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Objectives   Inhaled radon gas is a known alpha-emitting carcinogen linked especially to lung cancer. Studies on 
higher concentrations of indoor radon and childhood leukemia have conflicting but largely negative results. In 
this study, we aimed to create a sophisticated statistical model to predict indoor radon concentrations and apply 
it to a Finnish childhood leukemia case–control dataset.
Methods   Prediction was based on ~80 000 indoor radon measurements, which were linked to national registries for 
potential indoor radon predictors based on the literature. In modelling, we used classical methods, random forests 
and deep neural networks. We had 1093 cases and 3279 controls from a nationwide case–control study. We estimated 
odds ratio (OR) for childhood leukemia using conditional logistic regression adjusted for potential confounders.
Results   The r2 of the final log-linear model was 0.21 for houses and 0.20 for apartments. Using random forest 
method, we were able to obtain slightly better fit for both houses (r2 = 0.28) and apartments (r2 = 0.23). In a risk 
analysis based on the case–control data with log-linear model, we observed a non-significant (P=0.54) increase 
with predicted radon concentrations [OR for the 2nd quartile 1.08, 95% confidence interval (CI) 0.77–1.50, OR 
1.10 with 95% CI 0.79–1.53 for the 3rd, and 1.29 with 95% CI 0.93–1.77 for the highest quartile].
Conclusions   Our modelling and the previously published models performed similarly but involves major uncer-
tainties, and the results should be interpreted with caution. We observed a slight non-significant increase in risk 
of childhood leukemia related to higher average indoor radon concentrations.
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Radon (Rn-222) is an alpha-radioactive element in the 
decay chain of uranium. It is generated in the ground from 
the decay of radium and, as a gas, it occurs in high con-
centration in soil pore air. A number of physical factors 
and processes are involved in the generation and transfer 
of radon from mineral grains to soil gas and in the move-
ments of radon-bearing soil air. The entry of soil gas into 
built spaces is controlled by the flow dynamics of soil air 
in the porous soil media and through a large variety of 
gaps, air-permeable building elements and openings in 
the structures in contact with soil or in floor structures 
in crawl space houses. Indoor radon concentrations vary 

widely depending on the uranium concentration of the 
terrain, soil permeability, entry from the ground to build-
ings and ventilation (1–3). Finland has one of the highest 
average residential radon-222 concentrations in the world, 
96 Bq/m3, resulting in a mean annual effective dose of 1.6 
mSv based on ICRP-65 from 1993 and a dose of 4.5 mSv 
based on the ICRP-137 (4–6). The new ICRP-137 from 
2017 is based on both dosimetric estimates and epidemi-
ology. The radiation dose is largely due to the short-lived 
progeny rather than radon itself. Dose to the bone marrow 
from inhaled radon progeny is substantially lower than 
that to the lung (7, 8).
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Health effects of indoor radon

Uranium and hard-rock miners are exposed to very high 
concentrations of radon progeny and such occupational 
exposure has been shown to increase the risk of lung 
cancer (9). Lower residential radon concentrations have 
also been shown to increase the risk of lung cancer 
(10). The International Agency for Research on Cancer 
(IARC, World Health Organization) has classified radon 
as a recognized Group 1 human carcinogen (11). No 
excess of leukemia has been consistently associated with 
radon exposure in uranium miners (12–22).

Results from previous studies on the possible effect of 
exposure of indoor radon on risk of childhood leukemia 
have been largely negative but still inconclusive. The 
potential dose pathway for the association, in addition to 
the exposure of the red bone marrow, has been suggested 
to be through the exposure of lymphocytes within the 
tracheobronchial epithelium (23). Studies in Norway, 
France, the UK, and Switzerland showed no association, 
but a Danish case–control study with complete residential 
histories and a statistical model with 40% r2 reported an 
elevated risk (24–28). In these studies, exposure estimates 
were derived from model-based predictions of radon 
exposure (29–31). Efforts to construct a good prediction 
models have been made in the UK and detailed informa-
tion on soil has been essential (32, 33). Some smaller 
studies have used actual radon measurements but shown 
no materially elevated risks (34–37). In addition, several 
ecological studies have evaluated the association between 
incidence rates and regional average radon levels and 
have consistently reported positive risk estimates (38).

Estimation of indoor radon

When estimating the effects of indoor radon, or most 
other environmental exposures, a direct measurement 
would be the optimal way to define exposure. However, 
that is not always possible due to practical reasons. To 
study risk factors of small expected effect size with suf-
ficient statistical power, a large number of subjects is 
needed, and performing thousands or even millions of 
repeated on-site radon measurements does not currently 
appear feasible. Further, participation bias in measure-
ment program is likely to be a significant problem. How-
ever, robust results have been reported using statistical 
models for predicting radon concentrations in similar 
scenarios (29–31). Many country-specific models have 
been published with varying performance (29, 39).

Low-rise residential buildings (single family houses, 
semi-detached houses and terraced houses) will be 
referred to as houses. Dwellings in multi-story block 
houses are called apartments.

Indoor radon concentrations are determined by a 
variety of factors in a complex chain of processes. In 

low-rise residential houses, the soil-borne radon gas 
dominates, with regard to indoor radon concentration. 
The main processes include concentration of uranium in 
mineral grain, emanation of radon from mineral grains 
to soil gas, movements of radon-bearing soil air in the 
porous soil media, and entry of radon-bearing soil gas 
into living spaces. In foundation structures, gaps, air-
permeable building blocks, and openings in the struc-
tures increase the soil air entry into indoor spaces. The 
entry rate is controlled by the flow dynamics of soil air 
in the porous soil media and physical modelling shows 
that the air permeability of the sub-soil is a much more 
important factor than the effective area of the air leakage 
routes (40). Therefore, the highest values are measured 
in houses situated in hilly areas with porous soil of 
coarse gravel, for example on eskers (a long ridge of 
gravel or other sediment, typically having a winding 
course, deposited by meltwater from a retreating glacier 
or ice sheet). The lowest values in low-rise buildings are 
found in areas of impermeable clay. Air exchange in the 
building is the process of diluting radon concentration 
in indoor air (41).

