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Abstract In this paper we consider the linear sufficiency of Fy for Xβ, for Zu
and for Xβ+Zu, when dealing with the linear mixed model y = Xβ+Zu+e.
In particular, we explore the relations between these sufficiency properties. The
usual definition of linear sufficiency means, for example, that the BLUE of Xβ
under the original model can be obtained as AFy for some matrix A. Liu et
al. (2008) introduced a slightly different definition for the linear sufficiency and
we study its relation to the standard definition. We also consider the condi-
tions under which BLUEs and/or BLUPs under one mixed model continue to
be BLUEs and/or BLUPs under the other mixed model. In particular, we de-
scribe the mutual relations of the conditions. These problems were approached
differently by Rong & Liu (2010) and we will show how their results are related
to those obtained by our approach.
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1 Introduction

In this paper we consider the general linear model

y = Xβ + ε, or shortly, M = {y,Xβ, σ2V} . (1.1)

Here Xn×p is a known fixed model matrix, the vector y is an observable
n-dimensional random vector, β is a p × 1 vector of fixed but unknown pa-
rameters, and ε is an unobservable vector of random errors with expectation
E(ε) = 0, and covariance matrix cov(ε) = σ2V, where the nonnegative defi-
nite matrix V is known and σ is a nonzero positive unknown scalar. For our
considerations, however, the scalar σ has no role and hence it is omitted.

Let y∗ denote a q × 1 unobservable random vector containing new future
observations; the words “new” and “future” need not be taken here literally.
These new additional observations are assumed to follow the linear model

y∗ = X∗β + ε∗ , (1.2)

where X∗ is a known q×p matrix, β is the same vector of unknown parameters
as in M , and ε∗ is a q-dimensional random error vector. The expectation and
the covariance matrix are

E

(
y
y∗

)
=

(
Xβ
X∗β

)
=

(
X
X∗

)
β , cov

(
y
y∗

)
=

(
V V12

V21 V22

)
= Γ , (1.3)

where the covariance matrix Γ is assumed to be known. For brevity, we denote
this setup as

M∗ =

{(
y
y∗

)
,

(
X
X∗

)
β,

(
V V12

V21 V22

)}
, (1.4)

and call M∗ as the “linear model with new observations”.
By the linear mixed model we mean

y = Xβ + Zu + e, or shortly, L = {y,Xβ + Zu,D,R,S}, (1.5)

where Zn×q is a known matrix, y, X, and β are as in M but u is an un-
observable q-dimensional random effect with E(u) = 0, cov(u) = D, and e
is a random error vector with E(e) = 0, cov(e) = R, cov(e,u) = S. In this
situation

cov(y) = cov(Zu + e) = ZDZ′ + R + ZS′ + SZ′ = Σ . (1.6)

As for notation, let Rm×n denote the set of m × n real matrices. The
symbols A′, A−, A+, C (A), and C (A)⊥, denote, respectively, the transpose,
a generalized inverse, the Moore–Penrose inverse, the column space, and the
orthogonal complement of the column space of the matrix A. By (A : B) we
denote the partitioned matrix with Am×n and Bm×k as submatrices. By A⊥

we denote any matrix satisfying C (A⊥) = C (A)⊥. Furthermore, we will write
PA = AA+ = A(A′A)−A′ to denote the orthogonal projector (with respect
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to the standard inner product) onto C (A), and QA = I−PA. In particular,
we denote M = In −PX. One choice for X⊥ is of course M.

The linear estimator Gy is the best linear unbiased estimator, BLUE, of
Xβ whenever Gy is unbiased and it has the smallest covariance matrix (in
the Löwner sense) among all linear unbiased estimators of Xβ. The following
lemma characterises the BLUE; see, e.g., Drygas (1970, p. 55), Rao (1973,
p. 282).

