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Abstract

Three dimensional crack problems in transversely isotropic solids under static and
time harmonic dynamic loading conditions are studied in this paper using a mixed
BE approach. Hypersingular and strongly singular kernels appearing in the formu-
lation are regularized prior to any discretization. Two different crack geometries
are studied. Stress Intensity Factors are computed from the crack opening displace-
ments at quarter-point quadratic elements. The results obtained in this paper show
a good agreement with other results. The number of elements required is rather
small.
Keywords: boundary elements, transversely isotropic materials, dynamic
fracture mechanics, three dimensional integral representation.

1 Introduction

There are not many results in the literature for problems of 3-D cracks in trans-
versely isotropic materials, although this kind of materials are of great interest for
engineers. Crystal of hexagonal system and fiber reinforced composites show this
kind of behavior, provided the dimensions of the crack are much bigger than the
fiber diameter.

Kassir and Sih [1] showed 35 years ago that the basic concepts of fracture
mechanics for transversely isotropic solids were similar to those of isotropic solids:
there is a stress singularity of order 1/

√
r near the crack front and crack opening

displacement in the proximity of the crack front have a variation of the type
√

r.
Both stress and displacement fields may be described in terms of stress intensity
factors (SIFs).

The Boundary Element Method (BEM) is a very useful numerical approach
in order to obtain these SIFs. In this paper, a mixed (or dual) formulation of the
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BEM is used. This formulation is based on the use of the displacement integral
representation for the external boundary and the traction integral representation
for the crack surface. Thus, only external boundary and crack surface need to be
discretized.

The main disadvantage in the use of the traction integral representation is the
additional integration and implementation effort due to the presence of hypersin-
gular and strongly singular kernels. Dominguez et al. [2] presented a regularization
process in order to deal with this difficulty. This regularization is done prior to any
discretization, and the hypersingular and strongly singular integrals appearing in
the formulation, are transformed into line and surface integrals, which are at most
weakly singular and can be numerically evaluated without difficulty. This formu-
lation can be used for static as well as for dynamic fracture analysis in transversely
isotropic solids, as presented by Ariza and Dominguez [3],[4].

Quadrilateral and triangular quadratic elements are used, with quarter-point ele-
ments at the crack front. SIFs are evaluated from the quarter-point nodal open-
ing displacement. The transformation of coordinates presented by Telles [5] and a
subdivision technique have been used as alternative ways of improving the numer-
ical integration procedure. More accurate results with less CPU time have been
obtained with Telles’ method. The results presented in this paper show the robust-
ness of the formulation.

2 Formulation

The classical displacement integral equation for an internal point y of an isotropic
or anisotropic elastic body Ω bounded by a regular surface Γ with unit outward
normal n(x) under time harmonic loading and zero body forces can be written as

ul(y, ω) +
∫

Γ

p∗lk(x,y, ω)uk(x, ω)dΓ −
∫

Γ

u∗
lk(x,y, ω)pk(x, ω)dΓ = 0 (1)

for l, k = 1, 2, 3, where uk and pk stand for the k component of displacement
and traction vectors, respectively, ω is the frequency, and u∗

lk, p∗lk are the 3-D elas-
tic time harmonic fundamental solution displacement and traction tensors respec-
tively.

Stress at point y can be obtained by differentiation of displacement components
at that point and introduction of the corresponding strains into the stress-strain
relationship.

Thus, the integral representation for the traction components are

pl(y, ω) +
∫

Γ

s∗lmk(x,y, ω)Nm(y)uk(x, ω)dΓ

−
∫

Γ

d∗lmk(x,y, ω)Nm(y)pk(x, ω)dΓ = 0 (2)

where d∗lmk and s∗lmk are linear combinations of derivatives of u∗
lk y p∗lk, respec-

tively.
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The four fundamental solution kernels in eqns. 1 and 2 can be written as

u∗
lk(x,y, ω) = uR

lk(x,y, ω) + uS
lk(x,y)

p∗lk(x,y, ω) = pR
lk(x,y, ω) + pS

lk(x,y)

d∗lmk(x,y, ω) = dR
lmk(x,y, ω) + dS

lmk(x,y)

s∗lmk(x,y, ω) = sR
lmk(x,y, ω) + sS

lmk(x,y) (3)

where uR
lk(x,y, ω), pR

lk(x,y, ω), dR
lmk(x,y, ω) and sR

lmk(x,y, ω) are regular func-
tions of r which tend to zero as ω does, and uS

lk(x,y), pS
lk(x,y), dS

lmk(x,y) and
sS

lmk(x,y), correspond to the static counterpart of u∗
lk, p∗lk, d∗lmk and s∗lmk, respec-

tively. The four static terms present singularities of the type r−1, r−2, r−2 and r−3,
respectively, when r → 0.

