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Abstract. In this paper we construct two families of initial data being arbitrarily large under any
scaling-invariant norm for which their corresponding weak solution to the three-dimensional Navier-
Stokes equations become smooth on either [0, T1] or [T2,∞), respectively, where T1 and T2 are two
times prescribed previously. In particular, T1 can be arbitrarily large and T2 can be arbitrarily small.
Therefore, possible formation of singularities would occur after a very long or short evolution time,
respectively.

We further prove that if a large part of the kinetic energy is consumed prior to the first (possible)
blow-up time, then the global-in-time smoothness of the solutions follows for the two families of initial
data.
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1. Introduction

The Cauchy problem of the Navier-Stokes equations for the flow of a viscous, incompressible, New-
tonian fluid can be written as

{

∂tv −∆v +∇p+ v · ∇v = 0 in R
3 × (0,∞),

∇ · v = 0 in R
3 × (0,∞).

(1)

Here v represents the velocity of the fluid and p its pressure. It should be noted that the density and
the viscosity have been normalized, as is always possible, by the rescaling argument on the time and
space variable u(νtρ ,

νx
ρ ) and 1

ρp(
νt
ρ ,

νx
ρ ).

To these equations we add an initial condition

v(0) = v0 in R
3, (2)

where v0 is a smooth, divergence-free vector field.
Despite considerable effort invested by scientific community, the mechanisms governing the solutions

to the three-dimensional Navier-Stokes equations remain unsolved. At the present time, we do not
know yet whether smooth solutions to the three-dimensional Navier-Stokes on R3 exist for all time.
In other words, we do not know whether there are initially smooth solutions with finite energy of the
Navier-Stokes equations that develop singularities in finite time.

The mathematical existence theory developed so far supplies only partial answers to the smoothness
of the Navier-Stokes equations. It is known that Navier-Stokes solutions are smooth on [0,∞) provided
the initial velocity v0 satisfies a smallness condition for certain norm. Instead, if the initial data v0

are not assumed to be small, it is known that the time interval of existence is reduced to [0, T ), where
T depends badly on some norm of v0.
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1.1. Previous results. In 1934 Leray in his ground-breaking paper [14] established the first result of
local- and global-in-time existence of smooth solutions to the three-dimensional Navier-Stokes equa-
tions on R3. More precisely, Leray showed that there was a time interval [0, T ) for which L∞(R3)-
norm solutions existed and hence they were smooth. He also proved that the Navier-Stokes equa-
tions had smooth solutions for all time under a smallness condition for ‖v0‖L2(R3)‖∇v0‖L2(R3) or

‖v0‖
2
L2(R3)‖v0‖L∞(R3). Since that time, there has been quite a vast literature addressing local- and

global-in-time existence results in different contexts. We will briefly discuss some works for critical
spaces, which are those whose associated norm is invariant under the scaling λu(λx, λt2) for all λ > 0.

Fujita and Kato (1964) [6] established the local- and global-in-time existence of
.

H
1
2
(R3)-solutions.

Twenty years later Kato [10] demonstrated that the three-dimensional Navier-Stokes equations are
locally and globally well-posed in the L3(R3) space. The smoothness of L3(R3)-solutions being Leray-
Hopf weak solutions is due to Escauriaza, Seregin and Sverak (2003) [5].

Afterwards came the work of Cannone (1995) [2] in the Besov spaces
.

B
−1+3/q

q,∞ (R3) for q < ∞. The

next progress was the work of Koch and Tataru (2001) [11] in the BMO−1(R3) space. Solving the

Navier-Stokes problem in
.

B
−1+3/q

q,∞ (R3) or BMO−1(R3) allowed to construct highly oscillating initial
data v0 with ‖v0‖L3(R3) being large as long as ‖v0‖ .

B
−1+3/q

q,∞ (R3)
or ‖v0‖BMO−1(R3) was small. Moreover,

the smallness condition either on ‖v0‖ .

B
−1+3/q

q,∞ (R3)
or ‖v0‖BMO−1(R3) led to global L3(R3)-solutions

which combined with being Leray-Hopf solutions implied smoothness globally in time. Finally, we
mention the work of Lei and Lin (2014) [12] who proved the global-in-time well-posedness of solutions
in the scaling invariant space

{f ∈ D
′(R3) :

∫

R3

|ξ|−1|Ff(ξ)|dξ},

where F stands for the Fourier transform.
A turning point appeared with the result of Bourgain and Pavlovic (2008) [1] dealing with the

Navier-Stokes problem in
.

B
−1

∞,∞(R3). They showed that there were initial data in the Schwartz class

S(R3) being arbitrarily small in
.

B
−1

∞,∞(R3) whose
.

B
−1

∞,∞(R3)-solutions become arbitrarily large after
an arbitrarily short time. On the contrary, Chemin and Gallagher (2009) [3] showed that there existed

global
.

B
−1

∞,∞(R3)-solutions if a certain nonlinear smallness condition was satisfied. These two last
results broke the pattern followed for scaling invariant spaces in the above indicated references –
Global-in-time well-posedness under a linear smallness condition for initial data. Even though Leray
[14] already found nonlinear smallness conditions for proving the global-in-time existence of L∞(R3)-
solutions. In this sense, Robinson and Sadowski (2014)[16] have recently been published a result of

local well-posedness under a smallness condition for ‖v0‖L3(R3)

∫ T

0

∫

R3 |∇u(s)|2|u(s)|ds where u(t) is
the solution of the heat equation with the initial condition v0.

A change in the philosophy of constructing large initial data v0 was to look for special structures
which allowed to prove global-in-time existence. In this sense, Mahalov and Nicolaenko (2003) [15]
constructed large initial data v0 which transformed the Navier-Stokes equations into a rotating fluid
equation. In such a setting, it is known that Navier-Stokes solutions are globally well-posed. Chemin
and Gallagher (2009) [3] proposed initial data which varied slowly in one direction. In these two
examples the global well-posedness of two-dimensional Navier-Stokes equations is the crucial point in
their proof.

Since our results rely on different ways of perturbing the Navier-Stokes equations for obtaining
large solutions, we would like to mention some related works that study the concept of stability of
solutions in certain spaces. Gallagher (2001) [7] proved that, for any sequence of initial data, their

corresponding solution can be decomposed into a sum of orthogonal profiles bounded in
.

H
1
2
(R3) plus

a remainder which is small with respect to the L3(Ω)-norm. As a result, the stability of solutions
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in
.

H
1
2
(R3) is proved for initial data in

.

H
1
2
(R2) ∩ L3(R3) being bounded in

.

H
1
2
(R3) and providing

L3(R3)-solutions. The space L3(R3) could be changed by
.

B
−1+3/q

q,∞ (R3) or BMO−1(R3). This last
result was extended, in [8], by Gallagher, Iftimie and Planchon (2003) to the stability of solutions in

B
−1+ 3

p
p,q (R3) and L3(R3).

1.2. The contribution of this paper. Let us highlight the main contributions and how they differ
from existing works concerning stability.