In Finland, in apartment buildings soil-borne radon 
is not an important radon source, except for apartments 
on the lowest level and with floors in contact with soil. 
On upper floors, radon gas emanated from rock-based 
building materials, normally concrete elements, domi-
nates. The national average indoor radon concentration 
caused by building materials in apartments is clearly 
lower (49 Bq/m3) than the average concentrations caused 
by soil-borne radon in low-rise residential houses (121 
Bq/m3) (6). Also, the range of radon concentrations in 
apartments is narrower compared with houses as the 
percentage of measurements above 400 Bq/m3 in apart-
ments was 0.7% in the national survey and 3.8% in 
houses. Uranium concentration of local gravel material 
can be utilized as a determinant for radon concentration 
in apartments because gravel has been used as concrete 
ballast material. Other important predictors of indoor 
radon are the dwellings age and the existence of cel-
lars in detached houses (42, 43). Also, the story of the 
dwelling in blocks of flats has been shown to predict 
the concentration (44, 45). Seasonal variation has also 
been documented (43). Radon concentrations are highest 
during the heating season. Indoor radon measurements 
have been carried out in the period of November–April 
in Finland (46).

Modelling indoor radon concentrations has been 
proven to be particularly difficult as limited or no data 
are available on several important determinants. For 
example, the type of building foundation correlates 
strongly with radon concentrations but is rarely available 
(3, 43). The same stands true also for the type or source 
of gravel used for the foundation. However, due to the 
importance of the data from the original building soil, 
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the effect of the lack in the knowledge of the transported 
layers of mineral material is decreased. Ventilation 
strategies, either natural or mechanical, are not included 
in the database of the Population Register Centre of 
Finland. However, history of the prevalence of ventila-
tion strategies in Finnish low-rise residential buildings 
is well known based on national sample surveys (6, 41, 
47). With regard to modelling, the effect of ventilation 
strategies seems to be limited compared with uranium 
concentration in soil or soil permeability (41).

The building code for radon prevention and the 
associated practical guidelines were revised in Finland 
in 2003–2004. Thereafter, preventive measures have 
become more common and effective and, in houses 
completed since 2006, indoor radon concentrations have 
been markedly reduced. These data are of great impor-
tance when constructing a statistical model. The national 
radon prevention study in 2009 showed that in houses 
with preventive measures, the radon concentration was 
on average reduced by ≥50% compared with houses with 
no preventive measures (47).

Furthermore, results from more than 200 000 indi-
vidual radon measurements in Finnish dwellings are 
recorded in the database of the Radiation and Nuclear 
Safety Authority. In Finland, only regional indoor radon 
modelling has been conducted and no nationwide studies 
on modelling radon concentrations have been published.

Aims of the study

Using statistics, we modelled indoor radon concentra-
tion in a given dwelling using measurements from the 
nationwide database and internally validated its perfor-
mance and robustness. Then we applied the model to 
examine potential association between residential radon 
and childhood leukemia using data from a nationwide 
childhood leukemia case–control study (48).

Methods

Radon measurements

We obtained results of all indoor radon measurements 
(N=244 059) from the database compiled by STUK – 
the Radiation and Nuclear Safety Authority and linked 
them to the building database of the Population Register 
Center by address and postal code. We used the oldest 
available measurement from each dwelling to minimize 
the effect of potential radon protection renovations. If 
there were two or more measurements with the same 
start dates, the one with higher measured concentration 
was used to maximize the models’ ability to recognize 
the high concentrations.

Combining databases

The Population Register Centers building database con-
tains data on a dwelling type (house versus apartment), 
year of completion, floor area (m2), total area (m2), total 
volume (m3), number of floors, area of the basement, 
main building material (rock-based materials, wood, 
others) and air-conditioning. All predictive variables 
were required to be available from nationwide registries 
(Population Registry Center) and, thus, not all important 
predictors, that were available only in STUK’s radon 
database (type of foundation, radon protection, the floor 
of the dwelling), could be utilized in modelling.

The linkage of the measurements to the building 
database of the Population Register Center was based on 
street address and postal code as the key. This resulted in 
one-to-many linking problem due to multiple buildings 
in the same postal address. In such cases, we selected 
buildings with the best match in terms of building type, 
year of completion and coordinates.

To deal with the remaining discrepancies between 
databases (STUK's and the Population Registry Cen-
ter’s Building databases) after the primary selection, 
we created three sets of filtering criteria to acquire the 
best compromise between accuracy and sample size. We 
also aimed to explore whether there would be substan-
tial differences in models with differently filtered radon 
datasets. The sample sizes of different filtering levels 
are represented in the figure 1. The first level required 
>100 m difference in Euclidean distance by coordinates, 
a >10-year difference in year of completion and no 
observable discrepancy in building type between the 
two databases. The second level required that there be 
no missing values in any of the filtering variables of the 
first level and thus all filters could be applied to every 
building (as the first level inhibited missing values from 
triggering the filter). The third level also allowed for no 
missing values and involved stricter criteria for >10 m 
Euclidean distance and identical year of completion. The 
numbers of buildings fulfilling the three sets of criteria 
are shown in the figure 1 (with other exclusions).

Radon concentrations in houses and apartments 
were modelled separately as the major predictors dif-
fered based on the literature. Dwellings with missing or 
ambiguous building type were excluded. For the house 
model, the median postal-code-specific indoor radon 
concentration was derived from the 20% of the measure-
ments sampled from the dataset left outside modelling 
to avoid using derivatives of the measurements as pre-
dictors. As the average number of dwellings per postal 
code area was relatively low and the total number of 
postal areas was relatively high, this resulted in some 
missing values (N=5697, 3.6%) and, also, some postal 
areas were represented by only few measurements. 
For the apartment model, we constructed a database of 
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county-specific median radon concentrations in apart-
ments based on two nationwide representative surveys 
(conducted in 1991 and 2006) (6, 49). The measure-
ments from the 1991 survey were calibrated to match 
the values from the more recent survey.

Additional data for the models

To complement the model, we obtained data on the soil 
type as vector maps and terrain elevation as a 100 × 
100 m square map from Geological Survey of Finland 
(GTK). Regarding the soil type, for each area, the map 
with the highest resolution (1:20 000, 1:50 000 and 
1:100 000) available was used. STUK also provided us 
with an 8 × 8 km square map of soil uranium concentra-
tion (Bq/kg) (50). The vector maps for dwellings were 

evaluated using QGIS (v. 3.2.1) and square maps were 
evaluated with a basic R script.

Detailed soil types were classified into three catego-
ries by permeability. The classification was based on the 
grain size distribution of the soil type. Air permeability 
of soil types is closely related to grain size distribution. 
Soil air permeability is highest for coarse gravel (grain 
size 6–20 mm) and lowest for clay with a very low grain 
size (>0.002 mm). The database presents the soil type 
at the depth of 1 meter, which is representative of the 
depth of house foundations. Several terms were created 
to characterize year of construction: a categorical vari-
able in 5-year intervals, as well as a separate indicator 
term for pre-1940 were used. For apartments, the latter 
term was defined with 1950 as the cut-off. The building 
material was classified as rock-based, wood, or other/
unknown. We also created a binary variable to estimate 
exhaust fan-based ventilation: any type of ventilation 
based on the building registry and building completed 
before year 2000 for houses and any type of ventilation 
with building completed between 1950 and 2006 for 
apartments. The presence of a basement was modelled as 
a three-step variable (no basement, basement and dwell-
ing built before 1990, basement and dwelling built after 
1990) due to new prevalent practice of hill-side houses 
instead of full basement houses.

