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Abstract

We study the isoperimetric problem in Euclidean space endowed with a density. We first 
consider piecewise constant densities and examine particular cases related to the characteristic 
functions of half-planes, strips and balls. We also consider continuous modification of Gauss 
density in R2. Finally, we give a list of related open questions.

1 Introduction

The classical isoperimetric problem in Euclidean space RN looks for “least perimeter” sets among
those ones with prescribed volume. A first solution of this problem was provided in 1935 by Lus-
ternik, by proving, using symmetrisation techniques, that balls minimise Minkowski content (see also
Burago-Zalgaller [8, Chapters 8 and 10]); the complete solution was given by De Giorgi [14], with the
proof that balls are minimisers in the class of finite perimeter sets. The isoperimetric problem has
been extended to Riemannian manifolds and, more recently, to the so-called manifolds with density.

A manifold with density (see also [24, Chapter 18]) is a manifold M endowed with a positive
function f : M → R+ used to weight both perimeter and volume. More precisely, given a regular
set E ⊂M , we define the (weighted) volume and perimeter of E to be

|E|f :=

∫

E

f dv, Pf (E) :=

∫

∂E

f da,

where dv and da are volume and surface elements on M (see also Section 2 for precise definitions).
Note that such a density is not equivalent to scaling the metric of M conformally by some factor λ,
since in that case perimeter and volume would scale by different powers of λ.

One of the first and most important examples of manifolds with density, with applications to
probability and statistics, is Gauss space RN with density f(x) = e−|x|2. Isoperimetric sets are
half-spaces ([5, 27, 9]; see also [24, Chapter 18] or [25, Section 3]). More recently other authors (e.g.
[25, 26, 10]) have considered different examples of manifolds with density and generalised classical
techniques: Steiner and Schwarz symmetrisations [25], functional versions of the isoperimetric in-
equality [4], first and second variation formulae, mean curvature, Ricci curvature, and so on. We
refer the reader also to [23, 24] and references therein.

In this paper we will consider two kinds of densities on the plane R2: continuous modifications of
the Gaussian density and piecewise constant densities, apparently the first examples of discontinuous
ones. These questions arose in the lectures on “Manifolds with density” by F. Morgan during the
meeting “GMTLAP-Geometric Measure Theory and Least Area Problems” in Modena (Italy), 15-
17th February 2007, organized by G.P. Leonardi, R. Monti, F. Serra Cassano, R. Serapioni and
I. Tamanini.
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The plan of the paper is the following. Section 2 contains introductory material on manifolds
with density, perimeter, existence of isoperimetric sets, and first variation of the perimeter. We stress
Proposition 2.13, which provides a Snell refraction law for isoperimetric boundaries for discontinu-
ous, piecewise constant densities. We comment on minimal surfaces in manifolds with density and
introduce calibrations, which provide sufficient conditions for minimality.

In Section 3 we investigate the isoperimetric problem in some cases of piecewise constant densities.
The first one is the half-space density, i.e., the density on RN taking values 1 on the half-space
{xN ≤ 0} and λ > 1 on {xN > 0}, where λ is a function depending only on the last coordinate
xN ; in this case, the isoperimetric sets are provided by round balls in the half-space {xN ≤ 0}
(Theorem 3.2). The second one is the “strip” density on RN taking values 1 if |xN | ≤ 1 and a
constant λ > 1 otherwise; we show that isoperimetric sets exist and are connected for any given
volume in the planar case, with some additional properties in general dimension. A further analysis
leads us to Conjecture 3.12, where we list the possible solutions in the planar setting. This conjecture
is almost completely proved in Theorem 3.16. The last density we consider is the “ball” density on
R2 with values 1 outside the ball B(0, 1) and constant λ 6= 1 inside: here isoperimetric sets exist
for any given volume, are connected, and can assume several profiles, both in the case λ > 1 (see
Theorem 3.20) and the case λ < 1 (see Theorem 3.23).

Section 4 concerns with modifications of Gauss density on R2. A question risen during the
GMTLAP meeting concerned the density ye−(x2+y2)/2 on the half-plane H = {(x, y) ∈ R2 : y > 0}.
We recently discovered that a paper of Brock et al. [7] gives a complete answer to this problem,
showing that sets bounded by vertical lines are isoperimetric. We point out that, from that result,
the same holds true also for the whole plane. During the GMTLAP meeting also the isoperimetric
problem in the plane with density e−x

2−y4 was risen: we conjecture that here the isoperimetric
boundary is provided by vertical or horizontal lines. For certain volume bounds (those close to half
of the total volume) horizontal lines are better than vertical ones, while for other bounds vertical
lines beat horizontal ones (see Proposition 4.3).

The last Section 5 collects several open questions: some from this paper, others from the GMT-
LAP meeting.
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2 The isoperimetric problem in a space with density

Our framework is an open subset Ω ⊂ RN (we deal primarily with the cases of the whole space and
the upper half-plane) endowed with a lower–semicontinuous, positive density function f : Ω → R+;
due to the positivity of f , we shall sometimes write f = eψ. For a given measurable set E ⊂ RN ,
we define (according to [23]) its f–volume by

|E|f =

∫

E∩Ω

f(x)dx

and its f–perimeter measure by

Pf (E,Ω) = lim inf
h→+∞

∫

∂Eh∩Ω

fdHN−1

where the lim inf is taken among all smooth sets Eh converging to E in the L1(Ω)–topology. If no
confusion may arise, we will just say volume and perimeter. We say that E has finite perimeter in
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Ω if Pf (E,Ω) < +∞; whenever the set Ω is clear from the context, we shall simply write Pf (E).
The lower–semicontinuity of f ensures the equality

Pf (E) =

∫

∂E∩Ω

f(x)dHN−1(x)

for smooth sets.
We also notice that, by restricting to the open sets

Ωk = {x ∈ Ω : 1/k < f(x) < k},

finite perimeter sets and finite Euclidean perimeter sets in Ωk coincide for all k > 0. By well–known
results on finite perimeter sets (see [12, 13, 15, 16]), there exists a subset FE of the topological
boundary ∂E which is rectifiable; that is, up to H

N−1–negligible sets, is contained in a countable
union of Lipschitz graphs. We point out that for a (N − 1)–rectifiable set Σ the unit normal vector
νΣ is defined H

N−1–almost everywhere. The set FE is called reduced boundary of E; for sake of
simplicity, we will sometimes write Σ instead of FE and, if not differently stated, νΣ will denote the
inward unit normal vector. Mostly important, this part of the boundary is the essential part for the
perimeter measure; that is, the following representation formula holds:

Pf (E,Ωk) =

∫

FE∩Ωk

f(x)dHN−1(x).

Using the fact that Ω = ∪Ωk, we also obtain that

Pf (E) =

∫

FE∩Ω

f(x)dHN−1(x).

We shall use next result.

Lemma 2.1 If the density f satisfies f ≥ η > 0 on Ω, then Pf (E,Ω) ≥ ηP (E,Ω); moreover, in the
case N = 2, if E is smooth and connected, we have

diamΩ(E) ≤ 1

2
P (E,Ω) ≤ 1

2η
Pf (E,Ω). (1)

Since we allow discontinuities in f , we introduce the following notation for f ∈ L1
loc(Ω). For

fixed ν ∈ SN−1, let

B+
ν (x, ̺) = {x ∈ B(x, ̺) : 〈x, ν〉 ≥ 0}, B−

ν (x, ̺) = {x ∈ B(x, ̺) : 〈x, ν〉 ≤ 0},

where B(x, ̺) is the open ball of center x with radius ̺ (balls, unless stated otherwise, are always
assumed to be open). Moreover, we define the limits of f in the positive and negative direction of
the vector ν by

f±
ν (x) = lim

̺→0

1

|B±
ν (x, ̺)|

∫

B±
ν (x,̺)

f(y)dy. (2)

The quantity (f+
ν − f−

ν )ν does not change if we replace ν with −ν, so we will assume, if not stated
otherwise, that ν is chosen in such a way that f−

ν ≤ f+
ν . If X is any nonzero vector, we denote by

f±
X the previous quantities in the direction ν = X

|X| .

We collect in the following Proposition a little list of known results in the isoperimetric problem
we shall use and generalise. A very nice description of these properties is contained in [26]. We
recall that a variation is given by a one–parameter family of diffeomorphisms Φt : RN → RN ; for
such a given family, we define

V (t) = |Φt(E)|f , P (t) = Pf (Φt(E)).

Proposition 2.2 In a region Ω with density f , consider the isoperimetric problem of finding a
closed “isoperimetric set” E of least perimeter for prescribed volume v.
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1. If |Ω|f < +∞, an isoperimetric set always exists.

2. If f is Lipschitz continuous, then E is locally C
1,1 except for a singular set of Hausdorff

codimension 8 in Ω.

Proof. We sketch here the proofs; we fix v ∈ (0, |Ω|f ) and a minimising sequence of sets Eh
with |Eh|f = v. Condition |Ω|f < +∞, by setting dµ = fdx implies that the functions χEh

are
equi–integrable in L1(Ω, µ), so they are relatively compact. Up to subsequences, χEh

converges to
a function g ∈ L1(Ω, µ); by the a.e. convergence, g has to be a characteristic function χE . The fact
that |E|f = v follows by continuity of the measure and

Pf (E) ≤ lim inf
h→+∞

Pf (Eh)

follows by lower–semicontinuity of the perimeter measure, so E is an isoperimetric set.
The proof of regularity can be found in Morgan [22, Proposition 3.5, Corollary 3.8 and Remark

3.10].

Remark 2.3 We collect here some necessary conditions for a set E to be isoperimetric, under the
assumption that f is C1 (see Rosales et al. [26]):

1. Σ is stationary under volume preserving variations, i.e. P ′(0) = 0 whenever V ′(0) = 0;

2. there exists a constant H0 such that for any variation

(P −H0V )′(0) = 0; (3)

3. the generalised mean curvature

Hψ = (N − 1)HΣ − 〈∇ψ, νΣ〉, (4)

with HΣ the Euclidean mean curvature, is constant.

In Section 2.2 we shall see how to generalise these conditions to the case of piecewise regular
density.

2.1 Minimal surfaces and calibrations

We extend to manifolds with density the classical method of calibrations (see e.g. Definition 4.1 and
Theorem 4.2 of Harvey-Lawson [21] or Federer [16]), giving sufficient conditions for a surface to be
perimeter minimising.

We say that a set E ⊂ RN of finite perimeter is perimeter minimising (without volume constraint)
in an open set Ω ⊂ RN if

Pf (E,Ω) ≤ Pf (F,Ω)

for any set F such that E∆F := (E \ F ) ∪ (F \ E) ⋐ Ω.

Theorem 2.4 Suppose Ω ⊂ RN is an open set and E ⊂ RN has finite perimeter in Ω. Moreover,
suppose that there exists a C

1 function g : Ω → RN such that

• |g(x)| ≤ 1 for any x ∈ Ω;

• g ≡ νE H
N−1-a.e. on FE;

• div(fg) = 0 in the distributional sense.

Then E is perimeter minimising in Ω.
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Proof. Let F be another open set of finite perimeter in Ω with E∆F ⋐ Ω′
⋐ Ω, where without loss

of generality we assume Ω′ to have smooth boundary with finite surface measure. Since div(fg) = 0,
by the divergence theorem

Pf (E,Ω) = Pf (E,Ω \ Ω′) +

∫

FE∩Ω′

fdHN−1

= Pf (E,Ω \ Ω′) +

∫

FE∩Ω′

〈fg, νE〉dHN−1

= Pf (E,Ω \ Ω′)−
∫

∂Ω′∩E
〈fg, νΩ′〉dHN−1

= Pf (F,Ω \ Ω′)−
∫

∂Ω′∩F
〈fg, νΩ′〉dHN−1

= Pf (F,Ω \ Ω′) +

∫

FF∩Ω′

〈fg, νF 〉dHN−1

≤ Pf (F,Ω \ Ω′) + Pf (F,Ω
′) = Pf (F,Ω).

Example 2.5 Consider R2 with density f(x, y) = (x2 + y2)1/2; then the curve (x,
√
1 + x2) is area

minimising, in the sense that its epigraph is perimeter–minimising. In fact, a calibration is given by

g(x, y) :=

(

− x
√

x2 + y2
,

y
√

x2 + y2

)

which extends the normal vector to the curve and satisfies the hypotheses of Theorem 2.4. Notice
that the singularity of g in 0 does not affect the validity of our argument.

Remark 2.6 Suppose S is a hypersurface in RN (with a C
1 regular density f) which coincides with

the graph of a C
1 function φ : RN−1 → R, i.e.

S = {(x, xN ) : x ∈ RN−1, xN = φ(x)}.
It is immediate to see that the surface measure of S is given by

σf (S) =

∫

RN−1

√

1 + |∇φ(x)|2 f(x, φ(x))dx.