In this paper we will construct smooth initial data v0 being arbitrarily large in any critical space that
do not develop singularities up to a given time T1 without appealing to the two-dimensional Navier-
Stokes equations. To achieve such a result we make use of Kato’s technique. More precisely, the method
of proof is based on mild-solution theory for proving the global-in-time existence of L3(R3)-solutions
for small data v0. The main difference is that we do not directly impose a smallness condition on the
L3(R3)-norm for v0. In doing so, we decompose the original problem into a Stokes problem with an
initial datum u0 and a perturbed Navier-Stokes-like problem with an initial datum w0. From these
two subproblems, we will prove that the three-dimensional Navier-Stokes problem possesses L3(R3)-
solutions with initial data v0 = u0 +w0, where u0 has to be small concerning the L3(R3)-norm and
w0 has to be small concerning the Lq(R3)-norm. As a consequence, v0 is no longer small in any

critical space such as
.

H
1
2
(R2), L3(R3),

.

B
−1+ 3

q

q,∞ (R3) or BMO−1(R3). This way we will rule out the

smallness conditions for v0. The result of Escauriaza, Seregin, and Šverák is the final ingredient to
conclude with the construction of large initial data v0 for the Navier-Stokes equations which provides
smooth solutions on [0, T1], for T1 being arbitrarily large. Consequently, the formation of potential
singularities would have to be after T1. This means that the system would preserve an enough amount
of kinetic energy so that the solutions could blow up. On the other hand, if the L2(R2)-value of the
vorticity would keep large without blowing up so that the kinetic energy would decay under a certain
threshold on [0, T1], the solutions starting from our initial data remained smooth for all time.

Moreover, if a different decomposition of (1) into a Navier-Stokes problem and a perturbed Navier-
Stokes-like problem is used, we will be able to prove that there exist Leray-Hopf weak solutions
becoming smooth on [T2,∞) for any given time T2. Then we infer that potential singularities would
have to occur on (0, T2), for T2 being arbitrarily small. The most kinetic energy would be consumed
on (0, T2) so that the solutions can not experience new singularities on [T2,∞).

In this paper we do not use the perturbation theory as a way of studying stability of solutions but a
way of constructing large solutions to the Navier-Stokes equations. Particularly, if we used the stability

theory developed for some space X , with X being
.

H
1
2
(R2), L3(R3),

.

B
−1+ 3

q

q,∞ (R3) or BMO−1(R3), we
would obtain that there exists a number ε (small enough) such that if ‖v0 − u0‖ ≤ ε we have

‖u(t)− v(t)‖X ≤ E‖v0 − u0‖X for all t ∈ [0, T ],

where ε > 0 and E > 0 depend on some energy norms of the solution u(t). This would provide that
the perturbed solution v(t) would have an initial datum satisfying ‖v0‖X ≤ ε+ ‖u0‖X . But in order
for the solution u(t) to exist on [0, T ] one requires some smallness condition for u0. Then, the solution
v(t) would inherit a smallness condition for v0 and hence would not be large.

2. Statement of Problem

2.1. Notation. As usual, Lp(R3), 1 ≤ p ≤ +∞, denotes the space of p-integrable, Lebesgue-measurable,
R

3-valued functions defined on R3, and H1(R3) denotes the space of functions v ∈ L2(R3) such that
∇v ∈ L2(R3), where ∇ is the gradient operator in the distributional sense. Moreover, Cc(R

3× (0, T ))
is the space of infinitely continuously differentiable functions with compact supports in R3×(0, T ). The
Schwartz space is denoted as S(R3) representing the space of rapidly decreasing infinitely continuously
differentiable functions on R3.

For X a Banach space, Lp(0, T ;X) denotes the space of p-integrable, Bochner-measurable,X-valued
functions on (0, T ).
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We let P be the Helmholtz-Leray operator onto the space of divergence-free functions in Lp(R3)
with 1 < p < ∞.

2.2. The Navier-Stokes equations. In this paper the concept of weak solutions for the Navier-
Stokes problem (1)–(2) will be understood in the sense of Leray and Hopf (see [14, 9]).

Definition 2.1. A function v(t) is said to be a Leray-Hopf weak solution of problem (1)–(2) if:

v ∈ L∞(0, T ;L2(R3)) ∩ L2(0, T ;H1(R3)) with ∇ · v = 0, (3)

and

−

∫ T

0

∫

R3

v(s,x) · ∂tϕ(s,x)dx ds +

∫ T

0

∫

R3

∇v(s,x) : ∇ϕ(s,x)dx ds

+

∫ T

0

∫

R3

v(s,x) · ∇v(s,x) · ϕ(s,x)dx ds = (u0,ϕ(0)),

(4)

for all ϕ ∈ C∞

c (R3 × [0, T )) with ∇ · ϕ = 0. Moreover, the energy inequality

1

2
‖v(t)‖2

L2(R3) +

∫ t

0

‖∇v(s)‖2
L2(R3) ds ≤

1

2
‖v0‖

2
L2(R3) (5)

holds a. e. in [0, T ].

Leray proved the global-in-time existence of weak solutions [14].

Theorem 2.1. Let v0 ∈ L2(R3) be a divergence-free vector field. Then there exists at least a Leray-
Hopf weak solution to (1)–(2) on [0, T ].

Next we introduce the concept of strong (or regular) solutions to (1)-(2).

Definition 2.2. A weak solution v(t) to problem (1)–(2) is said to be a strong solution if there exists
a number Mv > 0 such that

sup
t∈[0,T ]

‖∇v‖L2(R3) ≤ Mv.

The key point for proving that solutions to the Navier-Stokes equations are smooth is to obtain
that Leray-Hopf weak solutions are strong indeed, of course, for smooth initial data.

Here we announce our two main results.

Theorem 2.2. Let T > 1 be given. Then there exist smooth, divergence-free initial data v0 arbitrarily
large under any critical norm such that their corresponding Leray-Hopf solution v(t) to (1)–(2) is
smooth on [0, T ].

Theorem 2.3. Let 0 < T < 1 be given. Then there exist initial data v0 arbitrarily large under any
critical norm such that there exists at least a Leray-Hopf solution v(t) to (1)–(2) which is smooth on
[T,∞).

Throughout this paper, different positive constants will appear due to interpolations and embeddings
among spaces. Thus, C will always be the maximum of all of these constants in the previous steps,
and K and K ′ will stand for constants depending on the initial data.

