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Abstract

Entity resolution constitutes a crucial task for many applications, but has an inherently quadratic complexity. In order to enable
entity resolution to scale to large volumes of data, blocking is typically employed: it clusters similar entities into (overlapping)
blocks so that it suffices to perform comparisons only within each block. To further increase efficiency, Meta-blocking is being
used to clean the overlapping blocks from unnecessary comparisons, increasing precision by orders of magnitude at a small cost
in recall. Despite its high time efficiency though, using Meta-blocking in practice to solve entity resolution problem on very large
datasets is still challenging: applying it to 7.4 million entities takes (almost) 8 full days on a modern high-end server.

In this paper, we introduce scalable algorithms for Meta-blocking, exploiting the MapReduce framework. Specifically, we
describe a strategy for parallel execution that explicitly targets the core concept of Meta-blocking, the blocking graph. Furthermore,
we propose two more advanced strategies, aiming to reduce the overhead of data exchange. The comparison-based strategy creates
the blocking graph implicitly, while the entity-based strategy is independent of the blocking graph, employing fewer MapReduce
jobs with a more elaborate processing. We also introduce a load balancing algorithm that distributes the computationally intensive
workload evenly among the available compute nodes. Our experimental analysis verifies the feasibility and superiority of our
advanced strategies, and demonstrates their scalability to very large datasets.
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1. Introduction

Entity resolution (ER) is a very common task in Big Data
processing, where different entity profiles, usually described
under different schemas, are mapped to the same real-world
object. Beyond the deduplication and cleaning problems that
appear in traditional data integration, such as data warehouses,
ER is a prerequisite for many Web applications, posing several
challenges due to the volume and variety of the data collections.
In general, ER constitutes an inherently quadratic task; given
an entity collection, each entity profile must be compared to all
others. Several approaches exist that aim to reduce the set of
possible comparisons to be performed between two data collec-
tions [1]. Blocking is a typical method that reduces the number
of pairwise comparisons by placing similar entity profiles into
blocks and performing only the comparisons within each block.

Redundancy, i.e., placing every entity into multiple blocks,
is employed by most blocking methods that handle noisy
data [2, 3]. In fact, most blocking methods are redundancy-
positive [4, 5]: the more blocks two entities share, the more
likely they are to be matching. As an example, consider the
simple approach of Token Blocking [6], which creates a block
for every token that appears in the attribute values of at least
two entities. Applying it to the entities in Figure 1(a), it yields
the blocks in Figure 1(b), which place both pairs of matching
entities, e1-e3 and e2-e4, in at least one block. Thus, they can be

detected, despite their noisy, heterogeneous descriptions.

On the flip side, redundancy entails two kinds of unneces-
sary comparisons: the rendundant ones repeatedly compare the
same entity profiles in multiple blocks, while the superfluous
ones describe comparisons of profiles that are not matching.
For example, the blocks b2 and b4 in Figure 1(b) contain one
redundant comparison each, repeated in b1 and b3, respectively;
given that entities e1 and e2 match with e3 and e4, respectively,
the blocks b5, b6, b7 and b8 contain superfluous comparisons
(the only exception is the redundant comparison e3-e5 in b8,
which is repeated in b6). In total, the blocks of Figure 1(b) in-
volve 13 comparisons, of which 3 are redundant and 8 superflu-
ous. Such comparisons increase the computational cost without
contributing any identified duplicates.

Current state-of-the-art. Numerous studies have focused
on the problem of block processing, whose goal is to discard
unnecessary (both redundant and superfluous) comparisons in
order to enhance the precision of block collections. Most of the
relevant techniques involve a functionality that operates at the
block level, based on coarse-grained characteristics of the input
block collection, such as the size of blocks: Block Purging [6]
a-priori discards oversized blocks like b8 in Figure 1(b), while
Block Pruning [6] orders blocks from smallest to largest and ter-
minates their processing as soon as the cost of identifying new
duplicates exceeds a predefined threshold. Such techniques are
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Figure 1: (a) A set of heterogeneous entity profiles [7], (b) the redundancy-
positive block collection derived from them using Token Blocking, (c) the re-
spective blocking graph that uses Jaccard similarity for edge weights, (d) one of
the possible pruned blocking graphs, and (e) the restructured block collection
after Meta-blocking.

efficient, but lack in accuracy, as their crude processing cannot
control its impact on recall (in terms of matching comparisons).

A more fine-grained and accurate approach that results in sig-
nificant time savings is Meta-blocking [4], which operates at the
level of individual comparisons through a two-step procedure.
First, it transforms the input block collection B into a blocking
graph GB. This graph contains a node ni for every entity profile
ei in B and an edge <ni, n j> for every pair of co-occurring pro-
files ei and e j, i.e., profiles that share at least one block. Every
edge <ni, n j> is associated with a weight wi, j ∈ [0, 1] that is
analogous to the likelihood that the adjacent entities are match-
ing – the higher an edge weight is, the more likely it corre-
sponds to a matching comparison.1 For instance, the blocking
graph in Figure 1(c) is extracted from the blocks in Figure 1(b)
using Jaccard similarity for weighting the edges. Note that two
nodes cannot be linked by more than one edge, thus eliminat-
ing all redundant comparisons at no cost in recall (i.e., without
missing any matching comparison).

In the second step, the edges with low weights are discarded
according to a pruning criterion, so as to eliminate part of the

1Theoretically, the computational cost of estimating the edge weights of
the blocking graph GB is equivalent to executing all pairwise comparisons in
the input blocks B. In practice, though, the weight computation for an edge
<ni, n j> requires a fraction of the time taken by a string similarity metric to
compare the corresponding entities ni-n j: the former merely compares two lists
of integers, the block ids associated with ni and n j, while the latter compares
the textual attribute values of ni and n j [4, 5].

superfluous comparisons. For instance, the pruned blocking
graph in Figure 1(d) is derived from the graph in Figure 1(c)
by discarding the edges with weight lower than the average one
(1/4). The pruned blocking graph G′B is then transformed into
the restructured collection B′ in Figure 1(e) by creating a new
block for every retained edge. In total, the resulting blocks con-
tain 5 comparisons, of which only 3 are unnecessary (superflu-
ous). Compared to the initial blocks in Figure 1(b), the com-
parisons were reduced by 62% without any impact on recall. In
our experiments, we show that Meta-blocking can reduce the
time required to process the blocks and get the final matching
results from 14 days to 95.5 minutes.

Scalability Limitations. The time complexity of Meta-
blocking is linear with respect to the number of comparisons
in the input block collection; it merely needs to iterate once or
twice over the blocks in order to form and prune the blocking
graph [4]. However, its running time depends on an additional
parameter: the average number of blocks that are associated
with every entity, called Blocks Per Entity (BPE). The reason is
that the edge <ni, n j> is weighted after estimating the intersec-
tion of the list of blocks associated with the profiles ei and e j.
Therefore, the larger the input block collection is and the higher
level of redundancy it involves, the more time-consuming the
processing of Meta-blocking is.

So far, the largest dataset processed by Meta-blocking in the
literature involves 3.4 million entities (4.0·1010 comparisons),
each placed in 15 blocks on average (DBC in Table 4). Using
a high-end server with Intel i7 (3.40GHz), 64 GB of RAM and
Debian Linux 7, the approach in Figures 1(c) and (d) requires
3 hours to execute. To assess the scalability of this approach,
we tested it on a dataset with 7.4 million entities (2.2·1011 com-
parisons), each associated with 40 blocks on average (FRD in
Table 4). Using the same server, the required time raised to
186 hours (∼8 days), i.e., a 2x increase in the size of the input
resulted in a 62x increase in execution time (for comparison,
we note that executing all pair-wise comparisons with a cheap
string similarity metric, e.g., Jaccard similarity of the attribute
value tokens, would require 50 days to complete).

Therefore, even as a pre-processing step for ER, Meta-
blocking is a heavy computational task with serious efficiency
limitations at the scale of Web data. We expect this problem to
aggravate in the future, as Web data continuously grow, both in
terms of number of entity profiles and in terms of amount of in-
formation inside each profile2. To overcome these limitations of
the existing serialized techniques, novel distributed approaches
are required.

Proposed Solution. In this paper, we adopt the MapRe-
duce programming model [8] for parallelizing Meta-blocking
and scaling its techniques to voluminous Web data collections,
with no impact on its effectiveness. We provide three paral-
lelization strategies.

The first one explicitly targets the blocking graph, which
builds and stores all the edges along with their weights, and
prunes the ones with the lowest weights. Even though MapRe-

2http://stats.lod2.eu
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duce leads to a significant speedup through the parallel process-
ing of the blocking graph, it bears a significant I/O cost that may
become a bottleneck, when building very large blocking graphs.

The second strategy overcomes this shortcoming, offering a
more efficient implementation, which uses the blocking graph
implicitly. In particular, it involves a pre-processing task, which
enriches the input block collection with indexing information
used for computing the weights of the edges, without building
and storing any of them explicitly. Then, a final processing
task is responsible for pruning the low-weighted comparisons
(according to the chosen pruning scheme).

The third strategy offers an alternative approach that is inde-
pendent of the blocking graph. At its core lies the idea that the
main information required for the estimation of edge weights is
the number of blocks shared by the adjacent entities. Thus, for
every entity, it aggregates the bag of all entities that co-occur
with it in at least one block. Then, it derives the edge weight
that corresponds to a specific neighbor from its frequency in
the co-occurrence bag. To minimize its I/O cost, this approach
does not store its edge weights on the disk. In cases where they
do not need to be recomputed, this strategy results in very few
Map/Reduce jobs that are efficiently executed.

In order to avoid potential bottlenecks associated with
the computation-intensive parts of our MapReduce functions,
we also introduce a novel load balancing algorithm, called
MaxBlock. It exploits the highly-skewed distribution of block
sizes in redundancy-positive collections in order to split them
in partitions of equivalent computational cost (i.e., total number
of comparisons). We experimentally compare MaxBlock with
existing approached, including a state-of-the-art algorithm that
serves a similar purpose, and demonstrate that our approach has
significant qualitative and quantitative benefits.

Finally, we provide an extensive experimental evaluation of
our methods over the Hadoop3 environment. We apply all
Meta-blocking configurations to four large-scale, real-world
datasets measuring the corresponding running times. The out-
comes verify the high efficiency of our distributed techniques.
To facilitate other researchers to experiment with parallel Meta-
blocking, we have publicly released both the data and the im-
plementation of our methods4.

Contributions. In summary, this paper makes the following
contributions:
• We adapt Meta-blocking to the MapReduce paradigm

through 3 alternative parallelization strategies: an edge-based
strategy that explicitly builds the blocking graph, a comparison-
based strategy that uses the blocking graph implicitly, as a con-
ceptual model, and an entity-based strategy that is independent
of the blocking graph. We also provide concrete implementa-
tions for all weighting schemes that are used in Meta-blocking.
•We present MaxBlock, a load balancing algorithm that deals

with skewness in the input block collection, splitting it into par-
titions of the same computational cost. Our experiments verify
that it has qualitative and quantitative advantages over a state-
of-the-art solution.

3https://hadoop.apache.org
4See https://github.com/vefthym/ParallelMetablocking

•We verify the scalability of our techniques through a thor-
ough experimental evaluation over the four largest, real datasets
that have been applied to Meta-blocking. The data and the im-
plementation of our techniques are publicly available.

The rest of the paper is organized as follows5: Section 2 pro-
vides the preliminaries for blocking and Meta-blocking. We
outline our adaptation of Meta-blocking to the MapReduce
paradigm in Section 3 and elaborate on the parallelization of
each stage in Sections 4 to 9. Section 10 presents our algorithm
for load balancing and Section 11 evaluates the performance of
our approaches. Finally, Section 12 describes the related work,
and Section 13 concludes the paper with a summary of our find-
ings along with plans for future work.

2. Preliminaries

Blocking. The core notion of Entity Resolution is the entity
profile, or simply entity, which comprises a set of name-value
pairs that are uniquely identified through a global id. We de-
note an entity with id i by ei. Two entities that correspond to
the same real-world object are called duplicates or matches. A
set of entities is called entity collection (E) and D(E) stands
for the set of duplicate entities it contains. |D(E)| denotes the
corresponding set size, i.e., the number of duplicate pairs in E.

Blocking aims to tame the quadratic complexity of Entity
Resolution by restricting the executed comparisons to entities
that are similar in some respect. Given an entity collection, a
blocking method groups its entities into clusters that are called
blocks. We denote an individual block with id i by bi. The num-
ber of entities it contains is called block size (|bi|), while the
number of comparisons in it is called block cardinality (||bi||).
Apparently, ||bi|| = |bi| × (|bi| − 1)/2.

Collectively, a set of blocks is called block collection (B). Its
size is denoted by |B| and represents the total number of blocks
it contains. ||B|| stands for its total cardinality, which is equal
to the number of comparisons it involves, i.e., ||B|| =

∑
bi∈B ||bi||.

The set of blocks containing a particular entity ei is denoted by
Bi (⊆ B), with |Bi| representing its size.

Two entities ei and e j that are placed within the same block
are called co-occurring. Their comparison is denoted by ci, j,
while Bi, j represents the set of blocks they co-occur in. Its size,
|Bi, j|, stands for the number of blocks shared by ei and e j. If ei

and e j are duplicates, ci, j is a matching comparison.
Regarding the performance of a block collection, a common

premise in the literature is that it is independent of the entity
matching method that executes the pair-wise comparisons [4, 2,
10]. The rationale is that two duplicates can be detected as long
as they co-occur in at least one block. The set of co-occurring
duplicate entities is denoted by D(B), with |D(B)| representing
its size. The goal of blocking is to maximize the number of co-
occurring duplicates (|D(B)| ⊆ |D(E)|), while minimizing the
number of executed comparisons (||B||).

More formally, two established measures are used for assess-
ing the performance of a block collection [11, 2, 3, 10]:

5A preliminary abridged version of this paper appeared in [9].
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Figure 2: The formal definition of the weighting schemes of Meta-blocking.
For EJS, |VB| stands for the order (i.e., number of nodes) of the blocking graph
GB, while |nx | denotes the degree of node nx.

• Pairs Completeness (PC) is analogous to recall, estimating
the portion of existing pairs of duplicates that are co-occurring:
PC = |D(B)|/|D(E)|. PC is defined in the interval [0, 1], with
higher values indicating better recall.
• Pairs Quality (PQ) is analogous to precision, estimating the

portion of executed comparisons that involve a non-redundant
pair of duplicates: PQ = |D(B)|/||B||. PQ is defined in the inter-
val [0, 1], with higher values indicating better precision. Note
that PQ provides a pessimistic estimation of precision, because
it considers as true positives only the non-redundant matches;
the redundant comparisons that involve duplicates are regarded
as false positives.

Ideally, the goal of blocking is to maximize both PC and PQ.
However, there is a clear trade-off between the two measures:
the more comparisons are contained in B (higher ||B||), the more
duplicates are co-occurring (higher |D(B)|) and the higher the
recall (PC) gets. Given, though, that ||B|| increases quadrati-
cally for a linear increase in |D(B)| [12, 13], precision (PQ) is
reduced. For this reason, the goal of blocking methods in prac-
tice is to achieve a good balance between the two measures –
with an emphasis on recall. They try to maximize precision,
while maintaining recall at very high levels, above 0.80 or even
0.90, such that blocking places the vast majority of the matches
in at least one common block.

Meta-blocking. Most of the blocking methods are
redundancy-positive in the sense that their blocks provide pos-
itive evidence for the matching likelihood of two entities: the
more blocks they share, the more likely they are to match [4, 5].
The main characteristic of redundancy-positive blocking meth-
ods is that they trade very high PC for very low PQ. In other
words, they yield a large number of unnecessary comparisons
in their effort to achieve high recall.

Meta-blocking operates on their block collections in order to
tip the balance in favor of precision at a small cost in recall. It
restructures a redundancy-positive block collection B into a new
one B′ such that PC(B′) ≈ PC(B) and PQ(B′) � PQ(B) [4, 5].
It targets individual comparisons and a-priori discards the un-
necessary ones (superfluous or redundant) by pruning edges of
the blocking graph. Its performance depends on two parame-
ters: the weighting and the pruning scheme.