In a static problem, with no frequency dependency, only the static part of the
fundamental solution is used, whereas in the dynamic case, the regular part have to
be added. Explicit expressions of uS

lk(x,y) and σS
lmk(x,y) for three dimensional

transversely isotropic materials were obtained by Pan and Chou [6].
The expressions for d∗S

lmk coincide, except for a change of sign, with σS
lmk. This

change of sign is due to the different differentiation point: integration point (x) for
σS

lmk and collocation point for d∗S
lmk. Explicit expressions

for s∗S
lmk, can be obtained by differentiation and combination of Pan and Chou’s

expressions of pS
lk. They can be found in Ariza and Dominguez [3].

The frequency dependent regular part of the fundamental solution u∗R
lk can be

obtained by subtracting the static fundamental solution from the time harmonic
fundamental solution for general anisotropic solids u∗

lk (x,y,
ω) obtained by Wang and Achenbach [7].

Taking into account the fundamental solution kernels decomposition in eqn. 3,
the equations can be written for a boundary point following the same steps as in
the static case. The displacement integral equation (1) becomes

clk(y)ul(y, ω) +
∫

Γ

p∗S
lk (x,y)uk(x, ω)dΓ −

∫
Γ

u∗S
lk (x,y)pk(x, ω)dΓ

+
∫

Γ

p∗R
lk (x,y, ω)uk(x, ω)dΓ −

∫
Γ

u∗R
lk (x,y, ω)uk(x, ω)dΓ = 0 (4)

The traction integral equation (2) becomes

1
2
pl(y, ω) +

∫
Γ

{
sS

lmkNm [uk (x, ω) − uk(y, ω)−uk,h(y, ω)(xh − yh)]

−dS
lmkNm [pk (x, ω) − pk(y, ω)]

}
dΓ (5)

+ [uk(y, ω)Ilk + uk,h(y, ω)Jlhk + pk(y, ω)Klk]

+
∫

Γ

{
sR

lmkNmuk(x, ω) − dR
lmkNmpk(x, ω)

}
dΓ = 0

Eqn. (5) is obtained after regularization of integrals containing the static (singular)
parts, following the same approach proposed by Ariza and
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Figure 1: Nine node quarter-point quadratic element.

Dominguez [3] for transversely isotropic materials and by Dominguez et. al [2]
for isotropic materials. The first term of the traction series expansion and the first
two terms of the displacements expansions at collocation point, are subtracted and
added back. The integrals of the singular added back terms are transformed into
regular or weakly singular integrals by using Stoke’s theorem. Explicit expressions
of Ilk , Jlhk and Klk can be seen in Ariza and Dominguez [3].

3 Discretization

The discretization and implementation effort is greatly simplified by the use of the
present mixed BE approach (see Ariza and Dominguez,[3], [8]). Only the crack
surface and the external boundary need to be discretized. The traction BIE is used
for collocation points that may be assumed to be on any of the two crack surfaces,
whereas the classical BIE is written on the nodes of the external boundaries, when
they exist.Thus, the Crack Opening Displacement (COD) is chosen as the basic
variable on the crack, whereas displacements and tractions are the variables of he
external boundaries. No collocation at all is needed for the nodes at the crack front,
where COD=0.

Standard six-node or nine-node quadratic elements are used, except for those
with one side at the crack front which are quarter-point elements (Figure 1). These
elements are able to reproduce the

√
r behaviour of the displacements in the vicin-

ity of the crack front (see [9], [10]).
Following the idea of Gallego and Dominguez [11] for two dimensions, the col-

location is not done at the contour nodes, i.e. at ξ1, ξ2 = ±1, but at certain points
close to the nodes, inside the element (ξ1, ξ2 = ±0.75). Notice that the elements
used are continuous, as only the collocation points are shifted to the interior of the
element.

As a consequence of the collocation strategy, one may have as many equations
for each nodal component as elements contain the node. These equations are added
up to yield only one per nodal component. It is worth to notice that this Multi-
ple Collocation Approach (MCA) is only used for the nodes of the crack surface,
where the traction BIE is used. It is also important to mention that the regulariza-
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tion process of the static part of the fundamental solutions is only applied over a
part of the surface Γ close to the collocation point, whereas the original expressions
of the integrals are used in the rest of the boundary, where they are non singular.

Thus, the expression to be discretized into boundary elements is

1
2
pl(y, ω) +

∫
Γ0

{
sS

lmkNm [uk (x, ω) − uk(y, ω) − uk,h(y, ω)(xh − yh)]

−dS
lmkNm [pk (x, ω) − pk(y, ω)]

}
dΓ

+
[
uk(y, ω)I0

lk + uk,h(y, ω)J0
lhk + pk(y, ω)K0

lk

]
(6)

+
∫

Γ−Γ0

{
sS

lmk(x,y, ω)Nm(y)uk(x, ω) − dS
lmk(x,y, ω)Nm(y)pk(x, ω)

}
dΓ

+
∫

Γ

{
sR

lmkNmuk(x, ω) − dR
lmkNmpk(x, ω)

}
dΓ = 0.

where Γ0 is the element containing the collocation point, and Γ − Γ0 is the rest
of the boundary. Regarding the numerical integration of the nearly singular and
weakly singular kernels, the subdivision technique and the well known transfor-
mation of coordinates proposed by Telles [5] have been considered. The results
are more accurate, the approach is more robust and lees CPU time consuming
when Telles transformation and a suitable number of Gauss points are used.