3. Proof of Theorem 2.2

In proving Theorem 2.2 we need to introduce a suitable approximation procedure so that all the
estimates that follow are rigorously set up. To do this, we use a regularization à la Leray. That is, we
replace the nonlinearity v ·∇v by (ρε ∗v) ·∇v, where ρ ∈ C∞

c (R3) such that ρ ≥ 0 and
∫

R3 ρ(x) dx = 1

and ρε(x) =
1
ε2 ρ(

x

ε ) for all ε > 0, to get
{

∂tvε −∆vε +∇pε + (ρε ∗ vε) · ∇vε = 0 in R
3 × (0,∞),

∇ · vε = 0 in R
3 × (0,∞),

(6)
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associated with the regularized initial condition vǫ(0) = v0. This procedure gives rise to a solution
pair (vε, pε) ∈ C∞(R3 × [0,∞))×C∞(R3 × [0,∞)). On dealing with above equations, it is preferably
better to avoid the pressure. For this, we apply the Helmholtz-Leray operator P to (6) to get

{

∂tvε −∆vε + P((ρε ∗ vε) · ∇vε) = 0,
vε(0) = v0,

(7)

where we have utilized the fact that −P∆v = −∆Pv = −∆v since P commutes with derivatives of
any order.

From now on, for simplicity in exposition, we handle (7) without regularizing, although it must be
taken into account in order to justify all the computations in this work.

Our first step is to modify equation (7) in order to easily produce a family of global smooth solutions.
We first decompose (7) into two subproblems: a Stokes problem and a Navier-Stokes-like perturbation
as follows. Let u be the solution to the Stokes problem

{

∂tu−∆u = 0,
u(0) = u0,

(8)

and let w be the solution to the perturbation problem
{

∂tw −∆w + P(u · ∇w) + P(w · ∇u) + P(w · ∇w) + P(u · ∇u) = 0,
w(0) = w0.

(9)

Observe that defining v = u+w and adding (8) and (9), we obtain (7) for v0 = u0 +w0. In order to
prove our main result, we need to write (8) and (9), by using the Fourier transform, as

u(t) = Kt ∗ u0 (10)

and

w(t) = Kt ∗w0 +

∫ t

0

Kt−s ∗ (P(w · ∇w) + P(u · ∇w) + P(w · ∇w) + P(u · ∇u))ds, (11)

where Kt =
1

(4πt)
3
2
e−

|x|2

4t , for all t > 0, is the heat kernel.

At this point we emphasize that, from (10) and (11), we obtain the Duhamel integral form of (7):

v(t) = Kt ∗ v0 +

∫ t

0

Kt−s ∗ (P(v · ∇v))ds, (12)

with v0 = u0 +w0. The equivalence between equations (7) and (12) and equations (10) and (11) are
ensured due to the regularity of v or, more precisely, vε.

The following proposition is concerned with some properties of Kt. The proof is straightforward by
using the properties of the convolution operator and the particular structure of Kt.

Proposition 3.1. It follows that, for all 1 < p ≤ q < ∞,

‖Kt ∗ f‖Lq(R3) ≤ Ct−( 1
p−

1
q )

3
2 ‖f‖Lp(R3), (13)

‖∇Kt ∗ f‖Lq(R3) ≤ Ct−(1+ 3
p−

3
q )

1
2 ‖f‖Lp(R3), (14)

where C > 0 is a constant that does not depend on f .

Proof. We will use the following property for the convolution operator:

‖f ∗ g‖Lq(R3) ≤ ‖f‖Lr(R3)‖g‖Lp(R3) for
1

q
+

1

r
= 1 +

1

q
.

Then we have

‖Kt ∗ f‖Lq(R3) ≤ ‖Kt‖Lr(R3)‖f‖Lp(R3).

The proof of (13) follows by observing that ‖Kt‖Lr(R3) ≤ Ct−( 1
p−

1
q ). In the same way, we obtain that

(14) holds since ‖∇Kt‖Lr(R3) ≤ Ct−(1+ 3
p−

3
q )

1
2 .

�
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By Hölder’s inequality and Hodge’s decomposition, we have

‖P(v · ∇v)‖Lp(R3) ≤ C‖v‖Lr(R3)‖∇v‖Ls(R3). (15)

for 1
p = 1

r + 1
s .

From now on, we will assume 3 < q and 1
p = 1

q + 1
3 which implies that 3 > p > 3

2 .

We will denote

β(a, b) =

∫ 1

0

γa−1(1− γ)b−1

for all a, b > 0.
Next we provide some estimates for the solution to problem (9) under a certain smallness condition

for u0 and w0, respectively.

Lemma 3.1. Let T > 1 be given, and let u0 ∈ S(R3) and w0 ∈ S(R3) be two divergence-free vector
fields. Then there exists K > 0 such that if

T
1
2 max{‖u0‖Lq(R3), ‖∇u0‖L3(R3)} <

K

2
1
2 4

(16)

and

‖w0‖L3(R3) <
K

2
1
2 4

, (17)

we have

t
1
2 (1−

3
q )‖w(t)‖Lq(R3) ≤ K (18)

and

t
1
2 ‖∇w(t)‖L3(R3) ≤ K (19)

for all t ∈ [0, T ].

Proof. First of all, observe, from (13) and (14), that

‖Kt ∗w0‖Lq(R3) ≤ Ct−(1− 3
q )

1
2 ‖w0‖L3(R3)

and

‖∇Kt ∗w0‖L3(R3) ≤ Ct−
1
2 ‖w0‖L3(R3).

Next, assume that (18) and (19) hold. Then we will see that it requires that (16) and (17) are to be
satisfied. Let us bound the right-hand side of (9). We have, by (13) and (15), that

‖

∫ t

0

Kt−s ∗ P(w · ∇w)ds‖Lq(R3) ≤

∫ t

0

‖Kt−s ∗ P(w · ∇w)‖Lq(R3)ds

≤ C

∫ t

0

(t− s)−( 1
p−

1
q )

3
2 ‖P(w · ∇w)‖Lp(R3)ds

≤ C

∫ t

0

(t− s)−( 1
p−

1
q )

3
2 ‖w‖Lq(R3)‖∇w‖L3(R3)ds

≤ CK2

∫ t

0

(t− s)−( 1
p−

1
q )

3
2 s−

1
2 (1−

3
q )s−

1
2 ds

≤ CK2t−
1
2 (1−

3
q )β( 3

2q ,
1
2 ) ≤ CK2t−

1
2 (1−

3
q ),
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where we have utilized the change of variable s = tγ to obtain β( 3
2q ,

1
2 ). Analogously, we obtain, from

‖u(t)‖Lq(R3) ≤ ‖u0‖Lq(R3) and ‖∇u(t)‖L3(R3) ≤ ‖∇u0‖L3(R3) :

∫ t

0

‖Kt−s ∗ P(u · ∇w)‖Lq(R3)ds ≤

∫ t

0

‖Kt−s ∗ P(u · ∇w)‖Lq(R3)ds

≤ C

∫ t

0

(t− s)−( 1
p−

1
q )

3
2 ‖P(u · ∇w)‖Lp(R3)ds

≤ C

∫ t

0

(t− s)−( 1
p−

1
q )

3
2 ‖u‖Lq(R3)‖∇w‖L3(R3)ds

≤ CK‖u0‖Lq(R3)

∫ t

0

(t− s)−( 1
p−

1
q )

3
2 s−

1
2 ds

≤ CK‖u0‖Lq(R3)β(
1
2 ,

1
2 )

