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In this paper, a method for obtaining the electrical characteristics of metamaterial resonators coupled
to planar transmission lines is proposed. This parameter extraction technique is based on the
comparison between the measured (or full wave electromagnetic simulated) transmission and
reflection characteristics of a host line loaded with such resonators and those obtained from its
lumped element equivalent circuit model (previously reported by some of the authors). The resonant
particles considered in this study are split ring resonators, spiral resonators, and other electrically
small resonant particles based on two metal levels. The interest in this technique lies in the lack of
analytical models providing the electrical parameters of several of the considered ultrasmall
resonator topologies (due to their complexity). From the extracted parameters, it is concluded that
the circuit models predict very accurately the frequency responses of the considered structures for
the different resonators under study. There is an increasing interest in the synthesis of metamaterial
transmission lines with extremely small unit cell size. In order to achieve dimensions close to (or
even below) \,/100, it is imperative to use complex resonator topologies that combine broadside
coupling and extremely elongated metallic strips (etched in different metal levels connected through
vias). This justifies the proposed technique. Thus, this work is useful in aiding the synthesis of
microwave components based on resonant type metamaterial transmission lines. © 2008 American

Institute of Physics. [DOL: 10.1063/1.3021109]

I. INTRODUCTION

Resonant type metamaterial transmission lines were first
proposed in 2003 by Martin et al.' by periodic loading of a
coplanar waveguide (CPW) structure with split ring resona-
tors (SRRs) (Ref. 2) and shunt connected strips. In such
structures, the metallic strips provide a negative value of the
effective dielectric permittivity .4 below a certain frequency
(plasma frequency f,), whereas the SRRs are responsible for
the negative effective permeability . in a narrow band
above their resonance frequency f,. By designing the struc-
ture with f,<f,, & and g are simultaneously negative in
a certain frequency band, and left handed (or backward)
wave propagation in that region occurs. Alternatively, left
handed transmission lines can be implemented by loading a
host line with complementary split ring resonators (CSRRs)
and series (capacitive) gaps.3’4 In this case, the negative ef-
fective permittivity and permeability are provided by the CS-
RRs and the gaps, respectively. The physics and applications
of these resonant type metamaterial transmission lines are
exhaustively discussed in the book coauthored by two of the
authors’ (other books that focus on the CL-loaded approach
of metamaterial transmission lines have also been recently
published®”).
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There are two main aspects of metamaterial transmission
lines that make them attractive for RF/microwave circuit de-
sign: (i) their small dimensions and (ii) the possibility of
tailoring (to some extent) the dispersion diagram of such
lines. The small dimensions are due to the electrically small
size of the metamaterial resonators (SRRs and CSRRs,
among others), which is in turn due to the high coupling
between the individual rings forming the particless’9 (or to
self-coupling in certain resonators based on spiral topolo-
gies). The dispersion diagram of metamaterial transmission
lines can be controlled by virtue of the higher number of
degrees of freedom of these resonant type metamaterial
transmission lines. This makes it possible to achieve func-
tionalities not realizable with conventional lines, such as the
synthesis of multiband components10 or components with en-
hanced operative bandwidths. -4

Most resonant type metamaterial transmission lines and
applications reported so far have been implemented by
means of CSRRs etched either in the ground plane5 or in the
conductor strip15 of microstrip transmission lines. These
lines have been exhaustively studied in the literature.'*~'8
With regard to SRR-loaded lines, a circuit model describing
such lines has been previously reported. The validation of
this model has been done by comparing experimental data
obtained from fabricated prototypes with circuit
simulations,1 where the circuit parameters have been inferred
from models valid under very restrictive conditions'’ (i.e.,

© 2008 American Institute of Physics
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such circuits elements have not been derived from parameter
extraction). This explains certain discrepancies between the
results of simulation and experiment in previous works." In
this work, a method for extracting the circuit parameters of
metamaterial transmission lines loaded with SRRs or with
other resonators magnetically coupled to the line is proposed.
As will be shown, the circuit models with extracted param-
eters accurately describe the behavior of these metamaterial
transmission lines, regardless of the resonator type and host
line configuration (microstrip, CPW, etc.).

