
Model checking and validity in propositional and modal

inclusion logics∗

Lauri Hella
1

Antti Kuusisto
2

Arne Meier
3

Jonni Virtema
4

1 University of Tampere, Finland, lauri.hella@uta.fi
2 University of Bremen, Germany, antti.j.kuusisto@gmail.com

3 Leibniz Universitt Hannover, Germany, meier@thi.uni-hannover.de
4 University of Helsinki, Finland, jonni.virtema@helsinki.fi

Abstract

Propositional and modal inclusion logic are formalisms that belong to the family of

logics based on team semantics. This article investigates the model checking and va-

lidity problems of these logics. We identify complexity bounds for both problems,

covering both lax and strict team semantics. By doing so we come close to finalising

the programme that ultimately aims to classify the complexities of the basic reasoning

problems for modal and propositional dependence, independence, and inclusion logics.

Keywords: Inclusion Logic – Model Checking – Complexity

1 Introduction

Team semantics is the mathematical framework of modern logics of dependence and indepen-
dence, which, unlike Tarski semantics, is not based on singletons as satisfying elements (e.g.,
first-order assignments or points of a Kripke structure) but on sets of such elements. More
precisely, a first-order team is a set of first-order assignments that have the same domain
of variables. As a result, a team can be interpreted as a database table, where variables
correspond to attributes and assignments to records. Team semantics originates from the
work of Hodges [19], where it was shown that Hintikka’s IF-logic can be based on a compo-
sitional (as opposed to game-theoretic) semantics. In 2007, Väänänen [31] proposed a fresh
approach to logics of dependence and independence. Väänänen adopted team semantics as
a core notion for his dependence logic. Dependence logic extends first-order logic by atomic
statements such as the value of variable x is determined by the value of y. Clearly such
a statement is not meaningful under a single assignment, however, when evaluated over a
team such a statement corresponds precisely to functional dependence of database theory
when the team is interpreted as a database table.

Besides functional dependence, there are many other important dependency notions used
in fields like statistics and database theory, which give rise to interesting logics based on team
semantics. The two most widely studied of these new logics are independence logic of Grädel
and Väänänen [12], and inclusion logic of Galliani [7]. Inclusion logic extends first-order logic
by atomic statements of the form x ⊆ y, which is satisfied in a team X if any value that ap-
pears as a value for x in X also appears as a value of y in X . Dependence and independence
logics are equal-expressive with existential second-order logic and accordingly capture the
complexity class NP [31, 12]. Surprisingly, inclusion logic has the same expressive power as
positive greatest fixed point logic GFP+ [9]. Since on finite structures, GFP+ coincides with

∗The second and the last author acknowledges support from Jenny and Antti Wihuri Foundation. The
last author is also supported by the grant 292767 of the Academy of Finland. The third author is supported
by the DFG grant ME 4279/1-1.

1

This is the accepted manuscript of the article, which has been published in Journal of logic and
computation 2019 vol. 29, 5, 605-630.
https://doi.org/10.1093/logcom/exz008

http://arxiv.org/abs/1609.06951v2

least fixed point logic LFP, it follows from the Immermann-Vardi-Theorem that inclusion
logic captures the complexity class P on finite ordered structures. Interestingly under a
semantical variant of inclusion logic called strict semantics the expressive power of inclusion
logic rises to existential second-order logic [8]. Moreover, the fragment of inclusion logic
(under strict semantics) in which only k universally quantified variables may occur captures
the complexity class NTIMERAM(n

k) (i.e., structures that can be recognised by a nondeter-
ministic random access machine in time O(nk)) [15]. That being so, indeed, inclusion logic
and its fragments have very interesting descriptive complexity theoretic properties.

In this paper, we study propositional and modal inclusion logic under both the standard
semantics (i.e., lax semantics) and strict semantics. The research around propositional
and modal logics with team semantics has concentrated on classifying the complexity and
definability of the related logics. Due to very active research efforts, the complexity and
definability landscape of these logics is understood rather well; see the survey of Durand
et al. [5] and the references therein for an overview of the current state of the research.
In the context of propositional logic (modal logic, resp.) a team is a set of propositional
assignments with a common domain of variables (a subset of the domain a Kripke structure,
resp.). Extended propositional inclusion logic (extended modal inclusion logic, resp.) extends
propositional logic (modal logic, resp.) with propositional inclusion atoms ϕ ⊆ ψ, where
ϕ and ψ are formulae of propositional logic (modal logic, resp.). The following definability
results hold for the standard lax semantics. A class of team pointed Kripke models is
definable in extended modal inclusion logic iff M, ∅ is in the class for every model M, the
class is closed under taking unions, and the class is closed under the so-called team k-
bisimulation, for some finite k [18]. From this, a corresponding characterization for extended
propositional inclusion logic follows directly. In [26, 27] (global) model definability and frame
definability of team based modal logics are studied. It is shown that surprisingly, in both
cases, (extended) modal inclusion logic collapses to modal logic.

This paper investigates the complexity of the model checking and the validity problem
for propositional and modal inclusion logic. The complexity of the satisfiability problem of
modal inclusion logic was studied by Hella et al. [16]. The study on the validity problem
of propositional inclusion logic was initiated by Hannula et al. [13], where the focus was
on more expressive logics in the propositional setting. Consequently, the current paper
directly extends the research effort initiated in these papers. It is important to note that
since the logics studied in this paper, are closed under negation, the connection between the
satisfiability problem and the validity problem fails. In [13] it was shown that, under lax
semantics, the validity problem for propositional inclusion logic is coNP-complete. Here we
obtain an identical result for the strict semantics. However, surprisingly, for model checking
the picture looks quite different. We establish that whereas the model checking problem for
propositional inclusion logic is P-complete under lax semantics, the problem becomes NP-
complete for the strict variant. Also surprisingly, for model checking, we obtain remarkable
in the modal setting; modal inclusion logic is P-complete under lax semantics and NP-
complete under strict semantics. Nevertheless, for the validity problem, the modal variants
are much more complex; we establish coNEXP-hardness for both strict and lax semantics.
For an overview of the results of this paper together with the known complexity results from
the literature, see tables 3–5 on page 17.

2 Propositional logics with team semantics

Let D be a finite, possibly empty set of proposition symbols. A function s : D → {0, 1} is
called an assignment. A setX of assignments s : D → {0, 1} is called a team. The setD is the
domain of X . We denote by 2D the set of all assignments s : D → {0, 1}. If ~p = (p1, . . . , pn)
is a tuple of propositions and s is an assignment, we write s(~p) for (s(p1), . . . , s(pn)).

Let Φ be a set of proposition symbols. The syntax of propositional logic PL(Φ) is given
by the following grammar:

ϕ ::= p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ), where p ∈ Φ.

2

We denote by |=PL the ordinary satisfaction relation of propositional logic defined via
assignments in the standard way. Next we give team semantics for propositional logic.

Definition 1 (Lax team semantics) Let Φ be a set of atomic propositions and let X be a
team. The satisfaction relation X |= ϕ is defined as follows.

X |= p ⇔ ∀s ∈ X : s(p) = 1,

X |= ¬p ⇔ ∀s ∈ X : s(p) = 0.

X |= (ϕ ∧ ψ) ⇔ X |= ϕ and X |= ψ.

X |= (ϕ ∨ ψ) ⇔ Y |= ϕ and Z |= ψ, for some Y, Z such that Y ∪ Z = X.

The lax team semantics is considered the standard semantics for team-based logics. In
this paper, we also consider a variant of team semantics called the strict team semantics. In
strict team semantics, the above clause for disjunction is redefined as follows:

X |=s (ϕ ∨ ψ) ⇔ Y |= ϕ and Z |= ψ, for some Y, Z such that Y ∩ Z = ∅ and Y ∪ Z = X.

When L denotes a team-based propositional logic, we let Ls denote the variant of the logic
with strict semantics. Moreover, in order to improve readability, for strict semantics we use
|=s instead of |=. As a result lax semantics is used unless otherwise specified. The next
proposition shows that the team semantics and the ordinary semantics for propositional
logic defined via assignments (denoted by |=PL) coincide.

Proposition 2 ([31]) Let ϕ be a formula of propositional logic and let X be a propositional
team. Then X |= ϕ iff ∀s ∈ X : s |=PL ϕ.

The syntax of propositional inclusion logic PInc(Φ) is obtained by extending the syntax
of PL(Φ) by the grammar rule

ϕ ::= ~p ⊆ ~q,

where ~p and ~q are finite tuples of proposition variables with the same length. The semantics
for propositional inclusion atoms is defined as follows:

X |= ~p ⊆ ~q iff ∀s ∈ X ∃t ∈ X : s(~p) = t(~q).

