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Resumen

En este trabajo se presentan tanto el desarrollo matemático e implementación de una red neural compleja
como la aplicación del algoritmo Random Forest al problema de cálculo de importancias de los

regresores utilizados en el modelado, basado en series de Voterra, de un amplificador de potencia. En primer
lugar, se ha realizado una descripción de la situación actual de los algoritmos de aprendizaje profundo. En
esta descripción se han ofrecido detalles sobre su origen, aplicaciones actuales y evolución. Seguidamente,
se presenta una vista en profundidad del campo de las redes neuronales, que concluye con el desarrollo
matemático de una red neuronal compleja. A continuación, se encuentra una introducción teórica a los
amplificadores operacionales, el origen de su comportamiento no lineal y las diferentes soluciones que han
sido estudiadas. La parte experimental se basa en la aplicación del algoritmo de Random Forest al cálculo de
un vector de importancias de regresores, el cual podría ser usado para reducir un modelo de Volterra para
ganar eficiencia energética sin perder demasiada precisión. Para la validación del algoritmo se ha utilizado
una señal 5G-NR de 30 MHz, mientras que el amplificador operacional fue fijado a un punto de operación de
+27.5 dBm de potencia media de salida, correspondiente a 1.2 dB de compresión de ganancia. Los resultados
experimentales muestran las ventajas de este algoritmo respecto a otros.
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Abstract

In this project, both a mathematical development of a Complex Valued Neural Network (CVNN) and the
application of a Random Forest algorithm to Volverra regressors importance estimation are presented.

Firstly, an overview about machine and deep learning algorithms is presented, where details about the
origin, actual application and future are discussed. After this, an insight into the field of artificial neural
networks (ANNs) is offered. This insight concludes with an explanation of the mathematical development of
a CVNN. Following, a theoretical introduction to power amplifiers (PAs), the origin of their nonlinearities
and the different solutions that have been approached is presented. Finally, experimental part is based on the
application of Random Forest to Volterra regressors importance calculation, from which pruning decisions
can be made. The validation of the presented technique was executed over a 30 MHz 5G-NR signal. The
PA operating point was fixed to +27.5 dBm of average output power which corresponds to 1.2 dB of gain
compression. Experimental results are illustrated with figures which show the advantages of this algorithm
against others.
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1 Introduction

There’s a time when a man needs to fight, and a time when he
needs to accept that his destiny is lost, the ship has sailed and
only a fool would continue. Truth is, I’ve always been a fool.

Edward Bloom in Big Fish, 2003

The evolution of technology have led to a situation where almost every industry needs a wireless com-
munication system. Nowadays, communications are characterized by digitally modulated signals with an
efficient usage of the spectral bandwidth. These practices allow a wide range of different signals to coexist in
the same channel without jamming problems. In addition to this variety, clients demand higher data rates
without losing technical features such as capacity, flexibility and reliability. However, every communication
company tries to offer its services to the highest amount of clients with the lowest expenses. Besides that,
climate change concerns have increased the focus on energy wastage and these are the reasons why power
efficiency has become a critical topic of interest.
Recent studies have estimated that the communication industry is responsible for around a 10% of the

total power consumption [1]. Radio equipment represents the most energy consuming field, specially power
amplifiers (PAs) which consuming approximately a 70% of the total input power [2]. A power amplifier is an
active device. This fact means that it needs a power supply, so it obeys the energy conservation law. Therefore,
its efficiency is better when the output power is closer to the power that it is supplied with. Due to their
considerable percentage of the total power consumption of a wireless communication system, optimization
of PAs efficiency has recently been a case of study.
As it has already been commented, PAs are limited by the energy conservation law. This characteristic

provokes that, although they are more efficient when the output power is close to the supply power, they
also start working nonlinearly. This area of operation is known as the saturation zone, because clipping
effects tend to appear. A PA presents a clipping behavior when it tries to produce an output power which is
higher than its supply power. Because of physics, this is impossible and that is why the output power stops
increasing no matter how much the input power continues getting higher. Nonlinearities trigger injurious
effects in the output signal, since its spectral bandwidth is affected. They are responsible of different kind
of distortion, being out-of-band distortion especially harmful since it causes adjacent channel interference.
Since, channels are carefully distributed by law, this kind of problems need to be taken seriously into account
when a communication scheme is designed.

Recent modulation techniques such as Orthogonal Frequency Division Multiplexing (OFDM) are character-
ized by a high Peak-to-Average Power Ratio (PAPR) [3]. This indicator is computed as the relation between the
maximum power of a sample in a symbol divided by the average power of that symbol. Despite this drawback,
its numerous advantages such as high bit rate, strong immunity to multipath and high spectral efficiency
make this modulation method very interesting and that is why it is widely used in these days. Combining the
usage of a high PAPR modulation with a PA working at its saturation zone results in nonlinearities. This
conflict of interests is known as the linearity-efficiency trade-off.
Since this problem was firstly encountered, different linearization approaches have been presented [4].

Interest in linearization started in the 1920s, where two of the three techniques that have been used until now
where introduced: feedforward and feedback. In this work, we will be focus on predistortion, which is the

1



2 Chapter 1. Introduction

latest linearization solution and the most used nowadays. It was conceived as an analog technique but during
the 1990s decade, digital signals started to dominate the industry so that the method also became digital.

Figure 1.1 Digital predistortion (DPD) scheme for PA linearization [5].

As it is illustrated in Fig. 1.1, DPD is based on distorting the input signal before it is fed to the power amplifier.
It compensates nonlinearities before they appear, working in cascade with the power amplifier. As it shown
in the figure a DPD block before a PA at its saturation point are able to achieve a significant linear behavior.
Therefore, spectral distortion is reduced so that linearity and efficiency can be achieved at the same time.

In order to use DPD, an accurate model of the power amplifier behavior (both its linear and nonlinear
behaviors) is required. At first, lookup tables (LUTs) were used to identify the input-output signal relationship
of the power amplifier and the response is inverted to remove nonlinearities. However, this is a very simple
workaround which does not take into account memory effects. Volterra series models were presented as an
improvement of LUTs. They belong to the field of behavioral modeling and they are able to reproduce any
nonlinear behavior even with memory effects. They are based on a set of regressors of which importance
needs to be computed as a coefficient or kernel depending on the behavior which is being modeled. Volterra
series pruning and computational complexity have been interesting challenges in the recent industry [?]. At
this point, deep learning methods have appeared as interesting approaches to this situation.

Chapter 2 of this work presents an overview of Artificial Intelligence (AI) different methods and applications.
In Chapter 3, Artificial Neural Networks (ANNs) inner working is deeply explained and their main applications
are discussed. A Complex Valued Neural Network (CVNN) is also mathematically developed in this chapter.
Eventually, Chapter 4 offers an insight to power amplifiers, why and how nonlinearities. In addition to this,
different approaches of Volterra series development are offered in order to ease the understanding. Various
models derived from this series are also introduced in Chapter 4. Chapter 5 presents the application of
a Random Forest technique to the estimation of Volterra regressors importance and results are offered to
illustrate its advantages.



2 Artificial Intelligence Overview

What we want is a machine that can learn from experience.

Alan Turing

Deep learning is a technology that imitates the way how human brain processes information and find
patterns. It is based on machine learning algorithms and requires large amounts of input-output data in order
to get accurate results. Nowadays, this breakthrough technology can be applied to different fields of study. It
has already been used on applications such as self-driving cars, health care, recommendation systems, voice
or image recognition and even at fraud detection. Furthermore, new applications are found every day thanks
to the flexibility of deep learning [6]. Before talking about its origin, it is important to define clearly the
concepts of artificial intelligence (AI), machine learning and deep learning, since they are usually mixed
and confused. AI is the widest field and it includes the rest of them. AI is defined as the general concept or
idea of creating machines that are able to behave in a manner that is similar to the human behavior. Machine
learning is a subset of AI, since it is a group of mathematical and statistical algorithms that make it possible
for machines to learn [7]. Deep learning, finally, is a particular field of machine learning, it can be understood
as the next step. It is based in deep structures that use machine learning algorithms repeatedly in order to
make this behavior closer to the human brain [8].

Figure 2.1 Relation between AI, machine and deep learning..

2.1 Origin

In order to understand the importance of deep learning in the current scientific field it is interesting to
look backwards and get to know its first steps. The study of the human brain behavior was first faced by
philosophers. Aristotle introduced the idea of understanding the human brain behavior through a few basic
concepts and functionalities combined between each other. After that, this theory named associationism [9]

3



4 Chapter 2. Artificial Intelligence Overview

became popular but it was not until 1873 when Alexander Bain first attempted to model the human brain
storage ability with the definition of neural groupings [10]. Bain’s diagram of a neural grouping is shown
in Fig. 2.2. Following the associationism theory, neural groupings were based on a structure of basic cells
linked between each other and they are considered as the very first artificial neural networks. Bain highlighted
the computational flexibly of neural groupings against the traditional prestored memories. He talked about
the connections between basic cells and how these links could get stronger or weaker depending on the
experience, introducing the idea of the actual update equation used in deep learning.

Figure 2.2 Bain neural grouping schema [10].

Nowadays, ANNs represent connections with the usage of weights and the experience that Bain talked
about is now known as the training stage. Another important milestone during the evolution of deep learning
was the statement of the Hebbian Learning Rule in 1949. Donald O. Hebb stated in his book The Organization
of Behavior [11] that "neurons that fire together, wire together", which can be expressed as

∆wi = ηxiy, (2.1)

where ∆wi refers to the increase of the weight in neuron i, η is the learning rate and y the output of the
neural grouping. Despite the lack of citation, it seems likely that Hebb used Bain’s ideas of weakening or
strenghtening of connections between cells. Although the Hebbian rule is the basis of the update equation
(2.1), it has a major drawback. Hebb stated that the relationship between two units should be continuously
increased as long as they are firing together. However, this idea leads to an exponential increase of weights.
To solve this problem Erkki Oja introduced a normalization term in the equation [13], defining Oja’s rule as

∆wi = ηy(xi− ywi). (2.2)

The next step in the evolution of this technology was the McCulloch-Pitts (MCP) neuron, developed by
Walter Pitts and Warren McCulloch. It was a primary perceptron with static weights that had to be manually
calculated and it was based on the step activation function. The success of the MCP model encouraged Frank
Rosenblatt to use, in 1958, the Hebbian Learning rule with a perceptron in order to imitate the human eye
behavior. This is considered as the very first neural network, although Rosenblatt’s idea was more related with
an electronic hardware than a software algorithm. Finally, in 1965 the mathematician Alexey Ivakhnenko
developed the first working computer based neural network. He created a 8-layer perceptron and was able to
demonstrate its ability of learning in 1971. Other techniques and concepts such as backpropagation have been
introduced in order to extend or develop deep learning during the last years of the 19th century. Although
applications of deep learning never stopped growing during this time, this growth cannot be compared to the
one that deep learning technology is experimenting during the last decade. The reason for this remains on the
technology that is required to get the most of deep learning. The essential requirements of deep learning are
large datasets and computational capacity. Thanks to Moore’s Law, both of them have experimented a major
growth themselves, allowing deep learning to develop without constraints in this sense. Figure 2.3 illustrates
the increasing of computational power through time until 2015. The #500 line shows the 500 most powerful
commercially available computer systems known to reference [12].
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Figure 2.3 Computational speed evolution [12].

2.2 Classification

This evolution has led to the emergence of categories in deep learning depending on the concepts they are
based on and the applications they are used for. There are three main branches of deep learning: supervised,
unsupervised and reinforcement learning [6].

2.2.1 Supervised Learning

It is the most used. It requires a labeled dataset with the correct outputs. It can be compared to the way a
child learns, through success and error. It is also called predictive learning, since its main target is to produce
accurate outputs of a given input dataset. During this training, a cost function is used in order to minimize
the differences between the desired output and the real one. It is often used for regression or classification
tasks. Depending on its application and functionalities, this branch can be divided in three models:

Artificial Neural Networks

Figure 2.4 Biological neuron model [14].

Artificial neural networks (ANNs) are generally used as the basic structure [15]. Other types of deep
learning techniques have emerged from variations of ANNs. They are constructed by layers of neurons
connected between each other and they are helpful on finding and learning about nonlinear behaviors [16].
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Computational model of a neuron was inspired by its biological model shown in Figure 2.4. Further study of
this supervised learning model is provided in Chapter 3.

Convolutional Neural Nerworks

Convolutional neural networks (CNNs) are an extension of artificial neural networks in the computer
vision field [17]. They are able to find features in a set of input images and use them to solve classification or
recognition tasks. This ability make CNNs very interesting to apply in fields such as action or human pose
recognition and scene labelling [18]. CNNs are based on the idea of preprocessing the input images and feed
them into an ANN. This preprocessing converts the input image, which is a matrix, to a flat vector and it
is accomplished by a sequence of layers. First, the input image matrix goes into a convolutional layer. The
convolution is made between the image matrix and adjustable filter. A filter is a matrix, usually of size 2x2 or
3x3 that tries to find specific features or patterns. Hence, this process enables the feature detection and it is
resistant to translation effects so it makes it easier to find the patterns regardless of the perspective of the
image [17]. The output of the convolutional layer is known as feature map. Fig. 2.5 summarizes the structure
of a CNN.

Figure 2.5 Structure of convolutional neural network for a classification task [19].

This map is introduced to a pooling layer. As the previous layer, this layer also reduces the size of the
matrix we are using, which will reduce the computation requirements of the training stage. The principal
target of this layer is to identify the most dominant features. After this, a flattening layer could be used to
transform the obtained matrix into a single dimensional vector and use this vector as the input to what is
known as a fully connected layer, an ANN. However, the processes of convolution and pooling are usually
repeated a few times before the result is introduced to the fully connected layer.

Recurrent Neural Networks

Figure 2.6 Structure of recurrent neural network [20].

