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Abstract:   

Background:  

Natural history models for primary sclerosing cholangitis (PSC) are derived from adult 

patient data, but have never been validated in children.  It is unclear how accurate such 

models are for children with PSC.  

Methods: 

We utilized the pediatric PSC consortium database to assess the Revised Mayo Clinic, 

Amsterdam-Oxford and Boberg models.  We calculated the risk stratum and predicted 

survival for each patient within each model using patient data at PSC diagnosis, and 

compared it to observed survival.  We evaluated model fit using the c-statistic.   

Results: 

Model fit was good at one year (c-statistics 0.93, 0.87, 0.82) and fair at ten years (0.78, 0.75, 

0.69) in the Mayo, Boberg and Amsterdam-Oxford models, respectively.  The Mayo model 

correctly classified most children as low risk, whereas the Amsterdam-Oxford model 

incorrectly classified most as high risk.  All of the models underestimated survival of patients 

classified as high risk.  Albumin, bilirubin, AST and platelets were most associated with 

outcomes.  Autoimmune hepatitis was more prevalent in higher risk groups, and over-

weighting of AST in these patients accounted for the observed vs. predicted survival 

discrepancy.   

Conclusion: 

All three models offered good short-term discrimination of outcomes but only fair long-term 

discrimination.  None of the models account for the high prevalence of features of 

autoimmune hepatitis overlap in children and the associated elevated aminotransferases.  A 

pediatric-specific model is needed.  AST, bilirubin, albumin and platelets will be important 

predictors, but must be weighted to account for the unique features of PSC in children.   



Introduction: 

Several natural history models have been derived from clinical data in adult populations with 

primary sclerosing cholangitis (PSC) (1-10).  No consensus exists regarding the optimal 

model (11), and none have been validated for use in children.  Important clinical differences 

exist between pediatric and adult-onset PSC patients.  At PSC diagnosis, dominant strictures 

are present in 4% of children (12, 13), compared to 45% of adults (14).  Similarly, 

cholangiocarcinoma is rare in pediatric-onset PSC, occurring in 1% of children by 10 years 

(12, 13), compared to at least 7-13% of adults (15-17).  A small duct phenotype is present in 

20% of children (12, 13), but only 10% of adults (18, 19).  Features of autoimmune hepatitis 

overlap with PSC are present in over 33% of children (12, 13), but only 7% of adults with 

PSC (20, 21). With these clinical differences, it is unclear how well risk models derived from 

adult patient data are generalizable to children.   

The most widely-used model to estimate transplant-free patient survival is the Revised 

Natural History Model for PSC, from a group at the Mayo Clinic (the “Mayo model”) (5).  It 

estimates survival with native liver for up to four years, and is available as an online 

calculator tool (22).   A subsequent risk model from five European centers was created by 

Boberg et al. to more accurately estimate one-year survival to inform immediate transplant 

listing decisions (the “Boberg model”) (6).  The most recent Amsterdam-Oxford model (the 

“A-O model”) included the largest model creation and validation cohorts to date, and had an 

added strength of originating from population-based data (10).  It estimates survival with 

native liver out to 15 years, and is also available online (23).  Characteristics of these models 

and their creation and validation cohorts are described and are compared to the Pediatric PSC 

Consortium in Table 1.  We aimed to test the predictive utility of the Mayo, Boberg and A-O 

prognostic models for PSC using data from the Pediatric PSC Consortium, a large, 

multicenter cohort of children with PSC (12).   



Methods: 

We previously reviewed medical records on all known PSC patients at 36 different 

institutions throughout Europe, North America, the Middle East, and Asia (12).  The PSC 

diagnosis was based on a cholestatic laboratory profile and either cholangiography showing 

multifocal stricturing and segmental dilations of the biliary tree and/or liver biopsy showing 

periductal, concentric fibrosis, fibro-obliterative cholangitis, or primary ductular involvement 

(11).  Patients with abnormal cholangiograms were labeled as large duct PSC.  Patients with 

normal cholangiograms but abnormal liver biopsy were labeled as small duct PSC. 

Autoimmune hepatitis (AIH) was diagnosed in patients who met a ‘probable’ or ‘definite’ 

score on the simplified AIH criteria that have been validated in children (24).  We collected 

demographics, laboratory, histopathology, cholangiography and endoscopy data at liver 

disease diagnosis, as well as the presence of an esophageal variceal bleeding history. 

Alkaline phosphatase values were normalized for age.  Complete data was present in 670/781 

patients (86%).  To account for missing data, we performed multivariate imputation using 

iteratively chained equations, combining the results of 10 imputed data sets.  We validated 

the models using this imputed data set. 