≤ CK‖u0‖Lq(R3)T
1
2 (1−

3
q )t−

1
2 (1−

3
q ),

‖

∫ t

0

Kt−s ∗ P(w · ∇u)ds‖Lq(R3) ≤

∫ t

0

‖Kt−s ∗ P(w · ∇u)‖Lq(R3)ds

≤ C

∫ t

0

(t− s)−( 1
p−

1
q )

3
2 ‖P(w · ∇u)‖Lp(R3)ds

≤ C

∫ t

0

(t− s)−( 1
p−

1
q )

3
2 ‖w‖Lq(R3)‖∇u‖L3(R3)ds

≤ CK‖∇u0‖L3(R3)

∫ t

0

(t− s)−( 1
p−

1
q )

3
2 s−

1
2 (1−

3
q )ds

≤ CK‖∇u0‖L3(R3)t
1
2 t−

1
2 (1−

3
q )β(12 (1 +

3
q ),

1
2 )

≤ CK‖∇u0‖L3(R3)T
1
2 t−

1
2 (1−

3
q )

and
∫ t

0

‖Kt−s ∗ P(u · ∇u)‖Lq(R3)ds ≤ C‖u0‖Lq(R3)‖∇u0‖L3(R3)t
1
2β(1,

1

2
)

≤ C‖u0‖Lq(R3)‖∇u0‖L3(R3)T
1− 3

2q t−
1
2 (1−

3
q ).

Applying the above estimates to (11), we obtain

t
1
2 (1−

3
q )‖w(t)‖Lq(R3) ≤ C‖w0‖L3(R3) + CK2 + CT

1
2 (1−

3
q )‖u0‖Lq(R3)K

+CT
1
2 ‖∇u0‖L3(R3)K + CT 1− 3

2q ‖u0‖Lq(R3)‖∇u0‖L3(R3).

Since T > 1 and q > 3, we also have:

t
1
2 (1−

3
q )‖w(t)‖Lq(R3) ≤ C‖w0‖L3(R3) + CK2 + CT

1
2 ‖u0‖Lq(R3)K

+CT
1
2 ‖∇u0‖L3(R3)K + CT ‖u0‖Lq(R3)‖∇u0‖L3(R3)

≤ C‖w0‖L3(R3) + CK2 + 2CT
1
2 max{‖u0‖Lq(R3), ‖∇u0‖L3(R3)}K

+CT max{‖u0‖Lq(R3), ‖∇u0‖L3(R3)}
2.

Moreover, we have, by (14) and (15), that

∫ t

0

‖∇Kt−s ∗ P(w · ∇w)‖L3(R3)ds ≤

∫ t

0

‖∇Kt−s ∗ P(w · ∇w)‖L3(R3)ds

≤ C

∫ t

0

(t− s)−
3
2p ‖P(w · ∇w)‖Lp(R3)ds

≤ C

∫ t

0

(t− s)−
3
2p ‖w‖Lq(R3)‖∇w‖L3(R3)ds

≤ CK2

∫ t

0

(t− s)−
3
2p s−

1
2 (1−

3
q )s−

1
2ds

≤ CK2t−
1
2β(12 (1−

3
q ),

3
2q ) ≤ CK2t−

1
2 .
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Analogously,
∫ t

0

‖∇Kt−s ∗ P(u · ∇w)‖L3(R3)ds ≤

∫ t

0

‖∇Kt−s ∗ P(u · ∇w)‖L3(R3)ds

≤ C

∫ t

0

(t− s)−
3
2p ‖P(u · ∇w)‖Lp(R3)ds

≤ C

∫ t

0

(t− s)−
3
2p ‖u‖Lq(R3)‖∇w‖L3(R3)ds

≤ CK‖u0‖Lq(R3)

∫ t

0

(t− s)−
3
2p s−

1
2 ds

≤ CK‖u0‖Lq(R3)t
1
2 (1−

3
p )β(12 , 1−

3
2p )

≤ CK‖u0‖Lq(R3)T
1− 3

2p t−
1
2 ,

∫ t

0

‖∇Kt−s ∗ P(w · ∇u)‖L3(R3)ds ≤

∫ t

0

‖∇Kt−s ∗ P(w · ∇u)‖L3(R3)ds

≤ C

∫ t

0

(t− s)−
3
2p ‖P(w · ∇u)‖Lp(R3)ds

≤ C

∫ t

0

(t− s)−
3
2p ‖w‖Lq(R3)‖∇u‖L3(R3)ds

≤ CK‖∇u0‖L3(R3)

∫ t

0

(t− s)−
3
2p s−

1
2 (1−

3
q )ds

≤ CK‖∇u0‖L3(R3)β(
1
2 + 3

2p , 1−
3
2p )

≤ CK‖∇u0‖L3(R3)T
1
2 t−

1
2

and
∫ t

0

‖∇Kt−s ∗ P(u · ∇u)‖L3(R3)ds ≤ C‖u0‖Lq(R3)‖∇u0‖L3(R3)t
−

1
2T

3
2 (1−

1
p ).

Applying the above estimates to (11), we obtain

t
1
2 ‖∇w(t)‖L3(R3) ≤ C‖w0‖L3(R3) + CK2 + CT 1− 3

2p ‖u0‖Lq(R3)K

+CT
1
2 ‖∇u0‖L3(R3)K + CT

3
2 (1−

1
p )‖u0‖Lq(R3)‖∇u0‖L3(R3).

From the relation 1
p = 1

q + 1
3 , we write

t
1
2 ‖∇w(t)‖L3(R3) ≤ C‖w0‖L3(R3) + CK2 + CT

1
2 (1−

3
q )‖u0‖Lq(R3)K

+CT
1
2 ‖∇u0‖L3(R3)K + CT 1− 3

2q ‖u0‖Lq(R3)‖∇u0‖L3(R3)

and hence

t
1
2 ‖∇w(t)‖L3(R3) ≤ C‖w0‖L3(R3) + CK2 + CT

1
2 ‖u0‖Lq(R3)K

+CT
1
2 ‖∇u0‖L3(R3)K + CT ‖u0‖Lq(R3)‖∇u0‖L3(R3).

≤ C‖w0‖L3(R3) + CK2 + 2CT
1
2 max{‖u0‖Lq(R3), ‖∇u0‖L3(R3)}K

+CT max{‖u0‖Lq(R3), ‖∇u0‖L3(R3)}
2.

To close the bootstrap argument, we need to find K > 0 such that

K = C‖w0‖L3(R3) + CK2 + 2CT
1
2 max{‖u0‖Lq(R3), ‖∇u0‖L3(R3)}K

+CT max{‖u0‖Lq(R3), ‖∇u0‖L3(R3)}
2.

or, equivalently,

0 = C‖w0‖L3(R3) + CK2 + (2CT
1
2 max{‖u0‖Lq(R3), ‖∇u0‖L3(R3)} − 1)K

+CT max{‖u0‖Lq(R3), ‖∇u0‖L3(R3)}
2.