For area–minimising hypersurfaces the generalised mean curvature introduced in (4) vanishes; this
means that φ satisfies the minimal surface equation

div

(

f(x, φ(x))∇φ(x)
√

1 + |∇φ(x)|2

)

+
√

1 + |∇φ(x)|2 ∂f

∂xN
(x, φ(x)) = 0 in RN−1 . (5)

Remark 2.7 We observe in passing that, in Gauss space RN with density e−|x|2, half–spaces
through the origin have boundary (seen as a graph) satisfying (5) (they have vanishing mean cur-
vature) but are not perimeter minimising in RN , although they are isoperimetric for volume 1/2
[5, 27]. It can be proved in fact that there are no complete perimeter–minimising surfaces in Gauss
space. Suppose by contradiction that there exists a measurable set E which is perimeter–minimising
in RN . Choose an open bounded set U such that Pf (E,U) > 0. Let us consider a sufficiently large
R > 0 such that U ⋐ BR = B(0, R) and

Pf (BR,R
N ) = NωNR

N−1e−R
2

< Pf (E,U),

and set F := E \BR. It is easily seen that

Pf (F,BR+1) ≤ Pf (F,BR+1 \BR) + Pf (BR,R
N)

< Pf (F,BR+1 \BR) + Pf (E,U) ≤ Pf (E,BR+1),

contradicting the minimality of E.
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Theorem 2.8 Suppose that f is a regular density in RN = RN−1
x × RxN which does not depend

on the last coordinate xN , and suppose that φ : ω ⊂ RN−1 → R satisfies the minimal surface
equation (5). Then the graph of φ is perimeter–minimising in ω × R.

Proof. With our hypotheses on f the minimal surface equation (5) becomes

divRN−1

(

f∇φ
√

1 + |∇φ|2

)

= 0 in ω , (6)

where of course we interpret f as a function of N − 1 coordinates only. Then the normal to the
graph at a point (x, φ(x)) is given by

(

∇φ(x)
√

1 + |∇φ(x)|2
, − 1
√

1 + |∇φ(x)|2

)

,

and if we set

g(x, xN ) :=

(

∇φ(x)
√

1 + |∇φ(x)|2
, − 1
√

1 + |∇φ(x)|2

)

, (x, xN ) ∈ ω × R,

by (6) we obtain

divRN (fg) = divRN−1

(

f∇φ
√

1 + |∇φ|2

)

= 0 .

Therefore the hypotheses of Theorem 2.4 are satisfied, and the graph of φ is perimeter–minimising.

Corollary 2.9 Suppose RN is endowed with a density independent on the last coordinate xN ; then
all affine hyperplanes {xN = const} are perimeter–minimising surfaces.

Example 2.10 Let us consider the plane R2 endowed with the density f(x, y) = ex introduced in
[10], where it is proved (see Corollary 4.7 therein) that there exist no isoperimetric regions, essentially
because constant curvature curves have infinite perimeter. As observed in Corollary 2.9, hyperplanes
{y = const} are perimeter–minimising surfaces. Using Theorem 2.8, one could check that for any
a, b ∈ R the graphs of functions

φ(x) = a±
∫ x

0

√

1

e2t(1 + 1
b2 )− 1

dt,

defined on proper half-lines ]c,+∞[, are perimeter–minimising surfaces in ]c,+∞[×R.

2.2 Piecewise regular densities

In the case of a piecewise regular density, variational formulae have to be slightly modified taking
into account the jump set of the density f . By piecewise regular density we mean a function

f(x) =







fi(x) x ∈ Ωi

inf{fi(x)} x ∈ ∂Ωi

with Ω1, . . . ,Ωk disjoint open Lipschitz domains, fi ∈ C
1(Ωi) , and f > 0 on Ωi: we denote by Γ the

set

Γ =

k
⋃

i=1

∂Ωi.
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Using the notation introduced in (2), for HN−1-almost every x ∈ Γ we have f±
ν (x) = fi(x) for some

i, where ν = νΓ is a unit normal vector to Γ; as usual, νΓ has the property that f−
νΓ ≤ f+

νΓ . For a

given set E ⊂ RN with finite perimeter, the functions χ±
E,νΓ

are the traces of E on the two sides

of Γ. These traces are well defined since the trace operator T : BV (Ω) → L1(∂Ω) is continuous
whenever ∂Ω is Lipschitz (see for instance [1, Theorem 3.88]).

We can then state the following proposition.

Proposition 2.11 (First variation of volume and perimeter) Let f be a piecewise regular den-
sity and let E be a set of finite perimeter, Σ its reduced boundary. Let us assume that {Φt}t≥0 :
RN → RN is a smooth one-parameter variation with Φ0 = Id. Set X := d

dtΦt|t=0 and u := 〈X, νΣ〉,
νΣ the inward unit normal vector to FE; then the following first variation formula for the volume
holds

V ′(0) =

∫

E

(〈∇f,X〉+ f divX)dx

= −
∫

Σ\Γ
fudHN−1 −

∫

Γ

(f+
νΓχ

+
E,νΓ

− f−
νΓχ

−
E,νΓ

)〈X, νΓ〉dHN−1. (7)

Moreover, the function P (t) = Pf (Φt(E)) is differentiable at t = 0 if for H
N−1-a.e. x ∈ Γ∩Σ there

exists some tx > 0 such that Φt(x) ∈ Ωi for 0 < t < tx, where i is such that f−
νΓ(x) = fi(x); this is

the case if, for instance,
〈X, νΓ〉 < 0 (8)

wherever νΓ is defined. In this case

P ′(0) =

∫

Σ

f−
νΣ divΣXdH

N−1 +

∫

Σ

〈

∇f−
νΣ , X

〉

dHN−1. (9)

For the proof of Proposition 2.11, we shall make use of the following result [19, Lemma 10.1].

Lemma 2.12 Let f be any measurable lower–semicontinuous density, and let F : RN → RN be a
diffeormorphism. If E and F (E) have finite perimeter, then the following relation holds

Pf (F (E)) =

∫

FE

f(F (x))|HF (x)νE(x)|dHN−1(x), (10)

where we have defined
HF (x) = |detDF |DF−1(F (x)).

We can then prove Proposition 2.11.
Proof. The proof of this fact is essentially the same contained in [26]; in fact, we have that

V (t) =

∫

Φt(E)

f(y)dy =

∫

E

f(Φt(x))|detDΦt(x)|dx.

Then, using the almost everywhere differentiability of f ,

V ′(0) =

∫

E

(

〈∇f(x), X(x)〉 + f(x)
d

dt
|detDΦt(x)|t=0

)

dx

=

k
∑

i=1

∫

E∩Ωi

(〈∇fi(x), X(x)〉 + fi(x) divX(x)) dx.

Notice that E ∩Ωi has finite perimeter and F(E ∩Ωi) is made by two pieces: FE ∩Ωi and the part
of ∂Ωi where E has trace 1, that is χ+

E,νΩi
= 1 (here νΩi is the inward unit normal to Ωi). Therefore,

the divergence theorem gives
∫

E∩Ωi

〈∇fi(x), X(x)〉dx =

∫

FE∩Ωi

fi〈X, νE〉 dHN−1

+

∫

∂Ωi

fiχ
+
E,νΩi

〈X, νΩi〉 dHN−1 −
∫

E∩Ωi

fi divXdx.
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Summing up on i = 1, . . . , k, formula (7) follows.
In order to prove (9), we use (10) with F (x) = Φt(x) and Ht = HΦt ; we then have

Pf (Φt(E)) =

∫

FE

f(Φt(x))|Ht(x)νE(x)|dHN−1

and then

d

dt
Pf (Φt(E)) =

∫

FE

d

dt
(f(Φt(x))) |Ht(x)νE(x)|dHN−1

+

∫

FE

f(Φt(x))
d

dt
|Ht(x)νE(x)|dHN−1.

For the second term on the right hand side, we have as in the standard case that

d

dt
|Ht(x)νE(x)||t=0 = divΣX(x)

with divΣ the tangential divergence; since |H0(x)νE(x)| = 1, we have only to compute

d

dt
f(Φt(x))|t=0.

We analyse separately the two cases: x ∈ Ωi for some i, and x ∈ Γ. For x ∈ Ωi, we have that
Φt(x) ∈ Ωi for small t, and then

d

dt
f(Φt(x)) =

〈

∇fi(Φt(x)), ddtΦt(x)
〉

,

whence
d

dt
f(Φt(x))|t=0 = 〈∇fi(x), X(x)〉.

For x ∈ Γ, we have that, since f is lower–semicontinuous, f(x) = f−
νΓ(x) (with νΓ unit normal vector

of Γ); since we are assuming (8),

d

dt
f(Φt(x))|t=0 = lim

h→0

f(Φh(x)) − f−
νΓ(x)

h
= lim

h→0

f−
νΓ(Φh(x)) − f−

νΓ(x)

h

=
〈

∇f−
νΓ(x), X(x)

〉

and this completes the proof.

Having given first variation formulae, we discuss the stability of isoperimetric sets. In a dis-
continuous density setting the latter has to be understood as follows: if the variation Φt is volume
preserving, V (t) = V (0) for all t > 0, then perimeter has to increase, i.e. P (0) ≤ P (t). This means
that if P is differentiable at 0 then P ′(0) ≥ 0. This condition can be strengthened to P ′(0) = 0 when
sptX ∩ Γ = ∅: in fact, in this case we have differentiability of P (t) also when considering the vector
field −X instead of X . As a consequence we will obtain necessary conditions on the isoperimetric
set at points far from Γ and at points on Γ, as summarised in the following Propositions 2.13 and
2.14.

If we assume some regularity on the isoperimetric set, then the first variation of the perimeter
can be rewritten in a different way. Far from Γ, standard regularity holds [22]. The additional
regularity we have to require is the H

N−1–almost everywhere C
2 regularity of Γ and the regularity

of traces of FE ∩ Ωi on Γ, allowing an integration by parts in (9) in order to eliminate the term
divΣX . This operation can be done if we assume the following:

(r1) for every i = 1, . . . , k the part of the boundary Σi = FE ∩ Ωi is an (N − 1)-rectifiable set
with an (N − 2)-rectifiable boundary Si = ∂Σi of finite H

N−2 measure, i.e. Σi is a normal
(N − 1)–current: for x ∈ Si, we denote by νSi(x) the unit normal vector orthogonal to Si,
contained in TxΣi and with νSi pointing outside Σi;
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(r2) ΣΓ = FE∩Γ, which is also an (N−1)–rectifiable set, has (N−2)–rectifiable boundary σ = ∂ΣΓ

with finite H
N−2 measure, i.e. ΣΓ is a normal (N − 1)–current: we denote by νσ the unit

normal vector orthogonal to σ, contained in TΣΓ and pointing outside ΣΓ.

In this case the first variation of the perimeter can be rewritten as

P ′(0) =

∫

Σ

〈

∇ψ−, νΣ
〉

uf−dHN−1 − (N − 1)

∫

Σ

HΣf
−udHN−1

+

∫

σ

f−〈X, νσ〉dHN−2 +

k
∑

i=1

∫

Si

fi〈X, νSi〉dHN−2. (11)

For the densities we shall consider in Section 3, (r1) and (r2) are satisfied, so we shall not enter
into further details and simply say, if they hold true, that E has regular trace on Γ.

We now give some necessary condition for the isoperimetric set; first of all, as already mentioned
in Remark 2.3, the generalised mean curvature

Hψ(x) = (N − 1)HΣ(x)− 〈∇ψ(x), νΣ(x)〉 (12)

is equal to a constant H0 for any x ∈ Σ \ Γ.
Moreover, we have the next result, giving a sort of counterpart of the celebrated Snell refraction

law of optics. It follows from a well–known fact, that the tangent cone to an isoperimetric set must
be perimeter–minimising without volume constraint (see for instance [24, Section 9]). Anyway, we
give the proof for reader’s convenience.

Proposition 2.13 In the same notation as Proposition 2.11, let E be an isoperimetric set with
regular traces on Γ; assume that Σ passes through Γ transversally at a point x ∈ Si∩Sj where Si, Sj
and Γ have tangent spaces, i.e. the vectors νSi , νSj and νΓ exist. Then the vector fi(x)νSi (x) +
fj(x)νSj (x) is parallel to νΓ(x), that is

fi(x)〈νSi(x), ν〉 = −fj(x)
〈

νSj (x), ν
〉

for any 〈ν, νΓ〉 = 0. In particular the Snell refraction law

cosα+

cosα−
=
f−
νΓ(x)

f+
νΓ(x)

(13)

holds. Here, α+ and α− are, respectively, the two angles at x between Γ and Σ from the two opposite
sides of Γ (see Figure 1).

Proof. First of all, we notice that Σ \Γ 6= ∅, since otherwise Σi = ∅ for any i and then Si = ∅. Let
x1 := x be as in the statement; consider a second point x2 ∈ Σ \ Γ and a sequence of functions ̺rh,i,
i = 1, 2 such that

̺rh,i(y) →
1

ωN−1rN−1
χB(xi,r)(y), i = 1, 2

and then consider the vector field

Xr
h(y) = ̺rh,1(y)ν1 + c̺rh,2(y)ν2

for some unit vectors ν1 and ν2 to be chosen in a convenient way. The constant c has to be determined
by requiring that V ′(0) = 0; using (11) and taking into account the continuity of the functions fi in
Ωi, as h→ +∞ we get

0 ≤ c

ωN−1rN−1

∫

Σ∩B(x2,r)

〈

∇ψ−, νΣ
〉

〈ν2, νΣ〉f−dHN−1

+
1

ωN−1rN−1

∫

Si∩B(x1,r)

fi〈ν1, νSi〉dHN−2+

+
1

ωN−1rN−1

∫

Sj∩B(x1,r)

fj
〈

ν1, νSj

〉

dHN−2.

9



Σ

Γ

α−

α+ f+

f−
P

νΓ

Figure 1: Snell refraction law.