Lemma 1 Consider the general linear model M = {y,Xβ,V}. Then the
estimator Gy is the BLUE for Xβ if and only if G satisfies the equation

G(X : VX⊥) = (X : 0) . (1.7)

The corresponding condition for Ay to be the BLUE of an estimable parametric
function Kβ, i.e., C (K′) ⊂ C (X′), is

A(X : VX⊥) = (K : 0) . (1.8)

One well-known solution for G in (1.7) (which is always solvable) is

PX;W− = X(X′W−X)−X′W−, (1.9)

where W belongs to the set of nonnegative definite matrices defined as

WV =
{
W ∈ Rn×n : W = V + XUU′X′, C (W) = C (X : V)

}
. (1.10)

It is not necessary, see Kala et al. (2017, §4), to restrict the classWV to contain
only nonnegative definite matrices, that is, we could consider matrices of the
type W = V+XNX′, where N is such that C (W) = C (X : V). However, for
our purposes it is notationally a bit simpler to use WV as defined in (1.10).

The random vector y∗ is said to be predictable if it has a linear unbiased
predictor Cy, say, i.e., there exists a matrix C such that E(y∗−Cy) = 0 for all
β ∈ Rp. This is equivalent to X′∗ = X′C′, i.e., to the inclusion C (X′∗) ⊂ C (X′)
which is the condition for the estimability of X∗β under M . Now a linear
unbiased predictor By is the best linear unbiased predictor, BLUP, for y∗, if
the Löwner ordering

cov(y∗ −By) ≤L cov(y∗ −Ny) (1.11)

holds for all N such that Ny is an linear unbiased predictor for y∗.
The following lemma characterises the BLUP; for the proof, see, e.g., Chris-

tensen (2011, p. 294), and Isotalo & Puntanen (2006, p. 1015).

Lemma 2 Consider the linear model M∗ (with new observations) and let y∗
be predictable. Then the linear predictor By is the best linear unbiased predic-
tor, BLUP, for y∗ if and only if B satisfies the equation

B(X : VX⊥) = (X∗ : V21X
⊥) = [X∗ : cov(y∗,y)X⊥] . (1.12)
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Denoting X∗ = CX (indicating that y∗ is predictable) and T = PX;W− ,
we have, for example, the following representations for the BLUP of y∗; see
Haslett et al. (2014, Th. 2):

BLUP(y∗ | L ) = X∗(X
′W−X)−X′W−y + V21V

−(In −T)y

= CTy + V21V
−(In −T)y

= CTy + V21W
−(In −T)y

= CTy + V21M(MVM)−My . (1.13)

The general representation for the BLUP of y∗ under M∗ can be written, for
example, as B0y, where

B0 = CT + V21V
−(In −T) + HQW , (1.14)

with H ∈ Rn×n being free to vary. In this context it may be worth em-
phasizing that the realised value of B0y is invariant with respect to the
choice of the generalized inverses involved; this is so in view of Rao & Mi-
tra (1971, Lemma 2.2.4) and the assumed consistency of the model indicating
that y ∈ C (W) with probability 1.

Let us formally define the concept of linear sufficiency as done by Baksalary
& Kala (1981, 1986) and Drygas (1983).

Definition 1 A linear statistic Fy, where F ∈ Rf×n, is called linearly suf-
ficient for Xβ under the model M = {y,Xβ,V}, if there exists a matrix
A ∈ Rn×f such that AFy is the BLUE for Xβ. Correspondingly, Fy is lin-
early sufficient for estimable Kβ, where K ∈ Rk×p, if there exists a matrix
A ∈ Rk×f such that AFy is the BLUE for Kβ; that is, there exists a matrix
A such that

AF(X : VM) = (K : 0) . (1.15)

The concept of linear prediction sufficiency is defined analogically:

Definition 2 Let y∗ = X∗β + ε∗ be predictable under the model M∗, i.e.,
C (X′∗) ⊂ C (X′). Then Fy is called linearly prediction sufficient for y∗ if there
exists a matrix A such that AFy is the BLUP for y∗; that is, there exists a
matrix A such that

AF(X : VM) = (X∗ : V21M) = [X∗ : cov(y∗,y)M] . (1.16)

We will sometimes use the phrase “BLUE-sufficient” and the notation Fy ∈
S(Kβ). Correspondingly, we may use the term “BLUP-sufficient” and the
notation Fy ∈ S(y∗). However, the division into BLUE-sufficiency vs. BLUP-
sufficiency is not necessary and we can simply refer to linear sufficiency of Fy
with respect to Kβ or y∗. Thus we have, for example,

