Low Rank Approximation of
Multidimensional Data

Mejdi Azaiez “#* | Lucas Lestandi "' and Tomds Chacén Rebollo #*

" Bordeaux Institut National Polytechnique de Bordeaux, France
t Université de Bordeaux, Bordeaux, France
! Institut de Mécanique et d’Ingénierie, UMR 5295, Bordeaux, France
* Instituto de Matemadticas de la Universidad de Sevilla - IMUS, Sevilla, Spain

Abstract In the last decades, numerical simulation has experienced
tremendous improvements driven by massive growth of computing
power. Exascale computing has been achieved this year and will
allow solving ever more complex problems. But such large systems
produce colossal amounts of data which leads to its own difficulties.
Moreover, many engineering problems such as multiphysics or op-
timisation and control, require far more power that any computer
architecture could achieve within the current scientific computing
paradigm. In this chapter, we propose to shift the paradigm in order
to break the curse of dimensionality by introducing decomposition
to reduced data. We present an extended review of data reduc-
tion techniques and intends to bridge between applied mathematics
community and the computational mechanics one.

The chapter is organized into two parts. In the first one bivari-
ate separation is studied, including discussions on the equivalence
of proper orthogonal decomposition (POD, continuous framework)
and singular value decomposition (SVD, discrete matrices). Then,
in the second part, a wide review of tensor formats and their ap-
proximation is proposed. Such work has already been provided in
the literature but either on separate papers or into a pure applied
mathematics framework. Here, we offer to the data enthusiast sci-
entist a description of Canonical, Tucker, Hierarchical and Tensor
train formats including their approximation algorithms. When it
is possible, a careful analysis of the link between continuous and
discrete methods will be performed.

*The research of Mejdi Azaez was partially funded by the IV Research and Transfer
Plan of the University of Sevilla.

TThe research of Lucas Lestandi was partially funded by the Institut Carnot ARTZ.

#The research of Toms Chacn was partially funded by Junta de Andalucia - Feder Fund
Grant FQM 454, and by the IDEX program of the University of Bordeaux.

Key words: Data reduction, Model Reduction, Singular Values
Decomposition, Data, MOR, POD, HOSVD, Low rank approxima-
tion, tensors, Tensor train.

1 Introduction

In the last 50 years, scientific computing has become a central tool in engi-
neering design, especially in the mechanics field. A constant improvement
in simulation techniques has accompanied the rocketing computing power
embedded in Moore’s law'. This explosion of CPU power was magnified by
the introduction of supercomputers and their massively parallel architec-
tures. Although some slowdown has been observed, this trend will continue,
especially with the arrival of breakthrough technologies such as the much
awaited quantum computer. Still, the advent of exascale computing has
only pushed forward the boundaries of computable problems slightly while
raising a series of technical issues. First, supercomputers are really expen-
sive infrastructures that require huge amounts of energy?. Second, they
produce data so large that storing and transferring data itself has become
an issue. A famous simulation of the observable universe ? | performed in
2012, exemplifies the dizzying proportions taken by numerical simulation.
Approximately 5000 computing nodes used 300 TB of memory producing 50
PB of raw data in 10 million hours of computing time of which “only” 500
TB of useful data was finally kept. This kind of data is hard to manipulate
and storage is usually performed on magnetic bands making it fairly slow
to access. Also, any intent at handling such data, even in small slices, is
vain on a personal computer, thus impairing the efficiency of analysis.

Actually, the framework of building numerical models has remained the
same across the period of popularization of numerical simulation. This pro-
cess has been finely tuned, improving gradually the quality and confidence
in the simulations. This technology is now massively used in the indus-
try, especially for designing new products that require precise knowledge
in fields such as mechanics, thermodynamics, chemistry, electromagnetic
fields, etc. In particular, computational fluid dynamics has become a cen-
tral tool in designing new aircrafts, ranging from global flow around a plane
to multiphysics-multiscale combustion inside the jet engine.

Building a direct model, also known as full order model (FOM), usually
involves the following steps. First, one needs to select the adequate equa-
tions from basic physics laws and define carefully the limits of simulation.

! Gordon Moore predicted in 1965 that the density of transistors on chips would double
every year. After being slightly downgraded to doubling every 18 month, it has been
verified from 1975 to 2012. Current trend shows a slowing pace. Still, this exponential
growth amounts to a 20 millions factor. Naturally, it corresponds to the computing
power gain.

2As of June 2018, the largest supercomputer is the Summit at Oak Ridge, USA, with
more than 2 million cores it requires 8MW for a peak performance of 122PFlop/s

Depending on the problem geometry, characteristic sizes and phenomena?,

one chooses the simplest equations set that captures the physics correctly.
Then these equations are discretized in time and space while numerical
schemes are used to solve the constructed discrete problems. Whether one
uses finite differences, finite elements or finite volumes, the problem usually
boils down to a linear algebra problem

Ax =0b

where A is a n X n matrix, x is the unknown vector of size n and b the
right hand side term of size n. Here, n is the number of discrete space
points that typically range from millions for 2D to billion for high end 3D
problems. Moreover, this linear problem has to be solved at each time step,
often millions of times, in spite of typically costing O(n?) floating point
operations. More often than not, if one wants to simulate several interacting
physical phenomena, they occur at different time and space scales, meaning
that one needs to solve several concurrent problems of this kind. With the
figures stated above, it becomes clear direct numerical simulation (DNS) is
expensive. Consequently, problems involving to perform such simulations
multiple times such as optimisation or control, remain out of reach.

It has spawned a vast body of literature on how to make these sim-
ulations more affordable. Among the typical solutions in fluid dynamics,
Reynolds averaged Navier-Stokes methods (RANS) and Large eddy simu-
lation (LES) have been very successful at capturing large structures and
modeling (with more or less empirical terms) the smaller structures. These
solutions however generate a great loss of information as it is impossible
to know how the energy dissipation occurs in the small scale structures.
To some, extent it prevents relevant simulations in which the interaction of
small structures drive large scale behavior i.e. chaotic systems. Many mod-
els, in all areas of numerical simulation, have been proposed to reduce the
computing cost with the same idea of modeling the most expensive terms
of equation while retaining the same basic principles of discretization. We
observe that, within this approach, the curse of dimensionality remains the
main obstacle to scientific computing development. For instance, let the
number of discrete points needed to capture a phenomenon on one dimen-
sion be n = 1000. Now, if the problem is 3D, the cube is discretized with
n® = 10° points. If the phenomenon is actually a dynamic one, time has
to be accounted for, which means an additional dimension. The discrete

3A typical example in fluid dynamics is Reynolds number Re = U L/u which characterize
the relative influence of inertia (U is a typical flow velocity and L a typical length)
compared with viscosity (u the kinematic viscosity.)

space time is now n* = 10'2 that amounts terabytes of data for double
precision real numbers. Additionally, one might want to add a few param-
eters on which the simulation depends and both the computing time and
storage cost become out of reach. Even with very small n, for instance n=2,
this kind of difficulty emerges quickly. For example, with d = 50 (which is
far below computational chemistry requirements), storage cost of n¢ = 259
amounts to 9PB if all entries are stored. A tensor is a well suited object
for such data representation, it is the discrete representation of multidimen-
sional fields, i.e. an order d tensor of size nqy X - -+ X ny is filled by sampling
a field on a tensor product space Q = [0,1]? at discrete grid points. The
necessity of storing low rank approximate tensors instead of keeping all the
entries becomes essential in this context.

“Hand solved" problem Cheap storage and CPU

fecurate simulation

Wofinife. erecision but -
impossibe Expensie aceurscy
réal problems “ Equation related Mear Rea fime

Meeds DUS dats

Engineering or
“natural” system

Numerical
model
DNS

Continuous Model Discrete Model

and algorithm

Reduced

basis/data

Applied
mathematics

ie.
system of equation

Figure 1: Scientific computing workflow enriched with tensor reduction and
reduced order modeling

Finally, Fig. 1 summarizes the dominant work-flow in scientific com-
puting i.e. physics modeling is followed by discretization techniques that
can produce reliable simulation. The introduction of a new paradigm is
represented here by tensor decomposition and the following steps of ROM.

In this chapter, we will explore branches that tackle the issue of how
to reduce multidimensional data. It is divided into two parts, the first
one provides a detailed presentation of bivariate decomposition techniques
and points out to the fundamental equivalence of these methods. Next,
the multivariate problem decomposition is treated in the second part. Our
objective is to offer a comprehensive synthesis of decomposition methods
from bivariate to multivariate data including both tensors and functions
frameworks.

We start by presenting a selected state of the art in these fields.

State of the art

The need for order reduction is as old as numerical simulation, for in-
stance matrix analysis techniques such as eigen value decomposition or sin-
gular value decomposition (SVD) have been used in the past centuries to
capture structure in complex matrices. It turns out that the bivariate de-
composition methods in principle equivalent to SVD but complies with their
field formalism. Actually, they have been rediscovered many times in vari-
ous fields: it is known as principal component analysis (PCA) in statistics [?
?], Karhunen-Love expansion (KLE) in probability theory [?] or proper
orthogonal decomposition (POD) in fluid dynamics [? ?]. These methods,
by themselves, provide a decomposition that can be truncated with opti-
mality results [?] and reflect the physics of the problem studied. The first
wave of reduced order models (ROM) in mechanics is a consequence of POD.
Indeed this decomposition provides, among the many possible bases [? |,
an orthogonal basis of the functional space in which the solution problem
lives. Consequently, many attempts at building Galerkin projection ROM
on these reduced bases from the 1980s onward [? ? 7 ? ?] followed with
modest success. Indeed, in this approach, the weak form EDP is solved
against test function in the selected basis. In order to decrease the size of
the problem, one has to truncate the basis to a relatively small rank which
means, in the case of fluid flows, that the small structures are lost.

Concerning the multidimensional case, Hitchcock [?] usually consid-
ered to have introduced tensor decomposition in 1927. But, it is Tucker [?
] that popularized the subject in the 1960s, followed by Carroll and Chang
[?] and Harshmann [?] in 1970. As for the bivariate decomposition,
much of the research happened independently in several fields starting by
psychometrics and chemometrics. A complete history is available in Kolda
and Balder review paper [? |. This large overview of tensor formats includes
canonical format ([? ?]) and Tucker format with the associated decom-
position methods. The former has received dwindling interest due to poor
numerical performance. Tucker format was at the center of attention since
DeLathauwer paper in 2000 [?] which proposed an efficient approximation
strategy, the Higher Order SVD (HOSVD) followed by HOOI [?]. More
recently, he coauthored Vannieuwenhoven ST-HOSVD [? | that improved
significantly the computing time. The early 2010s have seen the introduc-
tion of formats that overcome the exponential growth of the core tensor in
Tucker format. Oseledets proposed the tensor train (TT) format [? 7 ?
] , also known as matrix product state (MPS), together with its decom-
position algorithm. The storage cost of this format is linear in d allowing
tensorization of data, i.e. the method is so efficient at handling large d that
a new strategy consists in increasing artificially the number of dimensions.

To do so, one may need to rely on partial evaluations of the target field,
TT-DMRG-cross performs this task[? ?]. This approach is also known as
blackbox algorithms [?] in the context of hierarchical tensors (HT) devel-
oped by Grasedyck, Kessner and Tobler [? ?]. HT actually incorporates
all previously mentioned formats and approximations into a general d-linear
format. These recent developments have been reviewed in [? | while an
extensive mathematical analysis of tensors and their approximation is given
in Hackbush’s book [?]. A selection of publicly available libraries will be
discussed in detail in section 3.2.

Finally, these formats have been extended to the continuous framework
as they are often used to separate data representing functions. A functional
TT was proposed by Bigoni and Gorodetsky [? ? | while many approaches
now consider n-way array tensors and multivariate function as a single ob-
ject [? 7 ?]. Finally, a Recursive POD (RPOD) was proposed in [?

]

2 Bivariate Decomposition

In order to give the full picture of data reduction technique, it is crucial to
begin with bivariate problems. Indeed almost all multivariate techniques
result from these 2D versions. Bivariate decomposition techniques were
mainly theoretical at the time they were proposed in the first half of the
20" century Pearson [? | and Hotelling [?], manual computations limited
the size of the studied problems. But the numerical analysis and properties
have been studied in details with emerging spectral theory [? ?]. Actual
implementations were carried on later in the second half of the 20" for
fluid dynamics systems [? 7 ?]. 2D data reduction techniques are well
understood and have been applied to the widest variety of problems in the
last 20 years either to compress data or build reduced order model [? ? 7
]

In order to offer a broader view of the possible uses of bivariate decom-
position, Fig. 2 proposes a schematic view of bivariate problem reduced
order modeling methods. The decomposition techniques presented in this
section form the base material of many ROMs. They are organized as fol-
low. The dashed black line shows the dichotomy between the continuous
approach? and the discrete one. Then the orange dashed line separates the
techniques that only apply to data —namely SVD and POD- from the PGD
which is usually used on the equation itself but can be degraded into a data

4These approaches are conceptually continuous but their implementations requires dis-
crete description of the continuous space including grids, discrete operators,...

Reduced order modelling through reduced bases

Bivariate methods

Discrete approach Continuous approach

Direct SVD

(POD) POD-KLE

PGD
{

Scalar product choice : L,, H,
Integration technique (trapezoidal, splines...)
Mass matrix to fit the grid

Iterative process
for building PGD
basis on equations

| Compression / decomposition

15 Interpolation Galerkin
o (DEIM,Lagrange,...) Projection
| |
Interpolated solution ‘ ‘ Reduced basis solver

Figure 2: Synthetic view of the procedures described in this section for
model order reduction of bivariate PDEs. The vertical arrows describe the
work flow of these techniques and the dotted lines highlight the conceptual
differences between them.

decomposition method. Finally, the blue dashed line emphasizes the data
compression nature of the POD and SVD while noting the possibility to
obtain a ROM through the obtained basis as shown in the lower part of the
diagram.

These two methods are presented in this section since they represent the
foundation of higher order decomposition techniques.

2.1 Singular Value Decomposition

The Singular Value Decomposition (referred as SVD) is a generalization
of the eigenvalues decomposition for rectangular matrices. Among its many
applications it can be seen as a discrete version of the POD.