Remark 3 Extended propositional inclusion logic is the variant of PInc in which inclusion
atoms of the form ~ϕ ⊆ ~ψ, where ~ϕ and ~ψ are tuples of PL-formulae, are allowed. It is easy
to see that this extension does not increase complexity of the logic and on that account, in
this paper, we only consider the non-extended variant.

It is easy to check that PInc is not a downward closed logic1. However, analogously to
FO-inclusion-logic [7], the same holds for PInc w.r.t. unions:

Proposition 4 (Closure under unions) Let ϕ ∈ PInc and let Xi, for i ∈ I, be teams. Sup-
pose that Xi |= ϕ for each i ∈ I. Then

⋃

i∈I Xi |= ϕ.

It is easy to see that, by Proposition 2, for propositional logic the strict and the lax
semantics coincide; meaning that X |= ϕ iff X |=s ϕ for all X and ϕ. However this does not
hold for propositional inclusion logic, for the following example shows that PIncs is not union
closed. Moreover, we will show that the two different semantics lead to different complexities
for the related model checking problems.

Example 5 Let s1, s2, and s3 be as in Table 1 and define ϕ :=
(
p∧(p ⊆ r)

)
∨
(
q∧(q ⊆ r)

)
.

Note that {s1, s2} |=s ϕ and {s2, s3} |=s ϕ, but {s1, s2, s3} 6|=s ϕ.

3

p q r

s1 1 0 0
s2 1 1 1
s3 0 1 0

M :
w1 w2 w3

s1 s2 s3

Figure 1: Assignments for teams in Example 5 and the Kripke model for Example 20.

Satisfiability Validity Model checking

strict lax strict lax strict lax

PL NP [4, 22] coNP [4, 22] NC1 [2]
PInc EXP [17] EXP [16] coNP [Th. 7] coNP [13] NP [Th. 15] P [Th. 11]

Table 1: Complexity of the satisfiability, validity and model checking problems for propo-
sitional logics under both systems of semantics. The shown complexity classes refer to
completeness results.

3 Complexity of Propositional Inclusion Logic

We now define the model checking, satisfiability, and validity problems in the context of
team semantics. Let L be a propositional logic with team semantics. A formula ϕ ∈ L is
satisfiable, if there exists a non-empty team X such that X |= ϕ. A formula ϕ ∈ L is valid,
if X |= ϕ holds for all teams X such that the proposition symbols in ϕ are in the domain
of X . The satisfiability problem SAT(L) and the validity problem VAL(L) are defined in
the obvious way: Given a formula ϕ ∈ L, decide whether the formula is satisfiable (valid,
respectively). For the model checking problem MC(L) we consider combined complexity:
Given a formula ϕ ∈ L and a team X , decide whether X |= ϕ. See Table 1 for known
complexity results for PL and PInc, together with partial results of this paper.

It was shown in [13] that the validity problem of PInc is coNP-complete. Here we establish
that the corresponding problem for PIncs is also coNP-complete. Our proof is similar to the
one in [13]. However the proof of [13] uses the fact that PInc is union closed, while the same
is not true for PIncs (cf. Example 5).

Lemma 6 Let X be a propositional team and ϕ ∈ PIncs. If {s} |=s ϕ for every s ∈ X then
X |=s ϕ.

Proof The proof is by a simple induction on the structure of the formula. The cases for
atomic formulae and conjunction are trivial. The case for disjunction is easy: Assume that
{s} |=s ϕ ∨ ψ for every s ∈ X . Consequently for every s ∈ X either {s} |=s ϕ or {s} |=s ψ.
As a result there exists Y and Z such that Y ∪ Z = X , Y ∩ Z = ∅, ∀s ∈ Y : {s} |=s ϕ,
and ∀s ∈ Z : {s} |=s ψ. By the induction hypothesis Y |=s ϕ and Z |=s ψ. Consequently,
X |=s ϕ ∨ ψ. �

Theorem 7 The validity problem for PIncs is coNP-complete w.r.t. ≤log
m .

Proof The coNP-hardness follows via Proposition 2 from the fact that the validity problem
of PL is coNP-hard. Accordingly, it suffices to show VAL(PIncs) ∈ coNP. It is easy to check
that, by Lemma 6, a formula ϕ ∈ PIncs is valid iff it is satisfied by all singleton teams {s}.
Note also that, over a singleton team {s}, an inclusion atom (p1, . . . , pn) ⊆ (q1, . . . , qn) is
equivalent to the PL-formula

∧

1≤i≤n

(pi ∧ qi) ∨ (¬pi ∧ ¬qi).

1A logic L is downward closed if the implication X |= ϕ and Y ⊆ X ⇒ Y |= ϕ holds for every formula
ϕ ∈ L and teams X and Y .

4

Denote by ϕ∗ the PL-formula obtained by replacing all inclusion atoms in ϕ by their PL-
translations. By the above, ϕ is valid iff ϕ∗ is valid. Since VAL(PL) is in coNP the claim
follows. �

3.1 Model checking in lax semantics is P-complete

In this section we construct a reduction from the monotone circuit value problem to the
model checking problem of PInc. For a deep introduction to circuits see [33] by Vollmer.

Definition 8 A monotone Boolean circuit with n input gates and one output gate is a
3-tuple C = (V,E, α), where (V,E) is a finite, simple, directed, acyclic graph, and α : V →
{∨,∧, x1, . . . , xn} is a function such that the following conditions hold:

1. Every v ∈ V has in-degree 0 or 2.

2. There exists exactly one w ∈ V with out-degree 0. We call this node w the output gate
of C and denote it by gout.

3. If v ∈ V is a node with in-degree 0, then α(v) ∈ {x1, . . . , xn}.

4. If v ∈ V has in-degree 2, then α(v) ∈ {∨,∧}.

5. For each 1 ≤ i ≤ n, there exists exactly one v ∈ V with α(v) = xi.

Let C = (V,E, α) be a monotone Boolean circuit with n input gates and one output gate.
Any sequence b1, . . . , bn ∈ {0, 1} of bits of length n is called an input to the circuit C. A
function β : V → {0, 1} defined such that

β(v) :=

bi if α(v) = xi

min
(
β(v1), β(v2)

)
if α(v) = ∧, where v1 6= v2 and (v1, v), (v2, v) ∈ E,

max
(
β(v1), β(v2)

)
if α(v) = ∨, where v1 6= v2 and (v1, v), (v2, v) ∈ E.

is called the valuation of the circuit C under the input b1, . . . , bn. The output of the circuit
C is then defined to be β(gout).

The monotone circuit value problem (MCVP) is the following decision problem: Given
a monotone circuit C and an input b1, . . . , bn ∈ {0, 1}, is the output of the circuit 1?

Proposition 9 ([11]) MCVP is P-complete w.r.t. ≤log
m reductions.

Lemma 10 MC(PInc) under lax semantics is P-hard w.r.t. ≤log
m .

Proof We will establish a LOGSPACE-reduction from MCVP to the model checking prob-
lem of PInc under lax semantics. Since MCVP is P-complete, the claim follows. More
precisely, we will show how to construct, for each monotone Boolean circuit C with n

input gates and for each input ~b for C, a team X
C,~b

and a PInc-formula ϕC such that

X
C,~b

|= ϕC iff the output of the circuit C with the input ~b is 1.
We use teams to encode valuations of the circuit. For each gate vi of a given circuit, we

identify an assignment si. The crude idea is that if si is in the team under consideration,
the value of the gate vi with respect to the given input is 1. The formula ϕC is used to
quantify a truth value for each Boolean gate of the circuit, and then for checking that the
truth values of the gates propagate correctly. We next define the construction formally and
then discuss the background intuition in more detail.

Let C = (V,E, α) be a monotone Boolean circuit with n input gates and one output gate

and let~b = (b1 . . . bn) ∈ {0, 1}n be an input to the circuit C. We define that V = {v0, . . . , vm}
and that v0 is the output gate of C. Define

τC := {p0, . . . , pm, p⊤, p⊥} ∪ {pk=i∨j | i < j, α(vk) = ∨, and (vi, vk), (vj , vk) ∈ E}.

5

For each i ≤ m, we define the assignment si : τC → {0, 1} as follows:

si(p) :=

1 if p = pi or p = p⊤,

1 if p = pk=i∨j or p = pk=j∨i for some j, k ≤ m,

0 otherwise.

Furthermore, we define s⊥(p) = 1 iff p = p⊥ or p = p⊤. We note that the assignment s⊥
will be the only assignment that maps p⊥ to 1. We make use of the fact that for each gate
vi of C, it holds that s⊥(pi) = 0. We define

X
C,~b

:=
{
si | α(vi) ∈ {∧,∨}

}
∪
{
si | α(vi) ∈ {xi | bi = 1}

}
∪ {s⊥},

that is, X
C,~b

consists of assignments for each of the Boolean gates, assignments for those
input gates that are given 1 as an input, and of the auxiliary assignment s⊥.