Recurrent neural networks (RNNs) add a temporary sense to the traditional ANN structure. It is not an
uncommon situation to find a single input sample w which has a correlation with others in the past and affects
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the ones in the future. A simple ANN would not consider this fact in order to map outputs to this inputs.
RNNs try to add this memory functionality by considering not only the current input sample but also a hidden
state that depends on previous outputs as it is shown in Fig. 2.6. This concept of memory allows RNNs to find
correlations between previous inputs and the actual one that could not be found with an ANN. As an example,
if we try to translate a sentence from one language to another, we will realize that one word in a language can
affect the rest of the translation. RNNs have been proven to be powerful on tasks like this one, and that is why
they are dominant in Natural Language Processing (NLP) nowadays. However, this dependency between the
current output and the previous ones provokes the error to propagate forward and accumulate. That is why
RNNs are not considered to work practically. Long-Short Term Memory (LSTMs) have recently emerged as
a variant of RNNs without this problem. The problem is solved by using not only weights to connect the
hidden state to the new input but also functions such as sigmoid and hyperbolic tangent in order to limit the
influence of previous states. LSTMs are also better than RNNs at remembering previous states and avoiding
the gradient to vanish. A general structure of an LSTM layer is reported in Fig. 2.7.

σ σ Tanh σ

× +

× ×

Tanh

c〈t−1〉

Cell

h〈t−1〉

Hidden

x〈t〉Input

c〈t〉

Label1

h〈t〉

Label2

h〈t〉Label3

Figure 2.7 LSTM layer with the operations involved [21].

2.2.2 Reinforcement Learning

Instead of working with a cost function, it works with a reinforcement function to maximize through
the interaction between the model and the environment. Reinforcement learning models do not have this
requirement thanks to their direct interaction with the environment, so no feature engineering is needed.
During an iteration, a policy function, which depends on the state of the context, is used to decide the action
that the agent will perform [22]. Actions interact with the environment, hence they lead to a state change.
After that, a scalar reward is computed with a reward function. The reward, state and actions will help the
agent to determine its policy for the new iteration, and that is how the learning is achieved. A simple schema
of the concepts under a reinforcement learning algorithm iteration is shown in Fig. 2.8.

Agent

Environment

Action atNew state st+1 Reward rt+1

Figure 2.8 Reinforcement learning conceptual diagram [23].
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2.2.3 Unsupervised Learning

In unsupervised learning, the input dataset is trained without a cost or a reward function. There are not
desired outputs to obtain . The main goal is to find patterns in the data that allow to group it in clusters or
compress it. A common unsupervised learning method is called Principal Component Analysis (PCA). This
method to find linear combinations between a given data in order to summarize most of the information [24].
Auto-encoders are also used for this purpose, they are ANNs that find efficient data coding in order to
compress the information used as input. Clustering has also emerged as useful application of Unsupervised
Learning. It is based on finding groups in dataset that share things in common. It usually does it by reducing
the Euclidean distance, but there are lots of variances. The results of the application of clustering techniques
are shown in Fig. 2.9.
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Figure 2.9 Euclidean clustering diagram on classification of breath tumors.

After reading the whole classification of deep learning methods, it may be confusing for the reader to
understand when it is better to apply a specific model. Although some of this techniques have been highlighted
as the most popular, it is important to understand that this fact does not mean that they are suitable for every
problem that we may encounter. As a matter of fact, the first step of applying a deep learning technique to a
certain problem should be getting a detailed knowledge about the problem involved and a thorough search of
the most suitable AI technique for that case. An illustration that may make this task easier is presented in
Fig. 2.10.

2.3 Evolution

Having already done an introduction about the most dominant deep learning techniques nowadays, it is
worth mentioning how fast this technology is emerging. Scientific papers have been increasing on this topics
since the first concepts were introduced, but this growth seems to be exponential nowadays, as it can be
observed in Fig. 2.11, where the evolution of the amount of papers uploaded to Scopus webpage, the largest
abstract and citation database of peer-reviewed literature, is presented. This means that there are lots of
different approaches to study yet. Thanks to the computational and storage growth that were discussed in the
previous section, everyone has access to AI courses where you can not only understand the first concepts
about this technology but also to apply it to a new problem or try a new workaround without needing anything
more computationally powerful than your own personal computer.
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Figure 2.10 AI suitable techniques depending on the problem [25].

Figure 2.11 Number of papers in Scopus by subcategory [26].

The unceasing growth of deep learning research has also led to an increase its application into the business
field. The foundation of AI startups is presented in Fig. 2.12. New applications and techniques are being
found every day. The global business field is starting to take seriously into account this kind of algorithms
when it comes to the matters of decision making or forecasting among other. This means that not only
technological companies are getting benefit from this AI disrupt growth but also traditional companies such
as banks or important clothing brands. Companies from very different fields are competing in the market in
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order to get the best specialists on these technologies, since this recent breakthrough has lead to a significant
lack of professionals.

Figure 2.12 AI startups foundation growth compared to general startups growth [26].

All of these graphics clearly indicate that, although this technology has been increasing ever since it was
created, it has recently experimented a disruptive growth. Whether this growth will continue or not, it depends
on the success of the applications that are found every day and the ability of specialists about finding new
areas to develop new AI concepts, techniques and applications.



3 Artificial Neural Networks

Ever tried. Ever failed. No matter. Try Again. Fail again. Fail
better.

Samuel Beckett

Artificial Neural Networks (ANNs) have recently emerged as powerful tools in the scientific field. They
are based on the usage of deep learning techniques and algorithms. This chapter will describe their structure
and behavior in order to clear out the reasons why ANNs are becoming so helpful, specially on behavioral
modeling [27].

3.1 Basic Structure

Understanding the concepts behind a neural network is not a trivial task. ANNs are often seen as black-box
models, hence some people tend to misuse them just in order to get a problem solved without worrying about
efficiency or computational power wastage. However, understanding the concepts inside this black-box could
be helpful for fitting an ANN to a specific problem which definitely lead to better results in the end. The basic
node of a neural network is called neuron (or unit). Each neuron receives an input and applies an activation
function to compute the output.

Input
layer

Hidden
layer

Output
layer

Input 1

Input 2

Input 3

Input 4

Input 5

Ouput
j

k

w jk

Figure 3.1 ANN basic structure and used notation.
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12 Chapter 3. Artificial Neural Networks

Neurons are grouped together in layers. The first layer of an ANN is called input layer. This layer represents
the connection between the network and the outside world. The number of neurons of the input layer must
match the amount of inputs that are provided to the network. Behind the input layer, there will be a certain
number of hidden layers, depending on the structure of our ANN. Neurons from consecutive layers are
connected by weights, namely, the outputs of the different neurons in a layer are used to compute a weighted
summation which will result as the input of the next layer neurons. The output yl

j of the j-th neuron in layer l
will be computed as

yl
j = Φ

l
j

(
∑
k

wl
jkyl−1

k +bl
j

)
, (3.1)

where the superscript l stands for the position of the layer, wl
jk is the weight between the k-th neuron of the

layer l− 1 and the j-th of layer l, b j
l is the bias for the j-th neuron, which can be understood as an offset

and Φ(·) is the activation function. This process is called forward propagation. In order to simplify the
mathematical description of this chapter, v is defined as

vl
j = ∑

k
wl

jkyl−1
k +bl

j. (3.2)

A graphical explanation about the mathematical operations that are used inside each neuron is presented in
Fig. 3.2.
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Figure 3.2 Computational model of a single neuron..

There may be as many hidden layers and neurons as necessary. However, the universal approximation
theorem [28] states that single-hidden-layer ANNs, also known as TLPs (Three Layer Perceptrons), perform
usually sufficient accuracy due to their universal approximation capabilities [29]. The general structure of a
TLP is shown in Fig. 3.1. This structure provides ANNs the power to imitate any kind of nonlinear behavior
as useful tools. They are often used as effective classifiers, regressors or even predictors.

3.2 Training

Adjusting a neural network to a specific situation requires a large amount of data. This data is divided in
two datasets: test and training set. The latter is first provided as an input to the network in order to find the
specific weights which reproduce the desired nonlinear behavior.
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3.2.1 Forward Propagation

Defining the weights of each layer as a matrix following wl = [w11w21w22;w21w31w41]. During the training
process, the ANN will receive inputs and it will compute the outputs following the expression

yl = Φ
(
yl−1 ·wl +bl) , (3.3)

where yl−1 refers to the output matrix of the last hidden layer. The difference between the real and the
computed output is calculated at each output neuron as a scalar cost

e j = d j− y j, (3.4)

where d j refers to the desired output. We may now define the cost function as the mean squared error (MSE):

ε =
1
2
|e|2, (3.5)

where e is a column vector containing the computed errors of each output neuron. This is where backpropa-
gation algorithm takes place. This method computes the gradient of the cost function, which depends on
weights. Afterwards, an optimization algorithm is used to minimize the cost according to the computed
gradient. There are several variations of optimizers such as SGD, RMSProp or AdaGrad among others. This
optimizer is used to identify the ANN suitable weights or, in other words, it enables the learning.

3.2.2 Backpropagation and Optimization

To understand how this learning is implemented through these two algorithms we first have to consider
our initial situation. Considering that we want to create an ANN in order to make a regression of a specific
function. Once the network architecture is defined, it can be trained. Before the training, the weights of
each summation of inputs which are introduced to the different neurons are randomly initialized. Then, the
aforementioned training starts. The ANN will take a few rows of inputs and compute the corresponding
outputs for them through forward propagation. After that, the gradient of the cost function will be calculated.
There are several different error functions that may be used for this purpose depending on our interests. Here,
we will define the cost function as:

ε =
1
2

N

∑
i=1

(yi−di)
2 , (3.6)

being N the total number of neurons in the final layer, in other words, the output dimension. At this point, we
need to consider two possibilities. If we are computing the gradient at the output layer, we can do it instantly
using the rule of chain

∂ε

∂w jk
=

∂ε

∂e j
·

∂e j

∂y j
·

∂y j

∂v j
·

∂v j

∂w jk
. (3.7)

From now on, during this section we will talk about a hidden neuron k and an output neuron j, which are
connected through the weight w jk as it is shown in Fig. 3.1.
However, if we are computing this gradient in a hidden layer, we will have to face what is named as the

credit assignment problem [30]. In other words, we have to compute the amount of responsibility of each
hidden neuron output for the cost function value. Using again the rule of chain, we find that

∂ε

∂yk
= ∑

j
e j

∂e j

∂yk
. (3.8)

Now we have continue using the rule of chain, going backwards on our structure

∂e j

∂yk
=

∂e j

∂v j

∂v j

∂yk
, (3.9)

where v j is the result of the weighted summation of outputs from the hidden layer and yk is the output of
neuron k on the hidden layer. Differentiating Eq. 3.1 we obtain that

∂v j

∂yk
= w jk. (3.10)
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Hence, using Eq. (3.3) and
y j = Φ(v j), (3.11)

we compute we compute the error derivative as as

∂e j

∂v j
=−Φ

′
j(v j) (3.12)

Now, combining Eq. 3.12 and Eq. 3.8 it can be concluded that

∂ε

∂yk
=−∑

j
e jΦ

′
j(v j)w jk (3.13)

Again, to simplify this equation and the following explanation we define the local gradient δ j as

δ j =
∂ε j

∂v j
=

∂ε j

∂e j

∂e j

∂y j

∂y j

∂v j
, (3.14)

so that when we reach the output layer the local gradient is easily computed as

δ j =−e jφ
′
(v j). (3.15)

We may now rewrite Eq. 3.12 as
∂ε

∂yk
=−∑

j
δ jw jk. (3.16)

If we combine Eq. 3.15 and Eq. 3.13 have eventually found the formula that allows us to compute the local
gradient at any neuron of our ANN, known as the backpropagation formula:

δk = φ
′
(vk)∑

j
δ jw jk. (3.17)

Once we have computed the local gradient using backpropagation algorithm, it is time for optimization. Our
goal is to reduce the cost function by adapting the weights of each connection of neurons, having previously
solved the credit assignment problem using Eq.3.12. In order to achieve this target we define the delta rule as

∆w jk =−η
∂ε

∂w jk
, (3.18)

where η is a called the learning rate and the minus sign means that we want to go in the direction of gradient
decrease.
As a conclusion, considering both of the cases that we talked about at the beginning of this section the

update equation will be
∆w jk = η · e j ·Φ

′
j(v j) · yk =−η ·δ j · yk, (3.19)

if we are talking about the output layer and

∆w jk =−η ·Φ′j(v j) ·∑
j

δ jw jk, (3.20)

otherwise. This adjustment enables the ANN to find specific correlations between the different inputs and
the set of outputs. This process is repeated for N iterations, until the cost function converges to a certain
value, which will depend on the problem and the ANN characteristics. Thanks to this algorithm, ANNs have
been tested to be accurate at nonlinear systems modeling such as power amplifiers (PA) [31]. The number
of rows that an ANN receives into the network before it applies backpropagation is called batch size and it
can also be chosen by data scientists. The training ends when the whole training set has been introduced to
the network N times where N is named number of epochs. Parameters whose values are chosen before the
training starts, such as the number of neurons or hidden layers, the activation function, optimizer and batch
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size among others are called hyperparameters.
There is not an exact methodology to find the best fitting characteristics of a certain model and they are often
selected through success and error methods. Hence, experienced programmers on fitting neural networks
into different models will likely find a better selection of hyperparameters than amateurs. This model tuning
can be a nightmare for beginners. The process of optimizing the parameter values in a problem is called
grid search. An accurate hyperparameter selection is essential for our model and it can determine whether
the ANN will learn or not. Fortunately, there are implementations of this optimization process in order to
facilitate grid search for amateurs, such as GridSearchCV.

GridSearchCV GridSearchCV is a python implementation of the parameter tuning optimization process,
which is provided by the sklearn library [32]. It works with the model that we want to optimize and a list of
the parameters that are going to be automatically tuned. Of course, some of these parameters are categorical
variables, such as the functions or the optimizer algorithm. Therefore, they only have finite set of possible
values. However, other parameters such as the number of layers or neurons in each of the layers have natural
number values and it would make it computationally impossible to try every single possibility. That is why,
besides the list of parameters to tune, another list is needed for each one of the parameters. This second list
must contain the possible values of each hyperparamter that the programmer is interested to try and compare,
since not every possible value can be tested. Eventually, GridSearchCV will create a model for each of the
combinations of the possible values of each hyperparamter and it will evaluate the performance of these
models in order to find the most accurate. Eventually, the most accurate combination of values and its model
performance will be provided as output of the grid search process.

