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aim, we use several results, such that Fredholm operator of index 0 theory, eigen-
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1 Introduction

In this paper we will study via bifurcation theory the following quasilinear elliptic system
−div(P (u, v)∇u+ S(u, v)∇v) = λa(x)u+ f(x, u)u+ F (x, u, v)uv in Ω,

−div(Q(u, v)∇u+R(u, v)∇v) = µb(x)v + g(x, v)v +G(x, u, v)uv in Ω,

u = v = 0 on ∂Ω,

(1)

where Ω ⊂ RN , N ≥ 1 is a bounded domain with a smooth boundary. We assume

(HPQRS) P (u, v), R(u, v), Q(u, v) and S(u, v) are real functions defined in [0,+∞)× [0,+∞)

of class C2 such that:

Q(u, 0) = 0 ∀u ≥ 0, (2)

S(0, v) = 0 ∀v ≥ 0, (3)

|P (u, v)R(u, v)−Q(u, v)S(u, v)| ≥ δ0 > 0 ∀u, v ≥ 0 (4)

and

P (u, v) ≥ P0 > 0, R(u, v) ≥ R0 > 0 ∀u, v ≥ 0, (5)

where δ0, P0 and R0 are positive constants.

(Hab) a, b : Ω→ [0,∞) are continuous, non-negative and nontrivial functions.

With respect to the reaction terms, we consider λ, µ ∈ R as bifurcation parameters, and

we also assume:

(Hfg) f(x,w) and g(x,w) are real functions defined in Ω×R, continuous in x and of class

C1 in w such that

f(x, 0) = g(x, 0) = 0 ∀x ∈ Ω;

(HFG) F (x, u, v) and G(x, u, v) are real functions defined in Ω × R2, continuous in x and

of class C1 in (u, v).

Observe that our hypotheses are similar to those in [28] (see Section 7.2).

System (1) is of particular interest from the point of view of the applications and

it arises in many important problems, such that reaction-diffusion models in population

dynamics (see [7, 4, 36]) and the Keller-Segel models (see [15, 16]). For instance, in pop-

ulation dynamics the insertion of nonlinear diffusion terms in the left side of (1) describes
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more realistic situation if compared with semilinear case. In this context, the functions

Q,S and P ,R are often called cross-diffusion and self-diffusion terms, respectively.

From the mathematical point of view, there exists an extensive list of articles that

deal with the following particular case of (1) −∆(ϕ(u, v)) = λa(x)u+ f(x, u)u+ F (x, u, v)uv in Ω,

−∆(ψ(u, v)) = µb(x)v + g(x, v)v +G(x, u, v)uv in Ω,
(6)

with some boundary conditions, specially motivated by the well-known model proposed

by Shigesada, Kawasaki and Teramoto [36]. Moreover, several techniques have been used

to deal with (6), for instance fixed point index [32, 33, 34, 27, 17], sub-supersolution

methods [30] and bifurcation theory [13, 11, 20, 29, 21, 41, 19] and references therein.

However, for general systems (1) there are fewer results available in the literature. We

mention [22] that applies fixed point methods for the case in that P,Q,R, S are suitable

polynomial function on u and v, which is not required here, and the interesting bifurcation

results developed by [35] which have been widely used in recent years (see, for instance,

[40, 41, 2, 5]). We point out that the main theorem of [35] is based on Degree theory

for C1 Fredholm mappings of index 0 of [31] and the unilateral bifurcation results of

[28] (see the proof of Theorem 4.4 in [35]). The result provides sufficient conditions to

obtain a unilateral global bifurcation result of positive solutions of a class of quasilinear

elliptic systems. Our results are also based on [28] (see also [26]), but with a different

approach. Precisely, we will extend the bifurcation results for semilinear system of [23]

to the quasilinear case (1), which requires the existence of a non-degenerate semitrivial

positive solution (in a sense that will be defined later) to guarantee the existence of global

bifurcation of non-negative solutions and provides better information on the continuum

obtained.

We also refer to [6] where the authors developed a bifurcation result to analyze a

predator-prey system which is a particular case of (1). Actually, here we extend this

result to the general system (1).

It should be noted that a standard approach to deal with (6) is to apply the change

of variables U = ϕ(u, v) and V = ψ(u, v), transforming (6) into a semilinear system,

decoupled in the diffusion, where one can apply the techniques which worked for such

systems, for instance, the bifurcation theorems of [23]. However, (1) can not be written

as (6) because there does not exist an immediate change variable that transforms (1) into
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a semilinear system.

In order to state our main result, we need to make some considerations. First, we

search for non-negative strong solutions of (1) (in W 2,p
0 (Ω) × W 2,p

0 (Ω), for all p > 1).

Observe that (1) admits three types of non-negative strong solutions: the trivial solu-

tion (0, 0); the semitrivial positive solutions (u, 0) and (0, v) where u and v are positive

solutions of  −div(P (u, 0)∇u) = λa(x)u+ f(x, u)u in Ω,

u = 0 on ∂Ω,
(7)

and  −div(R(0, v)∇v) = µb(x)v + g(x, v)v in Ω,

v = 0 on ∂Ω,
(8)

respectively; and the coexistence states (u, v) with both components positive. With re-

spect to the positive semitrivial solutions we also need the following definition:

Definition 1. Let (λ, θλ) be a non-negative solution of (7). (λ, θλ) is a non-degenerate

solution of (7) if zero is the unique strong solution of the linearization of (7) at θλ, which

is given by −div(Pu(θλ, 0)u∇θλ + P (θλ, 0)∇u) = λa(x)u+ [θλfu(x, θλ) + f(x, θλ)]u in Ω,

u = 0 on Ω.
(9)

In an analogous way, the non-degenerate solution of (8) is defined.

Now, we will introduce some notations with respect to an important eigenvalue prob-

lem. Let P denote the positive cone in C1
0(Ω) whose interior (notation: int(P)) is

nonempty.

On the other hand, given A ∈ C1(Ω) and B,C ∈ C(Ω), satisfying C(x) > 0, A(x) ≥

A0 > 0 for x ∈ Ω and a suitable constant A0, we denote by

σ1[−div(A∇) +B(x);C(x)]

the principal eigenvalue of −div (A(x)∇u) +B(x)u = λC(x)u in Ω,

u = 0 on ∂Ω.

It is well-known (see for instance [24]) that σ1[−div(A∇) +B(x);C(x)] is increasing with

respect to A and B. Moreover, it is decreasing (resp. increasing) with respect to C if

σ1[−div(A∇) +B(x); 1] > 0 (resp.σ1[−div(A∇) +B(x); 1] < 0. See, for instance, [25, 10].
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Now, let B,C ∈ C(Ω), M1,M2 ∈ C2(R), M0 constant and v ∈ C2(Ω)∩ int(P) such that

M2 ≥M0 > 0, C > 0. Consider the following eigenvalue problem −div(M1(v)u∇v +M2(v)∇u) +B(x)u = λC(x)u in Ω,

u = 0 on ∂Ω,
(10)

whose principal eigenvalue will be denoted by

σ1[−div(M1(v)∇v +M2(v)∇) +B(x);C(x)].

On the other hand, let ϕ be a positive eigenfunction of (10) with ‖ϕ‖0 = 1. Using the

change of variable

z = ϕeh(v) ⇔ ze−h(v) = ϕ, h(v) :=

∫ v

0

M1(s)

M2(s)
ds

in (10) with (λ, u) = (λ0, ϕ), where λ0 = σ1[−div(M1(v)∇v +M2(v)∇) +B(x);C(x)], we

obtain  −div(M2(v)e−h(v)∇z) +B(x)ze−h(v) = λ0C(x)ze−h(v) in Ω,

z = 0 on ∂Ω.

Since z = ϕe−h(v) > 0, it follows that

λ0 = σ1[−div(M2(v)e−h(v)∇) +B(x)e−h(v);C(x)e−h(v)].

Thus,

σ1[−div(M1(v)∇v +M2(v)∇) +B(x);C(x)] =

σ1[−div(M2(v)e−h(v)∇) +B(x)e−h(v);C(x)e−h(v)]. (11)

Finally, to state our main result, we define

h1, h2 : [0,∞)→ R

given by

h1(z) :=

∫ z

0

Qv(s, 0)

R(s, 0)
ds (12)

and

h2(z) :=

∫ z

0

Su(0, s)

P (0, s)
ds. (13)

Thus, we have
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Theorem 1.1. Suppose that (HPQRS), (Hab), (Hfg) and (HFG) are satisfied. Let (λ, θλ) ∈

R× int(P) be a nondegenerate solution of (7) and consider

µλ := σ1 [−div (Qv(θλ, 0)∇θλ +R(θλ, 0)∇)−G(x, θλ, 0)θλ; b]

= σ1[−div(R(θλ, 0)e−h1(θλ)∇)−G(x, θλ, 0)θλe
−h1(θλ); be−h1(θλ)]. (14)

Then, from the point (µ, u, v) = (µλ, θλ, 0) emanates a continuum

C ⊂ R× int(P)× int(P)

of coexistence states of (1) such that either:

1. C is unbounded in R× C1
0(Ω)× C1

0(Ω);

2. There exists a positive solution (µ∗, θµ∗) of (8) such that

λ = σ1 [−div (Su(0, θµ∗)∇θµ∗ + P (0, θµ∗)∇)− F (x, 0, θµ∗)θµ∗ ; a]

= σ1[−div(P (0, θµ∗)e−h2(θµ∗ )∇)− F (x, θµ∗ , 0)θµ∗e
−h2(θµ∗ ); ae−h2(θµ∗ )]

and (µ∗, 0, θµ∗) ∈ C;

3. There exists another positive solution of (7), say (λ, ψλ), with ψλ 6= θλ such that

(σ1 [−div (Qv(ψλ, 0)∇ψλ +R(ψλ, 0)∇)−G(x, ψλ, 0)ψλ; b] , ψλ, 0) =

(σ1[−div(R(ψλ, 0)e−h1(ψλ)∇)−G(x, ψλ, 0)ψλe
−h1(ψλ); be−h1(ψλ)], ψλ, 0) ∈ C;

4. λ = σ1[−div(P (0, 0)∇); a] and (σ1[−div(R(0, 0)∇); b], 0, 0) ∈ C.