Theorem 2.1 (Singular Value Decomposition [?]). For any matriz A €

R™*™ there are orthogonal matrices U € R™*™ and V € R™*™ so that
A=UxVT
where X is a diagonal matriz of size n X m with diagonal elements o;; > 0.
Hereafter, it is assumed that the singular values are ordered decreasingly

i.e. if 4 < j then o;; > 0;;. The SVD is not unique since the signs of U and
V may vary.

a) m>n m| A = m U m| 3

b) n>m m)| A =m U

3

OOEO

Figure 3: Singular Value Decomposition two configurations

One should note from figure 3 that a part of U in case a) and V in case
b) only serves a dimension match without entering calculation of A, then
the SVD reads for case a)

A =[U1,U5)[£1,0]TVT = U135, VT

Let rank(A) = r then for k > r, o, = 0. The SVD of A can be written

as sum

A= i O’iUZ‘V;T
i=1

where o; are the diagonal entries of ¥ and U; and V; refer to the columns
of U and V respectively. Then ||Alj2 = \/>_._, 07 leads to the optimality
theorem proven by Eckart and Young in 1936 [?].

Theorem 2.2 (Eckart-Young). Let k < r and Ay = Zle o;U; V;T where
the singular values are ordered decreasingly then

ranir(llBr;:k;H l2 =1 kll2 = okt (1)

Remark 2.3 (Link with the eigenvalue decomposition). Singular and eigen-
values are closely linked. Let A € R™*" with m > n. ATA = VXTYXVT.
Then the eigenvalue problem of AT A is equivalent to the right singular value
problem of A with \; = 02 and the eigenvectors of ATA are collinear to A’s
right singular vectors v;. The same applies to u; and the eigenvectors of
ATA.

Remark 2.4 (Solving least square minimization problem with the SVD).
The classical least square minimization problem i.e. find z™ of minimum
Euclidean norm that reaches the minimum of ||b — Ax||y for A € R™*™ is
solved by the SVD and the Monroe-Penrose pseudo inverse of A (see [?]).

The main information contained in the Eckart-Young theorem is that the
truncated SVD (see Fig. 4) i.e. only keeping the k dominant modes gives
an optimal approximation of rank-k of the matrix A which rank is r > k.
It means that the k first singular vectors form the optimal projection basis
of size k that reads as follow,

k
A%Ak:ZJiui(@’Ui (2)
i=1

Numerics As for the eigenvalue decomposition, there are many algo-
rithms to compute the SVD, among them, the QR algorithm is particu-
larly well suited to slim matrices. In subsequent numerical experiment the
LAPACK library is used either as direct SVD solver dgesdd or through
eigenvalue decomposition dsyev if the matrix is slim (this strategy is also
well suited for discrete POD as discussed in the next section). dgesdd relies
on a divide and conquer approach which is one of the most efficient way to
handle matrices of large size.

Other algorithm provide direct truncated SVD mainly based on itera-
tive algorithm such as Arnoldi procedure based library ARPACK. Addition-
ally, it should be noted that iterative algorithm are very efficient at finding
eigen/singular values at both ends of the spectrum but face accuracy issues
in other regions, especially for ill-conditioned matrices. This results in non
orthonormal bases which may impair decomposition or ROM accuracy.

10

(5 k{n

m

a) m>n m A

* n
£ v
n
n m ,_,,L n
b)) n>m m A = m! m

k

Figure 4: Rank k truncated-SVD for both configurations, the shadowed
part is dropped upon truncation. k <n, k < m.

2.2 Proper Orthogonal Decomposition

The POD was discovered many times in many different fields, however
it is often attributed to Kosambi [? | who introduced it in 1943. Also, the
POD comes under many names depending on the field in which it is used
or devised. For instance, it is rigorously equivalent to the Karhunen-Love
expansion [? | or Principal Component Analysis (PCA) usually attributed
to [?]. It is an elegant way to approximate a high dimensional® system into
a low dimensional one. To do so, a linear procedure is devised to compute
a basis of orthogonal proper modes that represent the energy repartition
of the system. They are obtained by solving Fredholm’s equation for data
(usually) obtained through numerical simulations. Additionally the POD
offers an optimal representation of the energy in term of L? norm.

It has been applied to extract dominant patterns and properties in wide
variety of fields such as signal, data compression, neural activity, mechanics
or fluid dynamics to name only a few. An enlightening description of the use
of POD is given by Bergmann [? |: “The POD defines uniquely and without
ambiguity coherent structures®, as the realization of largest projection on

5Here, high dimensionality is to be understood as rich phenomenon that require many
degrees of freedom to be described properly as opposed to simpler system which are
described by few degrees of freedom e.g. simple pendulum.

5The notion of coherent structures, introduced by [? ?] is central in the use of POD

11

the mean realization contained in the database”.

Problem formulation (scalar case). Find the best approximation, in
the sense of a given inner product (-,-) and average operator (-,-), of f :
D=0, xQ — R as a finite sum in the form

@) = " ax(t)n(@) (3)
k=1

where (¢p)r are orthogonal for the chosen inner product. ax is given by
ag(t) = (f(-,t), ¢x(:)) then ay only depends on ¢y.

Discrete POD problem is often found in the literature as follows. Let
{f1, ., fn,} the snapshots of f i.e. the representation of f at discrete time
{tj}jL,. 1t is assumed that F = span{fi, f2, ..., fu, }-

POD generates an orthonormal basis of dimension r < n;, which mini-
mizes the error from approximating the snapshots space F. The POD basis

verifies the optimum of the following:

Nt

min Y ||f; — frill?, ste (¢n, ;) = Okj (4)
{0t i

where fr,j = 1—1 (f5,0r) ér and dy; is the Kronecker symbol. One may
observe that > _, - is the first order approximation of the time mean oper-
ator (-). This problem can be solved with discrete Eigen Value Decomposi-
tion (EVD). Although it is the most common formulation of discrete POD
in mechanics literature, it can be misleading regarding the construction and
properties of the POD.

Building the POD This subsection aims at providing a rigorous, how-
ever mechanics oriented presentation of the POD. The present approach is
based on Fahl’s work [?] and also Bergmann and Cordier [? 7 ?] as
well as other work of the vast corpus available including [? ?]. Since
POD is the cornerstone of several multivariate data reduction techniques,
it is crucial to provide the mathematics underlying this method. Without
loss of generality, the usual framework for POD where the two variables are
space (possibly a position vector) and times. It makes mental representa-
tion easier for the reader and most of the POD jargon was introduced with
time-space POD.

for mechanics.

12

Let X = (x,t) € D = Q, x Q and w : D — R a vector valued
function. Additionally we assume that a scalar product (-,-) is defined on
D and || - || its associated norm while an average operator (-) is defined
on D7. We also need the following « to be of finite norm. The dominant
modes of a set of realization {u(X)} are sought, i.e. the function ¢ whith
the largest projection on realizations {u(X)} in the least square sense. In
other words, we seek ¢ that maximizes |(u, ¢)| where ¢ is normalized. Then
the maximum of this expression is sought

(I(u, ®)[%)
ol

This leads to the following constrained maximization problem

L J@w)P) (I g))
velio) [P EE

()

with
(P, 9) =1

In order to rewrite problem (6), a linear operator R : L?(D) — L?(D) is
introduced, it is defined as

RH(X) = /D R(X, X')$(X")dX’ (7)

where R(X, X’) = (u(X) ® u(X")) is the tensor of spatio-temporal cor-
relations. Now suppose that (-} and f can be permuted then the following
holds

(Rp,d) = (l(u,9))) >0
(R$.¥) = (o, Rp) V(o 9) € [L*(D))?
Since R is a positive self-adjoint operator, the spectral theory applies and

the solution of problem (6) is given by the largest eigen value of this new
problem

Rep = Ao (8)
It can be written as a Fredholm integral equation:
d ‘ ‘
> / Rij(X, X')¢/(X')dX' = A§'(X) Vi (9)
j=1"P

"The natural choice for fluid dynamics applications L?(§) scalar product and a time
average. The choice of the average operator (-) kind (temporal, spatial,...) determines
which kind of POD is used.

13

Some fundamental properties of the POD.
1. For D bounded, Hilbert-Schmidt theory applies and ensures the existence
of countably infinitely many solutions to equation (9)

d
> /D Riy(X, X")6}(X')AX' = A ¢L(X) (10)

where A, ¢, are respectively the POD eigenvalues and eigen functions of
order r = 1,2, ..., 400. Each new eigen function is defined as the solution
of problem (8) adding a new constraint: orthogonality with the already
known eigen functions.

Z/ LX) (X)dX = b,y (11)

2. R is positive self-adjoint then A; > 0. Additionally, they are taken
decreasing and they form a converging series i.e.

r=1

3. The POD eigen functions form a complete basis, any realization u(X)
can be represented in that basis.

X) =) adi(X) (12)

4. a, is obtained by projecting u on ¢,

d
() =3 /D u(X)6 (X)dX (13)

5. Mercer’s Theorem. The spatio-temporal correlation matrix at two
points R;; is kernel based on R then Mercer’s theorem provides a series
representation,

Ri;(X,X") ZAM;S’ X' (14)

6. Thanks to the previous property, it can be shown [? | that the coefficients
a, are uncorrelated and their quadratic average is equal to the POD
eigenvalues

<a7“7ap> = 5rp/\r (15)

Remark 2.5. These properties ensure the uniqueness of the proper orthog-
onal decomposition (given that ||®|| = 1).

14

Optimality of the POD basis. Let u:D — & C RY with u € L?(D)
and @ an approximation of w. On any orthogonal basis (¢,(X))22, one

can write

wi(X) =Y bt (X) (16)

Let {p(X)}22, a set of orthogonal POD eigen functions and {A,}22,
their associated eigenvalues. Then, u”?” the POD approximation of u is

considered

uPOP(X) = 3 0,61 (X) (17)

Properties 6 and 7 state that if (¢,.(X))S2, are non dimensional, (b, b,)
represents the energy of mode n. Cordier and Bergmann [?] proved the
optimality of the POD basis through the following lemma.

Lemma 2.6. Optimality of POD basis For any rank R € N* the following
inequality holds

R

R R
D larar) => A= (b, by) (18)
r=1 r=1

r=1

In other words, among all linear decomposition, POD is the most effi-
cient, i.e. for a given number of POD modes R, the projection on the subset
produced by the first R POD eigen-functions is the one that contains on
average the most (kinetic) energy possible.

A POD algorithm. One of the many possible implementations of the
POD is proposed in this section. Although it might not be the most com-
putationally efficient version, it preserves all the functional approach frame-
work. Indeed the user is free to implement any integration method so that

15

the projector also apply to L2, not to any matrix space.

Algorithm 1: POD (Standard, Deflation Power Method)
input : f, target error €
output: f, =Y ;_, 0x X5
m=0
R(z,2") = [, f(z,t) f(2', t)dt;

while Z»— > ¢ do
M2

+
(Ak, dx) = Orthonormal_Power method [(R — fx—1)dr = A\xds]
or =V
ar = [q. f(x,t)¢x(v)dz/oy
fE = focr + ondrar
return fj

Remark 2.7. From the previous sections, it clearly appears that POD and
SVD share many of their properties. One can adopt two different angles to
explore the link between POD and SVD.

a. Use the the optimality of the SVD to solve the discrete POD mini-
mization problem. This is a straightforward application of the fact
that eigenvectors can be computed either from eigenvalue decomposi-
tion or SVD. This approach has been described in detail by Bergmann
and Fahl’s work [? ? |].

b. The other way of looking at this link, was proposed among many
others by Chaterjee [?]. It is a simpler presentation of the POD,
only valid in the discrete framework. It relies on the fact that the SVD
solves optimally a matrix problem that may be seen as the discrete
equivalent of the infinite dimensional problem (4) using the Euclidian
norm for vectors.

It shall be noted that these two interpretations leads to different algo-
rithms which may not display the same properties of accuracy or efficiency
especially when the basis is used for reduced order modeling as its orthogo-
nality is a very important feature. The very illustration is the possibility to
choose a problem adapted inner product in the POD algorithm while SVD
is blind to data and will be performed in the same fashion for any problem,
sometimes without preserving physical properties.

Remark 2.8. One of the many challenges in using POD efficiently is to
chose a scalar product that suits the problem. This issue has been of great
interest in the field of fluid mechanics since it provides fields of great com-
plexity that are either scalar (pressure, bi-dimensional vorticity) or vectorial

16

(velocity, velocity /pressure, etc.). Also these fields are the solution of the
highly nonlinear Navier-Stokes equations, the induced properties can be
taken into account when devising the decomposition method.

Originally, as implied in the above presentation, the introduction of POD
in this field came through the analysis of the velocity field for which the
natural idea is to rely on energy measure such as the L*(Q) (see [?]).
However it has been shown that such an approach generates unstable ROM,
which can be improved by using H*(£2) norms such as proposed by Iollo in [?
|. The last fifteen years of research have proved that this approach is either
impractical or requires too much effort as compared to the benefits since it
has not been able to gain momentum among the community. Meanwhile, a
new approach has been advocated by Sengupta [?] that relies on the use
of enstrophy for the analysis of instability flows. This idea has been applied
successfully to POD in a series of articles [? 7 ? | and the analysis has
been pushed even further in recent article [? |. Relying on enstrophy based
POD has allowed the authors to provide in depth correlation between POD
modes and instability i.e. Hopf bifurcation sequence in spite of the very
high sensitivity of the studied lid driven cavity problem.

2.3 Numerical experiments

In this section a few numerical tests are conducted on all three methods.
Although it has been shown that they are mathematically equivalent, the
difference between these algorithm will inevitably produce different behav-
ior, especially for ill-conditioned problems/matrices. This first numerical
section provides a suggested technique over the others depending on the
problems studied. First some synthetic data is used i.e. analytical func-
tions, then an image is compressed with various levels of accuracy. Finally,
data from numerical simulations is separated. The approximation error
is measured as ||f — fr||r2 or ||f — fr||[r depending on the nature of the
method®.

8Actually the choice of the norm has little influence on the numerical results. This is
especially true for trapezoidal rule on a Cartesian grid.

17

Synthetic data Let Q@ = [0,1] x [0,1] be the studied domain and four
square integrable functions f1, fa, f3, f4 : & — R defined by

fl(‘ray) = Ty (19)
1

Py = 5 (20)

fa(z,y) = sin(va?+y?) (21)
falw,y) = V1-ay (22)

1

fs(r,y) = m (23)

These functions range from already separated (f;) to weakly separable,
also known as singular functions in the literature. Thus these two expres-
sions will be used indifferently in this manuscript. They are chosen to be
easily extended to multiple variables.