Let X be any nonempty subteam of X
C,~b

such that s⊥ ∈ X . We have

X |= p⊤ ⊆ p0 iff s0 ∈ X

X |= pi ⊆ pj iff (si ∈ X implies sj ∈ X) (1)

X |= pk ⊆ pk=i∨j iff (i < j, (vi, vk), (vj , vk) ∈ E,α(vk) = ∨

and sk ∈ X imply that si ∈ X or sj ∈ X)

Recall the intuition that si ∈ X should hold iff the value of the gate vi is 1. Define

ψout=1 := p⊤ ⊆ p0,

ψ∧ :=
∧

{pi ⊆ pj | (vj , vi) ∈ E and α(pi) = ∧},

ψ∨ :=
∧

{pk ⊆ pk=i∨j | i < j, (vi, vk) ∈ E, (vj , vk) ∈ E, and α(vk) = ∨},

ϕC := ¬p⊥ ∨ (ψout=1 ∧ ψ∧ ∧ ψ∨).

It is quite straightforward to check (see details below) that X
C,~b

|= ϕC iff the output of

C with the input ~b is 1.
The idea of the reduction is the following: The disjunction in φC is used to guess a team

Y for the right disjunct that encodes the valuation β of the circuit C. The right disjunct
is then evaluated with respect to the team Y with the intended meaning that β(vi) = 1
whenever si ∈ Y . Note that Y is always as required in (1). The formula ψout=1 is used
to state that β(v0) = 1, whereas the formulae ψ∧ and ψ∨ are used to propagate the truth
value 1 down the circuit. The assignment s⊥ and the proposition p⊥ are used as an auxiliary
to make sure that Y is nonempty and to deal with the propagation of the value 0 by the
subformulae of the form pi ⊆ pj .

Now observe that the team X
C,~b

can be easily computed by a logspace Turing machine
which scans the input for ∧-gates, ∨-gates, and true input gates, and then outputs the
corresponding team members si in a bitwise fashion. The formula ϕC can be computed in
logspace as well:

1. the left disjunct does not depend on the input,

2. for ψ∧ we only need to scan for the ∧-gates and output the inclusion-formulae for the
corresponding edges,

3. for ψ∨ we need to maintain two binary counters for i and j, and use them for searching
for those disjunction gates that satisfy i < j.

Consequently, the reduction can be computed in logspace. �

For the proof of the above lemma it is not important that lax semantics is considered; the
same proof works also for the strict semantics. However, as we will show next, we can show
a stronger result for the model checking problem of PIncs; namely that it is NP-hard. In
Section 5.1 we will show that the model checking problem for modal inclusion logic with lax
semantics is in P (Lemma 22). Since PInc is essentially a fragment of this logic, by combining
Lemmas 10 and 22, we obtain the following theorem.

Theorem 11 MC(PInc) under lax semantics is P-complete w.r.t. ≤log
m .

6

3.2 Model checking in strict semantics is NP-complete

In this section we reduce the set splitting problem, a well-known NP-complete problem, to
the model checking problem of PIncs.

Definition 12 The set splitting problem is the following decision problem:

Input: A family F of subsets of a finite set S.

Problem: Do there exist subsets S1 and S2 of S such that

1. S1 and S2 are a partition of S (i.e., S1 ∩ S2 = ∅ and S1 ∪ S2 = S),

2. for each A ∈ F , there exist a1, a2 ∈ A such that a1 ∈ S1 and a2 ∈ S2?

Proposition 13 ([10]) The set splitting problem is NP-complete w.r.t. ≤log
m .

The following proof relies on the fact that strict semantics is considered. It cannot hold
for lax semantics unless P = NP.

Lemma 14 MC(PInc) under strict semantics is NP-hard w.r.t. ≤log
m .

Proof We give a reduction from the set splitting problem [10, SP4] to the model checking
problem of PInc under strict semantics.

Let F be an instance of the set splitting problem. We stipulate that F = {B1, . . . , Bn}
and that

⋃
F = {a1, . . . , ak}, where n, k ∈ N. We will introduce fresh proposition symbols

pi and qj for each point ai ∈
⋃
F and set Bj ∈ F . We will then encode the family of

sets F by assignments over these proposition symbols; each assignment si will correspond
to a unique point ai. Formally, let τF denote the set {p1, . . . , pk, q1, . . . , qn, p⊤, pc, pd} of
proposition symbols. For each i ∈ {1, . . . , k, c, d}, we define the assignment si : τF → {0, 1}
as follows:

si(p) :=

1 if p = pi or p = p⊤,

1 if, for some j, p = qj and ai ∈ Bj ,

0 otherwise.

Define XF := {s1, . . . , sk, sc, sd}, that is, XF consists of assignments si corresponding to
each of the points ai ∈

⋃
F and of two auxiliary assignments sc and sd. Note that the only

assignment in XF that maps pc (pd, resp.) to 1 is sc (sd, resp.) and that every assignment
maps p⊤ to 1. Moreover, note that for 1 ≤ i ≤ k and 1 ≤ j ≤ n, si(qj) = 1 iff ai ∈ Bj . Now
define

ϕF :=
(
¬pc ∧

∧

i≤n

p⊤ ⊆ qi
)
∨
(
¬pd ∧

∧

i≤n

p⊤ ⊆ qi
)
.

We claim that XF |=s ϕF iff the output of the set splitting problem with input F is “yes”.
The proof is straightforward. Note that XF |=s ϕF holds iff XF can be partitioned into

two subteams Y1 and Y2 such that

Y1 |=s ¬pc ∧
∧

i≤n

p⊤ ⊆ qi and Y2 |=s ¬pd ∧
∧

i≤n

p⊤ ⊆ qi.

�

Teams Y1 and Y2 are both nonempty, since sd ∈ Y1 and sc ∈ Y2. Also, for a nonempty
subteam Y of XF , it holds that Y |=s p⊤ ⊆ qj iff there exists si ∈ Y such that si(qj) = 1,
or equivalently, ai ∈ Bj .

It is now evident that if XF |=s ϕF holds then the related subteams Y1 and Y2 directly
construct a positive answer to the set splitting problem. Likewise, any positive answer to
the set splitting problem can be used to directly construct the related subteams Y1 and Y2.

In order to compute the assignments si and by this the team XF on a logspace machine
we need to implement two binary counters to count through 1 ≤ i ≤ k for the propositions
pi and 1 ≤ j ≤ n for the propositions qi. The formula ϕF is constructed in logspace by
simply outputting it step by step with the help of a binary counter for the interval 1 ≤ i ≤ n.
As a result the whole reduction can be implemented on a logspace Turing machine.

7

In Section 5.1 we establish that the model checking problem of modal inclusion logic
with strict semantics is in NP (Theorem 25). Since PInc is essentially a fragment of this
logic, together with Lemma 14, we obtain the following theorem.

Theorem 15 MC(PInc) under strict semantics is NP-complete w.r.t. ≤log
m .

4 Modal logics with team semantics

Let Φ be a set of proposition symbols. The syntax of modal logic ML(Φ) is generated by
the following grammar:

ϕ ::= p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ✸ϕ | ✷ϕ,where p ∈ Φ.

By ϕ⊥ we denote the formula that is obtained from ¬ϕ by pushing all negation symbols
to the atomic level. A (Kripke) Φ-model is a tuple M = (W,R, V), where W , called the
domain of M, is a non-empty set, R ⊆W ×W is a binary relation, and V : Φ → P(W) is a
valuation of the proposition symbols. By |=ML we denote the satisfaction relation of modal
logic that is defined via pointed Φ-models in the standard way. Any subset T of the domain
of a Kripke model M is called a team of M. Before we define team semantics for ML, we
introduce some auxiliary notation.

Definition 16 Let M = (W,R, V) be a model and T and S teams of M. Define that

R[T] := {w ∈W | ∃v ∈ T s.t. vRw} and R−1[T] := {w ∈W | ∃v ∈ T s.t. wRv}.

For teams T and S of M, we write T [R]S if S ⊆ R[T] and T ⊆ R−1[S].

Accordingly, T [R]S holds if and only if for every w ∈ T , there exists some v ∈ S such
that wRv, and for every v ∈ S, there exists some w ∈ T such that wRv. We are now ready
to define team semantics for ML.

Definition 17 (Lax team semantics) Let M be a Kripke model and T a team of M. The
satisfaction relation M, T |= ϕ for ML(Φ) is defined as follows.