Let us choose 2CT
1
2 max{‖u0‖Lq(R3), ‖∇u0‖L3(R3)}− 1 < − 1

2 . As a result, we obtain that K satisfies

0 < K ≤

1
2 −

√

1
4 − 4C2(‖w0‖L3(R3) + T max{‖u0‖Lq(R3), ‖∇u0‖L3(R3)}

2)

2C
.
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Let us choose 1
4 − 4C2(‖w0‖L3(R3) + T max{‖u0‖Lq(R3), ‖∇u0‖L3(R3)}

2) > 0. From conditions (16)
and (17) for max{‖u0‖Lq(R3), ‖∇u0‖L3(R3)} and ‖w0‖L3(R3), the two above conditions hold. Thus,
(18) and (19) are also satisfied. It completes the proof. �

As a consequence of Lemma 3.1, we will infer an estimate uniform in time for the ‖ · ‖L3(R3)-norm
of w on [0,T].

Lemma 3.2. Let u0 ∈ S(R3) and w0 ∈ S(R3) be two divergence-free vector fields satisfying (16) and
(17). Then there exists a number Mw > 0 such that the solution w(t) to (9) satisfies

sup
t∈[0,T ]

‖w(t)‖L3(R3) ≤ Mw.

Proof. From (11), we have

‖w(t)‖L3(R3) ≤ ‖Kt∗w0‖L3(R3)+

∫ t

0

‖Kt−s∗(P(w·∇w)+P(u·∇w)+P(w·∇w)+P(u·∇u))‖L3(R3)ds.

Let us now bound each term on the right-hand side. We have, by (13), (16), and (17), that

‖Kt ∗w0‖L3(R3) ≤ C‖w0‖L3(R3)

∫ t

0

‖Kt−s ∗ P(w · ∇w)‖L3(R3)ds ≤ C

∫ t

0

(t− s)−( 3
p−1) 1

2 ‖w · ∇w‖Lp(R3)ds

≤ C

∫ t

0

(t− s)−
3
2q ‖w‖Lq(R3)‖∇w‖L3(R3)ds

≤ CK2

∫ t

0

(t− s)−
3
2q s−(1− 3

q )
1
2 s−

1
2ds

≤ CK2β(12 (2−
3
q ),

3
q ) ≤ CK2,

∫ t

0

‖Kt−s ∗ P(u · ∇w)‖L3(R3)ds ≤ C

∫ t

0

(t− s)−( 3
p−1) 1

2 ‖u · ∇w‖Lp(R3)ds

≤ C

∫ t

0

(t− s)−
3
2q ‖u‖Lq(R3)‖∇w‖L3(R3)ds

≤ CK

∫ t

0

(t− s)−
3
2q s−(1− 3

q )
1
2 ‖u‖L3(R3)s

−
1
2ds

≤ CK‖u0‖L3(R3)β(
1
2 (2−

3
q ),

3
q ) ≤ CK‖u0‖L3(R3),

∫ t

0

‖Kt−s ∗ P(w · ∇u)‖L3(R3)ds ≤ C

∫ t

0

(t− s)−( 3
p−1) 1

2 ‖w · ∇u‖Lp(R3)ds

≤ C

∫ t

0

(t− s)−
3
2q ‖w‖Lq(R3)‖∇u‖L3(R3)ds

≤ CK

∫ t

0

(t− s)−
3
2q s−

1
2 (1−

3
q )s−

1
2 ‖u‖L3(R3)ds

≤ CK‖u0‖L3(R3)β(
1
2 (2 −

3
q ),

3
q ) ≤ CK‖u0‖L3(R3)

and
∫ t

0

‖Kt−s ∗ P(u · ∇u)‖L3(R3)ds ≤ C

∫ t

0

(t− s)−( 3
p−1) 1

2 ‖u · ∇u‖Lp(R3)ds

≤ C

∫ t

0

(t− s)−
3
2q ‖u‖Lq(R3)‖∇u‖L3(R3)ds

≤ C

∫ t

0

(t− s)−
3
2q s−( 1

3−
1
q )

3
2 s−

1
2 ‖u‖L3(R3)ds

≤ C‖u0‖
2
L3(R3)β(

1
2 (2 −

3
q ),

3
q ) ≤ C‖u0‖

2
L3(R3).

Therefore, we obtain

‖w(t)‖L3(R3) ≤ C‖w0‖L3(R3) + CK2 + 2C‖u0‖L3(R3)K + C‖u0‖
2
L3(R3)

:= Mw. (20)

�
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In view of Lemmas 3.1 and 3.2, we have proved the existence of an L3(R3)-solution to (7) on [0, T ]
under certain smallness conditions for u0 and w0.

Lemma 3.3. Let u0 ∈ S(R3) and w0 ∈ S(R3) be two divergence-free vector fields satisfying (16) and
(17), respectively. Then there exists Mv > 0 such that the solution v(t) to (7) with v0 = u0 + w0

satisfies
sup

t∈[0,T ]

‖v(t)‖L3(R3) ≤ Mv,

Proof. First notice that, from (10), we have ‖u(t)‖L3(R3) ≤ ‖u0‖L3(R3) := Mu for t ∈ [0, T ]. By
Lemma 3.2, we have ‖w(t)‖L3(R3) ≤ Mw for all t ∈ [0, T ]. Therefore, if we define v(t) = u(t) +w(t),
we obtain ‖v(t)‖L3(R3) ≤ Mu + Mw := Mv for all t ∈ [0, T ], where v satisfies (7) on [0, T ] with
v0 = u0 +w0. �

Remark 3.1. It is not hard to see that the above estimate obtained for the regularized solutions are
independent of ε and hence are also true for the solutions of the unregularized Navier-Stokes equations.
From now on, we are allowed to work without any regularization procedure.

Our next goal is to provide a family of smooth initial data v0 which can be split into u0 and w0

satisfying (16) and (17), respectively. In doing so, we take advantage of the “scissors effect ” of the
scaling property of the Navier-Stokes solutions. That is, we will use different scalings for u0 and w0 so
that supercritical and subcritical norms increase and decrease oppositely with the L3(R3)-norm being
invariant. This way we avoid that the size of any norm of v0 is no longer small but large.

