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1 Introduction

To make the article more self-readable we go through some basic concepts
related to linear sufficiency. So, let us get started with the general linear
model y = Xβ + ε, shortly denoted as a triplet

M = {y,Xβ,V} ,

where Xn×p is a known model matrix, the vector y is an observable n-
dimensional random vector, β is a p× 1 vector of unknown parameters, and
ε is an unobservable vector of random errors with expectation E(ε) = 0,
and covariance matrix cov(ε) = V, where the nonnegative definite matrix
V is known and can be singular. Premultiplying the model M by Ff×n
yields the transformed model

Mt = {Fy,FXβ,FVF′} ,

which will have a crucial role in our considerations.
Let y∗ denote a q×1 unobservable random vector containing new future

observations. The new observations are assumed to follow the linear model

y∗ = X∗β + ε∗ ,

where X∗ is a known q × p matrix, β is the same vector of unknown pa-
rameters as in M , and ε∗ is a q-dimensional random error vector. The
expectation and the covariance matrix are

E

(
y
y∗

)
=

(
Xβ
X∗β

)
=

(
X
X∗

)
β , cov

(
y
y∗

)
=

(
V V12

V21 V22

)
= Γ,

where the covariance matrix matrix Γ is assumed to be known. For brevity,
we denote the linear model with new observations as

M∗ =

{(
y
y∗

)
,

(
X
X∗

)
β,

(
V V12

V21 V22

)}
.

Our main interest in M∗ lies in predicting y∗ on the basis of observable y.
Suppose we transform M into Mt and do the prediction in this situation.

Corresponding to M∗ we have now the following setup:

Mt∗ =

{(
Fy
y∗

)
,

(
FX
X∗

)
β,

(
FVF′ FV12

V21F
′ V22

)}
.

As for notation, let Rm×n denote the set of m×n real matrices. The sym-
bols A′, A−, A+, C (A), and C (A)⊥, denote, respectively, the transpose, a
generalized inverse, the Moore–Penrose inverse, the column space, and the
orthogonal complement of the column space of the matrix A. By (A : B)
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we denote the partitioned matrix with Am×n and Bm×k as submatrices. By
A⊥ we denote any matrix satisfying C (A⊥) = C (A)⊥. Furthermore, we
will write PA = AA+ = A(A′A)−A′ to denote the orthogonal projector
(with respect to the standard inner product) onto C (A), and QA = I−PA.
In particular, we denote M = In −PX. One choice for X⊥ is of course M.

The linear estimator Gy is the best linear unbiased estimator, BLUE,
of Xβ whenever Gy is unbiased and it has the smallest covariance matrix
(in the Löwner sense) among all linear unbiased estimators of Xβ. The
following lemma characterises the BLUE; see, e.g., Drygas (1970, p. 55),
Rao (1973, p. 282), and more recently Baksalary & Trenkler (2009).

Lemma 1.1. Consider the general linear model M = {y,Xβ,V}. Then
the estimator Gy is the BLUE for Xβ if and only if G satisfies the equation

G(X : VX⊥) = (X : 0) . (1.1)

The corresponding condition for Ay to be the BLUE of an estimable para-
metric function Kβ, i.e., C (K′) ⊂ C (X′), is

A(X : VX⊥) = (K : 0) .

We assume the model M to be consistent in the sense that the observed
value of y lies in C (X : V) with probability 1. Hence we assume that under
M

y ∈ C (X : V) = C (X : VX⊥) = C (X : VM) .

The corresponding consistency is assumed in all models that we will consider.
Moreover, in the consistent linear model M , the estimators G1y and G2y
are said to be equal with probability 1 if

G1y = G2y for all y ∈ C (X : V) .

The linear predictor By is said to be unbiased for y∗ if E(y∗−By) = 0 for
all β ∈ Rp. This is equivalent to X′∗ = X′B′. The inclusion C (X′∗) ⊂ C (X′)
is the well-known condition for the estimability of X∗β under M . When
C (X′∗) ⊂ C (X′) holds, will say that y∗ is predictable under M∗. Now a
linear unbiased predictor By is the best linear unbiased predictor, BLUP,
for y∗, if the Löwner ordering

cov(y∗ −By) ≤L cov(y∗ −Cy)

holds for all C such that Cy is an unbiased linear predictor for y∗.
The following lemma characterises the BLUP; for the proof, see, e.g.,

Christensen (2011, p. 294), and Isotalo & Puntanen (2006, p. 1015).