Multiplying the previous equation by r and taking the limit as r → 0, we obtain

〈

ν1, fi(x1)νSi(x1) + fj(x1)νSj (x1)
〉

= fi(x1)〈ν1, νSi(x1)〉+ fj(x1)
〈

ν1, νSj (x1)
〉

≥ 0. (14)

We are assuming that Γ has a tangent hyperplane at x1, and then there exists a normal vector νΓ(x1)
with the usual agreement that f−

νΓ(x1)
= min{fi(x1), fj(x1)} and f+

νΓ(x1)
= max{fi(x1), fj(x1)}. Re-

calling Proposition 2.11, we have an admissible variation for any ν1 with the condition 〈ν1, νΓ(x1)〉 <
0. The validity of (14) for any such ν1 implies then that the vector fi(x1)νSi(x1) + fj(x1)νSj (x1) is
a positive multiple of νΓ and

〈

ν1, fi(x1)νSi(x1) + fj(x1)νSj (x1)
〉

= 0,

for each 〈ν1, νΓ〉 = 0; this is the Snell law, since by transversality of Σ at x, we can take ν1 as the
unique vector (up to a sign) orthogonal to νΓ and to Tx1

(Si ∩ Sj).
Proposition 2.13 will be of crucial importance in Section 3, where we will consider piecewise

constant densities. Intuitively, Proposition 2.13 says that, when ∂E crosses Γ transversally, a
corner is formed according to Snell law. Notice also that the angle α+ must be greater than
arccos

(

f−
νΓ(x)/f

+
νΓ(x)

)

and less than the supplementary of this angle. We will sometimes use (13)
in an equivalent form, where the cosines of the angles α+, α− are substituted by the sines of the
complementary angles, i.e. the ones formed by the normals to Γ and Σ.

When the crossing between Σ and Γ is not transversal and Σ touches Γ in the region σ defined
in (r2), we have the following result.

Proposition 2.14 Let E be an isoperimetric set with regular trace on Γ; assume that for x ∈ σ∩Si,
νσ, νSi and νΓ exist, i.e. σ, Si and Γ have tangent planes. If fi(x) > f−

νΓ(x), then

〈νσ(x), νSi(x)〉 ≥ −f
−
νΓ(x)

fi(x)
, (15)

that is, Σi = Σ ∩ Ωi meets Γ at an angle at most arccos
(

f−
νΓ

(x)

fi(x)

)

; if fi(x) = f−
νΓ(x), then νσ(x) =

−νSi(x), that is, Σi is tangential to Γ.

Proof. The proof is similar as for Proposition 2.13; setting again x1 = x and considering

Xr
h(x) = ̺rh,1(x)ν1 + c̺rh,2(x)ν2

10



with ̺rh,i, i = 1, 2, as before, by taking the limits as h→ +∞ and r → 0 one gets

f−
νΓ(x1)〈ν1, νσ(x1)〉+ fi(x1)〈ν1, νSi(x1)〉 ≥ 0. (16)

This inequality holds for any ν1 with 〈ν1, νΓ〉 > 0; if fi(x1) > f−
νΓ(x1), then by taking ν1 = νSi(x1)

we obtain (15). Otherwise, if fi(x1) = f−
νΓ(x1), then (16) reduces to

〈ν1, νσ(x1) + νSi(x1)〉 ≥ 0

for any 〈ν1, νΓ〉 < 0. Since 〈νσ, νΓ〉 = 0, the only possibility is that νσ(x1) + νSi(x1) = 0.

Remark 2.15 The previous proofs can be summarised and generalised as follows. Let us assume
that the surface Γ admits a unique tangent cone at the point x0 and let us denote by Oi the blow-up
at x0 of the region Ωi. If the isoperimetric set passes through Γ at x0, then there holds

〈

fiνSi + fjνSj , ν
〉

≥ 0

for any direction ν contained in Oi where fi is minimal among the fj ’s such that x0 ∈ Ωj . This
means that if Γ has a tangent plane at x0, Proposition 2.13 holds since ν can range over a half-space;
moreover, Oi cannot contain more than a half-space, otherwise we would have

fiνSi + fjνSj = 0

which is never possible if fi 6= fj . Finally, if Oi is less then a half-space, then the conclusion is that
fiνSi + fjνSj is contained in a sector.

3 Some piecewise constant densities

In this section we consider some particular piecewise regular densities on Euclidean space, mainly
piecewise constant densities. Section 3.1 focuses on a density in RN taking value one in a half-space,
and defined in the other half-space by a certain real function with values greater than one. In
Section 3.2 we study the case of density one in a planar strip and a greater constant outside the
strip. Finally, in Section 3.3 we deal with a planar density taking value one outside a ball and a
different constant value inside.

3.1 The half-space

In this section we will focus our attention on the half-space density in RN defined by

f(x) = 1 + (λ(xN )− 1)χ{xN>0}(x)

where λ : R → [1,+∞) is a bounded measurable function with λ(xN ) > 1 for xN > 0. Observe
that the weighted volume and perimeter coincide with the Euclidean ones in {xN ≤ 0}. We give the
following preliminary result.

Lemma 3.1 Let E be a bounded set; then there exists a set E′ entirely contained in {xN < 0}
with |E′| = |E|f and P (E′) ≤ Pf (E), with equality if and only if almost all of E is contained in
{xN ≤ 0}.

Proof. Given a bounded set E ⊂ RN , we write E1 := E ∩ {xN < 0} and E2 := E ∩ {xN ≥ 0}; we
claim that if |E2| > 0, then there exists a set in {xN < 0} with the same volume and strictly less
perimeter than E. The volume of E is given by

|E|f = |E1|+
∫

E2

λ(xN )dx.

11



We define the transformation F : RN → RN by F (x) = F (x′, xN ) = (x′, FN (xN )), with

FN (xN ) =















xN if xN < 0

∫ xN

0

λ(t)dt if xN ≥ 0.

For this transformation we have that JF is the identity IN on RN if xN < 0, while for xN > 0 we
have

JF (x) =

(

IN−1 0
0 λ(xN )

)

.

This means that the set Ê := F (E2) has the Lebesgue measure

|Ê| = |E2|f . (17)

Regarding the Euclidean perimeter of Ê, by Lemma 2.12

P (Ê, {xN > 0}) =

∫

FE∩{xN>0}

√

λ(xN )2(ν21 + . . . ν2N−1) + ν2NdH
N−1

≤
∫

FE∩{xN>0}
λ(xN )dHN−1 (18)

with equality if for HN−1–a.e. x ∈ FE we have νN = 0. This cannot happen unless either |E2| = 0
or E2 is a vertical cylinder; but in this second case, E would not be bounded. Since E is bounded,
it is contained in a strip {|xN | < r} for some positive r > 0. By translating down by r in the N–th
direction the set F (E), we can construct a set contained in {xN < 0}, with the same volume (in
view of (17)) as E and less or equal perimeter (18), which proves the claim.

Theorem 3.2 For given volume, an isoperimetric set exists and is a round ball contained in the
half–space {xN ≤ 0}.

Proof. We may consider a minimising sequence Fh of smooth sets, that is Fh with |Fh|f = v and
Pf (Fh) ≤ α+ 1

h where
α = inf{Pf(E) : |E|f = v}.

If Fh is bounded, we set Eh = Fh; otherwise, if Fh is not bounded, there exists t > 0 such that
H
N−1(∂Fh \Bt) < 1

h and

H
N−1(Fh ∩ ∂Bt) = H

N−1(∂(Fh \Bt) ∩ ∂Bt) = H
N−1(∂(Fh ∩Bt) ∩ ∂Bt) < 1

h ,

where we used the fact that the first two equalities hold for a.e. t > 0. By the Euclidean isoperimetric
inequality, we have that

|Fh \Bt| <
c1

h
N

N−1

.

We can then consider a ball Br(x0) with r chosen in such a way that

|Br(x0)| = |Fh \Bt|f <
c2

h
N

N−1

and x0 such that Br(x0) is contained in {xN < 0} and not intersecting Bt. Notice that r ≤ c3
h1/N−1

and so the set
Eh = (Fh ∩Bt}) ∪Br(x0)

has the properties |Eh|f = v and

Pf (Eh) =Pf (Fh ∩Bt}) +
∫

∂(Fh∩Bt)∩∂Bt

λdHN−1 + P (Br(x0))

≤Pf (Fh) + c4
h
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that is Eh is also a minimising sequence with bounded sets.
By Lemma 3.1, we may assume that Eh is contained in {xN < 0}, where the density f = 1.

By the standard isoperimetric inequality, round balls are isoperimetric. By a second application of
Lemma 3.1, round balls in {xN ≤ 0} are uniquely isoperimetric.

Remark 3.3 When λ : RN → [1,+∞) does not depend only on the last coordinate, then it is no
longer true in general that round balls in {xN ≤ 0} are isoperimetric. For instance, for the density

f(x) = 1 + µχB(2eN ,1)(x) (19)

with µ > 0, B(2eN , 1) is isoperimetric. We shall discuss in Section 3.3 the case of the density (19)
in the plane R2.

3.2 The strip

In this section we shall consider the “strip” density in RN given by

f(x) =

{

1 if |xN | ≤ 1
λ ∈ R if |xN | > 1

with λ > 1.

Remark 3.4 For the density

f(x) =

{

λ if |xN | < 1
1 if |xN | ≥ 1

isoperimetric sets exist and are round balls outside the slab. Indeed, Lemma 3.1 shows that any
set E may be replaced by a set outside the slab with no more perimeter, with equality if and only
if the boundary of E is vertical inside the slab. But if this fact occurs, the original set E will be
an unbounded vertical cylinder or will not have constant curvature, and so cannot be isoperimetric.
This allows us to consider only sets contained in {|xN | > 1}.

We start with an existence result for the planar case.

Proposition 3.5 For the above strip density in the case N = 2, an isoperimetric set exists for any
prescribed volume and is connected.

Proof. Take a minimising sequence Eh of smooth sets with |Eh|f = v and each Eh consisting
of finitely many components. By Lemma 3.1 we may assume that any connected component of
Eh either has non–empty intersection with the lines {y = 1} and {y = −1} or is contained in
{−1 ≤ y ≤ 1}.

Move horizontally (or also vertically, but remaining inside the strip, in case of a ball contained
in it) the connected components of Eh until they touch each other tangentially; using a cutting
argument, replace Eh with a connected one. Move horizontally the sets Eh to have barycenter (0, yh);
the sets Eh are connected and so, using the diameter estimate (1), they satisfy |yh| ≤ Pf (Eh) + 1.
This means that all the sets Eh are contained in a big ball, and a compactness argument implies
the existence of an isoperimetric region: were it not connected, we could use one of the above
“components translation” argument to diminish perimeter.

We can also state the following result that holds in any dimension N , under the assumption that
the isoperimetric set exists.

Proposition 3.6 Let E be an isoperimetric set for given volume v > 0, for the above strip density.
Then, there exists an isoperimetric set for volume v which is rotationally symmetric with respect
to the xN -axis. Moreover, the intersection of E with almost every horizontal hyperplane is a round
ball, E has regular trace on {|xN | = 1} and E is either entirely contained in {−1 < xN < 1} or it
will touch simultaneously both sets {xN ≥ 1} and {xN ≤ −1}.
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Proof. The argument is based on Schwarz symmetrisation (see [25, § 3.2]), which can be applied
in this setting; define E = E1 ∪ E2 ∪E3 ∪ S1 ∪ S−1 with

E1 = E ∩ {xN > 1}, E2 = E ∩ {−1 < xN < 1}, E3 = E ∩ {xN < −1}

and
S±1 = {x ∈ RN : xN = ±1, |χ+

E,eN
(x) − χ−

E,eN
(x)| = 1}. (20)

We also define the sets

S±
1 = {x ∈ RN : xN = 1, χ±

E,eN
= 1}, S±

−1 = {x ∈ RN : xN = −1, χ±
E,eN

= 1}.

Notice that

Pf (E) =H
N−1(S1 ∪ S−1) +H

N−1(FE ∩ {−1 < xN < 1})+
+ λHN−1(FE ∩ {xN > 1}+ λHN−1(FE ∩ {xN < −1}).

We can now consider the Schwarz-symmetrised set of E, i.e. the set E∗ such that E∗ ∩ {xN = ȳ} is
a round ball centered at (0, . . . , 0, ȳ) with measure equal to H

N−1(E ∩ {xN = ȳ}). One has

|E∗| = |E|, P (E∗) ≤ P (E) (21)

and almost every horizontal slice of E is a round ball in case P (E∗) = P (E) (see [11, § 1] or [28]).
We notice that (21) holds also on the sets Ei, i = 1, 2, 3. As

H
N−1(S∗

±1) =H
N−1

(

S∗+
±1∆S

∗−
±1

)

= |HN−1(S+
±1)−H

N−1(S−
±1)|

=

∣

∣

∣

∣

∫

RN−1

(χ+
E,eN

− χ−
E,eN

)dHN−1

∣

∣

∣

∣

≤
∫

RN−1

|χ+
E,eN

− χ−
E,eN

|dHN−1 = H
N−1(S±1),

where S∗
±1 and S∗±

±1 are defined as in (20) with E∗ instead of E, we can conclude, since f is constant
along horizontal directions, that

|E∗|f = |E|f and Pf (E
∗) ≤ Pf (E). (22)

Since E is isoperimetric, we have the equality in (22), and so E∗ is an isoperimetric solution for
volume v, which is in fact rotationally symmetric with respect to the xN -axis. Moreover, we also
deduce that the intersection of E with almost every horizontal hyperplane is a round ball.