The weighting scheme receives as input the entities defining
an edge in GB along with the block collection B and estimates
the corresponding weight. The following approaches have been
proposed in the literature (their weights are restricted to [0, 1]

through normalization) [4]:
• Aggregate Reciprocal Comparisons Scheme (ARCS) is

based on the assumption that the smaller the blocks two enti-
ties share, the more likely they are to be matching.
• Common Blocks Scheme (CBS) captures the fundamental

property of redundancy-positive block collections that the more
blocks two entities share, the more likely they are matching.
• Enhanced Common Blocks Scheme (ECBS) improves CBS

by discounting the contribution of the entities that participate in
many blocks.
• Jaccard Scheme (JS) estimates the portion of blocks shared

by two entities.
• Enhanced Jaccard Scheme (EJS) improves JS by dis-

counting the contribution of entities involved in too many non-
redundant comparisons (i.e., high node degree).

The formal definitions of the weighting schemes are pre-
sented in Figure 2.

The second parameter, the pruning scheme, relies on a prun-
ing criterion which can be either weight- or cardinality-based;
the former specifies the minimum weight of the retained edges
and the latter the maximum number of retained edges. With
respect to its scope, the pruning criterion can be either global,
applying to the entire blocking graph, or local, covering an indi-
vidual node neighborhood. The selected criterion is then com-
bined with a pruning algorithm, which is either edge- or node-
centric; the former iterates over all edges of the graph to retain
the globally best ones and the latter over all edges of the neigh-
borhood to retain the locally best ones. On the whole, the main
pruning schemes are the following [4]:
• Weighted Edge Pruning (WEP) combines the edge-centric

algorithm with a global weight threshold that amounts to the av-
erage edge weight of the entire blocking graph. Thus, it retains
all edges with a weight higher than the overall mean one.
• Cardinality Edge Pruning (CEP) couples the edge-centric

algorithm with a global cardinality threshold. Thus, it re-
tains the top-K edges of the entire blocking graph, where K =

b
∑

bi∈B |bi|/2c.
•Weighted Node Pruning (WNP) combines the node-centric

pruning algorithm with a local weight threshold that amounts
to the average edge weight of each neighborhood.
• Cardinality Node Pruning (CNP) combines the node-

centric pruning algorithm with a global cardinality thresh-
old. For each neighborhood, it retains the top-k edges, with
k=b
∑

bi∈B |bi|/|E| − 1c.
In this work, we consider all weighting and pruning schemes,

adapting their functionality to the MapReduce paradigm. All of
them benefit greatly from the pre-processing technique of Block
Filtering [7], which drastically reduces the size of the blocking
graph. Similar to Meta-blocking, it transforms a redundancy-
positive block collection B into a new one B′ that involves a
lower number of comparisons. Instead of using a graph, though,
it simply removes every entity from the least important of its
blocks. The main assumption is that the larger a block is (i.e.,
higher ||bi||), the less important it is for its entities.

In more details, Block Filtering orders the blocks of B in as-
cending order of cardinality and retains every entity ei in the top
Ni blocks of Bi (i.e., the Ni smallest blocks that contain ei). For

4



Name Symbol
Entity collection E
Duplicate entities in E D(E)
Entity profile with id i ei

Block collection B
Block collection size (number of blocks) |B|
Block collection cardinality (number of comparisons) ||B||
Blocks containing ei Bi

Number of blocks containing ei |Bi|

Block with id i bi

Block size (number of entities) |bi|

Block cardinality (number of comparisons) ||bi||

Blocks shared by ei and e j Bi, j

Number of blocks shared by ei and e j |Bi, j|

Comparison between ei and e j ci, j

Duplicate entities in B D(B)
Blocking graph GB

Node in GB corresponding to ei ni

Edge in GB < ni, n j >

Weight of < ni, n j > wi, j

Table 1: Summary of the notation used in this work.

every entity ei, this threshold is locally defined as Ni = br×|Bi|c,
where r ∈ [0, 1] is the ratio of Block Filtering. In this work, we
employ Block Filtering as an integral part of our parallelized
approach, setting r = 0.80. This value was experimentally veri-
fied to increase efficiency to a significant extent, pruning at least
50% of the blocking graph’s edges, while having a negligible
impact on recall [7].

Table 1 summarizes the notation used in the rest of the paper.

3. Approach Overview

In the following, we elaborate on the adaptation of Meta-
blocking to MapReduce. The MapReduce programming model
consists of two consecutive procedures that can be grouped into
jobs: first, the Map phase receives a set of (key, value) pairs
and transforms it into a new output set of pairs. Second, the
Reduce phase receives a set of (key, value) pairs that share the
same key and are sorted according to their value; it performs a
summary operation on them to produce a new, usually smaller
set of pairs.

The serialized workflow we want to parallelize is depicted in
Figure 3(a) and consists of two consecutive stages: the first one
applies Block Filtering to the input block collection B, while
the second one applies Meta-blocking to yield the final, restruc-
tured collection B′. The parallelized counterpart is presented in
Figure 3(b) and consists of three stages. Again, the first one
applies Block Filtering to the input block collection and the last
one implements Meta-blocking. The only difference is in the
second stage, which preprocesses the blocks in order to trans-
form them into a suitable form for parallel Meta-blocking.

We analyse every stage of the parallelized workflow sepa-
rately, proposing at least two different approaches in each case.
The first one applies a basic strategy that relies on a straight-
forward adaptation, but involves more jobs and higher I/O be-

Preprocessing 

(b) 

Meta-blocking B B’ Block Filtering 

(a) 

Meta-blocking B B’ Block Filtering 

Figure 3: (a) The serialized workflow of Meta-blocking, and (b) its parallelized
counterpart.

tween the nodes. The other approach(es) correspond(s) to more
advanced strategy(ies), reducing the overhead of data exchange
through more elaborate processing. In all cases, we provide the
pseudo-code of the strategy’s functionality and, for the most
important strategies, we accompany it with an example that fa-
cilitates its understanding.

Section 4 presents two strategies for the first stage (Block Fil-
tering), while Section 5 introduces three strategies for the sec-
ond stage (Preprocessing). The last stage of the parallel work-
flow applies one of the four pruning algorithms to the output
of Preprocessing and yields a set of retained edges; every edge
corresponds to a new block that is part of the final, restructured
block collection. We examine every pruning algorithm sepa-
rately, in Sections 6 to 9. Given that the functionality and the
complexity of their parallelization depend on the preprocessing
strategy, we present three adaptations in every section, each of
them corresponding to the output of the previous stage. Finally,
Section 10 introduces a novel algorithm for load balancing that
applies to all strategies of the last two stages.

Note that in every stage, special care was taken to minimize
the I/O between the independent nodes. Part of this effort fo-
cused on optimizing our representation model. Apparently, we
could use the actual blocking keys and URIs to identify the
blocks and the entities, respectively. However, the binary rep-
resentation of these textual values is much larger than that of
numerical identifiers. For this reason, our model relies exclu-
sively on numbers: we enumerate every block and entity, so
that they are uniquely identified by an integer id, and represent
the edges by the concatenation of the adjacent entity ids. Their
weights are naturally represented by real numbers.

4. Stage 1: Block Filtering

The first stage applies Block Filtering to the input block col-
lection in order to reduce the size of the blocking graph. Cen-
tral to this procedure is the sorting of blocks in ascending order
of cardinality, from the smallest to the largest one. Depend-
ing on how this sorting is performed, we present two possible
approaches for adapting Block Filtering to MapReduce.

The basic strategy orders once and globally all input blocks,
using two MapReduce jobs that exploit the automatic sorting
of the input to the reduce function. The advanced strategy
employs a single MapReduce job that orders locally the blocks
associated with every entity at the cost of repeating some com-
putations across the independent nodes.

For both strategies, every (key, value) pair of the input
corresponds to a block bk; the key stands for the id of the block,
while the value contains the list of the entity ids placed in bk:
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MAP function pseudo-code 

1: Input  

Key: id of block bk, � 

Value: list of entity ids, �� = {�, �, … ,
} 
2: Output 

Key: cardinality of block bk, ||��|| 
Value: id of block bk, � 

3: compute comparisons in bk,||��|| 
4: emit( ||��|| , � ); 

1: Input (Single Reducer) 

All pairs <	||��||, � > sorted in  

ascending order of cardinality. 

2: Output 

The sorted list of block ids, �������. 

3: store �������	to disk 

1: Input  

Key: id of block bk, � 

Value: list of entity ids, �� = {�, �, … ,
} 
2: Output 

Key: id of entity ei, � 
Value: id of block bk, � 

3: for each � ∈ �� loop 

4:       emit( � , � ); 

5: end loop 

 

1: Input  

Key: id of entity ei, � 
Value: list of associated block ids, ��  

2: Output 

Key: id of entity ei, � 
Value: list of top-N blocks in �� , �′�  

3: load ������� from the disk 

4: �′� = �������� �
�!�"(�� , �������) 

5: emit( � , �′�  ); 

(a) Basic strategy 

REDUCE function pseudo-code 

JOB 1 

JOB 2 

(b) Advanced strategy 

1: Input  

Key: id of block bk, � 

Value: list of entity ids, �� = {�, �, … ,
} 

2: Output 

Key: id of entity ei, � 
Value: block id and cardinality, �. ||��|| 

3: compute comparisons in block, ||��|| 
4: for each � ∈ �� loop 

5: emit(	�	, �. ||��|| ); 
6: end loop 

 

1: Input  

Key: id of entity ei, � 
Value: list of pairs < �. ||��|| >, � 

2: Output 

Key: id of entity ei, � 
Value: list of top-N blocks in �� , �′�  

3: order � in ascending block cardinality 

4: �′� = ���������������(�) 

5: emit( � , �′�  ); 

MAP function pseudo-code REDUCE function pseudo-code 

Figure 4: Pseudo-code interpretation of (a) the basic and (b) the advanced strat-
egy for Block Filtering. They employ a global and a local ordering of blocks,
respectively.

key=k and value={i, j, . . . ,m} for bk={ei, e j, . . . , em}. The out-
put of both strategies comprises the N most important blocks
associated with the individual entities. Every key denotes the id
of an entity ei, while the corresponding value contains the list
of ids of the blocks still containing ei: key=i and value=B′i .

4.1. Basic Strategy

This strategy employs two MapReduce jobs. The first one
sorts all blocks globally in ascending order of cardinality, pro-
ducing the sorted list Bsorted. The second job uses Bsorted in
order to identify the most important blocks for each entity.

The functionality of the first job is outlined in the upper part
of Figure 4(a). The map function receives a block id k along
with the entities contained in bk. It computes the corresponding
cardinality, ||bk ||, and emits a (||bk ||, k) pair. All pairs are sorted
in descending order of their keys (i.e., cardinalities), before they
are forwarded as input to the single reduce function. The re-
ducer extracts and stores to the disk the values of the sorted
input, i.e., the block ids that form Bsorted.

The pseudo-code interpretation of the second job is presented
in the lower part of Figure 4(a). The map function gets the same
input as the first job: the id of a block along with the entity ids
it contains. For every entity ei contained in the given block bk,
it emits as output a pair (i, k). MapReduce groups together all
pairs having the same key so that the reduce function receives
as input all block ids assigned to a specific entity ei (i.e., key=i,
value=Bi). It loads from the disk the sorted list of block ids,
Bsorted, and uses it to get the ranking position of every block.
The N blocks with the highest ranking positions form the list of

b1 e1,e2,e3
… …

b4 e1,e3,e4
... ...

b6 e1,e6,e7,e9
b7 e1,e5,e6,e8,e9
... ...

Key Value

e1 b1.3
e2 b1.3
e3 b1.3
... …

Value

e1 b4.3
e3 b4.3
e4 b4.3
... …

Key

e1 b6.6
e6 b6.6
e7 b6.6
e9 b6.6
e1 b7.10
... …

M
ap

M
ap

Group	  by	  key

e1 b1.3
e1 b4.3
e1 b6.6
e1 b7.10
... …

Value

e2 b1.3
... …

Key

e3 b1.3
e3 b4.3
... …

e1 b1,b4,b6
... …

Reduce

e2 b1
... …

e3 b1,b4
... …

Reduce
ReduceM

ap

Figure 5: An example of the advanced strategy for Block Filtering.

retained block ids B′i , which are the emitted as output: key=i,
value=B′i .

4.2. Advanced Strategy

The rationale behind the advanced strategy is to use a single
MapReduce job that provides the reduce function with the nec-
essary information for sorting the blocks of each entity locally.
Its functionality is outlined in Figure 4(b). The map function
gets as input the id and the entities of a block bk and com-
putes its cardinality, ||bk ||. For every entity ei ∈ bk, it emits a
pair with the entity id as the key, while the (composite) value
concatenates the id and the cardinality of block bk: key=i and
value=k.||bk ||. The reduce function gathers all blocks associ-
ated with an entity ei along with their cardinality. It sorts them
in ascending number of comparisons and extracts the top N el-
ements from the resulting list to form B′i . Similar to the basic
strategy, it then emits a pair (i, B′i).

Figure 5 illustrates the functionality of the advanced strategy
of Block Filtering. For the three entities e1, e2 and e3 of b1, we
emit in the Map phase a pair with each of them as the key and
b1.3 as value, since there are three comparisons in this block.
In the Reduce phase, we gather all four pairs having e1 as key
and keep only the top-3 blocks for this entity. Thus, we discard
b7 from the blocks of e1.

5. Stage 2: Preprocessing

The second stage of the parallel Meta-blocking workflow
prepares the input that will be processed by the selected prun-
ing algorithm in the third stage. It plays a crucial role, as its
output determines the complexity of the pruning algorithm: the
more computations are performed by Preprocessing and are in-
tegrated into its output, the simpler is the functionality of the
pruning algorithms and vice versa.

This trade-off gives rise to three different strategies for Pre-
processing, which share the same input (i.e., the outcome of
Block Filtering), but differ in their output. The edge-based
strategy explicitly creates the blocking graph, performing all
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MAP function pseudo-code 

(a) Edge-based strategy 

REDUCE function pseudo-code 

JOB 2 

Identity Mapper. 

 

1: Input  

Key: entity ids defining edge <ni,nj>, �. � 

Value: list of pieces of information,              

� = {��
	


, ��
	
 , … , ��

	
} 

2: Output 

Key: entity ids defining edge <ni,nj>, �. � 

Value: total weight of <ni,nj>, ��� 

3: compute total weight ��� 
from � 

4: emit( �. �, ��� ); 

1: Input  

Key: id of entity ei, � 

Value: list of associated block ids, �	  

2: Output 

Key: id of block bk, � 

Value: id of entity ei with number of  

associated blocks, �. |�	| 

3: for each � ∈ �	  loop 

4:      emit( � , �. |�	| ); 

5: end loop 

1: Input  

Key: id of block bk, � 

Value: list of pairs < �. |�	| >, V 

2: Output 

Key: entity ids defining edge <ni,nj>, �. � 

Value: relevant information, ��
	
 

3: for each �	
 ∈ �� . �����������() loop 

4:      emit( �. �, ��
	
 ); 

5: end loop 

JOB 1 

Figure 6: Pseudo-code interpretation of the edge-based Preprocessing strategy,
which explicitly creates the blocking graph.

weight computations in order to simplify the functionality of
the pruning algorithm. On the flip side, it involves two MapRe-
duce jobs with high I/O that store all edges to the disk. The
comparison-based strategy defers all weight computations and
simply facilitates them by enriching the input of the pruning al-
gorithms with all the necessary information. The entity-based
strategy facilitates a different approach for weight estimation
that does not require any preprocessing. Thus, it simply re-
ceives the output of Block Filtering (i.e., the block ids retained
per entity) and transforms it into a new block collection. Due
to their simplicity, the last two strategies require just one job.