Lemma 1.2. Consider the linear model M∗, where C (X′∗) ⊂ C (X′), i.e., y∗
is predictable. The linear predictor By is the best linear unbiased predictor
(BLUP) for y∗ if and only if B satisfies the equation

B(X : VX⊥) = (X∗ : V21X
⊥) = (X∗ : cov(y∗,y)X⊥) .
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We will frequently utilise Lemma 2.2.4 of Rao & Mitra (1971), which
says that for nonnull matrices A and C the following holds:

AB−C = AB+C ⇐⇒ C (C) ⊂ C (B) & C (A′) ⊂ C (B′) . (1.2)

One well-known solution for G in (1.1) (which is always solvable) is

PX;W− := X(X′W−X)−X′W−,

where W is a matrix belonging to the set of nonnegative definite matrices
defined as

W =
{
W ∈ Rn×n : W = V + XUU′X′, C (W) = C (X : V)

}
.

Denoting
PX;W+ := X(X′W−X)−X′W+,

we observe, in view of (1.2), that PX;W−y = PX;W+y for all y ∈ C (W).
The structure of the contribution is as follows. In Section 2 we recall

some well-known conditions for the BLUE- and BLUP-sufficiency and in
particular clarify and extend some concepts related to BLUP-sufficiency.
In Section 3 we introduce some representations for the BLUPs and and
explore the corresponding sufficiency relations. Section 4 provides some
representations for the BLUPs and BLUEs and in Section 5 we apply our
results to the linear mixed models. While writing this contribution, our
attempt has been to call well-known (or pretty well-known) results Lemmas,
while Theorems refer to our own contributions or clarifications.

2 Conditions for linear sufficiency and linear pre-
diction sufficiency

A linear statistic Fy, where F ∈ Rf×n, is called linearly sufficient for Xβ
under the model M = {y,Xβ,V}, if there exists a matrix A ∈ Rn×f such
that AFy is the BLUE for Xβ. Correspondingly, Fy is linearly sufficient
for estimable Kβ, where K ∈ Rk×p, if there exists a matrix A ∈ Rk×f such
that AFy is the BLUE for Kβ. To have a slightly shorter terminology, we
often will use the phrase “BLUE-sufficient” and the notation Fy ∈ S(Kβ).

For the following Lemma 2.1 and Lemma 2.2, see, e.g., Baksalary & Kala
(1981, 1986), Drygas (1983), Tian & Puntanen (2009, Th. 2.8), and Kala et
al. (2017, Th. 2).

Lemma 2.1. The statistic Fy is BLUE-sufficient for Xβ under the model
M = {y,Xβ,V} if and only if any of the following equivalent statements
holds:

(a) C

(
X′

0

)
⊂ C

(
X′F′

MVF′

)
,
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(b) C (X) ⊂ C (WF′), where W ∈ W,

(c) C (X′F′) = C (X′) and C (FX) ∩ C (FVX⊥) = {0}.

Let Kβ be estimable under M . Then Fy is BLUE-sufficient for Kβ if and
only if

(d) C

(
K′

0

)
⊂ C

(
X′F′

MVF′

)
.

Let F0 be a matrix with property C (F′0) = C (F′). Then Lemma 2.1
immediately implies the following:

Fy ∈ S(Kβ) ⇐⇒ F0y ∈ S(Kβ). (2.1)

If C (F′0) ⊂ C (F′), then the implication “⇐=” is holding in (2.1).

Lemma 2.2. Consider the model M = {y,Xβ,V} and its transformed
version Mt = {Fy,FXβ,FVF′}, and let Kβ be estimable under M and
Mt. Then the following statements are equivalent:

(a) Fy is BLUE-sufficient for Kβ.

(b) BLUE(Kβ |M ) = BLUE(Kβ |Mt) with probability 1.

(c) There exists at least one representation of BLUE of Kβ under M
which is the BLUE also under the transformed model Mt.