Let ϑ0 ∈ S(R3) be a divergence-free vector field. We are allowed to take ε > 0 such that ϑ0 =

(1− ε)ϑ0 + εϑ0 := u0,ε +w0,ε so that w0,ε satisfies condition (17). Next we define uλ̃
0,ε = λ̃u0,ε(λ̃x)

and wλ̂
0,ε = λ̂w0,ε(λ̂x) for λ̃, λ̂ > 0. Letting λ̃ go to 0, we find that there exists λ̃0 such that, for all

λ̃ ≤ λ̃0, it follows that condition (16) holds for uλ̃
0,ε. Moreover, for any λ̂, we find that wλ̃

0,ε fulfills

condition (17) since the L3(R3)-norm is scaling invariant. This last rescaling is not really necessary,
but it allows us to construct initial data arbitrarily large under any supercritical norm. Thus we

define v0 = uλ̃
0,ε + wλ̂

0,ε whose L3(R3)-norm remains almost invariant due to our special choice, i.e.
‖v0‖L3(R3) ≤ ‖u0‖L3(R3) + ‖w0‖L3(R3) ≤ (1 − ε)‖ϑ0‖L3(R3) + ε‖ϑ0‖L3(R3) = ‖ϑ0‖L3(R3). Instead,

supercritical norms can be arbitrarily large by doing λ̂ to tend to ∞ and subcritical norms by doing λ̃

to tend to 0.
Another possibility to construct smooth initial data v0 is as follows. Consider ũ0 ∈ S(R3) and

w̃0 ∈ S(R3) to be two divergence-free vector fields and define v0 = ũλ̃
0 + εw̃λ

0 := uλ̂
0 +w0,ε. Pick λ̃ to

be such that uλ̃
0 satisfies condition (16) and ε to be such that w0,ε satisfies condition (17).

The following theorem was proved in [5] by Escauriaza, Seregin, and Šverák.

Theorem 3.1. Let v0 ∈ S(R3) be a divergence-free vector field. Assume that v(t) is a weak Leray-Hopf
solution to (1)–(2) and satisfies the additional condition

sup
t∈[0,T ]

‖v(t)‖L3(R3) < ∞.

Then v(t) is a strong solution to (1)–(2) on [0, T ].

Therefore, Lemma 3.3 and Theorem 3.1 combined with Theorem 2.1 give that the solutions v(t)

whose initial data v0 can be decomposed as, for instance, v0 = uλ̃
0,ε + wλ̂

0,ε with uλ̃
0,ε ∈ S(R3) and

wλ̂
0,ε ∈ S(R3) being divergence-free vector fields fulfilling (16) (for certain λ̃) and (17) (for certain ε)

are strong, and hence they are smooth on [0, T ]. It proves Theorem 2.2.

Remark 3.2. It is easy to see that the solutions given in Theorem 2.2 satisfy the estimate:

‖v(t)‖Lq(R3) ≤ (K + C‖u0‖L3(R3))t
−

1
2 (1−

3
q ) for all t ∈ [0, T ].

This implies that ‖v(T )‖Lq(R3) can be as small as required provided that T is large. As a result, we
can extend our solution to [0, T ∗) for T ∗ being possible large. See [13, Thm 15.3].
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4. Proof of Theorem 2.3

We first decompose (7) as follows. Let wε be the solution to the Navier-Stokes problem
{

∂twε −∆wε + P((ρε ∗wε) · ∇wε) = 0,
wε(0) = w0,

(21)

and let uε be the solution to the perturbation problem
{

∂tuε −∆uε + P((ρε ∗wε) · ∇uε) + P((ρε ∗ uε) · ∇wε) + P((ρε ∗ uε) · ∇uε) = 0,
uε(0) = u0.

(22)

As before, we drop the subscript ε and the convolution operator from (21) and (22).
The following result is a consequence of Lemmas 3.1 and 3.2. In particular, we assume that we have

C > 1 in Lemma 3.1.

Lemma 4.1. Let w0 ∈ S(R3) be a divergence-free vector field such that

‖w0‖L3(R3) ≤
1

4C
. (23)

Then there exists a smooth solution w(t) to (21) on [0,∞) such that

sup
t∈[0,∞)

‖w(t)‖L3(R3) < K :=
1−

√

1− 4C2‖w0‖L3(R3)

2C
. (24)

Proof. From (8) for u0 = 0 and (9) , we recover (21). By following the proof of Lemma 3.1, we obtain
that (18) and (19) hold for K such that

0 = C‖w0‖L3(R3) + CK2 −K.

Therefore,

K =
1−

√

1− 4C2‖w0‖L3(R3)

2C
.

In virtue of (20), we obtain (24). �

Lemma 4.2. Let 0 < T < 1 be given. Let u0 ∈ S(R3) and w0 ∈ S(R3) be two divergence-free vector
fields such that

max
t∈[0,T ]

‖w(t)‖L3(R3) <
1

8C
(25)

and

T−
1
4 ‖u0‖L2(R3) <

1

8C
. (26)

Then there exists t∗ ∈ (0, T ] such that

‖u(t∗)‖L3(R3) <
1

8C
. (27)

Proof. Multiplying (22) by u and integrating over R3 gives, after integration by parts,

1

2

d

dt
‖u‖2

L2(R3) + ‖∇u‖2
L2(R3) =

∫

R3

u · ∇w · u dx = −

∫

R3

u · ∇u ·w dx

≤ ‖u‖L6(R3)‖∇u‖L2(R3)‖w‖L3(R3)

≤ C‖w‖L3(R3)‖∇u‖2
L2(R3).

From (25), we arrive at
d

dt
‖u‖2

L2(R3) + ‖∇u‖2
L2(R3) ≤ 0.

Integrating with respect to time, we get

sup
t∈[0,T ]

‖u(t)‖2
L2(R3) +

∫ T

0

‖∇u(s)‖2
L2(R3)ds ≤ ‖u0‖

2
L2(R3),
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whence

sup
t∈[0,T ]

‖u(t)‖2
L2(R3) + 2

∫ T

0

‖∇u(s)‖2
L2(R3)ds ≤ C‖u0‖

2
L2(R3).

By interpolation, we write

‖u(t)‖L3(R3) ≤ C‖u(t)‖
1
2

L2(R3)
‖∇u(t)‖

1
2

L2(R3)
.

Therefore,
∫ T

0

‖u(t)‖4
L3(R3)dt ≤ C‖u0‖

4
L2(R3)

and hence
T inf

s∈[0,T ]
‖u‖4

L3(R3) ≤ C‖u0‖
4
L2(R3)

and
inf

s∈[0,T ]
‖u‖2

L3(R3) ≤ CT−
1
2 ‖u0‖

2
L2(R3).

If conditions (25) and (26) hold, there exists t∗ ∈ (0, T ] such that condition (27) is satisfied. �

In order for condition (25) to hold, we need

1−
√

1− 4C2‖w0‖L3(R3) <
1

4
, (28)

which holds from (24). Let us choose λ̃ and ε such that v0 = uλ̃
0,ε +wλ̂

0,ε with u0 and w0 satisfying
(26) and (28), respectively. Thus, we arrive at

‖v(t∗)‖L3(R3) ≤ ‖w(t∗)‖L3(R3) + ‖u(t∗)‖L3(R3) <
1

4C
.

Then, by Lemma 4.1, we obtain

sup
t∈[T,∞)

‖v(t)‖L3(R3) ≤
1

2C
.

since v(t) is a solution of the regularized Navier-Stokes equations as w.
As a result of Theorem 3.1, we have accomplished to prove that the unregularized solutions v(t)

whose initial data v0 can be decomposed as v0 = uλ̃
0,ε +wλ̂

0,ε with uλ̃
0,ε ∈ S(R3) and wλ̂

0,ε ∈ S(R3)
being divergence-free vector fields fulfilling (28) and (26), respectively, are strong, and hence they are
smooth on [T,∞). We have used the same decomposition for v0 as in the proof of Theorem 2.2. This
way our initial conditions are arbitrarily large under any critical norm. It proves Theorem 2.3.