We calculated survival probabilities for each child using the equations derived from the 

Mayo (5), Boberg (6) and A-O (10) risk models (Appendix, Supplemental Digital Content, 

http://links.lww.com/MPG/B735).  We did not validate other models because they 

necessitated access to original histopathology (1, 4), full images from cholangiography 

studies (7, 9), or included subjective assessments of organomegaly (2, 3, 8) that were not 

included in our dataset, and none are widely used.  To generate observed survival 

probabilities, we created a retrospective cohort of all patients and followed them from time of 

PSC diagnosis to endpoints of liver transplantation or death from liver disease.  Person-time 

was censored at the date of the last known clinical encounter.  We used the Kaplan-



Meier method to calculate rates of survival each year after diagnosis.  The endpoints of each 

model were somewhat different, with the Mayo model derived to predict only a risk of dying 

with a horizon of 4 years, and with liver transplant treated as if the patient would die within 

one year.  The Boberg model was designed to predict one-year transplant-free survival, and 

the A-O model offered predictions for 10+ years.  For uniformity in assessing multiple 

models, and to extrapolate longer-term prediction capability, we kept patients in their initial 

risk strata and observed survival out to ten years regardless of each model’s original intent.   

We evaluated the ability of each model to yield accurate survival probabilities for a given 

patient graphically, by comparing overlaid plots of observed and calculated survival 

probabilities.  We plotted the Kaplan-Meier curve of observed outcomes alongside the annual 

predicted probabilities of survival for each risk group.  For the plots of predicted survival, we 

calculated the median of the annual survival probabilities of each patient within each risk 

group, and connected these with straight lines (25, 26).  The utility of risk score cutoffs 

specified by the adult models to stratify patients into distinct groups (e.g. “low” and “high” 

risk) with distinct observed survival probabilities was assessed using the logrank test.  The 

logrank test is used to test the null hypothesis that there is no difference between the risk 

groups in the probability of an event (transplant or death) at any time point (27). 

Discriminatory ability of the models was assessed with the concordance statistic (c-statistic). 

The c-statistic was calculated by comparing observed and expected survival between every 

possible pairing of two of the 781 patients in the cohort (1 vs. 2, 1 vs. 3, … , 780 vs. 781). 

The c-statistic is the percentage of all 609,180 of these possible pairings that the model 

“guessed” correctly (assigned a worse predicted survival to the patient with the worst 

observed survival) (28).  The c-statistic ranges from 0.5 (no discrimination, e.g. random risk 

stratification using a coin toss) to 1.0 (perfect discrimination), with values of 0.8 or higher 

generally regarded as “good discrimination” (29).  We created time-truncated datasets to each 



of one through ten years of follow-up and assessed the c-statistic for each time point to follow 

the accuracy of each model out to longer and longer prediction windows.   

We broke down the median risk score in each risk group for the Mayo and A-O models and 

calculated the proportion of the risk score attributable to each individual predictor.  We 

compared three or more groups of continuous variables using the Kruskal-Wallis test.  All 

calculations were done using Stata version 13.0 (StataCorp, College Station, TX).  The 

protocol of the study was approved by the institutional review and/or research ethics board of 

each collaborating institution.   

Results: 

The Revised Mayo Clinic Model: 

The Mayo model was designed to report four-year outcomes.  Overall, the Mayo model 

offered good discrimination of four-year outcomes with a c-statistic of 0.83.  Predicted vs. 

observed survival with native liver (SNL) was similar in low, medium and high risk groups at 

one-year (99 vs. 99, 97 vs. 98, and 80 vs. 79%, respectively), but more disparate at four years 

(98 vs. 96, 89 vs. 79, and 33 vs. 47%, respectively).  The low, medium and high risk cutoffs 

created three distinct populations of patients with progressively worse outcomes, logrank 

p<0.001 between all groups as shown in Figure 1.  Most children were correctly stratified 

into the low risk group.   

Serum albumin and aspartate aminotransferase levels made up the majority of the risk score 

for each patient, whereas total bilirubin, patient age, and variceal hemorrhage history 

contributed very little to the risk score, as shown in Supplemental Figure 1 (Supplemental 

Digital Content, http://links.lww.com/MPG/B735).  Each of the predictor variables varied 

significantly between groups as shown in Supplemental Table 1 (Supplemental Digital 

Content, http://links.lww.com/MPG/B735).  Inflammatory bowel disease was most 



prevalent in low vs. medium and high risk groups: 80 vs. 73 vs. 52%, while autoimmune 

hepatitis was least prevalent in low vs. medium and high risk groups: 29 vs. 39 vs. 52%, 

respectively (both p<0.001).  Large duct disease was distributed evenly among risk groups.   

