Now differentiating (24)2 with respect to t and then setting q̄h = qh yields

2(iQh
(∂tuh · uh), qh) = 0.

Using this in (29), we have

‖∂tuh‖2h +
γ

2

d

dt
‖∇uh‖2 = 0. (30)

Then we have that (28) holds by integrating (30). �

Remark 4.6. The satisfaction of the unit sphere constraint at the nodes along with the fact that uh

is a piecewise linear finite element solution implies a uniform pointwise estimate for uh, i.e., that
‖uh‖L∞(Ω) ≤ 1.

The next lemma deals with the discrete inf-sup condition for (24).

Lemma 4.7. Assume that assumptions (H1)–(H4) hold. Let uh ∈ Uh such that |uh(a)| = 1 for all
a ∈ Nh. Then the following inf-sup condition holds:

C
1

1 + ‖∇uh‖
≤ inf

qh∈Qh

sup
ūh∈Uh\{0}

(qh, iQh
(uh · ūh))

‖qh‖(H1(Ω)∩L∞(Ω))′(‖∇ūh‖+ ‖ūh‖L∞(Ω))
, (31)

where C > 0 is a constant independent of h.

Proof. Let q ∈ H1(Ω) ∩ L∞(Ω). Take ūh = iUh
(uhπQh

(q)), where iUh
is the nodal interpolation

operator into Uh and πQh
is the L2(Ω) orthogonal projection operator onto Qh, and observe that

(qh, iQh
(uh · ūh)) = (qh,

∑

a∈Nh

πQh
(q)|aua · uaϕa) =

∑

a∈Nh

(qh, πQh
(q)|aϕa)

= (qh, iQh
(πQh

(q))) = (qh, πQh
(q)) = (qh, q).

Then we obtain

sup
ūh∈Uh\{0}

(qh, iQh
(uh · ūh))

‖∇ūh‖+ ‖ūh‖L∞(Ω)
≥ sup

q∈H1(Ω)∩L∞(Ω)\{0}

(qh, q)

‖∇iUh
(uhπQh

(q))‖ + ‖iUh
(uhπQh

(q))‖L∞(Ω)
.

Moreover, we have, by (18) and (19), that

‖iUh
(uhπQh

(q))‖L∞(Ω) ≤ C‖uh‖L∞(Ω)‖q‖L∞(Ω) (32)

and

‖∇iUh
(uhπQh

(q))‖ ≤ C(‖∇uh‖‖q‖L∞(Ω) + ‖∇q‖‖uh‖L∞(Ω)) (33)

due to Remark 3.7. Observe also that we have utilized (16) and (17). Therefore,

‖∇iUh
(uhπQh

(q))‖ + ‖iUh
(uhπQh

(q))‖L∞(Ω) ≤ C(1 + ‖∇uh‖)(‖q‖L∞(Ω) + ‖∇q‖). (34)

As a result, we find

sup
ūh∈Uh\{0}

(qh, iQh
(uh · ūh))

‖∇ūh‖+ ‖ūh‖L∞(Ω)
≥ C

1

1 + ‖∇uh‖
sup

q∈H1(Ω)∩L∞(Ω)\{0}

(qh, q)

‖∇q‖+ ‖q‖L∞(Ω)

≥ C
1

1 + ‖∇uh‖
‖qh‖(H1(Ω)∩L∞(Ω))′ .

Then the proof follows by taking infimum over Qh. �
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Corollary 4.8. Assume that assumptions (H1)–(H4) hold. The discrete Lagrange multiplier qh of
scheme (24) satisfies

‖qh‖L2(0,T ;(H1(Ω)∩L∞(Ω))′) ≤ C(1 + ‖∇u0‖)‖∇u0‖. (35)

Proof. From (24)1, we have

γ(qh, iQh
(uh · ūh)) ≤ ‖∂tuh‖h‖ūh‖h + γ‖∇uh‖‖∇ūh‖+ α‖∂tuh‖h‖uh‖h‖ūh‖L∞(Ω)

≤
(

(1 + α)
√

meas(Ω)‖∂tuh‖h + γ‖∇uh‖
)

(

‖ūh‖L∞(Ω) + ‖∇ūh‖
)

.

Therefore,
(qh, iQh

(uh · ūh))

‖ūh‖L∞(Ω) + ‖∇ūh‖
≤ (1 + α)

γ

√

meas(Ω)‖∂tuh‖h + ‖∇uh‖.