S(Kβ) = {Fy : AF(X : VM) = (K : 0) for some A} , (1.17)

S(y∗) = {Fy : AF(X : VM) = (X∗ : V21M) for some A} . (1.18)
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As Kala et al. (2017, Remark 2) point out, the notation of the type (1.17)
is merely symbolic and it is not meant to refer to a set containing only one
element which is a single fixed vector resulting from transformation of an
observed vector y, or is a single random vector variable being a specific linear
transformation of the random vector y. We are, of course, actually interested
in the set of matrices F satisfying a certain property.

For the following Lemma 3, see, e.g., Baksalary & Kala (1981, 1986), Dry-
gas (1983), Tian & Puntanen (2009, Th. 2.8), and Kala et al. (2017, Th. 2).

Lemma 3 The statistic Fy is BLUE-sufficient for Xβ under the model M =
{y,Xβ,V} if and only if any of the following equivalent statements holds:

(a) C

(
X′

0

)
⊂ C

(
X′F′

MVF′

)
,

(b) C (X) ⊂ C (WF′), where W ∈ WV and WV is defined as in (1.10),
(c) C (X′F′) = C (X′) and C (FX) ∩ C (FVX⊥) = {0}.

Let Kβ be estimable under M . Then Fy is BLUE-sufficient for Kβ if and
only if

(d) C

(
K′

0

)
⊂ C

(
X′F′

MVF′

)
.

Suppose that y∗ = X∗β + ε∗ is predictable under M∗. Then Fy is BLUP-
sufficient for y∗ if and only if

(e) C

(
X′∗

MV12

)
⊂ C

(
X′F′

MVF′

)
.

The structure of the paper is as follows. In Section 2 we consider the linear
sufficiency of Fy for Xβ, for Zu and for Xβ+Zu, when dealing with the linear
mixed model y = Xβ+Zu+e. In particular, we explore the relations between
these sufficiency properties. Liu et al. (2008) introduced a slightly different
definition for the linear sufficiency and we study its relation to the standard
definition. In Section 3 we consider the conditions under which BLUEs and/or
BLUPs under one mixed model continue to be BLUEs and/or BLUPs under
the other mixed model. In particular, we describe the mutual relations of
the conditions. These problems were approached differently by Rong & Liu
(2010) and we will show how their results are related to those obtained by our
approach.

2 Linear sufficiency in a linear mixed model

Consider the linear mixed model

y = Xβ + Zu + e, denoted as L = {y,Xβ + Zu,D,R,S}, (2.1)

where Xn×p and Zn×q are known matrices, β ∈ Rp is a vector of unknown
fixed effects, u is an unobservable vector (q elements) of random effects with
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E(u) = 0, cov(u) = Dq×q , cov(e,u) = Sn×q , and E(e) = 0, cov(e) = Rn×n.
In this situation

cov

(
e
u

)
=

(
R S
S′ D

)
, cov

(
y
u

)
=

(
Σ ZD + S

(ZD + S)′ D

)
, (2.2)

and cov(y) = ZDZ′ + R + ZS′ + SZ′ = Σ.

The mixed model can be expressed as a version of the model with “new
observations”, the new observations being now in u:{(

y
u

)
,

(
X
0

)
β,

(
Σ ZD + S

DZ′ + S′ D

)}
. (2.3)

Corresponding to (1.1) and (1.2), we have

y = Xβ + ε , cov(ε) = Σ, ε = Zu + e , (2.4a)

u = ε∗ , cov(ε∗) = D, cov(ε, ε∗) = ZD + S . (2.4b)

Moreover, choosing the “new observations” as g = Xβ + Zu, we get{(
y
g

)
,

(
X
X

)
β,

(
Σ (ZD + S)Z′

Z(DZ′ + S′) ZDZ′

)}
. (2.5)

Thus, see, e.g., Haslett et al. (2015), under the mixed model L the follow-
ing statements hold:

(a) Ay is the BLUE for Xβ if and only if

A(X : ΣM) = (X : 0) . (2.6)

It is worth noting that the result (2.6) follows at once from (1.7) by ob-
serving that (2.5) includes a standard submodel {y,Xβ,Σ}.