Notice that the parametric function Kβ is estimable under M as well
as under Mt if and only if

C (K′) ⊂ C (X′) ∩ C (X′F′) = C (X′F′) , (2.2)

while Xβ is estimable under Mt whenever

C (X′) = C (X′F′) , i.e., rank(X) = rank(FX) .

The concept of linear prediction sufficiency is defined analogically as fol-
lows: Let y∗ be predictable under the model M∗, i.e., C (X′∗) ⊂ C (X′).
Then Fy is called linearly prediction sufficient for y∗ if there exists a ma-
trix A such that AFy is the BLUP for y∗; that is, there exists a matrix A
such that

AF(X : VM) = (X∗ : V21M) . (2.3)

Corresponding to the phrase “BLUE-sufficient”, we may use the term “BLUP-
sufficient” and the notation Fy ∈ S(y∗).

The following theorem collects together some important properties of
the linear prediction sufficiency.

Theorem 2.1. Suppose that y∗ is predictable under M∗ and Mt∗. Then:
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(a) If Fy is BLUP-sufficient for y∗, then every representation of the
BLUP for y∗ under the transformed model Mt∗ is BLUP also under
the original model M∗.

Moreover, the following statements are equivalent:

(b) Fy is BLUP-sufficient for y∗, or shortly Fy ∈ S(y∗).

(c) C

(
X′∗

MV12

)
⊂ C

(
X′F′

MVF′

)
.

(d) BLUP(y∗ |M∗) = BLUP(y∗ |Mt∗) with probability 1.

(e) There exists at least one representation of BLUP of y∗ under M∗ which
is BLUP also under the transformed model Mt∗.

Proof. The claim (a) was proved by Isotalo & Puntanen (2006, Th. 3.2); see
also Remark 2.1 below. The equivalence of (b) and (c) is obvious because
(b) means that there exists a matrix A such that (2.3) holds. Suppose that
(2.3) holds for some A. Then the same multiplier AF gives the BLUP for
y∗ under the transformed model Mt∗ if and only if

A(FX : FVF′QFX) = (X∗ : V21F
′QFX) . (2.4)

In view of Markiewicz & Puntanen (2017, Lemma 5) and Rao & Mitra (1971,
Compl. 7, p. 118), the following holds:

C (F′QFX) = C (F′) ∩ C (M) , (2.5a)

F′QFX = MF′QFX . (2.5b)

Substituting (2.5b) into (2.4) we immediately see that (2.3) implies (2.4)
i.e., (b) implies (e). The statement (d) means that we have the equality

B(X : V) = CF(X : V) (2.6)

for some B and C satisfying

B(X : VM) = (X∗ : V21M) ,

C(FX : FVF′QFX) = (X∗ : V21F
′QFX) .

Now, By is BLUP for y∗ under M∗ and and hence, in light of (2.6), CFy is
also BLUP for y∗ under M∗, and thus by definition, Fy is BLUP-sufficient
for y∗. Hence we have shown that (d) implies (b). It is obvious that (e)
implies (d) and thereby the proof is completed.

The above proof is parallel to that of Kala et al. (2017, Th. 2) concerning
Lemma 2.2.
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Remark 2.1. Regarding the claim (a) in Theorem 2.1, Isotalo & Puntanen
(2006, Th. 3.2) state the following: “Every representation of the BLUP
for y∗ under the transformed model Mt∗ is BLUP also under the original
model M∗ and vice versa.” Stated in this way, the vice versa part is not
quite correct and may result in wrong or confusing interpretations. Hence
we will clarify the meaning of the vice versa part below. The corresponding
considerations for the BLUE of estimable parametric function are done in
Kala et al. (2017, Sec. 4) and here we proceed along their lines.

To do this, we take a look at the multipliers of the response vector y
when obtaining the BLUPs. Let y∗ be predictable under the models M∗
and Mt∗ and denote

A = {A : AFy = BLUP(y∗ |M∗)}
= {A : AF(X : VM) = (X∗ : V21M)} ,

C = {C : CFy = BLUP(y∗ |Mt∗)}
=
{
C : C(FX : FVF′QFX) = (X∗ : V21F

′QFX)
}
.