5.1. Edge-based Strategy: Explicit Blocking Graph
The pseudo-code interpretation of the edge-based strategy is

depicted in Figure 6. The first MapReduce job transforms the
output of Block Filtering into a block collection. Its map func-
tion receives as key the id of an entity ei and as value the list
of associated blocks, Bi. It swaps values and keys, emitting for
every block bk ∈ Bi a pair (k, i.|Bi|), where k and i are the block
and the entity id, respectively, while |Bi| denotes the number of
blocks containing ei after Block Filtering. The reason is that
|Bi| is the cornerstone for most weighting schemes.

The reduce function of the first job groups together all en-
tities contained in a block bk and is able to reproduce all its
comparisons.6 For every comparison between entities ei and
e j (ci j), it emits the concatenation of their ids as key and some
local information Xk

i j as value: key=i. j and value=Xk
i j. The in-

formation in Xk
i j is necessary for estimating the corresponding

edge weight and varies, depending on the selected weighting
scheme. For ARCS, it comprises the cardinality of block bk

(i.e., Xk
i j=||bk ||), while for all other schemes it concatenates |Bi|

and |B j| (i.e., Xk
i j=|Bi|.|B j|); for CBS, though, it can be empty.

The second job consists of an identity mapper and a reduce
function that estimates the weight for every edge of the block-
ing graph. The value list of its input, V , clusters together all

6Note that a block with just one remaining entity contains no comparison
and, thus, no processing is performed.

Blocking Graph for EJS 

1: Input  

Key: entity ids defining edge <ni,nj>, �. � 

Value: Jaccard sim. edge weight, ���� 

2: Output 

Key: entity id of the one node, � 

Value: entity id of the other node with the  

Jaccard similarity, �. ����  

3: emit(	�	, �. ���� 	); 

4: emit(	�	, �. ���� ); 

1: Input  

Key: id of entity ei, � 

Value: list of pairs < �. ���� >, 	 

2: Output 

Key: entity ids defining edge <ni,nj>, �. � 

Value: their Jaccard sim. with the node  

degree of ni, 	���� . |��| 

3: for each �. ���� ∈ 	 loop 

4:      emit( �. �, 	���� . |	| );  

5: end loop 

Identity Mapper. 

 

1: Input  

Key: entity ids defining edge <ni,nj>, �. � 

Value: a pair < 	���� . |��| , 	���� . |��| > 

2: Output 

Key: entity ids defining edge <ni,nj>, �. � 

Value: total weight of <ni,nj> ,	�� 

3: �� =	����∙ 	 log 	� / |��| ∙ 	 log 	� / |��|; 

4: emit( �. �, �� ); 

MAP function pseudo-code REDUCE function pseudo-code 

JOB 1 

JOB 2 

(a) Basic strategy 

Figure 7: Pseudo-code interpretation of the edge-based Preprocessing strategy
for the EJS weighting scheme.

local information pertaining to the edge <ni, n j> that is speci-
fied by the input key. Based on them, the reducer computes the
corresponding edge weight wi j from the formulas in Figure 2.
For example, we simply have wi j = |V | for CBS, as the size of
the value list equals the number of common blocks, |Bi j|. As
output, the reducer emits a pair with the id and the weight of
the edge: key=i. j and value=wi j.

There is an exception to this strategy, as the EJS weighting
scheme requires two additional jobs to be applied to the output
of JS. Their goal is to estimate the node degree |ni| of every
entity ei. The first job counts the edges that are adjacent to
each entity, while the second one reassembles all neighboring
entities in order to estimate the weight of their adjacent edge
according to EJS formula in Figure 2. Their functionality is
outlined in Figure 7.

The first job continues from the Preprocessing of the JS
weighting scheme. Its map function receives as input an in-
dividual edge from the respective blocking graph; the concate-
nated ids of the adjacent entities form the key, while the value
contains the corresponding edge weight. The mapper performs
no processing, but just emits two pairs: for each of the two enti-
ties, it uses its id as the key and concatenates the id of the other
entity with the edge weight to form the value.

In this way, the reduce function gathers all edges that corre-
spond to a specific entity ei. Its input value actually comprises
a list with the ids of all neighboring entities appended to the
weight of the respective edge. The size of this list equals the
degree |ni| of node ni that corresponds to ei. The reducer emits
this information so that the corresponding EJS weights can be
computed in the second job: for each of the neighboring entities
e j, it emits a pair with key=i. j and value=JS i j.|ni|.

The second job involves an identity mapper so that the re-
ducer gathers both values that pertain to an individual edge
<ni, n j>, namely JS i j.|ni| and JS i j.|n j|. Having this informa-
tion, the EJS weight can be derived from the Formula in Fig-
ure 2. This forms the output value, while the ids of the adjacent
entities form the output key.
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(b) Comparison-based strategy 

1: Input  

Key: id of entity ei, � 

Value: list of associated block ids, ��  

2: Output 

Key: id of block bk, � 

Value: id of entity ei and associated  

block ids, �. ��  

3: sort ��  in ascending order of block ids 

4: for each � ∈ ��  loop 

5: emit( � , �. ��  ); 

6: end loop 

1: Input  

Key: id of block bk, � 

Value: list of pairs < �. ��  >, � 

2: Output 

Key: input key 

Value: input value 

3: if ( 2 ≤ |�| ) 

4: emit( � , V ); 

MAP function pseudo-code REDUCE function pseudo-code 

Figure 8: Pseudo-code interpretation of the comparison-based Preprocessing
strategy, which creates the blocking graph implicitly, enriching the description
of the input blocks with the necessary information for weight estimation.

b1	  
[e1,b1,b4,b6],	  
[e2,b1],	  
[e3,b1,b4],...	  

…	   …	  

Key Value 

b4	  
[e1,b1,b4,b6],	  
[e3,b1,b4],	  
[e4,b4,b5],...	  

...	   ...	  

G
roup	  by	  key	  

M
ap	  

M
ap	  

e1	   b1,b4,b6	  

e2	   b1	  
e3	   b1,b4	  
e4	   b4,b5	  
...	   ...	  

Key Value 

b1	   [e1,b1,b4,b6]	  

b4	   [e1,b1,b4,b6]	  

b6	   [e1,b1,b4,b6]	  

b1	   [e2,b1]	  
...	   …	  

Value 

b1	   [e3,b1,b4]	  

b4	   [e3,b1,b4]	  

b4	   [e4,b4,b5]	  

b5	   [e4,b4,b5]	  
...	   …	  

Key Key Value 

b1	   [e1,b1,b4,b6]	  

b1	   [e2,b1]	  

b1	   [e3,b1,b4]	  
...	   …	  

b4	   [e1,b1,b4,b6]	  

b4	   [e3,b1,b4]	  

b4	   [e4,b4,b5]	  
...	   …	  

b5	   [e4,b4,b5],...	  
...	   ...	  

Reduce	  

b5	   [e4,b4,b5]	  
...	   …	  

Reduce	  
Reduce	  

b6	   [e1,b1,b4,b6],.
..	  

...	   ...	  

Reduce	  

b6	   [e1,b1,b4,b6]	  
...	   …	  

Figure 9: An example of the comparison-based strategy for Preprocessing.

5.2. Comparison-based Strategy: Implicit Blocking Graph

This strategy creates the blocking graph implicitly: it en-
riches the description of the input block collection with the in-
formation that is required for detecting all edges and estimating
their weights according to the selected scheme. The key to this
approach is the idea that every edge <ni, n j> of the blocking
graph GB corresponds to a non-redundant comparison ci j in the
block collection B.

A comparison ci j in bk is non-redundant only if it satisfies
the Least Common Block Index condition (LeCoBI for short).
That is, if the id of bk equals the least common block id of
the entities ei and e j: k = min(Bi ∩ B j) [14]. To assess the
LeCoBI condition for two entities ei and e j, we need to compare
the lists of associated blocks, Bi and B j; for higher efficiency,
their elements should be sorted in ascending order of block ids.
The comparison-based strategy integrates this information to its
output, so that the pruning algorithms carry out all edge and
weight computations in the third stage.

This functionality is performed by one MapReduce job,
which is outlined in Figure 8. The map function receives as
input the outcome of Block Filtering: the id of an entity ei as
key and the associated blocks Bi as values. First, it sorts Bi in
ascending order of block ids. Then, for every block bk ∈ Bi, it
emits its id as the key, while the value concatenates the id of ei

with the entire sorted list Bi: key=k, value=i.Bi. MapReduce
then reassembles all blocks, by grouping together all pairs with
the same key. The reduce function receives as input the entity
list of a specific block along with the blocks that are associated
with every individual entity; provided that there are at least two
entities, it emits the same (key, value) pair as output: key=k
and value={i.Bi, j.B j, . . . ,m.Bm}.

Figure 9 provides an example of this functionality. For each

Enriched Input for EJS 

1: Input  

Key: id of block bk, � 

Value: list of entity ids and associated  

blocks, �′� = {�. 	
 , �. 	 , … ,�. 	�} 

2: Output 

Key: id of entity ei, � 
Value: block id and distinct  

comparisons for ei, �. |�

�| 

 3: comparisonsPerEntity = ∅ ; 

 4: for each �
 ∈ �� . �����������() loop 

 5: if ( ������ !"�!��# �
  =  true ) 

 6:      comparisonsPerEntity[i]++; 

 7:     comparisonsPerEntity[j]++; 

 8: end loop 

 9: for each � ∈ ��  loop 

10: emit(	�	, �. comparisonsPerEntity[i] ); 

11: end loop 

1: Input  

Key: id of entity ei, � 

Value: list of pairs < �. |�

�| >, % 

2: Output 

Key: id of block bk, � 

Value: id of entity ei with associated  

block ids and total comparisons,  

�. 	
 . |�
| 

3: |�
| = 	∑ |�

�|' ; 

4: 	
 =	⋃ �'  ; 

5: for each k ∈ 	
  loop 

6:  emit( � , �.	
.|�
| ); 
7: end loop 
 

 

 

 

 

 

 

 

 

JOB 1 

MAP function pseudo-code REDUCE function pseudo-code 

Enriched Input for EJS 

Identity Mapper. 1: Input  

Key: id of block bk, � 

Value: list of entity ids, associated  

blocks and node degrees,  

					� = 	 {�. �	 . |�	|, . �� . |��|, … ,�. ��. |��|} 

2: Output 

Key: id of block bk, �	 

Value: input value 

3: emit ( � , � ); 

(b) Advanced strategy 

JOB 2 

Figure 10: Pseudo-code interpretation of the comparison-based strategy for
Preprocessing the EJS weighting scheme.

block b1, b4 and b6, to which e1 belongs, we emit a pair with
their block ids as key and e1, concatenated with b1, b4, b6 as
value in the Map phase. In the Reduce phase, all the entities of
b1 are grouped together (i.e., e1, e2 and e3), each accompanied
with the block ids in which it belongs. We just concatenate
them and emit them as the value of the key=b1.

There are two exceptions to this functionality, because the
weighting schemes ARCS and EJS need additional informa-
tion for estimating their edge weights. The former requires the
cardinality of every block contained in Bi. This can be easily
embedded into the output of the previous stage (Block Filter-
ing), such that for ARCS, the input is not only a list of asso-
ciated blocks for each entity, but also the cardinality of each
such block. Then, the rest of the process is the same as in the
other weighting schemes. In contrast, the information required
by EJS can only be derived from an elaborate processing.

In more detail, the EJS weighting scheme requires the de-
gree of the nodes corresponding to the adjacent entities of ev-
ery edge. The main idea is that the degree of node ni equals
the total number of non-redundant comparisons involving the
corresponding entity ei. This can be assessed through a single
job that applies to the output of the job in Figure 8: it estimates
the partial non-redundant comparisons per entity in the mapper
and the total ones in the reducer. A second job is then used to
reconstruct the enriched description of the blocks. Their func-
tionality is depicted in Figure 10.

The first map function receives as input the enriched descrip-
tion of a block bk: the block id k is the key, while the value
contains the corresponding entities together with their associ-
ated blocks. For each of these entities, it creates a comparison
counter (Line 3). It iterates over all comparisons in bk and for
those that satisfy the LeCoBI condition, it increases the coun-
ters of the involved entities (Lines 4-8). Finally, for every entity,
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(c) Entity-based strategy 

1: Input  

Key: id of entity ei, � 

Value: list of associated block ids, ��  

2: Output 

Key: id of block bk, � 

Value: id of entity ei, � 

3: for each � ∈ ��  loop 

4: emit(	�	, � ); 

5: end loop 

1: Input  

Key: id of block bk, � 

Value: list of entity ids, �� = {�, �, … ,�} 

2: Output 

Key: input key 

Value: input value 

3: if ( 2	 ≤ |��| ) 

4: emit( � , ��  ); 

MAP function pseudo-code REDUCE function pseudo-code 

Figure 11: Pseudo-code interpretation of the entity-based strategy for Prepro-
cessing, which does not use the blocking graph.

it emits a pair with its id as key and the block id concatenated
with the comparison counter as value (Lines 9-11).

In this way, the first reduce function gathers all pairs per-
taining to a specific entity ei. Its id is the input key, while the
input value comprises a list of all pairs k.|nk

i |, where k is the id
of a block containing ei and |nk

i | is its partial node degree in bk

(i.e., the number of non-redundant comparisons of bk that in-
volve ei). Thus, the reducer is able to estimate the total node
degree of ei (Line 3). It also reconstructs the list of the blocks
associated with ei, Bi (Line 4). For each block bk ∈ Bi, it then
emits a pair with key=k and value=i.Bi.|ni| (Lines 5-7).

The second job aims to reconstruct the enriched input of the
blocks. Thus, it contains an identity mapper that forwards its in-
put to the reducer, which aggregates all information pertaining
to an individual block bk; the block id is the key, while the value
contains the ids of all entities in bk, their associated blocks as
well as the corresponding node degrees. This is also the output
of the reducer, which is emitted without any further processing.

5.3. Entity-based Strategy: No Blocking Graph
This strategy is fundamentally different from the others in

the sense that it does not require the blocking graph. Its func-
tionality revolves around the individual entities such that for ev-
ery entity ei, it estimates the weights of its co-occurring entities
with a single iteration over the contents of the associated blocks
Bi. To facilitate this procedure, the Pre-processing stage simply
transforms the output of Block Filtering into a block collection.

This is performed with a single MapReduce job that is pre-
sented in Figure 11. The map function receives the id of an
entity ei as input key and the associated blocks Bi as input
value. For every block bk ∈ Bi, it simply emits its id k as
the key and the id of the entity i as value. Then, MapReduce
groups together all pairs with the same key, thus reassembling
all blocks. In more detail, the reduce function receives as in-
put key the id k of a specific block bk = {ei, e j, . . . , em}, while
the input value comprises the ids of the corresponding entities:
value={i, j, . . . ,m}. Without any further processing, it emits
the same (key, value) pair as output.

6. Stage 3: Weighted Node Pruning (WNP)

WNP refines the blocking graph by processing every node
neighborhood independently of the others. For every node, it
discards the incident edges that have a weight lower than the
average edge weight of the neighborhood. We propose three
parallelization strategies for this algorithm – one for every Pre-
processing strategy. They all require a single MapReduce job.

MAP function pseudo-code 

1: Input  

Key: entity ids defining edge <ni,nj>, �. � 

Value: total weight of <ni,nj>,	��� 

2: Output 

Key: entity id of the one node, � 

Value: entity id of the other node with  

the edge weight,	�. ��� 

3: emit( �, �. ��� ); 

4: emit( �, �. ��� ); 

(a) Edge-based strategy 

1: Input  

Key: id of block bk, � 

Value: � = {�. 
� . �� , �. 
� . �� , … } 

2: Output 

Key: entity id of the one node, � 

Value:		�. ��j 

3: for each ��� ∈ �� . �����������() loop 

4: if ( ������ !"�!��# ���  =  true ) 

5:       compute ���	
from 
� . ��, 
� . �� ; 

6:        emit(	�	, �. ��� ); emit(	�	, �. ��j ); 

8: end loop 

(b) Comparison-based strategy 

1: Input  

Key: id of entity ei, � 

Value: list of of pairs < �. ��� >, � 

2: Output 

Key: entity ids of retained edge <ni,nj>, �. � 

Value: total weight of <ni,nj>,	��� 

3: �� = $ #% ��& �$'#(�); 

4: for each �. ��� ∈ � loop 

5:  if ( ��� > �� )  

6:  emit( �. � , ��� ); 

7: end loop 

REDUCE function pseudo-code 

Figure 12: Pseudo-code interpretation of (a) the edge-based and (b) the
comparison-based strategy for WNP. They share the same reduce function.