One relevant aspect of magnetically coupled metamate-
rial resonators is the possibility of significantly reducing
their size by using two metal levels or the combination of
two metal levels and metallic vias. For instance, broadside
coupled split ring resonators (BC-SRRs), where two open
rings are etched on opposite sides (face to face) of a dielec-
tric slab, can be made electrically very small provided the
thickness of the dielectric is also very small.'® There has also
been report of the notable size reduction in broadside
coupled spiral resonators (BC-SRs),” where the spirals are
implemented by etching different metal loops at both sides of
a dielectric layer connected through metallic vias. For certain
resonator types, the complexity is so important that the ana-
lytical determination of the effective inductance and capaci-
tance is not possible. Moreover, in simpler resonators (such
as SRRs) analytical models do exist, but they are valid under
very restrictive conditions, that is, without the presence of
the host line. Thus, the parameter extraction technique pro-
posed in this work is of interest since it directly provides the
circuit elements of those circuits modeling the resonator-
loaded lines, this being of interest for metamaterial and mi-
crowave circuit design. It will be also shown that the param-
eter extraction is coherent with the parameters of the isolated
particles. Obviously, this will be done on the basis of trans-
mission lines loaded with resonators whose electrical char-
acteristics can be analytically inferred. This will further
strengthen the validity of the proposed models and the pa-
rameter extraction technique.

Il. THE MODEL AND PARAMETER EXTRACTION

The former model describing the unit cell of metamate-
rial transmission lines loaded with magnetically coupled
resonators (SRRs, SRs, etc.) and shunt connected metallic
elements is depicted in Fig. 1(a)." In Figs. 1(b) and 1(c) the
layouts of typical unit cells corresponding to left handed
CPW and microstrip lines, respectively, are depicted. In the
CPW configuration, the SRRs are paired in the lower sub-
strate side (where they are etched), beneath the slots of the
structure and centered with the shunt strips. The negative
effective permittivity is achieved by means of the shunt con-
nected strips. In microstrip lines, the SRRs are etched in
pairs on the upper substrate side, adjacent to the conductor
strip. In this case, the metallic vias are responsible for the
negative permittivity of the structure. As pointed out in Ref.
1, the validity of the lumped element model [Fig. 1(a)] in
describing the structures in Figs. 1(b) and 1(c) is subject to
the small electrical size of the unit cells. In addition to this,
the coupling between adjacent resonators and losses is ne-
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FIG. 1. Lumped element equivalent circuit for the basic left handed cell (a).
Layouts of the considered CPW (b) and microstrip (c) structures combining
SRRs with shunt strips and one via, respectively.

glected. It has been found that the coupling between adjacent
resonant elements is significant only in square or rectangular
tiny spaced resonators.”! [This coupling is the origin of mag-
netoinductive waves in chains of SRRs (Refs. 22-25) or
electroinductive waves in CSRR arrays.26] In reference to
Fig. 1(a), L and C are the per-section inductance and capaci-
tance of the line, L, models the inductance of the vias (mi-
crostrip structure) or metallic strips (CPW configuration), the
magnetically coupled resonators are described by means of
the resonant tank constituted by the inductance L; and the
capacitance C,, and, finally, their magnetic coupling to the
line is described by the mutual inductance M. As compared
to the circuit model in Ref. 1, the model in Fig. 1(a) de-
scribes the whole unit cell of the artificial lines. That is, we
have not applied now the magnetic wall concept, in spite of
the symmetry of the structure (in reference to a central plane
oriented along the line and orthogonal to it) and excitation.
The reason is that in order to extract the parameters, com-
parison to either simulation (electromagnetic) or experiment
is required (as will be discussed later), and it involves the
whole structure. Following a similar analysis to that reported
in Refs. 1 and 27, the circuit in Fig. 1(a) can be transformed
to the circuit model depicted in Fig. 2, where

L =2M*C,?, (1)
! L.Y

o= M2’ @

L'=L-L, (3)
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Series branch

Shunt branch

FIG. 2. Transformed 7r-circuit model of the basic left handed cell.