(b) B1y is the BLUP for u if and only if

B1(X : ΣM) =
[
0 : (DZ′ + S′)M

]
=

[
0 : cov(u,y)M

]
. (2.7)

(c) B2y is the BLUP for g = Xβ + Zu if and only if

B2(X : ΣM) =
[
X : Z(DZ′ + S′)M

]
=

[
X : cov(g,y)M

]
. (2.8)

(d) B3y is the BLUP for Zu if and only if

B3(X : ΣM) =
[
0 : Z(DZ′ + S′)M

]
=

[
0 : cov(Zu,y)M

]
. (2.9)

(e) B4y is the BLUP for η = Kβ + Lu if and only if

B4(X : ΣM) =
[
K : L(DZ′ + S′)M

]
=

[
K : cov(η,y)M

]
. (2.10)
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It is essential to observe that in (e) it is necessary to assume that Kβ is
estimable, i.e., there exists a matrix C such that K = CX. As pointed out by
one of the referees, this approach provides a universal engine to produce the
statements (a)–(e) by choosing appropriate C and L.

Thus we have, for example,

BLUP(Xβ + Zu | L ) = BLUE(Xβ | L ) + BLUP(Zu | L )

= BLUE(Xβ | L ) + Z BLUP(u | L ) , (2.11)

and we have the following representations for the BLUP of g = Xβ + Zu:

BLUP(g) = Ty + Z(DZ′ + S′)W−(In −T)y

= Ty + Z(DZ′ + S′)Σ−(In −T)y

= Ty + Z(DZ′ + S′)M(MΣM)−My, (2.12)

where T = X(X′W−X)−X′W− and W ∈ W,

W =
{
W ∈ Rn×n : W = Σ + XUU′X′, C (W) = C (X : Σ)

}
. (2.13)

Now Fy is BLUP-sufficient for g = Xβ + Zu under L in the spirit of
Definition 2 if and only if there exists a matrix A such that

AF(X : ΣM) =
[
X : Z(DZ′ + S′)M

]
, (2.14)

i.e.,

C

(
X′

M(ZD + S)Z′

)
⊂ C

(
X′F′

MΣF′

)
. (2.15)

Moreover, Fy is BLUE-sufficient for Xβ if and only if

C

(
X′

0

)
⊂ C

(
X′F′

MΣF′

)
, (2.16)

and Fy is BLUP-sufficient for Zu if and only if

C

(
0

M(ZD + S)Z′

)
⊂ C

(
X′F′

MΣF′

)
. (2.17)

The following theorem can now be proved along the same lines as Theorem 3.4
in Isotalo et al. (2017). We omit the proof.

Theorem 1 Consider the mixed model L = {y,Xβ + Zu,D,R,S}, and the
following statements:

(a) Fy ∈ S(Xβ),
(b) Fy ∈ S(Zu),
(c) Fy ∈ S(Xβ + Zu).

Then any of the two conditions above imply the third one. Moreover, if

C (X) ∩ C [Z(DZ′ + S′)M] = {0} , (2.18)

then
(c) =⇒ (a) and (b) . (2.19)
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Liu et al. (2008, p. 1511) have a slightly different definition for the linear
sufficiency. According to them, the statistic Fy is BLUP-sufficient if for all
predictable parametric functions η = Kβ + Lu there exists a matrix A such
that AFy is the BLUP for η in the original model. Since η = Kβ + Lu is
predictable if and only if K = JX for some matrix J (while L can be any
conformable matrix) we can re-express this definition as follows.

Definition 3 The statistic Fy is BLUP-sufficient under the model L if for
all J and L, there exists a matrix A such that AFy is the BLUP for η =
JXβ + Lu, and then we denote Fy ∈ S0(β,u).

We see that the difference between Definitions 2 and 3 is that in Definition 2
our object of estimation/prediction is a given predictable combination of fixed
parameters and random effect like g = Xβ + Zu (where X and Z are given
and fixed) while in Definition 3 we consider all predictable combinations of the
type η = Kβ + Lu. Actually Kala & Pordzik (2009, p. 635) used the linear
sufficiency concept in the spirit of Definition 3 when saying that a statistic
Fy is linearly sufficient if it is linearly sufficient for all estimable parametric
functions of the model.