Applying (31) above, we find

‖qh‖(H1(Ω)∩L∞(Ω))′ ≤ C(1 + ‖∇uh‖)
(

(1 + α)

γ

√

meas(Ω)‖∂tuh‖h + ‖∇uh‖
)

.

The proof follows by using (28). �

Remark 4.9. Observe that if we apply directly to (24)1 the argument leading to (31) so as to obtain
an estimate for qh we will improve estimate (35) in time. Indeed, let q ∈ H1(Ω) ∩ L∞(Ω) and select
ūh = iUh

(uhπQh
(q)) in (24)1. Then we find

γ(qh, q) = (∂tuh,uh · iUh
(uhπQh

(q))) + γ(∇uh,∇iUh
(uhπQh

(q))) + α(uh × ∂tuh, iUh
(uhπQh

(q))).

Noting that both (∂tuh,uh · iUh
(uhπQh

(q))) = 0 and (uh × ∂tuh, iUh
(uhπQh

(q))) = 0, we obtain, by
(34), that

(qh, q) ≤ C‖∇uh‖(1 + ‖∇uh‖)(‖q‖L∞(Ω) + ‖∇qh‖).
Therefore,

‖qh‖L∞(0,+∞;(H1(Ω)∩L∞(Ω))′) ≤ C‖∇u0‖(1 + ‖∇u0‖). (36)

Remark 4.10. Replacing (qh, iQh
(uh ·ūh)) with (qh,uh ·ūh)h in (24), we obtain the following scheme.

Find (uh, qh) ∈ C∞([0,+∞);Uh)× C∞([0,+∞);Qh) such that, for all (uh, qh) ∈ Uh ×Qh,
{

(∂tuh, ūh)h + γ(∇uh,∇ūh) + γ(qh,uh · ūh)h + α(uh × ∂tuh, ūh)h = 0,
(uh · uh, q̄h)h = (1, q̄h)h.

(37)

Then, Lemma 4.2 holds, and the nodal enforcement (27) and the energy law (28) are valid for
scheme (37). Moreover, the inf-sup condition (31) can be proved by selecting ūh = iUh

(uhPh(q))
where Ph is defined by

(Ph(uh), ūh)h = (uh, ūh) for all ūh ∈ Uh.

5. Temporal discretization

In this section we shall propose two time integrators for (24) which preserve the energy law (28)
and estimate (36). More precisely, we will construct a linearly implicit Euler and a nonlinearly implicit
Crank–Nicolson time-stepping algorithm. For the linear one, we will require an extra assumption on
the mesh Th.
(H5) Assume Th to satisfy that if uh ∈ Uh with |uh(a)| ≥ 1 for all a ∈ Nh, then

‖∇iUh
(
uh

|uh|
)‖ ≤ ‖∇uh‖.

Assumption (H5) is assured under the condition [7]
∫

Ω

∇ϕa · ∇ϕã ≤ 0 for all a, ã ∈ Nh with a 6= ã,

where we remember that {ϕa : a ∈ Nh} is the nodal basis of Xh. In particular, such a condition holds
for meshes of the Delaunay type in two dimensions and with all dihedral angles of the tetrahedra being
at most π/2 in three dimensions.
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It is assumed here for simplicity that we have a uniform partition of [0, T ] into N pieces. So, the
time step size is k = T/N and the time values (tn = nk)Nn=0. To simplify the notation let us denote

δtu
n+1 = u

n+1−u
n

k .
First we present a first-order linear numerical scheme.

Algorithm 1: Euler time-stepping scheme

Step (n+1): Given un
h ∈ Uh, find (un+1

h , qn+1
h ) ∈ Uh ×Qh solving the algebraic

linear system














(δtu
n+1
h , ūh)h + γ(∇un+1

h ,∇ūh)

+γ(qn+1
h , iQh

(
un
h

|un
h|

· ūh)) + α(un
h × δtu

n+1
h , ūh)h = 0,

(iQh
(un

h · δtun+1
h ), q̄h) = 0,

(38)

for all (ūh, q̄h, ) ∈ Uh ×Qh.

Theorem 5.1. Assume that assumptions (H1)–(H5) hold. Let {um
h }Nm=1 be the numerical solution

of (38). Then

m
∑

n=0

k

(

‖δtun+1
h ‖2h +

γk

2
‖∇δtu

n+1
h ‖2

)

+
γ

2
‖∇um+1

h ‖2 = γ

2
‖∇u0

h‖2. (39)

Moreover, the Lagrange multiplier {qmh }Nm=1 satisfies

max
n=1,··· ,N

‖qnh‖(H1(Ω)∩L∞(Ω))′ ≤ C(1 + ‖∇u0
h‖)‖∇u0

h‖, (40)

where C > 0 is a constante independent of h and k.