The regularity of the trace of E on {|xN | = 1} follows since the intersections of the isoperimetric
set with the planes {xN = 1 ± ε} (similar argument on the jump part {xN = −1}) are round balls
converging in L1(RN−1) as ε → 0 (see for instance Giusti [19, Theorem 2.11]); therefore the traces
on the jump set are round balls.

For the last sentence, if |E ∩ {xN > 1}| > 0 and d(E, {xN < −1}) > 0, we can move down E
using Lemma 3.1, and modify E into a set Ẽ with same volume and less perimeter.

Remark 3.7 Notice that Proposition 3.6 implies that the isoperimetric problem for the “strip”
density is essentially two-dimensional, meaning that the boundary of the isoperimetric set is given
by the rotation on the vertical axis of the graph of a generating function h = h(xN ). Let us stress
that this constitutes a different problem with respect to the “strip” case with N = 2, since now
the isoperimetric problem to be considered has different densities on volume and perimeter, more
precisely

Ṽf (E) =ωN−1

∫

R

f(t)hN−1(t)dt,

P̃f (E) =(N − 1)ωN−1

∫

R

f(t)h(t)N−2
√

1 + h′(t)2dt.
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We will now focus on the case N = 2. In this situation, we know that isoperimetric sets exist,
are connected and that almost all horizontal slices are intervals (from Propositions 3.5 and 3.6).
Furthermore, Snell law (13) and constant geodesic curvature condition are satisfied. Therefore, we
have that the boundary of any isoperimetric set E is a piecewise regular curve γ with regular pieces
consisting of either arcs γi of some circles with the same curvature or line segments contained in
{|y| = 1}. Moreover, the part of γ contained in {(x, y) : y > 1} is at most one arc of a circle; the
same holds in {(x, y) : y < −1}, while there can be two arcs inside the strip. This allows to classify
the isoperimetric candidates which are rotationally symmetric in this case.

Lemma 3.8 For the strip density for N = 2 the only isoperimetric candidates with vertical reflective
symmetry (see Figure 2) are, up to density-preserving isometries:

(i) balls contained in the strip;

(ii) pieces of the strip bounded left and right by two semicircles, and top and bottom by two segments
on {|y| = 1};

(iii) sets bounded by three circular arcs with the same radius and a segment contained in {y = −1}.
One of these arcs is contained in {y > 1}, and the other two are contained in the strip, meeting
the segment tangentially and the other arc according to the Snell law (13). The segment can
degenerate to a single point; in this case, the set is a circle with radius 2 and center on the
line {y = 1};

(iv) sets bounded by four circular arcs with the same radius: two of them contained in the strip;
the other two horizontally symmetric, one contained in {y > 1} and another contained in
{y < −1}, satisfying the Snell law.

i ii iii iv

Figure 2: The candidate isoperimetric sets.

Proof. Let us briefly sketch how to restrict to such candidates. If an isoperimetric set is completely
contained in the strip it is easy to reduce to candidates (i) and (ii). Otherwise, by symmetry we can
suppose there is an arc in {y > 1} meeting the strip; Lemma 3.1 allows us to discard balls outside
the strip. Unless the contact angle is not arccos 1/λ, the arc is continued (starting from each of its
endpoints according to Snell law) by two arcs inside the strip: they have to meet the line {y = −1},
or we could use construction of Lemma 3.1. If the meeting is tangential there are two possibilities:
the boundary can be continued by a segment and then a tangential arc in the strip (case (iii)) or
immediately by an arc in the strip. In this last case there would be an arc inside the strip tangent
to {y = −1} plus another arc in {y > 1}: they would have the same curvature and two common
endpoints, so they must form a unique complete circle or be symmetric with respect to the line
{y = 1}. This contradicts the Snell law unless the meeting angle with {y = 1} is π

2 , i.e., the set is
a ball of radius 2. There is a priori another possibility (see Figure 3): the meeting with {y = −1}
is tangential and the boundary is continued by a segment and then an arc in {y < −1} with angle
arccos 1

λ . We will exclude this possibility in Step 1 below.
If the meeting with {y = −1} is not tangential there must be an arc in {y < −1}: this is case

(iv). Step 2 below will prove that this set must be also symmetric with respect to the horizontal
axis {y = 0}.

If the upper arc meets {y = 1} with angle arccos 1
λ there are two possibilities for each of its

endpoints: it is continued by a segment and then by a tangential arc, or immediately by a tangential
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arc. Again, these arcs must meet the line {y = −1}: if the meeting is not tangential there should
be an arc in {y < −1}. This configuration is symmetric to the one of Figure 3, which we are going
to exclude in Step 1. If the meeting is tangential, the arc’s radius must be 1 and one must have also
a segment on {y = −1} and, possibly, another arc on {y < −1} with meeting angle arccos 1

λ as in
Figure 5: this set cannot be isoperimetric as shown in Step 3.

A little problem could be given by the upper arc meeting {y = 1} with angle π − arccos 1
λ (see

Figure 8 in Theorem 3.15): the continuation would be a segment on {y = 1} (no inner arc is allowed
by Snell law). This set would be entirely contained in {y ≥ 1}, thus not being isoperimetric.

Step 1. We will show that the configuration of Figure 3 is geometrically impossible. This
supposed configuration consists of two segments in {y = −1} (each of them possibly reducing to a
single point) and four circular arcs with the same radius; two of them vertically symmetric, contained
in the strip and tangent to {y = −1} but not to {y = 1}; the other two contained in each component
of R2 \ {|y| < 1}, all satisfying the Snell law. In particular, the arc in {y < −1} meets the strip with
angle arccos 1

λ .

Figure 3: A not feasible configuration.

We can think of this configuration as obtained from a configuration (iii) by adding the arc in
{y < −1}; we will show that this arc is too long to fit. The chord associated with this arc rests upon

the segment on {y = −1} which appears in (iii). This chord has length 2R
√

1− 1
λ2 , R ∈ [1,+∞[

being the common radius of the arcs. We will get a contradiction if we show that the segment of
configuration (iii) is shorter. Indeed, its length is equal to

2R

(
√

1− 1
λ2

(

1− 2
R

)2 −
√

1−
(

1− 2
R

)2
)

= 2R

(

√

(

1− 1
λ2

)

+ 1
λ2 δ −

√
δ

)

≤ 2R

(

√

1− 1
λ2 +

(

1
λ − 1

)
√
δ

)

, (23)

where we put δ := 4
R − 4

R2 ≥ 0 (since R ≥ 1) and used the inequality
√
a+ b ≤ √

a+
√
b. The last

term in (23) is strictly less than 2R
√

1− 1
λ2 unless δ = 0, i.e. R = 1. The latter case R = 1 will be

discarded in the following Step 3.
Step 2. Here we show that the four–arcs configuration of type (iv) must be symmetric with

respect to the horizontal line {y = 0}. As in Figure 4, let P be the center of the arc in {y > 1}, and
let A,C be its endpoints on the line {y = 1}. Similarly, Q is the center of the lower arc and B,D
its endpoints. By O we denote the center of the left arc inside the strip; K belongs to this arc and
is chosen so that OK is horizontal.

It will be convenient to set

α := ÂOK, β := B̂OK, γ := ĈAP , δ := D̂BQ
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O

A

B D

C

K

Q

P
α

γ

δ

β

Figure 4: A four-arcs configuration must be horizontally symmetric.

and R := AP = AO = BO = BQ is the common radius of the arcs. Notice that R and α uniquely
determine the configuration; indeed, since the height of the strip is 2,

R(sinα+ sinβ) = 2, i.e. sinβ = 2
R − sinα. (24)

Moreover, α, γ are also the angles formed by the vertical line passing through A and the two arcs
meeting at A; similarly for β, δ at B. Thus the Snell law

sinα

λ
= sin γ,

sinβ

λ
= sin δ (25)

holds. When α is negative (i.e. O lies above the line {y = 1}) computations are the same.
Recall that the configuration must be symmetric with respect to a vertical line, which must

contain P and Q. Equivalently, P and Q must belong to such axis: they lie “one above the other”.
Equivalently, the first component of the oriented segment OP = OA − PA is equal to the one of
OQ = OB − QB, i.e. R(cosα − cos γ) = R(cosβ − cos δ). Taking into account (24) and (25), we
can exploit this condition to get

√

1− s2 −
√

1− s2

λ2 =
√

1− ( 2
R − s)2 −

√

1− 1
λ2 (

2
R − s)2,

where we have set s := sinα. Let us study the function ψ : [−1, 1] → R defined by ψ(s) :=
√
1− s2 −

√

1− s2

λ2 . It is an even map and

ψ′(s) = − s√
1− s2

+
s

λ
√
λ2 − s2

= s

√
1− s2 − λ

√
λ2 − s2

λ
√
1− s2

√
λ2 − s2

is negative for s > 0 and positive for s < 0. Thus ψ is even, increasing in [−1, 0[ and decreasing in
]0, 1]. In order to have ψ(s) = ψ

(

2
R − s

)

it necessarily holds that s = ±
(

2
R − s

)

, whence s = 1/R.
This condition corresponds to α = β = arcsin 1

R , which immediately implies symmetry with respect
to {y = 0}.

Step 3. We have to discard sets E as in Figure 5 bounded by: one arc in {y > 1} and/or one
in {y < −1} meeting the strip with angle arccos 1

λ ; one or two segments on {y = 1} and one/two
on {y = −1} (any of them can be a single point); two arcs in the strip meeting tangentially the
segments. Notice that the radius of any of the four arcs is 1, since the inner ones are tangent to
{|y| = 1}.

Set αλ := arccos 1
λ . Cut from E the region enclosed by one of the arcs outside the strip. In this

way we lose area (αλ − sinαλ cosαλ)λ. Since the arc disappears, but a segment is created, we lose
perimeter 2λαλ− 2 sinαλ. We restore area in the following way: “enlarge” E horizontally until area
is restored, for example by translating the right arc inside the strip on the right. Two segments
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Figure 5: A not minimising configuration.

(one on {y = 1} and one on {y = −1}) are created; their length L must satisfy the restoring-area
condition

2L = (αλ − sinαλ cosαλ)λ = λαλ − sinαλ .

This operation produces a growth of perimeter equal to 2L. To show that we have decreased
perimeter we must check that

λαλ − sinαλ < 2λαλ − 2 sinαλ

or equivalently that
sinαλ < λαλ,

which is always satisfied.

Next result assures that any isoperimetric set in this setting must be vertical reflective symmetric.

Proposition 3.9 Let E be an isoperimetric region for the strip density. Then, E has vertical
reflective symmetry.

Proof. Consider the symmetrised set E∗ of E, which will be of one of the types described in
Lemma 3.8. If E∗ is of type (i), then E is entirely contained in the strip, and it follows trivially that
it must be a ball, thus symmetric. If E∗ is of type (ii), then the part of ∂E contained in {|y| = 1}
consists of a segment in {y = 1} and another one in {y = −1}, both of equal length. The upper
segment must be continued left and right by two tangential arcs of the same radius (since curvature
is constant and Snell law holds). This already gives the symmetry of E (we are also using that
horizontal slices of E are intervals). Finally, if E∗ is of type (iii) or (iv), we proceed analogously:
the part of ∂E contained in {y > 1} is an arc of a circle, which must be continued by two arcs of
the same radius inside the strip, forming identical angles (note that segments in {y = 1} are not
allowed, since E∗ have not such segments); this yields the desired symmetry.

Remark 3.10 The vertical reflective symmetry of an isoperimetric set E which produces a set E∗

of type (ii) after Schwarz symmetrisation also follows from the following argument: call L > 0 the
length of the top slice, and remove an interval of length L from the right endpoint of each horizontal
slice of E. The resulting set has the same volume and perimeter that the biggest ball inside the
strip, so it must coincide with that ball. Adding now the removed intervals, we get that the original
set E is symmetric. On the other hand, in case that E∗ consists of a set of type (iii) or (iv), the
portion of ∂E in {y > 1} must be optimal for the free boundary problem (fixing the corresponding
segment on {y = 1}), so it must be an arc of a circle; for case (iv), an identical arc will appear in
{y < −1}. As pieces of ∂E contained in {y=1} are not allowed in these cases, the symmetry of E
follows since inside the strip we must also have the optimal configuration for the fixed boundary
segments.

Remark 3.11 Recall that the horizontal slices of E are intervals in view of Proposition 3.6. Con-
sider the symmetrised set E∗, which will be one of those sets described in Lemma 3.8; it is clear
that the length of the horizontal slices of E∗ is a continuous positive function of y, and so the
same property holds for E. This also suffices to conclude, by using [11, Th.1.3], that E has vertical
symmetry.
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In view of Lemma 3.8 and Proposition 3.9, we have completely classified the isoperimetric can-
didates for the strip density. We will now analyse numerically their behaviour. Our computations
below lead to the following Conjecture 3.12. Theorem 3.16 proves everything except the elimination
of sets of type (iv).

Conjecture 3.12 Given R2 with the strip density, 1 in the strip {|y| ≤ 1} and λ > 1 outside, there
exists a value v0 > π such that the isoperimetric sets are:

(a) balls of type (i) for areas less than π;

(b) sets of type (ii) for values of the area in [π, v0];

(c) sets of type (iii) for areas greater than v0.