3.3 Validation

After the end of the training, it is time to evaluate our network depending on the ability of the ANN to
deal with unseen data and compute its outputs, which is called generalization. Here, the test set is introduced
to the ANN but the difference between computed and real outputs is not backpropagated to the network,
that means that weights are not updated during this process. This difference will be used to calculate the
accuracy of our ANN so that we can validate its behavior. As a matter of fact, validation is a very important
stage since, depending in its results, the model will be considered adequate or not. Hence, is important to
understand that obtaining a desired MSE during the testing stage may not be the end of our modeling task.
Due to the random nature of the ANN, accuracies obtained with the same ANN of different test sets will
never be the same. That is why not only a high accuracy is needed, but also a low variance. This is known
as the bias-variance problem. K-fold cross validation [33] solves this issue by splitting the training set in k
folds, being k = 10 very usual for a general application, so that there are k combinations of test and train sets
which are introduced into the network in order to compute several accuracies. This technique allows us to
calculate a reliable variance of the accuracy so that we can test our model on its generalization task.
k-Fold Cross-Validation

Accuracies computed in the test and train sets of a classic validation process may be very different between
each other. This differences may be due to a bad modeling or hyperparameter tuning. However, differences
between the test and train sets may also be a reason for that. That is why cross-validation emerged as a
resampling procedure to evaluate machine learning models. It is a validation process that is not based on the
test set train set division. It has become popular due to the fact that it has been proven to have lower bias than
other methods and it is easy to implement. This approach is based on dividing data into folds and ensuring
that each fold is tested once. After randomly shuffling the dataset and dividing it in k subsets, an iterative
process starts. Each one of the iterations of this iterative process follow this curse :

1. Select a fold or subset as the test set of that iteration.
2. Select the rest of them as training set.
3. Fit the model using the k−1 training sets together.
4. Evaluate the model using the selected test set of that iteration.
5. Take note of the evaluated performance on the model and start the next iteration.

After this loop, a list of evaluation scores will have been computed. Therefore, we only need to compute the
mean of this error values in order to obtain a better evaluation of our model. It is important to understand
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the fact that each data sample is assigned to a subset in the fist division of the randomized dataset an this
assignment must not change during the whole process. Hence, each sample is given to the model k− 1
times as a training sample and 1 time as test sample. As it can be inferred from its iterative nature, k-Fold
Cross-validation takes longer than the train-test sets division validation. An illustration of the process is
presented in Fig. 3.3.

Figure 3.3 k-Fold Cross-validation graphical process [34].

3.4 Improving our ANN

Overfitting and Underfitting After calculating the accuracy of our network we may encounter a substantial
problem. If our computed MSE differs a lot from the MSE obtained during the training problem, we are
probably dealing with overfitting. This happens because our ANN has found certain specific correlations
on the training set that are unique of that data set. Therefore, our ANN fails at the generalization. Those
unique correlations may have been found due to excessive training on the set, maybe by using too many
neurons or epochs. A helpful workaround for this issue is dropout. This is a simple technique to prevent
overfitting. It consists on leaving a determined percentage of neurons asleep during each iteration of the
training process. Of course, the ignored units are be randomly chosen at each iteration. Underfitting, on the

Figure 3.4 Underfittted, balanced and overfitted regression [35].

contrary, happens when the model is not complex enough or it has not trained as much as it takes to identify
the necessary input-output correlations in order to get accurate results. Overfitting is a more popular problem
than underfitting, but both of them need to be taken into account when results are not as they were expected.
Identifying this kind of problems is essential to avoid time wastage on tuning hyperparameters without having
a clue of what is really going on, that is why Fig. 3.5 and Fig. 3.4 are provided as graphical explanations.

Vanishing and Exploding Gradient Another problem that may get in the way of making our ANN learn
is named vanishing gradient. It happens when, during the training start, the gradient of the loss function
at the layers comes closer and closer to zero, thus the network stops learning or does it very slowly. The
opposite problem, which is named exploding gradient, may also occur. Exploding gradient appear when error
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Figure 3.5 Model complexity relevance on test and train error [36].

gradients become larger at every backpropagation step, provoking huge unwanted updates to neural network
model weights during training. Both of this problems make the model unable to perform successfully the
gradient descent algorithm in order to find the minimun of the cost function. The reason why it happens
is related with the backpropagation algorithm. As, during backpropagation, the chain of rule is used to
calculate this derivatives in order to solve the credit assignment problem, the derivatives of the activation
functions of different layers are multiplied between each other. When some of them tend to values lower
than one, it causes a substantial decrease of the derivative so that its value make the weights to change very
slowly. This happens when using activation functions that have low derivative values when low or high
inputs are introduced to them, such as the sigmoid activation function. Despite being one of the most popular
ones thanks to its other properties, it sometimes triggers this issue due to its small derivative. Using other
activation functions such as ReLu solves effectively this issue. Another workaround that is worth mentioning
is called batch-normalization layers. This type of layers are used to normalize the inputs of the original layers
of the neural network in order to avoid the inputs from reaching extreme values, so that the gradient of the
activation function does not decrease dramatically when applying backpropagation. Residual neural networks
have also been presented as an alternative. They present some straight connections between layers, without
application of any activation functions. This straight connection is added to the output of the layer in order to
avoid the vanishing gradient.

3.4.1 Preparing the Input Dataset

Another issue that needs to be studied before training our ANN is preparing our input dataset. Collected
dataset are not usually ready for being used as input to an ANN. ANNs input datasets need to accomplish
several requirements in order to allow the model to get the best of it and learn as much as it can. Firstly,
categorical variables need to be encoded. Until now we have been working under the presumption that
variables are just numbers but lots of datasets are based on categories and numbers at the same time.
Transforming this names or classes into numbers will be our first task about making the dataset suitable for
our ANN. This process is call enconding and there are two different approaches which need to be discussed
within this section. Let’s suppose the case in which we are dealing with some human resources data base. In
this database we have information about people and one of the fields refers to each person nationality. Now,
as an ANN cannot work with text, we need to transform nationalities to numbers. Label Enconding is one of
the possible workarounds. This solution will identify each nationality with an integer number and substitute
it in the input dataset. Therefore, if we had input nationality column with values like {Spanish, German,
French...} it will be converted to {1,2,3...}. This is a simple and computationally efficient solution. However,
it ANN will receive this input column and treat is as it treats others in order to get some information from it.
Although these numbers are just being used as symbols, it is possible that our model finds some correlation
or hierarchy between them and. This problem would surely decrease the model accuracy. That is why One



18 Chapter 3. Artificial Neural Networks

Hot Enconding is presented. This workaround is based in the creation of a new column for each categorical
value in the input dataset. The method is feasible for categorical variables with low amount of possible
categorical values since, otherwise, the number of columns starts increases excessively. In each one of the
new columns, every row will be set to zero except of the one that actually belongs to that category. According
to our previous example, each nationality would be a new column so that Spanish nationality column would
be like {1,0,0...}, which indicates that the first person is Spanish and the others are not. This avoids the issue
of our ANN finding correlations between rows of categorical columns but it does it with a computational
cost which can be impossible to manage at some cases. Now that the input dataset is completely filled with
numeric data, it may be helpful to normalize it. Although it is not mandatory to normalize our input, the truth
is that ANNs have been proven to be more efficient when dealing with normalized input datasets. Gaussian
normalization is computed as xnorm = x−µ

σ
, where µ represents the mean of the input and σ the standard

deviation. It is actually the most popular normalization although depending on the problem one kind or
another will be more suitable. As an example, min-max feature scaling is also widespread and is computed
as

norm =
x−min(x)

max(x)−min(x)
. (3.21)

Activation Functions

Finally, it is worth mentioning the importance of hyperparameters. As it has already been explained,
this concept includes the different parameters of a neural network that must have a fixed value before the
training start. This value must be chosen carefully by the engineer, considering the application and nature
of the problem itself. Otherwise, a simple problem may be impossible to solve by an ANN with wrong
hyperparameter values. As a matter of fact, that is why some people may wrongfully believe that an ANN is
not suitable for the problem they are facing just because they tried a general implementation, without any
hyperparameter adjusting. Among all the hyperparameters, activation functions are critically decisive to
the results. As it has already been explained, activation functions compute the output of a certain input at
each neuron. Somehow, activation functions determine how a neuron reacts to the different inputs. They are
usually defined layer to layer, meaning that all of the neurons in one layer generally use the same activation
function, although this is not mandatory. Activation functions are basic to enable our ANN to learn a nonlinear
behavior. Through the different activation functions of each layer, a complicated nonlinear behavior which
would never be reproduced by just one layer may be divided in nonlinearities that can be reproduced at each
one of the layers. That is why, as matter of fact, ANNs are actually considered as universal approximators [37].
Computational efficiency is required not only to the activation function of a model but also to its derivative,
since it will be computed lots of times during a training process. Among all of the different activation
functions [38], it has been considered important to highlight the most popular ones and their properties in
this section:

• Step function: It is a threshold-based function. It only have two possible values {0,1} which makes it
interesting for classification purposes, since it can normalize the output. This means that, if the input is
above zero, the neuron just let this input pass to the next layer without being affected. Otherwise, if its
is negative or zero valued, the neuron do not let the input pass to the next layer, so its output remains
null. It may be seen as if the neuron gets fired or not depending on the input.

f (x) =

{
0 x≤ 0
1 x > 0

(3.22)

• Sigmoid function: It is the most popular one. It is helpful to compute percentages and probabilities,
since its values are limited from zero to one [0,1], so it is often used as an enhancement of the step
function when classifying binary variables. Its formula is

f (x) =
1

1+ e−x f ′(x) =
e−x

(1+ e−x)2 . (3.23)

As it can be observed in the equation, its derivative is a smooth function. This avoids abrupt changes
on its derivative value, so it works better for backpropagation. Its major drawbacks are involved with
its computational cost and the fact that it may cause vanishing gradient. It is not zero centered, which
may be a problem in some cases.
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• Hyperbolic tangent function: It is similar to the sigmoid function but it is zero centered, which is
interesting to model inputs with negative, positive and neutral values. This is its equation

f (x) = tanh(x) =
sinh(x)
cosh(x)

=
ex− e−x

ex + e−x . (3.24)

• Linear function: It is the most simple one. It always let the input pass through the neuron without
being affected. Although it may seem useless for the described purpose of this section, it is actually
very popular since it is very helpful at the output layer. As the reader can imagine, it does not help to
approximate nonlinearities but, at the output layer, it is used just to compute the weighted summation
from the output of the previous layer neurons. Its major drawback is related with the fact that, since its
derivative value is always one, it does not help backpropagation algorithm at all.

• ReLu function: It solves the backpropagation difficulty presented by the linear activation function,
since its derivative is the step function. However, it does not work well when input are mostly negative
due to the fact that its derivative is null in those cases and therefore backpropagation is cut off. Its
formula is

f (x) =

{
0 x≤ 0
x x > 0

(3.25)

• Leaky ReLu function: It is presented as an evolution of the ReLu function, which solves the problem
of the null derivative with negative inputs, also known as the dying ReLu problem. Its behavior is
mathematically expressed as

f (x) =

{
αx x≤ 0
x x > 0

, (3.26)

where α is a positive number smaller than 1. This function introduced the concept of parametric ReLu
functions, a set of functions that try to improve the ReLu function using parameters and preventing,
through different ways, the dying ReLu problem.

A graph has been included in Fig. 3.6 in order to illustrate a graphical representation of the presented activation
functions are their mathematical behavior.
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Figure 3.6 Most popular activation functions.
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3.5 Complex Valued Neural Networks

Complex Valued Neural Networks (CVNNs) are based on the usage of complex numbers with the structure
of an ANN [39]. CVNNs have been tested to perform better accuracy results for complex input and output
datasets, when the accurate structure is found [40]. Since weights, biases and activation functions are
complex numbers, the LMS algorithm cannot be used to reduce the cost function value. Complex Least Mean
Square (CLMS) [41] algorithm makes use Wirtinger derivatives to solve this issue on a CVNN [42]. Several
approaches such as [43] and [44] have been studied during the past years to work with complex variables at
ANNs.

3.5.1 Complex Least Mean Square Algorithm

Considering the fact that the output is now complex, the error, computed as shown in Eq. (3.4), is also
complex and that allows the redefinition of the cost function introduced in Eq. (3.5) as

ε =
1
2

e · e∗. (3.27)

Having already redefined the cost function, the next step is to compute the update equation for complex
weights defined as

∆w =−η
∂ε

∂w∗
, (3.28)

where η is always a positive number that modulates the step. Making use of the Wirtinger derivative, ∂ε

∂w∗ is
computed as

∂ε

∂w∗
=

1
2

∂e · e∗

∂w∗
=−1

2
e∗

∂y
∂w∗
− 1

2
e

∂y∗

∂w∗
. (3.29)

Considering the usage of
y = v · |v|n−1 (3.30)

as activation functions, where n is n = 2i+1 being i a non-negative intege which indicates the position of
the neuron in a layer, the partial derivatives of the output y and its complex y∗ and of a neuron with respect of
w∗ are calculated as

∂y
∂w∗

=
∂y
∂v

∂v
∂w∗

+
∂y
∂v∗

∂v∗

∂w∗
, (3.31)

and
∂y∗

∂w∗
=

∂y∗

∂v
∂v

∂w∗
+

∂y∗

∂v∗
∂v∗

∂w∗
, (3.32)

where ∂v
∂w∗ = 0 due to the lack of dependence between v and w∗. Now, using equation Eq. (3.2), it can be

computed that
∂v∗

∂w∗
= y∗l−1, (3.33)

and considering Eq. 4.12, the partial derivatives ∂y
∂v∗ and

∂y∗
∂v∗ are

∂y∗

∂v∗
=

∂y
∂v

=
n+1

2
|v|n−1, (3.34)

and
∂y
∂v∗

=
∂y∗

∂v
=

n−1
2
· v2|v|n−3. (3.35)

Using these equations, the gradient of the complex cost function is computed as

∂ε

∂w∗
=−1

2
e

n+1
2
|v|n−1 · y∗l−1− 1

2
e∗

n−1
2

v2|v|n−3y∗l−1. (3.36)

Therefore, the update equation for complex weights is

w = w+
1
2

η

(
e

n+1
2
· |v|n−1 + e∗

n−1
2

v2|v|n−3
)

y∗l−1. (3.37)
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However, as we have already consider in a real-valued artificial neural network, we cannot use this update
equation for hidden layers. Therefore, the credit assignment problem is required to be solved again [45]. In
the case under consideration, Eq.(3.8) is now rewritten as