Theorem 2 Consider the mixed model L = {y,Xβ + Zu,D,R,S}, and de-
note

Σ = cov(y) = ZDZ′ + R + ZS′ + SZ′, (2.20)

and let W ∈ W, where the class W of matrices is defined as in (2.13). Then
the following statements are equivalent:

(a) Fy ∈ S(Xβ) ∩ S(u), i.e., Fy is linearly sufficient for Xβ and for u.
(b) Fy ∈ S0(β,u), i.e., Fy is linearly sufficient for every predictable Kβ+Lu.

(c) C

(
X′ 0
0 M(ZD + S)

)
⊂ C

(
X′F′

MΣF′

)
.

(d) C (X) ⊂ C (WF′) and C [M(ZD + S)] ⊂ C (MWF′).
(e) C (X : ZD + S) ⊂ C (WF′).

Proof Consider the statement (b). In the sense of Definition 3, the statistic
Fy is linearly sufficient, i.e., Fy ∈ S0(β,u), if and only if for every J and L
there exists a matrix A such that

AF(X : ΣM) =
[
JX : L(DZ′ + S′)M

]
, (2.21)

which happens if and only if

C

[(
X′ 0
0 M(ZD + S)

)(
J′

L′

)]
⊂ C

(
X′F′

MΣF′

)
. (2.22)

Requesting (2.22) to hold for every J and L, we get

C

(
X′ 0
0 M(ZD + S)

)
⊂ C

(
X′F′

MΣF′

)
. (2.23)

Thus we have shown the equivalence of (b) and (c).
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Notice that (2.23) is equivalent to

C

(
X′

0

)
⊂ C

(
X′F′

MΣF′

)
, C

(
0

M(ZD + S)

)
⊂ C

(
X′F′

MΣF′

)
. (2.24)

In view of part (a) of Lemma 3, the first inclusion in (2.24) is a condition
for Fy ∈ S(Xβ) while the second one is a condition for Fy ∈ S(u), which
together mean that

Fy ∈ S(Xβ) ∩ S(u) . (2.25)

This confirms the equivalence of (a) and (b). In light of part (b) of Lemma 3,
we can rewrite the first inclusion of (2.24) as

C (X) ⊂ C (WF′) , (2.26)

while the second part of (2.24) is equivalent to

C [M(ZD + S)] ⊂ C (MΣF′QFX) = C (MWF′QFX) . (2.27)

Using the rank rule of the matrix product, see Marsaglia & Styan (1974,
Cor. 6.2), and the disjointness condition (c) of Lemma 3, we observe that
if C (X) ⊂ C (WF′), then

C (MWF′QFX) = C (MWF′) . (2.28)

Thus, supposing that (2.26) holds, the inclusion (2.27) is equivalent to

C [M(ZD + S)] ⊂ C (MWF′) . (2.29)

Thereby we have shown the equivalence between (c) and (d). Now (2.29) holds
if and only if M(ZD + S) = MWF′N1 for some N1, i.e.,

ZD + S = WF′N1 + XN2 , (2.30)

for some N2. Assuming that (2.26) holds, (2.30) implies that

C (ZD + S) ⊂ C (WF′) . (2.31)

Thus we have proved that (d) implies (e):

C (X : ZD + S) ⊂ C (WF′) . (2.32)

The reverse relation, that is, (e) =⇒ (d) is easily concluded. ut

The equivalence between (b), (c) and (e) in Theorem 2 is proved by Liu et
al. (2008, §3) using different approach.
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3 BLUPs under two different mixed models

Consider two mixed models with the same X and Z but different overall struc-
tures

Li = {y,Xβ + Zu,Di, Ri, Si} , i = 1, 2 , (3.1)

and denote

cov

(
y
u

)
=

(
Σi ZDi + Si

DiZ
′ + S′i Di

)
=

(
Σi Ci

C′i Di

)
, (3.2)

Ai =

(
ΣiM
ZCiM

)
, Xx =

(
X
X

)
, X0 =

(
X
0

)
, (3.3)