L,=2L,. (4)

However, it has been recently demonstrated by the authors
that in order to accurately describe the frequency response of
left handed lines loaded with magnetically coupled resona-
tors through a lumped element model, it is necessary to lo-
cate the inductance of the shunt strips (or vias) as Fig. 3
illustrates.” This circuit can also be transformed into that in
Fig. 2. However, the transformation equations are no longer
those given by expressions (1)-(4) but by*®

L 2
[1oir)
) s 4L
L =2M*C,w’ e &)
1+
2L, L,
L I+ 2L L
r_ s yZant)
CS_2M2w2 L ’ ©)
o 1 -
4L,
L\L
L'=(2+—|=-L., (7)
2L,)2
, L
Ly=2L,+7. (8)

Notice, however, that in the absence of the shunt connected
strips or vias, L,— and expressions (5)—(8) coincide with
expressions (1)—(4). As explained in Ref. 28, the model in
Fig. 3 is an improved equivalent circuit of SRR-loaded left

M/2]

P |M/2 IC/z

Tgs: I

FIG. 3. Circuit model modified to describe more accurately the physical
behavior of the left handed cells.
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handed lines, where the element parameters have the physi-
cal interpretation given before. [Notice that L, cannot be
linked to the shunt strips or vias in the model in Fig. 1(a).]
However, this model also transforms to the 7r-circuit in Fig.
2 [with transformation equations (5)—(8)]. The elements of
the r-circuit depicted in Fig. 2, which models the unit cell of
resonant type left handed transmission lines loaded with
magnetically coupled resonators, can be inferred from the
measured or simulated reflection and transmission coeffi-
cients of such unit cells according to the method described
below.

A. The parameter extraction technique

Since the number of parameters of the circuit model in
Fig. 2 is five, we also need five conditions to univocally
determine such parameters. From the representation of the
reflection coefficient of a single unit cell, S;;, in the Smith
chart, two conditions are obtained. On one hand, we can
determine the frequency that nulls the series reactance, f,,
from the intercept of §;; with the unit conductance circle.
This is obvious since at this frequency, the real part of the
admittance seen from the ports is simply the admittance of
the opposite port, that is, Y,=(Z,)7'=(50 Q)"'=0.02 S.
Hence, S;; must be allocated in the unit conductance circle at
fs as illustrated in the example provided in Sec. II B. This
frequency is given by the following expression:

1 1 1
fS=_ 1~ + IVl (9)
2@ VL.,C, L'C;

On the other hand, the susceptance of the unit cell seen from
the ports at f,, which can be inferred from the Smith chart, is
CL'w*-2

B(w,) = —Lb (10)
p®s

with w,=2m7f,. Another condition concerns the parallel reso-
nator of the series branch. Namely, the resonance frequency
of this resonator is given by

f=\ e (1)
o NLel

s S

Notice that this frequency does not coincide with the intrin-
sic resonance frequency of the magnetically driven resonator,
f, (which is the resonance frequency of the tank formed by
L, and C,). The frequency f. [expression (11)] can be easily
obtained from the transmission coefficient S,; of the unit cell
since at this frequency the series branch is opened and the
whole power injected from the input port is reflected back to
the source. Thus, the transmission coefficient nulls (transmis-
sion zero frequency) and f, can be easily identified from the
representation of the transmission coefficient in a decibel
scale.

Another condition can be deduced from the phase of the
transmission coefficient, ¢g,,. At the frequency where ¢,
=90°, f.», the electrical length of the unit cell, ¢p=pI (B
being the phase constant and / the length of the unit cell), is
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&(f.,)==90°."7 Since the dispersion relation of a periodic
structure consisting of cascaded unit cells, as those in Fig. 2,
is given by
Z(w
cos d):l+£, (12)
Z,(w)
with Z; and Z, being the series and shunt impedances, re-
spectively, of the mr-circuit model, it follows that

Z( @) ==Z,(07), (13)

with w,,=27f . Expressions (9)—(11) and (13) are four of
the five conditions needed to univocally determine the circuit
parameters in Fig. 2. Indeed, by removing the shunt con-
nected vias or strips in the layouts in Fig. 1, we can represent
the corresponding reflection coefficient on a Smith chart and
obtain the susceptance seen from the ports at that frequency
where Sy, intercepts the unit conductance circle. Since this is
simply the susceptance of the line capacitance (provided L,
has been removed), we can thus univocally determine C.
Hence, this is the fifth condition that is required to extract the
circuit parameters of the circuit model in Fig. 2.