Proof. Let ūh = 2 k δtu
n+1
h in (38)1 to get

2 k‖δtun+1
h ‖2h + γ‖∇un+1

h ‖2 − γ‖∇un
h‖2 + γk2‖∇δtu

n+1
h ‖2 + 2γk(qn+1

h , iQh
(
un

|un
h|

· δtun+1
h )) = 0,

where the damping term has disappeared. From (38)2, we infer that un
a · δtun+1

a = 0 for all a ∈ Nh.
Therefore the last term in the above equation vanishes. Thus, it follows that (39) holds by summing
over n.

To prove the inf-sup condition, we select ūh = iUh
(

u
n
h

|un
h
|πQh

(q)) in (38)1, with q ∈ H1(Ω) ∩L∞(Ω),

to obtain

(qn+1
h , q) = (∇un+1

h ,∇(iUh
(
un
h

|un
h|
πQh

(q)))) = (∇un+1
h ,∇(iUh

(iUh
(
un
h

|un
h|
)πQh

(q)))).

Using estimate (33), we have

(qn+1
h , q) ≤ C‖∇un+1

h ‖
(

‖∇iUh
(
un
h

|un
h |
)‖‖q‖L∞(Ω) + ‖∇q‖‖iUh

(
un
h

|un
h|
)‖L∞(Ω)

)

.

In view of (38)2, we deduce that

0 = un
a · δtun+1

a = |un+1
a |2 − |un

a|2 − |un+1
a − un

a|;
hence |un

a
| ≥ |un−1

a
| ≥ 1 holds since |u0

a
| = 1 for all a ∈ Nh. This fact combined with assumption

(H5) yields

(qn+1
h , q) ≤ C‖∇un+1

h ‖(‖∇un
h‖‖q‖L∞(Ω) + ‖∇q‖)

≤ C‖∇un+1
h ‖(1 + ‖∇un

h‖)(‖q‖L∞(Ω) + ‖∇q‖).
Estimate (40) then follows by utilizing duality and (39). �

Equation (39) is the fully discrete counterpart of (4) and (28).
Next we deal with a second-order approximation based on a Crank–Nicolson method.
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Algorithm 2: Crank–Nicolson time-stepping scheme

Step (n+1): Given un
h ∈ Uh, find (un+1

h , qn+1
h ) ∈ Uh ×Qh solving the algebraic

nonlinear system






















(δtu
n+1
h , ūh)h + γ(∇u

n+ 1
2

h ,∇ūh)

+γ(q
n+ 1

2

h , iQh
(
u
n+ 1

2

h

|un+ 1
2

h |
· ūh)) + α(un

h × δtu
n+1
h , ūh) = 0,

(iQh
(un+1

h · un+1
h ), q̄h) = (1, q̄h),

(41)

for all (ūh, q̄h, ) ∈ Uh ×Qh.

Theorem 5.2. Assume that assumptions (H1)–(H4) are satisfied. Let {um
h }Nm=1 be the numerical

solution of (41). Then
m
∑

n=0

k‖δtun+1
h ‖2h +

γ

2
‖∇um+1

h ‖2 = γ

2
‖∇u0

h‖2. (42)

Moreover, the Lagrange multiplier {qmh }Nm=1 satisfies

max
n=1,···N

‖qnh‖(H1(Ω)∩L∞(Ω))′ ≤ C(1 + ‖∇u0
h‖)‖∇u0

h‖, (43)

where C > 0 is a constante independent of h and k.

Proof. As in the proof of Theorem (5.1), we substitute ūh = δtu
n+1
h into (41)1 and q̄h = qn+1

h into

(41)2 to obtain (42), and then ūh = iUh
(u

n+ 1
2

h πQh
(q̄)) into (41)1 to get (43). �

Remark 5.3. In the next section we will use scheme (38) as a non-linear solver for approximating
each step of scheme (41) when rewritten in the appropriate fashion.

6. Implementation details

The second order time integrator (41) requires solving at each time step a nonlinear system. In this
section, we discuss a possible solution strategy for such a problem, considering for simplicity the case

α = 0. The first step is rewriting (41) in terms of wh = u
n+ 1

2

h and sh = q
n+ 1

2

h as


















(wh − un
h, ūh)h +

γk

2
(∇wh,∇ūh) +

γk

2
(sh, iQh

(

wh

|wh|
· ūh

)

) = 0

(iQh

(

wh · (wh − un
h)−

1− un
h · un

h

4

)

, q̄h) = 0.