∂ε

∂yk
=

∂ε

∂e j

∂e j

∂yk
+

∂ε

∂e j
∗

∂e j
∗

∂yk
=

1
2

(
∑

j
e j
∗ ∂e j

∂yk
+∑

j
e j

∂e j
∗

∂yk

)
, (3.38)

where j refers to an output node and k is used to index a hidden neuron [46]. In order to continue the
mathematical elaboration, the partial derivatives of the output neurons error depending in hidden node output
are calculated as

∂e j

∂yk
=

∂e j

∂y j

∂y j

∂yk
+

∂e j

∂y j
∗

∂y j
∗

∂yk
=−Φ

′
j(v j)w jk, (3.39)

having considered the fact that the order term of the Wirtiner derivative is null due to the lack of dependency
between the error e j of an output node and its conjugated output y j

∗. The last term of the equality in the
previous equation has been computed considering that

∂y j

∂yk
=

∂y j

∂v j

∂v j

∂yk
+

∂y j

∂v j
∗

∂v j
∗

∂yk
=−Φ

′
j(v j)w jk, (3.40)

where the second term ∂y j
∂v j∗

∂v j
∗

∂yk
is null again. Using the same logic, it is easy to compute the second term of

Eq.(4.12) as
∂e j
∗

∂yk
=−(Φ j

∗)
′
(v j)w jk. (3.41)

We may now insert equations Eq.(4.13) and Eq.(4.14) in Eq.(4.12) to obtain a complete equation to compute
the partial derivative of the error function depending on the output of a hidden neuron as

∂ε

∂yk
=−1

2

(
∑

j
e j
∗
Φ
′
j(v j)w jk +∑

j
e j(Φ j

∗(v j))
′
w jk

)
. (3.42)

This equation allows us to compute the partial derivative of the error function depending on the output of a
node which is just behind the output layer. However, if we wanted to compute it in a previous layer to this
one, we would have to continue the mathematical development backwards. For this reason, it is interesting to
redefine the local gradient. Starting from Eq.(4.11), the complex update is

∆w =−η
∂ε

∂w∗
= η

(
1
2

e j
∗(Φ j

∗(v j))
′
+

1
2

e jΦ
′
j(v j)

)
y∗l−1, (3.43)

the local gradient of an output node may be easily identified as

δ j =
1
2

e j
∗(Φ j

∗(v j))
′
+

1
2

e jΦ
′
j(v j). (3.44)

Finally, the local gradient of a hidden unit δk needs to be computed in order to implement a complete and
scalable complex backpropagation algorithm. After redefining δk as

δk =−
∂ε

∂yk

∂yk

∂vk
− ∂ε

∂yk
∗

∂yk
∗

∂vk
=− ∂ε

∂yk
Φ
′
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replacing ∂ε
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Eq.(4.15) and doing a similar proceeding to compute
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we can eventually express the local gradient of a hidden unit as
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Using this set of equations, every weight in the network can be updated in order to make our CVNN learn
during the training stage.



4 Power Amplifiers and Behavioral
Modeling

Everyone is a genius. But if you judge a fish by its ability to climb
a tree, it will live its whole life believing that it is stupid.

Albert Einstein

Power amplifiers (PAs) represent a key role in wireless communications systems thanks to their ability to
make up for the free-space path loss, which happens between the transmitter and the receiver. That is why
they are used to achieve enough transmission power, specially in mobile applications. An accurate description
about PAs, which is presented in [47], states: "These amplifiers take a small input and make it stronger and
larger creating a wider area of use with a more robust signal." However, their behavior presents a conflict
of interests between efficiency and linearity. This chapter will introduce the problem of power amplifiers
modeling, its necessity and the different workarounds that have been studied to solve it [27].

4.1 Ideal Amplifier

An interesting approach to the behaviour of PAs in a wireless communications system involves starting
from considering an ideal amplifier. Accordingly, before talking about non-desired effects found in real power
amplifiers and how to manage them, it is important to enumerate the requirements of an ideal power amplifier.
First of all, gain must be constant and independent in relation to the input signal power or frequency. This
behavior is known as linear since that is how the input-output graph looks like. Mathematically speaking,
a linear system is the one that satisfy the property of homogeneity and additivity or superposition [48]. A
system behavior is described as homogeneous when an amplitude increase or decreasement in the input signal
provokes a directly proportional amplitude change of the output. If we considered a system where y = f (x),
an homogeneous system would behave as

f (kx) = k f (x) = ky. (4.1)

This requirement is also known as the scaling principle. Stated like this, it may be thought that every amplifier
in the world satisfies this principle since, speaking in terms of voltage, an amplifier behavior is expressed as

Vout(t) = GVin(t). (4.2)

However, power dissipation and the energy conservation law will make real amplifiers fail at satisfying these
requirements, so non-linearities are actually the general rule [49]. Following this notation, a system that
accomplishes the principle of superposition behaves in a manner that an addition of its inputs results in an
addition of the individual outputs of each of the inputs, without interacting between each other. This ability
is mathematically expressed as

f (x1 + x2) = f (x1)+ f (x2) (4.3)

23
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Figure 4.1 Ideal and real amplifier behavior [51].

4.2 Conflict of interests

4.2.1 Non-linear effects

Linearity is generally accepted as a required characteristic of an ideal amplifier. A linear behavior is easy
to understand. We may think, therefore, that it is easy for an amplifier to behave linearly and that most of
the amplifiers are linear. In this case, it would be a huge mistake, since reality is way more complex. The
drawbacks of non-linear effects have not been discussed yet. Although the gain of an ideal amplifier is
constant, real amplifier reach to a compression zone when a enough input power is provided. In this zone,
the PA is saturated or, in other words, the gain of the amplifier stops being constant, since the output stops
increasing no matter how much the input grows [50]. This is not a difficult effect to understand. Indeed, it
happens because of the energy conservation law, which stands that the output power cannot be higher than
the supply power. As a matter of fact, the output power will be lower than the supply due to the appearance
of power dissipation as heat. Considering the gain of an amplifier as G = Pout

Pin
and making use of the energy

conservation law, the gain of a real amplifier can be rewritten as

G =
Pin +PDC−Pdiss

Pin
, (4.4)

where Pdiss stands for the power wastage and the balance of power in this case allows us to rewrite the output
power as Pout = Pin +PDC−Pdiss. If we substitute Pout for GPin in (4.22), we can isolate G as

G = 1+
PDC−Pdiss

Pin
. (4.5)

From this equation we can conclude that the gain of a PA cannot be constant when the input power increases.
Moreover, it can also be concluded that every element of a system that requires a supply voltage to work will
inherently be non-linear. This happens because the supply voltage will be limited but the input power could
change, considering the fact that the dissipated power value may be overlooked. Therefore, since the output
signal may never exceed the supply voltage, it will be clipped when enough Pin is provided. The point of the
input-output graph of a PA where the gain starts being 1dB lower than it ideally should be is named 1dB
compression point. This critical point is illustrated in Fig.4.1.
This clipping effect in the time domain provokes the occurrence of harmonic distortion in frequency

domain. The distortion of an electrical signal is defined as any change of the desired output wave, except
for scaling or constant time delay. Harmonic distortion, particularly, is defined as the appearance of new
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output signals named harmonics, whose frequency are multiples of the fundamental frequency of the input
signal. This leads to the growth of the spectral bandwidth. Total Harmonic Distortion (THD) percentage is
an important technique to measure the level of harmonics in a voltage or current waveform [52]. It computes
the relation between the total output power generated by harmonics and the power of the fundamental tone as
it is shown in (4.6).

T HD =
∑i>1 Pi

P1
=

Ptotal−P1
P1

, (4.6)

where P1 refers to the fundamental tone output power. Bandwidth growth is a non desired effect, since other
signals could be affected by our harmonics and vice versa. However, it is not the most problematic issue. The
reason is that, using a suitable filter, the tones which are not in the same band as the desired output can be
removed. Unfortunately, some of those so-called harmonics appear with the same frequency as the input
signal, the fundamental tone, so that the problem cannot be solved with filtering. This kind of distortion
is called in-band distortion. In order to understand how harmonics appear, we will use a mathematical
explanation. From now on, the considered input will be a general input signal in a telecommunications system
such as a sinusoidal curve expressed like

x(t) = A(t)cos(wt +θ(t)), (4.7)

where t refers to time and the frequency w = 2π f = 2π

T , being T the period of the sinusoidal. When an
input signal like the one described in (4.22) is introduced to the PA of a wireless communication systm, the
information resides in the amplitude (AM) or the phase (PM) variation through time. A linear system would
compute an output signal as following

yL(t) = αA(t)cos(w(t−τ)+θ(t−τ)), (4.8)

where α is a constant that can be higher or lower than one, in other words, it can amplify or reduce the
amplitude of the output, and τ is used to represent the memory effects as a possible delay. We can observe
that in a linear system, the output signal only differs with the input by a scaling constant and a positive finite
time delay. Adding higher order dependencies is a direct way to reproduce a non-linear behavior of a system.
Therefore, a non-linear system could be expressed, if we only considered second order non-linearities as

yNL(t) = αxt−τ)+βx2(t−τ), (4.9)

which, if we use as input our previously described sinusoidal curve, can be rewritten as

yNL(t) = αA(t)cos(w(t−τ)+θ(t−τ))+βA2(t)cos2(w(t−τ)+θ(t−τ)). (4.10)

Considering the trigonometric relation between the double-angle cosine and cos2(α) as

cos2(α) =
1+ cos(2α)

2
, (4.11)

the non-linear output of a telecommunication system can be expressed as

yNL(t) = αA(t)cos(w(t−τ)+θ(t−τ))+βA2(t)
1+ cos(2w(t−τ)+2θ(t−τ))

2

=
βA2(t)

2
+αA(t)cos(w(t−τ)+

βA2(t)
2

cos(2w(t−τ)+2θ(t−τ)).

(4.12)

In (4.12) it can be observed that a second order non-linearity adds what is known as DC voltage term to
the output power, this type of nonlinear behavior is known as self-biasing. In addition to this effect a new
sinusoidal signal named harmonic with twice the frequency of the input signal is added to the output. This
reasoning describes the emergence of harmonics but a second order non-linearity does not affect to the
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amplitude of the fundamental tone, thus it can be solved by filtering. However, if we did the same process for
third order non-linearities following the expression in (4.10), the new yNL(t) can be expressed now as

yNL(t) = αx(t−τ)+βx2(t−τ)+ γx3(t−τ). (4.13)

Using other trigonometric identities such as

cos3(α) =
3cos(α)

4
+

cos(3α)

4
, (4.14)

the output of a third order nonlinear system can be rewritten as

yNL(t) =
βA2(t)

2
+αA(t)cos(w(t−τ)+ γ

3
4

A3(t)cos(w(t−τ)+θ(t−τ))+

βA2 1
2

cos(2w(t−τ)+2θ(t−τ)))
1
4

cos(3w(t−τ)+3θ(t−τ)).

(4.15)

With the addition of a third order non-linear term, instead of a newDC component, what we get is an amplitude
distortion of the fundamental tone whose amplitude is now αA(t)+γ

3
4 A3(t). This in-band distortion provokes

changes in the output signal that cannot be solved by the usage of filtering. If we continued using higher order
nonlinearities to represent our PA behavior, we would conclude that the output signal can be expressed as

yNL(t) = y0 +
N

∑
k>1

ykcos(wkt +φk), (4.16)

being wk = 2π f k. If we observe in detail both of the previous mathematical elaborations, we will realize the
fact there is a significant difference between even and odd order nonlinearities. The latter affect directly to
the fundamental tone by changing its amplitude, while the first ones are not responsible for in-band distortion
and can be solved with filtering.
Power amplifiers are formed of different elements. Among them, there are energy storing components.

This energy storage provokes memory effects in our output signal, meaning that the output does not simply
depend on the input at a certain moment, but also on the previous inputs, as shown in (4.23). In addition
to amplitude distortion, a nonlinear system may include phase distortion, meaning that it does not respond
equally to frequency changes, in terms of memory effects. This provokes the appearance of out of phase
sinusoidal signals when the frequency of the input changes. Taking all the factors into account, the real output
of a PA during a one tone characterization test follows the mathematical behavior represented by (4.27)

yNL(t) = y0 +
N

∑
k>1

ykcos(wkt +φk). (4.17)

Identifying and measuring nonlinearities

In order to identify the real behavior of a device like an amplifier, there are several techniques that allow
the engineer to get the real parameters that have been discussed within the section, such as gain, harmonics
amplitudes or total harmonic distortion. Measurement techniques represent a key role in the design and
verification or testing of PAs. Traditional ways to measure the non-linearity grade of a device under test
(DUT) include power swept continuous waves to indentify the AM/AM or AM/PM distortion and the 1dB
compression point or two tone measurements to find 3rd order intercept point [54]. Before talking about
the different techniques to identify the behaviour of a PA, it is interesting to remark to most important
measurements that help us on our task of measuring accurately the nonlinearities:

• Amplitude to amplitude modulation characteristic (AM/AM): This graph represents the amplitude
of the fundamental tone of the output signal depending on the amplitude of input signal [55]. It can be
observed that the PA starts with a linear behavior but reaches to a point where the output amplitude
starts clipping. This effect is illustrated in Fig. 4.1.

• Amplitude to phase modulation (AM/PM): In contrast to the previous one, this graph illustrates the
relation between the input amplitude modulation and the output phase modulation [56]. It is worth
mentioning that, although the AM/AM characteristic can be observed in every nonlinear device, phase
distortion effects are only observed in memory or dynamic devices such as PAs.
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Figure 4.2 AM/AM characteristic [53].

• 1dB compression point: It is a simple but effective way to measure the input power value where a PA
starts behaving nonlinearly. It is defined as the point where the ideal output power is 1dB higher than
the actual output power due to the clipping effect that has already been discussed during this section.

• Total Harmonic Distortion (THD): This measurement computes the percentage of output power that
is produced by harmonics due to distortion in relation with the total output power. It is calculated as
expressed in Eq.(4.6).

• Error Vector Magnitude (EVM): It is a figure of merit of the modulation quality. It is normally
used with multi-symbol modulation methods [57]. A graphical representation of EVM is provided at
Fig. 4.3.

• Adjacent-Channel Power Ratio (ACPR): This metric is particularly helpful to measure spectral
regrowth, since it is computed as the ratio between the total power of signal measured at a lower or
upper channel and the power in the main channel [59].