Modelling indoor radon

We applied multiple approaches for developing the two 
final radon prediction models. The methods were used 
similarly for both models from predictor selection to 
validation. First, we started with a log-linear model with 
all the available predictors. All continuous potential 
predictors were log-transformed. We used a backward 
selection algorithm starting with the full model and used 
multiple imputation to deal with the missing data. The 
proportions of missing data for each potential predic-
tor are presented in the supplementary material (www.
sjweh.fi/show_abstract.php?abstract_id=3867), table 
S1. We defined measured indoor radon outliers as values 
with z>3 and excluded them.

We then created two categorical models with radon 
concentrations divided into quartiles: a polynomial and 
a multinomial. We also tested a model with a binary 
dependent variable by dividing the radon concentration 
by its 80th percentile. Finally, we experimented with 
modern machine learning algorithms (random forest and 
deep neural networks) as an alternative to the traditional 
methods (51, 52). For random forest models, we set the 
number of trees grown to 2000 and 560 for apartments 
and houses, respectively, based on the point, where the 
model errors started to converge. Deep neural network 
was specified as a 4-layer network with 256, 128, 64, 
and 1 nodes with rectified linear unit as activation func-

To optimize both accuracy and sample size, we decided on selecting the first level of filtering as the
basis for our main analyses.
a - Less than 100 m difference in Euclidean distance by coordinates, less than a 10-year difference in
year of completion and no observable discrepancy in building type.
b - Less than 100 m difference in Euclidean distance by coordinates, less than a 10-year difference in
year of completion, no observable discrepancy in building type and no missing values in any of the
filtering variables.
c - Less than 10 m difference in Euclidean distance by coordinates, no difference in year of
completion, no observable discrepancy in building type and no missing values in any of the filtering
variables.

Figure 1. Flow chart of the indoor radon measurements and the necessary 
exclusions. To optimize both accuracy and sample size, we selected the first 
level of filtering as the basis for our main analyses. 
a <100m difference in Euclidean distance by coordinates, <10-year differ-
ence in year of completion and no observable discrepancy in building type.
b <100m difference in Euclidean distance by coordinates, <10-year difference 
in year of completion and no observable discrepancy in building type and 
no missing values in any of the filtering variables.
c <10m difference in Euclidean distance by coordinates, a <10-year differ-
ence in year of completion and no observable discrepancy in building type 
and no missing values in any of the filtering variables.
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tion in each except the output layer. The model was 
trained with 80% of the data with additional 20% used 
as validation for each epoch for 1000 epochs or until 
convergence according to mean squared error.

We used five-fold cross validation to explore the 
robustness and potential over-fitting of the log-linear 
model. We also calculated the Spearman correlation 
between the measured and predicted indoor radon con-
centrations. Categorical models were evaluated with 
Cohen’s kappa. We performed sensitivity analyses on 
different levels of filtering regarding the slight discrep-
ancies between databases.

Childhood leukemia case–control study

The indoor radon exposure was predicted with log-linear 
model for the cases and controls using our nationwide 
case-control dataset (48). Briefly, the cases included all 
Finnish children diagnosed with childhood leukemia 
during 1990–2011. The 1100 cases were identified from 
Finnish Cancer Registry (M9800 - M9948 in ICD-O-3). 
Three controls were individually matched on sex and 
year of birth to each case from the Finnish Population 
Register Center. Each control was assigned a reference 
date to match the diagnosis of the respective case. We 
assumed a two-year latency based on results summa-
rized by UNSCEAR, which automatically results in 
null exposure for subjects less than two years of age at 
their reference date as well as their controls (53). These 
cases and their respective controls were excluded from 
the analyses. We obtained also complete residential his-
tories which yielded, in total, 7334 residencies with the 
aforementioned latency period. As a sensitivity analysis, 
we experimented with a five-year latency period.

The cases were classified by leukemia subtype into 
pre-B-ALL (precursor B-cell acute lymphoblastic leu-
kemia), T-ALL (T-cell acute lympoblastic leukemia), 
unspecified ALL, AML (acute myeloid leukemia) and 
others. The genetic subtypes were obtained from the 
hospital records. We obtained data on gestational age, 
birth weight, maternal smoking from the Medical Birth 
Registry. Diagnoses of Down syndrome and other con-
genital malformations were obtained from the Congeni-
tal Malformation Registry. In addition, we obtained data 
on parental education, occupation, and socioeconomic 
status from Statistics Finland.

When applying the model to the childhood leuke-
mia dataset for subjects (3.0% for cases and 2.6% for 
controls) with only municipality of residence available 
(for at least one residence), we used municipality-
specific radon estimates. For residential periods abroad 
(1.4% for cases and 0.7% for controls), we used world-
wide indoor radon average 39 Bq/m3 (54). In the rare 
cases where a dwelling could not be classified as either 
a house or an apartment, we also used the municipality-

specific median (1.2% for cases and 1.2% for controls). 
Otherwise, we applied the model after using multiple 
imputation for missing data on variables required for 
the prediction. As the dependent variable of the model 
was log-transformed before fitting the curve, the pre-
dictions represent geometric means of the estimated 
indoor radon concentrations when transformed back 
into Bq/m3.

Radon exposure prediction

We calculated cumulative radon exposure as Bq/m3 inte-
grating over time to cover the whole residential history 
taking two-year latency period into account and divided 
it into quartiles for the conditional logistic regression 
analyses. We also calculated the average concentra-
tion of the exposure period by dividing the cumulative 
exposure with the total length of the exposure period. 
Cumulative exposure accumulates with age and, thus, 
is highly correlated with it. The analyses were adjusted 
for potential confounders: Down syndrome (yes or no), 
large birth weight (LGA) (exceeds 90th birth weight 
percentile in relation to gestational duration), terrestrial 
gamma radiation and Chernobyl fallout [cumulative red 
bone marrow equivalent dose (mSv)], cumulative red 
bone marrow dose from CT exposure (mGy), maternal 
smoking during pregnancy (yes or no), as well as paren-
tal socioeconomic status and education. Both socioeco-
nomic status and education were known individually 
for each parent. Socioeconomic status was classified 
into five classes (self-employed, upper level employee, 
lower level employee, manual worker and other) and 
education into three levels (upper secondary, bachelor’s 
degree, master’s or doctor’s degree) (55).