5. Additional results

To complete the proof of Theorem 2.2 we show there exist initial data v0 which can not be a priori
decomposed as above. To do this, we just need to use, for instance, an L3(R3)-stability result. The
proof combines ideas from [5] for establishing local-in-time existence of L3(R3)-solutions and from [8]
for proving stability in Bevov spaces.

Theorem 5.1. Let v(t) be a smooth solution to (1)–(2) with an initial datum v0 = u0+w0, where u0

and w0 are two smooth, divergence-free vector fields fulfilling (16) and (17), respectively. Then there
exists ε = ε(v) such that, for all initial data ṽ0 with ‖v0 − ṽ0‖L3(R3) < ε, the corresponding solution
ṽ(t) with ṽ(0) = ṽ0 satisfies

‖v(t)− ṽ(t)‖L3(R3) ≤ C(v)‖v0 − ṽ0‖L3(R3) for all t ∈ [0, T ]. (29)

Proof. The proof is divided into two parts:
Part I: A priori estimates
To start with, define w(t) := v(t)− ṽ(t) to be the solution to

{

∂tw −∆w +∇q + v · ∇w +w · ∇v +w · ∇w = 0,
w(0) = w0 := v0 − ṽ0.

(30)
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Testing by |w|w, we obtain

1

3

d

dt
‖w‖3

L3(R3) + ‖|w|
1
2∇w‖2

L2(R3) +
4

9
‖∇|w|

3
2 ‖2

L2(R3) =

∫

R3

∇q · |w|w dx

−

∫

R3

∇ · (vw +wv +ww) · |w|w dx

Integrating by parts, we estimate each term on the right hand side as follows. For the pressure term,
applying the divergence operator to (30), we first observe that

−∆q = ∇ · ∇ · (uw + uw +ww) in R
3. (31)

The Calderon-Zygmund inequality applied to (31) (see [16, Lm 5.1] for a proof) implies that

‖q‖
L

5
2 (R3)

≤ C‖w‖L5(R3)(‖w‖L5(R3) + ‖v‖L5(R3)).

Thus,
∫

R3

∇q · |w|wdx = −

∫

R3

q∇ · (w|w|)dx =

∫

R3

q∇ ·w|w|dx+

∫

R3

qw∇w
w

|w|
dx

≤ ‖q‖
1
2

L
5
2 (R3)

‖w‖
1
2

L5(R3)
‖|w|

1
2∇w‖L2(R3).

Next the interpolation inequality ‖ · ‖
L

10
3 (R3)

≤ C‖ · ‖
2
5

L2(R3)
‖∇ · ‖

3
5

L2(R3)
leads to

‖w‖L5(R3) = ‖|w|
3
2 ‖

2
3

L
10
3 (R3)

≤ C‖w‖
2
5

L3(R3)
‖∇|w|

3
2 ‖

2
5

L2(R3)
. (32)

From (32) and Young’s inequality, we arrive at
∫

R3

∇q · |w|wdx ≤ C‖w‖
1
2

L3(R3)
‖w‖

5
2

L5(R3)
(‖w‖

5
2

L5(R3)
+ ‖v‖

5
2

L5(R5)
)

+γ‖|w|
1
2∇w‖2

L2(R3) + δ‖∇|w|
3
2 ‖2

L2(R3).

The other term for the pressure term is also bounded as:
∫

R3

qw∇w
w

|w|
dx ≤ C‖w‖

1
2

L3(R3)
‖w‖

5
2

L5(R3)
(‖w‖

5
2

L5(R3)
+ ‖v‖

5
2

L5(R5)
)

+γ‖|w|
1
2∇w‖2

L2(R3) + δ‖∇|w|
3
2 ‖2

L2(R3).

In the same way, we bound the remainder terms:
∫

R3

∇ · (vw) · |w|w dx = −

∫

R3

vw∇w|w| dx−

∫

R3

vw∇w
w

|w|
dx

≤ C‖w‖
1
2

L3(R3)
‖w‖

5
2

L5(R3)
‖v‖

5
2

L5(R3)

+γ‖|w|
1
2∇w‖2

L2(R3) + δ‖∇|w|
3
2 ‖2

L2(R3),

∫

R3

∇ · (wv) · |w|w dx ≤ C‖w‖
1
2

L3(R3)
‖w‖

5
2

L5(R3)
‖v‖

5
2

L5(R3)

+γ‖|w|
1
2∇w‖2

L2(R3) + δ‖∇|w|
3
2 ‖2

L2(R3),

and
∫

R3

∇ · (ww) · |w|w dx ≤ C‖w‖
1
2

L3(R3)
‖w‖5

L5(R3)

+γ‖|w|
1
2∇w‖2

L2(R3) + δ‖∇|w|
3
2 ‖2

L2(R3).

Adjusting γ and δ adequately, we find that

1

3

d

dt
‖w‖3

L3(R3)+
1

3
‖|w|

1
2∇w‖2

L2(R3)+
2

9
‖∇|w|

3
2 ‖L2(R3) ≤ C‖w‖

1
2

L3(R3)
(‖w‖5

L5(R3)+‖w‖
5
2

L5(R3)
‖v‖

5
2

L5(R3)
).
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Integrating over (Ti, Ti+1), where {Ti}
M
i=1 are to be determined later on, yields

‖w(t)‖3
L3(R3) ≤ ‖w(Ti)‖

3
L3(R3) + C

∫ Ti+1

Ti

‖w‖
1
2

L3(R3)
(‖w‖5

L5(R3) + ‖w‖
5
2

L5(R3)
‖v‖

5
2

L5(R3)
)ds

≤ ‖w(Ti)‖
3
L3(R3) + C‖w(t)‖

1
2

L∞(Ti,Ti+1;L3(R3)

∫ Ti+1

Ti

(‖w‖5
L5(R3) + ‖w‖

5
2

L5(R3)
‖v‖

5
2

L5(R3)
)ds

≤ ‖w(Ti)‖
3
L3(R3) +

1

2
‖w(t)‖3L∞(Ti,Ti+1;L3(R3)) + C‖w‖6L5(Ti,Ti+1;L5(R3))

+C‖w‖3L5(Ti,Ti+1;L5(R3))‖v‖
3
L5(Ti,Ti+1;L5(R3)).

In particular, this shows

‖w‖L∞(Ti,Ti+1;L3(R3)) ≤ C‖w(Ti)‖L3(R3) + C‖w‖2
L5(Ti,Ti+1;L5(R3))

+C‖w‖L5(Ti,Ti+1;L5(R3))‖v‖L5(Ti,Ti+1;L5(R3)),
(33)

which implies that
∫ Ti+1

Ti

(
1

2
‖|w|

1
2∇w‖2

L2(R3) +
2

9
‖∇|w|

3
2 ‖2

L2(R3))ds ≤ C‖w(Ti)‖L3(R3) + C‖w‖2L5(Ti,Ti+1;L5(R3))

+C‖w‖L5(Ti,Ti+1;L5(R3))‖v‖L5(Ti,Ti+1;L5(R3)).