One-tone characterization

When an input signal mathematically expressed in Eq.(4.22) is set to a pure sinusoidal is used to identify
the properties of a system in relation with distortion or spectral efficiency among others, the technique is
named one tone characterization. This technique is the most simple one when trying to understand a system
behavior. Although some effects cannot be observed by using one tone characterization, others are easier to
identify in comparison with other techniques. The input signal is just like the one described in Eq.(4.22), but
without amplitude or phase variation through time: A(t) = Ai,θ(t) = 0. Therefore, considering the nonlinear
effects that are responsible for the emergence of harmonics, amplitude compression and phase distortion,
the output signal of a real PA when a one tone characterization technique is used can be mathematically
described as

yNL(t) =
∞

∑
k>0

Aok( f ,Ai)cos[wkt +φok( f ,Ai)], (4.18)

where the phase and amplitude dependencies on the input frequency and amplitude has been taking into
account and thus, they provoke the system to behave nonlinearly, since a linear system output would reproduce
an output as following

yL(t) = Aocos[wt +φo]. (4.19)
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Figure 4.3 EVM representation [58].

Two-tone characterization

Two-tone characterization is a widely known technique to identify the AM/AM and AM/PM distortion. It
consists in feeding the DUT with a signal based the summation of two different tones such as

x(t) = A1cos(w1t)+A2cos(w2t). (4.20)

The nonlinear behavior of the PA will produce new frequency components at the output. Therefore, the
output of the DUT can be expressed as

yNL(t) =
∞

∑
i=1

Aoicos(wit +φ0i), (4.21)

where wi = mw1 + nw2 being n,m two integers. These new frequency components will appear at every
possible linear combination of the frequencies which were introduced as input to the DUT. They can be
grouped in two different categories:

• Harmonic distortion: Their origin and effects have already been discussed. They do not appear due
to interaction between the two tones. They appear at new frequency components at integer multiples
of each of the fundamental tones.

• Intermodulation: This problem would not emerge in a one tone characterization test, since it happens
due to the interaction between the two tones provided as input [60]. This means that intermodulation
must only be taken into account when the input signal consists on multiple carriers. Intermodulation
makes real PAs fail on accomplishing the principle of superposition, which was previously introduced.
The appearance of new tones as a result of a linear combination of the input tones is an undesired effect
on communication systems due to in band and out of band distortion:

– In-band distortion: This concept has already been discussed when odd order harmonics were
analyzed. They appear when m+n = 1 and, considering the fact that both m and n are integers,
it is easy to conclude that it continues happening when dealing with odd order components,
if we compute the order as |m|+ |n|. When this requirement is satisfied, the new components
appear in the transmission band, which makes it harder to remove them. This new components
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Figure 4.4 Intermodulation effects [51].

are named n order intermodulation products (IMn) and they are illustrated in Fig. 4.4. At this
point, it is important to outline the n order intercept point measurements as other indicators
of the system nonlinear characteristic. These points are defined as the place where the n order
intermodulation power extrapolation overpasses the fundamental tone power extrapolation. The
slope of the output-input power extrapolation graph is constant and equal to 1dB/dB. The third
order intermodulation output power extrapolation, on the other hand, increases with 3dB/dB
slope. Each n order intermodulation power extrapolation slope is equal to n. That is why, at some
point (called IP3) both lines will reach the same place in the graph. A graphical representation of
this effect is provided in Fig.4.2. Therefore, what determines the grade of linearity of a PA is
not the slope of their IPn lines, since they are constant, but the point where they start, since this
will establish where they will overpass the output power line. A basic magnitude that computes
the grade of in-band distortion of a system is called error vector magnitude. It computes the
quality of the system by calculating how accurately the PA is transmitting a constellation. It is
computed as the root mean square value of the individual error vectors of every symbol in the
constellation. The intermodulation distortion prdoducts can be clearly observed using a spectrum
analyzer, although it only provides magnitude information. Phase information can be obtained by
using a vector network analyzer.

– Out-of-band distortion: This type of distortion is way less problematic since, as it happens
when m+ n 6= 1, the intermodulation components appear outside the transmission band or in
the DC component so, as it happens with even order harmonics, they can be removed with
filtering [61].

Despite having presented intermodulation and harmonic distortion as problems for communication systems, it
is worth mentioning that, in other fields such as the music, they can be deliberately applied in order to change
the power spectral density of the output signal by filtering some output tones and making their amplitude
stronger or lower than others and thus change the sound.

Memory Effects

Ideal systems are thought to have always the same response to the same input. However, as it usually
happens, the past affects the present much more than we think. That is why, despite being ideally considered



30 Chapter 4. Power Amplifiers and Behavioral Modeling

Figure 4.5 AM/Gain characteristic.

memoryless systems, the fact is that the previous inputs of a PA affect the current output. Therefore, having
a current discrete input such as x[n], we would be naive to believe that the real output could be expressed
as a function that depends just on this input such as y = f (x[n]). A more realistic approach to express the
output of a PA taking the memory effect into account would be y = f (x[n],x[n− 1],x[n− 2]...x[n−Q]).
Having considered this fact, it is worth mentioning that, as it happens in nature, the more close the past is
to the present, the more it affects it. Therefore, it is easy to deduct that, although the output of a PA should
theoretically depend on every previous input, the truth is that this effect gets less relevant the more we dwell
on the past. This decrease is known as fading memory and the number of previous input samples that are
taken into account as considerable influence the the current output represent the memory depth. During the
previous section, phase distortion effects were already introduced. As it was stated, phase distortion may
only occur in memory systems, since this type of distortion is related to how the system responses in memory
terms when frequency changes. Basic electronic devices such as capacitors and coils are known to be able to
store energy and thus change the current that flows in a circuit depending on how much energy they have
storaged. Therefore, it should not be a surprise to understand that, if a simple R-C circuit is able to store
energy and therefore has memory abilities, PAs also present this effects. Memory effects are responsible for
the dynamic behavior of a system. This means that the system response changes through time. However, these
variations can be grouped in two different timescales. These two timescales are short-term and long-term
memory effects. While the first one occur with a similar rate as the input signal, the others appear with a
slower frequency, closer to the modulation rate:

• Short-term memory (STM) effects: They happen with a frequency which similar to the carrier of the
input signal. They are mostly produced by the matching networks, which can be reactive components
of the transistor itself or external matching circuits of the printed-circuit board, and device capacitances.
A good estimation of this effects can be obtained by measurement or simulation of the small signal
frequency response of a system.

• Long-term memory (LTM) effects: As they name indicates, their timescale has nothing to do with
the period of the carrier. This timescale is similar to the one of the envelope or modulation signal.
They can be grouped in three different effects depending on the cause:

– Thermal effects: Thermal energy storage and evolution occur in a slower timescale than the
carrier or the envelope of the input signal. They appear with modulation frequencies lower than
100 kHz.

– Charge trapping: They appear due to the imperfections of semiconductor materials. They are
not likely to happen due to the high precision of the device fabrication process but when they do
they can provoke variations of kHz or even MHz order.

– Bias circuit effects: The bias line is used in order to provide an unimpeded flow of current DC
while avoiding any RF signal to go thorough it, as it the circuit behaved as an open circuit for RF.
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However, this ideal usage of the bias line results in high or low impedance for RF or DC. The low
impedance that is intentionally provided to the DC component is maintained over a frequency
range that receives the name of video bandwidth. Some intermodulation products such as IM2 or
IM4 may appear at the video bandwidth and therefore, they will be less reduced than the others.

The easiest way to illustrate memory effects is in the AM/AM and AM/PM curves. As it was previously
mentioned, memory effects are responsible for the dynamic behavior of a PA, so the same input results in
different outputs each time it is introduced to the device, depending on the previous inputs as well. These
so-called dispersion effects are clearly visible in Fig. 4.5, where gain compression is also evident. This figure
was extracted from experimental measurements in a lab environment.

4.2.2 Power efficiency

When PAs, also known as large signal amplifiers, are used to handle large-voltage signals they achieve
high energy efficiency levels. This is a critical aspect since energy saving is a major challenge for most of
the modern technologies and considering the fact that PAs are one of the most energy consuming elements
(nearly 40 per cent of the total energy consumption) in a wireless communications system, so efficiency is
essential for them. Despite of this efficiency, PAs are inherently non-linear in this high power zone. Taking
both of these facts into account, we find the conflict of interests that was introduced at the beginning of the
chapter. On the one hand, efficiency is really important for a considerable energy consuming element such
as the PA. On the other hand, linearity is needed in order to obtain a accurate output to a specific input and
thus accomplish low error rates in the communication system. Before we get deeper into this conflict and
how to deal with it, it is necessary to understand correctly a few concepts that we have already been talking
about. The efficiency of a PA is defined as the ratio between the power of the output and the input as shown
in Eq.(4.22)

η(%) =
P1

PDC
. (4.22)

Regarding the requirements that were described in the previous section, an ideal power amplifier should
present a 100% power efficiency. A more accurate way to measure the efficiency of a PA is the power-added
efficiency (PAE) defined as

PAE =
P1−Pin

PDC
=

P1
P0

(
1− 1

G

)
, (4.23)

but when the gain is high enough, both of the measurements are similar.

4.3 Behavioral modeling and digital predistortion

Mobile telecommunication techniques are speacially sentitive to spectral interferences and nowadays,
lots of different communication technologies share the radio spectrum. That is the reason why there are
regulatory organisations all over the world, whose job consists in ensuring that the spectral bandwidth division
is not violated. In addition to this, modern applications need higher and higher bit rates every day. Both of
these facts create the need of accumulating as much information as possible in a narrow spectral bandwidth,
which is achieved by highly efficient modulation schemes. These techniques use multi-level combinations
of amplitude and phase modulation [47] and thus have a high peak to average power ratio (PAPR) which is
defined as the division between the maximum power of a transmitted symbol of modulation technique and
the average power of transmission of a symbol as expressed in Eq.(4.10)

PAPR =
Pmax

Pavg
. (4.24)

If we wanted our amplifier to be completely linear, even when the peak power symbol is being transmitted,
we would have to operate with it at a low input power. When a amplifier is working in this linear low power
zone, we say that the PA is backed-off. This would solve the non-linearity issue but efficiency would drop
dramatically since power efficiency is smaller with small input signals. This last fact makes it interesting
for engineers to operate with PAs at stronger input power zones, where efficiency is better since less power
percentage is dissipated. If we used a PA in a non-linear zone, we would need to solve somehow the previously
discussed drawbacks of nonlinearities. This is where digital predistortion techniques appear as a effective
solution [62]. Other techniques such as feedforward have been studied in order to avoid the spectral regrowth
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produced by nonlinearities [63]. Feedforward techniques are used directly at the output to remove distortion
but, as it happens with the alternative of working with a backed-off PA, these workaround solve the problem but
they are not efficient enough. Digital predistortion (DPD) is one of the most effective linearization techniques
that make it possible to work with a PA in the compression zone while getting a linear behavior [64]. This
technique transform the input of the power amplifier so that the output is closer to the desired output of an
ideal amplifier. DPD can be understood as an inverse transformation of the non-desired effects of the PA
before they appear at the output [65]. Therefore, when the signal arrives to the PA, this effects are canceled.
DPD requires a model of the PA behavior in the zone where it is operating in order to cancel the unintended
non-linear effects [66]. Fig. 4.6 illustrates a block diagram where the process of DPD is represented for ease
of understanding.

DPD Digital
to RF PA

RF to
Digital

Behavioral
Modeling and
Coefficient
Selection

x z zRF yRF

y

Figure 4.6 DPD block diagram.

4.3.1 Nonlinear System Modeling

Speaking on terms of voltage, a nonlinear memoryless polynomial system will behave as following:

Vout(t) =
∞

∑
i=1

AiV
i
in(t) (4.25)

The target of the digital preprocessing technique is to obtain an output as

Vout(t) = G(FPD(Vin(t))) = A1Vin(t). (4.26)

This is achieved by adding terms to the input in order to make the output look like the desired output. In
order to know which terms are needed to be added to the input, DPD techniques need an accurate model of
the system behavior. If we were dealing with static systems, an static predistorter would be enough to do the
input-output mapping and solve efficiently the task. However, the dynamic behavior of PAs due to memory
effects has already been discussed, so the predistortion needs to be as dynamic as the system itself. That is
why predistorter coefficients values need to be adjusted as the system evolves.