Statistical analysis

All analyses were performed using R software version 
3.4.0. For the modelling and visualization, the R librar-
ies included: multiple imputation (Amelia, v. 1.7.5), 
k-fold cross validation (DAAG, v. 1.22), Cohen’s kappa 
(psych, v. 1.8.4), Bland-Altman plot (BlandAltmanLeh, 
v. 0.3.1; ggExtra, v. 0.8; ggplot2, v. 3.1.0), ordered logis-
tic regression (MASS, v. 7.3-51), Brant’s test (brant, v. 
0.2-0) multinomial logistic regression (nnet, v. 7.3-12), 
random forests (randomForest, v. 4.6-14), keras (keras, 
v. 2.2.0). The risk analyses after prediction were carried 
out with conditional logistic regression from the library 
survival (v. 2.43-1). Variance inflation was examined 
using car-library (v. 3.0-2). We used 5% as the signifi-
cance threshold and all reported p-values are two-sided. 
For multiple testing corrections we used the Benjamini-
Hochberg method. Effect modification was investigated 
by including interaction terms into the model and evalu-
ating improvement in model fit.
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Ethical considerations

No informed consent from the study subjects was needed 
according to the Finnish regulations as the study was 
carried out entirely through registers and databases, 
without any contact with the study subjects.

Results

Radon measurements

The median indoor radon concentration in 93 219 unique 
linked dwellings from the STUK database was 137.3 
Bq/m3 (IQR 68.0 Bq/m3, 267.4 Bq/m3), with the 95th 
percentile 732.7 Bq/m3, the 99th percentile 1913.0 Bq/m3 
and the maximum 38,883 Bq/m3. The distribution was 
log-normal and after log-transformation, the distribution 
was normalized when evaluated using a Q-Q plot.

After exclusions, the material included 73 903 
(94.1%) houses and 3709 (4.7%) apartments, with 
median radon concentrations 143 Bq/m3 (IQR 71 Bq/m3, 
276 Bq/m3) and 66 Bq/m3 (IQR 38 Bq/m3, 134 Bq/m3), 
respectively. The descriptive statistics and distributions 
of predictors are represented in tables 1a and b by indoor 
radon quartiles.

Modelling indoor radon concentrations

The final predictors, their estimates and confidence 
intervals (CI) with adjusted P-values for the log-linear 
model are reported in tables 2a, b and c. For the house 
model, most of the selected predictors had a highly 
statistically significant effect due to large sample size. 
Especially for the houses, the construction year dis-
played an inverted U-shaped curve relationship with 
indoor radon, with lower concentrations in newer build-
ings due to stricter radon protection regulation. Rock-
based building materials were associated with higher 
residential radon than wood as a building material, and 
higher indoor radon concentrations were also associated 
with more porous soil. Uranium concentration in soil 
exerted a major influence in the house model. In general, 
we identified fewer predictors with mostly smaller coef-
ficients for apartments.

For both models (houses and apartments), the year 
of completion was an important predictor. It explained 
10.6% and 4.61% of the variance and for the house and 
apartments, respectively. Soil permeability was also 
influential (houses 2.97% and apartments 7.05%). The 
other proportions of the variation explained by each 
predictor are reported in table 3. For the final log-linear 
house model, we observed Akaike’s information crite-
rion (AIC) 157 739 and Bayesian information criterion 

(BIC) 158 036 and for the apartment model AIC 9993 
and BIC 10 161.

Performance of the models

The final model of the log-transformed indoor radon 
concentration reached r2 of 0.21 for the house model 
and 0.20 the apartment model. The Spearman correla-
tion between the measured and predicted values in the 
validation dataset was 0.45 for the houses and 0.44 for 
the apartments. The scatterplots of measured and pre-
dicted indoor radon concentrations also showed only a 
modest correlation with a narrower range of predicted 
than observed concentrations (figure 2), but both models 
were unable to accurately identify the lowest and highest 
radon concentrations (figure 3). In the five-fold cross-
validation with 80–20 split, the models appeared robust 
with no indication of substantial over-fitting for either 
model. The mean squared error was 0.84 for the houses 
and 0.88 for the apartments. We observed variance infla-
tion due to multicollinearity of the predictors. For the 
apartments, the predictors with generalized variance-
inflation (GVIF) >2 were soil permeability (5.1), forma-
tion by ice-age (4.3), year of completion (2.3) and soil 
uranium concentration (2.3). For the house model, five 
predictors showed GVIF >2: soil permeability (2.6), 
formation by ice-age (2.4), year of completion (2.6), 
floor area (2.3) and total volume (2.2).

The weighted Cohen’s kappa for measured and pre-
dicted values by quartiles of measured indoor radon was 
0.33 for houses and 0.38 for apartments. If only one split 
at 80th percentile was used, the weighted kappa was 0.10 
for houses and 0.25 for apartments.

Exploratory modelling attempts

In exploratory analyses, the predictors of both dwelling 
types remained largely similar when an ordered logistic 
regression was used instead of the log-linear model to 
predict indoor radon in quartiles, but the assumption of 
parallel lines was not met for the categorized year of 
completion when evaluated with Brant’s test. This also 
applied to multinomial logistic regression. Ordinary 
logistic regression for binary radon split at p80 gave 
poor results.

We did not observe major changes in r2 (0.21–0.24 
for houses and 0.20–0.24 for apartments) or in the coef-
ficients when different levels of measurement filtering 
were used. Using modern machine learning methods, we 
were able to markedly improve the coefficient of deter-
mination [random forest (apartments 0.23, houses 0.28), 
deep neural network (apartments 0.19, houses 0.18)]. 
We also observed lower coefficients of determination 
when using the newest available radon concentration 
for each dwelling.
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Table 1a.  Proportions and statistics of the predictors by measured indoor radon quartiles. [IQR=interquartile range.]

