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a b s t r a c t

In the literature, the theory of cocyclic Hadamard matrices has always been developed over finite groups. 
This paper introduces the natural generalization of this theory to be developed over Latin rectangles. In 
this regard, once we introduce the concept of binary cocycle over a given Latin rectangle, we expose 
examples of Hadamard matrices that are not cocyclic over finite groups but they are over Latin rectangles. 
Since it is also shown that not every Hadamard matrix is cocyclic over a Latin rectangle, we focus on 
answering both problems of existence of Hadamard matrices that are cocyclic over a given Latin rectangle and 
also its reciprocal, that is, the existence of Latin rectangles over which a given Hadamard matrix is cocyclic. We 
prove in particular that every Latin square over which a Hadamard matrix is cocyclic must be the multiplica-
tion table of a loop (not necessarily associative). Besides, we prove the existence of cocyclic Hadamard matrices 
over non-associative loops of order 2t+3, for all positive integer t > 0.

1. Introduction

A (binary) Hadamard matrix H of order n is an n × n array with every entry either 1 or −1, which
satisfies HHT

= nIn, where In denotes the identity matrix of order n. It is well-known that n has to be
necessarily 1, 2 or a multiple of 4, but there is no certainty whether such a Hadamardmatrix exists at
every possible order. The Hadamard Conjecture asserts that there exists a Hadamard matrix of order
4t for every natural number t . Two Hadamard matrices are said to be equivalent if they are equal up
to permutations or negation of their row and columns.

There exist so many different constructions for Hadamard matrices: Sylvester, Paley, Williamson,
Ito, Goethals–Seidel, one and two circulant cores or cocyclic matrices, amongst others (see [15]). With
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respect to the latter, Horadam and de Launey introduced [16] the use of cocycles and cocyclicmatrices
within the theory of block designs and showed [17] that the cocyclic framework could provide a
structural approach to resolve the Hadamard Conjecture. Since then, the theory of cocyclic Hadamard
matrices has been widely developed, but always under the assumption of working on finite groups.
Their distribution into equivalence classes is explicitly known for order n < 40 [8]. This paper
generalizes this theory by introducing the concept of cocyclic Hadamard matrices on r × n Latin
rectangles. Latin squares were already used in the classical theory of Hadamard matrices to construct
symmetric Hadamard matrices of order 36 [6,7,13].

The paper is organized as follows. In Section 2, we expose some preliminary concepts and results
on cocyclic Hadamardmatrices, Latin rectangles and quasigroups that are used throughout our study.
We introduce in Section 3 the concept of cocycle over a Latin rectangle and that of cocyclic Hadamard
matrix over a Latin rectangle. Section 4 deals with the set of Hadamardmatrices that are cocyclic over
a given Latin rectangle, whereas Section 5 focuses on the reciprocal problem, that is, on the set of
Latin rectangles over which a given Hadamard matrix is cocyclic. Finally, since this paper has a high
dependence on notation, a glossary of symbols is shown in the Appendix.

2. Preliminaries

Let us review some basic concepts and results on cocyclic Hadamardmatrices, Latin rectangles and
quasigroups that are used throughout the paper. We refer the reader to [9,11,15,23] for more details
about these topics.

2.1. Cocyclic Hadamard matrices

Let G be a finite group and let Z2 be the finite set {±1} considered as the cyclic group of order 2.
Any mapψ : G×G → Z2 may be represented by the square matrixMψ = (ψ(a, b))a,b∈G, whose rows
and columns are indexed by the elements of the group G under some fixed ordering. If there exists a
function φ : G → Z2 such that ψ(a, b) = φ(ab), for all a, b ∈ G, so that the matrix Mψ is Hadamard,
then the latter is said to be a Hadamard matrix developed over the group G. Turyn [29] proved that, if G
is cyclic, thenMψ is Hadamard only if the order of G is 4t2, for some odd positive integer t ∈ N that is
not a prime power. The only known equivalence class of Hadamard matrices developed over a cyclic
group Z4t2 is represented by the following circulant matrix defined for t = 1⎛⎜⎝ + + + −

+ + − +

+ − + +

− + + +

⎞⎟⎠
where, from here on, the symbols+ and− represent, respectively, the entries 1 and−1. The Circulant
Hadamard Conjecture [27] asserts that there does not exist any Hadamard matrix over a cyclic group
Z4t2 , for t > 1. It is known [5,22] that this is true for all positive integer t < 11715 and also that there
exist 948 open cases for t ≤ 1013. In the literature, this fact has dissuaded the authors from searching
for cocyclic Hadamard matrices over cyclic groups.

Horadam and de Launey [16,17] introduced the concept of (2-dimensional binary) cocycle over a
finite group G as a map ψ : G × G → Z2 such that

ψ(ab, c) = ψ(a, b)ψ(b, c)ψ(a, bc), for all a, b, c ∈ G. (1)

Particularly, ψ(1, 1) = ψ(a, 1) = ψ(1, a), for all a ∈ G. If ψ(1, 1) = 1, then the cocycle ψ is said
to be normalized. The corresponding matrix Mψ is called (pure) cocyclic over the group G. If this is
Hadamard, then it is said to be a (pure) cocyclic Hadamard matrix over the group G.

Baliga and Horadam [2] dealt with the existence of cocyclic Hadamard matrices over the groups
Zt×Z2

2, for t odd. Shortly after, Flannery [12] proved constructively the existence of cocyclicHadamard
matrices over the dihedral group

D4t := ⟨ a, b | a2t = b2 = (ab)2 = 1 ⟩, (2)



for all positive integer t ≤ 11. He also established a series of conditions to ensure the existence of
cocyclicHadamardmatrices over abelian, dicyclic, anddihedral groups over certain orders. Alternative
constructions have recently been obtained by Álvarez et al. [1].

The Kronecker or direct product of two cocyclic Hadamardmatrices is also cocyclic Hadamard over
the direct product of the involved pair of groups [12]. More specifically, if ψ and ψ ′ are respective
cocycles over two finite groups G and G′, then, it is known [10] that the map ψ ⊗ ψ ′ defined as

ψ ⊗ ψ ′((a, a′), (b, b′)) = ψ(a, b)ψ ′(a′, b′), for all a, b ∈ G, a′, b′
∈ G′, (3)

is a cocycle over the finite group G⊗G′. If both cocyclic matricesMψ andMψ ′ are Hadamard, then the
cocyclicmatrixMψ⊗ψ ′ , which coincides indeedwith their direct product,Mψ⊗Mψ ′ , is also Hadamard.

2.2. Latin rectangles

Let r and n be two positive integers such that r ≤ n. An r×n Latin rectangle is an r×n array L = (li,j)
in which each cell contains one symbol of the set [n] := {1, . . . , n} and such that each symbol occurs
exactly once in each row and at most once in each column. This is a Latin square of order n if r = n,
in which case, each symbol of the set [n] also occurs exactly once in each column. Hereafter, let Rr,n
denote the set of r × n Latin rectangles.

The direct product of two Latin rectangles L = (li,j) ∈ Rr,n and L′
= (l′i′,j′ ) ∈ Rr ′,n′ is a

Latin rectangle L ⊗ L′
∈ Rrr ′,nn′ such that, for each (i, j, i′, j′) ∈ [r] × [n] × [r ′

] × [n′
], its cell

((i − 1)r ′
+ i′, (j − 1)n′

+ j′) ∈ [rr ′
] × [nn′

] contains the symbol (li,j − 1)n′
+ l′i′,j′ ∈ [nn′

].

Example 1. Let us consider the Latin rectangles

L ≡ 2 1 ∈ R1,2 and L′
≡

1 2 3
2 3 1 ∈ R2,3.

Then,

L ⊗ L′
≡

4 5 6 1 2 3
5 6 4 2 3 1 ∈ R2,6.

Every Latin rectangle L = (li,j) ∈ Rr,n is uniquely determined by its set of entries

E(L) := {(i, j, li,j) | i ≤ r, j ≤ n}. (4)

The Latin rectangle L is said to be reduced if its set of entries contains the triples (1, j, j) and (i, 1, i),
for all i ∈ [r] and j ∈ [n]; that is, if all the symbols of the set [n] (respectively, [r]) are displayed in natu-
ral orderwithin the first row (respectively, first column) of L. Thus, for instance, the Latin rectangle L′

∈

R2,3 in Example 1 is reduced. Its set of entries is E(L′) = {(1, 1, 1), (1, 2, 2), (1, 3, 3), (2, 1, 2), (2, 2,
3), (2, 3, 1)}.

Let s be a positive integer such that r ≤ s ≤ n. It is said that a Latin rectangle L ∈ Rr,n can be
extended to a Latin rectangle L′

∈ Rs,n if E(L) ⊆ E(L′). Marshall Hall [14] proved that every Latin
rectangle in Rr,n can be extended to at least one Latin rectangle in Rs,n.

Example 2. The following two Latin rectangles, L ∈ R1,8 and L′
∈ R2,8, satisfy that E(L) ⊆ E(L′).