In the same way, we can fix µ and consider λ as a bifurcation parameter. Thus, we

have:

Theorem 1.2. Suppose that (HPQRS), (Hab), (Hfg) end (HFG) are satisfied. Let (µ, θµ) ∈

R× int(P) be a nondegenerate solution of (8) and consider

λµ = σ1 [−div (Su(0, θµ)∇θµ + P (0, θµ)∇)− F (x, 0, θµ)θµ; a]

= σ1[−div(P (0, θµ)e−h2(θµ)∇)− F (x, θµ, 0)θµe
−h2(θµ); ae−h2(θµ)]. (15)

Then, from the point (λ, u, v) = (λµ, 0, θµ) emanates a continuum

C ⊂ R× int(P)× int(P)

of coexistence states of (1) such that either:
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1. C is unbounded in R× C1
0(Ω)× C1

0(Ω);

2. There exists a positive solution (λ∗, θλ∗) of (7) such that

µ = σ1 [−div (Qv(θλ∗ , 0)∇θλ∗ +R(θλ∗ , 0)∇)−G(x, θλ∗ , 0)θλ∗ ; b]

= σ1[−div(R(θλ∗ , 0)e−h1(θλ∗ )∇)−G(x, θλ∗ , 0)θλ∗e
−h1(θλ∗ ); be−h1(θλ∗ )]

and (λ∗, θλ∗ , 0) ∈ C;

3. There exists another positive solution of (8), say (µ, ψµ), with ψµ 6= θµ such that

(σ1 [−div (Su(0, ψµ)∇ψµ + P (0, ψµ)∇)− F (x, 0, ψµ)ψµ; a] , 0, ψµ) =

(σ1[−div(P (0, ψµ)e−h2(ψµ)∇)− F (x, ψµ, 0)ψµe
−h2(ψµ); ae−h2(ψµ)], 0, ψµ) ∈ C;

4. µ = σ1[−div(R(0, 0)∇); b] and (σ1[−div(P (0, 0)∇); a], 0, 0) ∈ C.

Remark 1. An useful comment regarding the eigenvalues µλ and λµ in Theorems 1.1

and 1.2 is necessary. Note that

µλ = σ1 [−div (Qv(θλ, 0)∇θλ +R(θλ, 0)∇)−G(x, θλ, 0)θλ; b] (16)

or

µλ = σ1[−div(R(θλ, 0)e−h1(θλ)∇)−G(x, θλ, 0)θλe
−h1(θλ); be−h1(θλ)], (17)

Thanks to (2) in (HPQRS), (16) appears naturally when one linearizes the second equation

of (1) at (θλ, 0) and we will be used throughout the proof of Theorem 1.1. On the other

hand, (17) can be more convenient in applications, due to the monotonicity properties of

this eigenvalue. The same remark applies to λµ.

Remark 2. Similar to what happens in Theorem 7.2.2 of [28] (see Remark 7.2.3), the

alternative 3 of Theorem 1.1 (resp. Theorem 1.2) cannot occur if (7) (resp. (8)) has a

unique positive solution and alternative 4 cannot occur if λ 6= σ1[−div(P (0, 0)∇); a] (resp.

µ 6= σ1[−div(R(0, 0)∇); b]). This is a common situation in applications, as we will see in

Section 5.

The paper is organized as follows. In Section 2, we will re-write (1) as a suitable

nonlinear equation to apply the unilateral bifurcation theorems of [28]. In Section 3 we

will present some auxiliary results that will be useful to prove Theorem 1.1, which will be

done in Section 4. Finally, in Section 5 we provide some applications to systems arising

to population dynamics.
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2 Construction of the operator

The main goal of this section is to re-write (1) as a suitable nonlinear equation to apply

the unilateral bifurcation result of [28]. To this end, we argue as follows.

Remark 3. In [28] (see Section 7.2) the author defines the operator on a subspace of

C(Ω), which is ordered Banach space whose positive cone is normal and has nonempty

interior. As we shall see below, we can not do the same, due to the presence of the

gradient of the functions u and v. For this reason, the space chosen will be C1
0(Ω), which

also is an ordered Banach space whose positive cone has nonempty interior, but it is not

normal. However, we can still apply Theorem 12.3 and Corollary 12.4 of [9].

First, in view of (4), we can extend the functions

P,Q,R, S : [0,∞)→ R

to R such that P,Q,R, S ∈ C2(R) and

|P (u, v)Q(u, v)−R(u, v)S(u, v)| ≥ δ̂0 > 0 ∀u, v ∈ R. (18)

Thus, throughout the rest of this paper P,Q,R, S : R → R are function of class C2

satisfying (HPQRS) and (18).

Suppose now that (u, v) ∈ W 2,p
0 (Ω)×W 2,p

0 (Ω), for all p > 1, is a non-negative solution

of (1). Then (1) is equivalent to

−Pu(u, v)|∇u|2 − Sv(u, v)|∇v|2 − (Pv(u, v) + Su(u, v))∇u∇v

−P (u, v)∆u− S(u, v)∆v = λa(x)u+ f(x, u)u+ F (x, u, v)uv in Ω,

−Qu(u, v)|∇u|2 −Rv(u, v)|∇v|2 − (Qv(u, v) +Ru(u, v))∇u∇v

−Q(u, v)∆u−R(u, v)∆v = µb(x)v + g(x, v)v +G(x, u, v)uv in Ω,

u = v = 0 on ∂Ω.

(19)

Denoting by simplicity P = P (u, v), Q = Q(u, v), R = R(u, v), S = S(u, v) and the

same for its derivatives, we can re-write (19) as
−P∆u− S∆v = M in Ω,

−Q∆u−R∆v = N in Ω,

u = v = 0 on ∂Ω,

where

M := M(u, v) = Pu|∇u|2 + Sv|∇v|2 + (Pv + Su)∇u∇v+ λa(x)u+ f(x, u)u+F (x, u, v)uv
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and

N := N(µ, u, v) = Qu|∇u|2 +Rv|∇v|2 +(Qv+Ru)∇u∇v+µb(x)v+g(x, v)v+G(x, u, v)uv.

Or in matrix form

−

 P S

Q R

 ∆u

∆v

 =

 M

N

 . (20)

By hypothesis (18), the matrix  P (s, t) S(s, t)

Q(s, t) R(s, t)


is invertible for all s, t ∈ R and then (20) is equivalent to

−

 ∆u

∆v

 =
1

PR−QS

 R −S

−Q P

 M

N

 =


RM − SN
PR−QS
PN −QM
PR−QS

 .
Let (λ, θλ) be a (positive) solution of (7). Adding to both sides of the second equation

above the following linear term

Z(v) :=
−(Qv(θλ, 0) +Ru(θλ, 0))∇θλ∇v + kv

R(θλ, 0)

where k > 0 is a constant to be chosen, it follows −∆u

−∆v + Z(v)

 =


RM − SN
PR−QS

PN −QM
PR−QS

+ Z(v)

 .
Remark 4. The addition of Z is necessary for that the operator Tµ defined in (28) to be

strongly positive (see Lemma 3.2).

Finally,  u

v

 =

 (−∆)−1

(
RM − SN
PR−QS

)
(−∆ + Z)−1

(
PN −QM
PR−QS

+ Z(v)

)
 .

Thus, fixed λ ∈ R, we define the operator

F : R× C1
0(Ω)× C1

0(Ω) −→ C1
0(Ω)× C1

0(Ω)

given by

F(µ, u, v) =

 u− (−∆)−1

(
RM − SN
PR−QS

)
(µ, u, v)

v − (−∆ + Z)−1

((
PN −QM
PR−QS

)
(µ, u, v) + Z(v)

)
 . (21)
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Note that F is well defined because, for each (µ, u, v) ∈ R× C1
0(Ω)× C1

0(Ω),

P (u, v), Q(u, v), R(u, v), S(u, v),M(u, v), N(µ, u, v), Z(v) ∈ C(Ω), ∀λ ∈ R,

and, since the operators

(−∆)−1, (−∆ + Z)−1 : C(Ω) −→ C1
0(Ω)

are well defined, it follows that F is well defined. Moreover, (u, v) ∈ W 2,p
0 (Ω) ×W 2,p

0 (Ω)

is a non-negative strong solution of (1) if, and only if,

F(µ, u, v) = 0 µ ∈ R.

Furthermore,

F(µ, θλ, 0) = 0 ∀µ ∈ R,

consequently (µ, θλ, 0) can be regarded as the known curve of the solutions from which

we hope the coexistence states will bifurcate.

The next important step to apply the Theorem 6.4.3 of [28] is to calculate

L(µ) := D(u,v)F(µ, θλ, 0).

In the following we will calculate this derivative. By definition of F (see (21)) we have

L(µ) = D(u,v)F(µ, θλ, 0) = I − (−∆)−1

(
RM − SN
PR−QS

)
u

−(−∆)−1

(
RM − SN
PR−QS

)
v

−(−∆ + Z)−1

(
PN −QM
PR−QS

)
u

I − (−∆ + Z)−1

(
PN −QM
PR−QS

+ Z

)
v

 (22)

where each term is computed in (θλ, 0) and we have already used that Z does not depend

on u and, hence, Zu ≡ 0. Let us compute each term in the above operator. We emphasize

again that the functions P,Q,R, S,M and N as well as their derivatives are calculated in

(θλ, 0) and we omit the point by simplicity. Thus,

N = N(µ, θλ, 0) = Qu|∇θλ|2,

Nuξ = Nu(µ, θλ, 0)ξ = Quuξ|∇θλ|2 + 2Qu∇θλ∇ξ,

Nvη = Nv(µ, θλ, 0)η = Qvu|∇θλ|2η + (Qv +Ru)∇θλ∇η + µb(x)η +G(x, θλ, 0)θλη,

M = M(θλ, 0) = Pu|∇θλ|2 + λa(x)θλ + f(x, θλ)θλ = −P∆θλ,

Muξ = Mu(θλ, 0)ξ = Puu|∇θλ|2ξ + 2Pu∇θλ∇ξ + λa(x)ξ + f(x, θλ)ξ + fu(x, θλ)θλξ,

Mvη = Mv(θλ, 0)η = Pvu|∇θλ|2η + (Pv + Su)∇θλ∇η + F (x, θλ, 0)θλη.
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By hypothesis (HPQRS), Q(s, 0) = 0 for all s ≥ 0, which implies

Q(θλ, 0) = Qu(θλ, 0) = Quu(θλ, 0) = N(µ, θλ, 0) = Nu(µ, θλ, 0) = 0. (23)

Thus, (
RM − SN
PR−QS

)
u

(µ, θλ, 0) =

(
MuP −MPu

P 2

)
(θλ, 0).

Substituting the terms Mu(θλ, 0), P (θλ, 0) and Pu(θλ, 0), by a direct calculation we obtain(
RM − SN
PR−QS

)
u

(µ, θλ, 0)u = P (θλ, 0)−1 {div(Pu(θλ, 0)u∇θλ) + Pu(θλ, 0)∇θλ∇u

+λa(x)u+ [θλfu(x, θλ) + f(x, θλ)]u} .