6.1. Edge-based Strategy

The functionality of this strategy is outlined in Figure 12 –
together with the comparison-based strategy. They share the
same reducer, but they differ in the mapper, due to the different
input they receive.

In more detail, Figure 12(a) depicts the edge-based map func-
tion. It takes as input key the id of an individual edge <ni, n j>
(i. j) and as input value the corresponding weight (wi j). To en-
sure that each reducer gathers all edges adjacent to a specific
node, it emits two (key, value) pairs – one for each of the
adjacent entities. In each case, the key contains one of the en-
tity ids (i or j), while the value concatenates the other entity id
with the edge weight ( j.wi j or i.wi j).

The reduce function in Figure 12 receives as input key the
id i of an entity ei that defines a neighborhood in the blocking
graph G. Its input value comprises the adjacent node/entity ids
concatenated with the respective edge weights. From them, it
estimates the average weight of the neighborhood, w̄i, in Line
3. Then, in Lines 4-7, it iterates over all adjacent edges and for
every edge <ni, n j> with a weight higher than the average one,
it emits a pair (i. j, wi j).

6.2. Comparison-based Strategy

The map function of this strategy appears in Figure 12(b). It
operates on the enriched description of an individual block bk:
the input key contains its id (k), while the input value is of the
form value = {i.Bi.Xi, j.B j.X j, . . .}; that is, it comprises the cor-
responding entity ids, the blocks ids associated with each entity
and the local information required by the selected weighting
scheme. For EJS, this information contains the node degree
(Xi=|ni|), for ARCS it contains the cardinalities of the blocks in
Bi (Xi={||b j|| : b j ∈ Bi}) and for all other weighting schemes
it is empty. The mapper iterates over all comparisons in the
given block (Line 3). For every non-redundant comparison, it
computes the corresponding edge weight from the associated
block ids and the local information Xi of the weighting scheme
(Lines 4-5). Then, it emits two (key, value) pairs, one for
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b1	  
[e1,b1,b4,b6],	  
[e2,b1],	  
[e3,b1,b4]	  

…	   …	  

b4	  
[e1,b1,b4,b6],	  
[e3,b1,b4],	  
[e4,b4,b5]	  

...	   ...	  

Key Value 

M
ap	  

M
ap	  

e1	   e2.1/3	  

e2	   e1.1/3	  

e1	   e3.2/3	  

e3	   e1.2/3	  

e2	   e3.1/2	  

e3	   e2.1/2	  
...	   …	  

Key Value 

e1	   e4.1/4	  

e4	   e1.1/4	  

e3	   e4.1/3	  

e4	   e3.1/3	  
...	   …	  

G
roup	  by	  key	  

e1	   e2.1/3	  

e1	   e3.2/3	  

e1	   e4.1/4	  
...	   …	  

Key Value 

e2	   e1.1/3	  

e2	   e3.1/2	  
...	   …	  

e3	   e1.2/3	  

e3	   e2.1/2	  

e3	   e4.1/3	  
...	   …	  

e4	   e1.1/4	  

e4	   e3.1/3	  
...	   …	  

Reduce	  
Reduce	  

Reduce	  
Reduce	  

e1.e3	   2/3	  
...	   …	  

Key Value 

e2.e3	   1/2	  
...	   …	  

e1.e3	   2/3	  

e2.e3	   1/2	  
...	   …	  

e3.e4	   1/3	  
...	   …	  

Figure 13: An example of the comparison-based strategy for WNP, using the
JS weighting scheme.

each of the adjacent entities (Line 6) – just like the mapper in
Figure 12(a).

Figure 13 shows an example that applies this functionality
in combination with the JS weighting scheme to the output of
Figure 9. In the map function, for the comparison e1-e2, we emit
the pairs (e1, e2.1/3) and (e2, e1.1/3). In the reduce function,
we group all the pairs with key=e1 and calculate, for this group,
a local weight threshold (e.g., 1/3). Then, for the group of e1,
we emit only the pairs with a weight higher than 1/3, i.e., e1-e3,
which has a weight of 2/3.

6.3. Entity-based Strategy
The outline of this strategy appears in Figure 14. Its map

function receives as input key the id k of block bk and as input
value the entity ids contained in bk. For every entity ei ∈ bk, it
simply emits its id as key (i.e., key=i) and the entire block bk

as value (i.e., value=bk). In this way, the reducer aggregates
the co-occurrence bag of entity ei, i.e., the ids of all entities that
share at least one block with ei. The frequency of an entity e j in
this bag amounts to |Bi j|, the number of blocks it shares with ei.
This is the core information required by all weighting schemes
for estimating the corresponding edge weight wi j.

Based on this rationale, the reduce function estimates the
edge weights using two data structures, which are initialized in
Line 3: the array f requencies, which gathers the number of ap-
pearances of each entity, and the set setO f Neighbors, which
aggregates the ids of the distinct co-occurring entities. For ev-
ery entity in the co-occurrence bag, the reducer updates its fre-
quency in the array and adds it to the set of neighbors (Lines
4-7). Subsequently, it estimates the weights of the edges inci-
dent to ei from the distinct neighbors in setO f Neighbors (Lines
9-10). At the same time, it derives the average weight of the
neighborhood, w̄, with the help of two counters (Lines 8 & 11-
14). The final loop in Lines 15-19 repeats the estimation of edge
weights and retains those exceeding w̄; the ids of their adjacent
entities are emitted as keys and their weights as values.

Note that after the loop in Lines 4-7, setO f Neighbors con-
tains the id of the neighborhood’s center, ei. Given that ei co-

 1: Input  

Key: id of entity ei, � 

Value: co-occurrence bag,	�� 

 2: Output 

Key: entity ids of retained edges <ni,nj>, �. � 

Value: total weight of <ni,nj>,	���	
 

 3: frequencies[] ← {}; setOfNeighbors ← {};  

 4: for each � ∈ � loop 

 5: frequencies[ � ]++; 

 6: setOfNeighbors .add( � ); 

 7: end loop 

 8: totalWeight = 0; totalEdges = 0; 

 9: for each � ∈ setOfNeighbors  loop 

10:  ��� = getWeight (	�	, �	, frequencies[	� ] ); 

11: totalWeight += ��� ; 

12: totalEdges ++; 

13: end loop 

14: �
	= totalWeight  / totalEdges ; 

15: for each � ∈ setOfNeighbors  loop 

16:  ��� = getWeight (	�	, �	, frequencies[	� ] ); 

17: if (	�
 < ��� ) 

18:  emit ( �. � , ��� ); 

19: end loop 

 

1: Input  

Key: id of block bk, � 

Value: list of entity ids, � = {�, �, … ,�} 

2: Output 

Key: id of entity ei, � 

Value: input value 

3: for each � ∈ �  loop  

4: emit ( �	, 	� ); 

5: end loop 

MAP function pseudo-code REDUCE function pseudo-code 

Figure 14: Pseudo-code interpretation of the entity-based strategy for WNP.

occurs with itself in all blocks, its edge weight would be equal
(or close) to 1 for all weighting schemes. To avoid retaining the
meaningless comparison ci,i and to avoid distorting the weight
threshold w̄, we remove i from setO f Neighbors at the end of
the loop. For ease of presentation, we have excluded this oper-
ation from the outline of the reducer in Figure 14.

For the same reason, we have simplified the use of the func-
tion getWeight() in Lines 10 and 16. In practice, its arguments
depend on the selected weighting scheme:
• For CBS, it simply needs the array of frequencies as input,

since wi j= f requencies[ j].
• For ECBS and JS, it additionally requires the number of

blocks containing ei and e j. This information is provided by an
array that contains the number of blocks for all input entities.
Due to its small size, this array can be loaded in memory in all
available nodes.
• For EJS, getWeight() additionally requires the node de-

gree corresponding to every entity. This is equal to the num-
ber of non-redundant comparisons involving every entity and
is computed through an additional MapReduce job. This job
has almost the same functionality as Figure 14, but its reduce
function stops at Line 7, only emitting the size of the set of
neighbors for each entity (without counting the frequencies).
• For ARCS, getWeight() requires only the cardinality of the

blocks shared by every pair of entities, and not the frequency
of their co-occurrence. Given that the reducer receives a list
of whole blocks in its input value, the cardinality of each such
block and the weight of each co-occurring entity can be directly
computed in the first for loop (starting at Line 4). The rest of
the process remains the same.

7. Stage 3: Cardinality Node Pruning (CNP)

Similar to WNP, CNP operates locally, retaining the best
edges inside the neighborhood of every node/entity. Instead of
a weight threshold, though, CNP uses a cardinality one, which
retains the top k weighted edges within every node neighbor-
hood. For its parallelization, we present three strategies, each
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 1: Input  

Key: id of entity ei, � 
Value: co-occurrence bag,	�� 

 2: Output 

Key: entity ids of retained edge <ni,nj>, �. � 
Value: total weight of <ni,nj>,	���	

 

 3: frequencies[] ← {}; setOfNeighbors ← {};  

 4: for each � ∈ � loop 

 5: frequencies[	� ]++; 

 6: setOfNeighbors .add(	� ); 
 7: end loop 

 8: topEdges ← {};  

 9: for each � ∈ setOfNeighbors  loop 

10:  ��� = getWeight (	�	, �	, frequencies[	� ] ); 
11:  topEdges.add(	�	, ��� ); 

12:  if ( topEdges.size() < k ) 

13:  topEdges.pop(); 

14: end loop 

15: for each 	�	, ���	
∈ topEdges loop 

16:  emit ( �. � , ��� ); 

17: end loop 

 

REDUCE function pseudo-code 

1: Input  

Key: id of entity ei, � 
Value: list of of pairs < �. �
� >, � 

2: Output 

Key: entity ids of retained edge <ni,nj>, �. � 
Value: total weight of <ni,nj>,	��� 

3: �� = ��������������(�) 
4: for each �. ��� ∈ �′ loop 

5:  emit( �. � , ��� ); 

6: end loop 

REDUCE function pseudo-code 

(a) edge- and comparison-based strategies 

(b) entity-based strategy 

Figure 15: Pseudo-code interpretation of the reducers for CNP.

of which corresponds to the different output of the Preprocess-
ing stage. They all require just one MapReduce job, whose
mapper is identical with the respective one of WNP. For this
reason, we exclusively focus on their reducers.

The edge-based strategy shares the same reduce function
with the comparison-based one. Its functionality is outlined in
Figure 15(a). It receives as input key the id i of the entity ei

that defines a neighborhood in the blocking graph G; its input
value comprises the adjacent node/entity ids concatenated with
the respective edge weights. In essence, the reducer orders all
edges of the neighborhood in descending order of weight and
extracts those placed in the top k ranking positions (Line 3). For
each such edge, it emits the ids of its adjacent entities as key,
i. j, along with its weight as value, wi j (Lines 4-6).

In the example of Figure 13, the comparison-based strategy
of CNP differs from WNP only in the reducer, which would
emit only the top-k pairs of each group. Assuming that we
want to retain the top-2 comparisons for every entity, out of
the three comparisons shown in the group of e1, we would emit
(e1.e3, 2/3) and (e1.e2, 1/3).

For the entity-based strategy, the reducer appears in Fig-
ure 15(b). Its input key contains the entity id of the neighbor-
hood center ei, while its input value comprises the correspond-
ing co-occurrence bag βi. Similarly to WNP, it prepares the es-
timation of weights using two data structures: f requencies, the
array of co-occurrence frequencies, and setO f Neighbors, the
set of distinct neighbors (Lines 3-7). For every co-occurring
entity, it estimates the corresponding weight and adds it in a
sorted stack, topEdges (Lines 8-11). If the size of the stack ex-
ceeds the cardinality threshold k, it removes the last item, i.e.,
the edge with the lowest weight (Lines 12-13). At the end of
this loop, every edge that remains in the sorted stack is emit-
ted as output; the concatenated entity ids form the key, i.e., i. j,
while the value comprises its weight, i.e., wi j (Lines 15-17).

8. Stage 3: Weighted Edge Pruning (WEP)

WEP estimates the average edge weight across the entire
blocking graph and discards those edges that do not exceed
it. Again, we propose three different parallelization approaches

Weight Edge Pruning (WEP) 

MAP function pseudo-code 

Identity Mapper. 

It updates two global counters: 

1. total number of edges, |��| 

2. total edge weight, �� 

(a) Edge-based strategy 

1: Input  

Key: id of block bk, � 

Value: list of entity ids, associated blocks and  

local information, � = {
. � . � , �. �� . �� , … } 

2: Output 

Key: entity ids defining edge <ni,nj>, 
. �	 

Value: total weight of <ni,nj>,	�
� 

3: for each �� ∈ �� . ������
����() loop 

4: if ( 
�"��#$%&�%��� ��  =  true ) 

5:       compute �
�	
from � . �, �� . �� ; 

6:        emit(	
	. �, �
� ); 

7:       |��|++;  

8:        �� += �
� ; 

9: end loop 

(b) Comparison-based strategy 

 

 

1: Input  

Key: entity ids defining edge <ni,nj>, 
. � 

Value: total weight of <ni,nj>,	�
� 

2: Output 

Key: entity ids of retained edge <ni,nj>, 
. � 

Value: total weight of <ni,nj>,	�
� 

3: if ( �
� > tw/ �� ) 

4:  emit( 
. �, �
� ); 

REDUCE function pseudo-code 

Figure 16: Pseudo-code interpretation of (a) the edge-based and (b) the
comparison-based strategy for WEP.

e1.e2	   1/3	  
e1.e3	   2/3	  
e2.e3	   1/2	  
...	   …	  

Key Value 

G
roup	  by	  key	  

Reduce	  

e1.e4	   1/4	  
e3.e4	   1/3	  
...	   …	  

Count #keys 
Sum up values 

e1.e2	   1/3	  
...	   ...	  

e1.e3	   2/3	  
...	   …	  

Key Value 

e1.e4	   1/4	  
...	   ...	  

e3.e4	   1/3	  
...	   …	  

e2.e3	   1/2	  
...	   ...	  

e1.e3	   2/3	  
...	   …	  

e2.e3	   1/2	  
...	   …	  

...	   …	  

Reduce	  
Reduce	  

b1	  
[e1,b1,b4,b6],	  
[e2,b1],	  
[e3,b1,b4]	  

…	   …	  

b4	  
[e1,b1,b4,b6],	  
[e3,b1,b4],	  
[e4,b4,b5]	  

...	   ...	  

Key Value 

M
ap	  

M
ap	  

Figure 17: An example of the comparison-based strategy for WEP, using the
JS weighting scheme.

that correspond to the three strategies of Preprocessing. The
first two involve a single MapReduce job, while the third one
requires two jobs.

8.1. Edge-based Strategy

Figure 16 presents the edge- and the comparison-based
strategies for WEP. Once more, they share the same reducer,
differing only in the mapper, which is determined by the pre-
processing approach.

Figure 16(a) illustrates the map function of the edge-based
strategy. It constitutes an identity mapper that receives the id
i. j of an individual edge <ni, n j> as key and its weight wi j as
value. Before forwarding the input to the reducer, it updates
two counters that are necessary for estimating the average edge
weight: the size of the blocking graph |EG | (i.e., the number of
its edges) and the total edge weight tw.

The reduce function receives the id and the weight of an
individual edge, i.e., a pair (i. j, wi j). If the weight is greater
than the mean weight of the graph (wi j > tw/|EG |), the edge is
retained and, thus, the input pair is emitted as output.