M, T |= p ⇔ w ∈ V (p) for every w ∈ T .

M, T |= ¬p ⇔ w 6∈ V (p) for every w ∈ T .

M, T |= (ϕ ∧ ψ) ⇔ M, T |= ϕ and M, T |= ψ.

M, T |= (ϕ ∨ ψ) ⇔ M, T1 |= ϕ and M, T2 |= ψ for some T1 and T2 s.t. T1 ∪ T2 = T .

M, T |= ✸ϕ ⇔ M, T ′ |= ϕ for some T ′ s.t. T [R]T ′.

M, T |= ✷ϕ ⇔ M, T ′ |= ϕ, where T ′ = R[T].

Analogously to the propositional case, we also consider the strict variant of team seman-
tics for modal logic. In the strict team semantics, we have the following alternative semantic
definitions for the disjunction and diamond (where W denotes the domain of M).

M, T |=s (ϕ ∨ ψ) ⇔ M, T1 |= ϕ and M, T2 |= ψ

for some T1 and T2 such that T1 ∪ T2 = T and T1 ∩ T2 = ∅.

M, T |=s ✸ϕ ⇔ M, f(T) |= ϕ for some f : T →W s.t. ∀w ∈ T : wRf(w).

When L is a team-based modal logic, we let Ls to denote its variant with strict semantics.
As in the propositional case, for strict semantics we use |=s instead of |=. The formulae of
ML have the following flatness property.

Proposition 18 (Flatness, see, e.g., [5]) Let M be a Kripke model and T be a team of M.
Then, for every formula ϕ of ML(Φ): M, T |= ϕ ⇔ ∀w ∈ T : M, w |=ML ϕ.

8

Satisfiability Validity Model checking

strict lax strict lax strict lax

ML PSPACE [21] PSPACE [21] P [3, 28]
Minc EXP [17] EXP [16] coNEXP-h. [C. 32] coNEXP-h. [L. 31] NP [Th. 25] P [Th. 24]

Table 2: Complexity of satisfiability, validity and model checking for modal logics under
both systems of semantics. The given complexity classes refer to completeness results and
“-h.” denotes hardness. The complexities for Minc and EMinc coincide, see Theorems 24, 25,
and 33.

The syntax ofmodal inclusion logic Minc(Φ) and extended modal inclusion logic EMinc(Φ)
is obtained by extending the syntax of ML(Φ) by the following grammar rule for each n ∈ N:

ϕ ::= ϕ1, . . . , ϕn ⊆ ψ1, . . . , ψn,

where ϕ1, ψ1, . . . , ϕn, ψn ∈ ML(Φ). Additionally, for Minc(Φ), we require that ϕ1, ψ1, . . . ,
ϕn, ψn are proposition symbols in Φ. The semantics for these inclusion atoms is defined as
follows:

M, T |= ϕ1, . . . , ϕn ⊆ ψ1, . . . , ψn ⇔ ∀w ∈ T∃v ∈ T :
∧

1≤i≤n

(M, {w} |= ϕi ⇔ M, {v} |= ψi).

The following proposition is proven in the same way as the analogous results for first-
order inclusion logic [7]. A modal logic L is union closed if M, T |= ϕ and M, S |= ϕ implies
that M, T ∪ S |= ϕ, for every ϕ ∈ L.

Proposition 19 (Union Closure) The logics ML, Minc, EMinc are union closed.

Analogously to the propositional case, it is easy to see that, by Proposition 18, for ML
the strict and the lax semantics coincide. Again, as in the propositional case, this does not
hold for Minc or EMinc. (Note that since PIncs is not union closed (cf. Example 5) neither
Mincs nor EMincs is as well.)

In contrary to the propositional case, Lemma 6 fails in the modal case as the following
example illustrates.

Example 20 Let M be as depicted in the table of Figure 1 and let ϕ denote the PIncs-
formula of Example 5. Now M, {wi} |=s ✷ϕ, for i ∈ {1, 2, 3}, but M, {w1, w2, w3} 6|=s ✷ϕ.

5 Model checking and validity in modal team semantics

The model checking, satisfiability, and validity problems in the context of team semantics
of modal logic are defined analogously to the propositional case. Let L(Φ) be a modal logic
with team semantics. A formula ϕ ∈ L(Φ) is satisfiable, if there exists a Kripke Φ-model
M and a non-empty team T of M such that M, T |= ϕ. A formula ϕ ∈ L(Φ) is valid, if
M, T |= ϕ holds for every Φ-model M and every team T of M. The satisfiability problem
SAT(L) and the validity problem VAL(L) are defined in the obvious way: Given a formula
ϕ ∈ L, decide whether the formula is satisfiable (valid, respectively). For model checking
MC(L) we consider combined complexity: Given a formula ϕ ∈ L, a Kripke model M, and
a team T of M, decide whether M, T |= ϕ. See Table 2 for known complexity results on ML
and Minc, together with partial results of this paper.

5.1 Complexity of model checking

Let M be a Kripke model, T be a team of M, and ϕ be a formula of Minc. By maxsub(T, ϕ),
we denote the maximum subteam T ′ of T such that M, T ′ |= ϕ. Since Minc is union closed
(cf. Proposition 19), such a maximum subteam always exists.

9

Lemma 21 If ϕ is a proposition symbol, its negation, or an inclusion atom, then maxsub(T, ϕ)
can be computed in polynomial time with respect to |T |+ |ϕ|.

Proof If ϕ is a proposition symbol or its negation, the claim follows from flatness in a
straightforward way. Assume then that T = {w1, . . . wn} and ϕ = p1, . . . , pk ⊆ q1, . . . , qk.
Let G = (V,E) be a directed graph such that V = T and (u, v) ∈ E iff the value of pi in u
is the same as the value of qi in v, for each 1 ≤ i ≤ k.

The graph G describes the inclusion dependencies between the points in the following
sense: if w ∈ maxsub(T, ϕ), then there exists some v ∈ maxsub(T, ϕ) such that (w, v) ∈ E.
Clearly G can be computed in time O(n2k). In order to construct maxsub(T, ϕ), we, round
by round, delete all vertices from G with out-degree 0. Formally, we define a sequence
G0, . . . , Gn of graphs recursively. We define that G0 := G and that Gj+1 is the graph
obtained from Gj by deleting all of those vertices from Gj that have out-degree 0 in Gj . Let
i be the smallest integer such that Gi = (Vi, Ei) has no vertices of out-degree 0. Clearly
i ≤ n, and moreover, Gi is computable from G in time O(n3). It is easy to check that
Vi = maxsub(T, ϕ). �

For the following Lemma it is crucial that lax semantics is considered. The lemma cannot
hold for strict semantics unless P = NP.

Lemma 22 MC(Minc) under lax semantics is in P.

Proof We will present a labelling algorithm for model checking M, T |= ϕ. Let subOcc(ϕ)
denote the set of all occurrences of subformulae of ϕ. Below we denote occurrences as if
they were formulae, but we actually refer to some particular occurrence of the formula.

A function f : subOcc(ϕ) → P(W) is called a labelling function of ϕ in M. We will next
give an algorithm for computing a sequence f0, f1, f2, . . ., of such labelling functions.

• Define f0(ψ) =W for each ψ ∈ subOcc(ϕ).

• For odd i ∈ N, define fi(ψ) bottom up as follows:

1. For literal ψ, define fi(ψ) := maxsub(fi−1(ψ), ψ).

2. fi(ψ ∧ θ) := fi(ψ) ∩ fi(θ).

3. fi(ψ ∨ θ) := fi(ψ) ∪ fi(θ).

4. fi(✸ψ) := {w ∈ fi−1(✸ψ) | R[w] ∩ fi(ψ) 6= ∅}.

5. fi(✷ψ) := {w ∈ fi−1(✷ψ) | R[w] ⊆ fi(ψ)}.

• For even i ∈ N larger than 0, define fi(ψ) top to bottom as follows:

1. Define fi(ϕ) := fi−1(ϕ) ∩ T .

2. If ψ = θ ∧ γ, define fi(θ) := fi(γ) := fi(θ ∧ γ).

3. If ψ = θ ∨ γ, define fi(θ) := fi−1(θ) ∩ fi(θ ∨ γ) and fi(γ) := fi−1(γ) ∩ fi(θ ∨ γ).

4. If ψ = ✸θ, define fi(θ) := fi−1(θ) ∩R[fi(✸θ)].

5. If ψ = ✷θ, define fi(θ) := fi−1(θ) ∩R[fi(✷θ)].

By a straightforward induction on i, we can prove that fi+1(ψ) ⊆ fi(ψ) holds for every
ψ ∈ subOcc(ϕ). The only nontrivial induction step is that for fi+1(θ) and fi+1(γ), when
i + 1 is even and ψ = θ ∧ γ. To deal with this step, observe that, by the definition of fi+1

and fi, we have fi+1(θ) = fi+1(γ) = fi+1(ψ) and fi(ψ) ⊆ fi(θ), fi(γ), and by the induction
hypothesis on ψ, we have fi+1(ψ) ⊆ fi(ψ).