Define the operator T1,λ : C1
0(Ω) −→ C1

0(Ω) given by

T1,λu := u− (−∆)−1
[
P (θλ, 0)−1 {div(Pu(θλ, 0)u∇θλ) + Pu(θλ, 0)∇θλ∇u

+λa(x)u+ [θλfu(x, θλ) + f(x, θλ)]u}] , (24)

then T1,λ is well defined and by above discussion

I − (−∆)−1

(
RM − SN
PR−QS

)
u

(θλ, 0) = T1,λ. (25)

Similarly, it follows from (23) that(
PN −QM
PR−QS

)
u

(µ, θλ, 0) = 0

and, hence,

(−∆ + Z)−1

(
PN −QM
PR−QS

)
u

(µ, θλ, 0) ≡ 0. (26)

On the other hand, again by (23) and using that Z is linear in v and therefore Zv = Z,

we deduce that(
PN −QM
PR−QS

+ Z

)
v

(µ, θλ, 0) =
PNv −QvM

PR
(µ, θλ, 0) + Z(θλ)

=
Nv +Qv∆θλ

R
(µ, θλ, 0) + Z(θλ).

Substituting Z(θλ) and Nv(µ, θλ, 0), by a direct calculation we obtain(
PN −QM
PR−QS

+ Z

)
v

(µ, θλ, 0) =

Qvu(θλ, 0)|∇θλ|2 + µb(x) +G(x, θλ, 0)θλ +Qv(θλ, 0)∆θλ + k

R(θλ, 0)
. (27)
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Define now the operator Tµ : C1
0(Ω) −→ C1

0(Ω), µ ∈ R, given by

Tµ = (−∆ + Z)−1

[
Qvu(θλ, 0)|∇θλ|2 + µb(x) +G(x, θλ, 0)θλ +Qv(θλ, 0)∆θλ + k

R(θλ, 0)

]
, (28)

then Tµ is well defined and by above discussion

(−∆ + Z)−1

(
PN −QM
PR−QS

+ Z

)
v

(µ, θλ, 0) = Tµ. (29)

Finally, we will denote

T̂ := (−∆)−1

(
RM − SN
PR−QS

)
v

(µ, θλ, 0). (30)

By (25), (26), (29) and (30), we conclude that

L(µ) =

 T1,λ −T̂

0 I − Tµλ

 .
3 Auxiliary Results

In this section we will prove some useful properties of the operators T1,λ and Tµ defined

in previous section and use them to prove some important results of L(µ).

The first lemma connects the concept of nondegenerate solution of (7) with the invert-

ibility of T1,λ.

Lemma 3.1. A solution (λ, θλ) of (7) is nondegenerate if, and only if, T1,λ is invertible.

Proof. Recall that by Definition 1, (λ, θλ) is nondegenerate solution of (7) is zero is the

unique strong solution of (9). On the other hand, it is equivalent to

T1,λu = u− (−∆)−1
[
P (θλ, 0)−1 {div(Pu(θλ, 0)u∇θλ) + Pu(θλ, 0)∇θλ∇u

+λa(x)u+ [θλfu(x, θλ) + f(x, θλ)]u}] = 0, (u ∈ C1
0(Ω)).

That is, (λ, θλ) is a nondegenerate solution of (7) if, and only if, N [T1,λ] = {0}. Since T1,λ

is a linear operator which is a compact perturbation of the identity map, it follows that

it is equivalent to say that T1,λ is invertible.

Now, we will prove some properties of the operator Tµ.
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Lemma 3.2. For k > 0 large enough, the operator Tµλ (see (28)) where

µ = µλ = σ1 [−div (Qv(θλ, 0)∇θλ +R(θλ, 0)∇)−G(x, θλ, 0)θλ; b] ,

is strongly positive and satisfies

r(Tµλ) = 1,

where r(Tµλ) denotes the spectral radius of Tµλ.

Proof. Choose k > 0 sufficiently large such that

Qvu(θλ, 0)|∇θλ|2 + µλb(x) +G(x, θλ, 0)θλ +Qv(θλ, 0)∆θλ + k

R(θλ, 0)
≥ 0.

Then, for v > 0, y = Tµλv satisfies

−∆y + Z(y) =
Qvu(θλ, 0)|∇θλ|2v + µλb(x)v +G(x, θλ, 0)θλv +Qv(θλ, 0)v∆θλ + kv

R(θλ, 0)

≥ 0.

Since positive constants are strict supersolution of −∆ + Z in Ω under homogeneous

Dirichlet boundary conditions, then it satisfies the Strong Maximum Principle. Conse-

quently, y ∈ int(P), showing that Tµλ is strongly positive.

To establish that r(Tµλ) = 1, we argue as follows. Let ϕ2 be the positive eigenfunction

associated to

µλ = σ1 [−div (Qv(θλ, 0)∇θλ +R(θλ, 0)∇)−G(x, θλ, 0)θλ; b]

with ‖ϕ2‖0 = 1. We claim that

Tµλϕ2 = ϕ2.

Indeed, this equality is equivalent to

−∆ϕ2 + Z(ϕ2) =

Qvu(θλ, 0)|∇θλ|2ϕ2 + µλb(x)ϕ2 +G(x, θλ, 0)θλϕ2 +Qv(θλ, 0)ϕ2∆θλ + kϕ2

R(θλ, 0)
.

Substituting Z(ϕ2), by a direct calculation, we find that

− div (Qv(θλ, 0)ϕ2∇θλ +R(θλ, 0)∇ϕ2)−G(x, θλ, 0)θλϕ2 = µλb(x)ϕ2 (31)

which holds true by definition of ϕ2. Thus, 1 is a eigenvalue of Tµλ with an associated

positive eigenfunction. Since Tµλ is strong positive and C1
0(Ω) has positive cone with

nonempty interior, by Theorem 12.3 of [9], we conclude that r(Tµλ) = 1.

13



The next corollary will be very useful later.

Corollary 3.1. Let y ∈ C1
0(Ω) \ {0} with y ≥ 0. Then the equation

v − Tµλv = y

has no solution v ∈ C1
0(Ω).

Proof. Since Tµλ is strongly positive with r(Tµλ) = 1 and C1
0(Ω) has positive cone with

nonempty interior, the result follows from Corollary 12.4 of [9].

Remark 5. From now on we shall assume that (λ, θλ) is a nondegenerate strong solution

of (7) with θλ ∈ int(P) and k > 0 fixed such that the statements of Lemma 3.2 holds true.

The next step is to find a 1-transversal eigenvalues of L(µ) (in the sense of [28]). As

the natural candidate is µ = µλ, let us determine the range and the kernel of L(µλ).

Proposition 3.1. (a)

N [L(µλ)] = span〈(T−1
1,λ (T̂ϕ2), ϕ2)〉

where ϕ2 stands for the positive eigenfunction associated to µλ with ‖ϕ2‖0 = 1.

(b)

R[L(µλ)] = C1
0(Ω)×R[I − Tµλ ]

where Tµλ denotes the operator defined by (28).

Proof. To prove (a), observe that (ξ, η) ∈ N [L(µλ)] is equivalent to

L(µλ)(ξ, η)t = (0, 0)t T1,λ −T̂

0 I − Tµλ

 ξ

η

 =

 0

0

 . (32)

It follows from second equation of (32) that

Tµλη = η.

By Lemma 3.2 we have r(Tµλ) = 1. Therefore, the above equality is an eigenvalue problem

whose solutions are cϕ2, c ∈ R. Consequently,

η ∈ span〈ϕ2〉.
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On the other hand, the first equation of (32) with η = ϕ2 yields

T1,λξ = T̂ϕ2.

Once that T1,λ is invertible (according with Lemma 3.1), we obtain

ξ = T−1
1,λ (T̂ϕ2).

Thus,

N [L(µλ)] = span〈(T−1
1,λ (T̂ϕ2), ϕ2)〉.

Now let us prove (b). (ξ, η) ∈ R[L(µλ)] is equivalent to say that there exists (u, v) ∈

C1
0(Ω)× C1

0(Ω) such that

L(µλ)(u, v)t = (ξ, η)t

or equivalently,  T1,λ −T̂

0 I − Tµλ

 u

v

 =

 ξ

η

 . (33)

It follows from second equation of (33) that

η ∈ R[I − Tµλ ].

While the first one gives us

T1,λu = T̂ v + ξ. (34)

Recall that T̂ is operator C1
0(Ω) into C1

0(Ω). Then for each v, ξ ∈ C1
0(Ω),

T̂ v + ξ ∈ C1
0(Ω).

Since T1,λ : C1
0(Ω) → C1

0(Ω) is invertible (see Lemma 24), we conclude that there exists

u ∈ C1
0(Ω) satisfying (34). Therefore

R[L(µλ)] = C1
0(Ω)×R[I − Tµλ ].

To verify the transversality condition of [8], it remains to determine

L1 := DµL(µλ).
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Proposition 3.2.

L1 := DµL(µλ) =

 0 −(−∆)−1

(
S(θλ, 0)b(x)

(PR)(θλ, 0)

)
0 −(−∆ + Z)−1

(
b(x)

R(θλ, 0)

)


Proof. Taking into account that only Nv depends on µ, by a direct calculation we have

Nµv ≡ b(x)

and the derivatives with respect to µ of all other term that appear in (22) are zero. Then,

differentiating L(µ) with respect to µ at µλ yields

L1 = DµL(µλ) =

 0 −(−∆)−1

(
S(θλ, 0)b(x)

(PR)(θλ, 0)

)
0 −(−∆ + Z)−1

(
b(x)

R(θλ, 0)

)
 .

Finally, we conclude this section by providing that µλ is a 1-transversal eigenvalue of

the family L(µ) and an useful characterization of the complement N [L(µλ)] on C1
0(Ω) ×

C1
0(Ω).

Proposition 3.3. (a)

L1(N [L(µλ)])⊕R[L(µλ)] = C1
0(Ω)× C1

0(Ω). (35)

(b)

N [L(µλ)]⊕R[L(µλ)] = C1
0(Ω)× C1

0(Ω).

Proof. To prove paragraph (a), recall that by Proposition 3.1

N [L(µλ)] = span〈(T−1
1,λ (T̂ϕ2), ϕ2)〉

and by Proposition 3.2

L1 =

 0 −(−∆)−1

(
S(θλ, 0)b(x)

(PR)(θλ, 0)

)
0 −(−∆ + Z)−1

(
b(x)

R(θλ, 0)

)
 .