Proceeding along the same lines as Kala et al. (2017, Th. 3) in their BLUE-
considerations, we can obtain the following result.

Theorem 2.2. Suppose that Fy is BLUP-sufficient for the predictable y∗
under the model M∗, and let the sets of matrices A and C be defined as
above. Then A = C.

To describe more statistically the meaning of Theorem 2.2, let Fy be
BLUP-sufficient for y∗ under M∗. Then, for each matrix C such that CFy
is the BLUP of y∗ in the transformed model Mt∗, the statistic CFy is also
the BLUP of y∗ in the original model M∗, and vice versa. Notice that in
this statement the “vice versa” means that we consider such C for which
CFy is BLUP under M∗, not the set of matrices B such that By is BLUP
under M∗.

3 Some representations for the BLUPs

Let us start by considering the BLUP for ε∗ which offers interesting views.
Theorem 3.1 below could be proved directly using Lemma 1.2 by choosing
ε∗ as the “new future observations”. However, we find it illustrative to give
an alternative proof.

Theorem 3.1. Under the model M∗, the statistic Cy is the BLUP for ε∗
if and only if

C(X : VM) = (0 : V21M) ,

or, equivalently, C = AM for some matrix A such that

AMVM = V21M . (3.1)
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Proof. The predictor Cy is unbiased for ε∗ if and only if E(ε∗ − Cy) = 0
and so CX = 0 and hence necessarily C = AM for some matrix A. Now
AMy is the BLUP for ε∗ if A is such that the covariance matrix of the
prediction error ε∗ −AMy is minimal in the Löwner sense. We recall that
for any matrix A, we have the Löwner ordering

cov(ε∗ −AMy) ≥L cov[ε∗ −V21M(MVM)−My] , (3.2)

where

cov(ε∗,My)[cov(My)]− = V21M(MVM)−.

For the Löwner inequality in (3.2), see Puntanen et al. (2011, Th. 9). We
have thus found that BLUP(ε∗) has a representation

BLUP(ε∗) = V21M(MVM)−My.

On the other hand, according to Puntanen et al. (2011, Cor. 9.1), for any
matrix A,

cov(ε∗ −AMy) ≥L cov(ε∗ −A1My)

if and only if A1 is a solution to (3.1).

In view of the identity, see Haslett et al. (2014, Sec. 2),

PX;W+ = X(X′W−X)−X′W+

= PW −VM(MVM)−MPW , (3.3)

the BLUP(ε∗) can be expressed, for example, as follows:

BLUP(ε∗) = V21M(MVM)−My

= V21W
−(In −G)y

= V21V
−(In −G)y,

where W ∈ W, y ∈ C (W), and G = X(X′W−X)−X′W− = PX;W− .
It is well known that the general solution to A(X : VM) = (X∗ : 0) can

be written, for example, as

A0 = (X∗ : 0)(X : VM)+ + N1QW := A1 + N1QW ,

where N1 ∈ Rq×n is free to vary and QW = In − PW, W ∈ W. Similarly,
the general solution to B(X : VM) = (X∗ : V21M) can be written as

B0 = (X∗ : V21M)(X : VM)+ + N2QW := B1 + N2QW ,

where the matrix N2 ∈ Rq×n is free to vary. Consider then the equation

C(X : VM) = (0 : V21M) ,
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for which the general solution is

C0 = (0 : V21M)(X : VM)+ + N3QW := C1 + N3QW ,

where the matrix N3 ∈ Rq×n is free to vary. Then B1 = A1 + C1 and

B0 = A0 + C0 + N0QW ,

where N0 is free to vary. In other words, if(
A
C

)
(X : VM) =

(
X∗ 0
0 V21M

)
,

then

(A + C)(X : VM) = (X∗ : V21M) ,

and so

(A + C)y = BLUP(y∗) .

Of course,

Ay = BLUE(X∗β) , Cy = BLUP(ε∗) ,

so that we have obtained the following result:

Theorem 3.2. Under the linear model M∗, where y∗ is predictable, the
following decomposition holds (with probability 1):

BLUP(y∗) = BLUE(X∗β) + BLUP(ε∗) .

Next we consider the BLUP-sufficiency of Fy for ε∗.