Wi =
{
Wi ∈ Rn×n : Wi = Σi + XUU′X′, C (Wi) = C (X : Σi)

}
, (3.4)

where Σi = ZDiZ
′ + Ri + ZS′i + SiZ

′.
In this section we focus on the questions, like for example, what is the

necessary and sufficient condition that every representation of the BLUE of
Xβ under L1 remains BLUE under L2, for which relation we will use the
short notation

B(Xβ | L1) ⊂ B(Xβ | L2) , (3.5)

i.e., {
BLUE(Xβ | L1)

}
⊂

{
BLUE(Xβ | L2)

}
. (3.6)

Thus we have, for example,

B(Xβ | Li) =
{
Ay : A(X : ΣiM) = (X : 0)

}
, (3.7)

B(Zu | Li) =
{
By : B(X : ΣiM) = [0 : Z(DiZ

′ + S′i)M]
}
. (3.8)

Recall that in this situation the corresponding comments as given on (1.17)
are holding.

For the following lemma, see Haslett & Puntanen (2010a,b, 2011, 2013),
Liu & Wang (2013), and Wang & Liu (2013).

Lemma 4 Using the above notation, consider the following statements:

(a) B(Xβ | L1) ⊂ B(Xβ | L2) ,

(b) B(Zu | L1) ⊂ B(Zu | L2) ,

(c) B(Xβ + Zu | L1) ⊂ B(Xβ + Zu | L2) ,

(d) B(Xβ | L1) ⊂ B(Xβ | L2) and B(Zu | L1) ⊂ B(Zu | L2) ,

(a∗) C (Σ2M) ⊂ C (Σ1M) ,

(b∗) C

(
Σ2M
ZC2M

)
⊂ C

(
X Σ1M
0 ZC1M

)
,

(c∗) C

(
Σ2M
ZC2M

)
⊂ C

(
X Σ1M
X ZC1M

)
,

(d∗) C

(
Σ2M
ZC2M

)
⊂ C

(
Σ1M
ZC1M

)
.
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Then (a) ⇐⇒ (a∗), . . . , (d) ⇐⇒ (d∗).

Next we prove some interesting relations between the statements of the
above Lemma.

Theorem 3 Using the notation of the Lemma 4, the following holds:

(i) (a) & (b) =⇒ (c), i.e., (d) =⇒ (c).
(ii) (a) & (c) =⇒ (b).
(iii) (b) & (c) =⇒ (a) if

C (X) ∩ C (ZC1M) = {0} . (3.9)

(iv) (c) =⇒ (d) if and only if

X′xPA1A2 = X′xA2 , (3.10)

where the matrix X′x can be cancelled if C (A1) ∩ C (Xx)⊥ = {0}.

Proof Clearly the inclusion (d) implies (c) but the reverse relation holds only
in special cases as stated by Haslett & Puntanen (2013, p. 37). Claim (c) is
equivalent to P(Xx :A1)A2 = A2, which can be written as

PA1
A2 + PQA1

Xx
A2 = A2 . (3.11)

Thus, in this situation (d) holds if and only if PQA1
XxA2 = 0, i.e.,

X′xQA1A2 = 0 , (3.12)

or, equivalently,
X′xPA1

A2 = X′xA2 . (3.13)

Trivially (3.13) holds if
C (A2) ⊂ C (A1) , (3.14)

but (3.14) is not a necessary condition. It is necessary if we can cancel X′x from
(3.12) and this can be done, on account of Marsaglia & Styan (1974, Th. 2), if

rank(X′xQA1
) = rank(QA1

) , (3.15)

i.e.,

rank(X′xQA1
) = rank(QA1

)− dim C (QA1
)⊥ ∩ C (Xx)⊥

= rank(QA1
) , (3.16)

which happens if and only if C (A1) ∩ C (Xx)⊥ = {0}. Thus we have proved
(iv).