(44)

In (44)2, the term involving 1−un
h ·un

h should vanish, thanks to the unit sphere constraint. However,
since the nonlinear problem in general can not be solved exactly, we have two options: normalize un

h

after each time step, or accept a (small) violation of the unit sphere constraint and include such a
term. Notice that (44) is an implicit Euler step for the solution at half time levels.

Observe now that (44)2 amounts to requiring that the argument of iQh
vanishes at each node of the

triangulation; assuming wh 6= 0 we can reformulate this constraint as

γk

2
(iQh

(

wh

|wh|
· (wh − un

h)−
1− un

h · un
h

4|wh|

)

, q̄h) = 0. (45)

Equations (44)1 and (45) are now taken as the basis for a fixed point iteration: given w
(i)
h , let

p =
γk

2

w
(i)
h

|w(i)
h |

, Γn =
γk

2

1− |un
h|2

4|w(i)
h |
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and compute the next iteration solving






(w
(i+1)
h , ūh) +

γk

2
(∇w

(i+1)
h ,∇ūh) + (s

(i+1)
h , iQh

(p · ūh)) = (un
h, ūh),

(iQh

(

p ·w(i+1)
h

)

, q̄h) = (iQh
(p · un

h + Γn) , q̄h).
(46)

Notice the analogy between (46) and the linearly implicit method (38). The matrix of the linear
system (46) has a classical

[

A BT

B

]

structure, where A is symmetric and positive definite and is block diagonal with each block corre-
sponding to one spatial dimension. Hence, it can be solved either using a direct method or an iterative
one, such as the Uzawa algorithm [19], which would then naturally lead to a Newton–Krylov approach
for the original nonlinear problem (44).

7. Numerical results

We consider here some numerical experiments aiming at verifying numerically the convergence of
the proposed scheme as well as analyzing its behaviour in presence of singular solutions, including the
case of singular solutions in two space dimensions, which is outside the scope of the theory presented
in this paper.

7.1. Convergence test for smooth solutions. In two spatial dimensions, we can set u = [cos θ, sin θ]T

and observe that, for α = 0, (1) implies ∂tθ − γ∆θ = 0 in Ω × R
+ with ∂nθ = 0 on ∂Ω × R

+. This
lets us construct the following exact solution for Ω = (−1 , 1)2:

u =

[

cos θ
sin θ

]

, θ = Θe−γ(k2
x+k2

y)t cos(kxx) cos(kyy), q = −(∂xθ)
2 − (∂yθ)

2,

with Θ = π, γ = 0.01, kx = π, ky = 2π. To verify the convergence of the proposed discretization,
we compare the numerical results with the exact solution at t = 1, using a collection of structured
triangular grids with h = 2−i, i = 1, . . . , 8 and the Crank–Nicolson scheme (41) with time-step
k = 0.1 · 2−j, for j = 0, . . . , 6. In all the computations, the nonlinear iterations are carried out
until reaching convergence within machine precision, which in practice amounts to performing O(10)
nonlinear iterations.

Since our results indicate that the error resulting from the time discretization is smaller than the
one resulting from the space discretization for all the considered grid sizes and time-steps, we can
analyze the two effects separately, focusing first on the space discretization error. In order to do this,
we fix k = 1/640, corresponding to j = 6, and collect the error norms for u and q in Tables 1 and 2,
respectively.

Concerning the ‖ ·‖(H1)′ norm appearing in Table 2 as well as in Figure 1, it is computed as follows.

First of all, thanks to the Riestz theorem, given g ∈ H−1 there is rg ∈ H1
0 such that, for any f ∈ H1

0 ,
〈g, f〉(H1)′×H1

0
= (rg, f)H1

0
; moreover, ‖g‖(H1)′ = ‖rg‖H1

0
. The difficulty is that, taking g = q − qh,

rq−qh /∈ Qh, so that we can not compute it. This problem can be circumvented computing the H1
0

projection of rq−qh on Qh, denoted here as Πrq−qh , which is uniquely determined by

(Πrq−qh , fh)H1
0
= (rq−qh , fh)H1

0
= 〈q − qh, fh〉(H1)′×H1

0

for any fh ∈ Qh. As shown in [13, Th 5.8.3], ‖Πrq−qh‖H1
0
provides a second order estimate in h of the

desired norm.
For u, second order convergence is observed in the L1, L2 and L∞ norms, while first order converge

is observed in the H1 norm. For the Lagrange multiplier q, second order convergence is observed
in the (H1)′ norm, while the L1, L2 and L∞ norms are bounded and the H1 norm diverges. This
behaviour of the error for q can be explained noting that the numerical approximation exhibits grid
scale oscillations maintaining a constant amplitude while the grid is refined. It is important to stress,
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Table 1. Computed error norms for u− uh for a collection of structured triangular
grids with h = 2−i, i = 1, . . . , 8. The numerical convergence rates are also reported.