L ≡ 2 3 4 1 6 7 8 5 L′
≡

2 3 4 1 6 7 8 5
3 5 6 8 7 2 1 4

Let Sn denote the symmetric group on n elements. For each positive integer i ≤ r , the ith row of
a Latin rectangle L = (li,j) ∈ Rr,n can be interpreted as the permutation π ∈ Sn such that π (j) = li,j,
for all j ≤ n. The disjoint cycles in which such a permutation decomposes determine the cycles of the
row. Thus, for instance, the first row of the Latin rectangle L′ in Example 2 constitutes the permutation
(1234)(5678) ∈ S8, whereas its second row determines the permutation (136257)(48) ∈ S8.



Permutations of rows, columns and symbols of Latin rectangles preserve the setRr,n. In this regard,
two Latin rectangles L = (li,j) and L′

= (l′i,j) in Rr,n are said to be isotopic if there exists a triple
(f , g, h) ∈ Sr × Sn × Sn such that l′f (i),g(j) = h(li,j), for all i ≤ r and j ≤ n. The set of entries of the
isotope L′ is E(L′) = {(f (i), g(j), h(li,j)) | (i, j, li,j) ∈ E(L)}. The triple (f , g, h) is an isotopism between
L and L′. This constitutes an isomorphism if r = n and f = g = h. In this case, the Latin squares L
and L′ are said to be isomorphic. To be isotopic (respectively, isomorphic) are equivalence relations
among Latin rectangles (respectively, Latin squares). Nowadays, the distribution of Latin squares into
isotopism and isomorphism classes is known [18,19,25] for order up to 11, whereas that of r ×n Latin
rectangles into isotopism classes is known [24] for r ≤ n ≤ 9.

2.3. Quasigroups

A quasigroup [26] is a pair Q = (S, ·) formed by a set S that is endowed with a binary operation ·,
such that the equations a · x = b and y · a = b have unique solutions for x and y in S, for all a, b ∈ S.
Hence, Q has left- and right-division, which are respectively denoted \ and / (that is, x = a\b in the
first equation, and y = b/a in the second one). Every associative quasigroup constitutes a group. The
quasigroup Q is a loop if there exists a unit element e ∈ S such that a · e = e · a = a, for all a ∈ S. The
quasigroupQ is finite if the set S is. In such a case, the order of the former is defined as the cardinality of
the latter. The quasigroupQ ismonogenic if it is generated by a single element a ∈ S. Everymonogenic
associative quasigroup is a cyclic group.

From here on, we denote by Qn the set of finite quasigroups having [n] as their finite set of
symbols. Every Latin square L = (li,j) ∈ Rn,n constitutes, therefore, the multiplication table of a
finite quasigroup Q = ([n], ·) ∈ Qn, where i · j = li,j, for all i, j ≤ n. Besides, any reduced Latin
square constitutes the multiplication table of a loop. Transpositions and isotopisms of Latin squares
preserve the set Qn. In this regard, the transpose of a quasigroup Q = ([n], ·) ∈ Qn is the quasigroup
Q t

= ([n], ◦) that is defined so that i ◦ j = j · i, for all i, j ≤ n. Further, two quasigroups Q = ([n], ·)
and Q ′

= ([n], ◦) are said to be isotopic if there exist three permutations f , g and h in Sn such that
f (i) ◦ g(j) = h(i · j), for all i, j ∈ [n]. The triple (f , g, h) is an isotopism from Q to Q ′. This constitutes an
isomorphism if f = g = h, in which case the quasigroups are said to be isomorphic.

3. Cocycles over Latin rectangles

From here on, let L = (li,j) be a Latin rectangle in Rr,n. We define the subset of symbols

S(L) := [r] ∪ {li,j | i, j ≤ r} ⊆ [n]. (5)

As such, this set is composed partly of the row labels of the array L and partly of the symbols appearing
in the left r × r subarray within the latter (see Example 3). Remark in particular that S(L) = [n]
whenever L is a Latin square of order n.

Example 3. Let L ∈ R1,8 and L′
∈ R2,8 be the Latin rectangles in Example 2. In order to determine

the set S(L), we focus on the left 1 × 1 subarray of L, which we highlight below.

2 3 4 1 6 7 8 5

According to (5), the set S(L) is formedby the row label 1 and the symbol 2 appearing in thehighlighted
subarray. That is, S(L) = {1} ∪ {2} = {1, 2}.

Similarly, in order to determine the set S(L′), we focus on the left 2 × 2 subarray of L′, which we
highlight below.

2 3 4 1 6 7 8 5
3 5 6 8 7 2 1 4

Thus, the set S(L′) is formed by the row labels 1 and 2, and the symbols 2, 3 and 5 appearing in the
highlighted subarray. Hence, S(L′) = {1, 2, 3, 5}.



Definition (5) enables us to introduce the concept of cocycle over a Latin rectangle. We say that a
function ψ: S(L) × [n] → Z2 is a cocycle over the Latin rectangle L if

ψ(li,j, k) = ψ(i, j)ψ(j, k)ψ(i, lj,k), for all i, j ≤ r and k ≤ n. (6)

In particular, if L is a Latin square of order n, which constitutes in turn the multiplication table of a
quasigroup Q = ([n], ·) ∈ Qn, then Condition (6) is equivalent to

ψ(i · j, k) = ψ(i, j)ψ(j, k)ψ(i, j · k), for all i, j, k ≤ n. (7)

In such a case, we also say that the functionψ is a cocycle over the quasigroup Q . This generalizes the
classical notion of cocycle over a finite group, which arises when Q is associative.

Example 4. Let us consider the Latin rectangle

L = (li,j) ≡ 2 1 ∈ R1,2.

In particular, S(L) = {1, 2}. Then, the function ψ : [2] × [2] → Z2 defined so that ψ(1, 1) = 1 and
ψ(1, 2) = ψ(2, 1) = ψ(2, 2) = −1 is a cocycle over L, because

• ψ(l1,1, 1) = ψ(2, 1) = −1 = ψ(1, 1)ψ(1, 1)ψ(1, 2) = ψ(1, 1)ψ(1, 1)ψ(1, l1,1), and
• ψ(l1,1, 2) = ψ(2, 2) = −1 = ψ(1, 1)ψ(1, 2)ψ(1, 1) = ψ(1, 1)ψ(1, 2)ψ(1, l1,2).

From here on, we denote Z(L) the set of cocycles over the Latin rectangle L. The following result
establishes lower and upper bounds for the size of such a set.

Lemma 5. Let L ∈ Rr,n. Then, |Z(L)| is an even positive integer such that

2 ≤ |Z(L)| ≤ 2|S(L)|·n.

Proof. From (6), it is straightforwardly verified that a function ψ is a cocycle over L if and only if the
function −ψ is. Hence, |Z(L)| must be even. Further, its lower bound follows from the fact that both
constant maps ψ and −ψ , which are defined so that ψ(i, j) = 1, for all (i, j) ∈ S(L) × [n], are always
cocycles over L. Finally, the upper bound holds readily from the domain and image of every cocycle
over an r × n Latin rectangle. □

The following example shows a family of reduced Latin rectangles whose set of cocycles fits the
lower bound indicated in Lemma 5.

Example 6. Let L = (l1,j) be the reduced Latin rectangle in the set R1,n. That is, l1,j = j, for all j ≤ n.
Let ψ ∈ Z(L). According to (6), for each k ≤ n, we have that

ψ(1, k) = ψ(l1,1, k) = ψ(1, 1)ψ(1, k)ψ(1, l1,k) = ψ(1, 1)ψ(1, k)ψ(1, k) = ψ(1, 1).

As a consequence, ψ must be a constant map and hence, |Z(L)| = 2.

Unlike this lower bound, the upper bound in Lemma 5 is just fitted by the only Latin rectangle
existing in the set R1,1. In order to prove it and also to determine the exact size of the set of
cocycles of each Latin rectangle, we introduce here the concept of cocyclic degree-of-freedom of a Latin
rectangle L ∈ Rr,n as the minimum number df (L) of pairs (i, j) ∈ S(L) × [n] that are required to
determine uniquely such a cocycle by keeping in mind to this end the set of constraints derived from
Condition (6). The following example illustrates this definition.

Example 7. Let L ∈ R1,2 be the Latin rectangle in Example 4. Condition (6) implies that every cocycle
φ ∈ Z(L) satisfies that

• φ(2, 1) = φ(l1,1, 1) = φ(1, 1)φ(1, 1)φ(1, l1,1) = φ(1, 1)φ(1, 1)φ(1, 2) = φ(1, 2), and
• φ(2, 2) = φ(l1,1, 2) = φ(1, 1)φ(1, 2)φ(1, l1,2) = φ(1, 1)φ(1, 2)φ(1, 1) = φ(1, 2).

Hence, φ(1, 2) = φ(2, 1) = φ(2, 2). Observe that none constraint concerning φ(1, 1) derives from
Condition (6). As a consequence, df (L) = 2 and hence, keeping in mind the image Z2 of any cocycle
over L, we have that |Z(L)| = 22

= 4. More specifically, we have that Z(L) = {φ1, φ2, φ3, φ4}, where



• φ1 = ψ , the cocycle defined in Example 4.
• φ2(i, j) = 1, for all (i, j) ∈ [2] × [2].
• φ3 = −φ1.
• φ4 = −φ2.