It follows that there is an integer j ≤ 2 · |W | · |ϕ| such that fj+2 = fj+1 = fj . We
denote this fixed point fj of the sequence f0, f1, f2, . . . by f∞. By Lemma 21 the outcome of
maxsub(·, ·) is computable in polynomial time with respect to its input. That being, clearly
fi+1 can be computed from fi in polynomial time with respect to |W |+ |ϕ|. On that account
f∞ is also computable in polynomial time with respect to |W |+ |ϕ|.

We will next prove by induction on ψ ∈ subOcc(ϕ) that M, f∞(ψ) |= ψ. Note first that
there is an odd integer i and an even integer j such that f∞ = fi = fj.

10

1. If ψ is a literal, the claim is true since f∞ = fi and fi(ψ) = maxsub(fi−1(ψ), ψ).

2. Assume next that ψ = θ ∧ γ, and the claim holds for θ and γ. Since f∞ = fj, we have
f∞(ψ) = f∞(θ) = f∞(γ), as a result, by induction hypothesis, M, f∞(ψ) |= θ ∧ γ, as
desired.

3. In the case ψ = θ ∨ γ, we obtain the claim M, f∞(ψ) |= ψ by using the induction
hypothesis, and the observation that f∞(ψ) = fi(ψ) = fi(θ) ∪ fi(γ) = f∞(θ) ∪ f∞(γ).

4. Assume then that ψ = ✸θ. Since f∞ = fi, we have f∞(ψ) = {w ∈ fi−1(ψ) | R[w] ∩
f∞(θ) 6= ∅}, as a consequence f∞(ψ) ⊆ R−1[f∞(θ)]. On the other hand, since f∞ = fj,
we have f∞(θ) = fj−1(θ) ∩R[f∞(ψ)], for this reason f∞(θ) ⊆ R[f∞(ψ)]. Accordingly,
f∞(ψ)[R]f∞(θ), and using the induction hypothesis, we see that M, f∞(ψ) |= ψ.

5. Assume finally that ψ = ✷θ. Since f∞ = fi, we have R[f∞(ψ)] ⊆ f∞(θ). On the other
hand, since f∞ = fj, we have f∞(θ) ⊆ R[f∞(ψ)]. This shows that f∞(θ) = R[f∞(ψ)],
that being the case by the induction hypothesis, M, f∞(ψ) |= ψ.

In particular, if f∞(ϕ) = T , then M, T |= ϕ. Consequently, to complete the proof of
the lemma, it suffices to prove that the converse implication is true, as well. To prove this,
assume that M, T |= ϕ. Then for each ψ ∈ subOcc(ϕ), there is a team Tψ such that

1. Tϕ = T .

2. If ψ = θ ∧ γ, then Tψ = Tθ = Tγ .

3. If ψ = θ ∨ γ, then Tψ = Tθ ∪ Tγ .

4. If ψ = ✸θ, then Tψ[R]Tθ.

5. If ψ = ✷θ, then Tθ = R[Tψ].

6. If ψ is a literal, then M, Tψ |= ψ.

We prove by induction on i that Tψ ⊆ fi(ψ) for all ψ ∈ subOcc(ϕ). For i = 0, this is obvious,
since f0(ψ) = W for all ψ. Assume next that i + 1 is odd and the claim is true for i. We
prove the claim Tψ ⊆ fi(ψ) by induction on ψ.

1. If ψ is a literal, then fi+1(ψ) = maxsub(fi(ψ), ψ). Since M, Tψ |= ψ, and by induction
hypothesis, Tψ ⊆ fi(ψ), the claim Tψ ⊆ fi+1(ψ) is true.

2. Assume that ψ = θ∧γ. By induction hypothesis on θ and γ, we have Tψ = Tθ ⊆ fi+1(θ)
and Tψ = Tγ ⊆ fi+1(γ). For this reason, we get Tψ ⊆ fi+1(θ) ∩ fi+1(γ) = fi+1(ψ).

3. The case ψ = θ ∨ γ is similar to the previous one; we omit the details.

4. If ψ = ✸θ, then fi+1(ψ) = {w ∈ fi(ψ) | R[w] ∩ fi+1(θ) 6= ∅}. By the two induction
hypotheses on i and θ, we have {w ∈ Tψ | R[w]∩Tθ 6= ∅} ⊆ fi+1(ψ). The claim follows
from this, since the condition R[w] ∩ Tθ 6= ∅ holds for all w ∈ Tψ.

5. The case ψ = ✷θ is again similar to the previous one, so we omit the details.

Assume then that i + 1 is even and the claim is true for i. This time we prove the claim
Tψ ⊆ fi(ψ) by top to bottom induction on ψ.

1. By assumption, Tϕ = T , on that account by induction hypothesis, Tϕ ⊆ fi(ϕ) ∩ T =
fi+1(ϕ).

2. Assume that ψ = θ ∧ γ. By induction hypothesis on ψ, we have Tψ ⊆ fi+1(ψ). Since
Tψ = Tθ = Tγ and fi+1(ψ) = fi+1(θ) = fi+1(γ), this implies that Tθ ⊆ fi+1(θ) and
Tγ ⊆ fi+1(γ).

11

3. Assume that ψ = θ∨γ. Using the fact that Tθ ⊆ Tψ, and the two induction hypotheses
on i and ψ, we see that Tθ ⊆ fi(θ) ∩ Tψ ⊆ fi(θ) ∩ fi+1(ψ) = fi+1(θ). Similarly, we see
that Tγ ⊆ fi+1(γ).

4. Assume that ψ = ✸θ. By the induction hypothesis on i, we have Tθ ⊆ fi(θ), and by
the induction hypothesis on ψ, we have Tθ ⊆ R[Tψ] ⊆ R[fi+1(ψ)]. Accordingly, we see
that Tθ ⊆ fi(θ) ∩R[fi+1(ψ)] = fi+1(θ).

5. The case ψ = ✷θ is similar to the previous one; we omit the details.

It follows now that T = Tϕ ⊆ f∞(ϕ). Since f∞(ϕ) ⊆ f2(ϕ) ⊆ T , we conclude that
f∞(ϕ) = T . This completes the proof of the implication M, T |= ϕ ⇒ f∞(ϕ) = T . �

Lemma 23 MC(EMinc) under lax semantics is in P.

Proof The result follows by a polynomial time reduction to the model checking problem of
Minc: Let (W,R, V), T be a team pointed Kripke model and ϕ be a formula of EMinc. Let
ϕ1, . . . , ϕn be exactly those subformulae of ϕ that occur as a parameter of some inclusion
atom in ϕ and let p1, . . . , pn be distinct fresh proposition symbols. Let V ′ be a valuation
defined as follows

V ′(p) :=

{

{w ∈W | (W,R, V), w |=ML ϕi} if p = pi,

V (p) otherwise.

Let ϕ∗ denote the formula obtained from ϕ by simultaneously substituting each ϕi by pi. It
is easy to check that (W,R, V), T |= ϕ if and only if (W,R, V ′), T |= ϕ∗. Moreover, ϕ∗ can be
clearly computed form ϕ in polynomial time. Likewise, V ′ can be computed in polynomial
time; since each ϕi is a modal formula the truth set of that formula in (W,R, V) can be
computed in polynomial time by the standard labelling algorithm used in modal logic (see
e.g., [1]), and the numbers of such computations is bounded above by the size of ϕ. As a
consequence the result follows form Lemma 22. �

By combining Lemmas 10, 22, and 23, we obtain the following theorem.

Theorem 24 MC(Minc) and MC(EMinc) under lax semantics are P-complete w.r.t. ≤log
m .

Theorem 25 MC(Minc) and MC(EMinc) under strict semantics are NP-complete w.r.t.
≤log
m .

Proof The NP-hardness follows from the propositional case, i.e., by Lemma 14.
The obvious brute force algorithm for model checking for EMinc works in NP: For dis-

junctions and diamonds, we use nondeterminism to guess the correct partitions or successor
teams, respectively. Conjunctions are dealt sequentially and for boxes the unique successor
team can be computed by brute force in quadratic time. Checking whether a team satisfies
an inclusion atom or a (negated) proposition symbol can be computed by brute force in
polynomial time (this also follows directly from Lemma 21). �

5.2 Dependency quantifier Boolean formulae

Deciding whether a given quantified Boolean formula (qBf) is valid is a canonical PSPACE-
complete problem. Dependency quantifier Boolean formulae introduced by Peterson et al.
[25] are variants of qBfs for which the corresponding decision problem is NEXP-complete.
In this section, we define the related coNEXP-complete complementary problem. For the
definitions related to dependency quantifier Boolean formulae, we follow Virtema [32].