The Amsterdam-Oxford Model: 

The A-O model was designed to report fifteen-year outcomes, but we had inadequate 

pediatric follow-up data to this time point and so followed it to a maximum of ten years. 

Overall, the A-O model offered fair discrimination of ten-year outcomes with a c-statistic of 

0.69.  Predicted vs. observed SNL was similar in low, low-intermediate, and medium risk 

groups, but disparate in the high risk group at one-year (100 vs. 99, 100 vs. 98, 100 vs. 97, 96 

vs. 90%, respectively), five years (97 vs. 97, 96 vs. 94, 94 vs. 89, 83 vs. 66%, respectively) 

and ten years (88 vs. 93, 84 vs. 84, 76 vs. 74, 61 vs. 34%, respectively).  The low, low-

intermediate, medium and high risk cutoffs created four distinct populations of patients with 

progressively worse outcomes, log-rank p<0.001 between all groups as shown in Figure 2.  

The original model stratified 16, 34, 34 and 16% of adult patients as low, low-intermediate, 

medium and high risk, respectively.  Children were stratified with 19, 9, 14 and 57% falling 

into these respective groups, over-classifying most as high risk.   

Serum aspartate aminotransferase levels and platelet count made up the majority of the risk 

score for each patient, whereas total bilirubin, alkaline phosphatase, and albumin contributed 

little to the risk score, as shown in Supplemental Figure 2 (Supplemental Digital Content, 

http://links.lww.com/MPG/B735).  Age and large duct phenotype were similar in all risk 

groups, whereas all of the laboratory-based predictors were significantly different as shown 

in Supplemental Table 2 (Supplemental Digital Content, 

http://links.lww.com/MPG/B735).  Inflammatory bowel disease was equally prevalent in 



lower risk groups: 84 vs. 77 vs. 80 vs. 74%, respectively, while autoimmune hepatitis was 

more prevalent in higher risk groups: 17 vs. 31 vs. 37% vs. 38%, respectively. 

The Boberg model: 

The Boberg model was designed to report one-year outcomes.  The Boberg model provided 

excellent discrimination of one-year outcomes, with a c-statistic of 0.87, making it generally 

accurate at predicting if an individual patient would require liver transplantation or not on the 

basis of his or her laboratory studies.  The patient’s bilirubin (median 0.6 [IQR 0.4-1.2]) 

made up the majority of the prognostic score, accounting for 80%.  Serum albumin (median 4 

[IQR 3.6-4.4]) and patient age (median 12y [IQR 8-15]) accounted for 10% each.  The model 

was overly pessimistic in predicting SNL for the group however.  We observed 24 deaths or 

liver transplants in the first year after diagnosis, whereas the Boberg model predicted that 

over 170 would have occurred.  The observed vs. predicted SNL at one year was 98% vs. 

78%, respectively. 

Model Comparison: 

We assessed the performance of each model to discriminate outcomes at each of one to ten 

years after diagnosis, even though this was beyond the intended window for the Mayo and 

Boberg models.  This is shown in Figure 3.  The Mayo model was excellent at predicting 

need for transplant at one year, outperforming the other models (c-statistic 0.93 vs. 0.87 vs. 

0.82 for the Mayo, Boberg and A-O models, respectively).  Despite the Mayo score being 

designed for outcomes up to four years, and the Boberg model designed for outcomes at one 

year, use of either score as a predictor outperformed the A-O model at every time point cutoff 

through ten years.  AST, platelet count, bilirubin and albumin were most associated with 

outcomes and accounted for the bulk of each risk score, where used in each model.  Overall 

the Mayo model provided the best discrimination at all points in follow-up.   



Discussion: 

We used a large dataset of pediatric-onset PSC cases to assess the validity of prognostic and 

risk stratification tools created for adult PSC patients.  We showed that the Mayo model 

offered the best discrimination of outcomes up to ten years.  The Mayo and A-O models 

accurately estimated SNL in patients for 4-5 years after diagnosis.  The Mayo model 

provided the best stratification to low, medium and high risk groups.  A large source of 

inaccuracy of the models appeared to be weighting of AST that did not take into account the 

high prevalence of autoimmune hepatitis in children.   

AST level contributed the largest variance explained in calculating risk scores in the Mayo 

and A-O model, and in stratifying patients into higher risk groups.  AST rises with extensive 

fibrosis and cirrhosis.  Indeed, the AST to Platelet ratio index (APRI) is a useful surrogate 

marker of hepatic fibrosis in many liver diseases (30-32), including PSC (33, 34).  While an 

important predictor of disease progression, the Mayo and A-O models do not take into 

account the high prevalence of features of AIH overlap in children.  At least one third of 

children with PSC are affected with AIH (12) compared to 0-5% of the adult cohorts (5, 6, 

10) used to create these models.  The median AST at diagnosis in children with PSC-AIH

overlap was 290 U/L, yet most of these children had an uncomplicated clinical course, with a 

five-year SNL of 90% (12).  The large number of children with marked elevations of AST 

that are unrelated to fibrosis, and which do not imply a negative prognosis, is the largest 

source of inaccuracy in prediction and risk stratification in these models.   