8.2. Comparison-based Strategy

The map function of this approach appears in Figure 16(b).
It iterates over all comparisons in bk and assesses the LeCoBI
condition for the involved entities (Lines 3-4). For every non-
redundant comparison ci j, it estimates the corresponding edge
weight wi j from the information in the input value and emits it
along with the edge id: key=i. j and value=wi j (Lines 5-6). It
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 1: Input  

Key: id of entity ei, � 

Value: co-occurrence bag,	�� 

 2: Output 

         It updates two global counters: 

i. total number of edges, |��| 

ii. total edge weight, �� 

 3: frequencies[] ← {}; setOfNeighbors ← {};  

 4: for each 	 ∈ � loop 

 5:         frequencies[		 ]++; 

 6:         setOfNeighbors .add(		 ); 

 7: end loop 

 8: for each 	 ∈ setOfNeighbors  loop 

 9:         if ( 	 < � ) 

10:  ��	 = getWeight (	�	, 		, frequencies[		 ] ); 

11: |��|++ ;  

12:  �� += ��	 ; 

13: end loop 

1: Input  

Key: id of block bk, � 

Value: list of entity ids, �� = {�, 	, … ,�} 

2: Output 

Key: id of entity ei, � 

Value: input value 

3: for each 	 ∈ ��  loop  

4: emit ( 		, 	�� ); 

5: end loop 

MAP function pseudo-code REDUCE function pseudo-code 

JOB 1 

 1: Input  

Key: id of entity ei, � 

Value: co-occurrence bag, �� 

 2: Output 

Key: entity ids of retained edge <ni,nj>, �. � 

Value: total weight of <ni,nj>,	���	
 

 3: frequencies[] ← {}; setOfNeighbors ← {};  

 4: for each � ∈ � loop 

 5:         frequencies[	� ]++; 

 6:         setOfNeighbors .add(	� ); 

 7: end loop 

 8: for each � ∈ setOfNeighbors  loop 

 9:         if ( � < � )  

10:  ��� = getWeight (	�	, �	, frequencies[	� ] ); 

11: if ( ��� > tw/ �� ) 

12:   emit( �. �	, ��� ); 

13: end loop 

1: Input  

Key: id of block bk, � 

Value: list of entity ids, �� = {�, �, … ,�} 

2: Output 

Key: id of entity ei, � 

Value: input value 

3: for each � ∈ ��  loop  

4: emit ( �	, 	�� ); 

5: end loop 

JOB 2 

Figure 18: Pseudo-code interpretation of the entity-based strategy for WEP.

also updates the two counters that are used in the reduce phase,
|EG | and tw (Lines 7-8).

The reduce function is the same as in the previous strategy.
In Figure 17, we present the functionality of the comparison-

based strategy of WEP in combination with JS, when applied to
the output of Figure 9. The map function receives the block b1 =

{e1, e2, e3} as input and for every non-redundant comparison in
b1, it outputs the id of the comparison as key (i.e., e1.e2, e1.e3
and e2.e3) and the corresponding weight as value. According
to the JS weighting scheme, e1-e2 weight is 1/3, as the entities
e1, e2 share only one block (b1) from all 3 blocks they belong
to. Assuming that the average weight is 1/3, in the reduce

function, we emit only the pairs with a weight above 1/3, so we
prune the comparisons e1-e2, e1-e4 and e3-e4.

8.3. Entity-based Strategy

This strategy involves two jobs that appear in Figure 18: the
first one estimates the global weight threshold, which equals
the average edge weight of the entire blocking graph, while the
second one discards the edges that do not exceed this thresh-
old. Unlike the previous strategies, these two procedures cannot
be carried out in a single job, due to the absence of any auxil-
iary computations in Preprocessing. Thus, the edge weights and
the weight threshold can only be estimated by the first reducer,
while a second job is required in order to apply the threshold to
the blocking graph.

The map function of the first job takes as input key the
id k of an individual block bk and as input value the entity
ids it contains. For every entity ei ∈ bk, it emits a pair

(key,value)=(i, bk) as output. In this way, the reducer aggre-
gates in its input value the co-occurrence bag βi of the entity ei

that is given as input key. The goal is to estimate the weights
of the incident edges and to derive the global weight threshold.
Again, two global counters are employed in this process: the
number of edges |EG | and the sum of all edge weights tw.

In more detail, the reduce function applies the standard pro-
cedure of the entity-based strategy, using two data structures:
the set of distinct neighboring entities and the array recording
their frequency of co-occurrence. In Lines 4-7, the reducer iter-
ates once over the co-occurrence bag and updates the data struc-
tures accordingly. Then, it iterates over the distinct neighboring
entities and estimates the corresponding edge weight for those
having a lower entity id (Lines 8-10); this is done in order to
avoid considering the weight of every edge twice – once in the
reducer corresponding to each of its adjacent entities. Finally,
it updates the two global counters (Lines 11-12).

To avoid a high I/O, the estimated edge weights are not saved
on disk. Instead, they are recomputed and pruned in the second
job. As a result, the second map function is identical with the
first one, while the second reduce function aggregates the co-
occurrence bag βi of an individual entity ei, too. This time its
goal is to prune the incident edges with a weight lower than the
global threshold. The first loop is identical with that of the first
reducer, adding the necessary information to the two data struc-
tures (Lines 3-7). The second loop estimates again the weight
wi j of every edge such that j < i (Lines 8-10). Then, it com-
pares wi j with the global weight threshold, tw/|EG |; in case wi j

exceeds it, the edge <ni, n j> is retained, emitting its id as output
key and its weight as output value (Lines 11-12).

9. Stage 3: Cardinality Edge Pruning (CEP)

CEP retains the K edges with the largest weights across the
entire blocking graph. Theoretically, this operation can be im-
plemented in a job with a single reducer that gathers all edges
and sorts them in descending weight. In practice, however, this
approach does not scale to large blocking graphs with millions
of nodes and billions of edges: there is no sufficient memory
that can accommodate so many edges in a single node – even
if it is equipped with tens of Gigabytes of RAM. To overcome
this limitation, the main idea behind all strategies is to convert
the global cardinality threshold into a global weight one.

Again, we present three different strategies that corre-
spond to the three Preprocessing approaches. The edge- and
comparison-based ones involve two MapReduce jobs: the first
one identifies the minimum edge weight wmin, such that at least
K edges have a weight greater than or equal to it; the second
job outputs exactly K edges with a weight greater than or equal
to wmin. The entity-based approach involves an additional job
that derives the edge weights from the input blocks.

9.1. Edge-based Strategy

The two jobs of this approach appear in Figure 19 together
with those of the comparison-based strategy, which shares the
same reducer for every job.
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MAP function pseudo-code 

1: Input  

Key: entity ids defining edge <ni,nj>, �. � 

Value: total weight of <ni,nj>,	��� 

2: Output 

Key: total weight of <ni,nj>,	��� 

Value: 1 

3: emit( ��� , 1 ); 

1: Input (Single Reducer) 

The list � of all pairs <���	
, �	
��
��> 

sorted in descending order of edge weight. 

2: Output 

The edge weight ��� that corresponds  

to the K-th ranking position 

3: ��� = �. �
���������(); 

4: store ��� to disk; 

REDUCE function pseudo-code 

(a) Edge-based Strategy 

1: Input 

        Key : id of block bk, � 

        Value: list of entity ids, associated blocks and 

          local information, � = {�. �� . �� , �. �� . �� , … } 

2: Output 

        Key:  total weight of <ni,nj>, ��� 

        Value: 1 

3: for each ��� ∈ #$ . ���%&	����() loop 

4: if ( ��'�(
)�)&� ���  =  true ) 

5:       compute ���	
from �� . ��,�� . �� ; 

6: emit(	���, 1 ); 

7: end loop 

(b) Comparison-based Strategy 

JOB 1 

1: Input  

Key: entity ids defining edge <ni,nj>, �. � 
Value: total weight of <ni,nj>,	��� 

2: Output 

Key: total weight of <ni,nj>,	��� 

Value: entity ids defining edge <ni,nj>, �. � 
3: load ���� ; 

4: if ( ��� ≥ ���� )  

5:  emit( ���, �. � ); 

1: Input (Single Reducer) 

The list 	 of all pairs <���	,
�. �> sorted in  

descending order of edge weight. 

2: Output 

The list 	′ of the top K elements of 	. 

3: 	� = 	. �������(0, �); 
4: for each <���	,

�. �> ∈ 	′ loop 

5:  emit( �. �, ��� ); 

6: end loop 

 
(a) Edge-based Strategy 

JOB 2 

1: Input 

        Key : id of block bk, � 

        Value: list of entity ids, associated blocks and 

          local information, � = {�. �� . 	� , �. �� . 	� , … } 

2: Output 

        Key:  total weight of <ni,nj>, ��� 

        Value: entity ids defining edge <ni,nj>, �. � 

3: load ���� ; 

4: for each ��� ∈ �� . �����������() loop 

5: if ( ������� !� ��" ���  =  true ) 

6:       compute ���	
from �� . 	�,�� . 	� ; 

7:        if ( ��� ≥ ���� )  

8:   emit( ��� , �. � ); 

9: end loop 

(b) Comparison-based Strategy 

Figure 19: Pseudo-code interpretation of (a) the edge-based and (b) the
comparison-based strategy for CEP.

The first map function receives as input key the id i. j of an
individual edge <ni, n j> and as input value the corresponding
weight wi j. As output, it emits a pair (wi j, 1), thus enabling the
single reducer of this job to count the number of edges with the
same weight.

Indeed, the first reduce function receives as input the list
of all distinct weights, sorted in descending order, along with
their frequencies. It goes through this list starting from the top
(i.e., the largest weight) and keeps a counter with the number
of edges that have a weight greater than or equal to the current
weight. As soon as the counter reaches K, the reducer stops and
stores the corresponding weight, wmin, to the disk.

The second map function of this strategy has the same input
as the first one: key=i. j, value=wi j. It loads wmin from the
disk and compares it with wi j. If wi j ≥ wmin, it swaps key and
value, emitting a pair (wi j, i. j).

The second reduce function receives these pairs and sorts
them in descending order, from the largest weight to the lowest
one. The reducer extracts exactly top K elements, thus address-
ing the ties that may arise, i.e., the situation where the overall
number of edges <ni, n j> with wi j ≥ wmin, is larger than K. Fi-
nally, it emits the retained pairs by swapping keys and values,
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Figure 20: An example of the comparison-based strategy for CEP, using the
JS weighting scheme.

i.e., key=i. j, value=wi j.

9.2. Comparison-based Strategy

As mentioned above, this strategy differs from the edge-
based one only in the functionality of the mappers, which are
outlined in Figure 19. We observe that for every job, the map

function operates on the enriched description of an individ-
ual block, iterating over all its comparisons. For every non-
redundant comparison between ei and e j, the mapper computes
the corresponding edge weight wi j from the associated block ids
and local information. As output, the first map function emits a
pair (wi j, 1), while the second one emits a pair (wi j, i. j), only if
wi j ≥ wmin.

In Figure 20, we illustrate the functionality of the
comparison-based strategy of CEP in combination with JS,
when applied to the output of Figure 9. In the map function
of the first job, we process each block and emit the weights of
its non-redundant comparisons as keys (e.g., for b1 the non-
redundant comparisons are e1.e2, e1.e3 and e2.e3), and 1 as
value. In the reduce function, we retrieve, in descending or-
der of weight, the first k input pairs and emit the current key as
wmin; in our example we assume to be 1/3. In the second job, we
use the same map function, this time emitting the comparison
ids as values, for those comparisons whose weight is greater
than or equal to wmin = 1/3. Hence, we prune the comparison
e1-e4 already from the map phase. For the reduce function, the
input comprises all retained comparisons, sorted in descending
order of weight; starting from the top of this list, we emit each
pair until we reach the k-th pair, which is e1-e2 (pairs with the
same weight are sorted randomly).

9.3. Entity-based Strategy

The three jobs comprising this strategy appear in Figure 21.
The first one estimates the edge weights, the second sorts them
in descending weight in order to identify wmin, and the third
retains the edges with weight higher than or equal to wmin.
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 1: Input  

Key: id of entity ei, � 

Value: co-occurrence bag,	�� 

 2: Output 

Key: total weight of <ni,nj>,	��� 

Value: 1 

 3: frequencies[] ← {}; setOfNeighbors ← {};  

 4: for each � ∈ � loop 

 5:         frequencies[	� ]++; 

 6:         setOfNeighbors .add(	� ); 

 7: end loop 

 8: for each � ∈ setOfNeighbors  loop 

 9:         if ( � < � ) 

10:  ��� = getWeight (	�	, �	, frequencies[	� ] ); 

11:  emit ( ��� , 1 ); 

12: end loop 

1: Input  

Key: id of block bk, 
 

Value: list of entity ids, �� = {�, �, … ,�} 

2: Output 

Key: id of entity ei, � 

Value: input value 

3: for each � ∈ ��  loop  

4: emit ( �	, 	�� ); 

5: end loop 

MAP function pseudo-code REDUCE function pseudo-code 

JOB 1 

 1: Input (Single Reducer) 

The list � of all pairs < ���	,
��	
�	�� >  

sorted in descending order of edge weight. 

2: Output 

The edge weight ���� that corresponds  

to the K-th ranking position 

3: ���� = �. �	����������(); 

4: store ���� to disk; 

Identity Mapper. 

JOB 2 

 1: Input  

Key: id of entity ei, � 

Value: co-occurrence bag,	�� 

 2: Output 

Key: entity ids of retained edge <ni,nj>, �. � 

Value: total weight of <ni,nj>,	���	
 

 3: frequencies[] ← {}; setOfNeighbors ← {};  

 4: for each � ∈ � loop 

 5:         frequencies[	� ]++; 

 6:         setOfNeighbors .add(	� ); 

 7: end loop 

 8: for each � ∈ setOfNeighbors  loop 

 9:         if ( � < � ) 

10: ��� = getWeight (	�	, �	, frequencies[	� ] ); 

11: if ( ��� ≥ ��� ) 

12:   emit( �. �	, ��� ); 

13: end loop 

1: Input  

Key: id of block bk, � 

Value: list of entity ids, �� = {�, �, … ,�} 

2: Output 

Key: id of entity ei, � 

Value: input value 

3: for each � ∈ ��  loop  

4: emit ( �	, 	�� ); 

5: end loop 

JOB 3 

Figure 21: Pseudo-code interpretation of the entity-based strategy for CEP.

In more detail, the map function of the first job receives as
input key the id k of an individual block bk and as input value
the entity ids it contains. For every entity ei ∈ bk, it emits its id
i as output key and the entire block as output value.

As a result, the first reducer gathers in its input value the co-
occurrence bag βi of the entity ei, which is assigned to the input
key. Then, it estimates in Lines 3-10 the weights of all edges
<ni, n j> such that j < i. Following the typical methodology
of this strategy, it uses an array that records the frequency of
co-occurrence for every entity connected with ei (Line 5) and
gathers the distinct neighbors of ei in a set (Line 6). In the end,
it emits a pair (wi j, 1) for every estimated edge weight.

The second job involves an identity mapper that forwards all
edge weights to a single reducer. The weights are automatically
sorted from the largest to the smallest one and every distinct
weight is associated with its frequency. The reducer simply
iterates over the sorted list of weights and retrieves the one cor-
responding to the K-th largest value. This weight, denoted by
wmin, is then stored on disk.

The third job recomputes all edge weights with the aim of
retaining those higher than or equal to wmin. Thus, it shares the
same map and reduce functions with the first job. The only
difference is in the output of reducer: in Lines 11-12, it en-
sures that only weights exceeding wmin are retained, emitting
the concatenated entity ids as output key and their weight as
output value, i.e., key=i. j, value=wi j.