It is not difficult to compare the perimeters of the above candidates (i), (ii), (iii) and (iv), for
equal volumes. For a ball in the strip enclosing area v ≤ π, its perimeter is given by Pi(v) = 2

√
π v;

and a set of type (ii) enclosing area v ≥ π has perimeter given by Pii(v) = v + π.
On the other hand, by using the Snell law and, for instance, computations in [17, Prop. 2.1],

sets of type (iii) can be parametrized in terms of the corresponding generalised mean curvature h.
Thus, denoting by

β := β(h) = π − 2 arcsin(
√
h), α := α(h) = arccos

(

cosβ

λ

)

, (26)

it can be checked that the perimeter and the area enclosed by such a set are given by

Piii(h) =
2λα

h
+

4 arcsin(
√
h)

h
+

2 sinα

h
− 4

√

h(1− h)

h
,

Aiii(h) =
λα − sinα cosβ

h2
+ 2

arcsin(
√
h)−

√

h(1− h)

h2
+

4 sinα

h
− 4

√
1− h√
h

.

We point out that, when h tends to zero, the area enclosed Aiii(h) increases, while for h close to
one, Aiii(h) achieves its minimum value.

In a similar way, we can express the perimeter and the area enclosed by a set of type (iv) in
terms of the mean curvature h. By denoting by

β̂ := β̂(h) =
π

2
− arcsin(h), α̂ := α̂(h) = arccos

(

cos β̂

λ

)

, (27)

we have that necessarily 0 < h ≤ 1, and that the perimeter and area enclosed by a set of type (iv)
with curvature h are equal to

Piv(h) =
4λ α̂

h
+

4 arcsin(h)

h
,

Aiv(h) =
4 sin α̂

h
+ 2

λα̂− sin α̂ cos β̂

h2
+ 2

arcsin(h)− h
√
1− h2

h2
.

Figure 6 shows several graphs where the perimeters of these types of sets are displayed, for
different values of λ.

For these and many others values of λ, we have obtained numerically the behaviour described in
Conjecture 3.12, as those graphs show. Moreover, it seems that sets of type (iv) are always beaten
by sets of type (iii), which are the solutions for large values of the area (see Theorem 3.16). Thus,
sets of type (iv) are not expected to be solutions.

Remark 3.13 It is not difficult to justify that sets of type (ii) cannot be the solutions for large
values of the area. Indeed, for any λ > 1, and for curvature h close enough to zero, we have
Piv(h) < Pii(Af (h)), which means that the set of type (iv) is better than the set of type (ii) for area
Aiv(h) (which shall be a large value of the area). In addition, the reverse inequality holds for values
of h close enough to one, and then sets of type (ii) are better for such (smaller) areas. We also have
these same properties when considering type (iii) sets instead of type (iv) ones.
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Figure 6: Comparison of perimeters in four different cases: the solid curve represents the transition
between sets of type (i) and (ii), while the other dashed and dotted curves correspond to the perimeter
of sets of type (iv) and (iii), respectively.
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Remark 3.14 Sets of type (iii) and (iv) possess an unexpected feature. They have curvature less
than one but, for curvature slightly less, perimeter and area decrease. This can be noticed in Figure
7, showing the graph of perimeter in terms of the enclosed area in case λ = 1.1: the solid curve (the
lower one) is associated to sets (iii), the dotted (upper one) to type (iv). Curvature is taken from 1
(corresponding to the “left” endpoint of each graph) to 0.8. Notice that initially (i.e. for curvature
close to one) each graph “goes left”, until a minimum (for both area and perimeter) is obtained in
correspondence of the corner point of the graph.
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4,4

7,8

8,8

8

Figure 7: When curvature goes from one to zero, the perimeter and area of sets (iii)-(iv) firstly
decrease and then increase.

Even if without a complete result, in Theorem 3.16 we will characterise most of the isoperimetric
sets for the strip density. First we have to consider the following “line” density setting, which we
will see as a sort of “blow-down” of the strip density. Consider the density g on R2 given by

g(x, y) =

{

λ if y 6= 0
1 if y = 0 .

(28)

Theorem 3.15 For the density in R2 defined by g, isoperimetric sets exist for any given volume
and are bounded by an arc meeting the horizontal axis with angle arccos 1

λ , and with the chord on
the axis as in Figure 8.

Figure 8: Isoperimetric set for the line density.

Proof. The existence of an isoperimetric set for any prescribed volume, as well as its connectedness,
follows from a compactness argument similar to the one in Proposition 3.5. As in Proposition 3.6,
Schwarz symmetrisation with respect to the vertical axis ensures that an isoperimetric set symmetric
with respect to such axis exists for any volume bound. We claim that an isoperimetric set with
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such a symmetry must be the one described in the statement; the fact that any isoperimetric set
is symmetric with respect to the vertical axis easily follows by adapting one of the arguments of
Proposition 3.9 and Remarks 3.10 and 3.11.

The regularity of the isoperimetric boundary ensures that for γ+ := ∂E ∩ {y > 0} one of the
following holds:

(a+) it consists of a complete circumference;

(b+) it consists of a single arc with chord a segment ℓ+ on the horizontal axis (possibly reducing to
a single point);

(c+) it is empty.

The same possibilities, which we will call (a−), (b−) and (c−), are given also for γ− := ∂E∩{y < 0},
with ℓ− defined analogously. Taking into account the Snell law, our thesis is equivalent to proving
that the isoperimetric set falls into one of the cases (b+c−) or (c+b−).

We can discard the cases (a+a−), (a+b−) and (b+a−): in fact, one could translate vertically the
two components towards the origin until an “irregular contact” is obtained.

The case (b+b−) can be discarded too. First of all, the two segments ℓ+ and ℓ− must coincide;
otherwise (by vertical symmetry) one would be contained in the other, say ℓ− ( ℓ+. The arcs γ+
and γ− meet the horizontal axis satisfying Snell law, and so one of them forms (with the same axis)
an angle α := arccos 1

λ , and the other one will form an angle π − α. This easily implies that the
chords ℓ+ and ℓ− have the same length, and so that our set is a round ball. In particular, perimeter
and area are the same as the cases (a+c−) and (a−c+), which we are going to discard in a while.

The case (c+c−) is of no concern, as it corresponds to null volume. For sets E falling into cases
(a+c−) or (a−c+), i.e. when E is a ball, the ratio Pg(E)2/Ag(E) is equal to 4πλ. On the other
hand, when E falls into (b+c−) (the case (c+b−) is analogous) it consists of a circle minus the area
enclosed by the chord ℓ+, the angle at the center determined by ℓ+ being equal to 2α by Snell law.
Easy computations yield that

Pg(E)2

Ag(E)
=

4((π − α)λ+ sinα)2

λ(π − α+ sinα cosα)
=

4λ2((π − α) + sinα cosα)2

λ(π − α+ sinα cosα)

< 4λ(π − α+ α) = 4πλ,

where we have used that 0 < α = arccos 1
λ < π/2. This concludes the proof.

We also need to introduce the function arc(x) defined as the perimeter of a circular arc with unit
chord and area x. Let us briefly recall some of its properties (see [24, Section 15.5]):

• arc is convex in [0, π/8] and concave in [π/8,+∞[;

• arc(π/8) = π/2 and arc′(π/8) = 2.

We stress that the boundary case x = π/8 corresponds to a semicircle of radius 1/2.

We now collect in the following theorem the partial results we are able to prove for this strip
density.

Theorem 3.16 The isoperimetric sets for area v > 0 for the strip density, defined by 1 in the strip
{|y| ≤ 1} and λ > 1 outside, are

(a) balls of type (i) if v ≤ π;

(b) sets of type (ii) if π < v ≤ v0;

(c) sets of type (iii) or (iv) if v0 ≤ v ≤ v1;

(d) sets of type (iii) if v ≥ v1,
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for suitable v1 ≥ v0 > π. In particular, for area v0 there are at least two different isoperimetric sets.
Moreover, type (iv) never occurs for λ ≥ 4/π, i.e. in this case one can take v0 = v1.

Proof. Set E an isoperimetric region for area v. To verify part (a) of the statement, we just need
to show that any set of type (ii), (iii) or (iv) has area greater than π. This is clear for sets of type
(ii).

For sets of type (iii) we observe that, if the three arcs have radius R > 2, then the arc outside
the strip is greater than the semicircle with same radius, and so the enclosed area is greater than the
area of that semicircle (times the density λ), whence greater than λπR2/2 > π. Otherwise we must
have 1 < R ≤ 2 and it is easy to see that the internal arcs meet {y = 1} in such a way that the angle
between the segment {y = 1} ∩E and each arc inside the strip is greater than π/2. Using the Snell
law it is not difficult to observe that the sum of the central angles associated with the three arcs is
greater than 2π; moreover, the corresponding sectors of circle do not overlap and are contained in
E. This means that the area of E is greater than that of a circle of radius R, hence greater than π.

For sets of type (iv) we can use a similar argument and obtain that the four central angles have
sum greater than 2π. Let us check that the four associated sectors do not overlap; in this way the
area of the candidate is greater than that of the circle with same radius R > 1 and are done. It is
sufficient that the sectors corresponding to the upper and lower arcs do not overlap, i.e., that the
center of the upper arc has positive y-coordinate (and so the center of the lower arc has negative
y-coordinate). Since the parameter α̂ in (27) denotes half of the central angle corresponding to the
upper arc, the y-coordinate of its center equals 1−R cos α̂ = 1− 1

λ > 0.
We claim that the graphs representing the perimeter in terms of the area enclosed, corresponding

to sets of type (ii) and (iii), intersect only once (see the graphs of Figure 6). Indeed, the curvature
of the sets of type (iii) is always less than one (see (26)), which is the curvature of any set of type
(ii). Since curvature coincides with the slope of those graphs, this implies that those graphs intersect
at most once. Moreover, type (iii) does not exist for area π and, by Remark 3.13, beats type (ii)
for large area. Therefore, there exists some a0 > π such that sets of type (ii) are better than sets
of type (iii) for areas less than a0, while sets of type (iii) are better for areas greater than a0. The
same reasoning can be done for sets of type (iv): sets of type (ii) are better than type (iv) ones for
areas less than a1, the contrary for greater areas. Part (b) thus follows by noticing that any type-(i)
set has area at most π; the value v0 can be characterised by v0 := min{a0, a1} > π.

Statements (c) and (d) require more work. By contradiction, suppose there is a sequence of areas
vj → ∞ such that the related isoperimetric sets Ej are of type (iv). Let Rj be the radius of the
curvilinear components of ∂Ej ; notice that each of the components in {y > 1} and in {y < −1}
meets the strip with an angle lying in [arccos 1

λ , π − arccos 1
λ ]. This forces each of these two arcs to

bound a region of area at least cR2
j (c > 0 depending only on λ), while the area of Ej contained in

the strip is of order Rj . In particular, for large j a “big” portion (at least Cvj , C = C(λ) > 0) of
the area of Ej lies in the half-plane above the strip, and another “big” portion lies below the strip.

Let us perform the following “blow-down” operation: for any fixed j we make a dilation of a

factor v
−1/2
j so that Ej is mapped into a set of area 1. More precisely, we consider the “thin strip”

density fj on R2 given by

fj(x, y) =

{

λ if |y| > 1√
vj

1 otherwise .

Clarly fj → g pointwise, where g is the line density defined in (28), and the sets Fj := Ej/
√
vj are

isoperimetric and of unit weighted area. Being connected they satisfy the diameter estimate (1). Up
to horizontal translations, we can therefore suppose that they are contained in a big ball B, and a
compactness argument ensures that a subsequence converges in L1 to a certain set F . This means
that

Afj (Fj) → Ag(F ) = 1,

where g is the function defined by (28); this is because g and fj differ only on the thin strip, whose
intersection with the ball B has area going to 0. Semicontinuity of the perimeter and the inequality
fj ≥ g imply

Pg(F ) ≤ lim inf
j→∞

Pg(Fj) ≤ lim inf
j→∞

Pfj (Fj).
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It follows that F has to be isoperimetric for the density g; in fact, were another unit area set F ′

isoperimetrically better than F we would obtain

Pg(F
′)2

Ag(F ′)
+ ǫ <

Pg(F )
2

Ag(F )
≤ lim inf

j→∞

Pfj (Fj)
2

Afj (Fj)

for some positive ǫ, and so Fj could not be isoperimetric (for fj) for large j.
We will reach a contradiction if we show that F cannot be one of the isoperimetric sets described

in Theorem 3.15. In fact, for large j the part of Fj lying above the “thin strip” has area at least
C > 0, and the same holds for the part below it. This must happen also for F , and so it cannot
coincide with one of the sets in Theorem 3.15.

It remains to show that for λ ≥ 4/π, case (iv) can never occur. Consider in fact any such set; let
L be the length of the chords of the upper and bottom caps and A be the (Euclidean) area enclosed
by each of them. Replace these two caps with a segment of length L on {y = −1} and a cap in
{y > 1}, enclosing Euclidean area 2A and lying upon the same chord as the removed upper cap. To
prove that we have decreased perimeter we have to show that

λL arc(2A/L2) + L < 2λL arc(A/L2) .

Setting x := A/L2, this is equivalent to show that

h(x) := 2arc(x) − arc(2x) > 1/λ.

Since h′(x) = 2arc′(x) − 2arc′(2x), the convexity/concavity properties of arc ensure that h′(x) < 0
for x ≤ π/16 and h′(x) > 0 for x ≥ π/8. Therefore the minimum of h is attained at some
xmin ∈]π/16, π/8[. Since arc is convex in [0, π/8] we have

arc(xmin) > arc(π/8) + arc′(π/8)(xmin − π/8) = π/4 + 2xmin

while concavity in [π/8,+∞[ yields

arc(2xmin) < arc(π/8) + arc′(π/8)(2xmin − π/8) = π/4 + 4xmin .