This example enables us to ensure in particular that isotopisms of Latin rectangles do not preserve the
size of their cocycles, because, from Example 6, the reduced Latin rectangle in the set R1,2 (which is
isotopic to L) has only two cocycles.

As we have illustrated in Example 7, this notion of cocyclic degree-of-freedom is well-defined
because it does not depend on any cocycle, but only on the entries of the Latin rectangle under
consideration. Further, the following result holds straightforwardly from such a definition.

Lemma 8. Let L ∈ Rr,n. Then, |Z(L)| = 2df (L), where 1 ≤ df (L) ≤ |S(L)| · n.

The following result indicates the only case for which the upper bounds of both Lemmas 5 and 8
are tight.

Proposition 9. Let L ∈ Rr,n. Then, df (L) = |S(L)| · n if and only if r = n = 1.

Proof. Under our assumptions, we already consider that 1 ≤ r ≤ n. So, suppose L = (li,j) ∈ Rr,n to
be such that n ≥ 2. According to the definition of the cocyclic degree-of-freedom of L, we have that
df (L) = |S(L)| · n if and only if no constraints derive from Condition (6) apart from the trivial ones
1 = 1 and −1 = −1. Keeping in mind the image Z2 of any cocycle over L, this is possible if and only
if, for each triple (i, j, k) ∈ [r] × [r] × [n], one of the following three possibilities holds.

1. (li,j, k) = (i, j) and (j, k) = (i, lj,k).
2. (li,j, k) = (i, lj,k) and (i, j) = (j, k).
3. (li,j, k) = (j, k) and (i, j) = (i, lj,k).

Observe that each one of the first two possibilities implies that i = j = k. Suppose, however, that
i = j < k. This is possible because we consider n ≥ 2. Then, the third possibility that we have just
enumerated implies that li,i = i = li,k, which is not possible because of the Latin rectangle condition.
Hence, n = 1 and the result holds. □

Let us introduce now the notion of cocyclic matrix over a Latin rectangle L ∈ Rr,n in a similar way
that the classical theory over finite groups does. To this end, suppose the symbols of the set S(L) to be
relabeled by following the natural order as e1, . . . , e|S(L)|. We define the cocyclic matrix Mψ of a cocycle
ψ ∈ Z(L) as the |S(L)| × n array whose (i, j)th entry is ψ(ei, j), for all i ≤ |S(L)| and j ≤ n. Thus, for
instance, the Latin rectangles L ∈ R1,8 and L′

∈ R2,8 in Example 2 are respectively related to the
cocyclic matrices(

+ − − + + + − −

− + − + + − + −

)
and

⎛⎝ + − − + + + − −

− + − + + − + −

− − + + + − − +

+ + + − + − − −

⎞⎠.
Observe that the respective multiplication of both matrices with their corresponding transposes

are eight times the identity matrix of order 2 and 4, respectively. Keeping this fact in mind, for each
Latin rectangle L ∈ Rr,n, we define the set

H(L) := {Mψ | ψ ∈ Z(L) andMψM t
ψ = nI|S(L)|}. (8)

The following result follows straightforwardly from this definition.

Lemma 10. Let L ∈ Rr,n be such that |S(L)| = n. Then, every matrix in H(L) is Hadamard.

Under the assumptions of Lemma10,we call any of thematrices in the setH(L) a cocyclic Hadamard
matrix over the Latin rectangle L.



Example 11. The matrix⎛⎜⎝ + + − −

+ − + −

− + + −

− − − −

⎞⎟⎠
is cocyclic Hadamard over the Latin rectangle

L ≡
2 3 4 1
3 4 1 2 ∈ R2,4.

Observe, in particular, that S(L) = {1, 2, 3, 4} and hence, |S(L)| = 4.
The following questions constitute a pair of open problems about the set of cocyclic Hadamard

matrices over Latin rectangles that we study separately throughout the next two sections.

Problem 12. Let L be a Latin rectangle in Rr,n. Does there exist a cocycle ψ ∈ Z(L) such that the
cocyclic matrixMψ is Hadamard? Equivalently, when can we ensure that H(L) ̸= ∅?

Problem 13. Let M be a Hadamard matrix of order n. Does there exist a Latin rectangle L ∈ Rr,n
such that M ∈ H(L)? If so, which is the minimum positive integer r ∈ N so that the mentioned Latin
rectangle exists?

Before focusing on these questions, we expose some preliminary results on the topic.

Lemma 14. Let L ∈ Rr,n. If M ∈ H(L) ̸= ∅, then −M ∈ H(L).

Proof. It is enough to consider the correspondence α : Z(L) → Z(L) that is defined so that
α(ψ) = −ψ , for all ψ ∈ Z(L). Particularly,Mψ is Hadamard if and only ifM−ψ = −Mψ is. □

Let L ∈ Rr,n. The following lemma ensures, for each i ≤ r , the existence of r different cells within
a common column of every cocyclic matrix over L, having all of them the same sign (1 or −1). The
location of such cells is uniquely determined by the entries of the ith column of L.

Lemma 15. Let M = (mi,j) be a cocyclic matrix over a Latin rectangle L = (li,j) ∈ Rr,n. For each row i of
L, let j be the column of L in which the symbol i occurs. That is, li,j = i. Then, ml1,i,j = · · · = mlr,i,j = mi,j.

Proof. Let ψ ∈ Z(L) be such that M = Mψ . Let (i, j) ∈ [r] × [n] be such that li,j = i. The definition of
Latin rectangle involves the existence of the column j, for all row i ≤ r . The result holds because, from
Condition (6), we have that ψ(lk,i, j) = ψ(k, i)ψ(i, j)ψ(k, li,j) = ψ(k, i)ψ(i, j)ψ(k, i), for all k ≤ r , and
hence, ψ(lk,i, j) = ψ(i, j). □

Example 16. Let us consider the Latin rectangle

L = (li,j) ≡
2 1 3 4
3 4 2 1 ∈ R2,4.

Since l1,2 = 1, Lemma 15 ensures the existence of two cells within the second column of every
cocyclic matrix M = (mi,j) over L, having both of them the value m1,2 as sign. The location of both
cells (more specifically, the rows in which they appear) is uniquely determined by the entries of the
first column of L, that is, by the symbols 2 and 3. In particular, it must bem1,2 = m2,2 = m3,2.

Similarly, since l2,3 = 2 and the second column of L contains the symbols 1 and 4, Lemma 15
implies thatm1,3 = m2,3 = m4,3.

The following cocyclic matrix over L illustrates these facts.⎛⎜⎝ + − + −

− − + +

+ − − +

+ + + +

⎞⎟⎠



Now, we prove that the existence of a symbol j ≤ r within the jth column of a Latin rectangle
L ∈ Rr,n involves the existence of a normalized rowwithin every cocyclic matrixM over L. Moreover,
we indicate a necessary condition on the diagonal of L and M ensuring the existence of a row within
L having all its cycles of even length.

Lemma 17. Let L = (li,j) ∈ Rr,n be such that there exists a pair (e, j) ∈ [r] × [r] satisfying that le,j = j.
Let M = (mi,j) be a cocyclic matrix over L. Then,

(a) me,k = me,j, for all k ≤ n.
(b) If there exists a positive integer i ∈ [r] \ {e} such that li,i = e and mi,i = −me,1, then all the cycles

in the ith row of L have even length.

Proof. Let ψ ∈ Z(L) be such that M = Mψ . Let k ≤ n. From the definition of Latin rectangle, there
existsm ≤ n such that lj,m = k. Then, fromCondition (6), we have thatψ(j,m) = ψ(e, j)ψ(j,m)ψ(e, k)
and hence, ψ(e, k) = ψ(e, j).

Now, in order to prove the second assertion, observe that Condition (6), together with assertion
(a), involves that ψ(i, li,k) = ψ(e, 1) ψ(i, i)ψ(i, k), for all k ≤ n. Thus, if ψ(i, i) = −ψ(e, 1), then
ψ(i, li,k) = −ψ(i, k), for all k ≤ n. As a consequence, every cycle of odd length in the ith row of L
would give rise to a cycle of odd length with alternating signs (1 and−1) in the ith row of the cocyclic
matrixMψ , which is not possible. □

Example 18. Let us consider the Latin rectangle

L = (li,j) ≡
1 2 3 4
3 1 4 2 ∈ R2,4.

Since the first column of L contains the symbol 1, Lemma 17.a ensures that every cocyclic matrix
M over L has a first row of 1′s or -1′s. The following cocyclic matrix over L illustrates this fact.

M = (mi,j) ≡

⎛⎜⎝ + + + +

+ − − +

+ − − +

− + + +

⎞⎟⎠
Since l2,2 = 1 and m2,2 = −m1,1, Lemma 17.b implies that all the cycles in the second row of L

should have even length. In fact, this is true, because such a row determines the cycle (1342).