4 Stress intensity factors evaluation

According to the work of Kassir and Sih [1], the SIFs can be obtained from the
COD near the crack front for the static case as well as for the dynamic one. Assum-
ing that z is the material axis of symmetry perpendicular to the crack plane and the
t-axis is tangent to the crack front line at the point where a node is located (Figure
2), the SIFs components at this point can be written in terms of the crack opening
displacements at the quarter-point node as:

KI =
√

π

2L
∆uz

β1
m1

1+m1
− m2

1+m2

KII =
√

π

2L
∆un

C44

(√
n2 −√

n1

)
(1 + m1)(1 + m2)

(m2 − m1)
√

n1n2

KIII =
√

π

2L
∆ut

C44√
n3

(7)

where L is the quarter-point element width, n1 and n2 are the two solutions of the
quadratic characteristic equation of the material properties.
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Figure 2: Local coordinates at crack boundary point P.

5 Numerical results

In the following two different crack problems in transversely isotropic media are
analyzed.

A penny shaped crack under time harmonic loading in unbounded transversely
isotropic media is studied first. The second problem corresponds to a prismatic
bar with a surface crack under uniform static loading. This problem is particularly
demanding because there is flexure and non-symmetric behavior in the body. The
problem is used for the analysis of different integration schemes in relation to the
efficiency and accuracy of the BE approach.

5.1 Penny shaped crack in unbounded domain

A penny shaped crack is located in a plane perpendicular to the material axis of
symmetry of a transversely isotropic unbounded domain. The considered materials
are a graphite-epoxy ( C11=13.92 GPa; C33=160.7 GPa; C12=6.92 GPa;
C13=6.44 GPa; C44=7.07 GPa and ρ=1578 kg/m3) and an isotropic material
(G=100 GPa, ν=0.3). The crack is under the effect of time harmonic quasi-longitu-
dinal waves propagating along the material axis of symmetry. Two BE meshes
are used for the present analysis (Figure 3.a). In both figures all the elements are
quadrilateral nine-node elements with the mid-node of the external elements at
one quarter of their width. The mesh in Figure 3.b is used for high frequency val-
ues. These meshes satisfy the condition that the largest element length in the crack
L≤ λ/10, λ being the smallest wave length in the crack plane, that takes place for
the largest frequency analyzed with each mesh.

Using the quarter-point COD and eqn. 7, the mode-I SIF for a frequency range
0≤KT a≤2. Figure 4 shows a comparison of the present BE results with those
obtained by Tsai [12] . The SIF is normalized by the static value due to an internal
pressure with the same amplitude of the dynamic pressure. The agreement between
both sets of results is very good.

Results obtained with the present approach for a wider frequency range are
shown in Figure 5 (note that the first part of this figure is the same as Figure 4).
No previous results for this frequency range are known by the authors.
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Figure 3: Boundary element discretization of a penny shaped crack in infinite
domain: (a) low frequency analysis; (b) high frequency analysis.
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Figure 4: Mode-I dynamic SIF for penny shaped crack (low frequency range).
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Figure 5: Mode-I dynamic SIF for penny shaped crack (large frequency range).

5.2 Square bar with a corner quarter-circle crack under uniform traction

The problem geometry for this case is shown in Figure 6.a. The BE mesh used
is shown in Figure 7. A uniform traction σ is prescribed on the ends of the bar.
Besides the two materials of the previous example, a laminate composite with the
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Figure 6: Rectangular bar with a semi-circular surface crack. (a) Geometry (b) SIF
mode-I.

Figure 7: BE discretization of one half of a rectangular bar with a semi-circular
surface crack.

following properties is also considered:C11=5.37 GPa, C33=251.168 GPa,
C12=1.34 GPa, C13=3.35 GPa and C44=5 GPa. The distribution of KI along the
crack front as a function of θ is shown in figure 6.b for the same three materials
studied in the previous example. The KI variation with θ is quite similar for the
three analyzed materials. These values are smaller as the material is more isotropic.
The results for the isotropic case are compared with those obtained by Li et al. [13]
using a symmetric integral equation formulation. The agreement is very good.

Results for the most anisotropic material considered (laminate composite) are
obtained for different discretizations of the crack, with different number of ele-
ments at the crack front and different aspect ratio (Figure 8). These results show
the robustness of the approach, as there is very little mesh dependency.
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Figure 8: Results for different discretizations.

6 Conclusions

A single-domain BE formulation for the static and dynamic analysis of fracture
problems in three-dimensional transversely isotropic solids has been presented in
this paper. Time harmonic loading conditions are considered.

The present approach allows for the general analysis of cracks in transversely
isotropic domains with little effort. Discretization is reduced to the crack surface,
where the number of elements is rather small, and the external surface.
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