Thus, L1(N [L(µλ)]) is given by 0 −(−∆)−1

(
S(θλ, 0)b(x)

(PR)(θλ, 0)

)
0 −(−∆ + Z)−1

(
b(x)

R(θλ, 0)

)

 T−1

1,λ T̂ (cϕ2)

cϕ2

 =

 −(−∆)−1

(
cS(θλ, 0)b(x)ϕ2

(PR)(θλ, 0)

)
−(−∆ + Z)−1

(
cb(x)ϕ2

R(θλ, 0)

)
 ,
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where c ∈ R. That is,

L1(N [L(µλ)]) = span

〈 (−∆)−1

(
S(θλ, 0)b(x)ϕ2

(PR)(θλ, 0)

)
(−∆ + Z)−1

(
b(x)ϕ2

R(θλ, 0)

)

〉
.

Since L(µ) is a Fredholm operator of index zero (because it is a compact perturbation of

identity map), we have

codimR[L(µλ)] = dimN [L(µλ)] = 1

and, hence, the complement of R[L(µλ)] in C1
0(Ω) × C1

0(Ω) is one dimensional. Then, to

establish (35) it is sufficient to show (−∆)−1

(
S(θλ, 0)ϕ2

(PR)(θλ, 0)

)
(−∆ + Z)−1

(
b(x)ϕ2

R(θλ, 0)

)
 6∈ R[L(µλ)] = C1

0(Ω)×R[I − Tµλ ]. (36)

To prove (36) we proceed by contradiction. If (36) fails, then

(−∆ + Z)−1

(
b(x)ϕ2

R(θλ, 0)

)
∈ R[I − Tµλ ]

and, hence, there exists v ∈ C1
0(Ω) such that

v − Tµλv = (−∆ + Z)−1

(
b(x)ϕ2

R(θλ, 0)

)
. (37)

On the other hand, since (−∆ + Z)−1 satisfies the Strong Maximum Principle and

b(x)ϕ2/R(θλ, 0) > 0,

we find that

(−∆ + Z)−1

(
b(x)ϕ2

R(θλ, 0)

)
≥ 0.

By Corollary 3.1, (36) has no solution v ∈ C1
0(Ω), which is a contradiction. This completes

the proof of (a). The proof of (b) is rather similar and so we omit it.

4 Proof of Theorem 1.1

In the previous sections we have collected the necessary results to apply Theorem 6.4.3

of [28]. We are now able to provide the
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Proof of Theorem 1.1. We already know that L(µ) is a compact perturbation of

identity map for each µ ∈ R and it is analytic in µ. Moreover, by Proposition 3.3 (a), µλ

is a 1-transversal eigenvalue of L(µ) and by Proposition 3.1,

N [L(µλ)] = span〈(T−1
1,λ (T̂ϕ2), ϕ2)〉,

in particular, dimN [L(µλ)] = 1. Then, the algebraic multiplicity of L(µ) satisfies

χ[L(µ);µλ] = 1.

Thus, owing to Theorem 5.6.2 of [28], the index Leray-Schauder of L(µ) as a compact

perturbation of the identity map changes sign as λ crosses µλ. Consequently, we can apply

the unilateral bifurcation result of [28] (see Theorem 6.4.3).

Let S denote the set of points (µ, u, v) ∈ R× C1
0(Ω)× C1

0(Ω) such that

F(µ, u, v) = 0

and either (u, v) 6= (θλ, 0) or (u, v) = (θλ, 0) and L(µ) is not invertible. Let C+ and C−

denote the components of S whose existence are guaranteed by Proposition 6.4.2 of [28].

Basically, C+ (resp. C−) is a subcontinuum that near to (µλ, θλ, 0) belongs to the positive

cone (resp. negative cone). According to Theorem 6.4.3 of [28], one of the following

non-excluding options occurs. Either

A1. C+ is unbounded in R× C1
0(Ω)× C1

0(Ω).

A2. There exists another eigenvalue of L(µ), e.g., µ̂ 6= µλ, such that

(µ̂, θλ, 0) ∈ C+.

A3. There exists µ ∈ R and y ∈ Y \{0} such that (µ, y) ∈ C+, where Y is the complement

of N [L(µλ) in C1
0(Ω)× C1

0(Ω).

By Proposition 3.3 (b), we can choose

Y := R[L(µλ)] = C1
0(Ω)×R[I − Tµλ ].

Moreover, by Lemma 6.4.1 of [28], the solutions of C+ in a neighborhood of (µ, θλ, 0) are

coexistence states, since θλ and ϕ2 are functions belonging to int(P). Let C denote the

subcontinuum of C+ satisfying

C ⊂ R× int(P)× int(P).
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If C is unbounded, then alternative 1 of the statement of Theorem 1.1 is satisfied,

completing the proof in this case.

During the rest of the proof we assume that C is bounded in R× C1
0(Ω)× C1

0(Ω).

Suppose C = C+.

Then C+ is bounded and, hence, alternative A1 is not satisfied. Suppose that alterna-

tive A3 happens. Then

(µ, y) ∈ C+ = C ⊂ R× int(P)× int(P)

for some y = (y1, y2) ∈ Y = C1
0(Ω)×R[I − Tµλ ]. In particular,

y2 ∈ R[I − Tµλ ] ∩ int(P)

which implies that there exists v ∈ C1
0(Ω) such that

v − Tµλv = y ≥ 0,

a contradiction with Corollary 3.1. Consequently, C+ satisfies alternative A2. In particu-

lar, there exist two bifurcation points of coexistence states of (1): (µλ, θλ, 0) and (µ̂, θλ, 0).

Hence, there exists a sequence (µn, un, vn) of coexistence states of (1) such that

(µn, un, vn)→ (µ̂, θλ, 0) in R× C1
0(Ω)× C1

0(Ω).

Now, consider

v̂n :=
vn
‖vn‖0

, n ≥ 1.

Since F(µn, un, vn) = 0 and in view of (21), it follows that (µn, un, v̂n) satisfies

v̂n = (−∆ + Z)−1

[
1

‖vn‖0

(
PN −QM
PR−QS

)
(µn, un, vn) + Z(v̂n)

]
. (38)

Once that ‖v̂n‖0 = 1 and (µn, un, vn) is bounded in R × C1
0(Ω) × C1

0(Ω) (because it con-

verges), we obtain that

1

‖vn‖0

(
PN −QM
PR−QS

)
(µn, un, vn) + Z(v̂n)

is bounded in C(Ω) (recall (27)). From compactness of the operator (−∆+Z)−1 : C(Ω)→

C1
0(Ω), up to a subsequence if necessary,

v̂n → w in C1
0(Ω),
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with ‖w‖0 = 1 and w > 0. In order to take the limit n→∞ in (38) we proceed as follows.

Since N(µ, u, 0) = 0 for all µ ∈ R and u ∈ C1
0(Ω), u > 0, we have

lim
n→∞

N(µn, un, vn)

‖vn‖0

= lim
n→∞

N(µn, un, v̂n‖vn‖0)

v̂n‖vn‖0

v̂n

= Nv(µ̂, θλ, 0)w.

Analogously,

lim
n→∞

Q(un, vn)

‖vn‖0

= Qv(θλ, 0)w.

Therefore,

PN −QM
‖vn‖0

(µn, un, vn) = P (un, vn)
N(µn, un, vn)

‖vn‖0

− Q(un, vn)

‖vn‖0

M(un, vn) −→

P (θλ, 0)Nv(µ̂, θλ, 0)w −Qv(θλ, 0)wM(θλ, 0) as n→∞,

Moreover,

(PR−QS)(un, vn) −→ (PR−QS)(θλ, 0) = (PR)(θλ, 0) as n→∞

and

Z(v̂n) −→ Z(v) as n→∞.

Thus, letting n→∞ in (38) yields

w = (−∆ + Z)−1

[(
PNvw −QvwM

PR

)
(µ̂, θλ, 0) + Z(w)

]
.

In particular, by elliptic regularity, w ∈ W 2,p
0 (Ω), for all p > 1. Substituting M(θλ, 0) =

−P∆θλ and Z(w), the above equality is equivalent to −div(Qv(θλ, 0)w∇θλ +R(θλ, 0)∇w) = µ̂b(x)w +G(x, θλ, 0)θλw in Ω,

w = 0 on ∂Ω.
(39)

Since w > 0 and by uniqueness of the principal eigenvalue, (39) implies that µ̂ = µλ,

which is a contradiction, showing that C = C+ cannot occur. Consequently:

C ⊂ C+ and C 6= C+.

We now establish that C satisfies either alternative 2 or 3 or 4 of Theorem 1.1. Since C is

a proper subset of C+, there exists (µ∗, u∗, v∗) ∈ R× ∂(P × P) and a sequence

(µn, un, vn) ∈ R× int(P)× int(P)
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such that

(µn, un, vn)→ (µ∗, u∗, v∗) in R× C1
0(Ω)× C1

0(Ω).

By continuity F,

0 = F(µn, un, vn)→ F(µ∗, u∗, v∗),

that is, (µ∗, u∗, v∗) is a non-negative solution of (1). Moreover, since

(u∗, v∗) ∈ ∂(P × P),

by the Strong Maximum Principle, u∗ = 0 or v∗ = 0. Let us consider the three possible

cases for this statement:

Case 1: u∗ = 0 and v∗ > 0

Define

ûn :=
un
‖un‖0

, n ≥ 1.

Then, in view of (21) and F(µn, un, vn) = 0, (µn, ûn, vn) satisfies
ûn = (−∆)−1

[
1

‖un‖0

(
RM − SN
PR−QS

)
(µn, un, vn)

]
,

vn = (−∆ + Z)−1

[(
PN −QM
PR−QS

)
(µn, un, vn) + Z(vn)

]
.

(40)

Since ‖ûn‖0 = 1 and (µn, un, vn) is bounded in R×C1
0(Ω)×C1

0(Ω) (because it converges),

we conclude that
1

‖un‖0

(
RM − SN
PR−QS

)
(µn, un, vn)

is bounded in C(Ω). Owing to compactness of (−∆)−1 : C(Ω) → C1
0(Ω), it becomes

apparent that, up to a subsequence if necessary,

ûn → z in C1
0(Ω),

with ‖z‖0 = 1 and z > 0. Letting n→∞ in (40) yields
z = (−∆)−1

[(
RMuz − SuzN

PR

)
(µ∗, 0, v∗)

]
,

v∗ = (−∆ + Z)−1

[(
PN −QM

PR

)
(µ∗, 0, v∗) + Z(v∗)

]
.