We focus now on the relationship among the entry set, the set of cocycles and the set of cocyclic
Hadamard matrices that are associated to two given Latin rectangles. We deal in particular with the
case in which both Latin rectangles are isotopic or transpose of each other.

Lemma 19. Let L ∈ Rr,n and L′
∈ Rs,n be such that r ≤ s ≤ n.

(a) If E(L) ⊆ E(L′), then

i. S(L) ⊆ S(L′).
ii. If S(L) = S(L′), then Z(L′) ⊆ Z(L) and H(L′) ⊆ H(L).

(b) If r = s and L is isotopic to L′ by means of an isotopism (f , g, g) ∈ Sr ×Sn ×Sn such that f (i) = g(i),
for all i ≤ r, then there exists a 1-1 correspondence between the sets Z(L) and Z(L′).

(c) If r = s = n and L and L′ are two Latin squares that are transpose of each other, then there exists a
1-1 correspondence between the sets Z(L) and Z(L′).

Proof. The first assertion follows straightforwardly from (5) and (6). Now, in order to prove the second
assertion, it is enough to define the correspondence α : Z(L) → Z(L′) such that α(ψ)(i, j) = ψ(g−1(i),
g−1(j)), for all ψ ∈ Z(L) and i, j ∈ [n]. The result follows straightforwardly from (6) and the fact that
g is a relabeling of the symbols of the sets [r] and {r + 1, . . . , n}, in both cases by means of the same
set of symbols under consideration.



Table 1
Cocyclic Hadamard matrices over r × n Latin rectangles, with r ≤ n ≤ 4.
r n L df (L) Cocyclic Hadamard matrices in H(L)

1 1 1 1 +

2 21 2 + − −−

2 2 12 21 2 + + +−

4 1243 3421 5 + + + + + − − + + − + − + + −−

+ + + + − + − + + − − + + + −−

+ + + + − + + − + − + − − − ++

+ + + + + − + − + − − + − − ++

2341 3412 4 + + − − + − + − − + + − − − −−

+ − − + − + − + − − + + + + ++

2134 3421 2 + − + − − − + + + − − + + + ++

2314 3421 3 + − − + − + − + − − − − + + −−

2314 4123 2 + − + − − − + + − + + − + + ++

3 4 1234 2143 3412 5 + + + + + + − − + − − + + − +−

+ + + + + + − − + − + − + − −+

+ + + + + − + − + − − + + + −−

+ + + + + − + − + + − − + − −+

+ + + + + − − + + − + − + + −−

+ + + + + − − + + + − − + − +−

1234 2143 3421 4 + + + + + + − − + − − + + − +−

+ + + + + + − − + − + − + − −+

2341 3412 4123 4 + + − − + − + − − + + − − − −−

+ − − + − + − + − − + + + + ++

4 4 1234 2143 3412 4321 5 + + + + + + − − + − − + + − +−

+ + + + + + − − + − + − + − −+

+ + + + + − + − + − − + + + −−

+ + + + + − + − + + − − + − −+

+ + + + + − − + + − + − + + −−

+ + + + + − − + + + − − + − +−

1234 2143 3421 4312 4 + + + + + + − − + − − + + − +−

+ + + + + + − − + − + − + − −+

Finally, in order to prove the third assertion, it is enough to define the correspondence α : Z(L) →

Z(L′) such that α(ψ)(i, j) = ψ(j, i), for all ψ ∈ Z(L) and i, j ≤ n. To see it, suppose L and L′ to be the
respective multiplication tables of two quasigroups Q = ([n], ·) and Q ′

= ([n], ◦). Then, from (7), we
have that α(ψ)(i ◦ j, k)α(ψ)(i, j)α(ψ)(j, k)α(ψ)(i, j ◦ k) = ψ(k, j · i)ψ(j, i)ψ(k, j)ψ(k · j, i) = 1. □

In case of being r = s = n, the isotopism (f , g, g) that is described in Lemma 19.b constitutes an
isomorphism of Latin squares. In this regard, from here on and by an abuse of notation, we call such
an isotopism an isomorphism of r×n Latin rectangles andwe say that any two Latin rectangles related
by any such an isotopism are isomorphic. This constitutes an equivalence relation among r × n Latin
rectangles. Thus, for instance, the Latin rectangle

3 4 1 2
4 1 2 3

is isomorphic to the Latin rectangle L ∈ R2,4 in Example 11 by means of the isomorphism
((12), (12)(34), (12)(34)) ∈ S2 ×S4 ×S4. The following result holds straightforwardly from Lemma 19.

Proposition 20. Let L ∈ Rr,n and L′
∈ Rs,n be such that r ≤ s ≤ n. If r = s and L is isomorphic to L′,

then there exists a 1-1 correspondence between the sets H(L) and H(L′).

From Proposition 20, the distribution of r×n Latin rectangles into isomorphism classes constitutes
a first approximation to determine the set of cocyclic Hadamard matrices over the setRr,n. By means
of an exhaustive search, Table 1 illustrates the case r ≤ n ≤ 4, where both Latin rectangles and
Hadamardmatrices are written row after row in a single line. Besides, keeping inmind Lemma 14, we
only enumerate those cocyclic Hadamard matrices having its first entry equal to 1. We also indicate
the cocyclic degree-of-freedom of each Latin rectangle under consideration.



Let us finish this section with a pair of results that enable us to deal with cocyclic Hadamard
matrices over Latin rectangles of higher orders.

Proposition 21. Let r and t be two positive integers such that r ≥ 2t + 1 and let L be the Latin rectangle
in Rr,4t that is formed by the first r rows of the dihedral group D4t . Then, H(D4t ) ⊆ H(L).

Proof. Let a and b be the generators of the dihedral group D4t according to (2). Suppose that
the ordered set {1, a, a2, . . . , a2t−1, b, ab, a2b, . . . , a2t−1b}, which is formed by the elements of D4t ,
determines the ordering under which the rows and columns of its multiplication table are indexed.
The result follows fromLemma19.a onceweobserve that the upper left square array of order 2t within
such a multiplication table is formed by the 2t elements of the subset {1, a, a2, . . . , a2t−1

}, whereas
the first 2t elements of its (2t+1)th row coincidewith those of the subset {b, ab, a2b, . . . , a2t−1b}. □

Lemma 22. Let L ∈ Rr,n be a reduced Latin rectangle and let L′
∈ Rn′,n′ be a reduced Latin square. Let

ψ ∈ H(L) and ψ ′
∈ H(L′). Then, the map ψ ⊗ ψ ′ defined as in (3) is a cocycle over the reduced Latin

rectangle L⊗ L′
∈ Rrn′,nn′ . Moreover, if the cocyclic matrices Mψ and Mψ ′ are Hadamard, then the cocyclic

matrix Mψ⊗ψ ′ is also Hadamard.

Proof. According to the definition exposed in the preliminary section, it is straightforwardly verified
that the direct product L⊗L′ is an rn′

×nn′ reduced Latin rectangle. Further, thematrixMψ⊗ψ ′ = Mψ⊗

Mψ ′ is well-defined, because of the mentioned definition and the fact that |S(L ⊗ L′)| = |S(L)| · |S(L′)|.
Then, the result follows similarly to the known case of cocyclic (Hadamard) matrices over groups, for
which associativity does not play any role in the corresponding proof. □

Example 23. Let us consider the reduced Latin rectangles

L =

1 2 3 4
2 1 4 3
3 4 1 2

and L′
=

1 2
2 1 .

Then, Table 1 and Lemma 22 involves that the matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

+ + + + + + + +

+ − + − + − + −

+ + + + − − − −

+ − + − − + − +

+ + − − − − + +

+ − − + − + + −

+ + − − + + − −

+ − − + + − − +

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
is cocyclic Hadamard over the reduced Latin rectangle

L ⊗ L′
=

1 2 3 4 5 6 7 8
2 1 4 3 6 5 8 7
3 4 1 2 7 8 5 6
4 3 2 1 8 7 6 5
5 6 7 8 1 2 3 4
6 5 8 7 2 1 4 3

.

The following example shows that the assumption of considering reduced Latin rectangles in
Lemma 22 is necessary to get a well-defined cocyclic matrix over the direct product L ⊗ L′.



Example 24. Let L ∈ R1,2 and L′
∈ R2,3 be the Latin rectangles in Example 1. The following two

matrices are cocyclic over L and L′, respectively.

M ≡

(
+ +

+ −

)
M ′

≡

(
+ + +

+ + −

+ − −

)
Nevertheless, the Kronecker product M ⊗ M ′ is not cocyclic over L ⊗ L′. To see it, observe that,

even if |S(L)| = 2 and |S(L′)| = 3, we have that |S(L ⊗ L′)| = 5. More specifically, S(L) = {1, 2} and
S(L′) = {1, 2, 3}, but S(L ⊗ L′) = {1, 2, 4, 5, 6}.

4. Hadamard matrices that are cocyclic over a Latin rectangle

This section deals with Problem 12. Firstly, we establish a relation among the number of rows and
columns of any Latin rectangle over which a cocycle exists.

Lemma 25. Let L ∈ Rr,n. If H(L) ̸= ∅, then r ≤ n ≤ r + r2.