B. Validation of the model and results

The presented method has been applied in extracting the
circuit model parameters (Fig. 2) of different structures. In
this section, we will illustrate the validity of both, the model
and the parameter extraction method, by means of the appli-
cation of the technique to a microstrip line and to a CPW left
handed structure. The microstrip line is loaded with a pair of
SRRs and a shunt connected via,”’ as depicted in Fig. 1(c).
The dimensions of the SRRs are (in reference to Fig. 1) ¢
=0.6 mm, d=0.2 mm, and r=2.4 mm; the diameter of the
via is w,=0.4 mm; and the conductor strip width is W,,
=1.15 mm and the length D,,=8.6 mm. The considered
substrate is Rogers RO3010 with thickness #=1.27 mm and
dielectric constant &,=10.2. The reflection coefficient of the
structure (obtained from full wave electromagnetic simula-
tion by means of the AGILENT MOMENTUM commercial soft-
ware) is depicted on a Smith chart in Fig. 4(a) and both the
reflection and transmission coefficients are simultaneously
depicted in a decibel scale in Fig. 4(b). The phase of the
transmission coefficient (also obtained from full wave elec-
tromagnetic simulation) is also depicted in Fig. 4(b). We
have applied the parameter extraction technique to this struc-
ture (the results are given in Table I). From the extracted
parameters, we have obtained the frequency response (reflec-
tion and transmission coefficients and phase response) from
the electrical simulation (using the AGILENT ADS software) of
the circuit model. The results of these circuit simulations are
also depicted in Fig. 4(b) to be easily compared with the
results obtained from the electromagnetic simulation of the
layout. As can be appreciated, the circuit model describes the
behavior of the structure in Fig. 1(c) with excellent accuracy
[the circuit and electromagnetic simulations in Fig. 4(b) are
roughly undistinguishable]. This points out the validity of the
model and the ability of the reported technique to provide the
circuit parameters of the structure.

J. Appl. Phys. 104, 114501 (2008)
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Frequency (GHz)

FIG. 4. Reflection coefficient on the Smith chart (a); frequency response
(reflection, S;,, and transmission, S,,, coefficients) depicted in a decibel
scale and the dispersion relation (b) for a left handed cell based on a mi-
crostrip structure. The considered substrate is Rogers RO3010 with thick-
ness 7=1.27 mm and dielectric constant &,=10.2. Relevant dimensions are
ring width ¢=0.6 mm; distance between the rings, d=0.2 mm; and internal
radius r=2.4 mm. For the microstrip structure the strip line width is W,
=7 mm and the length is D,=8.6 mm; the diameter of via is w,
=0.4 mm. The results of the circuit simulation with extracted parameters
are depicted using symbols.

The same parameter extraction method has been used for
the CPW transmission line loaded with a pair of SRRs and
two signal-to-ground strips.1 The SRRs are located beneath
the slots of the CPW structure with the slits aligned with the

TABLE I. Extracted parameters for the circuit shown in Fig. 2 for microstrip
and CPW structures with and without shunt metallic elements.

c L' L, C! L
Structure (pF) (nH) (nH) (pF) (nH)
Including the shunt metallic elements
Microstrip 1.72 11.86 2.04 3.16 1.66
CPW 2.35 432 1.81 4.42 1.45

Removing the shunt metallic elements
Microstrip 1.72 3.02 e 45.11 0.11
CPW 2.35 2.06 20.29 0.27
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FIG. 5. Frequency response (reflection, S;;, and transmission, S,,, coeffi-
cients) depicted in a decibel scale and the dispersion relation for a left
handed cell based on a CPW structure. The considered substrate is Rogers
RO3010 with thickness #=1.27 mm and dielectric constant £,=10.2. Rel-
evant dimensions are ring width ¢=0.6 mm; distance between the rings, d
=0.2 mm; and internal radius r=2.4 mm. For the CPW structure the central
strip width is W.=7 mm, the width of the slots is G=1.48 mm, and the
length is D,=8.6 mm; the shunt strip width is w;=0.4 mm. The results of
the electrical simulation with extracted parameters are depicted using
symbols.

shunt connected strips. In reference to Fig. 1(b), the SRR
dimensions are ¢=0.6 mm, d=0.2 mm, and r=2.4 mm; the
slot and central strip widths of the host CPW are G
=1.48 mm and W.=7 mm, respectively, with a length D,
=8.6 mm and the shunt metallic strip width is w,=0.4 mm.
The relative permittivity of the considered dielectric is &,
=10.2 with thickness A=1.27 mm (Rogers RO3010). The
electrical (from the extracted parameters given in Table I)
and electromagnetic simulations of the structure are depicted
in Fig. 5. Again, the agreement between circuit and electro-
magnetic simulations is excellent.