QBfs extend propositional logic by allowing a prenex quantification of proposition sym-
bols. Formally, the set of qBfs is built from formulae of propositional logic by the following
grammar:

ϕ ::= ∃pϕ | ∀pϕ | θ,

12

where p is a propositional variable (i.e., a proposition symbol) and θ is formula of propo-
sitional logic. The semantics for qBfs is defined via assignments s : PROP → {0, 1} in the
obvious way. When C is a set of propositional variables, we denote by ~c the canonically
ordered tuple of the variables in the set C. When p is a propositional variable and b ∈ {0, 1}
is a truth value, we denote by s(p 7→ b) the modified assignment defined as follows:

s(p 7→ b)(q) :=

{

b if q = p,

s(q) otherwise.

A formula that does not have any free variables is called closed. We denote by QBF the
set of exactly all closed quantified Boolean formulae.

Proposition 26 ([30]) The validity problem of QBF is PSPACE-complete w.r.t. ≤log
m .

A simple qBf is a closed qBf of the type ϕ := ∀p1 · · · ∀pn∃q1 · · · ∃qkθ, where θ is a propo-
sitional formula and the propositional variables pi, qj are all distinct. Any tuple (C1, . . . , Ck)
such that C1, . . . , Ck ⊆ {p1, . . . , pn} is called a constraint for ϕ. Intuitively, a constraint
Cj = {p1, p3} can be seen as a dependence atom dep(p1, p3, qj)

2. A constraint Cj = {p1, p3}
can be also interpreted to indicate that the semantics of ∃gj is defined, if skolemised, via a
Skolem function fj(p1, p3).

Definition 27 A simple qBf ∀p1 · · · ∀pn∃q1 · · · ∃qkθ is valid under a constraint (C1, . . . , Ck),
if there exist functions f1, . . . , fk with fi : {0, 1}|Ci| → {0, 1} such that for each assignment
s : {p1, . . . , pn} → {0, 1}, s(q1 7→ f1(s(~c1)), . . . , qk 7→ fk(s(~ck))) |= θ.

A dependency quantifier Boolean formula is a pair (ϕ, ~C), where ϕ is a simple quantified

Boolean formula and ~C is a constraint for ϕ. We say that (ϕ, ~C) is valid, if ϕ is valid under

the constraint ~C. Let DQBF denote the set of all dependency quantifier Boolean formulae.

Proposition 28 ([25, 5.2.2]) The validity problem of DQBF is NEXP-complete w.r.t. ≤log
m .

Definition 29 Given a simple qBf ∀p1 · · · ∀pn∃q1 · · · ∃qkθ, we say it is non-valid under a
constraint (C1, . . . , Ck), if for all functions f1, . . . , fk with fi : {0, 1}

|Ci| → {0, 1}, there exists
an assignment s : {p1, . . . , pn} → {0, 1} such that s(q1 7→ f1(s(~c1)), . . . , qk 7→ fk(s(~ck))) 6|= θ.

It is straightforward to see that non-validity problem of DQBF is the complement problem
of the validity problem of DQBF. Accordingly, the following corollary follows.

Corollary 30 The non-validity problem of DQBF is coNEXP-complete w.r.t. ≤log
m .

5.3 Complexity of the validity problem is coNEXP-hard

In this section we give a reduction from the non-validity problem of DQBF to the validity
problem of Minc.

Lemma 31 VAL(Minc) under lax semantics is coNEXP-hard w.r.t. ≤log
m .

Proof We provide a ≤log
m -reduction from the non-validity problem of DQBF to the validity

problem of Minc.
Recall Definition 29. In our reduction we will encode all the possible modified assignments

of Definition 29 by points in Kripke models. First we enforce binary (assignment) trees of
depth n in our structures. Leafs of the binary tree will correspond to the set of assignments
s : {p1, . . . , pn} → {0, 1}. The binary trees are forced in the standard way by modal formulae:
The formula branchpi := ✸pi∧✸¬pi forces that there are ≥ 2 successor states which disagree
on a proposition pi. The formula storepi := (pi → ✷pi)∧ (¬pi → ✷¬pi) is used to propagate
chosen values for pi to successors in the tree. Now define

treep,n := branchp1 ∧
n−1∧

i=1

✷
i
(

branchpi+1
∧

i∧

j=1

storepj

)

,

2See Section 7 for a definition.

13

where ✷
iϕ :=

i many
︷ ︸︸ ︷
✷ · · ·✷ϕ is the i-times concatenation of ✷. The formula treep,n forces

a complete binary assignment tree of depth n for proposition symbols p1, . . . , pn. No-
tice that treep,n is an ML-formula and consequently flat (see Proposition 18). Let ℓ :=
max{|C1|, . . . , |Ck|}. Then define

ϕstruc :=treep,n ∧ ✷
n
(
treet,ℓ

)
∧ ✷

n+ℓ
(
(pθ ↔ θ) ∧ p⊤ ∧ ¬p⊥

)

∧✷
n
(∧

1≤i≤ℓ

✷
i
(∧

1≤j≤n

storepj ∧
∧

1≤r≤k

storeqr
))

.

The formula ϕstruc enforces the full binary assignment tree w.r.t. the pis, enforces in its
leaves trees of depth ℓ for variables ti, identifies the truth of θ by a proposition pθ at the
depth n + ℓ as well as 1 by t⊤ and 0 by t⊥, and then stores the values of the pjs and qrs
consistently in their subtrees of relevant depth. The points at depth n are used to encode
the modified assignments of Definition 29.

Recall again Definition 29 and consider the simple qBf ∀p1 · · · ∀pn∃q1 · · · ∃qkθ with con-
straint (C1, . . . , Ck). Then consider some particular Kripke model with the structural prop-
erties described above. Shift your attention to those points in the enforced tree that are
in depth n. Note first that if we restrict our attention to proposition symbols p1, . . . , pn
all assignments are present. In fact the number points corresponding to some particular
assignment can by anything ≥ 1. Values for the proposition symbols qj and consequently
for the functions fj arise from the particular model; essentially, since we are considering
validity, all possible values will be considered. In fact, in some particular models, the values
of qjs are not functionally determined according to the related constraint Cj . We will next
define a formula that will deal with those models in which, for some j, the values for qj do
not give rise to a function fj in Definition 29. These unwanted models have to be “filtered”
out by the formula through satisfaction. This violation is expressed via ϕcons defined as
follows. Below we let nj = |Cj |.

ϕcons :=
∨

1≤j≤k,
Cj={ pi1 ,...,pinj

}

(t1 · · · tnj
t⊥ ⊆ pi1 · · · pinj

qj) ∧ (t1 · · · tnj
t⊤ ⊆ pi1 · · · pinj

qj). (2)

Assume that t⊤ and t⊥ correspond to the constant values 1 and 0, respectively. Moreover, for
the time being, suppose that the values for the proposition symbols ti have been existentially
quantified (we will later show how this is technically done). Now the formula ϕcons essentially
states that there exists a qj that does not respect the constraint Cj .

Finally define

ϕnon-val := ϕ⊥
struc ∨

(

ϕstruc ∧ ✷
n
(
✸
ℓ(ϕcons ∨ p⊥ ⊆ pθ

))

. (3)

By ϕ⊥
struc, we denote the negation normal form of the ML-formula ¬ϕstruc. An important

observation is that since ϕstruc is an ML-formula, it is flat. Now the formula ϕnon-val is valid
if and only if

M, T |= ✷
n
(
✸
ℓ(ϕcons ∨ p⊥ ⊆ pθ)

)
(4)

holds for every team pointed Kripke modelM, T that satisfies the structural properties forced
by ϕstruc. Let us now return to the formula (2). There, we assumed that the proposition
symbols ti had been quantified and that the symbols p⊤ and p⊥ correspond to the logical
constants. The latter part we already dealt with in the formula ϕstruc. Recall that ϕstruc

forces full binary assignment trees for the tis that start from depth n. The quantification of
the tis is done by selecting the corresponding successors by the diamonds ✸ℓ in the formula
(3). If M, T is such that, for some j, qj does not respect the constraint Cj , we use ✸

ℓ to
guess a witness for the violation. It is then easy to check that the whole team obtained by
evaluating the diamond prefix satisfies the formula ϕcons. On the other hand, if M, T is such
that for each j the value of qj respects the constraint Cj , then the subformula p⊥ ⊆ pθ forces

14

that there exists a point w in the team obtained from T by evaluating the modalities in (4)
such that M, {w} 6|= pθ. In our reduction this means that w gives rise to a propositional
assignment that falsifies θ as required in Definition 29.