Models and Power Amplifiers

The model of a system is a description of the relation between the inputs and outputs of that system. It
is usually represented by a mathematical abstraction of that input-output relationship. It is important to
understand that the efficiency of a model will depend not only on its accuracy to reproduce the real system
behavior but also on its computational cost. A common approach to the modeling task is a physically based
model. It is based on the usage of the physic properties of the devices that form the system in order to obtain a
transfer function that describes the system behavior. There are other models that are derived directly from the
measured data. They are also known as table-based models. Behavioral models are simplified mathematical
models that take into account only the features that really affect the system behavior [67]. Conversely, there is
another approach that has become very popular during last years. This approach is not based on the physics of
the system, but in general mathematical parametric equations. This approach is named behavioral modeling.
Then the application is DPD, there are physical features of the PA that are not interesting nor necessary to
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Figure 4.7 Vito Volterra portrait photography.

model its nonlinear behavior, such as the frequency response or DC component. DPD requires computational
efficiency and accurate results and behavioral models are good at this efficiency-accuracy balance.
Among these different types of models, it is essential to highlight Volterra series as one of the most

powerful mathematical tools to the creation of behavioral models that represent the nonlinear behavior of a
PA [68]. Vito Volterra was an Italian mathematician who led the development of functional analysis. He
introduced the concept of functionals in the 1880s, functions that depend on a continuous set of values of
another function. Functionals led to the development of new math areas such as solutions for integral or
derivative equations. However, Volterra’s theory was not applied to nonlinear systems modeling until 1958,
when Norbert Wiener, a professor at MIT, applied it to this issue and published his work. The conflict of
interest between distortion and energy effiency has provoked the rediscovery of Volterra techniques [69].
Volterra series has recently represented a key role on RF power amplifiers behavioral modeling and DPD
linearization [48]. During this chapter, different mathematical approaches will be provided in order to explain
the Volterra model and the different behavioral models that have been derived from them.
Volterra Series Introduction

A system can been defined as a black-box that computes and output to a input signal, where both the output
and the input signals are functions of time. This can be modeled as

y(t) = T x(t). (4.27)

Besides that, with its theory of functionals, Volterra proved that every functional can be expressed as an
expansion such as

y(t) = ∑
n≥1

yn(t). (4.28)

Afterwards, Wiener realized about the possible applications that this theory of functionals could have
in the nonlinear wireless communication systems modeling. Therefore, he used Eq.(4.28) and applied the
traditional communications system theories which introduced the concept of T being a linear operator that
can be described as the convolution

y(t) = H1x(t) =
∫

∞

−∞

h1(τ)x(t− τ)dτ (4.29)

of the input x(t) with h1, which is a linear kernel or input response. Unifying both concepts of functional
expansion and convolution, he concluded that n grade functionals of Eq.(4.28) could be expressed as

yn(t) =
∫

∞

−∞

∫
∞

−∞

∫
∞

−∞

hn(τ1,τ2, ...,τn)x(t− τ1)x(t− τ2)...x(t− τn)dτ1dτ2...dτn. (4.30)



34 Chapter 4. Power Amplifiers and Behavioral Modeling

It is worth mentioning that there is evidence of an important decrease in the relation between the n grade
functional and y(t) when n becomes increases. That why the summation in Eq.(4.28) is usually shortened as

y(t) =
N

∑
n=1

yn(t). (4.31)

Volterra series is the result of unifying Eq(4.30) and Eq.(4.31). As it can be observed the are able to take
into account every memory effect that leads to the different combinations of the actual and previous inputs
and multiply each of those combinations with a kernel hn(τ1,τ2, ...,τn) that represents the importance of that
combination in the output of the system. Finally, it is important to remark the fact that we have done this
development while considering analog signals. However, nowadays it is usual to work with digital signals,
this mean that the time domain is not considered continuous, but discrete. That is why it is necessary to
redefine the expressions developed in this chapter with the purpose of making them compatible with time
discrete signals as

y[k] =
N

∑
n=1

yn[k] =
N

∑
n=1

Q

∑
q1=0

Q

∑
qn=0

hn(q1,q2, ...,qn)
n

∏
j=1

x(k−q j). (4.32)

Now that the Volterra series has been introduced, several mathematical approaches which can be very
helpful to analyze and understand them will be presented.

Volterra Series as a development of Taylor Series This development is intended to show how a Volterra
Series can be deducted from a nonlinear instantaneus model [70]. Let’s start from a nonlinear polynomial
expression such as

y(t) = a0 +
N

∑
n=1

anxn(t), (4.33)

where the polynomial coefficients an are computed thanks to the Taylor series of the input-output relation
expanded at x0. This point is named operating point andn it is defined by the supply or DC voltage. This
expansion results in (4.34)

y(x(t)) = y(x)
∣∣
x=x0

+
1
2!

∂y
∂x

∣∣∣∣
x=x0

(x− x0)+
1
3!

∂
2y

∂x2

∣∣∣∣
x=x0

(x− x0)
2 + ...

= a0 +a1x(t)+a2x2(t)+ ....

(4.34)

However, it is trivial to understand that this equation does not consider dynamic effects, since the output
only depends in the current input. Therefore, we need to introduce memory term dependency so that y 6= f (x)
but y = f (x,x1,x2,x3...,xn) where xi = x(t− τi). This would let us rewrite Eq.(4.34) with memory effects
being taken into account as

y(x(t)) = y(x)
∣∣
x=x0

+
1
2!

∂y
∂x

∣∣∣∣
x=x0

(x− x0)+
1
2!

∂y
∂x1

∣∣∣∣
x=x0

(x1− x0)+ ...

+
1
3!

∂
2y

∂x2

∣∣∣∣
x=x0

(x− x0)
2 +

1
3!

∂
2y

∂x1
2

∣∣∣∣
x=x0

(x1− x0)
2 + ...

+
1
3!

∂
2y

∂x∂x1

∣∣∣∣
x=x0

(x− x0)(x1− x0)+ ...

(4.35)

which is a multinomial series. If enough time is taken to observe this equation, it can be noticed that the
memory terms such as (x1− x0) or (x− x0)(x1− x0) can be also found in Eq.(4.32), being named the latter
as a Volterra cross-term. Therefore, as it has been deducted, a Volterra series can be understood as a Taylor
series generalization, with memory effects dependencies being introduced.

Volterra Series as a development of a linear system Another interesting approach that needs to be
presented in this section is starting from linear system. Linear systems do not need to be memoryless. As
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a matter of fact, the output of a dynamic linear system can be expressed as the convolution of the system
transfer response with the input signal as

y(t) = h(t)∗ x(t) =
∫ t

0
h(τ)x(t− τ)dτ. (4.36)

The idea of using higher order of the input signal in order to model a nonlinear behavior has already been
used several times within this section and that is why it should not be a surprise that this concept was applied
to Eq.(4.36). If we did this with a second order nonlinearity while still modeling memory effects, Eq.(4.36)
could be rewritten as

y2 =
∫

∞

−∞

∫
∞

−∞

h2(τ1,τ2)x(t− τ1)x(t− τ2)dτ1dτ2, (4.37)

where each signal has its own delay parameter. Now, if we extend the nonlinear model development to its
n-th order, we end up having an expression like

yn(t) =
∫

∞

−∞

∫
∞

−∞

∫
∞

−∞

hn(τ1,τ2, ...,τn)x(t− τ1)x(t− τ2)...x(t− τn)dτ1dτ2...dτn. (4.38)

Although the integral limits have been changed to (−∞,∞), it has only been done due to generalization
purposes, since the systems that are being considered are causal and time invariant. Therefore, in order to
build the complete model we would need a summation of the N terms as expressed in Eq.(4.31). Once again,
Volterra kernels hn(τ1,τ2, ...,τn) can be observed as the coefficients of the model that allow to balance the
importance of each of the terms in the development. This development gives evidence to state that a linear
convolution is just a particular case of Volterra series for n = 1.

Power Amplifiers Behavioral Modeling based on Volterra Series

Volterra series have been lately the most popular tool at behavioral models constructing. However, since it
was introduced as an infinite series, it is impossible to work with. Therefore, models will need to cut this
series at some point. There have been presented different workarounds to cut this series while still considering
the most important components that have led to the different models that are derived from Volterra series [71].
New technological developments have led to new types of PA models such as ANN-based ones [72], a
comparison between their performance at DPD can be found in [73]. Indeed, ANNs have been proven
to perform accurate results at Volterra kernels extraction [31]. Before starting with model definition and
understanding the differences between them, it is worth mentioning that, at modeling problems, it is typical
to work with the complex envelope of the input instead of the input itself. Complex envelope of a signal is
defined as

x̃ = A(t)e jφ(t)s, (4.39)

although it will be mentioned as x(t) in order to simplify notation.

Full VolterraModel (FV) The complete Volterra model or FV [74] is the most direct implementation from
the Volterra Series to a model when considering a complex envelope as an input, the model is mathematically
expressed as

yFV [k] =
P

∑
p=1

Q

∑
q1=0

Q

∑
q2=q1

...
Q

∑
qp=qp−1

Q

∑
qp+1=qp

Q

∑
qp+2=qp+1

...

...
Q

∑
q2p−1=q2p−2

h2p−1(q1,...,q2p−1)X
p

∏
i=1

x[k−qi]
2p−1

∏
j=p+1

x∗[k−q j].

(4.40)

The first thing that can be observed about this model is the fact that the regressors order is always odd,
being 2P− 1 the maximum order. Since we are working with the complex envelope of the signal, there
have to be p−1 conjugated factors and p non-conjugated ones in order to make y[k] and x[k] have the same
fundamental tone. The reason why each summation depends on the value of the parameter of the previous
one is to avoid repetitions of combinations that would lead to considering a regressor more than once. Finally,
it is important to consider that thanks to the fading memory effect, the Volterra series can be transformed to a
sufficiently accurate finite model. Namely, due to the decrease of the regressor importance when n increases,
Q represents the memory depth of the model.
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Generalized Memory Polynomial Also known as GMP [75], this model comes from the memory polyno-
mial model (MP) [65], so it is worth understanding MP model before getting to know the GMP. Memory
polynomial can be seen as a simple and elegant approach to introduce memory effects in a static nonlinear
polynomial model. Its behavior is reproduced by Eq.(4.41)

yMP =
N

∑
n=1

M

∑
m=0

anmx[k−qm]|x[k−qm]|n−1 (4.41)

It is just a simplification of Volterra series in which one there are left only diagonal regressors. There
are not Volterra cross memory terms. Therefore, we cannot find terms such as x(n)x(n−1). This provokes
the fact that each polynomial only depends on a certain delay of the input signal, not a combination of
several different delays. The assumption is that non-diagonal terms do not contribute enough to make it
computationally efficient to compute their kernels, since they are not relevant on accuracy enhancement.
However, some upper and lower diagonal terms may contribute enough to make it worth it for a model to
consider them. That is why the Generalized Memory Polynomial was presented as an approach to avoid all
those non diagonals terms from being removed to the model.

yGMP[k] =
N

∑
n=1

M

∑
m=0

anmx[k−qm]|x[k−qm]|n−1

N

∑
n=1

M

∑
m=0

S

∑
sm=0

bnmsx[k−qm]|x[k−qm−qs]|n−1

N

∑
n=1

M

∑
m=0

S

∑
sm=0

cnmsx[k−qm]|x[k−qm +qs]|n−1.

(4.42)

As the name indicates, this model contains the memory polynomial model. In fact, MP model is reproduced
by the first summation. Besides the MP, the GMP introduces another parameter S, which allows the upper
and lower diagonal regressors to appear and have its own bnms or cnms kernels. That is how this shorter, and
thus more computationally efficient model than FV is defined.



5 Random Forest Application to Volterra
Kernels Selection

I don’t want to belong to any club that will accept me as a member

Groucho Marx

This chapter presents the application of the Random Forest technique to behavioral modeling component
selection. Several digital predistorters (DPDs) with a random structure are attained to obtain a sequence of
the regressors importance with respect to their impact in the linearization error of a power amplifier (PA). The
approach has been validated in the DPD of a commercial PA operating under a 5G-NR signal, showcasing
the ability of the algorithm to sort and prune the components.

5.1 Introduction

The evolution of digital communication standards, such as those included in the fifth generation (5G) of
mobile communications, has led to new challenges about power amplifiers (PAs) performance. Orthogonal
frequency division multiplexing (OFDM) has become one of the most used modern modulation techniques
due to its narrowband spectral efficiency. Despite having interesting advantages, this modulation method
is characterized by its high peak-to-average power ratio (PAPR), which is understood as its significant
drawback. Since PAs are the most power-consuming element of a wireless communication system, improving
their efficiency is essential to avoid energy wastage. Considering the importance of energy savings and
its environmental effects, it is a widespread practice to work with PAs at their peak power, i.e., in their
saturation zone, where their maximum power efficiency is achieved. These nonlinearities lead to undesired
consequences such as in-band distortion and spectral regrowth.
Achieving power efficient wireless communication systems while maintaining its linear behavior has

become a challenging issue in the industry [76]. Digital predistortion (DPD) techniques arise as a solution to
this efficiency-linearity trade-off. DPD has become one of the most popular PA linearization techniques due
to its excellent performance [77]. However, in order to compensate the unwanted nonlinearities of the PA, an
accurate model of its behavior is required.
Among the different behavioral models that have been presented with this aim, Volterra-series-based

models have been highlighted as promising candidates thanks to their accurate performance on modeling
nonlinear systems with memory. Considering that Volterra series are affected by the curse of dimensionality,
that is, their number of components grow rapidly with the nonlinear order and memory depth, component
selection techniques appear to reduce the computational requirements without losing significant accuracy.
Different pruning techniques have emerged in this framework [?]. These regression methods are based on
selecting the most relevant coefficients of a model under a specific situation, e.g., a fixed power level or
signal characteristics like bandwidth and modulation, therefore they present an inherent lack of generalization
ability. Within the supervised learning techniques, random forests [78] are known to be good at generalization
since these are ensemble learning methods based on aggregating results of different situations. In the context
of model order reduction techniques for DPD, Random Forest can be classified as a brute force selection

37
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Figure 5.1 Random Forest application to DPD.

Table 5.1 Input data to the Random Forest algorithm where 1 and 0 stands for the inclusion of the i-th
regressor φi into the model..

t φ1 φ2 . . . φn NMSE (dB)
1 0 1 . . . 1 -45.8
2 0 0 . . . 1 -41.1
...

...
...

...
...

...
N 1 1 . . . 0 -35.9

technique, together with less relevant basis removal [79]. The application of a Random Forest algorithm to
DPD is illustrated in Fig. 5.1.

In this work, we focus on the application of random forest to determine the structure of a PA model. This
contribution continues with the theoretical framework in Section 5.2. Theory of random forest is provided in
Section 5.3 along with the experimental part in Section 5.4. Section 5.5 concludes this work.

5.2 Volterra Series and Linear Regression

Linear algebra methods such as multiple linear regression are often used to compute Volterra-series
model parameters. Thus, the input-output signal relationship is modeled through the measurement equation
y = Xh+ ε where y ∈ Cm represents a m-sample segment of the system response, the observation matrix
X ∈ Cm×n contains the n model regressors, and h represents the model coefficients, also known as Volterra
kernels, and ε is the measurement noise. An estimation of h is computed by using the least squares solution
as ĥ = (XH X)−1XHy. Once the Volterra kernels have been obtained, an estimate of the system response is
calculated as ŷ = Xĥ. In a DPD scenario, the model is employed to obtain a predistorted signal z. Eventually,
in order to evaluate the DPD performance, the linearization normalized mean squared error (NMSE) [80]
is computed as NMSE=

‖xG−y‖22
‖xG‖22

, when z is applied as the input, G represents the gain of the PA and ‖ · ‖2

stands for the `2 norm of its argument.
Volterra kernels estimation provides accurate results for specific situations such as an invariant PA operating

point, but it does not achieve good results at generalization. Due to its well known generalization capability, a
Random Forest approach, where Volterra series models are considered as individual decision trees of which
results are averaged, is presented as a promising workaround.