To consider claim (ii), we note that the statements (a) and (c) imply that

Σ2M = Σ1MK1 , (3.17a)

Σ2M = XL1 +Σ1ML2 , (3.17b)

ZC2M = XL1 + ZC1ML2 , (3.17c)
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for some matrices K1,L1, and L2. The first two equations above imply that

XL1 = Σ1M(K1 − L2) . (3.18)

In view of C (X)∩C (Σ1M) = {0}, (3.18) implies that XL1 = 0. Substituting
this into (3.17b) and (3.17c) confirms the claim (ii).

To prove (iii), notice that (b) and (c) imply the existence of matrices
Ki,Li, i = 1, 2, such that

Σ2M = XK1 +Σ1MK2 , ZC2M = ZC1MK2 , (3.19a)

Σ2M = XL1 +Σ1ML2 , ZC2M = XL1 + ZC1ML2 . (3.19b)

The right-hand side equations above imply that

XL1 = ZC1M(K2 − L2) . (3.20)

If the disjointness C (X) ∩ C (ZC1M) = {0}, holds then (3.20) implies that
XL1 = 0 which would further imply (a). Thus we have proved our claim (iii).

ut

Rong & Liu (2010) consider the predictable parametric function η = Kβ+
Lu = JXβ + Lu and its BLUP which has a representation

BLUP(η | L1) = η̃1

= JT1y + LC′1W
−
1 (In −T1)y

= JT1y + LG1y , (3.21)

where

T1 = X(X′W−
1 X)−X′W−

1 , G1 = C′1W
−
1 (In −T1) , (3.22)

and W1 is any member of the class W1 defined in (3.4). Rong & Liu (2010,
Th. 1) investigate the conditions under which η̃1 continues to be BLUP under
the model L2. This problem is rather similar to claim (c) of Lemma 4, dealing
with the inclusion

B(Xβ + Zu | L1) ⊂ B(Xβ + Zu | L2) . (3.23)

However, there is one crucial difference between Lemma 4 and the approach in
Rong & Liu (2010, Th. 1): in Lemma 4 the object of prediction/estimation is
fixed, while Rong & Liu (2010) consider the set of all predictable parametric
functions η = Kβ + Lu = JXβ + Lu, that is, J and L are free to vary. They
request η̃1 to be BLUP for all (conformable) matrices J and L:

(JT1 + LG1)(X : Σ2M) = (JX : LC′2M) , (3.24)

i.e.,

(JT1 + LG1)Σ2M = LC′2M . (3.25)
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Equation (3.25) holds for every J and L if and only if T1Σ2M = 0 and
G1Σ2M = C′2M, i.e.,

X′W−
1 Σ2M = 0 , C′1W

−
1 (In −T1)Σ2M = C′2M , (3.26)

which are equivalent, correspondingly, to

T1y ∈ B(Xβ | L2) , G1y ∈ B(u | L2) . (3.27)

Thus we have proved the following result.

Theorem 4 Consider the linear mixed models L1 and L2, and denote

BLUP(η | L1) = η̃1 = JT1y + LC′1W
−
1 (In −T1)y

= JT1y + LG1y , (3.28)

where W1 is any member of the class W1 defined in (3.4). Then

(a) η̃1 ∈ B(JXβ + Lu | L2) for all J and L

if and only if the following two conditions hold:

(b) T1y ∈ B(Xβ | L2),
(c) G1y ∈ B(u | L2).

Theorem 4 above and Theorem 5 below are related to Rong & Liu (2010,
Th. 1, Th. 2). Our formulation and the proofs are, however, different.

Theorem 5 Consider the linear mixed models L1 and L2, and assume that

C (Σ2) ⊂ C (X : Σ1) . (3.29)

Then

(i) (3.29) and (b) of Theorem 4 together are equivalent to

B(Xβ | L1) ⊂ B(Xβ | L2) , (3.30)

which further is equivalent to

C (Σ2M) ⊂ C (Σ1M) . (3.31)

(ii) (3.29) and (c) of Theorem 4 together are equivalent to

B(u | L1) ⊂ B(u | L2) , (3.32)

which further is equivalent to

C

(
Σ2M
C2M

)
⊂ C

(
X Σ1M
0 C1M

)
. (3.33)
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Proof Regarding the condition (3.29), notice that, see, e.g., Puntanen et al.
(2011, §5.1),