The four methods PGD, POD (L?(2)) SVD and SVD_by_EVD are applied
on these functions for a 32 x 32 regular Cartesian grid.

Remark 2.9. The bivariate functions can be sorted in two groups with
respect to these decomposition techniques:

Definition 2.10 (Exponentially Separable function). A function is called
exponentially separable if the decrease in the singular values, thus in the
approximation error, is exponential. In other words, a semi-log plot of the
error is a straight line, regardless of its slope.

Definition 2.11 (Linearly separable function). A function is called linearly
separable or weakly separable if the decrease in the singular values, thus in
the approximation error, is linear. In other words, a log-log plot of the error
is a straight line, regardless of its slope.

These definition will be extended directly to multiparameter functions.
Typically, weakly separable function are produced by highly non-linear pro-
cesses or functions that display a sharp singularity. Thus singular function
is often used to replace weakly separable in the literature as well as in this
manuscript. Additionally, various levels of separability may be observed
depending on the nature of the function. A moderate slope will often be
referred to as less separable and an almost linear decay declared weakly
separable. Finally, some peculiar function may show two different regions
(relative to r) with distinct behavior such as first a sharp exponential decay

18

1le+00 T T T T T

\ — POD
107 ~, *-x PGD le-02 |
— SVD
105 \ ~-+ SVD_by EVD le-04

1le-06 -

T T T
[f1-flpop|| ——

1e-08 |
10°

\\ le-10 -
101
le-12 |
102

\\ le-14 - .

1018 [
K= 1le-16 1 1 1 1 1 1 1 1

5 10 15 20 0 2 4 6 8 10 12 14 16 18
rank

Relative Error

(a) 2D decompositions error of fs. (b) POD applied on a pool of functions.

Figure 5: Approximation error for bivariate methods

followed by a milder linear one. This generally fits the properties of the
function such as length scale or turbulent behavior in fluid dynamics.

As mentioned in the theoretical paragraphs, a very efficient way to mea-
sure the separability of a field is to observe the decay of the singular values.
It is also a reliable way to estimate the error decay. Fig. bHa presents a
comparative view of the decay of the approximation error for f3 which is a
very common function for testing this property. The singular values are not
displayed as their behavior is very similar to the error. All four methods
are equivalent up to » ~ 12 which is in agreement with the mathematical
equivalence shown in the theoretical presentation. However for r > 12 it
seems that the error is stuck in the 10~® regions.

Image compression by decomposition As stated in the SVD section,
these techniques can be used on any kind of data. An interesting example
while presenting the data compression aspect of these methods is to apply it
to images. Indeed it is efficient to compress large images. Indeed numerical
images are stored in many formats but it always boils down to an array of
integers representing colors. Let us consider the simpler case of grayscale
images, usually stored in 1 byte per pixel. That is to say, the original 4000 x
3000 pixels grayscale image "singapore.tiff" used in Fig. 6 is a matrix
of the same size whose coefficients are integers in [0,255] which means
12 x 10%bytes ~ 12Mb without compression. Table 1 gives the compression
rate for different number of SVD modes retained as displayed in Fig. 6.
One can see easily that preserving very few modes yields high levels of

19

r=200 r=500 r=800 r=1000

Figure 6: A 4000 x 3000 pixels picture of Singapore Gardens by the Bay
compressed through SVD as compared with JPEG compression.

20

compression but the image features are not preserved. Indeed, on can see
in Fig. 6 top two lines? that keeping only one mode gives a unrecognizable
image. Increasing number of retained modes r leads to gradually better
representation, 10 modes is sufficient to perceive the big structures of the
image. The big leaves and sharp metallic structures are captured with 50
modes while 100 modes is enough to distinguish palm leaves. This behavior
continues up to a few hundreds where all human-eye relevant structures are
captured by the SVD compressed image. However at r = 200, the image
is grainy (especially visible in the sky part) which is striking in the larger
SVD image and close-up in the lower part of Fig. 6. Adding more and more
modes reduces the noise of the image, at » = 1000 it is hard to tell that the
image has been compressed without any reference point, while the size of
the image is still halved as compared with the original uncompressed file.
The only difference lies in the contrast level as one can see that the very
dark and very bright regions of the image are not as deep as in the original
image.

Table 1: Compression rate using SVD on 4000 x 3000 pixels grayscale image.
Where CR is the compression rate and the error is computed with Frobenius
norm.

r SVD size (Mb) CR (%) Err. (%)

1 0,01 99.9 1.5
10 0,07 99 31.2
50 0,33 97 25.7

100 0,67 94 22.2
200 1,34 89 17.2
500 3,34 72 9.4
800 5,34 55 5.2

1000 6,68 44 3.2

A very interesting feature of this data lies in the very slow decay of the
singular values, shown in Fig. 7. Indeed is was chosen on purpose so that
no clear directional pattern appeared in the image and all length scales were
present. Consequently, the first 50 singular values plummet then the slope
become a lot milder with a decay of one order of magnitude per thousand
modes. One can assert that the first exponential decay, associated with
the large structures of the image, is followed by a linear one due to the
profusion of small scales. This is the first example of this behavior shown

9The reader is advised to follow this description in the PDF version as it allows zooming
of the row of small pictures.

21

le+06

T
sigma;

le+05 |

le+04 |

le+03 |

le+02 |

le+01 - - - - -
0 500 1000 1500 2000 2500 3000

r

Figure 7: Singular values of "singapore.tiff"

in this chapter. It will appear again in complex flows and physics problem,
either in 2D or 3D. As usual, if all modes are kept the image is exactly
recovered. However, there is overhead in the storage space as U is of the
same size as the original data and one still needs to store V and X.

To conclude on the image compression abilities of SVD, it is fairly effi-
cient for large images as the ratio r/npix is very small but the method is
not well suited for human-eye use. The Frobenius error presented in table
1 does not fit with the human experience of the image produced by SVD
comparison. Indeed, SVD compares poorly with well established formats
such as JPEG which was specifically designed to retain eye sensitivity such
as contrast, color depth, etc.

3 Tensor Spaces and Formats for decomposition

This section lays the ground for building a general decomposition frame-
work that works equally well for continuous and discrete multidimensional
problems. The concept of a tensor space structure and its main properties
are described. The the main features of tensors are presented on the partic-
ular case of multi-way arrays but are expendable to other kind of tensors.
This dichotomy provides a general framework that will be needed in further
development and eases the understanding of complex definition with the
n-way array.

Tensors and tensor spaces. Tensors can be viewed as generalization
of matrix to higher dimension i.e. an order d tensor is a d-way array or a

22

function of d arguments. Such object rapidly become intractable, indeed
for large d > 3, data size n? is out of reach even for the most advanced
computers and will remain that way for direct handling. A simple example
of the curse of dimensionality is to take n = 2 and d = 50, although it
appears to be of reasonable size, 2¢ ~ 10'®. This is of course far below
the requirement of many scientific areas such as chemometrics, Boltzmann
equation, multiparameter PDEs etc. This has led to the introduction of
reduction techniques to overcome the curse of dimensionality starting with
[?]. Lots of work have been separately performed in separate fields such
as psychometrics ([? | and [? |) in the 1960s and 1980s or chemometrics
from 1981 onwards ([?]). Since 2000, tensor decomposition has gained
a lot of interest in many fields including solution of stochastic PDEs [?
?], solution of high dimensional Schrdinger equation, Boltzmann equation,
computational finance, etc. Many more references are available in literature
surveys by [?] and [?]. Actually, these surveys together with [?] book
“Tensor spaces and numerical Tensor calculus” demonstrate the growing
interest for decomposition among the applied mathematics community.

3.1 Tensor spaces

In order to build the approximation presented in the subsequent sections,
a general framework is introduced. The mathematical framework we use in
this section is based on [?] with addition from other authors. Further
details can be found in the original manuscript while we only cover the
necessary notions for tensor decomposition.

Definition 3.1 (Tensor Space). Let V and W be vector spaces. The alge-
braic tensor space V is defined by

V=V, W=span{v@w : veV, weW} (24)
where ®, connects vectors spaces and v ® w is an element of V.

Obviously, a tensor space is still a vector space however given a special
structure.

Proposition 3.2. Let V and W be vector spaces with respective bases By
and By such that T be a tensor space over the field R. A product ® :
V xW — T is a tensor product and T a tensor space, i.e., it is isomorphic
to V®, W, if the following properties hold:

i) span property : T =span{v@w : V€ V,we W}

i) bilinearity
iii) linearly independent vectors {v; : i € By} CV and {w; : i € By} C

W lead to independent vectors {v; @w; : i € By,j € By} inT

23

Note that the tensor product is associative and universal, i.e.

Proposition 3.3 (Universality of the tensor product). For any multilinear
map ¢ : Vi X---xVqg =V, there is a unique linear mapping ® : ®?:1Vj -V
so that o(v1,...,v9) = P(v1 ® - - @ vg).

3.2 Overview of tensors of R"* %" j e. multi-way arrays

In this section, a series of definitions and properties of the multi-way
array tensors is provided. It should be noted that most of these definitions
extend to other tensor spaces but most, if not all the work presented in this
chapter uses discrete tensors. The properties and definitions presented here
are limited to the one necessary for approximation of tensors.

First, we introduce some notations. Let d € N be the number of dimen-
sions and n1, ..., ng € N the number of entries along each of these dimensions.
Let D = {1,...,d} be a tuple and Z = 73 X --- X Z; be a d-fold product
index set with Z,, = {1,...,n,,}

Definition 3.4 (Tensor). A tensor is a multidimensional array i.e. a d-way
or d*-order tensor is an element of the tensor product of d vector spaces,
each of which has its own coordinate system.

In terms of tensor space, here we have X € V = ®ii_1 Vi where
V; = R™. This notion of tensor is different from the man; phylsiical tensors
which generally refer to a third order tensor that is defined in every points
of the space. This forms a tensor field. Bold Euler script letters refer to
order d tensors e.g. X € RZ.

Definition 3.5 (Order of a tensor). The order of a tensor is defined as
the number of dimensions, also known as ways or modes. X € R% where
I=1, x---x1Iy is an order d tensor!®.

Remark 3.6. A first-order tensor is a vector, a second-order tensor is a
matrix and a third order tensor or more is called a higher order tensor. A
visual representation of a third order tensors is proposed in figure 8.

The entries of a tensor are denoted in the same fashion as for vectors or
matrices i.e.

e entry ¢ of vector a is q;

e entry (4,j) of matrix A is a;;

10The order of a tensor is not to be confused with the rank of a tensor.

24

i=1, .04 *

Figure 8: A third order tensor with T € RIX/xK,

e entry (1,42, ,4q) of order d tensor A is a;,4,...i,

A subarray is formed when a subset of a tensor is taken e.g. subarrays of
matrices are columns and rows. A colon is used to state that every element
of a dimension is taken.

Definition 3.7 (Fibres). Fibres are the higher order analogue of matrix
rows and columns. A fibre is defined by fixing every indices but one. Mode-
1 fibre of a matrix is a column mode-2 fibres are rows and mode-3 fibres are
tube fibres.

Remark 3.8. Slices are two dimensional sections of a tensor defined by
fixing every indices but two.

Definition 3.9 (Inner product and norm). Given two same-sized tensors
X,Y € RZ, the Inner Product is defined as follow

ni

Y p =D Y TirigVinia (25)

i1=1 ig=1

When there is no ambiguity on the nature of the inner product, the Frobe-
nius inner product is simply noted (X, Y).

The norm associated with this inner product is the Frobenius norm de-
fined by ||X||F = /(X,X) also

ny ndg
12l = | D > o, (26)
ii=1 ip=1

25

Definition 3.10 (Rank-One tensor). An N-way tensor X € R is rank-one

if it can be written as the outer product of d vectors (a(j));l:l, ie.

d
x:a(l) o...oa(d) sVl S Zj S Mgy Liyewig = Haij)
j=1

Definition 3.11 (Rank of a tensor). The rank of a tensor, denoted rank(X),
is the minimum number of rank-one tensors that generate X as their sum.
In other words, this is the smallest number of components in an exact CP
decomposition (see the definition 4.2). Further details are available in [?]
concerning the link with the matrix rank.

Remark 3.12. There is no straightforward way to determine the rank of
a higher order tensor even for small sizes (the problem is NP-hard).

Definition 3.13 (p-rank or multilinear rank of a tensor). The p-rank of
tensor X € R, denoted rank,(X) is the rank of X(,). If we let r, =
rank,, (X) for p =1,...,d then we can say that X is rank-(rq,--- ,74) tensor.
Beware not to confuse the p-rank with the previous notion of rank of a
tensor.

Remark 3.14. The notion of p-rank was popularised by De Lathauwer [?
]

Definition 3.15. matricization or unfolding

Matricization is the process of ordering the elements of a tensor into a
matrix. The mode-n matricization of a tensor X € RZ is denoted by X ()
and arranges the mode-y fibres to be the columns of the resulting matrix.
We define the index set T = 7 x - - x Zy—1 XLy x---xZg. The formal
notation is more complex than the concept of unfolding, indeed the map

from the tensor entries (iy,i2,---,%q) € Z to the matrix entries (i,,j) €
7, x I is
d k—1
J=1+4> (ix—1)Jp with Jo=] In (27)
k=1 m=1
k#p m#p

Only the special case of mode-n matricization is considered here, further
details are available in [? .

Remark 3.16. The ordering in which the matricization does not matter
as long as it is consistent through the computation.
One can also vectorize a tensor, the same goes concerning ordering

26

X
(1)
o I I I I I I I I I I | | | I I

Figure 9: Mode one matricization of third order tensor with X € RIX/xK

Mode-1 fibre X

Tensor multiplication It is possible to define product between tensors
in a variety of ways. It does require more complex notations and symbols
than for matrices. We restrict ourselves to the ones which are actively used
to describe tensor reduction. Information about other tensor products is
widely available in the literature [? 7].