5.3 Random Forest

Decision trees are useful and simple machine learning models which are characterized by a hierarchical
structure based on recursively dividing the input on subsets. At the root node, it begins considering the whole
dataset, and selects the best split variable among all of them. This process, which is called induction [81], is
repeated until a split is found for each of the variables. The goal of induction is to create subsets formed of
similar data. There are different approaches to achieve this target. For ease of understanding, we will start
considering binary decision trees, where variables can only value 0 or 1. In order to obtain homogeneous
subsets, a simple technique is to split on a variable and measure the variance of the output when the value of
this variable is fixed [82]. The variable with the lowest output variance will be considered as the next one to
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use as split. Hence, variance will be computed as:

var( j) = w0var(s0)+w1var(s1), (5.1)

where wi is the amount of samples that belong to the si subset of the output, which accomplish that the j-th
variable is equal to i. When working with non-binary decision trees, the only difference of this method is that
a previous step needs to be made. At binary regression trees, there is no need to worry about where to split
the values of each variable, since there are only two different values. However, when variables are not binary,
the first step requires finding the best split point at each variable. This is usually made by going over the
whole range of values of the variable, dividing the output dataset and comparing the variance computed as
described in Eq.(5.1) until the lowest is found. This induction process continues until the maximum number
of splits (known as depth of the tree) is reached. Other parameters such as the minimum number of samples
in each subset are also used to limit the iterations of the induction algorithm. Otherwise, induction would
continue until every variable had been used as split. After induction, a pruning technique may be applied to
the tree. Pruning is used to remove splits that do not improve the accuracy of the tree, reducing in this way
the complexity of the model. In addition to this, pruning is useful to reduce overfitting, which is a common
problem of this machine learning algorithm. Various pruning techniques have been studied [83] and they
are classified in post-pruning and pre-pruning. The latter is not done after induction, but at the same time.
One of the most simple but yet effective post-pruning methods is Reduced Error Pruning. It considers every
split node as possible point of pruning. It consists of removing the subtree rooted at that node, making it a
leaf node and evaluating the performance of the pruned tree. If its accuracy is better or equal to the original
accuracy, the pruned tree will replace the original one.

As it was previously discussed, decision trees tend to overfit, so they are highly sensitive to input variations.
Ensemble learning algorithms, which have recently become popular due to their flexibility and steadiness,
have solved this drawback by generating models and aggregating their results [84]. Two methods were
early derived from this concept: boosting and bagging of decision trees. Bagging methods are based on the
construction of trees that take different random subsets from the input, named as bootstrap datasets. These
trees are completely independent between each other so that they can be trained in parallel. At bagging,
all the data has the same probability to appear in a new bootstrap sample. However, at boosting, new trees
focus on the data that was wrongly classified or regressed by previous trees [85]. Hence, trees need to be
sequentially created, since every tree depends on the success of the previous ones.
Random Forests are based on bagging of decision trees, so from now on we will focus on this technique.

After trees are independently constructed, usually without pruning, they are used for classification, where
the most voted class is considered as the result, or regression, where the output model is used to obtain an
estimate. Volterra series models can be considered as decision trees where a split represents the consideration
of a regressor into the model, as it is illustrated in Fig. 5.2.

y[k]

NMSE=−3.8 dB

x[k−2]

NMSE=−39.2 dB

NMSE=−43.9 dB

x[k]|x[k]|2

NMSE=−39.3 dB

x[k−2]|x[k−2]|2

x[k]

Figure 5.2 Decision tree representation of a Volterra series model, in which x[k] is chosen at the root leaf
and x[k]|x[k]|2 at the second split. At each leaf node the attained normalized mean square error
(NMSE) is given as an example..

Decision trees which form a Random Forest take a bootstrap dataset and, at each split, not every predictor is
considered on the best split selection, but a random subset of them. This new random step provides additional
robustness to the model. The performance of this model is usually evaluated by computing the out-of-bag
(OOB) error as described in Algorithm 1 [86]. This indicator represents the average NMSE for each input xi
sample, which is computed using predictions from the trees did not use xi during their induction or training
stage. After that, these trees are used for classification, where the most voted class is considered as the result,
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Algorithm 1 Random Forest
Input: X ∈ Cm×n, y ∈ Cm, NT = number of trees
Output: Imp
1: Initialization :
2: for model = 1 to NT do
3: Estimate a model of n/2 random regressors.
4: Calculate linearization NMSE.
5: end for
6: for tree = 1 to NT do
7: Over 2/3 of the the length of the input signal:
8: for split = 1 to n do
9: Randomly select n/3 regressors of the model.
10: Split in the regressor with the lowest variance.
11: end for
12: Obtain the validation NMSE of the tree.
13: end for
14: Compute the OOB error as ∑

NT
t=1

NMSEt
NT

15: for f = 1 in n do
16: Shuffle the values of feature f while leaving the rest unchanged to obtain Xψ

f .
17: Get predictions of y using Xψ

f as input.
18: Compute the importance of this variable as:
19: Imp( f ) = NMSE(Xψ

f )−OOB
20: end for

or regression, where the output model is used to obtain an estimate. Besides these applications, Random
Forests achieve to compute accurate variable importance by randomly permuting the values of a predictor
while leaving the others unchanged, making new predictions and computing the new out-of-bag error as
it is expressed in Eq. (5.2) [87]. The difference between this new OOB and the one that was computed by
using the unchanged original input sample as represents the variable importance, also known as permutation
importance. In terms of the problem at hand, variable importance estimation can be used to get the relevance
of each one of the n regressors on predicting y as

Imp( f ) = OOB(Xψ

f )−OOB(X), (5.2)

where Xψ

f represents the input matrix with randomly permuted values at the f -th feature column. Volterra
series models can be considered as decision trees where a split represents the consideration of a regressor
into the model, as it is illustrated in Fig. 5.2. Repeating this process for every single variable would result in
a feature importance vector Imp, from which pruning decisions can be made.

Table 5.2 DOMP and Random Forest DPD linearization performance in a sweep of number of coefficients.

# DOMP Random Forest
coeff. NMSE (dB) ACPR-1(dBc) ACPR+1(dBc) EVM(%) NMSE (dB) ACPR-1(dBc) ACPR+1 (dBc) EVM(%)
5 -40.0 -49.7 -50.8 1.2 -41.8 -49.5 -50.3 1.0
6 -40.4 -50.7 -51.9 1.2 -42.5 -50.5 -51.4 1.0
7 -40.9 -54.2 -54.6 1.1 -43.0 -52.2 -53.3 1.0
8 -41.1 -54.6 -55.2 1.1 -43.6 -52.5 -54.0 0.9
9 -46.8 -54.4 -54.9 0.8 -45.7 -52.5 -54.0 0.8
10 -46.9 -54.5 -54.9 0.8 -46.5 -52.5 -54.2 0.8
15 -46.8 -54.2 -55.2 0.8 -47.3 -54.0 -53.7 0.8
20 -48.4 -54.4 -54.8 0.8 -48.5 -54.8 -54.5 0.8
25 -48.5 -54.8 -54.3 0.8 -48.4 -54.7 -54.0 0.8
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Figure 5.3 ACPR attained by Random Forest and DOMP..

Figure 5.4 AM/Gain characteristics of a PA without DPD and with DPD composed of the 25 most relevant
coefficients identified by Random Forest..

5.4 Experimental Validation

The validation of the presented technique was executed over a 30 MHz 5G-NR signal acquired on the
testbench described in [88]. The PA operating point was fixed to +27.5 dBm of average output power which
corresponds to 1.2 dB of gain compression. The input dataset was built by using 5000 DPD models obtained
by randomly pruning a generalized memory polynomial (GMP) of 13th order and maximum memory depth of
15. Each one of them was applied to one OFDM symbol and the linearization NMSE was used as the output
vector. Table 5.1 shows the structure of the data that was introduced to a Random Forest. The Random Forest
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Figure 5.5 Power spectral density of the signal without DPD and with 25-coefficient DPDs attained with
Random Forest and DOMP.

computed a vector in which the regressors are sorted in order of importance. Using this vector, a sequence of
DPD models following the order of importance was applied. As a comparison, the list of regressors returned
by the doubly orthogonal matching pursuit (DOMP) sorting technique [89] was also executed. Table 5.2
shows the performance attained for both algorithms varying the number of coefficients in a range from 5 to 25.
Random Forest exhibits a better identification of the relevant coefficients in the low number of coefficients
range. AM/Gain characteristics for the PA without DPD and with a DPD of 25 coeffients obtained with the
Random Forest are illustrated in Fig. 5.4, where the linearization of the DUT is clearly observed. Fig. 5.5
shows the power spectral density in the same situation adding the results for the DOMP technique with the
same number of coeffients, where a spectral regrowth reduction is observed with respect to the case without
DPD, achieving a similar performance with both algorithms. Another figure of merit is presented in Fig 5.3
to show the spectral benefits achieved by Random Forest, where the upper and lower Adjacent Channel Power
Ratio (ACPR) are illustrated.

5.5 Conclusion

In this work, the application of Random Forest to the determination of Volterra-based DPD models for
PAs have been presented. Experimental results show how this groundbreaking technique is able to extract the
most relevant coefficients within a DPD by processing a set of random-structured models. Random Forest
promising generalization benefits are yet to be studied in future research.
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6 Codes

Algorithm 6.1 Complex Valued Neural Network Implementation. This code is based on an implementation
of a natural valued ANN, from which changes have been made to adapt it.

import numpy as np
import scipy.io as sio
import math
from scipy.spatial import distance
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("error")

# Dataset loading
#dataset = sio.loadmat(’y_lte15MHz_ovs6_35c5_CreeZHL42W_ppc’)
dataset = sio.loadmat(’syntheticsignal2’)
#X = (np.random.rand(1000 , 1) + np.random.rand(1000 , 1)*1j) +1 +1j

X = dataset["x"]
Y = dataset["y"]
from sklearn.preprocessing import MinMaxScaler
sc = MinMaxScaler(feature_range = (1, 2))
X = sc.fit_transform(X)
Y = sc.transform(Y)
mem=0
train_size = 1000

X_train =X [0:train_size]
X_test = X

y_test= Y
for i in range( 1, mem+1):

X_train = np.append(X_train, X[i:1000+i], 1)
X_test = np.append(X_test, X[0+i:30000+i], 1)

y_train = Y [mem:train_size+mem]
# y_test = Y [0+mem:30000+mem]
p=mem+1
topology = [p ,4, 1]
learn = 200

45
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class Layer ():
# This class represents a Layer, formed by a group of neurons and weights

between this layer and the previous one
def __init__(self, conn, n_neur, act_f, der_f, der_f_vconj):

self.neur=[]
for i in range (0, n_neur):

self.neur.append( Neuron (act_f(2*i+1), der_f(2*i+1), der_f_vconj(2*
i+1)))

# self.b = (np.random.rand(1,neur) + np.random.rand(1,neur)*1j) * 2 -1
-1j
self.W = (np.random.rand(conn , n_neur) + np.random.rand(conn , n_neur)

*1j) * 2 - 1 - 1j

class Neuron ():
# Class that represents a neuron, formed by an activation function and its

derivatives
def __init__(self,act_f, der_f, der_f_vconj):

self.act_f= act_f
self.der_f=der_f
self.der_f_vconj=der_f_vconj

# DEFINICION DE LAS FUNCIONES DE ACTIVACION Y SUS DERIVADAS RESPECTO A W

# CLMS en funcion del orden de la neurona

def clms_function (n):
clms= lambda v: v * (np.absolute(v)**(n-1))
return clms

def der_clms_v (n):
der_clms_v = lambda v: ((n+1)/2) * (np.absolute(v)**(n-1))
return der_clms_v

def der_clms_vconj (n):
der_clms_vconj = lambda v : ((n-1)/2) * ((np.absolute(v)**(n-3))*(v**2))
return der_clms_vconj

def nmse (y, yest):
calc= 20*math.log10(np.linalg.norm(y-yest)/np.linalg.norm(y))
return calc

# Model definition and creation

def create_ann (topology, act_f, der_f, der_f_vconj):
ann = []

for n_layer in range(1, len(topology)):
ann.append(Layer(topology[n_layer-1],topology[n_layer], act_f, der_f

, der_f_vconj ))
return ann

#We use MSE as cost function
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error = lambda y, yest : (y-yest)
f_cost = lambda y, yest :(1/2)*np.mean((np.absolute(error(y,yest)))**2)
der_fcost = lambda y, yest: np.absolute(y,yest)
neural_net = create_ann(topology, clms_function, der_clms_v, der_clms_vconj)

#Training

def train(neural_net, X, Y , der_cost_mse, lr=0.5, train = True):
out = [(None,X)]
#forward

for n_layer in range(0, len(neural_net)):
v = out[-1][1] @ neural_net[n_layer].W #+ neural_net[n_layer].b
y = np.zeros([ len (X[:]),len(neural_net[n_layer].neur)]) + np.zeros([

len (X[:]),len(neural_net[n_layer].neur)])*1j
for n_neur,neur in enumerate(neural_net[n_layer].neur):

y[:,n_neur] = neur.act_f(v[:,n_neur])
out.append((v, y))

#backward
if train:
# lr = np.full((n))
deltas = []
errores = []
for n_layer in reversed(range(0, len(neural_net))):

v = out[n_layer+1][0]
y = out[n_layer+1][1]

der_f_vconj= np.zeros([ len (X[:]),len(neural_net[n_layer].neur)]) +
np.zeros([ len (X[:]),len(neural_net[n_layer].neur)])*1j

der_f_v = np.zeros([ len (X[:]),len(neural_net[n_layer].neur)]) + np
.zeros([ len (X[:]),len(neural_net[n_layer].neur)])*1j

lrs = []
for n_neur , neur in enumerate(neural_net[n_layer].neur):

der_f_vconj[:,n_neur] = neur.der_f_vconj(v[:, n_neur])
der_f_v[:, n_neur] = neur.der_f((v[:, n_neur]))
lrs.append(lr*(100**(-2*np.linalg.norm(der_f_v[:,n_neur])))) #

esto provoca resultados interesantes, probar con señal
sintetica.