Algorithm 1: MaxBlock
Input: B the current block collection
Output: P the set of block partitions

1 B′ ← sort(B); // sort in descending cardinality

2 b0 ← B′.remove(0); // remove largest block

3 maxCost← ||b0||; // max comparisons per partition

4 P0 ← {b0}; // first partition

5 Q← {P0}; // priority queue, sorting partitions

in ascending cost

6 while B′ , {} do // while not empty

7 bi ← B′.remove(0); // remove first block

8 Phead ← Q.poll(); // get lowest cost partition

9 totalCost← ||bi|| + Phead.currentCost();
10 if totalCost ≤ maxCost then
11 Phead ← Phead ∪ {bi}; // add to partition

12 else
13 Pi ← {bi}; // create new partition

14 Q.add(Pi); // add to queue

15 Q.add(Phead); // place back to queue

16 if B′ = {} then // if all blocks were processed

17 Phead ← Q.poll(); // get smallest partition

18 if isRemnantCluster(Phead) = true then
19 B′ ← B′ ∪ Phead; // re-process its blocks

20 maxCost← maxCost + Phead.currentCost() / |Q|;
21 else
22 Q.add(Phead);

23 return Q;

10. Load Balancing

A typical bottleneck in MapReduce algorithms is the unbal-
anced workload that is assigned to the map or reduce tasks in
each MapReduce job. In practice, data follow a skewed distri-
bution, which results in groups of data being significantly larger
than others. The map or reduce tasks that process these larger
groups need substantially more time to finish, determining the
efficiency of the whole job. Load balancing, indeed, affects both
phases of the MapReduce job, as the reduce phase cannot start
processing the output of the map phase, until all map tasks have
finished, and the job is not finished unless all reduce tasks are
completed.

10.1. Default Load Balancing

The default load balancing implementation of Hadoop is a
hash-based algorithm, which assigns each group of data, deter-
mined by the output key of the map phase, to a bucket in a hash
table. The buckets correspond to data partitions, each of which
is input to a distinct reduce task. Consequently, the number
of data partitions is equal to the number of reduce tasks. No-
tice that a reduce task can be assigned to more than one keys,
since a bucket in a hash table corresponds to more than one
hashed keys. This means that the default hashing-based load
balancer of Hadoop, given a good hash function, can achieve a
very good distribution in the number of keys that each partition
(reduce task) will receive. However, in skewed data, this does
not guarantee a balanced workload.
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For example, assume that we have p = 10 partitions, i = 100
distinct keys k1, ..., ki, each corresponding to a word, ordered
in descending frequency, and each key ki has |ki| values, where
the distribution of |ki| abides by Zipf’s law. Assuming we have
1, 000 values in total, i.e.,

∑
|ki| = 1, 000, then |k1| = 1, 000 ·

1∑
i 1/i ≈ 192, |k2| = |k1|/2 ≈ 96, . . . , |k100| = |k1|/100 ≈ 2.

The default balancer of Hadoop would ideally assign i/p = 10
keys per partition. Thus, the partition that will receive the most
frequent key k1, associated with 1/5 of the total values, will also
receive 9 more keys, and it is highly likely that this partition will
be one of the slowest to process.

In the case of entity resolution algorithms, the imbalance of
the workload is even greater, as the keys typically correspond
to block ids, and the values correspond to entities in those
blocks, which have to be compared. Hence, the workload of
each reduce task is quadratic to the number of input values it
receives. In the previous example, the total number of compar-
isons would be

∑
|ki| · (|ki| − 1)/2 ≈ 64, 500, while the biggest

block k1 would yield 18, 336 comparisons, i.e., approximately
1/3 of the total comparisons.

10.2. MaxBlock Load Balancing
To address this issue, we developed a specialized algorithm

for load balancing, named MaxBlock. Our goal is to split the
input blocks into partitions with a balanced number of compar-
isons. In order to ensure better results, the number of partitions
is determined dynamically. Intuitively, our load balancing strat-
egy is to assign the biggest block to a partition of its own and set
the number of comparisons in this partition as the upper thresh-
old of comparisons for every other partition. Then, we create a
new partition and keep adding blocks to this new partition, un-
til this threshold is reached. When the threshold is reached, we
create a new partition, and continue this process until all blocks
have been assigned to a partition.

The functionality of MaxBlock is outlined in Algorithm 1. It
sorts the block collection in descending cardinality (Line 1) and
removes the first and largest block, b0 (Line 2). The maximum
computational cost of each partition, maxCost, is set equal to
the cardinality of b0 (Line 3). A partition is created for b0 (Line
4) and placed in a priority queue Q, keeping partitions in as-
cending order of comparisons (Line 5). Subsequently, our algo-
rithm iterates over the remaining blocks and examines whether
the current block fits into the partition at the head of the queue,
Phead (Lines 6-10); that is, it checks whether their combined
cardinality is lower than maxCost. If so, the current block is
added to Phead (Line 11); otherwise, it is placed in a new par-
tition that is added to the queue (Lines 13-14). Then, Phead is
placed back to Q (Line 15).

As we demonstrate in the experimental evaluation, all par-
titions share practically the same computational cost, except
for the smallest one, which merely covers a small fraction of
maxCost. Yet, it contains the vast majority of the blocks, with
each one involving a handful of comparisons. This is called
remnant cluster and it corresponds to the tail of the power-law
distribution of block cardinalities. To achieve a perfectly flat
distribution of costs, our algorithm distributes the blocks of the
remnant cluster to the other partitions.

This functionality is performed by the second if statement
in Algorithm 1. Line 16 checks whether all blocks have been
placed into a partition, thus terminating the first iteration. Lines
17 and 18 examine whether the smallest partition is a remnant
cluster, i.e., whether it contains more than 50% of all blocks and
their total computational cost is lower than 90% of maxCost.
In case both conditions are satisfied, the blocks of the remnant
cluster are put back into the processing list (Line 19); in ad-
dition, maxCost is updated so that their computational cost is
evenly split among the other partitions (Line 20). In case of
a negative check, the smallest partition is placed back into the
priority queue and the process is terminated.

On the whole, the time complexity of MaxBlock is deter-
mined by the sorting of blocks and the use of the priority
queue, whose operations cost O(log |B|) per block. Therefore,
the overall time complexity is O(|B| log |B|), which means that
MaxBlock scales well to large block collections, involving a
negligible overhead, as shown in Section 11. For example, the
actual cost of sorting the blocks is the cost for sorting up a few
million of integer values, each representing a block cardinality.
This operation does not require more than a few seconds.

10.3. MaxBlock Implementation

The results of MaxBlock are fed to the Partitioner class,
which is responsible for assigning a reduce task to each key.
We have overridden the default Partitioner to just send each key
to the partition that MaxBlock has defined for this key. This ap-
proach is primarily used to balance the functions with quadratic
time or space complexity. The former case involves functions
that iterate over all comparisons in a block. For the edge-based
strategy, this is the reduce function in the first job for Stage
2 - Preprocessing (Figure 6). For the comparison-based strat-
egy, this case applies to all map functions for Stage 3 - Meta-
blocking (Figures 12(b), 16(b) and 19(b)).

Quadratic space complexity appears in the case of the entity-
based strategy, where the bottleneck is the I/O overhead of its
map function in Stage 3: the size of its output is quadratic with
respect to number of entities in the input value, since the whole
block is emitted for each of the contained entities. As a re-
sult, most mappers have to write only a few intermediate key-
value pairs, while those that deal with the bigger blocks have to
emit a much larger bulk of data. To address this issue, we use
MaxBlock to balance the output of entity-based Preprocessing
(Figure 11). Our goal is to split the blocks into partitions with
equal size of representation in bytes. This can be easily done
by redefining the cost of a block as the number of bytes that are
required for the compressed representation of its entities (i.e.,
after sorting them in ascending id and replacing every id by its
difference with the previous one).

11. Experiments

The goal of our experimental analysis is threefold: (i) to
demonstrate that our approaches scale well to large block col-
lections stemming from Web data, (ii) to compare the relative
efficiency of the edge-, comparison- and entity-based strategies,
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Ddbpedia D f reebase

D1 D2 D1 D2

Entities |E| 1,190,733 2,164,040 3,157,726 4,204,942
Triples 1.69·107 3.50·107 1.42·108 3.90·107

Attribute Names 30,757 52,554 37,825 11,108
Triples per Entity 14.19 16.18 44.84 9.29
Duplicates |D(E)| 892,579 1,347,266
BF Comparisons 2.58·1012 1.33·1013

Table 2: The large, heterogeneous entity collections that were employed in our
experiments.

and (iii) to assess the relative efficiency of the various Meta-
blocking configurations.

We begin with the setup of our experimental analysis in Sec-
tion 11.1. In Section 11.2, we present a comparison between the
default balancer and MaxBlock. In Section 11.3, we show the
time efficiency of all strategies for the four pruning schemes
in combination with the five weighting schemes; we also dis-
cuss their relative efficiency in view of a similar comparison in
the case of the serialized workflow. Section 11.4 analyzes the
scalability of the comparison-based and entity-based strategies,
while Section 11.5 elaborates on the qualitative performance of
the Meta-blocking techniques. We conclude with a discussion
on the findings of our experiments in Section 11.6.

11.1. Setup
All approaches were implemented in Java, version 7, using

Apache Hadoop, version 1.2.0. They are compatible with more
advanced frameworks, such as Apache Spark7 and Apache
Flink8, but Hadoop is a more established framework and suits
well to the goals of our experimental analysis.

All experiments were performed on a cluster9 with 15
Ubuntu 12.04.3 LTS servers, one master and 14 slaves, each
having 8 AMD 2.1 GHz CPUs and 8 GB of RAM. Each node
can run 4 map or reduce tasks simultaneously, assigning 1024
MB to each task. The available disk space amounted to 4 TB
and was equally partitioned among the 15 nodes. For Load
Balancing, we employed the default mechanism of Hadoop for
the map and reduce functions that involve a processing of lin-
ear complexity. For those involving a quadratic complexity,
we distributed the relevant blocks to the available nodes using
MaxBlock, as explained in Section 10.3.

Datasets. To evaluate the performance of our approaches,
we employ the largest datasets that have been applied to Meta-
blocking. Their technical characteristics appear in Table 2.

Ddbpedia involves entities stemming from two snapshots of the
DBpedia10 Infoboxes in English, which chronologically differ
by 2 years – D1 corresponds to version 3.0rc and D2 to version
3.4. In total, they comprise 3.3 million entities, of which less
than 900,000 are common (i.e., they have the same URL). This
dataset has been previously employed in the literature [4, 6, 11,
15, 16]. The second dataset, D f reebase, contains entities from the

7https://spark.apache.org
8https://flink.apache.org
9provided by GRNET’s ∼okeanos (https://okeanos.grnet.gr)

10http://dbpedia.org

Ddbpedia D f reebase

DBC DBD FRC FRD

Task Clean-Clean ER Dirty ER Clean-Clean ER Dirty ER
|B| 1,239,424 1,499,534 1,309,145 4,522,222
||B|| 4.23·1010 8.00·1010 1.05·1011 2.19·1011

|D(B)| 891,708 891,572 1,319,050 1,271,512
BPE 15.30-16.08 14.79 75.55-4.43 40.12
PC 0.999 0.999 0.979 0.944
PQ 2.11·10−5 1.12·10−5 1.26·10−5 5.82·10−6

Table 4: The block collections that were given as input to Meta-blocking.

Billion Triple Challenge 201211. In this case, D1 encompasses
the entities from DBpedia and D2 the entities from Freebase12.
For both collections, we have disregarded all URIs that appear
in just one triple so as to avoid noisy entity profiles. In total,
there are 7.4 million entities, of which 1.3 million are common
according to the owl:sameAs statements.

Given that both datasets comprise two individually clean
(i.e., duplicate-free) entity collections, D1 and D2, they are in-
herently suitable for Clean-Clean ER; the goal in this task is
to identify the matching entities shared by D1 and D2, without
performing any comparisons inside the individual collections.
In our experiments, we use both datasets for Dirty ER, as well,
by merging D1 and D2 into a single dirty collection that con-
tains matches in itself. The goal in this task is to partition the
entity collection into clusters of matching entities. The ground
truth is provided by existing owl:sameAs links between Free-
base and DBpedia for D f reebase. Since Ddbpedia, involves two
different snapshots of DBpedia, we consider matching profiles
those having the same subject URI.

We used Token Blocking [6, 11] in order to derive
redundancy-positive block collections from the entity profiles
of the two datasets. We also applied Block Purging [11] to the
original blocks in order to discard the extremely large ones that
contain almost half the input entities. The technical character-
istics of the resulting blocks appear in Table 4. In total, we have
four block collections, two for each ER task, that vary signif-
icantly in their characteristics, for example, in the number of
blocks per entity (BPE).

Measures. To assess the effectiveness of the (restructured)
block collections, we employ four established measures [2, 3,
10, 11, 17]:

(i) Pairs Completeness (PC) expresses recall – see Section 2.
(ii) Pairs Quality (PQ) estimates precision – see Section 2.
(iii) Reduction Ratio (RR) estimates the relative decrease in

the number of comparisons conveyed by Meta-blocking. It is
formally defined as: RR = 1− ||B′||/||B||, where B is the original
and B′ the restructured block collection.

(iv) H3R expresses the harmonic mean of PC and RR, i.e.,
H3R = (2 · PC · RR)/(PC + RR). It provides an intuitive
way to measure the trade-off of (Meta-)blocking, quantifying
the extent to which a blocking method manages to significantly
reduce the number of required comparisons, without missing
many matches.

11https://km.aifb.kit.edu/projects/btc-2012
12https://www.freebase.com
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Partitions Min Card. Max Card. Median Card. Average Card. St. Dev. Card.

DBC

Default 223 4.18·107 8.20·107 5.83·107 5.87·107 7.59·106

PairRange 442 2.71·107 2.71·107 2.71·107 2.71·107 0.48
MaxBlock 442 2.71·107 2.71·107 2.71·107 2.71·107 0.48

DBD

Default 223 7.88·107 1.48·108 9.59·107 9.68·107 9.98·106

PairRange 378 5.74·107 5.74·107 5.74·107 5.74·107 0.19
MaxBlock 378 5.74·107 5.74·107 5.74·107 5.74·107 0.19

FRC

Default 1,674 3.21·104 2.35·108 2.02·107 3.14·107 3.01·107

PairRange 2,042 1.45·107 1.45·107 1.45·107 1.45·107 0.48
MaxBlock 2,042 1.45·107 1.45·107 1.45·107 1.45·107 0.48

FRD

Default 1,119 9.81·106 9.81·107 9.01·107 5.84·107 4.64·107

PairRange 1,735 3.76·107 3.76·107 3.76·107 3.76·107 0.27
MaxBlock 1,735 3.76·107 3.76·107 3.76·107 3.76·107 0.27

Table 3: The distribution of partition cardinalities produced by the default load balancer of Hadoop, PairRange and MaxBlock.

All effectiveness measures are defined in the interval [0, 1],
with higher values indicating higher effectiveness.

To assess the time efficiency of (Meta-)blocking methods, we
use the Overhead Time (OTime). This is the time in minutes
that intervenes between receiving a redundancy-positive block
collection as input and returning the restructured blocks as out-
put. The lower its value is, the more efficient is the correspond-
ing method.

11.2. Load Balancing

In this section, we examine the performance of Load Balanc-
ing with respect to the computationally most intensive functions
of the three strategies for parallel Meta-blocking, i.e., the func-
tions with quadratic time or space complexity.

Remember that quadratic time complexity appears in the
reduce function of the first Preprocessing job for the edge-
based strategy (see Figure 6) as well as in all map func-
tions of Stage 3 for the comparison-based strategy (see Fig-
ures 12(b), 16(b) and 19(b)). All these functions iterate over
all comparisons in the input blocks in order to estimate the cor-
responding edge weights. As a result, Load Balancing aims
to split the original block collection into disjoint partitions with
(ideally) the same partition cardinality, i.e., the same total num-
ber of comparisons in the blocks of the partition; every partition
is then assigned to one of the available nodes for its processing.

We compare the performance of MaxBlock with two baseline
methods: the default balancer of Hadoop and PairRange, the
state-of-the-art Load Balancing algorithm that was originally
introduced in [18]. In essence, PairRange splits evenly the com-
parisons of a block collection into a predefined number of parti-
tions, by assigning every comparison to a particular partition id.
To this end, it involves a single MapReduce job, whose mapper
associates every entity ei in block bk with the output key rid.k.i,
where rid denotes the index of the comparison range, i.e., the
partition id. Then, the reducer groups together all entities that
have the same rid and block id, reproducing the comparisons
corresponding to partition rid.

To compare the two baseline methods with MaxBlock, we
consider the distribution of the partition cardinalities they pro-
duce. We actually summarize these distributions through their
minimum, maximum, median and mean partition cardinalities.
The closer these measures are to each other, the more balanced

is the workload assigned to each node. We applied all ap-
proaches to the input of Stage 2 of the parallelized workflow,
i.e., after applying Block Filtering to the original block col-
lections (see Figure 3(b)). The outcomes of our experiments
appear in Table 3.