(41)

Thus, z, v∗ ∈ C1
0(Ω). Moreover, it follows from second equation of (41) that −div(R(0, v∗)∇v∗) = µ∗b(x)v∗ + g(x, v∗)v∗ in Ω,

v∗ = 0 on ∂Ω.
(42)
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That is, (µ∗, v∗) is a solution of (8). Using that (µ∗, v∗) satisfies (42), the first equation

of (41) is equivalent to −div(P (0, v∗)∇z + Su(0, v
∗)z∇v∗) = λa(x)z + F (x, 0, v∗)zv∗ in Ω,

z = 0 on ∂Ω.

Since z > 0, we conclude that

λ = σ1[−div(P (0, v∗)∇+ Su(0, v
∗)∇v∗)− F (x, 0, v∗)v∗; a].

Therefore, in this case, alternative 2 is satisfied with

θµ∗ := v∗.

Case 2: u∗ > 0 and v∗ = 0

Define

v̂n :=
vn
‖vn‖0

, n ≥ 1.

Then, in view of (21) and F(µn, un, vn) = 0, (µn, un, v̂n) satisfies
un = (−∆)−1

[(
RM − SN
PR−QS

)
(µn, un, vn)

]
,

v̂n = (−∆ + Z)−1

[
1

‖vn‖0

(
PN −QM
PR−QS

)
(µn, un, vn) + Z(v̂n)

]
.

(43)

Since ‖v̂n‖0 = 1 and (µn, un, vn) is bounded in R× C1
0(Ω)× C1

0(Ω) (because it converges),

we conclude that
1

‖vn‖0

(
PN −QM
PR−QS

)
(µn, un, vn) + Z(v̂n)

is bounded in C(Ω). Owing to compactness of (−∆ + Z)−1 : C(Ω) → C1
0(Ω) it becomes

apparent that, up to a subsequence if necessary,

v̂n → w in C1
0(Ω),

with ‖w‖0 = 1 and w > 0. Letting n→∞ in (43) yields
u∗ = (−∆)−1

[(
RM − SN

PR

)
(µ∗, u∗, 0)

]
,

w = (−∆ + Z)−1

[(
PNvw −QvwM

PR

)
(µ∗, u∗, 0) + Z(w)

]
.

(44)
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In particular, by elliptic regularity, u∗, w ∈ W 2,p
0 (Ω), for all p > 1. Moreover, it follows

from the first equation of (44) that −div(P (u∗, 0)∇u∗) = λa(x)u∗ + f(x, u∗)u∗ in Ω,

u∗ = 0 on ∂Ω.
(45)

That is, (λ, u∗) is a positive solution of (7). Using that (λ, u∗) satisfies (45), the second

equation of (44) is equivalent to −div(Qv(u
∗, 0)w∇u∗ +R(u∗, 0)∇w) = µ∗b(x)w +G(x, u∗, 0)u∗w in Ω,

w = 0 on ∂Ω.

Since w > 0, we conclude that

µ∗ = σ1[−div(Qv(u
∗, 0)∇u∗ +R(u∗, 0)∇)−G(x, u∗, 0)u∗; b]. (46)

On the other hand, by construction, there exists δ > 0 such that

(µ∗, u∗, 0) ∈ C+ \Bδ(µλ, θλ, 0).

Indeed, for δ > 0 small enough we have C = C+ in Bδ(µλ, θλ, 0). In particular,

(µ∗, u∗, 0) 6= (µλ, θλ, 0). (47)

Let us show that

θλ 6= u∗.

Arguing by contradiction, if θλ = u∗, it follows from (46) that µλ = µ∗, which is a

contradiction with (47). Therefore, alternative 3 of Theorem 1.1 occurs with

ψλ := u∗.

Case 3: u∗ = v∗ = 0:

Define

ûn :=
un
‖un‖0

and v̂n :=
vn
‖vn‖0

, n ≥ 1.

Then the same argument as above shows that, up to a subsequence if necessary,

(ûn, v̂n)→ (z, w) in C1
0(Ω)× C1

0(Ω),
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with ‖z‖0 = ‖w‖0 = 1 and z, w > 0. It follows from (21) and F(µn, un, vn) = 0 that

(µn, ûn, v̂n) satisfies
ûn = (−∆)−1

[
1

‖un‖0

(
RM − SN
PR−QS

)
(µn, un, vn)

]
,

v̂n = (−∆ + Z)−1

[
1

‖vn‖0

(
PN −QM
PR−QS

)
(µn, un, vn) + Z(v̂n)

]
.

Letting n→∞ yieds
z = (−∆)−1

[(
RMu − SuzN

PR

)
(µ∗, 0, 0)

]
,

w = (−∆ + Z)−1

[(
PNvw −QvwM

PR

)
(µ∗, 0, 0) + Z(w)

]
.

By elliptic regularity, z, w ∈ W 2,p
0 (Ω) for all p > 1. Moreover, the above equalites are

equivalent to 
−div(P (0, 0)∇z) = λa(x)z in Ω,

−div(R(0, 0)∇w) = µ∗b(x)w in Ω,

z = w = 0 on ∂Ω.

Consequently,

λ = σ1[−div(P (0, 0)∇); a],

µ∗ = σ1[−div(R(0, 0)∇); b]

and alternative 4 is satisfied. The proof is complete. �

5 Applications

In this section we apply Theorems 1.1 and 1.2 to some particular systems in order to

obtain conditions on parameters λ, µ ∈ R which guarantee existence of coexistence states.

First, once that a necessary condition to be able to use Theorems 1.1 and 1.2 is that a

semitrivial solution (7) (or (8)) is nondegenerate, we present the following auxiliary result.

Proposition 5.1. Consider the equation −div(d(w)∇w) = γw + h(w)w in Ω,

w = 0 on ∂Ω,
(48)

under the following assumptions:
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(Hd) d : [0,∞) → [0,∞) is a function of class C2, non-decreasing and there exists a

positive constant d0 such that

d(s) ≥ d0 ∀s ∈ [0,∞).

(Hh) h : R→ R is a continuous function.

If h′(w) < 0 for all w ≥ 0, then any strong solution w ∈ int(P) of (48) is nondegenerate.

Proof. Let w0 ∈ W 2,p(Ω) ∩ int(P) be a strong solution of (48). Performing the change of

variables

I(s) :=

∫ s

0

d(t)dt s ≥ 0,

(48) is rewritten as  −∆[I(w0)] = γw0 + h(w0)w0 in Ω,

w0 = 0 on ∂Ω.
(49)

Let xM ∈ Ω such that w0(xM) = ‖w0‖0. Since s 7→ d(s) is non-decreasing, we have

I(w0(xM)) = ‖I(w0)‖0. Therefore,

0 ≤ −∆[I(w0(xM))] = γw0(xM) + h(w0(xM))w0(xM)

0 ≤ γ + h(w0(xM)).

By the monotonicity of h(s), we obtain from above inequality that

0 ≤ γ + h(w0(x)) ∀x ∈ Ω. (50)

The linearization of (49) at (γ, w0) is given by −∆[d(w0)ξ] = [γ + h(w0) + w0h
′(w0)]ξ in Ω,

ξ = 0 on ∂Ω,
(51)

Suppose by contradiction that ξ 6≡ 0 is a strong solution of (51). Using the change of

variable

d(w0)ξ = ψ,

(51) is equivalent to −∆ψ =
γ + h(w0) + w0h

′(w0)

d(w0)
ψ in Ω,

ξ = 0 on ∂Ω,
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which implies that

0 = σj

[
−∆− γ + h(w0) + w0h

′(w0)

d(w0)

]
, for some j ≥ 1.

From the dominance property of the principal eigenvalue it follows that

0 ≥ σ1

[
−∆− γ + h(w0) + w0h

′(w0)

d(w0)

]
. (52)

On the other hand, since w0 ∈ int(P) is a solution of (49), then I(w0(x)) > 0 for all x ∈ Ω

and, hence,

0 = σ1

[
−∆− γw0 + h(w0)w0

I(w0)

]
. (53)

We claim that

− γw0 + h(w0)w0

I(w0)
< −γ + h(w0) + w0h

′(w0)

d(w0)
. (54)

Assume this claim for a moment. By the monotonicity properties of the principal eigen-

value, (54) and (53) imply that

0 < σ1

[
−∆− γ + h(w0) + w0h

′(w0)

d(w0)

]
,

which is a contradiction with (52). Hence, to complete the proof it suffices to show (54).

Indeed, (54) is equivalent to

(γ + h(w0))w0

I(w0)
>

γ + h(w0)

d(w0)
+
w0h

′(w0)

d(w0)
(55)

On the other hand, since s 7→ d(s) is non-decreasing, we have that

0 < I(w0) =

∫ w0

0

d(t)dt ≤ d(w0)

∫ w0

0

dt = d(w0)w0. (56)

Thus, it follows from (50) and (56) that

(γ + h(w0))w0

I(w0)
>
γ + h(w0)

d(w0)
. (57)

Moreover, once that h′(s) < 0, s ≥ 0, we can infer that 0 > w0h
′(w0)/d(w0). Combining

this inequality with (56), we obtain (55). This completes the proof.

From the point of view of population dynamics, an important particular case of (48)

is the logistic equation, that is, −div(d(w)∇w) = γw − w2 in Ω,

w = 0 on ∂Ω.
(58)
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It appears, for instance, when one considers the Lotka-Volterra, Holling-II or Holling-

Tanner reaction term, which are most commonly used in the literature.

The following result is consequence of, for instance, [3, 1] and Proposition 5.1.

Lemma 5.1. Under the hypothesis (Hd), (58) possesses a positive (classical) solution if,

and only if,

γ > σ1[−d(0)∆]

and it is unique if exists. Moreover, it is non-degenerate.

An abstract model

To illustrate how one can use Theorems 1.1 and 1.2 to determine a region of coexistence

of positive solutions, we will consider the following system:
−div(A(v)G′(u)H(v)∇u+ A(v)G(u)H ′(v)∇v)) = u(λ− u− bv) in Ω,

−∆v = v(µ− v + cu) in Ω,

u = v = 0 on ∂Ω,

(59)

where b, c are positive constants. Here, u and v represent the population densities of a

prey and a predator, respectively, inhabiting in Ω. In the case of the prey, a term of

self-diffusion and another of cross-diffusion appear. We also assume:

(HA) A : [0,∞)→ [0,∞) are nontrivial functions of class C2 such that

A(v) ≥ A > 0 ∀v ≥ 0

for some positive constant A.