1st quartile 2nd quartile 3rd quartile 4th quartile

Houses  
N=14 770 

(43.3 Bq/m3) a

Apartments 
N=932 

(27.0 Bq/m3) a

Houses 
N=14 767 

(103 Bq/m3) a

Apartments 
N=917 

(50.6 Bq/m3) a

Houses 
N=14 768 

(196 Bq/m3) a

Apartments 
N=924 

(88.0 Bq/m3) a

Houses 
N=14 768 

(438 Bq/m3) a

Apartments 
N=925 

(250 Bq/m3) a

N (%) N (%) N (%) N (%) N (%) N (%) N (%) N (%)
Building material

 Rock-based 1712 (11.6%) 883 (94.6%) 2211 (15.0%) 867 (94.5%) 2445 (16.6%) 877 (94.9%) 2602 (17.6%) 805 (87.0%)
 Wood 12802 (86.7%) 44 (4.7%) 12286 (83.2%) 38 (4.1%) 12087 (81.8%) 36 (3.9%) 11973 (81.1%) 109 (11.8%)
 Other 256 (1.7%) 6 (0.6%) 270 (1.8%) 12 (1.3%) 236 (1.6%) 11 (1.2%) 193 (1.3%) 11 (1.2%)

Soil permeability
 Impermeable 6166 (41.8%) 275 (29.5%) 6124 (41.5%) 273 (29.8%) 6094 (41.3%) 301 (34.7%) 5246 (35.5%) 253 (27.4%)
 Moderately 
permeable

6029 (40.8%) 186 (19.9%) 5989 (40.6%) 150 (16.4%) 5775 (39.1%) 175 (18.9%) 5230 (35.4%) 163 (17.7%)

 Highly permeable 1910 (12.9%) 97 (10.4%) 2097 (14.2%) 120 (13.1%) 2489 (16.9%) 127 (13.7%) 3996 (27.1%) 290 (31.4%)
Formation by ice-age

 On a formation 1341 (9.1%) 82 (8.8%) 1630 (11.0%) 99 (10.8%) 1999 (13.5%) 108 (11.7%) 3365 (22.8%) 257 (27.8%)
Mechanical ventilation

 Exhaust ventilation 
 (approx.) b

1723 (11.7%) 459 (49.2%) 2701 (18.3%) 457 (49.8%) 3425 (23.2%) 476 (51.5%) 3622 (24.5%) 506 (54.7%)

Basement
 Yes (built before 1990) 404 (2.7%) 85 (9.1%) 433 (2.9%) 52 (5.7%) 468 (3.2%) 35 (3.8%) 479 (3.2%) 46 (5.0%)
 Yes (built after 1990) 429 (2.9%) 57 (6.1%) 336 (2.3%) 50 (5.5%) 286 (1.9%) 49 (5.3%) 286 (1.9%) 58 (6.3%)

Number of floors
 Median 1 4 1 4 1 4 1 3
 IQR 1–2 3–6 1–2 3–4 1–2 4–5 1–2 2–4
 p95 2 8 2 8 2 8 2 7

a  Measured indoor radon concentration median.
b  For apartments, any ventilation reported and building completed between 1950 and 2006 was used as the definition; for houses, any ventilation and building com-

peted before the year 2000 was used as the definition.

Table 1b. Proportions and statistics of the predictors by measured indoor radon quartiles. [IQR=interquartile range.]

I quartile II quartile III quartile IV quartile

Houses 
(10.3–95.0) a

Apartments 
(15.3–85.7) a

Houses 
(10.3–95.0) a

Apartments 
(11.0–85.8) a

Houses 
(10.7–95.0) b

Apartments 
(13.9–83.4) b

Houses 
(10.7–95.0) b

Apartments 
(13.9–87.1) b

Median (IQR) Median (IQR) Median (IQR) Median (IQR) Median (IQR) Median (IQR) Median (IQR) Median (IQR)

Number of floors 1 (1–2) 4 (3–6) 1 (1–2) 4 (3–4) 1 (1–2) 4 (4–5) 1 (1–2) 3 (2–4)
Soil’s uranium (Bq/kg) 39.4 

(29.6–51.6)
45.2 

(31.5–62.5)
43.7 

(32.3–53.7)
51.8 

(34.5–66.3)
46.3 

(36.9–56.6)
51.8 

(41.4–66.3)
48.7 

(40.2–58.1)
51.8 

(45.0–59.7)
Area of the floors (m2) 154  

(116–200)
1973 

(1322–3101)
160  

(120–205)
2016 

(1298–2928)
163  

(126–206)
1784 

(1187–2725)
160  

(127–202)
1365 

(751–2050)
Total area (m2) 184  

(145–235)
2420 

(1580–3724)
184  

(149–244)
2396 

(1538–3610)
184  

(151–245)
2088 

(1284–3320)
184  

(151244)
1552 

(822–2336)
Total volume (m3) 565  

(455–750)
7382 

(4941–11597)
570  

(455–766)
7280 

(4840–10738)
566  

(459–766)
6482 

(4250–9971)
560  

(454–750)
4895 

(2780–7340)
Year of completion (year) 1979 

(1956–2004)
1973 

(1963–1986)
1981 

(1963–1995)
1972 

(1964–1984)
1983 

(1970–1992)
1974 

(1965–1985)
1983 

(1973–1991)
1979 

(1968–1988)
Terrain elevation (m) 84  

(31–106)
36  

(13–101)
87  

(43–108)
38  

(17–96)
89  

(46–109)
49  

(17–101)
91  

(50–112)
83  

(25–114)
Radon (area b-log) 6.67 

(6.10–7.07)
3.67 

(3.49–3.71)
6.63 

(6.11–6.97)
3.72 

(3.61–3.73)
6.68 

(6.31–6.95)
3.78 

(3.71–3.92)
6.82 

(6.56–7.01)
3.85 

(3.71–4.08)
a Soil’s uranium (Bq/kg): min–max.
b For houses and apartments the spatial units were postal areas and counties, respectively.

Childhood leukemia case-control data

After exclusions, we included 1093 (4 had prohibition 
of data use and 3 had incorrect identification codes) 
childhood leukemia cases diagnosed in 1990–2011. Of 
these, 826 (75.6%) were pre-B-ALL, 64 (5.9%) were 
T-ALL, 20 were unclassified ALL (1.8%), 146 were 
AML (13.6%), and 34 were other (3.1%). A majority 
of the cases were diagnosed at age 2–7 years, and the 

median age was 4.52 [interquartile range (IQR) 2.72, 
8.23]. Down syndrome, intrauterine growth, and mater-
nal smoking during pregnancy were associated with risk 
of childhood leukemia (table S2).

In total, there were 7443 different dwellings (1839 for 
cases and 5604 for controls) in the subjects’ residential 
histories using the two-year latency period. The residen-
tial radon concentrations were estimated with either the 
house (56.1%, N=1032 for cases and 54.9%, N=3079 for 
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Table 2a. Coefficients and 95% confidence intervals of the predictors from the final model after backwards selection algorithm. [CI=confidence interval]

Predictor Apartments Houses

coefficent (95% CI) P-value a coefficent (95% CI) P-value a

Other materials (ref) b 0
 Mainly built from rock-based materials - - 0.08 (0.02–0.14) 0.01
 Mainly built from wood - - -0.07 (-0.13–0.01) 0.02

Unknown or other soil (ref) b 0 0
 Impermeable soil 0.04 (-0.02–0.12) 0.4 0.10 (0.06–0.14) <0.001
 Moderate permeability soil 0.08 (-0.01–0.18) 0.10 0.16 (0.12–0.21) <0.001
 Highly permeable soil 0.31 (0.13–0.48) 0.001 0.27 (0.22–0.32) <0.001

Not on a land formation by the ice-age (ref) b 0 0
 On a land formation by the ice-age 0.23 (0.06–0.41) 0.02 0.27 (0.24–0.3) <0.001

No basement (ref) b 0
 Basement, dwelling built before 1990 - - 0.33 (0.28–0.37) <0.001
 Basement, dwelling built after 1990 - - 0.09 (0.04–0.14) 0.001

a Benjamini-Hochberg adjusted P-values.
b The reference category for class variables.