Note that PairRange receives the number of ranges (parti-
tions) as input from the user. This requires the user to manually
inspect the data at hand, which is cumbersome. In our exper-
iments, we gave PairRange an unfair advantage by using the
same number of ranges as those in MaxBlock. As a result, we
observe that the two algorithms produce identical sets of parti-
tions. Most importantly, though, their partitions exhibit a prac-
tically constant distribution of cardinalities across all datasets:
all four measures have identical values, while the standard de-
viation of the distribution is lower than 1. This means that the
partitions differ by a handful of comparisons in the worst case.

In contrast, the default balancer yields distributions with
much larger variance. For DBC and DBD, it yields a normal
distribution, as the median and the average cardinalities almost
coincide, lying close to the middle of the maximum and the
minimum ones. The standard deviation is an order of magnitude
lower than the other measures, thus indicating minor differences
in the computational cost of the various partitions. However, the
performance of the default balancer aggravates in the case of
FRC and FRD, where the standard deviation is almost equal to
the average cardinality. Another indication is that the difference
between the minimum and the maximum cardinality raises to 4
and 1 orders of magnitude, respectively. Their medians suggest
that the distribution of FRC is dominated by partitions smaller
than the mean cardinality, and vice versa for FRD.

These patterns indicate that serious bottlenecks are expected
to rise in the case of the default load balancer of Hadoop. For
this reason, we did not measure the actual running time it yields.
Neither do we present the running time of PairRange. The rea-
son is that it is almost identical with that of MaxBlock, which
appears below, in Section 11.3. In fact, PairRange is slower
than MaxBlock by a couple of minutes, due to the higher over-
head it involves: to adapt it to the functions of quadratic time
complexity, an additional MapReduce job is required for both
the edge- and the comparison-based strategy.

In more detail, we can integrate PairRange into the edge-
based strategy by modifying the first reduce function of Fig-
ure 6 so that a global counter estimates the total number of com-
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parisons, while the input is emitted without any further process-
ing. Thus, the map function of a second, new job receives as
input an individual block and applies the mapper of PairRange
to it. The second reducer receives a balanced comparison range
as input and estimates the corresponding edge weights (i.e., it
applies the reduce function of Job 1 in Figure 6). Finally, the
third job applies Job 2 of Figure 6 without any modifications.

For the comparison-based strategy, PairRange needs to ex-
tend the reduce function of Preprocessing in Figure 8 so that
it estimates the total number of comparisons. Then, we need
to add a new MapReduce job to every pruning algorithm; the
map function receives individual blocks and applies the map-
per of PairRange to them, while the reduce function receives
a balanced comparison range as input and applies the function-
ality of the map functions in Figures 12(b), 16(b) and 19(b),
i.e., it estimates the corresponding edge weights. Finally, a sec-
ond MapReduce job is required for every pruning algorithm;
it consists of an identity mapper and the reduce functions in
Figures 12(b), 16(b) and 19(b).

Regarding the entity-based strategy, the goal of Load Balanc-
ing is to address the quadratic space complexity that appears
in all map functions of Stage 3 (see Figures 14, 18 and 21).
This can be achieved by balancing the output of Preprocess-
ing in Figure 11. Yet, among the three load balancing mecha-
nisms, only the default one provided by Hadoop applies to this
task without any modifications. As explained in Section 10.3,
MaxBlock needs to adopt a new cost function, which expresses
the disk space that is occupied by the compressed representa-
tion of the entities contained in every block.

However, PairRange cannot consider alternate cost functions,
as it is inherently crafted for balancing comparisons. To adapt it
to the entity-based strategy, we need to modify its functionality
so that every block is entirely contained in a single comparison
range (partition). In other words, we need to ensure that the
comparisons of no block are spread across multiple partitions;
otherwise, we have to alter the functionality of the entity-based
mappers of Stage 3, which is out of the scope of this evalu-
ation. To meet this requirement, the number of comparison
ranges should be equal to or less than those of MaxBlock. We
actually consider two configurations: using the same number
of partitions as MaxBlock (PairRangeI) and using half the parti-
tions of MaxBlock (PairRangeII). Note that PairRangeI does not
necessarily produce the same distributions as PairRange in Ta-
ble 3, because some blocks are larger than the remaining space
in their partition, but are not broken into smaller chunks.

To evaluate the performance of Load Balancing for the
entity-based strategy, we do not consider the distribution of
comparisons among partitions. Instead, we are more inter-
ested in the compressed representation of blocks in bytes and
the corresponding I/O overhead. We indirectly evaluate this as-
pect through the overhead time of all entity-based pruning algo-
rithms. Table 5 presents the corresponding performance on top
of DBC , using the CBS weighting scheme for each algorithm.
The rest of the datasets and weighting schemes yield similar
results and are omitted for brevity.

We observe that MaxBlock exhibits the highest overhead,
compared to the default balancer, due to its cost function, which

Overhead CNP WNP CEP WEP

Default 0 88 73 163 147
PairRangeI 2 77 68 145 130
PairRangeII 1 83 74 156 139
MaxBlock 3 74 65 145 123

Table 5: The wall-clock time (in minutes) of Meta-blocking using the default
Hadoop balancer, the two variations of PairRange, and MaxBlock for the entity-
based strategy over DBC , using the CBS weighting scheme across all pruning
algorithms. The overhead of executing each load balancing algorithm, com-
pared to the default balancing, is common for all pruning algorithms and is
included in the wall-clock times.

compresses the representations of blocks before clustering them
into partitions. PairRangeII is faster than PairRangeI, due to
the lower number of partitions it involves, while the default
balancer has 0 overhead, as it is the baseline of the overhead
of the load balancing algorithms. Regarding the overall time,
we observe that MaxBlock consistently provides the best exe-
cution times, with the default balancer being the least efficient
one in most cases: it yields slower times than MaxBlock by
12% (CEP) to 20% (WEP). The two variations of PairRange
fluctuate between these two extremes, with PairRangeI being
consistently more efficient, because the larger number of parti-
tions it employs ensures a more balanced I/O overhead across
the nodes. Note that PairRangeII appears to be less efficient
than the default load balancer over WNP, but their difference
should be attributed to its execution overhead.

On the whole, we conclude that MaxBlock consistently out-
performs the default mechanism of Hadoop across all paral-
lelization strategies and pruning algorithms, even if it comes
with a small execution overhead, compared to the default bal-
ancer. Moreover, MaxBlock is scalable – O(|B| · log |B|) – and
terminates within a few minutes for all datasets, as shown in
Table 5.

Compared to PairRange, MaxBlock has three advantages: (i)
It determines the number of partitions automatically, through
a data-driven procedure. Instead, PairRange receives this pa-
rameter as input, requiring the user to specify it, after manually
inspecting the data at hand. (ii) For the edge- and comparison-
based parallelization strategies, MaxBlock consistently yields
lower overall execution times than PairRange, as it saves a
whole MapReduce job. (iii) MaxBlock is more flexible and
generic than PairRange. Thus, it can be easily adapted to the
entity-based strategy, by incorporating a cost function that tack-
les quadratic space complexity. Instead, PairRange is only suit-
able for balancing functions that suffer from quadratic time
complexity, due to the number of comparisons they process.

11.3. Time Efficiency

We applied the three parallelization strategies of all Meta-
blocking techniques to the four datasets 2 times and measured
the corresponding average Overhead Time. The outcomes are
presented in Table 713. Note that the edge-based strategy was

13Some of the times presented here are slightly improved, compared to [9],
due to implementation improvements, e.g., using Java Arrays instead of Maps
or Lists, when applicable.
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Ddbpedia D f reebase

DBC DBD FRC FRD

|B| 1,239,315 1,499,422 1,308,970 4,521,129
||B|| 1.20·1010 2.17·1010 2.96·1010 6.53·1010

BPE 12.12-12.68 11.72 57.28-3.86 19.70
PC 0.998 0.998 0.961 0.907
PQ 7.44·10−5 4.11·10−5 4.38·10−5 1.87·10−5

Table 6: The block collections after Block Filtering.

inapplicable to FRC and FRD, as its space requirements ex-
ceeded the available 4 TB of disk space. For the other two
datasets, we terminated prematurely the processes that ran for
more than 6,000 minutes (100 hours), all of which were still far
from completion. Below, we analyze the performance of each
stage of the parallelized workflow of Meta-blocking.

Stage 1. The goal of this stage is to apply Block Filtering
to the input block collection. In Table 7, we observe that the
basic and the advanced strategy exhibit practically equivalent
overhead times. Remember that the former involves two jobs
that order once and globally the input blocks, whereas the ad-
vanced strategy entails a single job that sorts repeatedly and
locally the input blocks. We can conclude, therefore, that the
basic strategy offsets the cost of using two jobs by avoiding the
computations that are repeated by the advanced one. However,
the main reason for the equivalent overhead times is the linear
time complexity of Block Filtering and its simple functionality
that processes very large block collections at a negligible cost.

It should be stressed here that the exemplary performance of
Block Filtering justifies the lack of a specialized load balancing
algorithm for the functions with linear complexity.

Also worth noting is the qualitative performance of Block
Filtering, which is presented in Table 6. We observe that de-
spite its simple functionality, Block Filtering conveys signifi-
cant enhancements in efficiency at a minor cost in recall. The
total cardinality of all block collections is reduced by more than
60%, while their recall (PC) drops by less than 2%. As a result,
the precision (PQ) raises by 3 times, on average. The number of
blocks remains almost intact, but the average number of blocks
per entity (BPE) is significantly reduced. In this way, the com-
putation of edge weights is accelerated to a considerable extent.

Stages 2 & 3. To compare the parallelization strategies for
Meta-blocking on an equal basis, Table 7 considers the perfor-
mance of Stages 2 and 3 as a whole; note that the entity-based
strategy was applied only to DBC and DBD, because its space
requirements over the two larger datasets exceeded the available
disk space (4 TB). Special care has been taken to highlight the
relative efficiency not only of the three strategies, but also of the
pruning and weighting schemes. For this reason, we examine
these aspects separately in the following.

Parallelization Strategies. We observe that when moving
from left to right in Table 7, i.e., from the smallest block col-
lection to the largest one, the Overhead Time increases anal-
ogously for all parallelization strategies. Even for the largest
dataset, though, most Meta-blocking methods require less than
2 days (∼3,000 minutes), thus being much faster than the se-
rial processing, which requires almost 8 days over the high-end
server described in Section 1. Most importantly, though, there

is a considerable discrepancy among the efficiency of the three
parallelization strategies, which designates that the paralleliza-
tion of Meta-blocking is not a trivial task.

In more detail, the edge-based strategy is consistently slower
than the comparison-based one. Their difference is particularly
intense in the case of edge-centric pruning schemes, but is sig-
nificantly reduced for the node-centric ones. There are two ex-
ceptions that prove this rule: for CNP and WNP in combination
with JS, the edge-based strategy is faster (by less than 3 min-
utes) than the comparison-based one over DBD.

Regarding the entity-based strategy, it is significantly faster
than the other strategies in the case of the node-centric pruning
schemes across all datasets. For DBC , for instance, it is 5 times
faster than the comparison-based strategy of WNP in combina-
tion with all weighting schemes. Compared to the edge-based
strategy, it is 9 times faster, on average, for the same pruning
scheme and dataset. In the case of the edge-centric algorithms,
though, the entity-based strategy outperforms only the edge-
based one; compared to the comparison-based strategy, it re-
quires at least twice as much time.

There are two factors that determine the relative performance
of the parallelization strategies. The first one is the number of
MapReduce jobs they involve. The larger this number is, the
higher the overhead becomes and the less efficient is the corre-
sponding strategy. This explains the inferior performance of the
edge-based strategy, when compared to the comparison-based
one: its Preprocessing involves one more job in order to calcu-
late the weights of all edges in the blocking graph. The same
holds for the entity-based strategy, when it is combined with
the edge-centric pruning schemes; in this case, the entity-based
strategy employs one more job than the comparison-based one
in order to calculate the global pruning criterion in the absence
of preprocessing computations in Stage 2.

The second important factor for the efficiency of the paral-
lelization strategies is the I/O they involve between the inde-
pendent nodes of the cluster. The higher the I/O of a strategy
is, the higher is its overhead and the lower is its efficiency.
Comparing the edge- and comparison-based strategies in this
respect, the former involves a higher I/O, because it material-
izes an edge for every comparison in the input blocks – even
the redundant ones. In contrast, the comparison-based approach
creates a distinct edge only for the non-redundant comparisons.
In our datasets, the latter approach yields around 30% less com-
parisons. An even more efficient approach is implemented by
the entity-based strategy, which sends none of edges through
the network. Instead, it exchanges the nodes of the blocking
graph, as their number is typically orders of magnitude lower
than the number of edges. By attaching the necessary informa-
tion to every graph node, the edges can be created, weighted,
and pruned locally, inside the independent nodes of the cluster.

Overall, we recommend using the entity-based strategy for
node-centric pruning algorithms, and the comparison-based
strategy for edge-centric ones.

Pruning Schemes. WEP is the most efficient method for the
edge- and comparison-based strategies across all datasets, be-
cause it involves the simplest processing. For these strategies,
the second fastest method is CEP, since it merely adds one job
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DBC DBD FRC FRD

Block Basic 2 2 3 6
Filtering Advanced 2 2 3 6

Edge Comp. Entity Edge Comp. Entity Comp. Entity Comp. Entity
Based Based Based Based Based Based Based Based Based Based

CEP

ARCS 252 89 184 >6,000 135 431 1,319 1,244 3,359 3,065
CBS 222 55 145 250 87 363 781 1,343 2,556 2,842
ECBS 240 78 210 278 110 487 841 1,652 2,663 3,257
JS 223 60 190 279 94 466 777 1,480 2,574 2,832
EJS 1,996 116 >6,000 >6,000 180 >6,000 1,166 >6,000 4,090 >6,000

CNP

ARCS 554 370 73 >6,000 625 191 2,109 605 3,934 970
CBS 491 301 74 559 527 186 1,488 643 2,514 995
ECBS 555 383 76 639 633 197 1,949 665 3,058 1,187
JS 534 363 83 618 620 210 1,637 656 2,546 977
EJS 2,645 430 142 >6,000 733 382 2,319 1,069 5,222 1,993

WEP

ARCS 203 65 389 >6,000 99 319 520 1,006 1,802 1,967
CBS 220 50 123 250 76 338 501 1,088 1,414 2,031
ECBS 219 54 123 254 83 342 555 1,164 1,438 1,945
JS 219 54 132 254 84 340 540 1,097 1,431 2,093
EJS 1,993 81 204 >6,000 124 517 837 1,555 2,419 3,025

WNP

ARCS 562 363 63 >6,000 647 185 2,068 685 3,904 977
CBS 498 304 65 569 539 196 1,534 541 2,671 1,313
ECBS 568 389 73 658 647 193 1,971 588 3,046 1,238
JS 553 373 74 641 644 202 1,636 690 2,790 1,176
EJS 2,626 411 142 >6,000 700 379 2,317 1,041 5,214 2,211

Table 7: Overhead Time (OTime) in minutes for all Meta-blocking techniques across the four real datasets.
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Figure 22: Overhead Time in minutes for all configurations of the serialized
workflow over DBC .

to the functionality of WEP in order to convert the cardinality
pruning criterion into a weight one. For the entity-based strat-
egy, though, WEP and CEP are the least efficient methods, as
they require 1 and 2 additional jobs, respectively, in order to
compute their pruning criteria.

For this strategy, the node-centric pruning schemes, CNP and
WNP, are the most efficient ones, involving a single job. In
contrast, they are the most time-consuming algorithms for the
other strategies, since they process every edge twice, inside the
neighborhoods of both adjacent nodes.

It is interesting to compare these patterns with the relative ef-
ficiency of pruning schemes in the case of serial processing. To
this end, Figure 22 presents the Overhead Time of all serialized
workflows over the DBC dataset. The measurements were per-
formed using the high-end server mentioned in Section 1 (Intel
i7 3.40GHz, 64 GB of RAM, Debian Linux 7). Similar patterns

were exhibited for the other datasets and are omitted for brevity.