(34)
We now use (32) together with (34) to get

‖w‖L5(Ti,Ti+1;L5(R5)) ≤ C‖w‖
3
5

L∞(Ti,Ti+1;L3(R3))
‖∇|w|

3
2 ‖

2
5

L2(Ti,Ti+1;L2(R3))

≤ C‖w(Ti)‖L3(R3) + C‖w‖2L5(Ti,Ti+1;L5(R3))

+C‖w‖L5(Ti,Ti+1;L5(R3))‖v‖L5(Ti,Ti+1;L5(R3)).

(35)

Part II: Induction argument.
Since v ∈ L5(0, T ;L5(R3)), there exists a finite sequence {Ti}

M
i=0 such that [0, T ] = ∪M−1

i=0 [Ti, Ti+1]
satisfying

‖v‖L5(Ti,Ti+1;L5(R3) <
1

4C
. (36)

where C > 0 is the constant appearing in (35).
Let us consider

‖w0‖L3(R3) ≤
1

8C(2C)M
. (37)

Then we claim that

‖w‖L5(Ti,Ti+1;L5(R5)) ≤ (2C)i+1‖w0‖L3(R3) (38)

and

‖w‖L∞(Ti,Ti+1;L3(R3)) ≤ (2C)i+1‖w0‖L3(R3), (39)

for all i ∈ {0, · · · ,M − 1}.
For i = 0, let us suppose that there exists K ′ > 0 such that

‖w‖L5(0,T1;L5(R3)) ≤ K ′.

Then, from (35), (36) and (37), we find that

‖w‖L5(0,T1;L5(R3)) ≤ C‖w0‖L3(R3) + C(K ′)2 +
1

2
‖w‖L5(0,T1;L5(R3)).

We now impose that K ′ satisfies

K ′ = C‖w0‖L3(R3) + C(K ′)2 +
1

2
‖w‖L5(0,T1;L5(R3)),

which gives

0 < K ′ =

1
2 −

√

1
4 − 4C2‖w0‖L3(R3)

2C
.
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This implies the existence of w on [0, T1] provided that 1
4 − 4C2‖w0‖L3(R3 > 0 holds, which is true

due to (37). In particular, we have

‖w‖L5(0,T1;L5(R3)) ≤
1

4C
. (40)

In view of (33) and (35), estimates (38) and (39) are satisfied for i = 0 by using (40).
In general, for i ≥ 1, assume that (38) and (39) hold for i − 1. Then if we argue as before, we see

that

0 < K ′ =

1
2 −

√

1
4 − 4C2‖w(Ti)‖L3(R3)

2C
.

The induction hypothesis gives

‖w(Ti)‖L3(R3) ≤ (2C)i‖w0‖L3(R3) <
1

8C(2C)M−i
≤

1

16C2
.

Thus,

‖w‖L5(Ti,Ti+1;L5(R3)) ≤
1

4C
.

Applying this to (33) and (35), we obtain that estimates (38) and (39) hold for i.
To complete the proof, note, by (39), that

‖w(t)‖L3(R5)) ≤ (2C)M‖w0‖L3(R3) for all t ∈ [0, T ],

whence (29) holds. �

The question that remains open is whether our particular solutions provided by Theorem 2.2 can
develop singularities on (T,∞). Unfortunately, we are only able to give a partial answer to this question

based on the following assumption. Let v0 = uλ̃
0,ε+wλ̂

0,ε be as in the proof of Theorem 2.2 and satisfy

conditions (16) and (17). Then we suppose that, for each ε > 0, there exists λ̂0 such that, for all

λ̂ ≥ λ̂0, it follows that
∣

∣

∣

∣

∣

∫ T
2

0

‖∇v(s)‖2
L2(R3)ds−

1

2
‖v0‖

2
L2(R3)

∣

∣

∣

∣

∣

< ε. (A)

In other words, we shall look for initial data v0 whose corresponding solution to (1)–(2) has L2(R3)-
values of the vorticity, i.e. ‖∇ × v(t)‖L2(R3) = ‖∇v(t)‖L2(R3), sufficiently high on (0, T ) such that
assumption (A) holds.

From our special choice of initial data v0 = uλ̃
0,ε + wλ̂

0,ε, we can take λ̃ to tend to ∞ without
increasing ‖v0‖L2(Ω), but ‖∇v0‖L2(R3) does. Then we would expect that the vorticity does keep high
via the vortex stretching mechanism for a certain period of time; and hence the kinetic energy would
decay up to a certain threshold on [0, T ].

Theorem 5.2. Let T > 1. Assume that assumption (A) holds. Then the solution v(t) to (1)–(2)

provided by Theorem 2.2 with v0 = uλ̃
0,ε +wλ̂

0,ε are smooth on [0,∞).

Proof. From (5), we find

1

2
‖v(

T

2
)‖2

L2(R3) +

∫ T
2

0

‖∇v(s)‖2
L2(R3) ds =

1

2
‖v0‖

2
L2(R3).

In virtue of assumption (A), we infer that ‖v(T2 )‖L2(R3) < 2ε. Moreover, we have

1

2
‖v(t)‖2

L2(R3) +

∫ t

T
2

‖∇v(s)‖2
L2(R3) ds =

1

2
‖v(

T

2
)‖2

L2(R3).

for all t ∈ [T2 , T ].
As in the proof of Lemma 4.2, we write

‖v(t)‖L3(R3) ≤ C‖v(t)‖
1
2

L2(R3)
‖∇v(t)‖

1
2

L2(R3)
.
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Taking the fourth power of both sides and integrating over (T2 , T ) yields
∫ T

T
2

‖v(t)‖4
L3(R3)dt ≤

C

4
‖v(

T

2
)‖4

L2(R3).

Therefore,
T

2
inf

s∈[T2 ,T ]
‖v(s)‖4

L3(R3) ≤
C

4
‖v(

T

2
)‖4

L2(R3)

and hence

inf
s∈[T2 ,T ]

‖v(s)‖L3(R3) ≤ C2−
1
4 T−

1
4 ‖v(

T

2
)‖L2(R3) < C‖v(

T

2
)‖L2(R3).

Let us choose ε < 1
8C2 . Then we find that there exists t∗ ∈ (0, T ] such that it follows that

‖v(t∗)‖L3(R3) <
1

4C
.

We are now allowed to apply Lemma 4.1 to obtain that ‖v(t)‖L3(R3) ≤
1
2C for all t ∈ [T,∞). Moreover,

we know that ‖v(t)‖L3(R3) ≤ Mv for all t ∈ [0, T ] by Lemma 3.3. As a result of Theorem 3.1, the
solution v(t) is smooth globally in time.

�
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