Table 2b. Coefficients and 95% confidence intervals of the predictors from the final model after backwards selection algorithm.

Predictor Apartments Houses
coefficent (95% CI) P-value a coefficent (95% CI) P-value a

Before the first category (ref) b 0 0
Built in

  1940–1945 - - 0.11 (0.04–0.19) 0.005
  1945–1950 - - 0.01 (-0.04–0.05) 0.8
  1950–1955 -0.33 (-0.52– -0.13) 0.002 -0.14 (-0.19– -0.1) <0.001
  1955–1960 -0.25 (-0.42– -0.09) 0.006 -0.20 (-0.25– -0.16) <0.001
  1960–1965 -0.32 (-0.46– -0.18) <0.001 0.10 (0.05–0.15) <0.001
  1965–1970 -0.25 (-0.38– -0.12) 0.001 0.22 (0.18–0.27) <0.001
  1970–1975 -0.13 (-0.25– -0.01) 0.06 0.35 (0.31–0.39) <0.001
  1975–1980 0.01 (-0.13–0.15) 0.90 0.43 (0.39–0.47) <0.001
  1980–1985 0.26 (0.12–0.39) 0.001 0.61 (0.57–0.65) <0.001
  1985–1990 0.22 (0.08–0.36) 0.005 0.57 (0.53–0.61) <0.001
  1990–1995 0.14 (-0.02–0.31) 0.10 0.50 (0.45–0.55) <0.001
  1995–2000 -0.04 (-0.23–0.15) 0.70 0.32 (0.27–0.37) <0.001
  2000–2005 -0.06 (-0.27–0.14) 0.60 0.08 (0.04–0.13) <0.001
  2005–2010 -0.43 (-0.66– -0.2) 0.001 -0.14 (-0.19– -0.1) <0.001
  2010–2015 -0.45 (-0.72– -0.18) 0.003 -0.53 (-0.57– -0.48) <0.001
  2015–2020 0.06 (-0.86–0.98) 0.90 -0.76 (-0.9– -0.61) <0.001

a Benjamini-Hochberg adjusted P-values.
b The reference category for class variables.

Table 2c. Coefficients and 95% confidence intervals of the predictors from the final model after backwards selection algorithm.

Predictor Apartments Houses

coefficent (95% CI) P-value a coefficent (95% CI) P-value a

Number of floors -0.16 (-0.25– -0.07) 0.001 -0.15 (-0.18– -0.13) <0.001
Floor area -0.13 (-0.07– -0.19) <0.001 -0.05 (-0.07– -0.03) <0.001
Total area of the building - - - -
Total volume of the building - - -0.01 (-0.03–0.00) 0.2
Elevation from sea level 0.07 (0.03–0.10) 0.001 0.15 (0.14–0.16) <0.001
Soil’s uranium concentration 0.17 (0.06–0.29) 0.007 0.70 (0.68–0.73) <0.001
County specific median radon 0.96 (0.79–1.13) <0.001 - -
Postal area specific median radon - - 0.09 (0.08–0.10) <0.001
Intercept 0.77 (0.19–1.35) 0.02 1.09 (0.92–1.25) <0.001
a Benjamini-Hochberg adjusted P-values.
b The reference category for class variables.
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Table 3. The proportions of explained variance by predictor

Predictor Variance explained (%)

Apartments House

Soil permeability 7.05 2.96
County specific median radon concentration a 6.50 -
Year of completion (5-year intervals) 4.91 10.5
Number of floors 1.27 0.17
Floor area 0.46 0.11
Formation by the ice-age (eskers etc.) 0.26 0.51
Elevation 0.19 1.46
Uranium concentration of the soil 0.003 3.57
Building material - 0.48
Basement b - 0.07
Total volume of the building - 0.03
Indoor radon median in the postal area c - 0.88
Residuals 79.4 79.3
a County specific median indoor radon concentration derived from calibrated 

representative nationwide surveys.
b Basement variable for houses consists of three classes: no basement, base-

ment and built before 1990, basement and built after 1990.
c Median postal code area specific indoor radon concentrations derived from a 

sample 20% of measurements left outside training the model.

On the left with black dots are the results from the house model and respectively on the right side
with grey are the results from the apartment model.

X-axes represent the mean of the predicted and measured indoor radon concentrations as on the Y-
axes is the difference (Measured - Predicted) of the values.

Figure 3. Bland-Altman plot of the predicted and measured indoor radon concentrations. The results from the house model are on the left with black dots. 
The apartment model is represented on the right side with grey dots. X axes represent the mean of the predicted and measured indoor radon concentration 
and on the Y axes is the difference (measured – predicted) of the values.

Black dots represent measurement prediction pairs from houses and the grey ones are for
apartments.

Figure 2. Scatter-plot of the measured and predicted indoor radon concentra-
tions. Black dots represent measurement prediction pairs from houses and 
the grey ones are for apartments.

controls) or the apartment model (38.3%, N=704 for cases 
and 40.5%, N=2271 for controls), except for 5.6% for 
cases and 4.5% for controls for whom municipality-spe-
cific medians were imputed due to lack of dwelling data.

Evaluating the model against direct measurements

Direct measurements were available for 1.4% (N=103) 
of the subjects’ residential periods (1.4%, N=25 for cases 
and 1.4%, N=78 for controls) when linking by address, 

city and the time period of the measurement to STUK 
radon database. The Spearman correlation between the 
predicted and measured radon concentrations of the sub-
jects was 0.36 and r2 was 0.10 after log-transformation. 
If direct measurements were matched also by year of 
completion (maximum 1-year discrepancy) and by 
coordinates (maximum 100 m Euclidean distance), there 
were, in total, 55 measurements [14 (25%) for cases, and 
41 (75%) for controls], and the Spearman correlation 
rose to 0.45 and the r2 became 0.11.
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Predicted radon concentrations

We made predictions of indoor radon concentration 
for each residential period with both the log-linear and 
random forest models. The correlation between these 
predictions for apartments was 0.52 and 0.49 for houses. 
Respectively, the correlation between the cumulative 
exposures (Bq/m3 years) of subjects was higher (0.93) 
and for the average concentration it was only 0.29, 
reflecting the effect of the total duration of all residential 
periods of each subject.