Definition 3.17 (Tensor product). The tensor product is a special case of
the outer product that allows multiplication between tensors. It is denoted
by ® or o if a confusion with the Kronecker product is possible. Let Z =
Zyx---I,and J = J1 X -+ J, be multi index series. The the tensor product
is defined by

®: RTxRI —» R
(XY~ XY

Enrty-wise T =X ® Y writes
Ty = w4y;
where 1 = {i1, ...,%p} and § = {j1, ..., 4 }-
Definition 3.18 (Kronecker product). Kronecker product of matrices A €

R/ and B € RE*XL is denoted by A ® B. The result is a matrix of size
(IK) x (JL) and defined by

anB a;2B -+ a1;B

a1B axB -+ ay;B
A®B= . .

CL[lB CL[QB a[JB

27

Remark 3.19. It should be noted the outer product of vectors is a special
case of the Kronecker product.

Definition 3.20 (Kathri-Rao product). of matrices A € R/*X and B €
R7*K is denoted by A ® B. The result is a matrix of size (I.J) x (K) and
defined by

A@B:[(Il@bl a2®b2 (IK@bK]
If @ and b are vectors, then the Kathri-Rao product and Kronecker product

are identical.

Definition 3.21 (Hadamard product). It is the elementwise matrix prod-
uct. Let A and B € R'*/, their Hadamard product is denoted by A * B
and it is also of size I x J.

a11bin aizbiz - argbig
a21ba1 azabay -+ angbay

AxB= , _ . . (28)
anbri arabrs -+ argbry

These products have many properties[? | that are relied upon to devise
decomposition algorithms.

Definition 3.22 (y-mode product). The p-mode (matrixz) product, for 1 <
i < d of tensor X € R™M* X" with matrix A € R"*" is denoted by
X x4 A and is of size ny X -+ X ny_1 X M X ny4q X ---ng. Element-wise,
we have

T

(x X A)i1"‘iu—1jiu+1“'id = Z Liyig-ig Uiy

iu=1
It is equivalent to say that each mode-pu fiber is multiplied by the matrix A,
ie.

Y =X XMA<:>Y(M) :AX(M)

Definition 3.23 (multilinear multiplication [? |). Multilinear multiplica-

tion in one mode is equivalent to n-mode multiplication but is usefull to
introduce a new notation

(I,..I,M.I,..I)-X]"™ =Mx™ (29)
Then in general, the unfolding of a multilinear multiplication is given by
(M-, M) - X" = M, X (My @ -+ @ My @ My @ -+ @ M)
and multilinear multiplications can be transformed into one, as follow

(L1,La,--- ,Lg) [(My,..., -+ ,Mg)-X] = (LiMy,LyM>,--- ,LgMy) - X

28

Tensor Formats

In the following subsections, some of the most common tensor formats
or representations are described. Indeed, in applications one needs to rep-
resent the properties of a tensor using a finite numbers of parameters. Not
all tensors belong to spaces of finite dimension (e.g. tensor Hilbert spaces),
then the question of finite approximation arises. The decomposition or ap-
proximation of a tensor in a certain format is addressed in the next section.

Before entering these descriptions, one should note the difference be-
tween representation and decomposition that are complementary notions.
On the one hand, the representation of a tensor is any way used to describe
a tensor using a set of parameters (p1,...,pn) €.g. representation of tensor
X on a computer using full real array format : (p1,...,pn) — X. On the
other hand, the decomposition does the opposite way by analyzing a tensor
to determine a set of properties : X — (p1, ..., pn)-

These operation can be used alternately, for example the CP decompo-
sition of a tensor yields a representation of it with a given accuracy. This
leads to the following statement by Hackbush : “‘tensor decomposition’ is
applied, when features of a concrete object should be characterized by pa-
rameters of a tensor-valued data about this object”.

For the sake of simplicity, the following presentation uses d-way array
formats but they have equivalent versions for arbitrary tensor spaces so long
as a finite basis exists.

3.3 Full format

Let T =1I; x --- x I; a d-fold product index and a tensor X € RZ. Then
the full format consists in storing the values taken by X for all (i1, ...,iq) € T
with the standard basis e,,;, € R is defined by (€p,i,)j,.u = 0 We
have

TusIp

X = Z Tiel; Q- Qeqi, (30)
€L

Storage. Since the basis is trivial, it is not needed to store the basis and
the storage cost is szl n,. Let n = max,cpn, then the storage cost is
in O(n?) which is intractable for large d. A more general definition of full
format for tensors is given by J. Ballani in his thesis dissertation [?].

Evaluation Cost. The evaluation cost in full format is null since one just
need to recover the value at a given index in the computer memory.

29

3.4 Canonical format or r-term format C,

Definition 3.24 (Canonical Format). In this format, any tensor X € V =
®ﬁ=1 V. a temsor space, is written as the finite sum of rank-1 tensors.

X € C.(R?) is said to be represented in the canonical format and it reads,

rod
X = Z ®uu,i where u,, ; € V,, = R (31)
i=1 p=1
where U, = [u,,1 2 -+ u,,| for p € D. The p-matricization of X can
be computed by
X(“):U”(U1®"'@U“*1®Uu71@"'®Ud)T (32)

Remark 3.25. a. r, the length of the sum, is the tensor rank of X
as stated in definition 3.11. However, the reader is reminded that
computing the rank of an arbitrary tensor is a NP-complex problem.

b. C, is not a linear space since the sum of X,Y € C,. belongs to Cs, and
X +Y ¢C, in general.

Storage. Accordingly to the previous remark, it is assumed that r is
known since the tensor is already in C,. Then each parameter vector (u, ;)
storage complexity is in O(#Z,,) which leads to the following tensor storage
complexity in C, with n = max,cp(n,).

d
Nstorage (C7) =r ZI;L = O(drn) (33)
pn=1

If r remains small then the storage complexity remains moderate even for
a large number of dimensions.

Evaluation. The evaluation of a single entry x;, ¢ = (i1,...,iq) € Z of
X € C, requires the multiplication of the values (uw)iH for p € D. Indeed
T = Z;zl szl(u%j)i“ which means the complexity to evaluate a single
entry is Nentry (Cr) = dr leading to the following complexity to evaluate the

whole tensor
Nfull eval (C’I‘) = (’)(nddr) (34)

This cost is optimal in the sense of linear complexity, however the non-
linearity of the space raises the question of truncation or approximation
which is treated in section 4.1.

As for the full format, C,. is fully compatible with other underlying vector
spaces. Further information is available in [? ?].

30

3.5 Tucker format 7,

This section focuses on the crucial Tucker format which consists for
X € V = R7? in finding smaller subspaces U,, C V,, such that X € ®Z:1 U,.
Indeed if k, = dim(U,) < dim(V,,) then X can be represented more effi-
ciently than in full representation. This leads to the following definition.

Definition 3.26 (Tucker format 7;). Let k = (ki,...,kq) € N? and a
family of linearly independent vectors (w, ;),,1<i<k, for u € D such that
(Wu,i)p1<i<k, is a basis of U,. Then the tucker representation of X € U is

k1 kq
X = Z T Z Wiy, ig Wiy @ 0 @ Ud,ig (35)
=1 ig=1

with the weights w;, . ;, € R. They form the core tensor W € RF1X*ka,
k is the representation rank (or Tucker rank) of X in the tucker format Tg.

One can also write X as a product of W and matrices U, = [(u,“)]f;l
which reads
x:WX1U1X2U2"'XdUd. (36)
Its p-matricized version reads
X =UWi (U@ @U, 1 @U@ U (37)

Remark 3.27. a. As stated by Ballani, for general tensors, T the set
of tensors whose Tucker representation rank is lower than k is not a
linear space.

b. The tuple formed of all the p-ranks is the lowest k for which X € 7.

Storage complexity. In order to represent a tensor in 7T format, one
only needs to store the core tensor of size (’)(HZ:1 k,,) and the basis vectors
stored in matrices for each dimension of size O(k,n,). This yields a total
storage complexity of

d d
Natorage(Te) = [[b + D kuny = O(k* + dkn) (38)
p=1 pn=1

One can clearly see that the term O(k?) is very interesting if d is small since
overhead cost compared with C, is limited. However if d grows above 5, it
will become impossible to use this format even if k remains small.

31

Evaluation complexity. In order to evaluate a single entry of a tensor
in tucker format, one needs to compute the sum 35. Each term of the sum
requires (d 4+ 1) operations which leads to the entry evaluation complexity
complexity of

d
Nentry eval (77c) = (d + 1) H ku (39)
p=1

Then the overall complexity to evaluate the full tensor is in O((d + 1)kn?)
which is very costly. However this representation remains interesting since
the evaluation of the tucker rank only requires standard linear algebra tools
and approximations of lower rank are easily accessible through HOSVD. See
sections 4.2.

3.6 Hierarchical Tucker format Hy

When dimension d gets above 5 to 10 Tucker format is not a relevant so-
lution due to the core tensor exponential growth with d. Among the alterna-
tives, the so-called Hierarchical Tucker (HT) format has gained momentum
in the last decade since it was proposed by Grasedyck and collaborators [?].
It is based on the idea of recursively splitting the modes of the tensor. The
process results in a binary tree Tp containing a subset t C D := {1, ..., d} at
each node e.g. figure 10 which leads to a linear growth of the storage cost
with respect to the d. This approach introduces a new level of complexity
that is beyond the scope of this chapter. Consequently, the reader is re-
ferred to the following papers [? 7 ? ?] for theoretical development while
[?] provide a MATLAB library. Among the numerous advantages of this
format, it is shown that canonical, Tucker and TT (next section) formats
can be represented exactly in HT format since they are subsets of the HT
set. Consequently, the various algorithms to compute such decompositions
can be transposed to this format with notorious efficiency gains regarding
Tucker decomposition. Indeed, leaf to root truncation methods allow very
efficient implementation for large numbers of dimensions. However, this
versatility comes at the cost of complexity of the mathematical as well as
digital setup. This is why we focus on the next section on the tensor train
format introduced by Oseledets [?] which provides linear growth storage
with a simple “train” structure.

3.7 Tensor Train format

The tensor train format (TT) is a special case of hierarchical tensor
formats which displays some advantages. It was popularized by Oseledets
et al. [?] followed by a substantial series of paper that is condensed in [?

32

Bipzg (1xr1,%15)

B (X r,xr,) @34 (ryyxrxr,)

NN

U (,xn) U, (r,xn,) U, (;xn) U, (r,xn,)

Figure 10: Tree representation of the HT format of X € R™t*"2Xn3 x4 The
size of the matrices and tensors are inside blue braces.

]. This format was first presented as a product of matrices that describes
each element of the tensor which is why it is also known as matrix product
state (MPS) in the literature. Entry-wise, X € RV is given by the following
product of matrices

Ty, ig = Gl(ll)GQ(Zg) e Gd(id), G“ S RlﬂL*le“ (40)

where ky = kg = 1. For every mode p and every index 4, the coefficients
G, (i,) are matrices. There is no specific assumption on the orthogonality of
the modes G(:); ;, only the construction of such representation may ensure
it. The following definitions comes naturally.

Definition 3.28 (TT-decompostion). Let G, € RFu-1Xmxku for all i €
[1,d] a set of order 3 tensors called TT-cores. Then the order d tensor
X € RN with TT-rank r = {k;}_, (ko = kq = 1) has the following TT
decomposition

X = Z Gi(ao, i1, 00) - Gi(ag-1,1d4, aq) (41)

Additionally, the TT format can be seen as a special case of the HT
format with a linear structure. Here, all nodes have at least one son that is
a leaf. One can see in Fig. 11 the link between HT and TT regarding the
shape of the tree while Fig. 12 shows the dimension tree associated with
TT format.

33

CTTTTT

Figure 11: A graph representation of TT (left) and HT (right) format high-
lighting their similarities and differences.

{1,2,3,4,5}
{1} {2,3,4,5}

2} {345}
{3}/>5}\
{4} {5}

Figure 12: “Recursive” dimension tree associated with the extended tensor
train of a 5th order tensor

Storage Complexity. It can be easily shown [?] that the storage cost
is

O(k*dn) (42)
where k = maxier, k+ and n = max;cp n;.
Evaluation Complexity. In order to evaluate one entry of the tensor,

one simply needs to apply (40), which yields with the usual assumption on
the rank and dimension of X

Nentry eval(TT) == (d - 1)k3 (43)

Remark 3.29. By construction, it is very easy (and cheap) to evaluate
a single entry of a tensor. Same goes with very efficient algorithm for
numerical integration/contraction as given by Oseledets [?].

Remark 3.30. Linear operations are straightforward to implement in TT
format, including multiplications with matrices, vectors, tensor products,

34

Hadamard product. See [? , Sec. 4] for details and algorithms as it is out
of the scope of this manuscript.

TT format possesses many of the required properties for tensor reduc-
tion:

e simple structure,

e cagsier to handle than HT,

e any tensor can be represented exactly,

e memory complexity that scales linearly with d,

e straightforward multilinear algebra operations.
However, the bases associated with each space do not appear explicitly. In-
deed the long fibers (middle dimension) of the cores span a vector space but
do not form an orthonormal basis (naturally). This is a problematic fea-
ture for physics related applications where one usually wants to manipulate
modes directly whether it is for analysis or processing.

Consequently, TT format needs to be improved for our applications. The
reader might refer to the literature survey [? | for a bibliographic overview
and a theoretical presentation of TT is given in [? , Chap. 12].

Remark 3.31. An extended tensor train format which displays the same
recursive structures as TT while leaving direct access to the modes is also
possible to use. Once can read details and description in [?]

4 Higher Order Decomposition methods

In this section, we finally tackle the approximation of tensors to reduced
rank. This allows huge storage savings as each of the presented formats
separates dimensions thus breaking the curse of dimensionality as long as
the rank is kept small. In this section, three decomposition methods are
studied starting with canonical decomposition. Then higher order SVD is
used to compute truncated Tucker representations. Finally Tensor train
decomposition through SVD is described. Hierarchical decompositions are
obtained by reorganizing data in the other formats through algorithms that
have been omitted in this document. Indeed, it does not improve the de-
composition properties, only the storage cost is reduced. Thus due to the
increased complexity, it was decided not to study Hierarchical Tucker de-
composition, the reader is referred to [? ? ?] for additional information
and implementations.

In order to describe decomposition techniques which are ways to approx-
imate a tensor into a particular format, it is necessary to first define what
is a best approximation.