To further demonstrate this parameter extraction method,
it has also been applied for the two previous structures after
removing the shunt strips and the via in the CPW and the
microstrip structure, respectively. In these cases, the electri-
cal circuit has four elements (Fig. 2 excluding Ll’)). The ex-
tracted parameters can be seen in Table I, whereas the fre-
quency responses are presented in Fig. 6 with the phase for
these two structures. Comparing the frequency responses for
the left handed structures in Figs. 4(b) and 5 with the
negative-permeability structures in Figs. 6(a) and 6(b), the
conservation of the zero-degree phase frequency f, and a
shift in the transmission zero frequency f, can be observed.”

In order to generalize this model and its parameter ex-
traction technique, a CPW left handed cell has been loaded
with some different subwavelength resonators.’**’ The reso-
nators that have been considered and their lengths in terms of
the guided wavelength (\,) are broadside coupled nonbi-
anisotropic split ring resonator (BC-NB-SRR) (\,/29),
broadside coupled spiral resonator with two turns [BC-
SR(2)] (\,/49), and broadside coupled spiral resonator with
four turns [BC-SR(4)] (\,/117). Figure 7 shows the topolo-
gies of these three resonators, the layout of the three metal
layer configuration of a CPW loaded with a pair of metama-
terial resonators and shunt strips, and the frequency response

J. Appl. Phys. 104, 114501 (2008)
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FIG. 6. Simulated reflection, S;;, and transmission, S,;, coefficients, and
simulated dispersion relation for negative-permeability cells based on mi-
crostrip (a) and CPW (b) structures. The layouts are represented in Fig. 1
removing the shunt elements. The considered substrate and the relevant
dimensions are the same as those in Figs. 4 and 5.

obtained from the electromagnetic simulation together with
the electrical response corresponding to the circuit obtained
from the parameter extraction. Both responses are identical,
as what occurs in Fig. 5 with the SRR with a length A,/10. It
should be taken into account that for these resonators with
two metal layers, three metal layers are necessary: two for
the resonator and one more for the coplanar line. The circuit
parameters are shown in Table II. With these results, it is
demonstrated that the parameter extraction method is suit-
able for any subwavelength resonator.

Thus, we can conclude that the circuit model shown in
Fig. 2 appropriately describes the behavior of left handed
lines loaded with magnetically coupled resonators. The pro-
posed parameter extraction method is simple and useful for
the characterization of resonant type metamaterial transmis-
sion lines.

lll. DISCUSSION

The accurate determination of the parameters of the iso-
lated particles (that is, without the presence of the CPW
metal level) from the simulation of the structure proposed in
Fig. 1(b) and applying the parameter extraction proposed in
Sec. II is not possible since, to this end, the value of the
mutual coupling M is required, and the assumption M=Lf (f
being the fraction of the slots occupied by the resonators) is
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(a) BC-NB-SRR  (b)BC-SR(2)

(c) BC-SR(4)
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FIG. 7. Topologies of the different resonators considered: BC-NB-SRR (a),
BC-SR(2) (b), and BC-SR(4) (c). Layout of a three metal layer configuration
of a CPW loaded with a pair of metamaterial resonators and shunt strips: top
(d) and three dimensional (e) views. Frequency responses (f) for three dif-
ferent resonators: BC-NB-SRR, BC-SR(2), and BC-SR(4) coupled to CPW
structure with shunt strips. The considered substrate is Rogers RO3010 with
dielectric constant £,=10.2. The relevant dimensions for the resonators are
ring width ¢=0.6 mm; distance between the rings, d=0.2 mm; and internal
radius r=2.4 mm for the BC-NB-SRR and the BC-SR(4) and r=3.2 mm
for the BC-SR(2). The substrate thickness between the resonator metallic
layers is #=0.635 mm for the BC-NB-SRR and #=0.127 mm for the BC-
SR(2) and the BC-SR(4). For the CPW structure the central strip width is
W.=7 mm, the width of the slots is G=1.35 mm, and the length is D,
=8.6 mm. The shunt strip width is w;=0.4 mm; the substrate thickness
between the CPW and the resonators is H=0.635 mm for the BC-NB-SRR
and H=1.143 mm for the BC-SR(2) and the BC-SR(4). The results of the
electrical simulation with extracted parameters are depicted using symbols.

only an approximation. Indeed, this assumption is valid as
long as the following conditions are fulfilled: (i) the resonant
elements can be described through a quasistatic analysis and
(ii) the magnetic flux lines generated by the line in the region
of the resonators penetrate the whole resonator area. As long
as the resonators are electrically small, the first condition is
reasonable, but it is not likely that the second condition ap-
plies for relatively thick dielectric layers (as those of many
low loss commercial microwave substrates).