Using the log-linear model, the median predicted 
cumulative indoor radon exposure was 301 Bq/m3 years 
(IQR 121 Bq/m3 years, 625 Bq/m3 years) for the cases 
and 292 Bq/m3 years (IQR 116 Bq/m3 years, 636 Bq/m3 
years) for the controls. The median of the time-weighted 
average indoor radon concentration was 92 Bq/m3 (IQR 
68 Bq/m3, 123 Bq/m3) for cases and 89 Bq/m3 (IQR 67 
Bq/m3, 121 Bq/m3) for controls. For the random forests 
model, the median cumulative exposure among the cases 
was 357 Bq/m3 years (IQR 151 Bq/m3 years, 789 Bq/
m3 years) and for the controls 357 Bq/m3 years (IQR 
152 Bq/m3 years, 799 Bq/m3 years). The median of the 
average concentration for cases was 107 Bq/m3 (IQR 93 
Bq/m3, 127 Bq/m3) and for controls 107 Bq/m3 (IQR 93 
Bq/m3, 128 Bq/m3).

Risk analyses

In unadjusted analysis of exposure predicted with the 
log-linear models, we observed an odds ratio (OR) of 
0.87 (95% CI 0.63–1.19) for an increase of 1000 Bq/m3 
years in cumulative radon exposure. When the model 

was adjusted for potential confounders the OR was 1.06 
(95% CI 0.59–1.92). The results from both unadjusted 
and adjusted models for cumulative exposure, average 
concentration and quartiles are presented in table 4 
based on log-linear and random forest predictions. The 
dose–response curves based on quartiles are presented in 
figure 4 for predictions from both modelling approaches.

Exploratory and sensitivity analyses

In exploratory subgroup analyses for ALL patients with 
the log-linear model, we found an adjusted OR of 1.32 
(95% CI 0.67–2.60) for every 1000 Bq/m3-years. Simi-
larly, for subjects diagnosed before turning 6 years, the 
OR was 3.53 (95% CI 0.80–15.5). All subgroup analyses 
for both cumulative exposure and average concentration 
with log-linear and random forest predictions are shown 
in the supplementary table S3. The interaction term was 
not significant for subtypes nor age-groups.

As sensitivity analysis, we explored the effect of 
a longer, 5-year, latency period (489 cases and 1467 
controls). In unadjusted analyses with log-linear model, 
we observed an OR of 0.70 (95% CI 0.42–1.18) for 
an increase of 1000 Bq/m3 in cumulative exposure 
and when adjusted the similar OR was 0.93 (95% CI 

Table 4. Odds ratios (OR) and their confidence intervals (CI) from condi-
tional logistic regression analyses about the effect of predicted indoor 
radon concentration on childhood leukemia. Only subjects with non-
zero exposure were included. A latency period of two years was used. 
[Ref=rerence classes for factors.]

Log-linear Random forests

OR (95% CI) OR (95% CI)

Unadjusted models
 Cumulative (1000 Bq/m3-years) 0.87 (0.63–1.19) 0.94 (0.64–1.37)
 Average (10 Bq/m3) 0.99 (0.99–1.02) 1.00 (0.98–1.02)
By quartiles of average concentration

 1st ref ref
 2nd 0.91 (0.74–1.12) 1.02 (0.82–1.26)
 3rd 1.07 (0.87–1.31) 1.04 (0.84–1.28)
 4th 1.02 (0.83–1.25) 0.98 (0.79–1.21)

Adjusted models
 Cumulative (1000 Bq/m3-years) 1.06 (0.59–1.92) 0.93 (0.42–2.05)
 Average (10 Bq/m3) 1.02 (0.99–1.05) 1.01 (0.98–1.05)
By quartiles of average concentration

 1st ref ref
 2nd 1.08 (0.77–1.50) 1.07 (0.78–1.46)
 3rd 1.10 (0.79–1.53) 1.15 (0.84–1.57)
 4th 1.29 (0.93–1.77) 1.09 (0.79–1.51)

The point estimates and their confidence intervals were calculated with conditional logistic
regression using a latency period of two years. The locations of the point estimates and their
respective confidence intervals on X-axis is determined by the median of predicted indoor radon
exposure inside each group.

Grey color with diamond shapes is used to represent results from the random forest models and the
black dots represent estimates from the log-linear models.

Figure 4. Dose–response curve by quartiles of estimated indoor radon 
exposure based on predictions from the log-linear and random forest 
models. The point estimates and their confidence intervals (CI) were 
calculated with conditional logistic regression using a latency period 
of two years. The location of the point estimates and their respective 
CI on the X-axis is determined by the median of predicted indoor radon 
exposure inside each group. Grey color with diamond shapes is used 
to represent results from the random forest models and the black dots 
represent estimates from the log-linear models.
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0.33–2.63). The analysis of quartiles of average con-
centration showed no evidence of elevated risk and the 
central estimates of all but the reference quartile were 
below unity (data not shown).

Discussion

Main findings

We constructed two prediction models to estimate indoor 
radon concentrations in Finland using both technical 
properties of the buildings and geological properties 
of the terrain under the building. Our models per-
formed reasonably well compared to previous model-
ling attempts, showed no imminent signs of overfitting 
and behaved robustly in multiple sensitivity analyses. 
However, the prediction model was unable to distinguish 
radon concentration deviating strongly from the average 
but modelling the highest concentrations (>10 000 Bq/
m3) was never the aim as they are not reachable with 
traditionally available data. We applied the model to a 
nationwide register-based case-control dataset of child-
hood leukemia and observed a slight, non-significant 
trend risk, with the OR 1.1–1.3 (95% CI 0.79–1.77) for 
radon concentrations >120 Bq/m3.

The distributions of the predictions produced by our 
models (92 Bq/m3 for cases, 89 Bq/m3 for controls) were 
in line with the previously published median Finnish 
indoor radon concentration (96 Bq/m3) (6, 56). The per-
formance of our main model was similar (r2 = 0.21) to 
the recent, similarly constructed model from Switzerland 
(29). Higher coefficients of determination in some previ-
ous country-specific models may be related to smaller 
numbers of measurements (30, 57, 58). We were also 
able to reach slightly higher coefficients of determina-
tion using the random forest machine learning method. 
However, the small absolute difference in r2 (maximum 
0.07 units), suggests no dramatic improvement over the 
simpler, and thus to some degree more preferable, clas-
sic approach with the log-linear model.