It is now quite straightforward to show that a simple qBf ∀p1 · · · ∀pn∃q1 · · · ∃qkθ is non-
valid under a constraint (C1, . . . , Ck) iff the Minc-formula ϕnon-val obtained as described
above is valid.

In the following we show the correctness of the constructed reduction. By the observation
made in (4) it suffices to show the following claim:

Claim ∀p1 · · · ∀pn∃q1 · · · ∃qkθ is non-valid under (C1, . . . , Ck) iff M, T |= ✷
n
(
✸
ℓ(ϕcons ∨

p⊥ ⊆ pθ)
)
holds for every team pointed Kripke model M, T that satisfies the structural

properties forced by ϕstruc.

Proof (Proof of Claim) “⇒”: Assume that the formula ϕ := ∀p1 · · · ∀pn∃q1 · · · ∃qkθ
is non-valid under the constraint (C1, . . . , Ck). As a consequence, for every sequence of
functions f1, . . . , fk of appropriate arities there exists an assignment s : {p1, . . . , pn} → {0, 1}
such that

s(q1 7→ f1
(
s(~c1)), . . . , qk 7→ fk(s(~ck))) 6|= θ. (5)

We will show that
M, T |= ✷

n
(
✸
ℓ(ϕcons ∨ p⊥ ⊆ pθ)

)
, (6)

for each team pointed Kripke model M, T that satisfies the structural properties forced by
ϕstruc.

Let M, T be an arbitrary team pointed Kripke model that satisfies the required structural
properties. Denote by S the team obtained from T after evaluating the first n ✷-symbols in
(6). Note that each tuple of values assigned to ~p := (p1, . . . , pn) is realised in S as the tree
structure enforces all possible assignments over ~p. Due to the forced structural properties,
S and of any team obtainable from S by evaluating the k ✸-symbols in (6) realise exactly
the same assignments for {p1, . . . , pn, q1, . . . qk}. Let Sk denote the set of exactly all points
reachable from S by paths of length exactly k. For each point w denote by w(~q) the value of

~q in the world w. Note that for every ℓ-tuple of bits ~b and every point w ∈ S there exists a
point v ∈ Sk such that v(p1, . . . , pn, q1, . . . qk) = w(p1, . . . , pn, q1, . . . qk) and v(t1, . . . , tℓ) = ~b.

Moreover, for any fixed ~b, the team

{w ∈ Sk | w(t1, . . . , tℓ) = ~b}

is obtainable from S by evaluating the k ✸-symbols in (6). We have two cases:

1. There exists a constraint Ci, 1 ≤ i ≤ k, and points w,w′ ∈ S with w(~ci) = w′(~ci) but
w(qi) 6= w′(qi). Now let S′ be a team obtained from S by evaluating the k ✸-symbols
in (6) such that, for every w′ ∈ S′, w(t1, . . . , tℓ) is an expansion of w(~ci). Now clearly
M, S′ |= ϕcons and as a consequence M, S |= ✸

ℓ(ϕcons ∨ p⊥ ⊆ pθ). From this (6)
follows.

2. For each Ci, 1 ≤ i ≤ k, and every w,w′ ∈ S it holds that if w(~ci) = w′(~ci) then w(qi) =
w′(qi). Let f1, . . . , fk be some functions that arise from the fact that the constraints
(C1, . . . , Ck) are satisfied in S. Since, by assumption, ϕ is non-valid under the con-
straint (C1, . . . , Ck), it follows that there exists an assignment s : {p1, . . . , pn} → {0, 1}
such that (5) holds. Now recall that each tuple of values assigned to ~p := (p1, . . . , pn)
is realised in S. Accordingly, in particular, s and s(q1 7→ f1

(
s(~c1)), . . . , qk 7→ fk(s(~ck)))

are realised in S. For this reason M, S |= ✸
ℓ(p⊥ ⊆ pθ), from which (6) follows in a

straightforward manner.

“⇐”: Assume that M, T |= ✷
n
(
✸
ℓ(ϕcons ∨ p⊥ ⊆ pθ)

)
holds for every team pointed Kripke

model M, T that satisfies the structural properties forced by ϕstruc. We need to show that
ϕ is non-valid under the constraint (C1, . . . , Ck). In order to show this, let f1, . . . , fk be
arbitrary functions with arities that correspond to the constraint (C1, . . . , Ck). Let M, T be
a team pointed Kripke model and S a team of M such that

15

a) M, T satisfies the structural properties forced by ϕstruc,

b) S is obtained from T by evaluating the n ✷-symbols,

c) fi
(
w(~ci)

)
= w(qi), for each w ∈ S and 1 ≤ i ≤ k.

It is easy to check that such a model and teams always exist. From the assumption we then
obtain that

M, S |= ✸
ℓ(ϕcons ∨ p⊥ ⊆ pθ). (7)

But since the values of qis, by construction, do not violate the constraint (C1, . . . , Ck),
we obtain, with the help of the structural properties, that for (7) to hold is must be the
case that M, Sk |= p⊥ ⊆ pθ, where Sk is some team obtained from S by evaluating the k
✸-symbols in (7). But this means that there exists an assignment s : {p1, . . . , pn} → {0, 1}
such that

s(q1 7→ f1
(
s(~c1)), . . . , qk 7→ fk(s(~ck))) 6|= θ. (8)

Consequently, the claim holds. �

In order to compute ϕnon-val two binary counters bounded above by n+ k+ ℓ need to be
maintained. Note that log(n+ k + ℓ) is logarithmic with respect to the input length. That
being the case, the reduction is computable in logspace and the lemma applies. �

The construction in the previous proof works also for strict semantics. In the proof of
the claim a small adjustment is needed to facilitate the strict semantics of diamond. As a
result we obtain the following.

Corollary 32 VAL(Minc) under strict semantics is coNEXP-hard w.r.t. ≤log
m .

While the exact complexities of the problems VAL(Minc) and VAL(EMinc) remain open, it
is easy to establish that the complexities coincide.

Theorem 33 Let C be a complexity class that is closed under polynomial time reductions.
Then VAL(Minc) under lax (strict) semantics in complete for C if and only if VAL(EMinc)
under lax (strict) semantics in complete for C.

Proof Let ϕ be a formula of EMinc and k the modal depth of ϕ. Let ϕ1, . . . , ϕn be exactly
those subformulae of ϕ that occur as a parameter of some inclusion atom in ϕ and let
p1, . . . , pn be distinct fresh proposition symbols. Define

ϕsubst :=
(∧

0≤i≤k

✷
i

∧

1≤j≤n

(pj ↔ ϕj)
)
,

ϕ∗ := ϕ⊥
subst ∨ (ϕsubst ∧ ϕ

+),

where ϕ⊥
subst denotes the negation normal form of ¬ϕsubst and ϕ+ is the formula obtained

from ϕ by simultaneously substituting each ϕi by pi. It is easy to check that ϕ is valid if
and only if the Minc formula ϕ∗ is. Clearly ϕ∗ is computable from ϕ in polynomial time. �

6 Conclusion

In this paper we investigated the computational complexity of model checking and validity
for propositional and modal inclusion logic in order to complete the complexity landscape of
these problems in the mentioned logics. In particular we emphasise on the subtle influence
of which semantics is considered: strict or lax. The model checking problem for these logics
under strict semantics is NP-complete and under lax semantics P-complete. The validity
problem is shown to be coNP-complete for the propositional strict semantics case. For
the modal case we achieve a coNEXP lower bound under lax as well as strict semantics.
The upper bound is left open for further research. It is however easy to establish that, if
closed under polynomial reductions, the complexities of VAL(Minc) and VAL(EMinc), and
VAL(Mincs) and VAL(EMincs) coincide, respectively, see Proposition 33.

16

PL Satisfiability Problem

Operator strict lax

∅ NP [4, 22]
dep(·) NP [23]
⊆ EXP [17] EXP [16]
⊥ NP⋆ NP [13]
∼ AEXP[poly]⋆ AEXP[poly] [13, 14]
all AEXP[poly]⋆ AEXP[poly] [13, 14]

ML Satisfiability Problem

strict lax

PSPACE [21]
NEXP [29]

EXP [17] EXP [16]
NEXP⋆ NEXP [20]

? ?
? ?

Table 3: Complexity of Satisfiability, where all = {dep(·) ,⊆,⊥,∼}.
⋆: Proof for lax semantics works also for strict semantics.
?: No nontrivial result is known.