i ‖u− uh‖L1 ‖u− uh‖L2 ‖u− uh‖L∞ ‖u− uh‖H1

1 4.8 – 2.0 – 1.6 – 1.4 · 101 –

2 2.2 1.1 1.0 1.0 8.6 · 10−1 0.9 1.2 · 101 0.3
3 7.0 · 10−1 1.7 3.5 · 10−1 1.5 3.7 · 10−1 1.2 6.5 0.8
4 1.6 · 10−1 2.2 7.8 · 10−2 2.1 9.0 · 10−2 2.0 3.0 1.1
5 3.8 · 10−2 2.1 1.9 · 10−2 2.1 2.0 · 10−2 2.1 1.4 1.1
6 9.3 · 10−3 2.0 4.7 · 10−3 2.0 5.2 · 10−3 2.0 7.0 · 10−1 1.0
7 2.3 · 10−3 2.0 1.2 · 10−3 2.0 1.3 · 10−3 2.0 3.5 · 10−1 1.0
8 5.8 · 10−4 2.0 2.9 · 10−4 2.0 3.2 · 10−4 2.0 1.8 · 10−1 1.0

Table 2. Computed error norms for q − qh for a collection of structured triangular
grids with h = 2−i, i = 1, . . . , 8. The negative Sobolev norm error ‖q − qh‖(H1)′ , for
which the numerical convergence rate is also reported, is estimated with ‖Πrq−qh‖H1

0

as discussed in the text. Notice that, since qh is naturally computed at half time steps,
the analytic solution is evaluated ad t = 1− k/2.

i ‖q − qh‖(H1)′ ‖q − qh‖L1 ‖q − qh‖L2 ‖q − qh‖L∞ ‖q − qh‖H1

1 59.0784 – 131.3211 93.1235 109.1703 852.73
2 9.1603 2.7 110.0432 72.2844 76.7221 1022.32
3 16.4411 -0.8 55.8291 35.7175 62.8248 1242.74
4 4.8247 1.8 31.6080 23.3787 71.2639 2123.59
5 1.2166 2.0 27.2561 20.9493 62.0149 3990.89
6 0.3079 2.0 26.5922 20.5044 59.6844 7862.59
7 0.0803 1.9 26.5218 20.4059 59.1055 15 666.76
8 0.0231 1.8 26.5223 20.3821 58.9610 31 304.46

however, that such oscillations are consistent with the stability estimates (35) and are not, thus, an
indication of numerical instability.

In order to isolate the error resulting from the time discretization, we proceed by fixing the grid
size h and computing a reference solution for a small time-step, which then allows computing the self
convergence rate. Taking as reference time-step kref = 0.1 · 2−8 we observe, for all the considered grid
sizes, second order convergence for both uh and qh, for all the considered norms (indeed, for fixed h all
these norms are equivalent); Figure 1 shows the results for ‖u−uh‖H1 and ‖q−qh‖(H1)′ . A comparison
of this figure with the values reported in Tables 1 and 2 confirms that the time discretization error is
smaller than the space discretization one. Second order convergence is also apparent estimating the
convergence rate as log2 ρ, where (see [36, Eq (4.7)])

ρ =
‖uk

h − u
k/2
h ‖H1

‖uk/2
h − u

k/4
h ‖H1

,

as shown in Table 3.

7.2. Behaviour for singular solutions. After considering the behaviour of the scheme for problems
with smooth solutions, we turn our attention to problems including singularities. In fact, singularities
of the form u ∼ x−x0

|x−x0|
are very important in the study of liquid crystals, and various related test

cases have been considered in the literature [34, 18, 35, 11, 6, 26, 15].
An important distinction here must be done between two- and three-dimensional problems, since

such singularities have a finite energy in the three-dimensional case but not in the two-dimensional one
(mathematically, they belong to H1(Ω) for Ω ⊂ R

3 but not for Ω ⊂ R
2). From a practical perspective,
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Figure 1. Computed error norms ‖uref
h − uh‖H1 (left) and ‖qrefh − qh‖(H1)′ (right),

for varying time-step k, with kref = 0.1 · 2−8, and fixed mesh size. Results for mesh
sizes h = 2−3 (#), h = 2−4 (♦), h = 2−5 (�) and h = 2−6 (⋆). Notice that, since qh
is naturally computed at half time steps, the corresponding errors are computed at
t = 1− k/2 for each time-step k.