The last two equations imply that h(xmin) > π/4 ≥ 1/λ as desired.

Remark 3.17 The bound 4/π in the last assertion of Theorem 3.16 is not optimal. In fact, a closer
examination of the inequalities we have used leads to h(xmin) = k > π/4, and actually the statement
holds for λ > 1/k. Unfortunately, since h(0) = 1 one has k < 1: in other words, our argument of
“substituting upper and bottom caps with a unique one” fails for small values of λ.

3.3 The ball

In this section we denote by f the “ball” density on R2 taking values λ ∈ R \ {1} on the open
ball B = B(0, 1) and 1 on R2 \ B. The value of f on ∂B is min{1, λ} in order to guarantee its
lower–semicontinuity. We begin with an existence result for the isoperimetric problem.

Theorem 3.18 For the ball density, isoperimetric sets exist for any given area.

Proof. Let v > 0 be the area bound; it will be sufficient to prove that there exists R > 0 and a
minimising sequence {Ej} such that

|Ej |f = v, Pf (Ej) → inf{Pf (F ) : |F |f = v} and Ej ⊂ B(0, R) .

In this way, we will reduce to an isoperimetric problem in a space with finite total mass, where
existence of isoperimetric sets is a well–known result (see [24]).

To do this, consider any minimising sequence {Fj} with |Fj |f = v; it is not restrictive to assume
Fj to be smooth open sets, and so one can write Fj = ∪iFj,i, where Fj,i denote the connected
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components of Fj . If i is such that Fj,i∩B 6= ∅, then estimate (1) easily provides R1 > 0 (depending
only on v) such that Fj,i ⊂ B(0, R1). For the other components, we can substitute ∪i{Fj,i : Fj,i∩B =
∅} with a unique ball B(x,Rj) (for certain x ∈ R2) enclosing the same volume, thus defining the
set Ej := B(x,Rj) ∪

⋃{Fj,i : Fj,i ∩ B 6= ∅}. Notice that Rj is bounded uniformly in j by some R2

depending only on v, since |Ej |f = v, and that Pf (Ej) ≤ Pf (Fj). Anyway, we have a lot of freedom
in the choice of the center x; i.e., we can move B(x,Rj) towards the origin, without touching the
other components of Ej , until we obtain (say) Ej ⊂ B(0, R1 + 2R2 + 1).

The nature of the isoperimetric problem, as we will see in a moment, is completely different in
the two cases λ > 1 and λ < 1. Therefore, we treat them separately.

3.3.1 The ball with density λ > 1.

We start with a description of all possible candidates for isoperimetric set. The first one is a round
ball, and, as we shall see in Theorem 3.20, balls are isoperimetric for volumes v > λπ. Other more
complicated candidates arise when we look for isoperimetric sets with area v smaller than λπ.

Proposition 3.19 If the prescribed area v is smaller than λπ, then an isoperimetric set is one of
the following (see Figure 13):

(a) a round ball contained in R2 \B;

(b) the region enclosed by an arc of ∂B and another internal circular arc (inside B), the angle
between them being equal to arccos 1

λ (i.e., the limit case in the Snell law).

Proof. In what follows, we will denote by E an isoperimetric set of area v and by γ = ∂E its
boundary.

Step 1: E is either a ball outside B (i.e. a set of type (a)) or the closure of each of its components
is simply connected and intersects both B and its complement.

It is not difficult to see that the isoperimetric boundary γ can be decomposed into countably
many rectifiable Jordan curves γj , and that E coincides with the union of the connected and simply
connected open regions Ej enclosed by each γj . Otherwise, we could write Ej = F (γj) \Gj , where
F (γj) is the region enclosed by a certain Jordan curve γj and Gj is a proper subset of F (γj).
Since our density is rotationally invariant, we could rotate Gj about the origin until it touches γj :
perimeter and area are unaffected, but regularity fails.

Since balls outside B are better than inside, there is no Ej with Ej ⊂ B, or we could substitute
all such regions with a unique ball outside B, with same area and less perimeter. Similarly, there
is at most one single component outside B, which must be a ball. If this is the case, there is no
other component Ej such that Ej intersects both B and its exterior, otherwise we could move our
external ball until it touches Ej , thus violating regularity. Therefore, the isoperimetric set would be
a ball like in part (a) of the statement.

In the rest of the proof we will focus our attention on the remaining case that any Ej intersects
both B and its exterior.

Step 2: Only a finite number of internal arcs is allowed: as a consequence, E has regular trace
inside B.

Recall that γ ∩ B and γ \ B consists of circular arcs cj with endpoints on ∂B (we have already
excluded whole circles), with the same constant curvature κ. Moreover, E must contain all the
regions Fj enclosed by a cj and the corresponding arc on ∂B, determined by the endpoints of cj
(notice that, for internal arcs, there are two possible regions of this type, a bigger and a smaller
one). Otherwise, we could use a cutting technique.

Suppose by contradiction that there are internal arcs cj as in Figure 9 of arbitrarily small length
and set αj to be the associated central angle. Due to curvature κ, the area of the region Fj enclosed
by cj is of order α

3
j . By cutting Fj from our set we would gain perimeter ∼ (λ− 1)αj, and we could

restore the lost area ∼ α3
j with some ball of radius (and perimeter) ∼ α

3/2
j . This is a contradiction,

since for sufficiently small αj we would overall gain perimeter.
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Figure 9: Internal arcs enclose a fixed area amount.

As a straightforward consequence, only a finite number of internal cj ’s is allowed. This implies
also that the number of connected components Ej is finite: in fact, Ej∩B 6= ∅, whence the boundary
γj must meet the open ball B, and so contains an internal arc cj .

Step 3: External arcs cannot meet ∂B with angle strictly greater than π/2.
This is a technical point: it will allow us to use arguments like “put external arcs in succession,

so that two consecutive ones have a common endpoint”, which would be precluded if one angle were
greater than π/2. In fact, by doing such an operation it could happen that two consecutive regions
overlap; it is evident that this pathology cannot occur if the meeting angles are less than π/2.

Suppose now that there exists such an external arc c, with endpoints P and Q; let us prove that
the distance between c and any other external arc is bounded away from 0. Otherwise, a sequence
of external arcs ck would accumulate at P (or Q), so some arc near P would lie “below” c (i.e.,
there exists a half–line from the origin meeting both c and ck); say that the accumulating sequence
of arcs stays “on the left” of P . Since there is only a finite number of internal arcs we just have the
following two possibilities:

• there is a small arc a ⊂ ∂B, with P as the right endpoint (i.e. a is staying “on the left” of P )
which is contained in one of the arcs on ∂B determined by some internal arc cj . Informally, we
could say that the sequence ck “rests” on the arc a. We could then use a small segment s to
join an external arc ck “below” P to some point on c close to P , and add the region enclosed
by s, c, a and the ck’s. In this way we have gained both perimeter and area, and we could
use cutting arguments to restore area and gain perimeter again, which is contradictory.

• there is a small arc a on ∂B, with P as the right endpoint, which is not contained in any of
the arcs on ∂B determined by the internal arcs cj . This implies that each external arc ck,
together with the arc it determines on ∂B, bounds a connected component contained in the
region with density 1, which could be cut away and replaced by balls to restore area and gain
perimeter.

Also, it is not possible for P and Q to lie in the interior of the arc a of ∂B determined by some
internal arc. Otherwise we could use a segment s to join some point on c, close to P , to some point
on a “below” P , and add the region enclosed by c, a and s, thus gaining both perimeter and area.

The previous arguments imply that the connected component Ej , whose boundary contains c, is
“free” to move left or right: i.e., unless Ej is the only component, we can rotate it about the origin
until one of the following happens

• c touches another external arc at a point outside B;
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• some endpoint of another external arc becomes too close to P or Q;

• some internal arc of γj touches another internal arc at a point in B;

• some internal arc not of γj becomes too close to P or Q.

Each of these possibilities leads to a contradiction (since in any case we could use cutting arguments)
unless there exists only one connected component E.

If this is the case, consider an internal arc cj : it is not difficult to realise that the arc on ∂B
determined by cj ’s endpoints must be contained in the arc PQ (again, the one “internal” to the
region enclosed by c). Otherwise, it would be contained in the opposite arc PQ (we have already
seen that the endpoints of cj cannot lie one on the arc PQ and one on the other arc PQ, or we could
cut at P or Q), violating connectedness. Since any internal arc “rests” on PQ and there is only one
connected component, there cannot exist another external arc apart from c.

Therefore, the boundary of E is made by c plus a finite number of internal arcs cj , any of
them “resting” on the arc PQ. Were there more than one, we could rotate them until they touch,
contradicting minimality also if the touching point is on ∂B (the Snell law (13) would not hold).
Therefore just an internal arc c′ is allowed: by rotating it, we can suppose it to have an endpoint in
P , where the Snell law must hold. By symmetry, the other endpoint meets ∂B with the same angle,
and so must coincide with Q.

Recall that c and c′ have the same curvature: so, they can be either symmetric with respect to
the segment PQ or form a complete circle. In both cases, the Snell law would be violated unless the
meeting angle is exactly π/2 yielding a contradiction.

Step 4: Only a finite number of external arcs is allowed: in particular E has regular traces on
∂B.

By contradiction: suppose that outer arcs accumulate at a point P ∈ ∂B; we can then find an
arc ℓ ⊂ ∂B such that

• P is an endpoint of ℓ;

• there are infinitely many external arcs Cj whose endpoints lie on ℓ;

• the trace of B ∩ E on ∂B is constantly 0 or 1 on ℓ̊ (in other words: the finitely many arcs ℓj
on ∂B, determined by internal arcs cj, are such that ℓ̊ ⊂ ℓj or ℓ̊ ∩ ℓj = ∅).

We can therefore re-order the Cj ’s (and the corresponding enclosed regions Fj) in sequence, in such
a way that they still “rest” on ℓ and any two consecutive Cj have a common endpoint on ∂B. In
this way, area is clearly not affected, and so does the perimeter, since the third assumption on ℓ
ensures that we are not creating (nor destroying) perimeter on ∂B. Regularity clearly fails with this
construction, since the number of internal arcs is finite.

Step 5: The isoperimetric set is connected, enclosed by a piecewise C
1 Jordan curve, and the

Snell law (13) holds.
As we have seen, the boundary γ \ ∂B is made by a finite number of arcs; therefore, the whole γ

is made by a finite number of arcs which can be internal, external or subarcs of ∂B. In what follows,
we will call “external” also an arc of γ constituted by a subarc of ∂B. The regularity of traces of
E on ∂B implies that the Snell law (13) must hold at any endpoint on ∂B of any arc of γ. More
precisely, at any of these endpoints a unique external and a unique internal arc meet, with the Snell
law satisfied. This holds true also when the external arc is the limit case, i.e. a subarc of ∂B.

Also, there is only a finite number of connected components (which, as we have already seen, are
simply connected too). Suppose there were more than one: we could rotate one of them about the
origin until meeting another, contradicting the Snell law.

Step 6: An external arc cannot meet ∂B transversally.
Suppose by contradiction that this happens at a point P ∈ ∂B; then (part of) γ consists of two

circular arcs c1 (outside B) and c2 (in B), of the same radius, which intersect at P respecting the
Snell law (13): see Figure 10. Since λ > 1, the angle α1 at P between c1 and ∂B is strictly smaller
than the angle α2 at P between c2 and ∂B, provided α1 6= π/2. In some sense, the discontinuity of
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P1

c2

P

c1

α2

α1

∂B

Figure 10: Possible prolongations of c2.

the density causes a rotation, of center P and of an angle α2−α1 > 0, of the circle c1. We recall that
the curvatures of c1 and c2 (with respect to the inner normal), and not just their radii, coincide.

Let then P1, P2 be the other points where ∂B meets, respectively, c1 and c2, and suppose P1 6= P2:
by prolonging γ after P2 (thus obtaining an arc c3, see Figure 11) we will fall into a contradiction.
In fact, the Snell law holds again, and so the angle between c3 and ∂B is exactly α1: this means
that c3 can be obtained from c1 by means of the rotation centered at the origin which moves P1 to
P2. The arcs c1 and c3 do not intersect (this happens, e.g., when P2 lies in the arc P1P ), or this
would lead to a contradiction. If P2 does not lie on the arc P1P and c1, c3 do not intersect, then c3
meets ∂B at another point P3 on P2P1. Prolong then c3 from P3 to obtain c4: this arc will surely
meet c2, since it can be obtained by rotation and P3 ∈ P2P1. This is a contradiction.

c1

c2
c3

∂B

P3

P1

P

P2

c4

Figure 11: Self intersections cannot happen.

If P1 = P2, then c1, c2 (circles with same curvature) are either symmetric with respect to the
segment PP1 or form a complete circle, and this contradicts the Snell law unless α1 = α2 = π/2, i.e.
c1 and c2 form a complete circumference c (Figure 12). Let Q be the center of c, r its radius, and

set β := P̂1QP ; noticing that the radii QP and QP1 are tangent to ∂B, we obtain that the density
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area vf (c) of the circle is less than

r2[π + (λ− 1) · (Area of sector P1QP )] = r2[π + (λ− 1)β/2] .

Since the density perimeter of the circle c is r(2π + (λ− 1)β), we obtain that

Pf (c)
2

vf (c)
>
r2(2π + (λ− 1)β)2

r2[π + (λ − 1)β/2]
= 4[π + (λ− 1)β/2] > 4π ,

which is the isoperimetric ratio of any ball outside B. It follows that c cannot be isoperimetric.