Theorem 3.3. The statistic Fy is BLUP-sufficient for ε∗ under M∗ if and
only if any of the following equivalent conditions holds:

(a) C

(
0

MV12

)
⊂ C

(
X′F′

MVF′

)
.

(b) C (MV12) ⊂ C (MVF′QFX) = C (MVMF′QFX) .

(c) BLUP(ε∗ |M∗) = BLUP(ε∗ |Mt∗) with probability 1.

(d) There exists at least one representation of BLUP of ε∗ under M∗ which
is BLUP also under the transformed model Mt∗.

In particular, if Fy is BLUE-sufficient for Xβ, then (b) becomes

(e) C (MV12) ⊂ C (MVF′) .
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Proof. The statistic Fy is BLUP-sufficient for ε∗ under M∗ if the equation

AF(X : VM) = (0 : V21M) (3.4)

has a solution for A which obviously happens if and only if (a) holds. The
condition (a) means that there exists a matrix N such that

0 = X′F′N, MV12 = MVF′N .

Hence N = QFXN1 for some matrix N1 and

MV12 = MVF′QFXN1 . (3.5)

The equality (3.5) holds for some matrix N1 if and only if

C (MV12) ⊂ C (MVF′QFX) = C (MVMF′QFX) ,

where we have used (2.5b).
Suppose that (a) holds so that there exists some matrix A such that

(3.4) holds. Then the same multiplier AF gives the BLUP for ε∗ under the
transformed model Mt∗ if and only if A satisfies the equation

A(FX : FVF′QFX) = (0 : V21F
′QFX) .

Proceeding onwards as in the proof of Theorem 2.1, the equivalence between
(a), (c) and (d) can be shown.

To prove (e), let us assume that Fy is BLUE-sufficient for Xβ. It is
clear that

C (MVF′QFX) ⊂ C (MVF′) . (3.6)

Using the rank rule of the matrix product, see Marsaglia & Styan (1974,
Cor. 6.2),

rank(MVF′QFX) = rank(MVF′)− dim C (FVM) ∩ C (FX)

= rank(MVF′) , (3.7)

because in view of part (c) of Lemma 2.1, we have dim C (FVM)∩C (FX) =
{0}. This means that we get equality in (3.6) and so the proof of (e) is
completed.

It is of course clear that the corresponding property as (a) in Theo-
rem 2.1, holds as well for the BLUP(ε∗).

Theorem 3.4. Consider the following three statements:

(a) Fy is BLUE-sufficient for X∗β.

(b) Fy is BLUP-sufficient for ε∗.
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(c) Fy is BLUP-sufficient for y∗.

Then above, any two conditions together imply the third one. Moreover, if

C (X∗) ∩ C (V21M) = {0} ,

then
(c) =⇒ (a) and (b) .

Proof. Denote

A =

(
X∗
0

)
, B =

(
0

MV12

)
C =

(
X′F′

MVF′

)
.

Now (c) holds if and only if

PC(A + B) = A + B , (3.8)

which is equivalent to

PCA−A = −(PCB−B) ,

from which the first part of the theorem follows. To prove the second part,
we have to show that if

C (A′) ∩ C (B′) = {0} , (3.9)

then
C (A + B) ⊂ C (C) =⇒ C (A) ⊂ C (C) . (3.10)

Postmultiplying (3.8) by QB′ yields

PCAQB′ = AQB′ . (3.11)

If rank(AQB′) = rank(A), which happens if and only if (3.9) holds, we can,
in light of the rank cancellation rule of Marsaglia & Styan (1974, Th. 2),
cancel the right-most QB′ in each side of (3.11) and obtain PCA = A as
claimed in (3.10).

Remark 3.1. The notion of linear error-sufficiency was introduced by Groß
(1998), while considering linear sufficient statistics for the prediction of the
random error term ε in the general linear model. This is nothing but the
BLUP-sufficiency of ε. Proceeding along the lines of Theorem 3.1, we can
conclude that under the model M , the statistic Cy is the BLUP for ε if
and only if

C(X : VM) = (0 : VM) ,

and one explicit solution is

BLUP(ε |M ) = VM(MVM)−My = y − BLUE(Xβ |M ) .