35

Definition 4.1 (best approximation). Let (V, ||-||) be a normed vector space
and let) U C V. An element upes; € U is called a best approzimation of
v € V (with respect to U if

”U - ubest” < ||U - U” Yu e U

4.1 CP decomposition

The idea of decomposing a tensor as a finite sum of rank one tensors
was first expressed by Hitchcock in 1927 [?] which he called polyadic form.
It finally became popular when reintroduced by Caroll and Chang [? | in
the form of CANDECOMP and Harshman [?] as PARAFAC (parallel
factors). Then the method CANDECOMP/PARAFAC is referred as CP
Decomposition but it can be found under other names such as polyadic
decomposition of Topographic components models.

The CP decomposition yields a tensor in the canonical format C,.

Definition 4.2. The CP decomposition of a tensor X € R? is to factorize
it into a finite sum of rank-one tensors i.e. it is an approximation of a tensor
of R in C,. It means that either of these problems have to be solved
a. Given € > 0, find X € C, with minimal r» € N* such that ||[X —-X]| <e.
b. Given r € N, find X € C, that minimizes the error ¢ = ||X — X||
Given that either of these problem has a solution the following, approx-
imated identity is obtained

T d
XrX=> Rz, (44)
i=1 pu=1
Remark 4.3. X can be seen as the optimal projection of X on C,.

Example 4.4 (3D case). Then we want to write the CP decomposition of
X € R™M*x"2X"s 3 rank 3 tensor with R € Ny terms

R
fXIzZaTObTocT (45)

r=1

where a, € R™ b, € R" and ¢, € R™. Alternatively, it can be written
element-wise as

R
V(L]’, k) € [[Lnlﬂ X [[LnQH X [[17”3ﬂ? Tijk ~ Zairbjrck:r
r=1

Figure 13 displays a visual of the CP decomposition where the rank one
tensors are represented directly as a product of vectors.

36

Figure 13: CP decomposition of third order tensor X € RIX/xK

The matrix A formed by the combination of vectors from the rank-
one components (the factor vectors) i.e. A = [a; ag---ap] likewise for
each dimension is referred as factor matrices. Then Kolda introduced the
following concise notation for CP decomposition

R
X~ [A,B,C] EZaTObrocr
r=1

It is of practical interest to assume that the factor vectors are normalized
to one and their weights are stored into a vector A € R so that

R
X~[X\AB,C|=> Mayoboc, (46)
r=1

Remark 4.5. There is no direct algorithm to compute the optimal CP
decomposition of a tensor, the problem is NP complex [?]. Although the
uniqueness condition for rank decomposition is weaker for tensors than for
matrices (permutation and scaling are allowed), it is often unique (e.g. [?
]). Some criteria for uniqueness have been proposed in the literature.

Existence of a low rank approximation in C,

Lemma 4.6 ([? , Remark 9.1] and [? , Lemma 4.7]). Problem (a) in
definition 4.2 has a solution.

For a matrix, the best rank-k approximation is given by the k first factors
of the Singular Value Decomposition of that matrix (see 2.1). Then for d = 2

37

problem 4.2(b) has a solution however statement becomes false for tensors
of higher order.

A tensor is called degenerate if several rank-k approximation give the
same arbitrary approximation, in this case there is no best rank-k approxi-
mation. The best rank-k approximation may not be found sequentially, e.g.
the best rank one approximation of X may not be found by minimizing the
distance to the best rank 2 approximation of X. Then all factors must be
found simultaneously to ensure optimality.

Lemma 4.7 (Special case C1). The set Cy is closed for all d € N*.

Indeed 71,1 = C;1 and T is closed for any k [? , Lemma 4.20]. This
means that problem 4.2(b) has a solution in C;. However this is not true for
higher ranks if d > 3, indeed it has been shown repeatedly [? ? | that C,
is not closed in these conditions. Ballani provides a nice view of the issue
[? , Lemma 4.15]. The literature provides abundant examples of series of
rank r tensors converging toward a rank r + 1 tensor. This is mainly due
to severe cancellation effects.

Lemma 4.8. Given r > 2 and d > 3, the set C,. is not closed.

It means that in the general case, problem 4.2(b) does not necessarily
have a solution. The occurrence of such tensors is not rare event, see [? |.
The next set is introduced in order to overcome these difficulties.

Lemma 4.9 ([? , Lemma 4.16]). Let r € N* and ¢ > 0. The set
Co=13) "% X; € CIRY), IX][<, j=1,..,7 p CCr(RT)
j=1

1s closed.

Corollary 4.10. Let X € RZ. The following problem has a solution : Given
r € Nandc >0, find a tensor X € Cf that minimizes the error e = || X—X]||.

Several algorithms ensure the boundedness of the norms of the terms X;
but the drawback is the existence of local minima which are usually not a
problem in practical applications. Next section introduces a classical CP
decomposition algorithm.

38

Computing the CP decomposition : the ALS algorithm Although
there are many approaches to compute a CP decomposition, in this section
we focus on the classical Alternating Least Square (ALS) approach. This
method was introduced by Carroll and Chang [? | and Harshman [? |.
If not the most efficient it is highly reliable and quite simple. To ease the
presentation we stick to a third order tensor although the algorithm can be
easily extended to a d-way tensor.

Let X € RI*7*K g third order tensor. X, the best rank-R approximation
of X is sought i.e.

R
min || X —X| with X = [\ A, B,C] EZ)\T a.ob.oc, (47)

X r=1
The ALS approach is to fix B and C to solve for A then fix A and
C to solve for B etc. until the procedure converges. Having fixed all
but one matrices, the problem reduces to a linear least-square problem
which can be solved using the usual tools. Although this algorithm is quite
simple to implement and understand, it does not necessarily converges to
the global minimum of the objective function. Only a local minimum is
ensured. Moreover, it can take a large number of iteration to converge.
Finally, its result may depend on the arbitrary initial values (see Kolda [?

| for a detailed algorithm).

Algorithm 2: ALS
input : F ¢ ROl
output: X = w ®f:1 x;

Initialize V1 < i < d, = ;
while Error > ¢ do

for i =1,d do
1 V= XlTXl Koeee K XiflTXiflT * Xi+1TXi+1 koo ok XdTXd
; /¥ V€ RFXE x/
2 Xi:3"(Xd®"'®Xi+1®X¢—1®"'®X1)VT; /% t
refer to the Monroe-Penrose pseudo-inverse */
wi = || Xil2;

return X = [w; X4, -+, X4]

39

This algorithm led to many developments but they are generally outper-
formed in the production stage by several Tucker Decomposition methods
such as the HOSVD which will be discussed in the next section.

It is possible to rewrite the CP format using vector spaces of unknown
nature such as infinite spaces. Still one needs to define storage on a computer
the continuous bases function for example. The case of function decompo-
sition into CP format is studied in section 4.6.

4.2 Tucker decomposition

The Tucker decomposition was first introduced by Tucker during the
1960s [?] and further refined. As for the CP decomposition, the Tucker
Decomposition has been “rediscovered” many times in several fields leading
to several names (HOSVD [? ? |, N-Modes PCA, etc.). It is an extension
of the SVD to higher dimensions. A tensor is decomposed into a core tensor
that is multiplied by a matrix along each mode.

Once again, the case of a third order tensor is proposed for introduction
simplicity. But, the Tucker decomposition is well defined for dimensions
higher than 3. Figure 14 shows a graphical interpretation of the following
equation for X € RIXJ*K

P Q R
X~[W;A,B,Cl=> > Y wyrayoboc, (48)

p=1qg=1r=1
Where A € RIXP B € R7*Q and C € RE*E are the factor matrices.
There are usually set orthonormal and can be viewed as the principal com-
ponents of each modes. W € RF*@* 1 ig the core tensor. If I < P, J < Q
and K < R then it can be seen as the compression of X given the basis

formed by A, B and C.

Element wise, the tucker decomposition in 48 is V(i,j,k) € [1,I] x
[1,J] x [1, KT,

P Q R

Tijk = Z Z Z Wpqr Qip qu Ckr

p=1g=1r=1
It is easy to find the exact decomposition of a rank-(Ry,..., Rp) tensor
(see def. 3.13) as presented in the next subsection. However, if one wants
to compute a rank-(Ri,..., Rp) Tucker decomposition of a tensor where
dn < D | R, < rank,(X) then this decomposition is necessarily inexact
which may raise some computational difficulties. Since such a decomposition
excludes some eigen vectors, it is called a truncated Tucker decomposition,

a visual example is shown in figure 15.

40

Figure 14: Tucker Decomposition of a third order array J

L7

Figure 15: Truncated Tucker Decomposition of a third order array X

It should be noted that there are many ways to compute truncated tucker
decompositions, among them various ALS based methods and the Higher
Order Orthogonal Iteration (HOOI) proposed by [? | which yields some
optimality properties. Finally, the most common method, because it is
computationally the most efficient, is the Higher Order Singular Value De-
composition (HOSVD) which was introduced by [?].

In this paragraph, some mathematical properties of the Tucker decom-
position are reviewed. They lead to the classical tensor Tucker format re-
duction technique Higher Order Singular Value Decomposition (HOSVD)
which is presented in two forms. The first one was proposed by [?] and
the second one is an improvement from [?], the Sequentially Truncated
HOSVD.

41

Definition 4.11. The Tucker decomposition of a tensor X € R7 is to find
an approximation of a tensor of R in 7. It means that either of these
problems have to be solved

a. Given £ > 0, find X € T; with minimal Nitorage(Tr) such that ||5C —
X|| <e. _ -
b. Given k € (Nx)?, find X € T that minimises the error ¢ = ||X — X||.

Given that either of these problem has a solution the following identity

is obtained
~ k1 ka d 4
Jj1=1 Jja=1 p=1
Lemma 4.12. Problem (a) has a solution.

Lemma 4.13. Let k = (ki,....,kq) € (Nx)?. The set T, C RT is closed.
Consequently Problem (b) has a solution.

Tucker format is closely related to the matricization of tensors. Then
the idea of using the SVD (see 2.1) on matricizations of the investigated
tensor has been used to devise algorithms to give an approximate solution
to problems 4.11(a) and (b). For most applications, it is not necessary to
find the best approximation, an almost best approximation is sufficient.

Theorem 4.14 (HOSVD as proved in [? |). Fvery tensor X € R% admits
a higher-order singular value decomposition:

X = (Uy,Us, ..., Us) - W, (50)

where the factor matrix U, is an orthogonal n, x n, matriz, obtained
from the SVD of the mode-u matricization of X,

X = UHEHVLT, (51)
and the core tensor W € R™ > *"d cqn be obtained from
W= UT,U,7,...U;7) - X, (52)

Remark 4.15 (Truncation). Theorem 4.14 refers to full HOSVD which
is an exact Tucker decomposition. However it gives a lot of information
about a studied tensor such as the multilinear rank, it is rarely the pursued
goal. This kind of decomposition is aimed at extracting the most relevant
information, possibly by reducing data size. The optimality of the SVD
truncation encourages to think of truncating (U,,). This is what is done is
the Truncated-HOSVD (T-HOSVD) which is generally referred as HOSVD.
However in this section the T-HOSVD notation will be used in order to
prevent confusion.

42

Algorithm idea. The T-HOSVD algorithm relies on the simple trunca-
tion idea. First compute (U,) defined in equation (51) in each direction,
then truncate to a given rank/column (set prior to computing). Finally
compute W', the truncated core tensor projecting X on the reduced basis
(U},) as in equation (52).

Of course the truncation of the SVD does not mean that the 2D opti-
mality is preserved. Optimality is not the goal of most applications and this
algorithm is easy to use, consequently a quasi-optimality is sufficient. The
quasi-optimality with respect to the optimal rank-k approximation is given
by the following theorem.

Theorem 4.16 (Quasi-optimality of the T-HOSVD [? , Property 10]). Let
X € RT with a p-rank r = (r1,...,7q) € N%. Given k = (ky, ..., k,) € N, let
Xpest be the best approzimation of X in Ty i.e. Xpest = argmingcr, [|X—Y|2.
Then the error of HOSVD projection is bounded by

7”“

d
N3 02, SVAIX - Xpewll2 (53)

p=1j=k, +1

||fx - xhosvd”2 <

where the 0, ; are the singular values defined in equation (51).

The approximation error of HOSVD is bounded by the middle term in

equation (53), namely \/ZZZI Z;“:kﬁl cri)j. Forcing this term to be lower
than a given ¢ leads to an adaptively truncated HOSVD for which an error
bound is chosen.

Algorithm 3 presents the truncated HOSVD algorithm that computes
X € Tg of rank k the approximation of F € R™* X7 Tt is a rather
compact algorithm given that one has efficient methods to compute basic
tensor operations. The implementation simplicity of the algorithm is one of
the main reason of its success.

43

Algorithm 3: T-HOSVD

input : X € R">* %" imposed rank : k = (k1, ..., kq)

output: X = (Uy,---,Uq)- W

for i =1,d do
1 X) =matricize(F,) ;

L Uy, 3, V,T)=SVD(X W) ;

W= ()" (U)o U)X
/x Ul contains the first k; columns of U */

return X = W;Uy,--- ,U4]

Remark 4.17. This algorithm is easily parallelized to the number of di-
mension (lines 1 and 2), each processor computing an SVD. Additionally,
it is possible to reach higher level of parallelization using parallel linear
algebra routines.

ST-HOSVD The Sequentially Truncated HOSVD (ST-HOSVD) was in-
troduced by [?]. This method is a variation of the usual T-HOSVD.
Basically, instead of throwing away most of the work performed by each
SVD, it is chosen to keep that information and perform SVD sequentially
-on a reduced tensor- along all dimensions. Since processing is sequential
and the order in which the operations are performed has an influence on
the approximation, the sequence order is stored in a vector p. For the sake
of simplicity, it is assumed that p = (1,2, ...,d) even though many of the
results depend on the permutations of p.

The ST-HOSVD has been presented using successive projections. In
this framework it is easy to both understand the idea of the method and to
demonstrate its properties.

Definition 4.18 (Orthogonal multilinear projector). An orthogonal projec-
tor is a linear transformation P that projects a vector & € R™ onto a vector
space £ C R” such that the residual @ — Px is orthogonal to E. Such a
projector can always be represented as in matrix form P = UUT given that
the columns of U form an orthonormal basis of E.