Proof. Under our assumptions, r ≤ n in any r×n Latin rectangle. The result follows because, from (5),
the number of rows of any cocyclic matrix over L is |S(L)| ≤ r + r2, andH(L) ̸= ∅ only if |S(L)| = n. □

Table 1 shows that both bounds in Lemma 25 are achieved when r = 1. Even the lower bound is
tight, for instance, for any cocyclic Hadamard matrix over a finite group, further research is necessary
to determine whether the upper bound is tight for some r > 1.

Now, we focus on those Latin rectangles L ∈ Rr,n that have at least one triple of the form (i, j, j) in
their set of entries E(L).

Proposition 26. Let L = (li,j) ∈ Rr,n and ψ ∈ Z(L) be such that Mψ ∈ H(L). If there exist two positive
integers e, j ≤ r such that le,j = j, then

(a) le,i = i, for all i ≤ r.
(b) Let i ≤ r be such that i ̸= e. Then, li,k ̸= k, for all k ≤ r.
(c) If the cardinality of the set {k ≤ n | le,k = k} is greater than n/2, then li,e = i, for all i ≤ r. In such

a case, ψ(i, e) = ψ(e, k), for all i ≤ r and k ≤ n.
(d) If there exists a positive integer i ∈ [r]\{e} such that li,i = e andψ(i, i) = ψ(e, 1), then the cycles of

the ith row of L can be partitioned into two sets of cycles, for which the total sum of their respective
lengths is n/2.

Proof. Let us prove each assertion separately.

(a) Let i ≤ r . From Condition (6), we have that ψ(le,i, k) = ψ(e, i)ψ(i, k)ψ(e, li,k), for all k ≤ n.
Then, Lemma 17.a implies that ψ(e, i) = ψ(e, li,k) and hence, ψ(le,i, k) = ψ(i, k), for all k ≤ n.
Since the cocyclic matrixMψ is Hadamard, this is possible only if le,i = i.

(b) This follows from (a) and the fact that L is a Latin rectangle.
(c) Let i ≤ r . Since Lemma 17.a involves that ψ(e, k) = ψ(e, j), for all k ≤ n, we have that the

sign of ψ(i, e)ψ(e, k) coincides, for all k ≤ n. Then, Condition (6) implies that the value of
ψ(li,e, k)ψ(i, le,k) also coincides, for all k ≤ n. In particular, from the hypothesis, the value
of ψ(li,e, k)ψ(i, k) coincides for more than n/2 values of k. Since the cocyclic matrix Mψ is
Hadamard, this is possible only if li,e = i. The last assertion follows from Lemmas 15 and 17.a,
and the fact that e ≤ r .

(d) From Condition (6) and Lemma 17.a, we have that ψ(e, 1) = ψ(i, i)ψ(i, k)ψ(i, li,k), for all
k ≤ n. Thus, if ψ(i, i) = ψ(e, 1), then ψ(i, li,k) = ψ(i, k), for all k ≤ n. This implies the
coincidence of signs of all those entries of each set of cells in the ith row of the cocyclic matrix
Mψ corresponding to the cells of each cycle in the ith row of L. Hence, the non-existence of both
sets of cycles indicated in the assertionwould contradict the fact thatMψ is a Hadamardmatrix,
because its ith and eth rows would not be orthogonal. □



Example 27. According to Proposition 26, no cocyclic Hadamard matrix exists over any of the
following Latin rectangles in R3,8.

L1 ≡

1 3 5 4 7 8 2 6
3 5 8 2 1 6 7 4
4 7 6 1 8 3 2 5

L2 ≡

1 2 3 4 5 8 7 6
3 5 8 2 1 6 4 7
4 7 6 1 8 3 2 5

L3 ≡

2 1 4 5 3 7 8 6
1 2 7 4 5 6 3 8
5 6 8 2 1 3 4 7

Specifically, Proposition 26.a implies that H(L1) = ∅, because the set of entries E(L1) contains
the triple (1, 4, 4), but it does not contain, for instance, the triple (1, 2, 2). Further, Proposition 26.c
involvesH(L2) = ∅, because the set of entries E(L2) contains five triples of the form (1, i, i), but it does
not contain, for instance, the triple (2, 1, 2). Finally, suppose the existence of a cocycle ψ ∈ H(L3).
Lemma 17.b implies that ψ(1, 1) = ψ(2, 1), because {(1, 1, 2), (2, 1, 2)} ⊂ E(L3) and the first row of
L3 constitutes the permutation π = (21)(345)(678) ∈ S8, with two cycles of odd length. Nevertheless,
this contradicts Proposition 26.d, because it is not possible to distribute the three cycles of π into two
sets with total sum of their lengths equal to four. As a consequence, H(L3) = ∅. Further, in order to
illustrate Proposition 26 in an affirmative sense, observe that the reduced Latin rectangle

1 2 3 4 5 6 7 8
2 1 4 3 6 5 8 7
3 4 5 6 7 8 1 2
4 3 7 8 1 2 6 5

is related to both cocyclic Hadamard matrices⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

+ + + + + + + +

+ − − + + − − +

+ − − + − + + −

+ + + + − − − −

+ + − − + + − −

+ − + − − + − +

+ − + − + − + −

+ + − − − − + +

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

+ + + + + + + +

+ − − + + − − +

+ + + + − − − −

+ − − + − + + −

+ + − − + + − −

+ − + − − + − +

+ − + − + − + −

+ + − − − − + +

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Theorem 28. Let L ∈ Rn,n be such that H(L) ̸= ∅. Then, L constitutes the multiplication table of a loop.
Further, if ψ ∈ H(L) and e is the unit element of that loop, then ψ(e, i) = ψ(j, e), for all i, j ≤ n.

Proof. Suppose L = (li,j). Since L is a Latin square, there exists a positive integer e such that le,1 = 1.
Proposition 26.a involves then that all the entries of the eth row of L appear in natural order and hence,
Proposition 26.c enables us to ensure that the same occurs for all the entries of its eth column. Hence,
L constitutes themultiplication table of a loopwith unit element e. The last assertion also follows from
Proposition 26.c. □

The following result constitutes a generalization of the known cocyclic Hadamard test [17] for
cocycles over finite groups.



Theorem 29. Let L be a Latin square of order n that constitutes the multiplication table of a loop with
unit element e and let ψ ∈ Z(L). Then, the cocyclic matrix Mψ is Hadamard if and only if the following
condition holds.∑

j≤n

ψ(i, j) = 0, for all i ∈ [n] \ {e}.

Proof. The result follows straightforwardly from Theorem 28 and the fact that the ith and eth rows
of L are orthogonal, for all i ∈ [n] \ {e}. □

Since every loop is isomorphic to a quasigroup having a reduced Latin square as its multiplication
table, Proposition 21 and Theorem 28 enable us to focus on the study of cocyclic Hadamard matrices
over the set L4t of loops of order 4t having 1 as unit element. Moreover, since isomorphisms preserve
associativity and the associative case corresponds to the classical study of cocyclic Hadamardmatrices
over groups, it is enough to focus on the isomorphism classes of non-associative loops. For t = 1, the
set L4 is distributed into two isomorphism classes, which correspond to the groups Z4 and Z2

2. Both
of them give rise to cocyclic Hadamard matrices (see Table 1). For t = 2, the set L8 is distributed into
106228849 isomorphism classes [18]. Only five of these classes constitute groups, from which only
the elementary abelian group Z3

2, the abelian group Z4 × Z2 and the dihedral group D8 give rise to
cocyclic Hadamard matrices. With respect to the rest of non-associative loops, an exhaustive search
based on the previously exposed results enables us to ensure the following result.

Theorem 30. There exists only one isomorphism class in the set L8 associated to non-associative loops
over which a cocyclic Hadamard matrix exists. This class is represented by the monogenic loop whose
multiplication table is

1 2 3 4 5 6 7 8
2 1 4 3 6 5 8 7
3 4 1 2 7 8 5 6
4 3 2 1 8 7 6 5
5 6 8 7 3 4 2 1
6 5 7 8 4 3 1 2
7 8 6 5 1 2 4 3
8 7 5 6 2 1 3 4

.