Let us assume however that M is known. In that case,
the parameters of the model in Fig. 3 can be determined

J. Appl. Phys. 104, 114501 (2008)

TABLE II. Extracted parameters for the circuit shown in Fig. 2 with a CPW
structure using different pairs of coupled resonators.

C L L C! L
(pF) (nH) (nH) (pF) (nH)
BC-NB-SRR 3.37 4.01 2.08 25.80 2.16
BC-SR(2) 2.00 4.71 2.21 102.03 1.46
BC-SR(4) 2.20 4.39 2.20 545.11 1.59

through transformations (5)—(8). However, notice that L, and
C, are the resonator parameters influenced by the presence of
the metallic CPW structure on the opposite substrate side,
which are different from the parameters of the isolated par-
ticles, L; and C;. L; can be inferred from L; by means of the
method of images according to

Li=L;+M', (14)

where M’ is the mutual coupling between the resonator and
its image, and it has been considered that the effect of the
slots, in the case of the CPW, is negligible. M’ is obtained by
means of the well known Neumann’s formula, where infi-
nitely thin metal loops have been considered, with the radius
corresponding to the average radius of the used resonator.
The determination of C; from C, is more complicated,
but for relatively thick substrates (as compared to the dis-
tance between concentric rings, ¢) it is expected that C;
~ C,. A key point is if there exists a range of substrate thick-
nesses for which C;= C; and the assumption M =Lf is valid.
To this end, we have calculated for four different particles
the value of mutual coupling M, that makes C,~ C, (C; and
L, can be calculated analytically for the considered particles),
and we have calculated the ratio M,/M (normalized cou-
pling). Notice that the normalized coupling coincides with
fi/f, where f;=M,/L. We may call f,/f the normalized slot
fraction. Such normalized slot fraction is depicted in Fig. 8
for different substrate thicknesses. The considered particles

1.00

0.75

F/f

0.50 |

—+— SRR
—&— SR
—=— BC-SRR
—»— BC-SR

25 1 1 1 1 1 1 1 1
0.25 050 0.75 1.00 1.25 150 1.75 2.00
Substrate thickness (H) (mm)

FIG. 8. Normalized slot fractions (f,/f) that make C;=C, for four different
resonant particles and different substrate thicknesses H. The relevant dimen-
sions for the resonators are ring width ¢=0.6 mm, distance d=0.2 mm
between the rings, and internal radius r=2.4 mm for the SRR and the SR;
and ¢=0.6 mm, r=3.2 mm, and substrate thickness 2=0.127 mm between
layers for the BC-SRR and the BC-SR(2).
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TABLE III. Extracted parameters for the SRR-loaded microstrip and CPW
unit cells with and without shunt strips (second and third columns) and
isolated parameters (fifth and sixth columns). Modified mutual inductances
(first column) and mutual couplings between the resonator and its image
(fourth column).
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TABLE IV. Extracted parameters for the SRR-, SR-, BC-SRR-, and BC-SR-
loaded CPW unit cells without shunt strips for two substrate thicknesses.

c L M C;, Cp, Cryoa Ly M Li=L+M'" Lyyea
(pF) (nH) (nH) (pF) (nH) (nH)  (nH) (nH)

M, Cs. Cr, Crmoa Ly M’ Li=L+M' Ly

Structure  (nH) (pF) (nH) (nH) (nH) (nH)
With the shunt metallic elements

Microstrip ~ 0.70 0.50 9.58 2.1 11.68 12.55

CPW 1.13 0.50 1043 2.1 12.53 12.55

Removing the shunt metallic elements
Microstrip ~ 0.71 0.50 9.69 2.1 11.79 12.55
CPW 1.17 0.50 1041 2.1 12.51 12.55