Obviously Fy is BLUP-sufficient for ε if and only if

N (FX : FVM) ⊂ N (0 : VM) .

For the BLUP of ε, see also Arendacká & Puntanen (2015, Lemma 1).
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4 Representations for the BLUP in the transformed
model

When doing the “BLUP-hunting” in models M∗ and Mt∗ we assume that
the parametric function X∗β is estimable under M as well as under Mt,
which, in light of (2.2), happens if and only if C (X′∗) ⊂ C (X′F′), so that

X∗ = LFX for some matrix L . (4.1)

Similarly, Xβ is required to be estimable under Mt so that C (X′) = C (X′F′).
Denote

G = X(X′W−X)−X′W− = PX;W− ,

PFX;(FWF′)− = FX[X′F′(FWF′)−FX]−X′F′(FWF′)−,

Gt = X[X′F′(FWF′)−FX]−X′F′(FWF′)−F ,

so that FGt = PFX;(FWF′)−F.
Estimator BFy is the BLUE(FXβ |Mt) if and only if B satisfies

B(FX : FVF′QFX) = (FX : 0) ,

so that one expression for B is B = PFX;(FWF′)− := FXA and then

FXA(FX : FVF′QFX) = (FX : 0) . (4.2)

Because rank(FX) = rank(X), we can cancel the left-most F from both
sides of (4.2) resulting

X[X′F′(FWF′)−FX]−X′F′(FWF′)−(FX : FVF′QFX) = (X : 0) .

Thus Gty is the BLUE for Xβ under Mt and

Gt(X : VF′QFX) = (X : 0) . (4.3)

An alternative expression for BLUE(FXβ | Mt) can be obtained using
the corresponding identity as in (3.3):

PFX;(FWF′)+ = FX[X′F′(FWF′)−FX]−X′F′(FWF′)+

= PFW − FVF′QFX(QFXFVF′QFX)−QFXPFW .

Namely, for y ∈ C (W) and, noting that PFWFy = Fy, we get

BLUE(FXβ |Mt) = FGty

= PFX;(FWF′)+Fy

= Fy − FVF′QFX(QFXFVF′QFX)−QFXFy.
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It is interesting to observe that the matrix

G# = In −VF′QFX(QFXFVF′QFX)−QFXF

satisfies (4.3), i.e.,
G#(X : VF′QFX) = (X : 0) .

However, G# and Gt are not necessarily equal; their difference is

Gt −G# = NQ(X:VF′QFX)

for some matrix N.
Consider then the expressions for the BLUP of ε∗ under the transformed

model Mt∗. One way to do this is to use Theorem 3.1, which says that DFy
is the BLUP(ε∗ |Mt∗) if D is a solution to

D(FX : FVF′QFX) = (0 : V21F
′QFX) .

Thus the BLUP of ε∗ under Mt∗ can be expressed as

BLUP(ε∗ |Mt∗) = V21F
′QFX(QFXFVF′QFX)−QFXFy. (4.4)

Recall that in (4.4), F′QFX can be replaced with MF′QFX. One alternative
expression is

BLUP(ε∗ |Mt∗) = V21F
′(FVF′)−F(In −Gt)y.

We complete this section by giving some alternative expressions for the
BLUP of y∗. Using (4.1), let us denote

µ∗ = X∗β = LFXβ, µ = Xβ .

The BLUP(y∗) under M∗ can be written as

BLUP(y∗ |M∗) = BLUE(µ∗ |M ) + V21V
−[y − BLUE(µ |M )]

= LFGy + V21V
−(In −G)y

= LFGy + V21M(MVM)−My

= BLUE(µ∗ |M ) + BLUP(ε∗ |M∗) , (4.5)

or shortly,
ỹ∗ = µ̃∗ + ε̃∗ .

Under the transformed model we have

BLUP(y∗ |Mt∗) = BLUE(µ∗ |Mt) + V21F
′(FVF′)−F[y − BLUE(µ |Mt)]

= LFGty + V21F
′(FVF′)−F(In −Gt)y

= LFGty + V21F
′QFX(QFXFVF′QFX)−QFXFy

= BLUE(µ∗ |Mt) + BLUP(ε∗ |Mt∗) , (4.6)



14

or shortly,

ỹt∗ = µ̃t∗ + ε̃t∗ . (4.7)

In (4.5) and (4.6) the matrix V can be replaced with W ∈ W. In
passing we may notice that under M∗, µ̃∗ and ε̃∗ are uncorrelated and
hence cov(ỹ∗) = cov(µ̃∗) + cov(ε̃∗). The corresponding property holds also
for the terms of (4.7). For further representations for the BLUP(y∗ | M∗)
we refer to Haslett et al. (2014).