It may seem remarkable that the models provide reasonable discrimination of outcomes at all, 

given the derivation and validation cohorts range in median age from 36-45 years old, and the 

median child in our cohort is only 12.  Despite differing prevalence of complications at 

diagnosis of PSC, disease progression to new adverse liver events is similar between children 

and adults, occurring consistently in approximately 4% of patients each year. 

Cholangiocarcinoma is more common in adult patients however, who may have decades of 

disease duration and potential for hepatobiliary inflammation to progress to dysplasia and 

cancer.  The higher rate of cholangiocarcinoma in adults (and their associated high mortality) 

is likely a large source of inaccuracy when pediatric data are entered into these models. There 

are no known differences in the underlying pathogenesis of PSC in children as compared to 

adults.  Other than patient age, the laboratory markers and phenotypic features included in 

each of the adult models have generally been shown to be useful predictors in children (12, 



13).  It is likely that an optimized pediatric-specific model will include many of the same 

predictors, but will apply different weights to each.  Bilirubin, platelet count and serum 

albumin are strong candidates for a pediatric model.   

The strength of this study was the large size of the validation cohort we utilized.  The 

Pediatric PSC Consortium is the largest cohort of pediatric-onset PSC patients, and includes a 

diverse mix of secondary and tertiary referral centers.  The weakness of the study is the 

retrospective nature of the Pediatric PSC Consortium data.  This prevented a standardized 

diagnostic and therapeutic algorithm for each patient, and misclassification bias may be 

present.  While we were able to evaluate the most popular and user-friendly risk stratification 

models, were unable to evaluate all existing prognostic models due to lack of original 

histopathology and cholangiography data, and lack of subjective assessments of 

organomegaly in all patients.   

In conclusion, we used the Pediatric PSC Consortium dataset to evaluate the validity of adult-

derived prognostic models to predict clinical outcomes in children.  The best discrimination, 

prediction and risk-stratification was provided by the Mayo model.  None of the models 

accounted for the high prevalence of features of autoimmune hepatitis overlap in children and 

the associated elevations of aminotransferase levels that are unrelated to cirrhosis.  Total 

bilirubin, albumin and platelet count are strong candidates for inclusion into a future 

pediatric-specific model.  Weighting of predictors to account for the unique biochemical 

profile of children, is likely to yield more useful and accurate predictions and risk-

stratification for pediatric-onset PSC.   
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Figure 1. Observed vs. Predicted survival with native liver by risk group in the Mayo model 



Figure 2: Observed vs. Predicted survival with native liver by risk group in the Amsterdam-
Oxford model 



Figure 3: Comparison of model fit at annual time points after PSC diagnosis, extrapolated to 
10 years 



Table 1: Characteristics of Adult Prognostic Models for Primary Sclerosing Cholangitis 

Mayo Model 
Kim et al. 2000 (5) 

A-O Model 
de Vries et al. 2017 

(10) 

Boberg Model 
Boberg et al. 

2002 (6) 

Pediatric PSC 
Consortium 

Deneau et al. 2017 
(12) 

Creation Cohort 
Location(s) four United States  

referral centers 
44 Dutch centers 

(population-based) 
five European  
referral centers 

36 North American, 
European, Middle 

East and Asian 
centers 

n 405 692 330 781
age (years) 42 37 [IQR 27-49] 37 (range 13-82) 12 
% female 33% 35% 32% 39% 
% with IBD 74% 70% 83% 76% 
% with AIH 0% 5% 0% 33% 
median survival 
with native 
liver 

not reported 20 years 11.7 years 16 years 

Externally 
Validated? 

Yes Yes No

Validation Cohort 
location King’s College 

hospital 
London, UK 

John Radcliffe 
hospital 

Oxford, UK 
264 

45 years 
74% 
2% 

23 years 

n 124
age (median) 36 years 
% with IBD 71% 
% with AIH 0% 
median survival 
with native 
liver 

12 years 

Variables age at diagnosis 
albumin 

AST 
bilirubin 

variceal bleeding 
history 

age at diagnosis 
albumin 

alkaline phosphatase 
AST 

bilirubin 
large duct phenotype 

platelets 

age at diagnosis 
albumin 
bilirubin 

Survival with 
native liver 
estimates: 

1-4 years 1-15 years 1 year