Then, De Silva [?] proposed the introduction of orthogonal multilinear
projectors from tensor space V = Vi ®---QVyontoU = U1 ®---U; C V.
It is given by

X = (I,..., LU;U;T, 1,...])- X withX € V =R” (54)

44

Definition 4.19. ST-HOSVD [? | Def. 6.1.]

A rank-(rq,...,7q) sequentially truncated higher-order singular value decom-
position (ST-HOSVD) of a tensor X € RZ, corresponding to the processing
order p =[1,2,...,d], is an approximation of the form

Xp = (U1,Us,...,U;) WX eRMX XN (55)
whose truncated core tensor is defined as
W= (U],U],...,U])- X cR>*xrd (56)

and every factor matriz lAIZ-T € R™*"i has orthonormal columns. In terms
of orthogonal multilinear projectors, one writes

:i:p = ﬁ'lﬁ'g . ﬁ'dfx = (ﬁlﬁf, ﬁgfjg, ceey ﬁdﬁg) - X
The i-th partially truncated core tensor is defined as

W' = (U], U],..,U] 1,..,I)-X e RIW>Txmigxexna (57

70

~ 0 N N
with W := X and Wy = W. The rank-(ry,...,7;,ni41, ..., ng) partial ap-
prozimation to to X is defined as

X' = (0, 0s,... U, 1,..,])- W € RU*xna

with jCO =X and 5C0 :A:)AC,
The factor matrix U;, 1 <1 < d, is the matrix of the r; dominant left

i1
singular vectors of the mode-i vector space of W' . It is obtained from
the rank r; truncated singular value decomposition of the (i — 1)th partially
truncated core tensor, as follows:

W, =UmvT
where Uz = [Uz U,]

The hat projector 7; is defined recursively contrary to T-HOSVD. In-
deed, the definition of the i + 1 projector is optimal for the partially ap-

proximated tensor X'. This leads to strongly improved performance if r;
is small. However, as stated earlier, the processing order is very important
since it changes both the approximation and projectors. The ST-HOSVD
algorithm is given next.

45

Algorithm 4: ST-HOSVD
input : F € R"**" truncation rank r, processing order p
output: X = (Xq,..., X4) - W
wW=5;
for i = pq,...,pq do
/* Compute SVD of W(; then truncate to 7; x/
(U,Z,VT) =SVD(W,) ;
(U, B4, V1) = truncate(U, X, VT, r;);
Xi = Utr ;
Wey =2V, ;
return X = [W;Xh ...,Xdﬂ

W N =

It is possible to use a compact SVD which only yields the truncated SVD.
This improves memory efficiency as well as computing speed, especially if
the multilinear rank is small. One can see that the approximated tensor
reduces after each truncated SVD finally reaching its final shape after the
last dimension has been reduced. It is interesting to note that if the gray
area is large, the next tensor size can be much smaller than the original
tensor. Thus the SVD will be much faster than its T-HOSVD counterpart.

Remark 4.20. The processing order has been reported to influence greatly
the computing time in addition to the obvious influence on the approxima-
tion itself. [? | proposed a heuristic that attempts to minimize the number
of operations required to compute the dominant subspace. Then one should
first process the dimension with lowest size and so on. This may even re-
duced the rank of the remaining terms, i.e. “forcing more energy into fewer
modes”. However choosing a processing order that minimizes the error is
still an open question.

Error estimate. For a given multilinear rank, both ST and T-HOSVD
approximations satisfy the same error bounds. However, usually, ST-HOSVD
performs better in term of actual approximation error (see [? | section 7).

Theorem 4.21 (error bound ST-HOSVD, [? , Theorem 6.5]). Let X € RT
a tensor and X be the rank- (r1,...,mq) ST-HOSVD of X. Let the SVD of
Xy be given as in (51). Then the bounds of the ST-HOSVD are

d

min || ;7 < 1% - X7 < Y 1I%E (58)
! k=1

46

where X is the discarded part of 3 obtained from the SVD.

In this section on computing the Tucker decomposition of a tensor, two
methods were investigated. Both satisfy the same error bounds. On the
one hand, the T-HOSVD is straightforward to implement and allows easy
parallelized implementation for low number of CPU. Analysis is also rela-
tively easy and the processing order has no influence on the approximation.
On the other hand the ST-HOSVD is inherently sequential which means
that processing order changes both the operation count and the approx-
imation. This leads to analysis complexity and rises the question of an
optimal processing order. However, the operation count and approximation
error are overwhelmingly lower compared to T-HOSVD according to Van-
nieuwenhoven et al. This should be confirmed in the numerical experiments
section.

As a conclusion, if the problem is large and the tensor has large dif-
ferences in the directions length, the ST-HOSVD should be preferred to
compute truncated Tucker decomposition. Indeed the advantages overcome
by large margin the implementation increased complexity.

4.3 Tensor Train decomposition

Tensor Train format has been discussed in section 3.7, it is specially
recommanded for larger dimensions as it scales linearly with d. Moreover,
numerous theorems and algorithms have been proposed in the literature,
most importantly one may rely on the following set:

e existence of the full-rank approximation (3.28, [? , Th. 2.1]),

e existence of the low-rank best approximation (4.22),

e TT-SVD algorithm for quasi optimal TT approximation (Algorithm 5),

e sampling algorithms (TT-cross [? |, TT-DMRG-cross [?], maxvol [?
l,--0)-
In this section, we go through the decomposition properties and briefly
outline the sampling algorithms.

TT-SVD As we have seen in the previous sections, SVD is a very efficient
tool to decompose tensors, it turns out that TT decomposition is well suited,
relying on SVD too with the help of the generalized matricization (see [? ,
Def. 2.2.4]). Using the reduced notation X #*) = X(iy...i,;4,41...ia), from
[?] we have the following property that enables the decomposition.

47

Theorem 4.22. For any tensor X € RZ there exists a TT approzimation
T € R with compression rank r, = rank(X #*)) such that

where 62 is the distance (in Frobenius norm) from X #*) to its best rank-r,
approximation:

2 _ ; (%) _
= ,.min | XU~ Bl (60)

Proof. The detailed proof is available in [? |, here an adapted version is
provided as it is constructive of the TT-SVD algorithm.
First, consider the case d = 2. The TT decomposition of Z reads

Z(i1,i2) = Z G1 (i1, a1)Ga(a1,i2) (61)

(Jtl:l

and coincides with the dyadic decomposition of matrix Z. As shown in
section 2.1, such an expression can be obtained optimally using truncated
SVD at rank r; which is associated with truncation error ;.
By induction, the same is true for X () the 1-matricization of X an order
d tensor.
XU = [X(iy;ig...i4)] = USVT (62)
Let Yy = U;ZVT be the (best) r1-rank approximation of X (1) by truncated
SVD i.e.
XV =y, + E (63)
where ||E1]|r = 1. Of course, Y7 can be considered as a tensor Y =
[Y (i1, ...,iq)].- Then the approximation problem of X reduces to the one for

Y. Y being the best r-rank approximation any tensor J with T") = U; W
has a null projection on Fj. It implies the following equality

X =Y) + (= Tllr =X =9 +[[9 - T|r (64)

So far the dimensionality of Y has not been reduced, to do so one can
rewrite Y1) such that element-wise it reads

1
Y(il;ig,...,id> = Z Ul(il;al)X(Oél;ig...,id>

a1:1

48

where X = f)Vl. Then, the concatenation of indices a1 and 75 into one long
index leads to the following order (d — 1) tensor

ZXI = [X(Ollig,i:;, ,Zd)]

By induction, X admits a TT approximation J = [T(O[]_ig, i3y ..., 1q)] of
the form

T(ania,is, via) = Y, Galonis,a2)Ga(a, is, as) - Ga(a-1,ia)

Q2,...,0d—1

Such that

with éi = minrank(C)Sru ||X(#*) - CHF
Now let us set G1(i1, 1) = Ui (i1, 1), separate indices a; and i from
the long index ais and define I by the following tensor train:

T(il,ig,...,id) = Z Gl(il,al)Gg(al,ig,QQ)~~~Gd(ad_1,id)

A1y —1

The rest of the demonstration consists in estimating || X — T||p through

evaluations of the approzimation error between, || X — T||p which bounds the
former. Details in [?]. O

Corollary 4.23. If a tensor X admits a canonical approzimation rank R
and accuracy €, then there exists a tensor train approximation with com-
pression ranks v, < R and accuracy v/d — le.

Corollary 4.24. Given a tensor X, denote by € = infy ||X — Y||r the
infimum of distances between X and tensor train Y with prescribed upper
bounds 1, on the ranks of unfoldings matrices (compression ranks), i.e.
rankY (W < ry. Then the optimal Y exists (in a fact a minimum) and
the TT approximation T constructed in the proof of Theorem 4.22 is quasi-
optimal in the sense that

1C — T||p < VA - 1e. (65)

It is then natural to propose the TT-SVD [? | algorithm for the approxi-
mation of a full format tensor into TT format.

49

Algorithm 5: TT-SVD
input : F e R™ > X" truncation rank r or prescribed error
output: X(iy,...,ig) = > - Gi(ao,i1,a1) - Gir(@g—1, 14, aq)

Qg,...,ag=1

1 Compute the truncation parameter § = \/dE_ﬁHi}'HF ;

2 Temporary tensor: €= A, rg =1
fori=1,...,d do

/* reshape(C, r;, 1n;, n:mi(nc)) */
3 C =Cl;
/* truncated SVD at given rank r; */
UXVT =tSVD(C,r,9) ;
5 G; = reshape(U, [ri—1,n4,7]) ;
B C=3XVT;
7 Gq=C;

return X =[Gy, Ga, ...G4]

Remark 4.25. In addition to the linear algebra algorithms mentioned in
section 3.7, many algorithms have been developed to convert from canonical
[?], Tucker or HT to TT, for instance, one can refer to [? , Chap. 12 & 13].
Also, one may need to recompress an existing T'T tensor (for example after
summing two TT tensors), to do so Oseledets proposes the TT-rounding
algorithm [?]| based on a combination of QR decompositions and SVD.

Actually this algorithm relies on the same methodology as the ST-HOSVD
but stores the results in the cores thus leading to TT format. As stated
earlier, this leads to a linear storage cost in d which is much more efficient
than Tucker format. In addition to that, the weights of the entries are stored
in the last mode/core G4 = G4 and modes relations are stored within the
cores themselves without requiring a single core tensor.

Sampling algorithms for high dimensional TT This kind of algo-
rithm is very well suited to analyze data from existing simulations in the
context of fluid dynamics. However, if the dimensions of the studied prob-
lem grows above 5 it becomes intractable to either store the data or solve
the SVD problem. In order to circumvent this difficulty, one might rely on a
family of methods that will be referred as sampling algorithms. They come
under many names including maxvol for matrices skeleton decomposition or
TT-cross, TT-DMRG-cross,.... Obviously this can be done in many for-
mats, included the also well suited HT format (see BlackBox algorithm [?

50

). A short overview is proposed, many more can be found in the literature,
including in [? 7 7].

4.4 Hierarchical Tucker decomposition

Hierarchical Tucker decomposition is a growing topic in the tensor de-
composition community [? ? ? ? |. It has been shown to be very efficient
to tackle large datasets [? ? 7 | since it can be viewed as a “special-
ization of Tucker format” for large number of dimensions. As seen in the
tensor format section (3.2), efficient strategies have been developed to con-
vert other formats into HT (see [?]) as well as truncation (leaf to root
and root to leaf) and orthonormalization strategies proposed by Grasedyck
[?]. These algorithms have already been implemented in publicly available
libraries including D. Kressner and C. Tobler htucker MATLAB library
[?]. It has also been shown that HT decomposition is very well suited for
sampling algorithms, one such example is the Black Box algorithm proposed
by Ballany, Grasedyck and Kluge in [?].

4.5 The Recursive-POD (R-POD)

The Recursive POD [?] is an extension of the usual bivariate POD, it
fulfills quasi-optimality in higher dimension. The essence of this method is
to perform successive (recursively) POD on the field that is to be tensorized.
A field function f : D € R* — RY i.e. a function of d variables is first
processed as a (1,d—1) field that can be separated thanks to POD. Once the
first POD has been performed, one obtains the POD modes X7 : Q; — R4
basis functions of Q; and ¢} : D/ — R?, a set of functions of d — 1
variables. The the same POD process is performed again on each POD
mode recursively until the POD modes are univariate functions.

Remark 4.26. It should be noted that the RPOD is the extension to mul-
tiple variables that overcomes the bivariate nature of POD. Consequently
every conclusion concerning POD remains true except optimality proper-
ties. For short, it means that any algorithm available to compute a POD
i.e. POD, PGD and to some extent direct SVD may be used to compute
the recursive POD. All algorithmic properties are preserved and method
choices should align with 2D experiment conclusion.

Introductory example : R-POD on a 3D field Let f: D = Q) xQs X
Q3 C R* — R a Lebesgue square integrable function and w = (y, z) € R2.
Since L?*(D) and L?*(Q, L*(D/Q4)) are isometric, the POD of f(z,w) is

o1

well defined and reads
M
f(x,y,2) = f(z,w) = fA5 5 (x,w) Z X (z (66)
m=1

As for the 2D POD it is handy to normalize all modes and store their relative
weight into (o) € RM. Then the POD of f reads

f(z,y,2) = flz,w) = fA (2, w) Z O X () P (W) (67)

It is now necessary to separate each 2D field ¢, obtained during the
first step i.e.

K(m)
VISm <M, ¢m(w)=dm(y,2) ~ um xm) (Y, 2 Z Zi(2)
(68)
Then, these two results are combined into one tensorisation of field f,
M K(m)
f@y.2)~ fu(@y,2) =Y Y omdl Xn(@) Y W) 20 (2) (69)
m=1 k=1

Remark 4.27 (K(m)). As each POD on level ¢,,(y, z) is performed in-
dependently, if the number of dominant POD modes is dependent of an
error estimator, then K(m) may change with m. Then a R-POD rank is
defined as the number of modes at each recursion level. An illustration of
the spread of K (m) is provided by figure 16. It can be seen that in this
matrix representation that some ;"' are missing. They correspond to the
unneeded /uncomputed modes. For practical reason, this representation of
¥ = (67")km may be useful to compare RPOD with ST-HOSVD and also fa-
cilitates the implementation setting discarded modes as constant functions
with a nil weight.