5 Linear mixed model

One application of the model M∗ is the linear mixed model

y = Xβ + Zu + ε, or shortly, L = {y,Xβ + Zu,D,R,S},

where Xn×p and Zn×q are known matrices, β ∈ Rp is a vector of unknown
fixed effects, u is an unobservable vector (q elements) of random effects
with E(u) = 0 , cov(u) = Dq×q , cov(ε,u) = Sn×q , and E(ε) = 0, cov(ε) =
Rn×n. In this situation

cov

(
ε
u

)
=

(
R S
S′ D

)
,

and

cov(y) = ZDZ′ + R + ZS′ + SZ′ := Σ.

The mixed model can be expressed as a version of the model with “new
observations”, the new observations being now in u:{(

y
u

)
,

(
X
0

)
β,

(
Σ ZD + S

DZ′ + S′ D

)}
.

Moreover, choosing the “new observations” as g = Xβ + Zu, we get{(
y
g

)
,

(
X
X

)
β,

(
Σ (ZD + S)Z′

Z(DZ′ + S′) ZDZ′

)}
.

Thus, see, e.g., Haslett et al. (2015), under the mixed model L the following
statements hold:

(a) Ay is the BLUE for Xβ if and only if

A(X : ΣM) = (X : 0) . (5.1)

(b) By is the BLUP for u if and only if

B(X : ΣM) =
[
0 : (DZ′ + S′)M

]
=
[
0 : cov(u,y)M

]
.
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(c) Cy is the BLUP for g = Xβ + Zu if and only if

C(X : ΣM) =
[
X : Z(DZ′ + S′)M

]
=
[
X : cov(g,y)M

]
. (5.2)

Thus we have, corresponding to Theorem 3.2,

BLUP(Xβ + Zu | L ) = BLUE(Xβ | L ) + BLUP(Zu | L ) ,

so that one representation for the BLUP of g under L is

BLUP(g) = Ty + Z(DZ′ + S′)W−
Σ(y −Ty)

= Ty + Z(DZ′ + S′)M(MΣM)−My,

where T = X(X′W−
ΣX)−X′W−

Σ and

WΣ = Σ + XUU′X′, C (WΣ) = C (X : Σ) .

Conditions for Fy being linearly sufficient or linearly prediction sufficient
for Xβ, u, and g = Xβ+Zu, respectively, can be straightforwardly derived
from (5.1)–(5.2). For example, Fy is BLUP-sufficient for g if and only if

C

(
X′

M(ZD + S)Z′

)
⊂ C

(
X′F′

MΣF′

)
. (5.3)

Corresponding properties as under M∗ in Theorem 3.4 for X∗β, ε∗, and y∗
hold also under L for Xβ, Zu, and g.

For the linear sufficiency in the mixed model, see also Liu et al. (2008,
Sec. 3). They defined the BLUP-sufficiency in a slightly different manner
which we will not handle here. Inspired by their Theorem 3.1, we will now
show that Fy is BLUP-sufficient for g = Xβ + Zu if

C (X : ZD + S) ⊂ C (WΣF′) . (5.4)

In view of part (b) of Lemma 2.1, the “first part” of (5.4), C (X) ⊂ C (WΣF′),
is equivalent to

C

(
X′

0

)
⊂ C

(
X′F′

MΣF′

)
, (5.5)

which means that Fy ∈ S(Xβ). If Fy would be also BLUP-sufficient for
Zu, that is,

C

(
0

M(ZD + S)Z′

)
⊂ C

(
X′F′

MΣF′

)
, (5.6)

then (5.3) would hold. Now (5.6) can be equivalently expressed as

C [M(ZD + S)Z′] ⊂ C (MΣF′QFX) = C (MΣF′) = C (MWΣF′) , (5.7)

where the equality follows from (3.7). Premultiplying (5.4) by M gives (5.7)
at once. Thus we have proved that (5.4) implies (5.3). Notice that in the
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light of the second part of Theorem 3.4 the implication (5.3) =⇒ (5.5)
holds in the situation when

C (X) ∩ C [Z(DZ′ + S′)M] = {0} .