In order to see that the previous loop is non-associative, observe, for instance, that (5 ·5) ·5 = 7 ̸=

8 = 5 · (5 · 5). Besides, it is monogenic by means of any of the elements of the subset {5, 6, 7, 8}. A
simple computation determines the four normalized cocyclic Hadamard matrices that are associated
to this loop:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

+ + + + + + + +

+ + + + − − − −

+ + − − − − + +

+ + − − + + − −

+ − − + − + + −

+ − − + + − − +

+ − + − − + − +

+ − + − + − + −

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

+ + + + + + + +

+ + + + − − − −

+ + − − − − + +

+ + − − + + − −

+ − − + + − − +

+ − − + − + + −

+ − + − + − + −

+ − + − − + − +

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

+ + + + + + + +

+ + + + − − − −

+ + − − + + − −

+ + − − − − + +

+ − + − − + − +

+ − + − + − + −

+ − − + + − − +

+ − − + − + + −

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

+ + + + + + + +

+ + + + − − − −

+ + − − + + − −

+ + − − − − + +

+ − + − + − + −

+ − + − − + − +

+ − − + − + + −

+ − − + + − − +

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠



Table 2
r × n Latin rectangles related to each equivalence class of Hadamard matrices of order n.
n Hadamard matrix M of order n r L ∈ Rr,n such that M ∈ H(L)

1 1 1 1
2 2 0 1 21

2 21 12
4 F 9 A C 2 1243 3421

3 1234 2143 3421
4 1234 2143 3421 4312

8 FF F0 C3 CC 96 99 A5 AA 3 12347856 25831674 47628315
4 12345687 23851476 37526148 45187263
5 12345678 21436587 34128765 43217856

56782143
6 12345678 21436587 34128765 43217856

56782143 65871234
7 12345678 21436587 34128765 43217856

56782143 65871234 78563412
8 12345678 21436587 34128765 43217856

56782143 65871234 78563412 87654321

Theorem 30 also enables us to ensure that the Circulant Hadamard Conjecture, which was recalled
in the preliminary section, cannot be generalized as such from cyclic groups to monogenic loops.
Unlike the classical theory on finite groups, this fact encourages the search of cocyclic Hadamard
matrices over monogenic non-associative loops.

The following results show how Theorem 30, together with Lemma 22, also ensures the existence
of cocyclic Hadamard matrices over new examples of non-associative loops.

Theorem 31. Let G ∈ Ln be a loop over which a cocyclic Hadamard matrix exists and let Q0 ∈ L8
be the non-associative loop referred in Theorem 30. For each positive integer t > 0, the direct product
Qt = G ⊗ Qt−1 is a non-associative loop over which a cocyclic Hadamard matrix exists.

Proof. According to Lemma22,wehave that, for each positive integer t > 0, the direct product of both
reduced Latin squares associated to G and Qt−1 is a reduced Latin square of order 2t+3, and hence, Qt is
a loop having 1 as unit element. Moreover, the upper left square array of order 8 of such a loop always
coincides with Q0, whatever the order t is, and thus, the same remark exposed just after Theorem 30
is enough to ensure the non-associativity of Qt . Now, Table 2 and Theorem 30 ensure, respectively,
the existence of a cocyclic Hadamard matrix over G and Q0. Let ψ and ψ0 be the respective cocycles
associated to such matrices. In order to prove the existence of a cocyclic Hadamard matrix over Qt ,
for each t > 0, it is enough to consider the cocycle ψt = ψ ⊗ ψt−1 defined as in (3). Remark in this
regard that associativity is not required for ψt to be a cocycle over Qt . □

We illustrate the previous theorem with the example developed in the following corollary.

Corollary 32. For each positive integer t > 0, there exists a non-associative loop in the set L2t+3 over
which a cocyclic Hadamard matrix exists.

Proof. The result is an immediate consequence of Theorem 31 once we observe that, according to
Table 1, there exists a cocyclic Hadamard matrix over the cyclic group having as multiplication table
the Latin square

1 2
2 1 . □

Observe in Table 1 that a possibility for the cocyclic Hadamard matrix that is mentioned in the
proof of Corollary 32 is the matrix(

+ +

+ −

)
.



As such, the cocyclic Hadamardmatrix over the non-associative loop inL2t+3 can be chosen so that
it constitutes indeed a Sylvester Hadamard matrix [28] derived from a cocyclic Hadamard matrix over
the non-associative loop referred in Theorem 30.

Let us finish this sectionwith a pair of results dealingwith some necessary conditions underwhich
two Hadamard matrices, which are equal up to negation of a subset of rows or a subset of columns,
are cocyclic over the same Latin rectangle.

Lemma 33. Let L = (li,j) ∈ Rr,n and M = (mi,j) ∈ H(L). Let N ⊆ [n] be such that N ̸= ∅. We define
the Hadamard matrix MN = (mN

i,j ) so that, for each i, j ≤ n, we have that mN
i,j = −mi,j, if i ∈ N , and

mN
i,j = mi,j, otherwise. If MN ∈ H(L), then the following results hold.

(a) N ∩ [r] ̸= ∅.
(b) If j ∈ N ∩ [r], then li,j ∈ N , for all i ≤ r.
(c) If i ∈ N ∩ [r], then j ∈ N ∩ [r] if and only if li,j ∈ N .

Proof. Let ψ,ψ ′
∈ Z(L) be such thatMψ = M andMψ ′ = MN . We prove each assertion separately.

(a) Suppose thatN ∩[r] = ∅. SinceN ̸= ∅, there exists a pair or positive integers i, j ≤ r such that
li,j ∈ N . In particular, i, j ̸∈ N . Then, for any given k ≤ n, Condition (6) implies that

ψ ′(i, j) = ψ(i, j) = ψ(li,j, k)ψ(j, k)ψ(i, lj,k) = −ψ ′(li,j, k)ψ ′(j, k)ψ ′(i, lj,k) = −ψ ′(i, j),

which is a contradiction.
(b) Let j ∈ N ∩[r] and let us consider two positive integers i ≤ r and k ≤ n. Sinceψ ′(i, j)ψ ′(i, lj,k) =

ψ(i, j)ψ(i, lj,k) regardless of whether i belongs to the set N or not, Condition (6) implies that

ψ ′(li,j, k) = ψ ′(i, j)ψ ′(j, k)ψ ′(i, lj,k) = −ψ(i, j)ψ(j, k)ψ(i, lj,k) = −ψ(li,j, k),

and hence, li,j ∈ N .
(c) Let i ∈ N ∩ [r] and let us consider two positive integers j ≤ r and k ≤ n. Then, Condition (6)

implies that

ψ ′(j, k) = ψ ′(li,j, k)ψ ′(i, j)ψ ′(i, lj,k)
= ψ ′(li,j, k)ψ(i, j)ψ(i, lj,k)
= ψ ′(li,j, k)ψ(li,j, k)ψ(j, k).

Hence, ψ ′(j, k) = ψ(j, k) if and only if ψ ′(li,j, k) = ψ(li,j, k), and the result holds. □

Lemma 34. Let L = (li,j) ∈ Rr,n and M = (mi,j) ∈ H(L). Let N ⊆ [n] be such that N ̸= ∅. We define
the Hadamard matrix MN = (mN

i,j ) so that, for each i, j ≤ n, we have that mN
i,j = −mi,j, if j ∈ N , and

mN
i,j = mi,j, otherwise. If MN ∈ H(L), then the following results hold.

(a) If N ∩ [r] ̸= ∅, then N = [n].
(b) If j ∈ N , then i ∈ N ∩ [r] if and only if li,j ∈ N .

Proof. The proof of the second assertion follows similarly to that one of Lemma 33.c. Now, in order
to prove the first statement, let ψ,ψ ′

∈ Z(L) be such that Mψ = M and Mψ ′ = MN . Let j ∈ N ∩ [r]
and let us consider two positive integers i ≤ r and k ≤ n. Since ψ ′(li,j, k)ψ ′(j, k) = ψ(li,j, k)ψ(j, k)
regardless of whether k belongs to the set N or not, Condition (6) implies that

ψ ′(i, lj,k) = ψ ′(li,j, k)ψ ′(i, j)ψ ′(j, k) = −ψ(li,j, k)ψ(i, j)ψ(j, k) = −ψ(i, lj,k).

As a consequence, lj,k ∈ N , for all k ≤ n. The result holds because every row of L contains all the
symbols in the set [n]. □

Example 35. Let us consider the Latin rectangle

L ≡
1 2 4 3
3 4 2 1 ∈ R2,4



over which the Hadamard matrix

H ≡

⎛⎜⎝ + + + +

+ − − +

+ − + −

+ + − −

⎞⎟⎠
is cocyclic. In what follows, we study the negation of either a proper subset of rows or a proper subset
of columns within H in order to determine the existence of new Hadamard matrices that are also
cocyclic over L.

Firstly, we study the possible negation of rows. According to Lemma 33.a, the negation of the
third or fourth row of H requires also the negation of its first or second row. Further, Lemma 33.b
implies that the negation of the first (respectively, second) row of H requires the negation of its third
(respectively, fourth) row. Both possibilities are valid in this case. That is, both Hadamard matrices⎛⎝ − − − −

+ − − +

− + − +

+ + − −

⎞⎠ and

⎛⎝ + + + +

− + + −

+ − + −

− − + +

⎞⎠.
are cocyclic over L.

Now, we analyze the possible negation of columns. From Lemma 34.a, the negation of the first or
second columns of H involves the negation of all its columns. Now, from Lemma 34.b, the negation of
both third and fourth columns of H implies the negation of the first column. This is because l1,3 = 4,
or also, because l1,4 = 3. Then, again from Lemma 34.a, all the columns should be negated. As a
consequence, the only candidates for proper subsets of columns in H to be negated are N = {3} and
N = {4}. In both cases, however, it can be checked that the resulting Hadamard matrix is not cocyclic
over L.