β

Q P

P1

r

r

∂B

c

Figure 12: A particular ball.

Step 7: Reduction to case (b).
In Step 6 we excluded external arcs which are not subarcs of ∂B and have two endpoints on ∂B.

In fact they would be tangential to ∂B, and then would either enclose the whole B (contradicting
assumption v < λπ) or a ball external to B.

It follows that the isoperimetric boundary γ is composed by a finite number of internal cj ’s and
some subarcs of ∂B. Were the internal cj ’s more than one, we could rotate one of them until it
touches another one, thus violating minimality at the touching point. Therefore, the isoperimetric
set is the one described in part (b) of the statement.

Case (b)-convexCase (a) Case (b)-chord Case (b)-nonconvex

Figure 13: Isoperimetric sets, v < λπ.

We can now conclude this section with the main result.

Theorem 3.20 For the plane with density λ > 1 on the unit ball and 1 elsewhere, there exists a
0 < v0 < λπ such that

1. if v ≤ v0, the isoperimetric set with area v is a ball contained in R2 \B (type 3.19(a));

2. if v0 ≤ v ≤ λπ the isoperimetric set is of type 3.19(b);

3. if v ≥ λπ, the isoperimetric set is a round ball containing the ball B.
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All three subcases of type 3.19(b) of Figure 13, convex, chord and nonconvex, actually occur for some
values of λ.

Proof. Step 1: If v ≥ λπ, the isoperimetric set is a round ball containing B.
Let E be any set of weighted area v: since the region with density λ has Euclidean area π, the
Euclidean area of E is at least v − (λ− 1)π and by classical isoperimetry its Euclidean perimeter is
at least that of the ball with the same area, i.e. the one with radius ( vπ + 1 − λ)1/2. Since f ≥ 1,
this also gives a lower bound for the f -perimeter of E; however, any ball as in the statement is such
that these inequalities are in fact equalities, and so is isoperimetric. Conversely, for any other set,
at least one of the inequalities is strict, and so it cannot be isoperimetric.

Step 2: If v is small, the isoperimetric set is a ball of type (a).
Suppose by contradiction this is not true: then the isoperimetric set E is a (b)-convex type (see
Remark 3.21), determined by an arc PQ on ∂B and another one of center O′, meeting the arc PQ
with angle β0 = arccos(1/λ): as in Figure 14.

β0P

Q

αβ

β0

0′
0

Figure 14: Area v ↓ 0.

Let α be the angle P̂OO′ = P̂OQ/2 and β = P̂O′Q/2; we have β = α + β0 (since Ô′PO = β0)
and it is easy to compute the density perimeter of E

Pf (E) = Pf (Eα) = 2

(

α+ λ
sinα

sinβ
(π − β)

)

and the density area of E

|E|f = |Eα|f = λ

[

α− sinα cosα+

(

sinα

sinβ

)2

(π − β + sinβ cosβ)

]

.

We will get a contradiction if we show that limα→0 Pf (Eα)
2/|Eα|f > 4π. To do this, we express

sinβ, cosβ and λ as functions of α and β0 (remember that β = α + β0 and λ = 1/ cos(β0)) and,
through a straightforward Taylor expansion, we achieve

Pf (Eα) = 2α

(

1 +
π − β0

sinβ0 cosβ0

)

+O(α2) and |Eα|f =
α2

sinβ0

(

1 +
π − β0

sinβ0 cosβ0

)

+O(α3) .

Then

lim
α→0

Pf (Eα)
2

|Eα|f
= 4 sinβ0

(

1 +
π − β0

sinβ0 cosβ0

)

= 4
√

1− t2
(

1 +
π − arccos t

t
√
1− t2

)

,
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where we put t := 1/λ ∈ (0, 1). We have to prove that

ψ(t) :=
√

1− t2 +
π − arccos t

t
> π for any t ∈ (0, 1)

which would allow to conclude. Since ψ(1) = π, it is sufficient to show that ψ′ < 0 in (0, 1). Indeed
it is

ψ′(t) = − t√
1− t2

+
1

t
√
1− t2

+
arccos t− π

t2

≤ − t√
1− t2

+
1

t
√
1− t2

−
π
2

t2

=
−t3 + t− π

2

√
1− t2

t2
√
1− t2

=

√
1− t2

(

t
√
1− t2 − π

2

)

t2
√
1− t2

<

(

1− π
2

)

t2
< 0.

Step 3: For v close to λπ the isoperimetric set is of type (b).

To prove this, it is sufficient to exhibit a set F of area v with Pf (F )
2
/v < 4π, which is the isoperi-

metric ratio of any ball of type (a). Let ǫ := λπ − v > 0, and remove from B a little curvilinear
polygon of weighted area ǫ by a chord PQ as in Figure 15. Clearly, the remaining set Fǫ is such
that Pf (Fǫ) → 2π and |Fǫ|f → λπ as ǫ→ 0, and so the isoperimetric ratio converges to 4π/λ < 4π.

P

Q

γ

Density area ǫ

Figure 15: Area λπ − ǫ.

Step 4: There exists 0 < v0 < λπ such that for v < v0 the isoperimetric set is of type (a), and
for v0 < v < λπ is of type (b).
Figure 16 plots the perimeter as a function of the volume of type (a) configurations (dashed line)
and type (b) configurations (solid line); the dotted line is the perimeter of balls containing the
interior of the unit ball. The slope of these graph is given by the curvature of the boundary of the
isoperimetric set. We have to show that there exists a unique point v0 > 0 such that the graph of
the type (a) touches the graph of type (b). We only consider convex type (b) sets, because otherwise
the curvature, and hence the slope of the (b)-graph, is negative. We denote by Bb(v) the type (b)
set with given volume v; it is given by Bb(v) = B ∩Brb(v)(x(v)) for some x(v) ∈ R2 and with

1

rb(v)
=

d

dv
Pf (Bb(v)).

The Euclidean volume of Bb(v) is a given percentage ̺(v) of the Euclidean volume of Brb(v)(x(v)),
that is

|Bb|f = λ̺(v)πrb(v)
2.

We notice that v 7→ ̺(v) is a decreasing function; to see this one can perform a linear transformation
in such a way that Brb(v)(x(v)) becomes the unit ball centered in the origin. With this modification,
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Figure 16: Comparison between type (a) and type (b) configurations with λ = 2.

the ball B is sent to the ball B′ with ∂B′ meeting ∂B1(0) at a fixed angle. Enlarging v, we obtain
a smaller ball B′, so that ̺ decreases.

We also denote by Ba(v) = Bra(v)(y(v)) a ball of type (a), with ra(v) = (v/π)1/2. If v0 is the first
value of the volume for which Pf (Bb(v0)) = Pf (Ba(v0)), we have that πra(v0)

2 = λ̺(v0)πrb(v0)
2

and, using the slopes of the graphs,

1

rb(v0)
=

d

dv
Pf (Bb(v))|v=v0 ≤ d

dv
Pf (Ba(v))|v=v0 =

1

ra(v0)
;

this implies that ̺(v0) ≤ 1
λ . Then it follows that ̺(v) < 1

λ for v > v0, and so πra(v)
2 =

λ̺(v)πrb(v)
2 < πrb(v)

2, whence
1

rb(v)
<

1

ra(v)

and then for v > v0 the function Pf (Bb(v)) is strictly smaller than Pf (Ba(v)), due to the above
inequality of slopes.

By numerical computation, all of the cases (b)–convex, (b)–chord, and (b)–nonconvex occur for
λ close to 1, while for great λ only (a) and (b)–nonconvex are isoperimetric.

Remark 3.21 Type (b) sets evolve from convex to nonconvex when they are isoperimetric solutions.
Consider the curvature of the inner arc as a parameter; since all these inner arcs will meet ∂B
with constant angle, it turns that the enclosed volume is a decreasing function with respect to the
curvature. So when volume increases, curvature of inner arcs goes from positive to negative, and
hence type (b) sets go from convex to nonconvex.

3.3.2 The ball with density λ < 1.

We begin with describing the candidate isoperimetric sets; mutatis mutandis, most of the arguments
are the same as in Section 3.3.1 for λ > 1.

Proposition 3.22 The candidate isoperimetric sets are (see Figure 17):

(A) balls entirely contained in B;

(B) sets enclosed by two arcs with common endpoints: the first arc lies on ∂B, the second one is
in R2 \B and meets ∂B with angle arccosλ;
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(C) balls meeting B orthogonally.

(C)(A)

arccosλ

(B)

Figure 17: Candidate isoperimetric sets for the ball density with λ < 1.

Proof. We closely follow the proof of Proposition 3.19. In many cases, it will be sufficient to
exchange the roles of internal and external arcs. We now agree to call internal an arc lying on ∂B.
Again, we denote by E an isoperimetric set of area v and by γ its boundary.

Step 1: E is either a ball inside B (i.e. a set of type (A)) or the closure of each of its components
intersects both B and R2 \B.

This point presents no substantial difficulty with respect to Step 1 in Proposition 3.19. In the
rest of the proof we will suppose that E is not a type-(A) ball, i.e. that the closure of any of its
component intersects both B and R2 \ B; in particular, it cannot be a ball in R2 \ B. Notice also
that the boundary of any component must meet ∂B: otherwise this component would be a ball
enclosing B and with boundary out of B, a configuration which is easily proved to be worse than a
ball outside B with same area.

Step 2: Only a finite number of external arcs are allowed.
This is due to the fact that any external arc must leave ∂B with an angle between arccosλ

and π − arccosλ; curvature being constant, this means that each arc must determine on ∂B a
corresponding arc whose length has a fixed positive lower bound. So only a finite number of arcs on
∂B can be determined, and the claim easily follows.

Step 3: Internal arcs cannot meet ∂B with angle strictly greater than π/2.
Step 4: Only a finite number of internal arcs is allowed: therefore E has regular traces on ∂B.
Step 5: The isoperimetric set is connected, enclosed by a piecewise C

1 Jordan curve, and the
Snell law (13) holds.

These proofs are exactly the same as in the corresponding Steps of Proposition 3.19: it is sufficient
to exchange the words internal and external.

Step 6: An internal arc cannot meet ∂B transversally, unless the contact angle is π/2.
To prove this, one can follow again the proof of the corresponding Step 6 in Proposition 3.19,

where however we excluded balls of type (C). This cannot be done in the λ < 1 setting: we will
instead show numerically that such a configuration can be isoperimetric (see the proof of Theorem
3.23).

Step 7: Reduction to cases (B) and (C).
We have shown that internal arcs can be only tangential or orthogonal to ∂B, and that there

are only finitely many of them. If tangential, they have to lie on ∂B; otherwise they would have
curvature more than 1, thus being complete circles inside B. Therefore, a connected component
whose boundary possesses one (or more) arc on ∂B must be bounded by exactly one external
arc and one arc on ∂B; otherwise one could rotate the external arcs until forbidden meetings are
obtained. Such a component falls into case (B) and must enclose the ball B; moreover, the angle
between the external arc and ∂B must be arccosλ.

We have shown that the components can be only of type (B) or (C). Were there more than one,
we could use rotation arguments to obtain a contradiction. This concludes the proof.
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Figure 18 shows the graphs of perimeter as function of the enclosed area for candidates in the
case λ = 1/2: the dotted, dashed and solid lines refer, respectively, to candidates (A), (B) and (C).
Then it is then not surprising the following Theorem.

1 2 3 4 5 6 7

2

4

6

8

10

12

Figure 18: Perimeter as function of area for three candidates in ball density with λ < 1.

Theorem 3.23 For the plane with density λ < 1 on the unit ball and 1 elsewhere, there exist some
values v1, v2 > λπ such that the isoperimetric set of volume v is given by

1. a ball of type (A) if v ≤ λπ;

2. a set of type (B) if λπ ≤ v ≤ v1;

3. a set of type (B) or (C) if v1 < v < v2;

4. a ball of type (C) if v ≥ v2.

Remark. We believe that v1 = v2 in the previous Theorem 3.23; that is, once sets of type (B) fail
to be isoperimetric, type (C) sets are the solutions for larger volumes. We have observed this fact
numerically, although we are not able to give a rigorous proof of it.

Proof. Since it will be useful in the sequel, we compute explicitly the perimeter and area of
candidates (B) and (C). For type-(B) sets, let 2β be the angle determined by the external arc;
by α = β + arccosλ we denote half of the angle at the center of ∂B formed by the arc on ∂B (see
Figure 19). It is not difficult to show that 0 ≤ β ≤ π−arccosλ and that, after setting r := sinα/ sinβ
to be the radius of the external arc, the perimeter is

PB = 2
(

(π − β)r + λα
)

while the enclosed area is

AB = r2(π − β + sinβ cosβ) + (α − sinα cosα)− (1− λ)π .
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Figure 19: Type-(B) set

Regarding balls of type (C), if 2β̂ is the angle at the center determined by the internal arc, then

the radius of the ball will be r̂ := 1/ tan β̂. Therefore, the perimeter will be given by

PC = 2
π − (1− λ)β̂

tan β̂

and the area enclosed by

AC :=
π − (1 − λ)(β̂ − sin β̂ cos β̂)

tan2 β̂
− (1− λ)

(

π
2 − β̂ − sin β̂ cos β̂

)

.