There is one further interesting link connecting the mixed model and the
following extended partitioned model:

A = {ẏ, Ẋπ, V̇}

=

{(
y
y0

)
,

(
X Z
0 −Iq

)(
β
γ

)
,

(
R S
S′ D

)}
,

where both β and γ are fixed effects parameters. Expressed in error terms
we have

y = Xβ + Zγ + ε ,

y0 = −γ + ε0 ,

where cov
( y

y0

)
= cov

(
ε
ε0

)
= V̇. Premultiplying the model A by the matrix

T = (In : Z) ,

as in Arendacká & Puntanen (2015, Sec. 2), yields the equation

y + Zy0 = Xβ + Zε0 + ε . (5.8)

We see that (5.8) defines a mixed model, say B, where the observable re-
sponse is w = y + Zy0 and ε0 is the unobservable random effect, and

cov(y + Zy0) = cov(Zε0 + ε) = ZDZ′ + R + ZS′ + SZ′ = Σ .

We can denote the resulting mixed model as

B = {y + Zy0, Xβ + Zε0, D, R, S} .

We can also interpret B as a fixed effect model and write it as B =
{w,Xβ,Σ}, where the random effect is not written up explicitly.

It is now interesting to know whether the BLUEs of Xβ under A and
B are equal. We answer to this question using the linear sufficiency concept
while Haslett et al. (2015) and Arendacká & Puntanen (2015) solved this
problem using different approach. To do this, we write A as

A = {ẏ, Ẋπ, V̇} = {ẏ, Ẋ1β + Ẋ2γ, V̇} .

First we notice that Ẋ1β (and thereby Xβ) is estimable because C (Ẋ1) and
C (Ẋ2) are disjoint. Then we observe that

T′ =

(
In
Z′

)
∈

{(
Z
−Iq

)⊥}
= {Ẋ⊥2 },
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i.e., TẊ2 = 0 and rank(T) = rank(Ẋ
⊥
2 ). It is well known by Frisch–

Waugh–Lowell Theorem that premultiplying A by orthogonal projector
Ṁ2 = In+q − PẊ2

yields the reduced model under which the BLUE of

Ẋ1β is the same as in A , that is, Ṁ2ẏ is linearly sufficient for Ẋ1β. Now
C (T′) = C (Ṁ2) and hence, in view of (2.1), Tẏ is also linearly sufficient
for Ẋ1β and thereby

BLUE(Xβ | A ) = BLUE(Xβ | B) .

For the linear sufficiency in the partitioned model, see also Kala et al. (2017,
Sec. 5).

Haslett et al. (2015) and Arendacká & Puntanen (2015) also showed the
following:

BLUP(ε0 | A ) = BLUP(ε0 | B) = BLUE(γ | A ) + y0 .

The connection between the models A and B can be used as a tool to
calculate the BLUEs and BLUPs in mixed model and it is often referred to
as a Henderson’s method; see, e.g., Henderson et al. (1959) and McCulloch
et al. (2008, Ch. 8).
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Haslett, S.J., Puntanen, S., Arendacká, B. (2015). The link between the mixed and
fixed linear models revisited. Stat. Pap. 56, 849–861. DOI

Henderson, C.R., Kempthorne, O., Searle, S.R., von Krosigh, C.N. (1959). The
estimation of environmental and genetic trends from records subject to culling.
Biometrics 15, 192–218.

Isotalo, J., Puntanen, S. (2006). Linear prediction sufficiency for new observations
in the general Gauss–Markov model. Commun. Stat. Theory Methods 35, 1011–
1023. DOI

Kala, R., Markiewicz, A., Puntanen, S. (2017). Some further remarks on the lin-
ear sufficiency in the linear model. Applied and Computational Matrix Analysis:
MatTriad, Coimbra, Portugal, September 2015, Selected, Revised Contributions
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