PL Model Checking

Operator strict lax

∅ NC1 [2]
dep(·) NP [6]
⊆ NP [Thm. 15] P [Thm. 11]
⊥ NP⋆ NP [13]
∼ PSPACE⋆ PSPACE [13, 24]
all PSPACE⋆ PSPACE [13, 24]

ML Model Checking

strict lax

P [3, 28]
NP [6]

NP [Thm. 25] P [Thm. 24]
NP⋆ NP [20]

PSPACE⋆ PSPACE [24]
PSPACE⋆ PSPACE [13]

Table 4: Complexity of Model Checking, where all = {dep(·) ,⊆,⊥,∼}.
⋆: Proof for lax semantics works also for strict semantics.

7 Related work and further research

Tables 3–5 give an overview of the current state of research for satisfiability, model checking
and validity in the propositional and modal team semantics setting for both strict and lax
variants. In the tables AEXP[poly] refers to alternating exponential time with polynomially
many alternations. We also identify the unclassified cases open for further research. As
these tables also mention atoms which have not been considered elsewhere in this paper, we
will introduce them shortly:

Let ~p, ~q, and ~r be tuples of proposition symbols and q a proposition symbol. Then
dep(~p, r) is a propositional dependence atom and ~q ⊥~p ~r is a conditional independence atom
with the following semantics:

X |= dep(~p, q) ⇔ ∀s, t ∈ X : s(~p) = t(~p) implies s(q) = t(q).

X |= ~q ⊥~p ~r ⇔ ∀s, t ∈ X : if s(~p) = t(~p), then ∃u ∈ X : u(~p~q) = s(~p~q) and u(~r) = t(~r).

Intuitively, ~q ⊥~p ~r states that for any fixed value for ~p, ~q and ~r are informationally indepen-
dent. We also consider the contradictory negation ∼ in our setting:

X |=∼ϕ iff X 6|= ϕ.

Semantics for these atoms in the modal setting is defined analogously. When C is a set of
atoms, we denote by PL(C) and ML(C) the extensions of PL and ML, in the team semantics
setting, by the atoms in C, respectively.

A fruitful direction for future research is to study automatic reasoning in the team
semantics setting.

References

[1] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge Univ. Press, 2001.

17

PL Validity Problem

Operator strict lax

∅ coNP [4, 22]
dep(·) NEXP [32]
⊆ coNP [Thm. 7] coNP [13]

⊥ ∈ coNEXPNP⋆ ∈ coNEXPNP [13]
∼ AEXP[poly]⋆ AEXP[poly] [13, 14]
all AEXP[poly]⋆ AEXP[poly] [13, 14]

ML Validity Problem

strict lax

PSPACE [21]

∈ NEXPNP [32]
coNEXP-h [Cor. 32] coNEXP-h [Lem. 31]

? ?
? ?
? ?

Table 5: Complexity of Validity, where all = {dep(·) ,⊆,⊥,∼}. Complexity classes refer to
completeness results, “-h.” denotes hardness and “∈” denotes containment.
⋆: Proof for lax semantics works also for strict semantics.
?: No nontrivial result is known.

[2] S. R. Buss. The Boolean formula value problem is in ALOGTIME. In Proc. 19th STOC,
pages 123–131, 1987.

[3] E. Clarke, E. A. Emerson, and A. Sistla. Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM ToPLS, 8(2):244–263, 1986.

[4] S. A. Cook. The complexity of theorem proving procedures. In Proc. 3rd STOC, pages
151–158, 1971.

[5] A. Durand, J. Kontinen, and H. Vollmer. Expressivity and complexity of dependence
logic. In S. Abramsky, J. Kontinen, J. Väänänen, and H. Vollmer, editors, Dependence
Logic: Theory and Applications, pages 5–32. 2016.

[6] J. Ebbing and P. Lohmann. Complexity of model checking for modal dependence logic.
In 38th Proc. SOFSEM, pages 226–237, 2012.

[7] P. Galliani. Inclusion and exclusion dependencies in team semantics - on some logics of
imperfect information. Ann. Pure Appl. Logic, 163(1):68–84, 2012.

[8] P. Galliani, M. Hannula, and J. Kontinen. Hierarchies in independence logic. In Proc.
22nd CSL, volume 23 of LIPIcs, pages 263–280, 2013.

[9] P. Galliani and L. Hella. Inclusion logic and fixed point logic. In Proc. 22nd CSL,
LIPIcs, pages 281–295, 2013.

[10] M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the Theory
of NP-Completeness. Freeman, New York, 1979.

[11] L. M. Goldschlager. The monotone and planar circuit value problems are log-space
complete for P. SIGACT News, 9:25–29, 1977.

[12] E. Grädel and J. Väänänen. Dependence and independence. Studia Logica, 101(2):399–
410, 2013.

[13] M. Hannula, J. Kontinen, J. Virtema, and H. Vollmer. Complexity of propositional
independence and inclusion logic. In Proc. 40th MFCS, pages 269–280, 2015.

[14] M. Hannula, J. Kontinen, J. Virtema, and H. Vollmer. Complexity of propositional
logics in team semantics. CoRR, extended version of [13], abs/1504.06135, 2015.

[15] Miika Hannula and Juha Kontinen. Hierarchies in independence and inclusion logic
with strict semantics. J. Log. Comput., 25(3):879–897, 2015.

[16] L. Hella, A. Kuusisto, A. Meier, and H. Vollmer. Modal inclusion logic: Being lax is
simpler than being strict. In Proc. 40th MFCS, pages 281–292, 2015.

18

[17] L. Hella, A. Kuusisto, A. Meier, and H. Vollmer. Satisfiability of modal inclusion
logic: Lax and strict semantics. 2017. Corrected version of [16], to appear soon on
arXiv:1504.06409.

[18] L. Hella and J. Stumpf. The expressive power of modal logic with inclusion atoms. In
Proc. 6th GandALF, pages 129–143, 2015.

[19] W. Hodges. Compositional semantics for a language of imperfect information. Logic
Journal of the IGPL, 5(4):539–563, 1997.

[20] J. Kontinen, J.-S. Müller, H. Schnoor, and H. Vollmer. Modal independence logic.
Journal of Logic and Computation, 2016.

[21] R. Ladner. The computational complexity of provability in systems of modal proposi-
tional logic. SIAM Journal on Computing, 6(3):467–480, 1977.

[22] L. A. Levin. Universal sorting problems. Problems of Inform. Transm., 9:265–266, 1973.

[23] P. Lohmann and H. Vollmer. Complexity results for modal dependence logic. Studia
Logica, 101(2):343–366, 2013.

[24] J.-S. Müller. Satisfiability and Model Checking in Team Based Logics. PhD thesis,
Leibniz University of Hannover, 2014.

[25] G. Peterson, J. Reif, and S. Azhar. Lower bounds for multiplayer noncooperative games
of incomplete information. Computers & Math. with Applications, 41(7-8):957 – 992,
2001.

[26] K. Sano and J. Virtema. Characterizing frame definability in team semantics via the
universal modality. In Proc. of WoLLIC 2015, pages 140–155, 2015.

[27] K. Sano and J. Virtema. Characterizing relative frame definability in team semantics
via the universal modality. In Proc. of WoLLIC 2016, pages 392–409, 2016.

[28] P. Schnoebelen. The complexity of temporal logic model checking. In Proc. 4th AiML,
pages 393–436, 2002.

[29] M. Sevenster. Model-theoretic and computational properties of modal dependence logic.
Journal of Logic and Computation, 19(6):1157–1173, 2009.

[30] L. J. Stockmeyer. and A. R. Meyer. Word problems requiring exponential
time(preliminary report). In Proc. 5th STOC, pages 1–9, New York, NY, USA, 1973.
ACM.

[31] J. Väänänen. Dependence Logic. Cambridge University Press, 2007.

[32] J. Virtema. Complexity of validity for propositional dependence logics. Information
and Computation, 2016. Online first.

[33] H. Vollmer. Introduction to Circuit Complexity – A Uniform Approach. Texts in The-
oretical Computer Science. Springer Verlag, Berlin Heidelberg, 1999.

19

	1 Introduction
	2 Propositional logics with team semantics
	3 Complexity of Propositional Inclusion Logic
	3.1 Model checking in lax semantics is P-complete
	3.2 Model checking in strict semantics is NP-complete

	4 Modal logics with team semantics
	5 Model checking and validity in modal team semantics
	5.1 Complexity of model checking
	5.2 Dependency quantifier Boolean formulae
	5.3 Complexity of the validity problem is coNEXP-hard

	6 Conclusion
	7 Related work and further research