Table 3. Estimated time discretization errors ‖uk
h − u

k/2
h ‖H1 for k = 0.1 · 2−j , j =

0, . . . , 5, for four triangular grids with h = 2−i, i = 3, 4, 5, 6 (see also Figure 1). The
resulting convergence rates are also reported.

j h = 2−3 h = 2−4 h = 2−5 h = 2−6

0 3.9 · 10−3 – 6.6 · 10−3 – 9.9 · 10−3 – 9.2 · 10−2 –

1 9.7 · 10−4 1.9989 1.6 · 10−3 2.0018 2.0 · 10−3 2.3348 4.1 · 10−3 4.5030
2 2.4 · 10−4 1.9998 4.1 · 10−4 2.0004 4.9 · 10−4 2.0004 5.1 · 10−4 3.0037
3 6.1 · 10−5 1.9999 1.0 · 10−4 2.0001 1.2 · 10−4 2.0001 1.3 · 10−4 2.0001
4 1.5 · 10−5 2.0000 2.6 · 10−5 2.0000 3.1 · 10−5 2.0000 3.2 · 10−5 2.0000
5 3.8 · 10−6 2.0000 6.4 · 10−6 2.0000 7.7 · 10−6 2.0000 7.9 · 10−6 2.0000

a singular solution can be approximated in the chosen finite element space both in two and three spatial
dimensions, for instance by nodal interpolation (provided that none of the nodes coincides with the
singular point x0); the resulting function belongs to H1 and can serve as an initial condition for a
time dependent computation. Hence, one might be tempted to dismiss the distinction between the
two cases as a merely theoretical argument with no practical implications. However, this would be
incorrect, as the following results demonstrate. Indeed, for three-dimensional problems, the theoretical
analysis provided above holds, and our method is guaranteed to satisfy our stability estimates when the
grid is refined. For the two-dimensional case, on the contrary, the theoretical analysis does not apply
and nothing can be said a priori ; nevertheless, computational experiments indicate that, although
it is possible to compute a numerical solution, such a solution critically depends on the numerical
discretization, does not converge to a well defined limit when the grid is refined and is thus essentially
meaningless.

Before discussing the numerical results, it is useful to provide a qualitative analysis of the problem
of representing a singular solution with a finite element function. In two spatial dimensions, for a
structured, triangular grid, the finite element function will resemble the patterns shown in Figure 2.
This implies that there are at least two elements where the numerical solution has O(1) variations
within an O(h) distance, which, in turn, implies that the energy of the discrete solution ‖∇uh‖2L2

undergoes O(1) variations for an O(h) displacement of the singularity. For instance, referring to
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Figure 2. Interpolation of a singular solution of the form x−x0

|x−x0|
on a structured,

triangular grid for different location of x0 with respect to the computational grid.

Figure 2, and given that we consider linear finite elements, it easy to check that the two elements
containing the singularity, K1 and K2, contribute to the total energy with ‖∇uh‖2L2(K1∪K2)

= 4 and

‖∇uh‖2L2(K1∪K2)
= (22 − 2

√
5)/5 for the two depicted configurations, independently of h. Since the

solution is smooth far from the singularity, such O(1) energy variations for O(h) displacements of
the singularity are also present if we consider the total energy ‖∇uh‖; this is shown in Figure 3
(left) where we plot, for various mesh sizes, the total energy of the nodal interpolant of x−x0

|x−x0|
on
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Figure 3. Energy ‖∇uh‖2, for Ω = (−2, 2) × (−1, 1) and uh defined as the nodal
interpolant of x−x0

|x−x0|
on a structured, triangular mesh, as a function of x0. Left:

values for three isotropic grids with 34 × 17 elements (light gray), 66 × 33 elements
(gray) and 130 × 65 elements (black) as functions of x0 such that x0 = (x0, 0)

T ,
x0 ∈ [−2, 0]. Right: values for a single anisotropic grid with 48 × 17 elements and
x0 = (x0, 0)

T (gray) and x0 = (1/24 , y0)
T (black), with x0 ∈ [−2, 0] and y0 ∈ [−1, 0].

The large-scale variations are due to the fact that, as x0 approaches the boundary of
the domain, a “large part” of the field lies outside Ω.

Ω = (−2, 2)× (−1, 1) as a function of the position of x0, specified as x0 = (x0, 0)
T for x0 ∈ [−2, 0].