5. Latin rectangles over which a Hadamard matrix is cocyclic

This section dealswith both questions exposed in Problem13.With respect to the second question,
observe that Lemma 25 enables us to ensure that the minimum possible positive integer r ∈ N to
which that question referredmust be such that r ≤ n ≤ r+r2. This minimum is reached, for instance,
for the following Hadamard matrix of order 8⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

+ + + + + + + +

+ + + + − − − −

+ + − − − − + +

+ + − − + + − −

+ − − + − + + −

+ − − + + − − +

+ − + − − + − +

+ − + − + − + −

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
which is cocyclic over the following two 3 × 8 Latin rectangles

L1 ≡

1 2 3 4 7 8 5 6
2 5 8 3 1 6 7 4
4 7 6 2 8 3 1 5

and L2 ≡

1 2 3 4 7 8 5 6
2 5 8 3 1 6 7 4
4 7 6 1 8 3 2 5

These two Latin rectangles constitute indeed the only two distinct isomorphism classes of the set
R3,8 that give rise to such a cocyclic matrix. Observe that both of them contain the eight symbols in
their first three columns.

Let us expose some preliminary results dealing with the first question in Problem 13. Firstly, we
establish howanormalized columnwithin a cocyclicHadamardmatrix over a Latin rectangle connects
signs of pair of entries within certain rows.



Lemma 36. Let M = (mi,j) be a cocyclic Hadamard matrix of order n over a Latin rectangle L = (li,j) ∈

Rr,n such that M has a normalized column e. That is, mi,e = m1,e, for all i ≤ n. Then, for each row i in L,
we have that mi,j = mi,lj,e , for all j ≤ r.

Proof. Letψ ∈ Z(L) be such thatMψ = M . The result holds because, from Condition (6), we have that
ψ(li,j, e) = ψ(i, j)ψ(j, e)ψ(i, lj,e), for all i, j ≤ r , and hence, ψ(i, j) = ψ(i, lj,e). □

The following result characterizes the existence of a normalized row e ≤ r within a cocyclic
Hadamard matrix over an r × n Latin rectangle.

Proposition 37. A cocyclic Hadamard matrix over a Latin rectangle L = (li,j) ∈ Rr,n has a normalized
row e ≤ r if and only if lej = j, for all j ≤ r.

Proof. The sufficiency holds from Lemma 17.a. In order to prove the necessary condition, let us
suppose the existence of a positive integer j ≤ r such that le,j ̸= j. Let ψ ∈ Z(L). Then, from
Condition (6), we have that ψ(le,j, k) = ψ(e, j)ψ(j, k)ψ(e, lj,k) = ψ(j, k), for all k ≤ n. This would
imply the existence of two distinct rows in M with all their respective entries being equal, which
contradicts the fact thatM is a Hadamard matrix. □

Example 38. In order to illustrate the previous results, observe, for instance, that any Latin rectangle
L = (li,j) ∈ Rr,n, with r ≥ 3, that is related to the Hadamard matrix indicated at the beginning of
this section, satisfies that l2,1 = 2. To see it, let M = (mi,j) denote that matrix. From Lemma 36, we
have that m2,2 = m2,l2,1 and m3,2 = m3,l2,1 . The former is possible only if l2,1 ̸∈ {5, 6, 7, 8}, whereas
the latter is possible only if l2,1 ̸∈ {3, 4, 5, 6}. Hence, l2,1 ∈ {1, 2}. But, from Proposition 37, it must
be l1,1 = 1 and thus, since L is a Latin rectangle, it must be l2,1 = 2. A similar reasoning involves that
l3,1 ∈ {3, 4}.

The following example illustrates how Lemma 36 and Proposition 37 also enable us to ensure that
not every Hadamard matrix of order n is cocyclic over an r × n Latin rectangle.

Example 39. Let us consider the Hadamard matrix

M = (mi,j) =

⎛⎝ + + + +

− − + +

− + + −

+ − + −

⎞⎠
Suppose L = (li,j) ∈ Rr,4 to be such thatM ∈ H(L). In particular, Lemma25 involves that 2 ≤ r ≤ 4.

Now, from Proposition 37, it must be l1,1 = 1 and l1,2 = 2. As a consequence, l1,3 ∈ {3, 4} and hence,
m2,l1,3 = 1. Nevertheless, from Lemma 36, it should bem2,l1,3 = m2,1 = −1. Therefore, there does not
exist such a Latin rectangle L.

The just exposed examples suggest the question of which entries never appear in the possible
related Latin rectangles over which a Hadamard matrix is cocyclic. In this regard, the following result
holds.

Lemma 40. Let M = (mi,j) be a Hadamard matrix of order n over a Latin rectangle L = (li,j) ∈ Rr,n.
Then,

(a) For each i ≤ r, the value of li,i must be in the set

VM (i) := {t ≤ n | mi,t = mt,i}. (9)

(b) Let i, k ≤ r and j ≤ n be such that i ̸= j. Then, the value of li,j must be in the set

V−

M (i, j; k) := {t ≤ n | mlk,i,jmk,imi,jmk,t = 1}. (10)

As a consequence, it must be in the set

V−

M (i, j) :=

⋂
k≤r

V−

M (i, j; k). (11)



(c) Let i, j ≤ r be such that i ̸= j, and let k ≤ n. Then, the value of li,j must be in the set

V+

M (i, j; k) := {t ≤ n | mt,kmi,jmj,kmi,lj,k = 1}. (12)

As a consequence, it must be in the sets

V+

M (i, j) :=

⋂
k≤n

V+

M (i, j; k). (13)

VM (i, j) := V−

M (i, j) ∩ V+

M (i, j). (14)

Proof. The result follows straightforwardly from Condition (6). Thus, for instance, the first assertion
follows from the fact that ψ(li,i, i) = ψ(i, i)ψ(i, i)ψ(i, li,i) = ψ(li,i, i)ψ(i, li,i), for all i ≤ n. The other
two assertions hold similarly. □

Example 41. In order to illustrate Lemma 40, let us consider the Hadamard matrix

M = (mi,j) =

⎛⎝ + + + +

− + + −

− − + +

+ − + −

⎞⎠.
Suppose the existence of a Latin rectangle L = (li,j) ∈ Rr,4, with 2 ≤ r ≤ 4, such that M ∈ H(L).

Similarly to Example 39, we have that l1,1 = 1 and l1,2 = 2. These conditions imply, respectively,
that V+

M (2, 1; 1) = {1, 4} and V+

M (2, 1; 2) = {3, 4}. Thus, V+

M (2, 1) = {4} and hence, from Lemma 40.c,
we have that l2,1 = 4. As a consequence, since L is a Latin rectangle, it must be l2,2 ̸∈ {2, 4}, which
contradicts that l2,2 ∈ VM (2) = {2, 4} according to Lemma 40.a. Therefore, there does not exist such a
Latin rectangle L.

We have made use of all the previous results to show in Table 2 an r × n Latin rectangle that gives
rise to each equivalent class of Hadamard matrices of order n ≤ 8. The latter are written row after
row, where each row is represented in hexadecimal form. To this end, after replacing each −1 by 0,
the resulting row in binary form is translated to its equivalent hexadecimal form.

6. Conclusions and further work

In this paper, we have introduced the concept of cocyclic Hadamardmatrices over Latin rectangles
and we have exposed a series of preliminary results that enable us to determine the existence of
such matrices and that of Latin rectangles over which a given Hadamard matrix is cocyclic. More
specifically, we have proved that every Latin square related to aHadamardmatrix is themultiplication
table of a loop. Particularly, we have proved the existence of cocyclic Hadamard matrices over non-
associative loops of order 2t+3, for all positive integer t > 0. Furthermore, we have exposed examples
of Hadamard matrices that are not cocyclic over finite groups but they are over Latin rectangles.

In Section 5, we have also shown a pair of examples that enable us to ensure that not every
Hadamardmatrix of order n is cocyclic over an r×n Latin rectangle. According to this fact, we propose
as further work to deal with the following question, which constitutes a natural generalization of
Problem 13.

Problem 42. Let M be a Hadamard matrix of order n for which no Latin rectangle L ∈ Rr,n satisfies
that M ∈ H(L). Does there exist, however, a Hadamard matrix M ′ in the same equivalence class of M
for which one such a Latin rectangle can be found?

The following question also arises in a natural way as an open problem.

Problem 43. Let us consider an equivalence class of Hadamard matrices such that none of them are
cocyclic over any finite group. Does there exist, however, a Hadamard matrix within such a class that
is cocyclic over a Latin rectangle?



Even if the theory that we have presented in this paper derives from the classical notion of pure
cocyclic Hadamardmatrix over a finite group, let us remark the existence of a more general definition
of cocyclic development over finite groups [10,16,17], whose natural generalization to Latin squares
can be similarly studied. In this regard, we say that a Hadamard matrix M = (mi,j) is cocyclically
developed over a Latin square L = (li,j) ∈ Rn,n if there exists a cocycle ψ : [n] × [n] → Z2 over L and a
map φ : [n] → Z2 so that

mi,j = ψ(i, j) · φ(li,j), for all i, j ≤ n. (15)

In such a case, we call φ a development function over L. Analogously to the cocyclic development over
finite groups, if ψ(i, j) = 1, for all i, j ≤ n, then we say that the Hadamard matrix M is quasigroup
developed over L. This is group developed over L if the latter constitutes the multiplication table of a
group. The following result ensures that the existence of quasigroup developed Hadamard matrices
over a given Latin square only depends on the isotopism class of the latter, and not on its isomorphism
class, as it happens with cocyclic Hadamard matrices over Latin squares (see Proposition 20).