C (X : Σi) = C (X : ΣiM) = C (Wi) , i = 1, 2. (3.34)

Using (3.34) we observe that the following statements are equivalent:

C (Σ2) ⊂ C (X : Σ1) , (3.35a)

C (W2) = C (X : Σ2M) ⊂ C (X : Σ1M) = C (W1) , (3.35b)

C (Σ2M) ⊂ C (X : Σ1M) . (3.35c)

The general representation for the BLUE(Xβ | L1) is T0y, where

T0 = T1 + N1QW1 , (3.36)

with N1 being free to vary. In view of (3.35), we can conclude that T0y is the
BLUE for Xβ for any matrix N1, which means that every representation of
BLUE for Xβ under L1 remains BLUE under L2, i.e.,

B(Xβ | L1) ⊂ B(Xβ | L2) , (3.37)

which happens if and only if C (Σ2M) ⊂ C (Σ1M).

In the corresponding way, the general representation for the BLUP(u) un-
der L1 is G0y, where

G0 = G1 + N2QW1
, (3.38)

where N2 is free to vary. Thereby, in view of (3.35), we can conclude that (ii)
holds. We notice in passing that substituting

Σ2M = XB1 +Σ1MB2 (3.39)

into C′1W
−
1 (In − T1)Σ2M = C′2M, which is the condition for G1y being a

BLUP(u) under L2, yields

C′1MB2 = C′2M . (3.40)

Combining (3.39) and (3.40) gives

(
Σ2M
C′2M

)
=

(
X Σ1M
0 C′1M

)(
B1

B2

)
, (3.41)

which is just the condition for B(u | L1) ⊂ B(u | L2). ut
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4 Concluding remarks

In this paper we have considered the linear sufficiency of Fy for Xβ, for Zu
and for Xβ+Zu, when dealing with the linear mixed model y = Xβ+Zu+e.
The conditions for these properties are documented in the literature but not
so much their mutual relations as we have done in Theorems 1 and 2. Liu et al.
(2008) introduced a slightly different definition for the linear sufficiency and
that inspired particularly the Theorem 2.

We have also considered the conditions under which the BLUEs and/or
BLUPs under one mixed model continue to be BLUEs and/or BLUPs under
the other mixed model. These conditions appear as well in literature but our
main contributions concern the mutual relations of the conditions, as presented
in Theorem 3. These problems were approached differently by Rong & Liu
(2010). In Theorems 4 and 5 we have shown how their results are related to
those obtained by our approach.

This link between BLUP and REML is outlined by Harville (1977) for
the general linear model using the Normal distribution. The linear sufficiency
results given in our paper can be applied to REML estimates, with the proviso
that in REML covariance matrices are not treated as known but are estimated
from the available data in an iterative procedure that at each step also re-
estimates β and u. At convergence, the REML estimates are estimated best
linear unbiased estimates (sometimes called EBLUP). The linear sufficiency
results in our paper can then be applied to mixed linear models estimated using
REML, but applying them using estimated covariances instead of D and R
and S of (1.5). Note too that in most applications of REML, D and R are
highly structured and S = 0, because otherwise there can be more parameters
to estimate in β, u, D, R and S than there are observations.

The matrix M = In−PX being orthogonal to X plays a key role in REML
because premultiplication of (1.5) by M produces a reduced model from which
Xβ has been eliminated. Actually, My is linearly sufficient for Zu under the
mixed model (1.5), because then the condition (2.17) becomes

C [M(ZD + S)Z′] ⊂ C (MΣM) = C (MΣ) , (4.1)

which obviously holds in view of C [(ZD + S)Z′] ⊂ C (Σ). This reduced model
has the same BLUPs and EBLUPs for u as those from (1.5). This is why
for REML, predictions of the random components in u do not depend on the
estimates of Xβ. Moreover, we would like to emphasize that linear sufficiency
of a given statistic Fy is a property of the model under consideration. This
is the key seeing why linear BLUP-sufficiency means linear sufficiency for
EBLUP.

McGilchrist (1994) first used BLUP to obtain approximate restricted maxi-
mum-likelihood (REML) estimates for generalized linear mixed models, but
this topic is beyond the scope of our paper.
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