Since the energy can not increase during the time evolution because of (4), the result of this grid
dependence of the energy itself can be seen as a “potential barrier” which tends to trap the singularity
between the grid vertexes, in Figure 2 (left). Two important characteristics of such a barrier can be
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noted. First of all, it is independent of h, so that refining the grid has no effect on it; this can be
seen both by noting that, for elements such as K1 and K2 in Figure 2, ‖∇uh‖2 ∼ h−2 and the area
element is proportional to h2, as well as by considering Figure 3 (left) where the amplitude of the
small-scale oscillations is constant for different resolutions. The second characteristic of the potential
barrier is its dependency on the grid anisotropy. This is illustrated in Figure 4, which shows how, for
a uniform, triangular grid with different spacings in the two Cartesian directions, the variation of the
finite element solution is more pronounced when the singularity moves from x0 to x′

0 compared to
a displacement from x0 to x′′

0 . Again, this qualitative description is confirmed considering a specific

Figure 4. Interpolation of a singular solution of the form x−x0

|x−x0|
on a structured,

triangular grid for different location of x0 with respect to the computational grid.
Contrary to the case shown in Figure 2, we consider here an anisotropic grid, with
different spacings in the two Cartesian directions.

example of a grid composed of 48× 17 elements for Ω = (−2, 2)× (−1, 1) and evaluating the energy of
the finite element solution when the singularity is displaced along the two Cartesian axes, as shown in
Figure 3(right) where it is apparent that the amplitude of the grid-inducedoscillations is much larger
when the singularity is displaced along the direction with the largest grid spacing.

For three spatial dimensions, this qualitative analysis still holds, up to one important difference:
in such a case, O(1) variations over an O(h) distance result in O(h) energy contributions, because
now it is still ‖∇uh‖2 ∼ h−2 but the area element is proportional to h3. Hence, for three-dimensional
computations, the discrete potential barriers at the element boundaries vanish when the grid is refined.

Summarizing now the conclusions of the qualitative analysis, we can expect that, initializing the
finite element computation interpolating a singular field u, the numerical solution will be strongly
influenced by the computational grid. Moreover, while three-dimensional computation will converge
to the analytic solution, two-dimensional ones will not show any consistent limit when the grid is
refined. Indeed, this is precisely the outcome of our numerical experiments, which we now describe in
the remaining of the present section.

The initial condition for the numerical experiments is a modified version of the one considered in [35]
and is defined as

u0(x) =
ũ0(x)

|ũ0(x)|
, ũ0(x) = w(x) (x+ δ) + (1− w(x))(−(x− δ))

with

w(x) =
1

1 + exp(5x)

and x = (x, y)T , δ = (δ, 0)T and and x = (x, y, z)T , δ = (δ, 0, 0)T in two and three space dimensions,
respectively. This corresponds to two singularities located on the x axis approximately at x = ±δ
having opposite sign and thus repelling each other. We take γ = 1 and α = 0, while the compu-
tational domain is Ω = (−2, 2) × (−1, 1) in two dimensions and Ω = (−2, 2) × (−1, 1) × (−1, 1) in
three dimensions. The computational grid is uniform and structured and is obtained, in two spatial
dimensions, partitioning Ω into rectangles with dimensions ∆x,∆y and dividing each rectangle into
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two triangles with alternating direction, obtaining a grid analogous to those depicted in Figures 2
and 4. For the three dimensional case, the construction is similar witch each prism being divided into
six tetrahedral elements. Grids will be defined also by means of the number of subdivisions in each
Cartesian direction, so that a grid with Nx ×Ny elements correspond to ∆x = 4/Nx,∆y = 2/Ny. The
overall evolution of the numerical solution is determined by the interplay between the large-scale and
the grid-scale energy variations associated with a displacement of the two singularities: the former
corresponds to an energy decrease when the two singularities drift apart, the latter has been analyzed
previously in this section and tends to lock the singularities between the grid vertexes. The initial
separation is chosen so that, for all the considered computations, a transient is observed at least in
the initial phase, with the large-scale effect overcoming the grid one. In practice, we take δ = 0.0625
in two dimensions and δ = 0.5 in three dimensions and choose in both cases adequate grid anisotropy
levels.