(HG) G : [0,∞)→ [0,∞) is a function of class C3 such that

G(0) = 0, lim
s→∞

G(s) =∞

and G′ is a non-decreasing function such that

G′(s) ≥ G0 > 0 ∀s ≥ 0,

for some positive constant G0.
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(HH) H : [0,∞)→ R is a function of class C2 such

H0 ≤ H(v) ≤ H1 ∀v ≥ 0

for some positive constants H0 and H1.

The following functions satisfy all the above hypothesis:

A(v) = v + 1, G(u) = u2 + u, H(v) =
v + 2

v + 1
.

Let us show that, combining Theorems 1.1 and 1.2 with, for instance, a result of

a priori bound and an appropriate non-existence result, one can determine a region of

coexistence states.

The non-negative semitrivial solutions (u, 0) and (0, v) of (59) are given by −div(A(0)H(0)G′(u)∇u) = u(λ− u) in Ω,

u = 0 on ∂Ω,
(60)

and  −∆v = v(µ− v) in Ω,

v = 0 on ∂Ω,
(61)

respectively. Since s 7→ G′(s) is a non-decreasing function, by Lemma 5.1, (60) and (61)

possess a (unique and nondegenerate) positive solution if, and only if,

λ > σ1[−A(0)H(0)G′(0)∆] and µ > λ1

and they will be denoted by θλ and θµ, respectively.

In addition, the maps λ ∈ (σ1[−A(0)H(0)G′(0)∆],∞) 7→ θλ ∈ C1
0(Ω) and µ ∈

(λ1,∞) 7→ θµ ∈ C1
0(Ω) are increasing.

Moreover, for this system, the eigenvalues that appear in Theorems 1.1 and 1.2 can

be defined as follow:

µλ :=

 σ1[−∆− cθλ] if λ > σ1[−A(0)H(0)G′(0)∆],

λ1 if λ ≤ σ1[−A(0)H(0)G′(0)∆],
(62)

and

λµ :=

 σ1[−div(G′(0)A(θµ)H(θµ)e−h(θµ)∇) + cθµe
−h(θµ); e−h(θµ)] if µ > λ1,

0 if µ ≤ λ1,
(63)
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where

h(z) :=

∫ z

0

H ′(s)

H(s)
ds, z ≥ 0.

It should be noted that, by the monotonicity properties of the principal eigenvalue,

the function λ 7→ µλ is decreasing for λ > σ1[−A(0)H(0)G′(0)∆]. However, it is not easy

to ascertain monotony properties of the map µ 7→ λµ.

Now we will show a result of a priori bound on the coexistence states of (59).

Lemma 5.2. Suppose that (u, v) is a coexistence state of (59). Then there exists a positive

constant C = C(λ, b) such that

‖u‖0 ≤ C and ‖v‖0 ≤ µ+ cC.

Moreover, there exists a positive constant C∗ = C∗(λ, µ, b, c, G0, H0, H1) such that

‖u‖C1 , ‖u‖C1 ≤ C∗.

Proof. Let (u, v) be a coexistence state of (59). First, we will get an estimate on ‖u‖0.

Once that

A(v)G′(u)H(v)∇u+ A(v)G(u)H ′(v)∇v) = A(v) (∇(G(u)H(v))) ,

(u, v) satisfies −div [A(v) (∇(G(u)H(v)))] = u(λ− u− bv) in Ω,

u = v = 0 on ∂Ω.
(64)

Multiplying (64) by [G(u)H(v) − G(λ)H1]+ and applying the formula of integration by

parts gives

0 ≤
∫

Ω

A(v)
∣∣∇ [G(u)H(v)−G(λ)H1]+

∣∣2 =

∫
Ω

u(λ− u− bv) [G(u)H(v)−G(λ)H1]+

≤
∫

Ω

u(λ− u) [G(u)H(v)−G(λ)H1]+ . (65)

Note that in {x ∈ Ω; G(u)H(v) ≤ G(λ)H1}, we have:

u(λ− u) [G(u)H(v)−G(λ)H1]+ = 0 (66)

and in {x ∈ Ω; G(u)H(v) > G(λ)H1}, we get u > λ and, hence,

u(λ− u) [G(u)H(v)−G(λ)H1]+ < 0. (67)
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Combining (65), (66) and (67), we can infer that

0 =

∫
Ω

u(λ− u) [G(u)H(v)−G(λ)H1]+ .

Since the function u(λ − u) [G(u)H(v)−G(λ)H1]+ is non-negative (according to (66)-

(67)), the above equality implies that

u(λ− u) [G(u)H(v)−G(λ)H1]+ ≡ 0 in Ω.

In view of (66) and (67), we must have, necessarily, G(u)H(v) ≤ G(λ)H1 and, hence,

u ≤ G−1 (G(λ)H1/H0) =: C(λ).

Now, we will show a priori bound on ‖v‖0 and ‖v‖C1 . Let xM ∈ Ω such that vM :=

v(xM) = maxΩ v(x). Then,

0 ≤ −∆vM = vM(µ− vM + cu(xM))

vM ≤ µ+ cu(xM) ≤ µ+ cC(λ)

Then, ‖v(µ − v + cu)‖p is bounded for all p > 1, and hence, by elliptic regularity, there

exists a constant C0 = C0(λ, c, µ) such that

‖v‖C1 ≤ C0.

To complete the proof, it remains to show that ‖u‖C1 is also bounded. Indeed, since

(u, v) verifies (64) and v is bounded in C1(Ω), we can apply again the standard elliptic

regularity to (64) and conclude that there exists a positive constant C1 = C1(λ, µ, b, c)

such that

‖G(u)H(v)‖C1 ≤ C1. (68)

On the other hand,

∇(G(u)H(v)) = G′(u)H(v)∇u+G(u)H ′(v)∇v

|∇(G(u)H(v))−G(u)H ′(v)∇v| = |G′(u)H(v)∇u|

Using the triangular inequality, (HG) and (HH) we obtain that

|∇(G(u)H(v))|+ |G(u)H ′(v)∇v| ≥ H0G0|∇u| (69)
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Since u is bounded in C(Ω) and v is bounded in C1(Ω), there exists a positive constant

C2 = C2(λ, µ, b, c) such that

‖G(u)H ′(v)∇v‖0 ≤ C2 (70)

Thus, in view of (68) and (70), we can infer from (69) that

C1 + C2 ≥ G0H0‖∇u‖0.

This completes the proof.

The next lemma gives an appropriate non-existence result of positive solutions.

Lemma 5.3. (a) If λ ≤ 0, then (59) does not admit coexistence states.

(b) The problem (59) does not admit coexistence states for µ ≤ λ1 − cC, where C =

C(λ, b) is the positive constant given in Lemma 5.2.

Proof. Let (u, v) be a coexistence state of (59). Suppose by contradiction that λ ≤ 0.

Then, by (64) we get −div [A(v)∇ (G(u)H(v))] ≤ 0 in Ω,

G(u)H(v) = 0 on ∂Ω.

It follows from the Maximum Principle that G(u)H(v) ≤ 0 and, hence, G(u) ≤ 0, which

is impossible since G(s) > 0 for s ≥ 0 (according to (HG)).

To prove (b), note that v verifies −∆v = v(µ− v + cu) in Ω,

v = 0 on ∂Ω.

Consequently,

µ = σ1[−∆ + v − cu].

By the monotonicity properties of the principal eigenvalue combined with Lemma 5.2, we

find that

µ > σ1[−∆− cC] = λ1 − cC,

which completes the proof.

Now, we are able to apply Theorems 1.1 and 1.2 to obtain a region of coexistence of

(59).
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Theorem 5.1. Assume (HA), (HG) and (HH). Then (59) possesses at least one coexis-

tence state for each (λ, µ) ∈ R2 such that

µ > µλ and λ > λµ, (71)

where µλ and λµ are given in (62) and (63).

Proof. First, note that by (HA), (HG) and (HH), all hypothesis of Theorems 1.1 and 1.2

are satisfied.

Now fix µ > λ1. By Theorem 1.2, from the point

(λ, u, v) = (λµ, 0, θµ)

emanates a continuum C ⊂ R× int(P)× int(P) of coexistence states of (59) and one of the

alternatives of Theorem 1.2 occurs. By uniqueness of positive solution of (61), alternative

3 cannot be satisfied. Moreover, since µ > λ1, alternative 4 also cannot occur. We will

show that alternative 2 is not true and to this end we will proceed by contradiction.

Otherwise, there exists a positive solution of (60), (λ∗, θλ∗), such that

µ = µλ∗ = σ1[−∆− cθ∗λ].

However, since the map λ ∈ (λ1,∞) 7→ σ1[−∆ − cθλ] is decreasing, we can infer from

above equality that

µ = µλ∗ ≤ σ1[−∆] = λ1,

which is a contradiction with the initial assumption µ > λ1.

Therefore, C is unbounded in R× C1
0(Ω)× C1

0(Ω). Once that the coexistence states of

(59) are bounded in C1
0(Ω)×C1

0(Ω) (see Lemma 5.2), then ProjRC is unbounded. Finally,

it follows from Lemma 5.3 that it extends to infinity in positive values of λ. By global

nature of C, it follows that (λµ,∞) ⊂ ProjRC. Since µ > λ1 is arbitrary, we obtain that

(72) possesses at least one coexistence states for all (λ, µ) ∈ R2 such that µ > λ1 and

λ > λµ.

Now, fix λ > σ1[−A(0)H(0)G′(0)∆]. By Theorem 1.1, from the point

(µ, u, v) = (µλ, θλ, 0)

emanates a continuum C′ ⊂ R× int(P)× int(P) of coexistence states of (59) and one of

the alternatives of Theorem 1.1 occurs. Arguing as above, alternatives 3 and 4 cannot be

satisfied. Hence, it happens or alternative 1 or 2.
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Figure 1: A region of coexistence of (59).

Suppose that alternative 1 holds. Then C′ is unbounded in R× int(P)× int(P). Since

the coexistence states of (59) are bounded in C1
0(Ω)×C1

0(Ω), ProjRC′ must be unbounded

in µ ∈ R. Since (59) does not have coexistence states for µ small (according to Lemma 5.3

(b)), by global nature of C′, we find that

(µλ,∞) ⊂ ProjRC
′.

In particular, (µλ, λ1] ⊂ ProjRC′. This result combined with the coexistence region ob-

tained above prove the existence of coexistence states of (59) for all (λ, µ) ∈ R2 such that

µ > µλ and λ > λµ.