#lrs.append(lr*(10000**n_neur))

if n_layer == len (neural_net) -1:
delta= +0.5*( (np.conj(error(Y,y))* der_f_vconj)+ (error(Y,y)*

der_f_v)) #tested
deltas.insert (0, delta)
errores.insert(0, np.conj(error(Y,y))*der_f_v )
errores.insert(1, error(Y,y)*der_f_vconj)
errores.insert(2, np.conj(error(Y,y))*der_f_vconj)
errores.insert(3, error(Y,y)*der_f_v)

else:
a=errores[0] @ _W.T
b= errores[1] @ _W.T
c = errores[2] @ np.conj(_W.T) #si hubiera mas capas habria que

establecer mejor la relacion



48 Chapter 6. Codes

d = errores[3] @ np.conj(_W.T)
delta = 0.5 *((a+b)* der_f_v +(c+d)*der_f_vconj)
deltas.insert (0,delta)

_W = neural_net[n_layer].W
# Gradient descent
# Update equation

neural_net[n_layer].W = neural_net[n_layer].W + np.conj(out[n_layer
][1]).T @ deltas[0] * lr # Incremento de W es lr*delta*salida de
esa capa

# print( neural_net[n_layer].W)
#print (der_f_vconj[0])

return out[-1][1]

# Visualization (test and training)

import time
from IPython.display import clear_output

neural_net = create_ann(topology, clms_function, der_clms_v, der_clms_vconj)

loss = []
nmses= []
for i in range(0, 600000):

# Let’s train
pY = train(neural_net, X_train, y_train, der_fcost , lr=learn)

if i % 100 == 0:
# print(pY)
print("Error conseguido durante el entrenamiento = ")
last_loss=f_cost(y_train, pY)
loss.append(last_loss)
print (last_loss)
clear_output(wait=True)
y_pred = train(neural_net

, X_test, y_test , der_fcost, lr=0.0001, train = False)
NMSE = nmse(y_test, y_pred)
nmses.append(NMSE)
plt.plot(range(len(nmses)), nmses)
plt.show()
time.sleep(0.5)
print("Valor del NMSE conseguido = ")
print (NMSE)

Algorithm 6.2 Script that does the data preprocessing, calls the other scripts and presents the results.

%% INPUT PREPROCESSING
clear all;
tic;
load(’random_forest_v2’);
x=xsw;
y=ymed;
Nseg = 1;
n_trees=1500;
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regresores = string([1:1:81]);
regresores= "R" + regresores;
models=[];
n_regs=40;
n_iters = [5000];
Mdl =[];
val=false;
i=1;
parfor iseg = 1:5000

dBm = @(x) 10*log10(rms(x).^2/100)+30;
dBminst = @(x) 10*log10(abs(x).^2/100)+30;
PAPR = @(x) 20*log10(max(abs(x))/rms(x));
maxdBm = @(x) dBm(x) + PAPR(x);
scale_dBm = @(x,P) x*10^((P-dBm(x))/20);
model_PA.tipo = ’GMP’;
model_PA.extension_periodica = 0;
model_PA.grafica = 0;
model_PA.h = [];
model_PA.pe = 0;
model_PA.type = ’GMP’;
model_PA.extension_periodica = 0;
model_PA.grafica = 0;
model_PA.h = [];

model_PA.Ka = [0:12];
model_PA.La = 15*ones(size(model_PA.Ka));
model_PA.Kb = [2 4 6];
model_PA.Lb = [1 1 1];
model_PA.Mb = [1 1 1];
model_PA.Kc = [2 4 6];
model_PA.Lc = [1 1 1];
model_PA.Mc = [1 1 1];
model_PA.dc = 0;
model_PA.cs = 0;
model_PA.nmax = 200;

warning (’off’,’stats:robustfit:RankDeficient’);
warning (’off’,’MATLAB:nearlySingularMatrix’);
orden = [1:81];
orden = orden(randperm(length(orden)));
orden = orden(1:n_regs);
model_PA.s = orden;
model_PA.calculo = ’shuffle’;
ind = [1:2*length(x)/10];
%ind = [(iseg-1)*length(x)/Nseg+1:iseg*length(x)/Nseg];
%disp(fprintf(’%d: desde %d a %d’,iseg,(iseg-1)*length(x)/Nseg+1,iseg*

length(x)/Nseg));
disp(fprintf(’Iteracion %d’,iseg));
x_id = x(ind);
y_id = y(ind);
x_va = x(end/2:end);
y_va = y(end/2:end);

model_PA = model_gmp_domp_omp(y_id, x_id, model_PA,val)

models=[models;model_PA];
model_PA=[];



50 Chapter 6. Codes

%si la h no esta vacia, el modelo se valida, no identifica uno nuevo.
%[model_PA] = model_gmp_domp_omp(y_va, x_va, model_PA)

end

n_comb=n_iters;
A=zeros(n_comb,81); %si no se usa pondremos un 0, si se usa, un uno
NMSE=[];
for i = 1:n_comb

A(i, models(i).s)=1; %el resto cero porque no se usan
NMSE(i,1)= models(i).nmse;

end
T = array2table(A,’VariableNames’,cellstr(regresores));
NMSE = array2table(abs(NMSE));
T= [T, NMSE];
%%
X = NMSE;
Y= A;
[n,m]=size(X);
[Xtrain, idtrain] = datasample(X, round(0.67*n));
Ytrain= Y(idtrain);
idtest = 1:n;
idtest(idtrain) = [];
X_test = X(idtest);
Y_test = Y(idtest);

imp = manual_importances(T(1:81),T)
[B,I] = maxk(imp, length(imp));
regresores_order= "Regresor " + models(1).Rmat(I);
O= table(regresores_order, B’, ’VariableNames’,{’RegresoresOrder’, ’Importance’

});
orden = I;
configuration;
model_PA.s = orden(1:n_regs);
model_PA.calculo = ’shuffle’;
val = true;
model_PA = model_gmp_domp_omp(y_id, x_id, model_PA, true);
toc

Algorithm 6.3 Script that implements the Random Forest importance estimation algorithm.

%funcion de calculo de las importancias de las variables a partir de la
%matriz T (indica los regresores incluidos en cada modelo aleatorio y el
%NMSE conseguido)
function [importances] = manual_importances(X, y)
[Xtrain, idtrain] = datasample(X, round(0.66*n));
idtest = 1:n;
idtest(idtrain) = [];
X_test = X(idtest);
for train_idx, test_idx in range(10):

X_train, X_test = X[train_idx], X[test_idx]
Y_train, Y_test = Y[train_idx], Y[test_idx]
r = manual_randomforest.fit(X_train, Y_train)
acc = r2_score(Y_test, rf.predict(X_test))
for i in range(X.shape[1]):

X_t = X_test.copy()
np.random.shuffle(X_t[:, i])
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shuff_acc = r2_score(Y_test, rf.predict(X_t))
scores[names[i]].append((acc-shuff_acc)/acc)

print ("Features sorted by their score:")
print (sorted([(round(np.mean(score), 4), feat) for

feat, score in scores.items()], reverse=True))
end

end
end
end

Algorithm 6.4 Random Forest class. It is used for importance estimation.

class RandomForest():
def __init__(self, x, y, n_trees, n_features, sample_sz, depth=10, min_leaf

=5):
np.random.seed(12)
if n_features == ’sqrt’:

self.n_features = int(np.sqrt(x.shape[1]))
elif n_features == ’log2’:

self.n_features = int(np.log2(x.shape[1]))
else:

self.n_features = n_features
print(self.n_features, "sha: ",x.shape[1])
self.x, self.y, self.sample_sz, self.depth, self.min_leaf = x, y,

sample_sz, depth, min_leaf
self.trees = [self.create_tree() for i in range(n_trees)]

def create_tree(self):
idxs = np.random.permutation(len(self.y))[:self.sample_sz]
f_idxs = np.random.permutation(self.x.shape[1])[:self.n_features]
return DecisionTree(self.x.iloc[idxs], self.y[idxs], self.n_features,

f_idxs,
idxs=np.array(range(self.sample_sz)),depth = self.depth,

min_leaf=self.min_leaf)

def predict(self, x):
return np.mean([t.predict(x) for t in self.trees], axis=0)

def std_agg(cnt, s1, s2): return math.sqrt((s2/cnt) - (s1/cnt)**2)

class DecisionTree():
def __init__(self, x, y, n_features, f_idxs,idxs,depth=10, min_leaf=5):

self.x, self.y, self.idxs, self.min_leaf, self.f_idxs = x, y, idxs,
min_leaf, f_idxs

self.depth = depth
print(f_idxs)

# print(self.depth)
self.n_features = n_features
self.n, self.c = len(idxs), x.shape[1]
self.val = np.mean(y[idxs])
self.score = float(’inf’)
self.find_varsplit()

def find_varsplit(self):
for i in self.f_idxs: self.find_better_split(i)
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if self.is_leaf: return
x = self.split_col
lhs = np.nonzero(x<=self.split)[0]
rhs = np.nonzero(x>self.split)[0]
lf_idxs = np.random.permutation(self.x.shape[1])[:self.n_features]
rf_idxs = np.random.permutation(self.x.shape[1])[:self.n_features]
self.lhs = DecisionTree(self.x, self.y, self.n_features, lf_idxs, self.

idxs[lhs], depth=self.depth-1, min_leaf=self.min_leaf)
self.rhs = DecisionTree(self.x, self.y, self.n_features, rf_idxs, self.

idxs[rhs], depth=self.depth-1, min_leaf=self.min_leaf)

def find_better_split(self, var_idx):
x, y = self.x.values[self.idxs,var_idx], self.y[self.idxs]
sort_idx = np.argsort(x)
sort_y,sort_x = y[sort_idx], x[sort_idx]
rhs_cnt,rhs_sum,rhs_sum2 = self.n, sort_y.sum(), (sort_y**2).sum()
lhs_cnt,lhs_sum,lhs_sum2 = 0,0.,0.

for i in range(0,self.n-self.min_leaf-1):
xi,yi = sort_x[i],sort_y[i]
lhs_cnt += 1; rhs_cnt -= 1
lhs_sum += yi; rhs_sum -= yi
lhs_sum2 += yi**2; rhs_sum2 -= yi**2
if i<self.min_leaf or xi==sort_x[i+1]:

continue

lhs_std = std_agg(lhs_cnt, lhs_sum, lhs_sum2)
rhs_std = std_agg(rhs_cnt, rhs_sum, rhs_sum2)
curr_score = lhs_std*lhs_cnt + rhs_std*rhs_cnt
if curr_score<self.score:

self.var_idx,self.score,self.split = var_idx,curr_score,xi

@property
def split_name(self): return self.x.columns[self.var_idx]

@property
def split_col(self): return self.x.values[self.idxs,self.var_idx]

@property
def is_leaf(self): return self.score == float(’inf’) or self.depth <= 0

def predict(self, x):
return np.array([self.predict_row(xi) for xi in x])

def predict_row(self, xi):
if self.is_leaf: return self.val
t = self.lhs if xi[self.var_idx]<=self.split else self.rhs
return t.predict_row(xi)

Algorithm 6.5 Decision tree class. A Random Forest is based on independently generated decision trees.

%% INPUT PREPROCESSING
clear all;
tic;
load(’random_forest_v2’);
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x=xsw;
y=ymed;
Nseg = 1;
n_trees=1500;
regresores = string([1:1:81]);
regresores= "R" + regresores;
models=[];
n_regs=40;
n_iters = [5000];
Mdl =[];
val=false;
i=1;
parfor iseg = 1:5000

dBm = @(x) 10*log10(rms(x).^2/100)+30;
dBminst = @(x) 10*log10(abs(x).^2/100)+30;
PAPR = @(x) 20*log10(max(abs(x))/rms(x));
maxdBm = @(x) dBm(x) + PAPR(x);
scale_dBm = @(x,P) x*10^((P-dBm(x))/20);
model_PA.tipo = ’GMP’;
model_PA.extension_periodica = 0;
model_PA.grafica = 0;
model_PA.h = [];
model_PA.pe = 0;
model_PA.type = ’GMP’;
model_PA.extension_periodica = 0;
model_PA.grafica = 0;
model_PA.h = [];

model_PA.Ka = [0:12];
model_PA.La = 15*ones(size(model_PA.Ka));
model_PA.Kb = [2 4 6];
model_PA.Lb = [1 1 1];
model_PA.Mb = [1 1 1];
model_PA.Kc = [2 4 6];
model_PA.Lc = [1 1 1];
model_PA.Mc = [1 1 1];
model_PA.dc = 0;
model_PA.cs = 0;
model_PA.nmax = 200;

warning (’off’,’stats:robustfit:RankDeficient’);
warning (’off’,’MATLAB:nearlySingularMatrix’);
orden = [1:81];
orden = orden(randperm(length(orden)));
orden = orden(1:n_regs);
model_PA.s = orden;
model_PA.calculo = ’shuffle’;
ind = [1:2*length(x)/10];
%ind = [(iseg-1)*length(x)/Nseg+1:iseg*length(x)/Nseg];
%disp(fprintf(’%d: desde %d a %d’,iseg,(iseg-1)*length(x)/Nseg+1,iseg*

length(x)/Nseg));
disp(fprintf(’Iteracion %d’,iseg));
x_id = x(ind);
y_id = y(ind);
x_va = x(end/2:end);
y_va = y(end/2:end);
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model_PA = model_gmp_domp_omp(y_id, x_id, model_PA,val)

models=[models;model_PA];
model_PA=[];
%si la h no esta vacia, el modelo se valida, no identifica uno nuevo.
%[model_PA] = model_gmp_domp_omp(y_va, x_va, model_PA)

end

n_comb=n_iters;
A=zeros(n_comb,81); %si no se usa pondremos un 0, si se usa, un uno
NMSE=[];
for i = 1:n_comb

A(i, models(i).s)=1; %el resto cero porque no se usan
NMSE(i,1)= models(i).nmse;

end
T = array2table(A,’VariableNames’,cellstr(regresores));
NMSE = array2table(abs(NMSE));
T= [T, NMSE];
%%
X = NMSE;
Y= A;
[n,m]=size(X);
[Xtrain, idtrain] = datasample(X, round(0.67*n));
Ytrain= Y(idtrain);
idtest = 1:n;
idtest(idtrain) = [];
X_test = X(idtest);
Y_test = Y(idtest);

imp = manual_importances(T(1:81),T)
[B,I] = maxk(imp, length(imp));
regresores_order= "Regresor " + models(1).Rmat(I);
O= table(regresores_order, B’, ’VariableNames’,{’RegresoresOrder’, ’Importance’

});
orden = I;
configuration;
model_PA.s = orden(1:n_regs);
model_PA.calculo = ’shuffle’;
val = true;
model_PA = model_gmp_domp_omp(y_id, x_id, model_PA, true);
toc
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