The time evolution of the energy of the finite element solution for the two dimensional case in
shown in Figure 5 for four levels of grid anisotropy and two levels of grid refinement. The energy
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Figure 5. Time evolution of ‖∇uh‖2 for two repelling singularities in two space
dimensions for different levels of grid anisotropy, defined as ∆y : ∆x, namely 1 : 1
(#), 6 : 5 (♦), 7 : 5 (�) and 8 : 5 (⋆). Left: grids with 34× 17, 41× 17, 48× 17 and
54× 17 elements. Right: grids with 66× 33, 79× 33, 92× 33 and 106× 33 elements.

decreases as the two singularities drift apart and drops to zero if they reach the boundary and leave
the computational domain. The first observation is that, depending on the anisotropy of the grid,
the two singularities can reach the boundary (when the anisotropy is such that the potential barrier
associated with the grid for displeacemet along x is small) or reach a steady state condition inside the
grid after an initial transient. The second observation is that the drift velocity is strongly affected by
the grid anisotropy. A third observation is that the energy time evolution has a step pattern where
each step corresponds to the displacement of the singularities over one grid element, i.e. to the crossing
of one potential barrier. A fourth observation is that, when the grid is refined, the effect of the grid
is not reduced: in fact, for finer grids, the spread among the computations with similar resolution but
different stretching increases and the numerical steady state is reached earlier. Finally, we mention
that that analogous computations using unstructured grids, not reported here, show that even the
direction in which the singularities drift is strongly affected by the computational grid.

Repeating now the experiment in three spatial dimensions, we obtain the results reported in Figure 6.
The step pattern observed for two-dimensional computations is still present, however we notice that:
a) regardless of the grid anisotropy, the singularities leave the computational domain; b) refining the
grid, the amplitute of the steps decreases and a tendency of the solutions obtained for different levels
of grid anisotropy to converge to a unique limit can be observed.
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Figure 6. Time evolution of ‖∇uh‖2 for two repelling singularities in three space
dimensions for different levels of grid anisotropy, which can be defined as ∆y : ∆x

thanks to the fact that ∆y = ∆z, namely: 10 : 17 (#), 10 : 15 (♦), 10 : 12 (�) and
1 : 1 (⋆). Left: grids with 20× 17× 17, 23× 17× 17, 28× 17× 17 and 34× 17× 17
elements. Right: grids with 38× 33× 33, 44× 33× 33, 53× 33× 33 and 66× 33× 33
elements.

8. Conclusion

In this paper we have proposed and analyzed a unified saddle-point stable finite element method for
approximating the harmonic map heat and Landau–Lifshitz–Gilbert equation. We have mainly proved
that the numerical solution satisfies an energy law and a nodal satisfaction of the unit sphere, and
the associated Lagrange multiplier satisfies an inf-sup condition. The key ingredients are using piece-
wise linear finite element spaces, applying a nodal interpolation to the terms involving the nonlinear
restriction and a mass lumping technique to the terms involving time derivatives.

This work has important implications in the context of the Ericksen–Leslie equations which in-
corporate a convective term to the harmonic map heat equation. While other existing approaches
in the literature are not readily adapted to these equations due to the convective term, our proposed
method may be directly applied to them without any modification keeping the desired properties above
mentioned.

Concerning the numerical results we have shown that the finite element solution computed by a
nonlinear Crank–Nicolson method, which is solved by using semi-implicit Euler iterations, enjoys the
expected accurate approximations. Moreover, we have identified that the dynamics of singularity
points depends on dimension. That is, we have seen that, depending on the mesh anisotropy, in two
dimensions, two singularity points can either be trapped among two elements of the mesh or move
according to their sign. Instead, in three dimensions, the trapping effect does not occur. Therefore,
some care must be taken in simulating singularities in two dimensions since these do not have finite
energy and the limit equation only holds in the sense of measures.

References

[1] F. Alouges, A new finite element scheme for Landau–Lifchitz equations, Discrete Contin. Dyn. Syst. Ser. S 1
(2008), no. 2, 187–196.

[2] F. Alouges, P. Jaisson, Convergence of a finite element discretization for the Landau–Lifshitz equations in mi-

cromagnetism, Math. Models Methods Appl. Sci. 16 (2006), no. 2, 299–316.
[3] F. Alouges, E. Kritsikis, J.-C. Toussaint, A convergent finite element approximation for the Landau–Lifschitz–

Gilbert equation, Physica B 407 (2012). 1345–1349.
[4] F. Alouges, E. Kritsikis, J. Steiner, J.-C. Toussaint, A convergent and precise finite element scheme for

Landau–Lifschitz-Gilbert equation, Numer. Math. 128 (2014), no. 3, 407–430.



INF-SUP CONDITION FOR THE LLG AND HARMONIC MAP HEAT EQUATION 21
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