Suppose now that alternative 2 holds. Then there exists a positive solution (µ∗, θµ∗)

of (61) such that

λ = λµ∗ = σ1[−div(G′(0)A(θµ∗)H(θµ∗)e−h(θµ∗ )∇) + cθµ∗e
−h(θµ∗ ); e−h(θµ∗ )],

and (µ∗, 0, θµ∗) ∈ C′. On the other hand, since (61) admits a positive solution if, and only

if µ > λ1, then µ∗ > λ1. Hence, by global nature of C′, it becomes apparent that

(µλ, λ1] ⊂ (µλ, µ
∗) ⊂ ProjRC

′,

and again we obtain the result.

Figure 1 illustrates a possible region of coexistence of (59) given by condition (71) of

Theorem 5.1.
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A chemotaxis model

We now apply the bifurcation Theorems 1.1 and 1.2 to study the following chemotaxis

model: 
−∆u+ div(χf(v)u∇v) = u(λ− u+ bv) in Ω,

−∆v = v(µ− v − cu) in Ω,

u = v = 0 on ∂Ω,

(72)

where f : [0,∞) → [0,∞) is a function of class C2, χ, c are positive constants and

b ∈ R. Although chemotaxis models have been extensively studied in recent years (not

so much the stationary models), we refer to [14], [38] and [42] and references therein,

where a nonlinear sensitivity term is included. See also [39] for a chemotaxis model with

competition interaction.

We emphasize that (72) is not included in the hypotheses of the abstract model (59).

To begin our analysis, note that the semitrivial solutions (u, 0) and (0, v) of (72) are the

positive solutions of the logistic equation (58) with d ≡ 1 and, as discussed in Lemma 5.1,

it possesses a (unique and non-degenerate) positive solution if, and only if, γ > λ1 and it

will be denoted by θγ. In (72), the eigenvalues given by Theorems 1.1 and 1.2 are:

µλ := σ1[−∆ + cθλ], λ > λ1 (73)

and

λµ := σ1[−div(eχF (θµ)∇)− bθµeχF (θµ); eχF (θµ)], µ > λ1, (74)

where F (z) :=
∫ z

0
f(s)ds. We extend these functions by λµ := λ1 and µλ := λ1, for each

µ, λ ≤ λ1.

Note that, since f(·) is a non-negative function, we have that F (·) is non-decreasing.

The next lemma gives us a result of a priori bounded of the coexistence states of (72).

Lemma 5.4. Suppose that (u, v) is a coexistence state of (72) with µ > λ1. Then, there

exists a positive constant C = C(λ, µ, b, c, χ) such that

‖u‖C1 , ‖v‖C1 ≤ C.

Proof. Let (u, v) a coexistence state of (72). Then v satisfies

−∆v = v(µ− v − cu) ≤ v(µ− v), in Ω.
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Thus, v is a positive subsolution of (58) with γ = µ and d ≡ 1, whose the unique solution

is θµ. By the uniqueness of positive solutions,

v ≤ θµ ≤ µ.

On the other hand, the first equation of (72) can be re-written as −div(eχF (v)∇(ue−χF (v))) = u(λ− u+ bv) in Ω,

u = 0 on ∂Ω.

By adapting the proof of Lemma 5.2, one can obtain the existence of a positive constant

C0 = C0(λ, µ, b) such that

‖u‖0 ≤ C0.

Finally, by elliptic regularity, there exists a positive constant C = C(λ, µ, b, c, χ) such that

‖u‖C1 , ‖v‖C1 ≤ C.

The next result establishes the nonexistence of coexistence states for certain values of

λ and µ, including for λ large.

Lemma 5.5. (a) If µ ≤ λ1, then (72) does not admit coexistence states.

(b) Fix µ > λ1. Then, there exists a constant C = C(µ) such that (72) does not admit

coexistence states for λ < C(µ).

(c) Fix µ > λ1. Then, there exists a constant Λ0 = Λ0(µ) > 0 such that (72) does not

admit coexistence states for λ > Λ0(µ).

Proof. Let (u, v) be a coexistence state of (72). Then v satisfies

−∆v + (v + cu)v = µv in Ω, v = 0 on ∂Ω.

Consequently,

µ = σ1[−∆ + v + cu].

By the monotonicity properties of the principal eigenvalue, we find that µ > σ1[−∆] = λ1,

proving the paragraph (a).
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Now, we will prove (b). Performing the change of variable w = ue−χF (v) in the first

equation of (72), we obtain that the positive function w satisfies

− div(eχF (v)∇w) + (weχF (v) − bv)weχF (v) = λweχF (v), in Ω, w = 0 on ∂Ω. (75)

Thus,

λ = σ1[−div(eχF (v)∇) + (weχF (v) − bv)eχF (v); eχF (v)].

If b ≤ 0, combining the monotonicity properties of the principal eigenvalue with a priori

bound v ≤ µ and 1 ≤ eχF (v) ≤ eχF (µ) , we can infer that

λ > σ1[−∆; eχF (v)] > σ1[−∆; eχF (µ)] = λ1e
−χF (µ) =: C1(µ),

since λ1 = σ1[−∆] > 0. On the other hand, if b > 0 we have

λ > σ1[−∆− bµeχF (µ); eχF (v)].

Now, we recall that the monotonicity of σ1[−∆− bµeχF (µ); eχF (v)] with respect to weight

function eχF (v) depends on sign σ1[−∆− bµeχF (µ)]. Thus, it follows from above inequality

that

λ >


σ1[−∆− bµeχF (µ); eχF (µ)] = λ1e

−χF (µ) − bµ if σ1[−∆− bµeχF (µ)] > 0,

0 if σ1[−∆− bµeχF (µ)] = 0,

σ1[−∆− bµeχF (µ); 1] = λ1 − bµeχF (µ) if σ1[−∆− bµeχF (µ)] < 0.

In all cases, there exists a constant C = C(µ) such that (72) does not admit coexistence

states for λ ≤ C(µ).

Finally, to prove (c) we will adapt the proof of Proposition 6.5 of [12]. We argue by

contradiction. Fix µ > λ1 and assume that there exists a coexistence state for all λ > 0

large enough. Using again the change of variable w = ue−χF (v) we obtain that w satisfies

(75). It follows from 1 ≤ eχF (v) ≤ eχF (µ) that

−div(eχF (v)∇w) ≥ λw − e2χF (µ)w2 +K(b, µ)w, in Ω,

where K(b, µ) := min{0, bµeχF (µ)} ≤ 0. Therefore w is a supersolution of −div(eχF (v)∇z)−K(b, µ)z = λz − e2χF (µ)z2 in Ω,

z = 0 on ∂Ω.
(76)
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It is well-known, see for instance [12], that (76) has a (unique) positive solution for each

λ > σ1[−div(eχF (v)∇)−K(b, µ)], say zλ, such that

λ− σ1[−div(eχF (v)∇)−K(b, µ)]

e2χF (µ)‖φλ‖0

φλ ≤ zλ,

where φλ stands for the positive eigenfunction associated to σ1[−div(eχF (v)∇)−K(b, µ)]

with |φλ|2 = 1. (We point out that φλ depends on λ because v depends on λ). Since w is

a supersolution of (76), by uniqueness,

λ− σ1[−div(eχF (v)∇)−K(b, µ)]

e2χF (µ)‖φλ‖0

φλ ≤ w.

On the other hand, by the monotonicity properties of the principal eigenvalue we have

σ1[−div(eχF (v)∇)−K(b, µ)] ≤ σ1[−div(eχF (µ)∇)−K(b, µ)] := s(µ)

and so, denoting

τ(λ) :=
λ− s(µ)

eχF (µ)‖φλ‖0

it holds

τ(λ)φλ ≤ w ≤ u. (77)

We recall that ‖φλ‖0 is uniform bound with respect to λ (see, for instance, Theorem 4.1

in [37]). Then,

τ(λ) ≥ λ− s(µ)

CeχF (µ)
→∞ as λ→∞.

Now, since v is a positive solution of the second equation of (72) and using (77), we get

µ = σ1[−∆ + v + cu] ≥ σ1[−∆ + cτ(λ)φλ] =: g(λ). (78)

Once that µ > λ1 is fixed, to finish the proof is sufficient to show that

lim
λ→∞

g(λ) = +∞, (79)

because (79) produces a contradiction with (78). In order to prove (79) we argue by

contradiction. Observe that

g(λ) = inf
ϕ∈H1

0 (Ω)\{0}

∫
Ω
|∇ϕ|2 + cτ(λ)

∫
Ω
φλϕ

2∫
Ω
ϕ2

. (80)

Suppose otherwise that g(λ) is bounded. Then, there exists a sequence ϕλ ∈ H1
0 (Ω) with

|ϕλ|2 = 1 and that attains the infimum (80), that is,∫
Ω

|∇ϕλ|2 + cτ(λ)

∫
Ω

φλϕ
2
λ = g(λ). (81)

37



Since g(λ) is bounded, it follows from (81) that ϕλ is bounded in H1
0 (Ω) and, up to a

subsequence if necessary, there exists ϕ0 ≥ 0, |ϕ0|2 = 1 and ϕ0 6= 0, such that

ϕλ ⇀ ϕ0 in H1
0 (Ω), ϕλ → ϕ0 in L2(Ω) as λ→∞. (82)

We study now φλ. Combining the monotonicity properties of the principal eigenvalue

with 1 ≤ eχF (v) ≤ eχF (µ) yields

λ1 = σ1[−∆] ≤ σ1[−div(eχF (v)∇)−K(b, µ)] ≤ σ1[−div(eχF (µ)∇)−K(b, µ)].

Again since µ > λ1 is fixed, we can conclude that there exists σ0 ≥ λ1 > 0 such that (up

to a subsequence if necessary)

σ1[−div(eχF (v)∇)−K(b, µ)]→ σ0 as λ→∞.

By definition,

− div(eχF (v)∇φλ) = σ1[−div(eχF (v)∇)−K(b, µ)]φλ in Ω, (83)

and so,∫
Ω

|∇φλ|2 ≤
∫

Ω

eχF (v)|∇φλ|2 = σ1[−div(eχF (v)∇)−K(b, µ)]

∫
Ω

φ2
λ ≤ σ1[−div(eχF (µ)∇)−K(b, µ)],

whence we deduce that φλ is bounded in H1
0 (Ω) and, up to a subsequence if necessary,

there exists φ0 ≥ 0, |φ0|2 = 1 and φ0 6= 0, such that

φλ ⇀ φ0 in H1
0 (Ω), φλ → φ0 in L2(Ω) as λ→∞. (84)

Observe that (83) is verified inH−1(Ω), and so we can apply the homogenization technique

(see, for instance, Theorem 2.1 in [18]) and conclude that there exists a uniformly elliptic

symmetric matrix A ∈ (L∞(Ω))N×N such that the following equation is verified in H−1(Ω)

−div(A∇φ0) = σ0φ0.