Since type-(B) sets enclose the ball B, for area bounds less than λπ we have only to compare
candidates (A) and (C). To prove the first part of the statement it will be sufficient to show that
the ratio P 2

C/AC is strictly greater than 4λπ, which is the same ratio computed for (A)-balls. Let
us rewrite AC as

AC =
π − (1− λ)(β̂ − sin β̂ cos β̂)

tan2 β̂
− (1− λ)

(

π
2 − β̂ − sin β̂ cos β̂

)

= 1

tan2 β̂

(

π − (1− λ)β̂ − (1 − λ) tan β̂(− cos2 β̂ + (π2 − β̂) tan β̂ − sin2 β̂)
)

= 1

tan2 β̂

(

π − (1− λ)β̂ − (1 − λ) tan β̂((π2 − β̂) tan β̂ − 1)
)

.

The desired inequality P 2
C > 4λπAC is equivalent to

(

π − (1− λ)β̂
)2

> λπ
(

π − (1 − λ)β̂ − (1 − λ) tan β̂
(

(π2 − β̂) tan β̂ − 1
)

)

i.e.
(1− λ)π2 > (1− λ)

[

2πβ̂ − (1− λ)β̂2 − λπβ̂ − λπ tan β̂
(

(π2 − β̂) tan β̂ − 1
)

]

and in turn to

−2π
(

π
2 − β̂

)

− (1 − λ)β̂2 − λπβ̂ − λπ
(

π
2 − β̂

)

tan2 β̂ + λπ tan β̂ < 0 .

Remembering that β̂ ∈ [0, π/2], setting θ := π
2−β̂ and discarding the negative term −(1−λ)β̂2−λπβ̂,

it will be sufficient to show that

2πθ +
λπθ

tan2 θ
− λπ

tan θ
=

π

tan2 θ

[

2θ tan2 θ + λθ − λ tan θ
]

> 0 .

Recalling that θ ∈ [0, π/2] it will suffice to prove that ψ(θ) := 2θ tan2 θ + λθ − λ tan θ is positive in
[0, π/2]. Indeed it holds ψ(0) = 0 and

ψ′(θ) = 2 tan2 θ + 4θ tan θ(1 + tan2 θ) + λ− λ− λ tan2 θ > 0

which allows to conclude because λ < 1.
For area bounds greater than λπ we have only to compare candidates (B) and (C). From above

we have that the type-(C) ball for area λπ has perimeter greater than 2λπ+ δ, with δ > 0; this will
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happen for any (C)-ball with area greater than λπ. The second part of the statement follows by
noticing that, when the area AB of the (B)-candidate decrease to λπ (equivalently when r ↓ 0, i.e.
α ↑ π, i.e. β ↑ π − arccosλ), its perimeter PB decreases to 2λπ.

When considering a type (B)-candidate associated with an external ball of radius r, straightfor-
ward computations give

AB(r) = πr2 +O(1) and PB(r) = 2πr + 2 arccosλ− 2
√

1− λ2 +O(1/r2)

for large r. Analogously, for a type-(C) ball of big radius rC we have

AC(rC) = πr2C + O(1) and PC(rC) = 2πrC − 2(1− λ) +O(1/r2C) .

By imposing the equality AC(rC) = AB(r) of enclosed areas, in order to compute rC as function of
r, one obtains rC = r + O(1/r). To show that PC(rC(r)) < PB(r) for large areas, we just need to
prove that

−2(1− λ) +O(1/r) < 2 arccosλ− 2
√

1− λ2 +O(1/r2)

for large r. Therefore it will be sufficient to show that f(λ) := arccosλ−
√
1− λ2 +1− λ is strictly

positive for any λ ∈]0, 1[: this in turn follows since f(1) = 0 and

f ′(λ) = − 1− λ√
1− λ2

− 1 = −
√

1− λ

1 + λ
− 1 < 0 for any λ ∈]0, 1[ .

4 Modifications of Gauss density on the plane

This section provides partial results on the isoperimetric problem for certain modifications of Gaus-
sian density Ce−cr

2

on the plane. Previously, Borell [6] and Rosales et al. [26, Introduction and

Section 5] proved by symmetrization that for the density er
2

isoperimetric regions are balls about
the origin.

Recently, Brock et al. [7] proved that for the modified Gauss space xkNe
−|x|2, k ≥ 0, on the

half–space RN+ , isoperimetric sets are bounded by vertical hyperplanes. The same argument also

shows that the same holds if we consider the density |xkN |e−|x|2 on the whole space RN , simply by
considering the reflection with respect to the hyperplane xN = 0. In fact, if E is an isoperimetric
set, then E ∩ RN+ is isoperimetric with respect to its volume bound, so its boundary in RN+ has to
be a vertical hyperplane.

It is worth noticing that in the planar case N = 2 and with k = 1, vertical and horizontal lines are
the only straight lines with constant generalised curvature; moreover, the only circles with constant
generalised curvature are the one centered at the origin.

Motivated by these results, we will now consider the density in the plane defined by

f(x, y) = exp(−x2 − y4), (x, y) ∈ R2. (29)

Since the total mass is finite we have existence of isoperimetric regions for any prescribed volume.
We state the following

Conjecture 4.1 For density (29) on the plane, every isoperimetric region is bounded by a horizontal
line (for prescribed volumes close to half the total volume) or by a vertical line.

We trivially have the following lemma.

Lemma 4.2 Vertical and horizontal lines are the unique straight lines with constant generalised
mean curvature. Furthemore, circles do not have constant generalised mean curvature.
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A first consequence of the previous lemma is that no arc of a circle will be contained in the
boundary of an isoperimetric region. We now proceed to compare the perimeter of vertical and
horizontal lines enclosing the same volume. We shall see that, for some volumes, vertical lines are
better, while horizontal lines beat vertical ones for other volumes.

Proposition 4.3 For volume fractions near 1/2, horizontal lines have less perimeter than vertical
lines, and for small or large volumes, vertical lines have less perimeter than horizontal ones.

Proof. For y ∈ [0,+∞), let Rh(y) be the horizontal line {(x, y) : x ∈ R}. This line bounds a region
with volume equal to

vh(y) =

√
π

4
Γ
(

1
4 , y

4
)

,

where Γ represents the Gamma function of two arguments. On the other hand, for the perimeter of
the region bounded by Rh(y) we have

Ph(y) =
√
π e−y

4

.

For x ∈ [0,+∞), let Rv(x) be the vertical line {(x, y) : y ∈ R}. Then, the region bounded by
this line has a volume equal to

vv(x) =
√
π Γ
(

5
4

)

(1 − Erf(x)),

where Erf is the error function. Moreover, the perimeter of the region bounded by Rv(x) is given
by

Pv(x) = 2Γ
(

5
4

)

e−x
2

.

Given y, x ∈ [0,+∞), it is easy to check that vh(y) = vv(x) if and only if

Erf(x) = 1− Γ(14 , y
4)

4 Γ(54 )
. (30)

Consider now y, x ∈ [0,+∞) satisfying condition (30). Then

Pv(x) < Ph(y) ⇔
e−x

2

e−y4
<

√
π

2Γ(54 )

⇔ log

(

e−x
2

e−y4

)

< log

( √
π

2Γ(54 )

)

⇔ −x2 + y4 < log

( √
π

2Γ(54 )

)

∼ −0.02251. (31)

Hence, if this last condition is satisfied, the corresponding vertical line is isoperimetrically better
than the horizontal line.

Observe that the left hand side in condition (31) can be expressed as a function of y, by using
(30). Numerical computations show that for values of y close to zero, e.g. when

y ∈ [−0.15, 0.15],

the left hand side in (31) is greater than −0.02251, and so, horizontal lines are better. For

|y| > 0.16,

such a term is less than −0.02251 and so vertical lines are better. This completes the proof.

37



Remark 4.4 In this situation, domains bounded by two (symmetric) lines can be easily discarded,
since the perimeters of horizontal and vertical lines are strictly decreasing functions.

Remark 4.5 Proposition 4.3 indicates that vertical or horizontal lines may appear as minimisers.
As in [7], given a set Ω ⊂ R2, we could apply two adapted Steiner symmetrisations (one in the
vertical direction and another one in the horizontal direction), to obtain another set Ω∗ ⊂ R2 which
would have the same volume and no more perimeter than Ω.

Remark 4.6 In this setting, it can be checked that horizontal lines far away from the origin (i.e. for
small or large volumes) are unstable by using the second variation formula (see [26, Proposition 3.6])
with a suitable mean zero function. Unfortunately, the study of the stability of the rest of the lines
seems a harder question.

5 Open questions

The study of manifolds with density, and of the isoperimetric problem in particular, is relatively
recent, and many related works have appeared during the last years [23, 10, 26]. In this section, we
will list several open problems in this setting: some of them (Questions 1–4) are closely related to
the present paper, while the other ones arose during Morgan’s lectures on “Manifolds with density”
at the GMTLAP meeting in Modena, February 2007.

Question 1 [The strip case] Conjecture 3.12 remains open: as we said we think that a four–arc
candidate (iv) cannot be isoperimetric, but we are presently not able to prove this.

Question 2 [The ball case] The case λ < 1 in Section 3.3.2 is not completely solved (see Theo-
rem 3.23): it is left to prove that, once sets of type (C) are isoperimetric, type (B) sets cannnot be
solutions for any other larger volume.

It would be also interesting to investigate the ball density problem in RN , N ≥ 3. For λ > 1 and
volume v ≥ λωN balls containing B are isoperimetric: the proof is the same as the planar case.

One could further imagine densities which are constantly 1 on R2 except for some balls: this
situation seems particularly interesting, since it may well provide non–connected isoperimetric sets.
Consider for example the piecewise constant density λ on B∪B′ and 1 outside, where λ≫ 1 and B,
B′ are two sufficiently distant balls of radius one. It is not difficult to show that isoperimetric sets,
at least for some area bounds, are not connected. In fact, take 2πλ as prescribed area: were the
isoperimetric set connected, by Theorem 3.20 it would consist of a ball containing B or B′, but not
both of them as they are chosen far away (recall the diameter estimate (1)). Therefore, its density
perimeter would be at least 2π

√
λ, while B ∪B′ satisfies the area bound with perimeter 4π, which

is smaller for large values of λ.

Question 3 [Plane with density exp(−x2−y4)] Conjecture 4.1 (isoperimetric boundaries are given
by horizontal or vertical lines) is still open, since we have not determined other possible competitors.

Question 4 Other modifications of the Gaussian density on the plane would be worth investigating.
For instance, we propose the density f(x, y) := exp(−x4 − y4) on R2. An interesting approach
seems to be related to a work by S.Bobkov [3], where it is proved that half-spaces are isoperimetric
in RN with density given as a product f(x) = ϕ(x1) · · ·ϕ(xN ), under certain assumptions on ϕ.

Unfortunately, these hypothesis are not quite satisfied in our case ϕ(x) = e−x
4

.

Question 5 [Proposed by A. Brancolini] Consider R2 endowed with a density attaining its min-
imum value in several points. Then it is reasonable to think that for small prescribed areas an
isoperimetric region should be a nearly round disc containing one of these points. The reader may
compare this with [26, § 5], where this result is proven for a particular density with a unique minimum
point.
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Question 6 [Proposed by A. Brancolini] Another interesting question consists of finding the iso-
perimetric regions in Euclidean space endowed with a density which is a finite sum of Gaussian
measures with different barycenters and variances. In the particular case that all the barycenters lie
in the same line ℓ, orthogonal lines to ℓ seem nice candidates for being the solutions.

Question 7 Which regions (with rectifiable boundary) are isoperimetric for some density? Prob-
ably any smooth region has this property. Take a density with very low values along the boundary,
perhaps a low constant value with normal derivative determined by the constant generalised mean
curvature condition.

Question 8 [Proposed by S. Ansaloni] Consider the sphere S2 endowed with some density such as

f(θ, φ) := (1 − sinφ)−p,

where φ ∈ [−π
2 ,

π
2 ] is the latitude. Here the conjectured isoperimetric sets are polar caps.

Question 9 [Proposed by A. Pratelli] Fairly recent “quantitative” isoperimetric inequalities show
that a set with perimeter close to the optimal one must approximate a minimiser in shape (see [18]).
Can such results be generalised to manifolds with density?

Question 10 Suppose the density f is “conic”, i.e. constant along rays starting from the origin.
Give necessary conditions for a cone C to be the boundary of a perimeter–minimising set. The
main case is given by the half-space density and the Snell refraction law is one necessary condition.
Such results could be used more generally. Take a point of an isoperimetric boundary which is also
a discontinuity point for the density, and perform a blow-up. In the limit the above situation is
retrieved.
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80. Birkhäuser Verlag, Basel, 1984.

[20] M. Gromov. Isoperimetry of waists and concentration of maps. Geom. Funct. Anal., 13, 178–
215, 2003

[21] R. Harvey and H. B. Lawson, Jr. Calibrated geometries, Acta Mat., 148, 47–157, 1982.

[22] F. Morgan. Regularity of isoperimetric hypersurfaces in Riemannian manifolds. Trans. Amer.
Math. Soc., 355 (12), 5041–5052 (electronic), 2003.

[23] F. Morgan. Manifolds with density. Notices Amer. Math. Soc., 52 (8), 853–858, 2005.

[24] F. Morgan. Geometric Measure Theory: A Beginner’s Guide. Academic Press Inc., San Diego,
4th edition, 2008.

[25] A. Ros. The isoperimetric problem. Global Theory of Minimal Surfaces, 175–209, Clay Math.
Proc., 2. Amer. Math. Soc., Providence, 2005.
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