Obviously, this sum of sums can be reordered and written as one single
sum. In this work, the following bijective numbering function is used

h: N2 — N
m—1
(m.k) —l=k+ > K(i)

=1

92

K(m)

Figure 16: Visual RPOD rank for 3 parameter function. Blue columns
correspond to the coordinates (m, k) where &} is defined while gray crossed
areas correspond to coordinates where ;" is not defined (not computed).

Then a new weight list is defined as 01—y (m r) = om0} Finally the R-POD
approximation of f reads

L
fr(@,y,2) = ot Xi(2)Yi(y) Zi(2) (70)
=1

Generalization of this example is straightforward, however, notations
quickly become cumbersome for higher dimension.

POD(f(x1:x2,x3))

ol[1] ol(2] o131

POD(@1[11(x2,x3)) POD(¢1[2](x2,x3)) POD(@1[3](x2,x3))

w;ol[ﬂl i01[13] iul[Zl] ;01[22] ial[3l]

Figure 17: Example of a Recursive POD graph of f(x1,x2,x3)

Another approach is to represent the recursion graph or decomposition
graph as shown in Fig. 17. In this case, there is no need to introduce a

93

renumbering, all the information is contained in the graph. Notations and
programming remain simple as each decomposition (as well as reconstruc-
tion) is performed independently, each node of the tree only “knows” its
children. This approach is very natural from a mathematical point of view
however it is uncommon in computational mechanics.

The extension of the R-POD to any n-dimension is presented and anal-
ysed in [?] We limit here its presentation by the following algorithm

Algorithm 6: RPOD

input : f € L?(D), computing domain D, target error &
output: rpod_tree=[[R,S, X]]

1 R=1[]; /* List containing the exact RPOD rank */
S=1[]; /* List containing the local singular values */
X=[]; /* List containing the local eigen functions */

2 ¢(.’E,’UJ) = f(xla (‘r27 "'axd)) 5
3 [R,oRr, Ug(x), Vg(w)] = trunc_.POD(¢,¢) ;
4 R.append(R) ;
S.append(og) ;
X.append(Ug), ;
if dim(w) > 2 then
for m < R do
5 Pz, s) = Vo(w) ;
6 L (Rioes Sioes Xioc)-append(RPOD(¢, D/Qy, €)) ;

7 (R, S, X).append(Rioc, Siocs Xioc) ;
else
8 X.append(Vg) ; /* Last dimension, then keep Vx as RPOD
modes */

r(;turn fr =1R,S,X]]

Operation count In order to ease comparison with its most similar
method, we suppose that each local POD is solved through the same trun-
cate SVD algorithm that is used in the ST-HOSVD though it might not be
the best choice for accuracy of computing efficiency. Then the SVD of a
n X m matrix operation count is O(m?n). The sum of the last column of
table yields the following estimate if the samples number is identical for all

o4

Level Operations Count Hypercube Cost

1 1x POD[n; X (n2...nq)] O(n2(na..nq)) On?+1)
2 M1>< POD[(ng X (ngnd)] Mlo(n%(ng...’nd)) O(Mnd)
3 >y <ary M2(m1)x My M;0(nZ(ng..nq)) O(M?*n-T)

POD[(n3 X (n4...nq)]

a1 | 220 e S My My =203y (na) | (P

Table 2: Operation count at each step of the RPOD algorithm.

variables as sigma map tensor is a full hypercube.

d—1
O <Z Rilndi+2> (71)

i=1

One can see that this is exactly the same term as the first term in ST-
HOSVD operation count evaluation. The second one is not necessary since
the RPOD algorithm does not requires to compute an intermediate func-
tion/tensor. Additionally, this results does not account sum length number
of modes variation within each dimension.

4.6 Proper Generalized Decomposition

In this section we present the PGD for d parameter functions both for a
priori and a posteriori model reduction. The first subsection presents the
theoretical justification of this class of methods. The second section focuses
on the algorithm proposed by Chinesta which is the only PGD implemented
so far. Finally, in subsection 4.6, a brief overview of the link with the CP
decomposition is proposed and some conclusions about this kind of methods
are drawn.

Theoretical background of the PGD The general setting of weak for-
mulation in an Hilbert space is used in this presentation of the PGD.

On V a Hilbert space, we define the following abstract formulation
ueV, A(u,v) =L(v) YweV (72)
Where A is a bilinear form on V and £ is a linear formon V. V = V1 ®

---®Vy is a tensor product of Hilbert spaces provided with a scalar product
and its associated norm.

95

S the set of rank-one tensors is introduced
Si={z=w'e --ouw;w eV, ke{l,..d}} (73)

as well as S,,, the set of rank-m tensors

Sn={v=>Y z;z€8,ic{l,.,m}} (74)

i=1

The naive problem of finding an optimal representation w,, € S, of a given
element u € V is not trivial and has been extensively studied. As stated
in section 4.1, the problem is even ill posed for d > 3. Then one must add
suitable constraints like orthogonality or boundedness to define a suitable
optimization problem on &,,. In the context of PGD, modes along one
dimension are orthogonal to one another, for unicity purpose these modes
are normalized with respect to the chosen norm except for the last dimension
(here for k = d) which accounts for the norm of z;.
For a posteriori processing, we have

A(u,v):/guv du (75)
o) = [fodu (76)

Introducing these notations might seem cumbersome, however it eases a
lot the use of more complex functionals as long as they verify the same
properties. Now a short version of the rigorous analysis of the progressive
PGD proposed by Falcé in [? ?]. In the following all the assumed properties
are easily verified for A the scalar product operator and £ a scalar product
against f as defined in equations (75) and (76).

It is assumed that A is bounded and coercive. Then equation 72 is
project on V an N-dimensional subspace of V' which the classical way of
Galerkin methods.

u € Vi, A(u,v) = L(v) Yv € Vy (77)

Thanks to Riesz representation theorem, A : V. — V the operator associ-
ated to A is introduced
A(u,v) = (Au, v) (78)

and f € V associated with £

L(v) = (f,v) (79)

96

Then the problem (77) can be rewritten in an operator form
Au=f (80)

It is further assumed that Yo € V, 3¢ > 0 such that ||Av|| > C||v|| . From
the properties of A and its adjoint A*, AA* is a self adjoint continuous
and V-elliptic operator. Consequently it defines an inner product on V
denoted (-,-) 44+ = (A-, A-) whose associated norm is equivalent to the || - ||
norm. Then formulation 77 is equivalent to the following minimal residual
formulation

= i — Av|| = in [[A"1f — 1
u arggrenvrillf v arggg;{{H f = (81)

If one chooses Vy = Sy then for A = I the PGD solves the same problem
as the truncated CP decomposition provided by an ALS algorithm. Now,
a convergent PGD algorithm is provided. Moreover it coincides with the
PGD definition given by Chinesta et al. [?].

Remark 4.28. The Galerkin problem can be solved on several basis which
means that PGD is available on Hilbert tensor spaces in format that mimic
any tensor reduction technique. For example Falcé demonstrates the con-
vergence of PGD on a basis similar to the HOSVD in [?]. Thus one can
conclude that PGD for a posteriori processing is the continuous version of
the well established tensor low rank approximation. Even though a wide
variety of integration technique and PGD algorithms are available, it seems
that the vast literature investigating tensor reduction proves to be much
more efficient at post-processing.

Additionally, the inverse observation can be made for solving PDEs on re-
duced basis using reduced tensor representation. These algorithms might
benefit for the preexisting knowledge in a priori PGD.

On the convergence of the progressive PGD. In order to show the
converge of this algorithm, a generalization of the Eckart-Young theorem
has been provided by Falc6 and Nouy in [?]. Since the general problem of a
rank-k separated representation is ill posed [?], they proposed a progressive
algorithm that converges. It is based on successive rank-1 approximations
which are known to be optimal thus the link with singular values.

Lemma 4.29. Given that Sy is weakly closed for || - || then for each z €
V,Jv* € §; such that

Iz —o*[|* = min ||z — v[|?
vES

o7

Finding v* in the previous equation is a map defined by

II: ZGV—)H(Z)ESl

2 — arg minges, ||z — v|?

Definition 4.30 (Progressive separated representation of an element in V).
For a Given z € V, the sequence {2, },>0 with z, € S, is defined as follow:
zo =0 and for n > 1,

Zn = Zz(i) = Zaiw(i), 2D e T(z - 2i_1) (82)
i=1 i=1

zpn is the rank-n progressive separated representation of z with respect to
the norm || - ||

Theorem 4.31 (Generalized Eckart-Young theorem according to Falc6 and
Nouy). For z € V, the sequence {2y }n>0 from definition 4.30 verifies

o0
— 1 - w®
z= nh~>nolo Zp = Zalw
i=1
This proves the convergence of the PGD algorithm which is a succession
of optimal progressive separated representation as defined in (4.30) with the
projector associated to A.

Remark 4.32. As stated by Falc6 and Nouy, this is the simplest definition
of PGD, other definitions where provided in the literature which may display
better convergence properties. One of them is the direct equivalent of the
ALS algorithm [?].

A Galerkin PGD algorithm for d parameter functions according
to Chinesta In order to determine each element of the sequence an en-
richment process is devised. Let Q = Q1 x --- x Q; where each ; € R
and f € L?(Q)!. Then, the goal is to compute univariate basis functions
(XF)r_,, V1 <i < dusing a fixed point algorithm in alternating directions.
The weak formulation of our problem reads

vu € HY(9), /Qu*(u - (83)

"Here we assume without loss of generality that §2; is a subset of R but it could be any
domain on which an integral can be defined. e.g. 2D or 3D domains.

98

It is assumed that u™~' = Y73 T2, XF(x;) is known thus u” is sought
under the form

d
u =" 4 H X7 () (84)

The process of adding terms to the sum, i.e. computing the sequence
(u") is called the enrichment process. This process ends when a stopping
criterion is fulfilled. Since in the general case, one does not knows the exact
solution, it is chosen to stop the process when the weight of the last term
compared to the rest of the series becomes negligible. This reads

I TT, X7 ey 11 XGl2)
HH;’=1 X2 @) ||X llL2) —

Indeed the terms are of decreasing norm, then there is no need to compare
the whole series, the first term is sufficient. In addition to that, we define
X; such as Vi < D, || X|[z2(n) = 1 all the information about the norm is
enclosed in Xp.

E(r) =

Eenrichment (85)

Fixed point algorithm. This is an iterative algorithms that, in practice,
usually converges in a few iterations. It is an alternated direction algorithm,
i.e. each direction is computed one at a time.

Remark 4.33. From now on, r in X is omitted to simplify the writing at
enrichment step 7.

It is assumed that the fixed point series {)/(\'Zk }i, Vi < d is known after
step k. Thus u = u""1 + Hil XE. Moreover, it is assumed that direction

s is to be updated which means)?ikﬂ is already known Vi < s.
The test function u* is set to

s—1
=[] XF (2) X" () H X (x) (86)
=1 i=s+1
Given all previous equation, the following weak formulation stands
s—1 R d R
/ lHXf+1X* H XZI@(T 1+HX]€+1 H Xk:)]:0 (87)
Q|; i=s+1 i=s+1

This equation writes : find X k+1 such that for each X*

p— 1

o / XX g, = / X*Z XJ dms / Xy () da,
Q
s j 1

99

where

s s5— e d o
@ = szll fQZ (Xz‘kH)2 | P fQi (XF)? (88)
s/ s— S P d S ; .
B (j) = Hi:ll fsz XZHIXZ? || P fszi XFX) Vi<p (89)
s—1 v D v
v (xs) = fQ/QS Hi:l XikH Hi:erl Xz‘kf (90)

Finally the strong formulation stands

_ =0 (B U)X () ()

vk
Xs +1(x5) o’

Va, € Q (91)

All the X; are normalized i.c. H)?ik—‘rl”LZ(Qi) = 1 so that all the information
relative to the norm is transfered to the last element X4. This algorithm is
performed for s = 1,d and each time a family (X*™!);<;<, is complete the
convergence stopping criterion is tested. It reads

‘|Xk+1 _XkHL2 Q;
gfizedpoint(k) = d| Xk d (&) < € fized point (92)
REAIEIH!

PGD and CPD It clearly appears that the PGD falls in the domain of
canonical representation format C, for functional spaces. The same state-
ment can be made for CP decomposition where the underlying space is R<.
Consequently, for a posteriori processing of tensor data, these two decom-
position techniques are freely interchangeable. Then any favorable property
of one is applicable to the other. Unfortunately, this remains true for the
downsides like the ill-posedness of a general best rank-r approximation.
This approach has been shown to be poorly efficient compared to Tucker
format methods but may represent a first step in an attempt to compute
low rank approximations of tensors.

However, the main strength of the recursive techniques is that they are
mostly cheap!?, easy to program and produces a priori reduced order bases.
Indeed in many situations where high precision is not a goal or simply
unrealistic but many parameters are used, PGD (or CP alternatives) in
some of its formulation is a very interesting process that enables calculations
that are simply out of reach for direct simulations.

Remark 4.34. There is a vast literature concerning PGD algorithm applied
to (mainly elliptic) problems [? ?]. It turns out that different kind of PGD

128 long a one only requires a small number of modes as compared to the full represen-
tation, PGD can be efficient since it computes only the required information.

60

algorithm [? | work best on different kind of problems (Galerkin PGD,
minimum residual PGD, Krylov PGD, Greedy Completely Orthogonal PGD
,etc.) . Then, there is no general PGD algorihtm however the one that was
presented in the previous section seems to be robust though may require
many iteration to converge.

5 Numerics

In this section, we propose a comprehensive numerical study of the decompo-
sition methods that have been presented. Indeed, very limited comparison
between these methods is available in the literature, the goal, here, is to
provide a general view of decomposition methods at work and draw conclu-
sions on their use in the context of scientific computing and in particular as
a first stage to develop ROM.

These numerical experiments have been performed using a python de-
composition library pydecomp'® which is presented in greater detail in [?].
As we have seen, POD and SVD are essentially equivalent methods which
is why the implementation allows the user to use either one for higher order
decomposition. The same is true for canonical decomposition and PGD as
shown in the previous section. Consequently these experiments explore a
wide variety of setups for synthetic data. In [?], the reader can find many
more numerical experiments and in particular a large section on actual data.