Since σ0φ0 ≥ 0 and non-trivial, by the strong maximum principle φ0 > 0. Then, it follows

from (81) that

lim sup
λ→∞

∫
Ω

φλϕ
2
λ = 0.

In contrast, by (82) and (84) we obtain that

lim sup
λ→∞

∫
Ω

φλϕ
2
λ =

∫
Ω

φ0ϕ
2
0 > 0,

an absurdum. This completes the proof.
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We are ready to prove the main existence result:

Theorem 5.2. Assume that µ > λ1 and let λµ and µλ be the functions defined by (74)

and (73), respectively. Then if some of the following conditions are satisfied

λ > λµ and µ > µλ (85)

or

λ < λµ and µ < µλ, (86)

then, there exists at least a coexistence state of (72).

Proof. As the reasoning is similar to the proof of Theorem 5.1, we will be brief.

Fix µ > λ1. Since the semitrivial solutions of (72) are nondegenerate, by Theorem 1.2,

from the point

(λ, u, v) = (λµ, 0, θµ)

emanates a continuum C ⊂ R × int(P) × int(P) of coexistence states of (72) and one of

the alternatives of Theorem 1.2 is satisfied. Moreover, the alternatives 3 and 4 cannot

occur (see Remark 2). Since (72) does not admit coexistence states for λ small or large

(according to Lemma 5.5 (b) and (c)) and the coexistence states are bounded in C1
0(Ω)×

C1
0(Ω) (see Lemma 5.4), then alternative 1 of Theorem 1.2 cannot be satisfied either.

Therefore, continuum C satisfies alternative 2 of Theorem 1.2; that is, there exists a

positive solution (λ∗, θλ∗) such that (λ∗, θλ∗ , 0) ∈ C and

µ = σ1[−∆ + cθλ∗ ] = µλ∗ .

Hence, there exists coexistence state for λ ∈ (λµ, λ
∗) (or λ ∈ (λ∗, λµ)).

Since µ > λ1 is arbitrary, we obtain the result.

In Figure 2 we have represented some admissible region of coexistence of (72) given

by Theorem 5.2.

References

[1] D. Arcoya, J. Carmona and B. Pellacci. Bifurcation for some quasilinear operators.

Proc. Roy. Soc. Edinburgh Sect. A, 131(4):733–765, 2001.

39



λ1λ1

λ1 λ1

λμ λμ

λλ

μ μ

μλ μλ

Figure 2: Admissible regions of coexistence of (72).

[2] I. Averill, K. Lam and Y. Lou. The role of advection in a two-species competition

model: a bifurcation approach. Mem. Amer. Math. Soc., 245(1161):v+117, 2017.

[3] R. S. Cantrell and C. Cosner. Diffusive logistic equations with indefinite weights: pop-

ulation models in disrupted environments. II. SIAM J. Math. Anal., 22(4):1043–1064,

1991.

[4] R. S. Cantrell and C. Cosner. Spatial Ecology via Reaction-Diffusion Equations.

Wiley Series in Mathematical and Computational Biology. John Wiley & Sons, Ltd.,

Chichester, 2003.

[5] H. Chen, B. Tong, and Q. Wang. Existence and stability of nonconstant positive

steady states of morphogenesis models. Math. Methods Appl. Sci., 38(17):3833–3850,

2015.

[6] W. Cintra, C. Morales-Rodrigo and A. Suárez. Coexistence states in a cross-diffusion

system of a predator-prey model with predator satiation term. Math. Models Methods

Appl. Sci., 2018. (in press).

[7] C. Cosner. Reaction-diffusion-advection models for the effects and evolution of dis-

persal. Discrete Contin. Dyn. Syst., 34(5): 1701–1745, 2014.

[8] M. G. Crandall and P. H. Rabinowitz. Bifurcation from simple eigenvalues. J. Func-

tional Analysis, 8:321–340, 1971.

40



[9] D. Daners and P. Koch-Medina. Abstract Evolution Equations, Periodic Problems

and Applications, volume 279 of Pitman Research Notes in Mathematics Series. Long-

man Scientific & Technical, Harlow; copublished in the United States with JohnWiley

& Sons, Inc., New York, 1992.

[10] D. G. de Figueiredo. Positive solutions of semilinear elliptic problems. In Differential

equations (São Paulo, 1981), volume 957 of Lecture Notes in Math., pages 34–87.

Springer, Berlin-New York, 1982.

[11] M. Delgado, M. Montenegro, and A. Suárez. A Lotka-Volterra symbiotic model with

cross-diffusion. J. Differential Equations, 246(5):2131–2149, 2009

[12] M. Delgado and A. Suárez. Study of an elliptic system arising from angiogenesis with

chemotaxis and flux at the boundary. J. Differential Equations, 244(12):3119–3150,

2008.

[13] Y. Du and Y. Lou. S-shaped global bifurcation curve and Hopf bifurcation of positive

solutions to a predator-prey model. J. Differential Equations, 144(2):390–440, 1998.

[14] K. Fujie and T. Senba, Global existence and boundedness of radial solutions to a two

dimensional fully parabolic chemotaxis system with general sensitivity. Nonlinearity

29 (2016) 2417-2450.

[15] T. Hillen and K. J. Painter. A user’s guide to PDE models for chemotaxis. J. Math.

Biol., 58(1-2):183–217, 2009.

[16] D. Horstmann. From 1970 until present: the Keller-Segel model in chemotaxis and

its consequences. I. Jahresber. Deutsch. Math.-Verein., 105(3):103–165, 2003.

[17] Z. Jun and C. Kim. Positive solutions for a Lotka-Volterra prey-predator model with

cross-diffusion of fractional type. Results Math., 65(3-4):293–320, 2014.

[18] S. Kesavan. Homogenization of elliptic eigenvalue problems. I. Appl. Math. Op-

tim.,5(2):153–167, 1979.

[19] K. Kuto. Bifurcation branch of stationary solutions for a Lotka-Volterra cross-

diffusion system in a spatially heterogeneous environment. Nonlinear Anal. Real

World Appl., 10(2):943–965, 2009.

41



[20] K. Kuto and Y. Yamada. Multiple coexistence states for a prey-predator system with

cross-diffusion. J. Differential Equations, 197(2):315–348, 2004.

[21] K. Kuto and Y. Yamada. Multiple existence and stability of steady-states for a

prey-predator system with cross-diffusion. In Nonlocal elliptic and parabolic prob-

lems,volume 66 of Banach Center Publ., pages 199–210. Polish Acad. Sci. Inst.

Math.,Warsaw, 2004.

[22] D. Le, L. V. Nguyen and T. T. Nguyen. Regularity and coexistence problems for

strongly coupled elliptic systems. Indiana Univ. Math. J., 56(4):1749–1791, 2007.

[23] J. López-Gómez. Nonlinear eigenvalues and global bifurcation application to the

search of positive solutions for general Lotka-Volterra reaction diffusion systems with

two species. Differential Integral Equations, 7(5-6):1427–1452, 1994.

[24] J. López-Gómez. The maximum principle and the existence of principal eigen-

values for some linear weighted boundary value problems. J. Differential Equa-

tions,127(1):263–294, 1996.

[25] J. López-Gómez. Linear Second Order Elliptic Operators. World Scientific Publishing

Co. Pte. Ltd., Hackensack, NJ, 2013.

[26] J. López-Gómez and C. Mora-Corral. Counting zeros of C1 Fredholm maps of index

1. Bull. London Math. Soc., 37(5):778–792, 2005.

[27] Y. Lou and W. Ni. Diffusion, self-diffusion and cross-diffusion. J. Differential Equa-

tions, 131(1):79–131, 1996.

[28] J. López-Gómez. Spectral Theory and Nonlinear Function Analysis. Chapman &

Hall/CRC, 2001.

[29] K. Nakashima and Y. Yamada. Positive steady states for prey-predator models with

cross-diffusion. Adv. Differential Equations, 1(6):1099–1122, 1996.

[30] C. V. Pao. Strongly coupled elliptic systems and applications to Lotka-Volterra mod-

els with cross-diffusion. Nonlinear Anal., 60(7):1197–1217, 2005.

[31] J. Pejsachowicz and P. J. Rabier. Degree theory for C1 Fredholm mappings of index

0. J. Anal. Math., 76:289–319, 1998.

42



[32] W. H. Ruan. Positive steady-state solutions of a competing reaction-diffusion system

with large cross-diffusion coefficients. J. Math. Anal. Appl., 197(2):558–578, 1996.

[33] W. H. Ruan. A competing reaction-diffusion system with small cross-diffusions.

Canad. Appl. Math. Quart., 7(1):69–91, 1999.

[34] K. Ryu and I. Ahn. Coexistence theorem of steady states for nonlinear self-cross dif-

fusion systems with competitive dynamics. J. Math. Anal. Appl., 283(1):46–65,2003.

[35] J. Shi and X. Wang. On global bifurcation for quasilinear elliptic systems on bounded

domains. J. Differential Equations, 246(7):2788–2812, 2009.

[36] N. Shigesada, K. Kawasaki, and E. Teramoto. Spatial segregation of interact-

ingspecies. J. Theoret. Biol., 79(1):83–99, 1979.

[37] G. Stampacchia. Le problème de Dirichlet pour les équations elliptiques du second

ordre à coefficients discontinus. Annales de l’institut Fourier, 15(1):189–257, 1965.

[38] C. Stinner and M. Winkler, Global weak solutions in a chemotaxis system with large

singular sensitivity, Nonlinear Anal. RWA 12 (2011) 3727-3740.

[39] J. I. Tello, J. Ignacio and D. Wrzosek, Inter-species competition and chemorepulsion.

J. Math. Anal. Appl. 459 (2018), 1233-1250.

[40] Q. Wang, J. Yan, and C. Gai. Qualitative analysis of stationary Keller-Segel chemo-

taxis models with logistic growth. Z. Angew. Math. Phys., 67(3):Art. 51, 25, 2016.

[41] Y. Wang and W. Li. Stationary problem of a predator-prey system with nonlinear

diffusion effects. Comput. Math. Appl., 70(8):2102-2124, 2015.

[42] M. Winkler and T. Yokota, Stabilization in the logarithmic Keller-Segel system.

Nonlinear Anal. 170 (2018), 123-141.

43


	1 Introduction
	2 Construction of the operator
	3 Auxiliary Results
	4 Proof of Theorem ??
	5 Applications
	An abstract model
	A chemotaxis model