Lemma 44. Quasigroup development is preserved by row and column permutations of Hadamard
matrices, and by isotopisms of Latin squares.

Proof. Let M = (mi,j) be a Hadamard matrix of order n that is quasigroup developed over a
Latin square L = (li,j) of the same order by means of a development function φ. For each triple of
permutations (f , g, h) ∈ Sn × Sn × Sn, let us consider (a) the Hadamard matrix M ′

= (mf (i),g(j)),
(b) the Latin square L′

= (l′i,j) such that l′f (i),g(j) = h(li,j), for all i, j ≤ n, and (c) the function
φ′

= φ ◦ h−1
: [n] → Z2. Then, the Hadamard matrix M ′ is quasigroup developed over the Latin

square L′ by means of φ′, because

m′

i,j = mf−1(i),g−1(j) = φ(lf−1(i),g−1(j)) = φ(h−1(l′i,j)) = φ′(li,j), for all i, j ≤ n. □

The interest of dealing with cocylic development over Latin squares as further work derives,
therefore, from the existence of Latin squares overwhich no cocyclic Hadamardmatrix exists, but over
which cocyclically developed Hadamard matrices do. Thus, for instance, even if Theorem 28 implies
that no cocyclic Hadamard matrix exists over the Latin square

L ≡

1 3 2 4
2 4 3 1
3 1 4 2
4 2 1 3

∈ R4,4,

it is straightforwardly verified that the Hadamard matrix⎛⎝ + + + −

+ − + +

+ + − +

− + + +

⎞⎠
is quasigroup developed over L by means of the development function φ over L such that φ(1) =

φ(2) = φ(3) = 1 = −φ(4). Observe in particular that L constitutes the multiplication table of a
non-associative quasigroup that is not a loop. As such, this example illustrates the fact that the cocyclic
development is even less restrictivewith respect to the assumptions that Latin squares have to satisfy.
Thus, for instance, keeping in mind the previous example, the following result holds.

Proposition 45. There exists a quasigroup developed Hadamard matrix over each Latin square of order
four.

Proof. Let L = (li,j) ∈ R4,4. For any given symbol s in L, let M = (mi,j) be the matrix of order four
such that mi,j = −1, if li,j = s, and mi,j = 1, otherwise. The Latin square condition of L implies that
exactly one -1 exists within each row and each column of M . The dimension of the array makes this
condition to be enough in order to ensure thatM is Hadamard. Moreover, the matrixM is quasigroup
developed over L by means of the development function φ over L such that φ(i) = 1, for all i ̸= s, and
φ(s) = −1. □



There exist, however, some remarkable notions and results on group development theory that
cannot be generalized as such to quasigroup development theory, because of their dependence on the
associative property of the underlying structure. Thus, for instance, the concept of coboundary over a
group G as a cocycle of the formψ(a, b) = φ(a)φ(b)φ(ab), for all a, b ∈ G, and all normalized function
φ : G → Z2, involves the function φ to satisfy that φ((ab)c) = φ(a(bc)), for all a, b, c ∈ G. A similar
condition over a non-associative loopwould involveφ to be the trivial normalized function and hence,
the only well-defined coboundary over such a loop would be the trivial cocycle. As a consequence,
every result in group development theory that uses coboundaries either in its statement or its proof
cannot be generalized in a natural way to quasigroup development theory.

Such a dependence on the associative property occurs, for instance, in the majority of results
concerning the interactions of group development theory with Hadamard equivalence and also with
automorphism groups of Hadamardmatrices [8]. Furtherwork is, therefore, required to establish pos-
sible generalizations of both interactions. A possible approach in this regard consists of generalizing
the notion of cocycle itself in order to adjust it to a balanced equation that regulates the quasigroup
under consideration. Recall here that an equation that is satisfied by all the elements of a quasigroup
is said to be balanced if each one of its variables appears precisely once on each side of the equation.
Thus, for instance, the equation (ab)c = a(bc) that regulates the associative property of every group
is balanced.

Let us illustrate some aspects of this proposal by means of a specific balanced equation. Let Qe be
the set of quasigroups Q = ([n], ·) verifying the balanced equation

e: (i · j) · k = (k · j) · i, for all i, j, k ≤ n. (16)

This is indeed an abelian group whenever Q is a loop. We say that a functionψ : [n] × [n] → Z2 is an
e-cocycle over a quasigroup Q = ([n], ·) ∈ Qe if

ψ(i · j, k) = ψ(i, j)ψ(k, j)ψ(k · j, i), for all i, j, k ≤ n. (17)

We say that an n × n matrix M = (mi,j) is e-cocyclic over Q if there exists an e-cocycle ψ over Q such
thatmi,j = ψ(i, j), for all i, j ≤ n.

Example 46. The Hadamard matrices

M1 ≡

⎛⎝ + + + +

+ + − −

+ − − +

+ − + −

⎞⎠ and M2 ≡

⎛⎝ + + + +

+ + − −

− + − +

− + + −

⎞⎠
are e-cocyclic over the quasigroup Q having as multiplication table the Latin square

1 2 3 4
2 1 4 3
4 3 1 2
3 4 2 1

∈ R4,4.

This quasigroup is not a loop. Moreover, it is non-abelian and non-associative.

We say that a function ψ : [n] × [n] → Z2 is an e-coboundary over a quasigroup Q = ([n], ·) ∈ Qe

if there exists a function φ : [n] → Z2 such that ψ(i, j) = φ(i)φ(j)φ(i · j), for all i, j ≤ n. In particular,
ψ is an e-cocycle over Q , because Condition (17) holds if and only if φ((i · j) · k) = φ((k · j) · i), for all
i, j, k ≤ n. At this point, we propose as further work a detailed analysis to adapt in the context of the
set Qe all those results in group development that deal with coboundaries.

Let us finish the exposition of this approach with an illustrative result that adjusts the necessary
condition of Lemma 1 in [8] for quasigroups within the set Qe. Here, we say that a matrix M = (mi,j)
is quasigroup developed over a quasigroup Q = ([n], ·) ∈ Qe if there exists a function φ : [n] → Z2
such thatmi,j = φ(i · j), for all i, j ≤ n.

Lemma 47. Let Q = ([n], ·) ∈ Qe. For each positive integer k ≤ n, we define the permutation matrix
Tk = (δi·kj ), where δi·kj denotes the Kronecker delta. If an e-cocyclicmatrixM over Q is quasigroup developed
over Q , then TkMTk = M t , for all k ≤ n, where M t denotes the transpose of M.



Proof. Let ψ be a cocycle over Q such thatM = Mψ . Let k ≤ n. Then,

• TkMTk = Mψ1 , where ψ1(i, j) = ψ(i · k, j/k), for all i, j ≤ n.
• M t

= Mψ2 , where ψ2(i, j) = ψ(j, i), for all i, j ≤ n.

Now, let φ : [n] → Z2 be such that ψ(i, j) = φ(i · j), for all i, j ≤ n. Then,

ψ1(i, j) = ψ(i · k, j/k) = φ((i · k) · j/k) = φ((j/k · k) · i) = φ(j · i) = ψ(j, i) = ψ2(i, j),

for all i, j ≤ n. Hence, TkMTk = M t . □

Example 48. In Example 46, we have that

• TkM1Tk = M t
1 if and only if k = 1.

• TkM2Tk = M t
2 if and only if k = 2.

Hence, from Lemma 47, we can ensure that none of the e-cocyclic Hadamard matricesM1 andM2 are
quasigroup developed over Q .

Of course, a much deeper analysis is required to deal with the different aspects derived from these
new concepts. Moreover, similar studies related to other types of balanced equations different from e
are also necessary as further work. Particularly, the characterization of those equations that give rise
to group isotopes could have special interest concerning the interaction of quasigroup development
with Hadamard equivalence. We refer the interested reader to [3,4,20,21] for more details about the
study of balanced equations on quasigroups.

From all the previous remarks and proposals, we realize that this paper only scratches the surface
of a vast world where there is still much to explore. The results here presented constitute the
starting point fromwhich we can ensure that Latin rectangles and quasigroups arise as an interesting
alternative to delve into the theory of cocyclic Hadamard matrices.
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Appendix. Glossary of symbols

E(L) The set of entries of a Latin rectangle L.
H(L) The set of cocyclic Hadamard matrices over a Latin rectangle L.
Ln The set of loops of order n having 1 as unit element.
[n] The set {1, . . . , n}.
Qn The set of finite quasigroups having [n] as their finite set of symbols.

Rr,n The set of r × n Latin rectangles.
S(L) The set [r] ∪ {li,j | i, j ≤ r}, where L = (li,j) ∈ Rr,n.
Z(L) The set of cocycles over a Latin rectangle L.
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