Strengths of the study

Regardless of the sub-optimal performance, the various 
strengths of our study, with its sophisticated modern 
machine-learning methods, make it the most up-to-date 
statistics-based attempt to study indoor radon and child-
hood leukemia. Our prediction models were created with 
a comprehensive roster of predictors. Both building 
properties and geological variables were used. The pre-
dictors were collected from nationwide registries. The 
sample size of direct indoor radon measurements, on 
which the model is based, is the largest to date. We used 

multiple approaches when building the optimal model 
and also saw potential in modern machine-learning 
methods, especially in the random forest method.

Limitations of the study

However, our study had also limitations. First, our predic-
tion model failed to identify residences toward the high 
and low ends of the indoor radon range, as is apparent in 
the Bland-Altman plots. This shortcoming was not recti-
fied by the machine learning methods. Unlike most coun-
tries, Finnish indoor radon concentrations can be >10 000 
Bq/m3, which poses major challenges for the prediction 
and also means that models created for other European 
countries cannot be applied to the Finnish predictions. To 
combat the issue, we used the oldest measurements when 
there were multiple available to avoid the interference of 
potential radon protection installations and also used the 
highest available measurement from each measurement 
session if concentrations were, for example, measured in 
multiple rooms. This approach resulted in higher coef-
ficients of determination. In the Swiss study using an 
approach comparable to our log-linear model, the median 
predicted radon concentration was 77.7 Bq/m3 and the 
90th percentile was 139.9 Bq/m3 (29). The respective sta-
tistics in our data were 89.9 Bq/m3 and 154.1 Bq/m3. In 
the Danish study, the median of the predicted concentra-
tions was considerably lower (41 Bq/m3) (26).

Second, even though the used soil type maps were 
vector-based with resolution sufficient to minimize 
misclassification, the soil types in maps were defined 
manually and borders between soil types may involve 
some inaccuracies.

Third, multicollinearity of the predictors cannot be 
entirely avoided and this may weaken the distinction 
between predictor contributions and this was observed 
as higher variation inflation factors. The year of comple-
tion reflects multiple building properties and it was one 
of the strongest predictors of indoor radon also included 
in the model. It is, however, a proxy indicator for build-
ing techniques that we were unable to capture directly 
and is therefore a suboptimal predictor. The missing 
important predictors included the type of foundation 
and the type of stabilizing soil used directly under the 
foundation as well as accurate ventilation flow patterns.

Fourth, the county-specific median indoor radon 
concentrations in the apartment model are based on 
measurements that are included in the apartment model, 
introducing an element of circular logic. Excluding the 
survey measurements would have decreased the apart-
ment sample roughly by half. This issue was avoided 
with houses by randomly selecting a 20% subsample, 
which was then left outside modelling. Overall, these 
issues likely overestimated the predictive capacity of 
our models.
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Finally, when the performance of the model was 
evaluated with direct measurements, we saw some signs 
of overfitting as the correlation coefficients and the r2 
values were lower than in other means of estimating 
model performance. Using more stringent criteria for 
identifying direct measurements did not completely 
solve the issue. Also, the predictions made by log-linear 
and random forest models were not highly similar which 
also displays another uncertainty in our exposure assess-
ment strategy.

The performance of the prediction model was not 
optimal despite large and high-quality data available 
for the predictors. The fact that even rich data com-
bined with sophisticated statistical methods fails to 
capture variability in indoor radon between dwellings 
shows that results obtained in some other countries are 
not applicable in the Finnish context and casts some 
doubt about their broader generalizability. Differences 
may also reflect a more complex set of determinants 
in the Finnish context (and broader range of radon lev-
els). Improved prediction models would likely require 
new modelling approaches or more complete building 
characteristics.

Integration of the findings with previous studies

As in the recent Norwegian and Swiss analyses, we did 
not observe a significantly increased risk of childhood 
leukemia associated with indoor radon. Hauri et al (26) 
compared the highest 90th percentile to subjects below 
median and reported an adjusted HR of 0.95 (95% CI 
0.63–1.43). Kollerud et al (31) found an adjusted HR 
of 0.93 (95% CI 0.76, 1.13) per 100 Bq/m3 increment. 
Also, the analyses from United-Kingdom and France did 
not report increased risks related to higher indoor radon 
concentrations (27, 28). The British study reported an 
RR of 1.03 (95% CI 0.96–1.11) for every 1 mSv increase 
in cumulative red bone marrow dose as the French study 
reported and standardized incidence ratio of 1.01 (95% 
CI 0.91–1.12) for an increase of 100 Bq/m3 in the indoor 
radon concentration.

Interestingly, a Danish study by Raaschou-Nielsen 
et al (24) reported an increased risk for childhood ALL 
(RR 1.53, 95% CI 1.05–2.30 for a 1000 Bq/m3-year 
increase in cumulative exposure). The Danish study 
was based on a radon prediction model with a high r2 
(40%). They were also able to utilize complete resi-
dential histories and adjust for a number of potential 
confounders. The CI of the Danish study overlap with 
the results we observed.

Several small case–control studies have used direct 
residential radon measurements and failed to show a 
consistent exposure–effect gradient (34–37). They have 
been frequently limited, however, by lack of complete 
residential histories and potential selection bias.

When applying the model to our childhood leuke-
mia case–control dataset, we were able to use complete 
residential histories. The register-based approach mini-
mized selection bias. We adjusted for multiple potential 
confounders and used a two-year latency period to focus 
on etiologically relevant exposure.

However, the conclusions that can be drawn from the 
risk analyses are dependent on our ability to predict the 
exposure, and the limitations in the prediction model per-
formance are likely to introduce exposure misclassifica-
tion. As this is most likely similar for cases and controls, 
non-differential random error is expected to dilute any 
true effect and a null result may reflect either real lack of 
an effect or an effect largely masked by misclassification. 
Also, the dilemma of optimal research strategy remains 
in choosing between an analysis with inaccurate expo-
sure assessment in a large and representative sample (as 
register-based studies with predicted radon) or an analysis 
with accurate direct measurements in a smaller sample 
potentially affected by selection bias.

Concluding remarks

Our modelling of indoor radon concentration involves 
major uncertainties, and the results should be interpreted 
with caution. However, we observed a slight non-signifi-
cant risk of childhood leukemia related to higher average 
indoor radon concentrations and results are suggestive 
of a higher risk for ALL patients and patients under six 
years of age. In future studies using predictive models, 
identifying the dwellings with the high radon concentra-
tions, preferably up to 2000 Bq/m3, should be prioritized 
and, whenever possible, direct measurements should be 
chosen over modelling.
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