Synthetic data comparison

Using synthetic data is very useful to test the methods and a variety
of parameters that might influence the convergence and compression rates.
Our data is generated on uniform grids'* of n; x --- x ng that discretizes
Q = [0,1]¢. The following real test functions are used

file) = %le
fa(x) = sin(|lz[]2)

f3() /1— Ha:

13htt:ps ://git.notus-cfd.org/llestandi/python_decomposition_library

Using a non uniform grid would have little influence on the accuracy given that one
uses accurate integration schemes. However it may help to increase the computing
speed by using a sparser grid.

61

https://git.notus-cfd.org/llestandi/python_decomposition_library

A special function was used to reproduce singularity for d = 5,

fo(x) = a3{sin[bror + 3log(x? + 23 + 23 + x3 + 72)] — 1}?
+(I1 + T3 — 1)(2I2 — 1‘3)(4$5 — I4) COS[30(£E1 =+ T3 + Tq —+ 175)]
log(6 + z2a2 4 x3) — 4x?wou? (—as + 1)3/2

A typical case d = 3. In order to evaluate the separability of these three
test functions, we chose a relatively coarse grid of 32 x 32 x 32. The results
are presented for all three functions in Fig. 18. These graphs present the
relative decomposition error'® defined by

€ = Hjlexact - “TdecompH
| |7exact ‘ | ’

(93)

as a function of the compression rate (in %) which is the storage cost of a
decomposition at a given rank divided by the storage cost of the full format

tensor i.e.
Mem_cost (T gecomp)

CR =
Mem_cost(Texact)

(%100 for %). (94)

First, all 5 methods are tested with L?-norm and scalar product i.e.
POD is applied as a bivariate decomposition method. A distinct pattern
can be observed in these 3 figures. The least efficient compression method
is PGD, which was expected in terms of CPU time due to the iterative algo-
rithms at the center of the method. However as the format is very efficient
by definition one could hope that the sub-optimality of the algorithm (see
sections 4.6 and 4.1 for PGD and ALS NP hard problem) would not impact
too much the decomposition. Actually, in spite of acceptable convergence of
the fixed point algorithm, the compression rate of PGD grows much quicker
than any other methods. Still it should be noted that in all three cases, it
provides the best rank-1 decomposition as one should expect for a method
based on successive rank-1 decompositions.Then it is clear for all 3 func-
tions that TT-POD and ST-HOPOD are the most efficient methods, both
showing exponential decay, although with a slope change for fo (Fig. 18b)
as it is the least separable of all three functions. One should note that
the ST-HOPOD and T-HOPOD are superposed, this behavior was already
observed in [? | (for SVD based decompositions) in the case of easily sep-
arable functions. As we will see in the next paragraph the main difference
lies in the computing time of the methods. Additionally, one can see that

The norm is not specified here as it can be either a Frobenius norm of tensors or
theL?(Q) norm.

62

+—+ SHO_POD
+—+ TT_POD
1072 ¢ o e PGD
+— RPOD
+ =+ HO_POD
107
S
= -4
5 107k
3
2
5100
& ® e
10} 3
107 F
i i i i i i
0 1 2 3 4 5 6 7
Compresion rate (%)
(a) fu
10"
+— SHO_POD
+—+ TT_POD
102} i o @ PGD
o +— RPOD
\ +~ =+ HO_POD
3| T
10 \...
g o,
0104k %o
) ..
£ RN
© Te -
[0 -5 -
210°t e
e
10}
107}
i i i i
0 5 10 15 20
Compresion rate (%)
(b) f2
10"
—+ SHO_POD
+—+ TT_POD
107 F : : : e e PGD
. +—+ RPOD
10° +~ + HO_POD
2 104]
w
3
=
© 10}
[-~
< S ~a
100} i
107}
10°L i

1 2 3 4 5 6 7 8
Compr%i? rate (%)

(c) fs

Figure 18: Decomposition of 3 test functions with d = 3 on a 323 grid
with 5 discretization methods, using L? integration and norm. Remark:
in these graphs, SHOpODandHOpODstandforST — HOPODandI —
HOPO Drespectively.

TT-POD is less efficient for these small 3D problem as the core does not re-
quire much memory in Tucker format. Finally the RPOD is close to TT for
the lowest truncation rank i.e. as long as they are virtually equivalent'6 but
the nature of this recursive decomposition creates decomposition error jump
when one enters a new branch with important weight. This phenomenon
of steps is most prominent in Fig. 18c. As said in 2.3 it is useless to show
different grid resolution as these functions are smooth and decomposition
behavior is thus uncorrelated with grid density, only the compression rate
would vary since it depends directly on the number of discrete points.

101 ;
*% SHO_SVD
+— TT_POD
102 | : (| *x TT_SVD
*% RSVD
+—+ SHO_POD
103 RPOD

Relative Error
=
o
S

Compresion rate (%)

Figure 19: Decomposition of f, on a 40° grid with L? and [? scalar products,
decomposition error in their relative norm

In order to assess the influence of the scalar product for higher dimen-
sions decomposition, f, the least separable of the synthetic data functions is
used, with d = 5 and 40 equispaced grid points in each dimension. Indeed,

16 Actually, for TT rank of 1 and and RPOD rank of 1 i.e. 1 mode only for each
dimension, then both algorithms are strictly equivalent, only the data structure is
different. Then when the rank grows, the association of modes by explicit summation
in Recursive format is less efficient than the implicit summation to the TT format.
Finally the truncation strategy used in the software requires that any branch with
a weight above truncation limit has at least one leaf kept in the evaluation and all
other leaves below the truncation limit are ignored. This results in cumulative loss
in precision which means that the rank/epsilon truncation in recursive format is less
sharp than in T'T format.

64

for easier decompositions on Cartesian grids, no difference can be seen in
the relative error graphs. Fig. 19 shows recursive, TT and sequentially
truncated tucker decompositions for both L? (POD) and [(SVD) scalar
products. One can see that for each method, the error and compression rate
are almost the same for both scalar products. The trend being overwhelm-
ingly driven by the method itself. Results might differ for different grid
types and functions with sharp variations in which an actual integration
would capture better these phenomena. Also one should notice that in this
case where d = 5, TT decomposition is now more efficient than ST-HOSVD
when high accuracy is required (¢ < 10*) and does not show any sign of
linear decay contrary the other methods. In particular RPOD clearly shows
a linear decay from 1073 onward in spite of being competitive for accuracy
up to 1%.

In conclusion as long as one uses a Cartesian grid, using SVD or POD
does not influence the compression behavior and other factors should be used
to decide which one to use depending on the use of this decomposition. For
ROM building, one should use a EDP adapted scalar product i.e. POD to
obtain orthonormal modes. It should also be preserved for physical analysis
of a problem. Another criterion is CPU time, especially if one only intends
to reduce storage cost of large datasets.

Relative CPU time On the same problem, let us focus on the CPU
times for each methods as well as the reconstruction time needed to obtain
a full tensor from the reduced representation. Results are shown in table
3. PGD has been voluntarily excluded from this table as it requires several
hours, T-HO**D is not shown either as it requires roughly 4 times the ST-
HO**D as expected from the number of dimensions. One can see that for
all these methods, SVD based decomposition is faster. This is due to the
implementation of POD that requires an additional diagonal (possibly mul-
tiple diagonals) matrix multiplication each time a scalar product is needed
as compared to the SVD by EVD. In the end, for TT and ST decomposi-
tions for which the cost of the bivariate decomposition is controlling CPU
time, this results in doubling the time for POD. For recursive decomposi-
tion, there are numerous overheads that makes the difference much smaller.
Regarding the evaluation time, it was not particularly optimized as it is
not a central task to reconstruct full tensors, more likely for higher order
tensors, one might need only to reconstruct a slice of the tensor. The third
column of table 3 is the evaluation of the last data point in Fig. 19. First
one can see that both recursive methods takes roughly the same time which
is 30 times more than the other two methods. This observation definitively
disqualifies recursive methods for data reduction purpose. The the Tucker

65

method computing (s) evaluation (s)

RPOD 9.535 31.80
RSVD 7.964 32.20
ST-HOSVD 1.096 1.23
ST-HOPOD 2.378 0.98
TT-SVD 1.205 1.19
TT-POD 2.206 1.13

Table 3: CPU times on f, for n = 40, d = 5 with a tolerance of ¢ = 1072

and TT are in the same range of reconstruction time, the slight differences
present here translate the slight variation in their number of modes due to
different truncation criteria implementation.

- SHO_SVD_4 [
RSVD_5

— TT.SVD_5
SHO_SVD 5 |]

Relative Error

=

o
o)
’

’

-
o
&
-
’

-
o
4
e
-
[
1
1
1
i

Compresion rate (%)

Figure 20: f, decomposition with d = 3 to 5 on a 32%¢ grid with three
decomposition methods, using L? integration and norm.

Number of dimensions and shift in the adequate methods. Now,
we investigate the influence of the number of dimensions in order to decide
upon which method to use. To do so, in Fig. 20 we compare the same
3 methods with SVD solvers and show on the same graphs relative error

66

as a function of compression rate for d = 3 to 5 in the decomposition
is function fs. One can see, once again that RSVD is the worst in all
cases but its distance to the other methods tends to diminish as d grows.
Indeed, the recursive structures prevents the storage cost to explode with
the number of dimensions d. This is also the main difference between TT
and Tucker format. While the latter is more efficient for d = 3 and remains
competitive!” up to d = 5 thanks to efficient decomposition, it is outclassed
for storage purpose by TT. This is particularly visible for d = 5 (sold lines).
Thus, one can conclude that TT decomposition should be preferred as soon
as d > b5 if the orhtonormality of the modes is not a criterion. For lower
order problems, it is probably preferable to choose ST-HOSVD method as
it ensures orhtonormality of the basis while being the most efficient method
at the same time.

Unbalanced grid. Another interesting experiment is variating the grid
resolution among dimensions. As mentioned in [? |, a good heuristic for
CPU time is to treat the largest dimension first in ST-HOSVD, this is also
true for RPOD and TT-SVD. It is also quite important for compression rate
in recursive format as few modes of the first dimension will be stored. As
one can see in Fig. 21, the large imbalance in favor of the first dimension
makes recursive decompositions comparable (although less efficient) with
ST-HOSVD. Fig. 21a shows an exponential decay of the error with respect
to the compression rate, just as observed for equal grid refinements in Fig.
20. The main difference lies in the comparatively higher efficiency of RPOD
together with much clearer “stepping” phenomenon. In Fig. 21b, one can
see that n; is 5 times bigger than the other n;, this leads to a far greater
efficiency of TT-SVD as compared with Fig. 19. Once again RPOD dis-
plays the same behavior as ST-HOSVD although the error is almost ten
times greater. As expected, methods that treat dimensions sequentially are
comparatively improving when the number of points in each dimension is
imbalanced. This should be taken into account when dealing with experi-
mental data.

6 Conclusion

In the era of super computers, scientific computing is confronted more than
ever to the curse of dimensionality. In this chapter, we have presented and
explained a new paradigm that aims at solving this paradox. The general
approach is to break the dimensionality with methods that turn exponential

17 most efficient methods depends on required accuracy for d = 4.

67

107 f 2 function decomposition, shape=[1000, 20, 15, 12]

+— RPOD
+— SHO_POD
+—+ TT_POD

102}

107}

AN

R
J \\i\\\

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Compresion rate (%)

Relative Error

10°F

(a) f2 decomposition on a 1000 x 20 x 15 x 12
grid with POD based methods

Vega function decomposition, shape=[100, 20, 20, 20, 20]
T

;
*—+ SHO_SVD
— TT_SVD
+— RSVD

10

,_.
2

\ N
\\\ \\\\ |

—— —
\ —

Relative Error

=
o
S

10°

—

10°
0.00 002 004 006 008 010 012 0.14

Compresion rate (%)

(b) fs decomposition on a 100 x 20 x 20 x 20 x 20
grid with SVD based methods.

Figure 21: Decomposition of synthetic functions fo and fs for unbalanced
grid refinements.

growth with respect to the number of dimension into linear growth. This
approach is two fold. First, data decomposition techniques aim at reducing
existing data in order to facilitate storage and manipulation. Second step
is to build reduced order models that solve slightly different problems with
acceptable loss of accuracy but for considerable decrease of computing time
(at least in the on-line phase). Often, low rank bases obtained with data
decomposition are used which is why it is often referred to as off-line phase.

68

Obviously, complex problems require extended analysis prior to building
such ROMs.

It was shown that bivariate decompositions are equivalent mathemati-

cally, they include matrix decomposition through SVD and function decom-
position through POD or PGD. By equivalent, we mean that they perform
the same operation on different spaces or norms. Their usual definitions
involve different algorithms that can be tweaked into one another. This is
supported by numerical implementation as long as convergence is reached.
It was highlighted that some fields are more separable than others. Conse-
quently, they have been deemed weakly separable and strongly or exponen-
tially separable. Extensive insight on numerics has been provided.
A broad review of tensor formats and decompositions was provided. To do
so, a complete description of these objects, their comparative advantages
and algorithms have been provided. The theoretical aspect indicates that
canonical decomposition, in spite of its d-linear storage cost, will produce
poor approximation since the problem is N P-complex. Tucker decomposi-
tion is composed of modes and a correlation tensor core of the same order
but of much smaller size than the original tensor. This structure makes
it particularly suitable for decomposition of low order tensors by successive
SVDs but larger dimension will cause exponential growth of the core tensor.
Finally, TT and Hierarchical formats introduce formats that grow linearly
with d while presenting SVD based decomposition. That makes them good
candidates for decomposition of high to very high number of dimension.
d = O(1000) is perfectly accessible, which leads to the new practice of
tensorization. Also, the distinction between formats and their associated
decomposition has been highlighted to prevent prejudicial confusion.

69

https://www.researchgate.net/publication/333426196

	Introduction
	Bivariate Decomposition
	Singular Value Decomposition
	Proper Orthogonal Decomposition
	Numerical experiments

	Tensor Spaces and Formats for decomposition
	Tensor spaces
	Overview of tensors of Rn1 @let@token nd i.e. multi-way arrays
	Full format
	Canonical format Cr
	Tucker format Tk
	Hierarchical Tucker format Hk
	Tensor Train format

	Higher Order Decomposition methods
	CP decomposition
	Tucker decomposition
	Tensor Train decomposition
	Hierarchical Tucker decomposition
	The Recursive-POD (R-POD)
	Proper Generalized Decomposition

	Numerics
	Conclusion