have the same external radius. Such particles are SRRs, SRs,
BC-SRR, and BC-SR(2). As can be seen, the normalized slot
fraction decreases with substrate thickness and it is the same
for all the considered resonators (that corresponding to the
SRR is slightly above the others for unknown reasons). That
is, as the thickness increases, the fraction of the magnetic
flux lines generated by the line that penetrates the resonator
area decreases and M, <M (f,<f). Except for two metal
layer resonators with significant intermetallic distance, the
normalized slot fraction is expected to depend essentially on
the substrate thickness, as Fig. 8§ demonstrates. However, no-
tice that as substrate thickness is reduced, rather than a satu-
ration of the normalized slot fraction (that is, f,/f— 1), this
normalized fraction rapidly increases. This occurs for sub-
strate thicknesses below approximately 0.50 mm, where the
assumption that C;= C; fails, so that neither M, nor f, have a
physical meaning. Thus, the presented results show that there
is not a region where the actual coupling M, coincides with
M=Lf and, simultaneously, C;=~ C,. This precludes the ac-
curate determination of the parameters of the isolated par-
ticles C; and L;. However, we can estimate these parameters
by considering a test structure consisting on a CPW with
thickness above 1.5 mm and use the normalized slot fraction
derived from Fig. 8 (the average value). With these values,
the mutual coupling M, can be inferred and by introducing it
in Egs. (5)—(8), we can infer L; and C; and finally the pa-
rameters of the isolated particle, given by Eq. (14) and C,
=C;.

To confirm the coherence between the extracted param-
eters (circuit in Fig. 2) and those of the isolated particles, we
have considered the CPW and microstrip structures in Fig. 1,
where we have extracted the parameters and we have calcu-
lated the mutual coupling M, necessary to obtain C,=C; (the
substrate thickness is large enough). Actually this has been
done also by removing the shunt connected inductances
(strips or vias). The values of M,, C, L,, M', C;, and L; are
given in Table III, together with the analytical values of C;
and L; (obtained from reported models®'** and termed as
Clmoa and Ly, 4 in Table III). As can be seen the analytical
(Ljmoq) and calculated (L;) resonator inductances are in rea-
sonable agreement (obviously C,=C; since we have forced
this). To further support the previous analysis, we have con-
sidered the four resonators in Fig. 8, each one loading a

Substrate thickness H=1.27 mm
SRR 2.38 227 1.17 0.50 1041 2.1 12.51 12.55
SR 2.03 249 1.19 2.00 9.96 2.1 12.06 12.55
BC-SRR 2.00 2.71 1.38 2.62 13.33 2.5 15.83 14.70
BC-SR 195 2.68 1.36 10.48 13.14 25 15.64 14.70

Substrate thickness H=1.78 mm
SRR 2.05 2.32 1.00 0.50 10.53 1.3 11.83 12.55
SR 1.80 2.76 1.03 2.00 9.83 1.3 11.13 12.55
BC-SRR 1.85 2.51 1.15 2.62 1349 1.7 15.19 14.70
BC-SR 1.78 3.50 1.34 10.48 13.50 1.7 15.20 14.70

CPW structure without strips, and we have obtained the same
parameters as in Table III. We have done this for two differ-
ent thicknesses. The results are shown in Table IV. Again,
there is reasonable agreement between Ly,,,q and L,. (Indeed,
taking into account that the width of the resonators is rela-
tively wide—c=0.6 mm-—some deviation between the cal-
culation and the analytical model can be expected.)

The reported parameter extraction technique for the cir-
cuit in Fig. 2 provides results that are coherent with the pa-
rameters of the resonators analytically obtained. The param-
eter extraction technique is very valuable and valid for
complex resonators which cannot be easily modeled, such as
the ones presented in Ref. 29. We would like to mention that
the resonator parameters can also be extracted from experi-
mental data. However, losses may obscure the results and the
comparison to the analytical models. For this reason this
study has been restricted to frequency responses inferred
from electromagnetic simulation. Nevertheless, it is well
known that the electromagnetic software that has been used
(AGILENT MOMENTUM) predicts the behavior of the resona-
tors with good accuracy, as has been previously demon-
strated, thus supporting the validity of this study.

IV. CONCLUSIONS

In conclusion, we have proposed a technique for the de-
termination of resonator parameters when they are coupled
to a planar transmission line. The technique has been applied
to several resonant particles with different electrical lengths
and different structures in microstrip and CPW configura-
tions. We have discussed the possibility of obtaining the pa-
rameters of the isolated particles from the extracted param-
eters, and we have concluded that this cannot be done
accurately, although we can obtain a reasonable estimation.
Nevertheless, we have corroborated that the extracted param-
eters are coherent with the parameters of the isolated par-
ticles, and this has been done for different host lines, par-
ticles, and substrate thicknesses.
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