First of all, we observe that the overhead of serial process-
ing is significantly higher than that of parallel processing in the
vast majority of cases. Second, the pruning schemes exhibit a
similar behavior as in the case of the edge- and comparison-
based strategies: the edge-centric ones, CEP and WEP, are sig-
nificantly faster than their node-centric counterparts, CNP and
WNP. However, the relations are different between cardinality-
and weight-based schemes: CEP and CNP are faster than WEP
and WNP, respectively, because the latter involve an additional
iteration over the edges in order to estimate their pruning crite-
rion. Thus, the overall most efficient serial algorithm is CEP,
while WNP remains the most time-consuming one.

Weighting Schemes. For the edge-based strategy, CBS is the
fastest weighting scheme, as the output value of its first reduce
function in Stage 2 is empty. ARCS, ECBS, JS add information
to this output value and, thus, require more time and I/O in
order to process it. Given that they involve the same number
of jobs, they exhibit similar overhead times. EJS requires two
additional jobs in order to estimate the degree of every node,
thus being the most time-consuming weighting scheme.

For the comparison-based strategy, we observe slightly dif-
ferent patterns. CBS, ECBS and JS yield similar overhead
times, because they basically perform the same computation:
for each pair of entities, they estimate the intersection of the
associated block lists. They are faster than ARCS and EJS, as
they rely exclusively on the information contained in the en-
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Figure 23: Speedup over DBC of (a) the comparison-based strategy for WEP, and (b) the entity-based strategy for CNP.

riched input (i.e., the ids of the blocks associated with every
entity). In contrast, EJS requires two additional jobs and is the
most time-consuming weighting scheme in all cases. In most
cases, ARCS lies between these two extremes, as it requires
additional information and, thus, involves higher I/O than the
most efficient schemes.

For the entity-based strategy, the differences between the
weighting schemes are minor, except for EJS, which again re-
quires an additional job and is, thus, the most time-consuming
scheme. Among the other schemes, CBS and ARCS are
slightly faster, since they do not load in memory the array with
the number of blocks per entity, unlike JS and ECBS.

In the case of the serialized workflow, Figure 22 shows
that ARCS is consistently the most time-consuming weighting
scheme, because it produces very low values as edge weights
(with tens of decimal digits). It is followed by EJS, which again
involves higher computational cost in order to estimate the de-
gree of every node. The remaining schemes share almost the
same overhead, as their processing is very similar, computing
the intersection of block lists.

11.4. Scalability

To assess the scalability of the comparison- and entity-based
strategies, we estimate the speedup of their most efficient prun-
ing schemes. That is, we measure the extent to which their
overhead time decreases as we increase the number of avail-
able cluster nodes. Specifically, we apply the comparison-based
WEP and the entity-based CNP to DBC in combination with all
weighting schemes. We increase the number of slave nodes
from 4 to 9 and 14; in every case, there is an independent mas-
ter node. The outcomes are presented in Figures 23(a) and (b)
for WEP and CNP, respectively. In every figure, there is a dot-
ted diagonal line, which illustrates the ideal case, where the
speedup is linear to the number of nodes.

In Figure 23(a), we observe that all the weighting schemes
show a speedup close to the ideal, with the exception of EJS.
ARCS seems to be the weighting scheme that best exploits
the available resources, showing a speedup of 12.92 when us-
ing 14 nodes. ECBS, CBS and JS have almost identical
speedup values, ranging from 11.8 to 12.3, when using 14
nodes. This is because they basically perform the same compu-
tations, as explained previously. For EJS, the speedup is con-
stantly lower than that of the other weighting schemes, because
of the quadratic complexity of its additional jobs.

Regarding CNP, Figure 23(b) indicates that the deviation in
the speedup of the various weighting schemes is much smaller
than for WEP. Indeed, the speedup for 14 nodes fluctuates be-
tween 8.8 for ARCS and 9.5 for ECBS. This time EJS does not
yield the worst speedup, as its additional job involves a linear
complexity instead of a quadratic one.

In practice, these patterns indicate that the more cluster nodes
we used, the faster was the execution of both strategies. For
WEP, the improvement in time was almost as much as the the
number of additional resources (until a certain point), while for
CNP, n additional nodes improved the Overhead Time by 2n/3
times. The reason is that WEP is able to balance the work-
load of its nodes right after Preprocessing, i.e., before applying
Meta-blocking in Stage 3. In the case of CNP, though, this
is impossible, since the workload of every reduce function in
Stage 3 is not known a-priori.

11.5. Effectiveness

To assess the quality of the restructured blocks produced by
Meta-blocking, we consider their performance with respect to
the four relevant measures of Section 11.1. For every pruning
scheme and dataset, we estimated the average value and the
standard deviation of every measure across the five weighting
schemes. The outcomes are presented in Figures 24(a) to (d).
Remember that in all diagrams, the higher a bar is, the better
is the corresponding performance. We should also note that all
the MapReduce implementations are exact adaptations of their
serialized counterparts, which means that the qualitative results
of the serialized and the parallel implementations are identical.

Starting with Figure 24(a), we observe that the relative recall
of the pruning schemes remains the same across all datasets:
the node-centric ones, CNP and WNP, are more robust and de-
tect more duplicates than their edge-centric counterparts, CEP
and WEP. The cardinality-based schemes, CEP and CNP, con-
sistently achieve lower PC than the weight-based ones, WEP
and WNP, which exceed 0.8 across all datasets. In fact, CEP
and CNP they reduce the original PC by less than 10%, despite
the significant enhancements in efficiency they convey.

Indeed, Figure 24(b) shows that WEP consistently achieves
an RR close to 0.8, thus saving 80% of the original compar-
isons. The pruning of WNP is more shallow, as it retains at
least one edge per node. Its RR fluctuates between 0.46 and
0.65, thus saving around half the original comparisons. For
CEP and CNP, RR is consistently higher than 0.99. In fact,
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Figure 24: Average performance of the four pruning algorithms with respect to (a) PC, (b) RR, (c) PQ, and (d) H3R.

they perform such a deep pruning that they reduce the pairwise
comparisons by 2 to 3 orders of magnitude across all datasets.
This explains their poor recall.

Yet, Figure 24(c) demonstrates that CEP and CNP achieve
significantly higher precision across all datasets. Compared
to the input blocks, the restructured ones, produced by those
schemes, increase precision by 2 to 3 orders of magnitude. For
WEP and WNP, the improvement is slightly higher than an or-
der of magnitude. This pattern actually indicates a clear trade-
off between precision and recall: the higher PQ is for a specific
method and dataset, the lower is the corresponding PC and vice
versa.

To identify the scheme that achieves the overall best bal-
ance between the identified duplicates and the executed com-
parisons, we use H3R, which is presented in Figure 24(d). We
observe that the cardinality-based methods, CEP and CNP, ex-
hibit the highest values across all datasets, fluctuating between
0.97 and 0.67. The difference between the two methods is
small, even though CNP retains twice as many comparisons
as CEP, on average. Still, CNP should be preferred, since it
retains the best comparisons per entity and, thus, is more robust
to recall.

These patterns are in accordance with earlier findings about
the relative performance of the four pruning schemes [4].

11.6. Discussion

The results of our experimental analysis demonstrate that the
proposed strategies for parallel Meta-blocking yield significant
improvements in the execution time, thus enabling ER in vo-
luminous datasets. However, simple strategies cannot give us
the full benefit: we observed that the edge-based strategy leads
to significantly higher space requirements and is consistently
slower than the comparison- and entity-based ones. The exper-
iments also showed that our load balancing algorithm consis-

tently outperforms the default balancer of Hadoop, assigning
an almost identical workload to all the nodes of the cluster.

Among the four pruning schemes, the overall winner is CNP,
as it involves the most efficient functionality (when using the
entity-based strategy) and achieves the best balance between
precision and recall in terms of H3R (CEP exhibits similar H3R
values, but is significantly less robust to recall than CNP). The
five weighting schemes exhibit similar effectiveness and are al-
most equivalent with respect to efficiency, with the exception of
EJS, which is much slower and less scalable than the rest.

In summary, the edge-based strategy should not be used
in practice. Instead, Parallel Meta-blocking should be ap-
plied using the comparison-based and entity-based strategies.
The edge-centric algorithms, CEP and WEP, should always be
combined with the comparison-based strategy, while the node-
centric algorithms, CNP and WNP, should always be used with
the entity-based strategy.

To demonstrate in a more intuitive way the actual benefit of
Meta-blocking, we have estimated the times required to get the
final matching results with and without Meta-blocking, given
a blocking collection14. In the first case, we sum the times
needed for the three stages of Meta-blocking and the time re-
quired to perform the resulting comparisons of Meta-blocking.
In the latter case, we only estimate the time required to per-
form all the comparisons suggested by the input blocking col-
lection. To estimate the time required for the comparisons,
we performed 1 billion comparisons, using the Jaccard simi-
larity of the tokens in the values of the DBC collection. The
average time required to get the similarity of 1 pair of en-
tity profiles was 4.9 · 10−7 minutes. Based on this number
and taking as an example the CBS weighting scheme and the
CNP pruning scheme, using the entity-based strategy, we esti-

14The efficiency of blocking has been already studied in [17, 19].
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mate that the time required to perform Meta-blocking (includ-
ing Block Filtering) and then the comparisons suggested by
Meta-blocking is 76 minutes + 3.96 · 107 comparisons × 4.9
·10−7 minutes/comparison ≈ 95.5 minutes. The corresponding
time required to perform the comparisons suggested by block-
ing, without using Meta-blocking, would be 4.23 · 1010 com-
parisons × 4.9 ·10−7 minutes/comparison = 20,727 minutes =

345.45 hours ≈ 14 days. The cost of using Meta-blocking, in
this case, is a loss of 3.79% in PC.

12. Related Work

ER constitutes a well-studied problem that lies on the focus
of numerous works. Comprehensive surveys of the relevant
techniques can be found in [1, 20, 21, 22, 23, 24, 25]. Due
to the inherently quadratic complexity of ER, a bulk of work
aims for improving its scalability. We can distinguish two lines
of research.

The first one includes parallel ER methods, which exploit
the processing power of multiple cores in order to minimize
the response time of ER. Early works towards this direction in-
clude [26, 27, 28]. More recent approaches are based on the
MapReduce framework, which offers fault-tolerant, optimized
execution for applications distributed across a set of indepen-
dent nodes [8]. Based on this paradigm, [29, 30] introduce dis-
tributed approaches that improve the quality of entity matching
through a recursive process: a decision about matching two en-
tities triggers further decisions about matching their associated
entities. Similar approaches are used by other iterative tech-
niques, which employ some partial results of the ER process in
order to locate new matches (e.g., [31, 32, 33, 34]).

A crucial aspect of MapReduce-based ER methods is the
load balancing algorithm that distributes evenly the overall
workload among the available nodes. Several recent works ex-
amine this aspect, with PairRange constituting the best solution
so far [18].

Another approach is BlockSplit [18]. As its name suggests,
it splits the bigger blocks into smaller sub-blocks and processes
them in parallel, ensuring that every entity is compared to all
entities in its sub-block, as well as to the entities of its super-
block. BlockSplit has been proven to be less scalable and less
generic than PairRange [18]: it needs to process multiple times
the entity profiles of blocks that are split, creating an additional
network and I/O overhead. Additionally, it may still lead to
unbalanced workload, due to sub-blocks of different size.

A similar approach is followed by the dynamic blocking al-
gorithm in [35]. Instead of perfectly balancing the load, though,
its goal is to split large blocks into sub-blocks, “until they are
all of tractable size”. Yet, we already achieve this goal through
Block Filtering, which completely removes large blocks (in-
stead of splitting them into sub-blocks), as it considers them to
be of lower importance.

Finally, two more load balancing algorithms were presented
in [36]. Both rely on sketches in order to minimize mem-
ory consumption; the one aims to improve the space require-
ments of BlockSplit and the other of PairRange. In our case,

though, all load balancing algorithms that were compared in
Section 11.2 fit easily to the limited memory that is available
to a single node. The reason is the optimized representation
model, which represents every entity by an integer that denotes
its id, while every block consists of a list of integers and is itself
identified by a unique integer id.

The second line of research comprises approximate tech-
niques, which focus on achieving a good balance between the
number of identified duplicates and the number of executed
comparisons. The most prominent among these approaches is
blocking; it represents every entity by a set of blocking keys
(i.e., signatures) and groups similar entities into blocks based
on similar or identical keys. Comparisons are then executed
only inside the resulting blocks. Depending on the definition of
keys, blocking methods are distinguished into two categories:

(i) The schema-based ones target tabular data, i.e., data of
high structuredness. They exploit a-priori schema knowledge
in order to identify the attribute names with the most accu-
rate and distinctive values and extract blocking keys of high
quality from them. In this category fall methods like Suffix
Arrays [37], StringMap [38], Standard Blocking [39], Canopy
Clustering [40], Sorted Neighborhood [41] and Q-grams Block-
ing [42]. A comprehensive survey can be found in [3].

(ii) The schema-independent blocking methods target data
of low structuredness, such as those stemming from the Web.
They disregard schema knowledge when defining blocking
keys, due to the unprecedented level of schema heterogeneity.
For instance, Google Base15 alone encompasses 100,000 dis-
tinct schemata that correspond to 10,000 entity types [43]. In
this category fall methods like Token Blocking [6], Attribute
Clustering [11], Total Description [15] and MFIBlocks [10].
They are capable of handling millions of entities, but still yield
a large number of comparisons. Their scalability can be signif-
icantly enhanced by Meta-blocking, as explained above.

This work bridges the gap between the two lines of research
for ER over Web Data, parallelizing Meta-blocking techniques
to achieve even higher scalability. A similar effort for tabular
data is made in [44, 45], which adapt Standard Blocking and
Sorted Neighborhood, respectively, to MapReduce.

13. Conclusions

Despite the recent advances in blocking, ER remains a com-
putationally intensive task with limited practical applications
in the context of large data collections. In this paper, we par-
allelized Meta-blocking using MapReduce and enhanced dra-
matically the time efficiency of its serialized implementation.
We proposed 3 parallelization strategies: (i) The edge-based
one implements a straightforward approach that materializes
the blocking graph; hence, it involves high I/O and high space
requirements that do not scale well to large datasets. (ii) The
comparison-based strategy offers a more elaborate implemen-
tation that uses the blocking graph implicitly. In this way, it re-
duces the overhead of data exchange and the number of required

15http://www.google.com/base
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MapReduce jobs, leading to significant performance gains, es-
pecially for the edge-centric pruning schemes, CEP and WEP.
(iii) The entity-based strategy is completely independent of the
blocking graph, minimizing the data exchange and the overhead
of MapReduce job chains. This approach offers an optimized
implementation for the node-centric pruning schemes, CNP
and WNP. All these strategies were combined with MaxBlock,
a purpose-built load balancing algorithm that distributes the
workload evenly among the cluster nodes. We also demon-
strated their applicability in big data settings through an exten-
sive experimental evaluation with the four largest, real datasets
that have been applied to Meta-blocking.

In the future, we plan to adapt Supervised Meta-blocking [5]
to MapReduce. Its functionality is fundamentally different from
that of its unsupervised counterpart: first, it gathers a random
sample of the blocking graph edges to use it as a training set
and then, it applies a classification algorithm to the remaining
edges. In this case, the main challenge is to parallelize the es-
timation of edge weights, which now comprise feature vectors
with four dimensions.
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[29] C. Böhm, G. de Melo, F. Naumann, G. Weikum, LINDA: distributed web-

of-data-scale entity matching, in: CIKM, 2012, pp. 2104–2108.
[30] S. Lacoste-Julien, K. Palla, A. Davies, G. Kasneci, T. Graepel, Z. Ghahra-

mani, Sigma: simple greedy matching for aligning large knowledge
bases, in: KDD, 2013, pp. 572–580.

[31] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. E. Whang,
J. Widom, Swoosh: a generic approach to entity resolution, VLDB J.
18 (1) (2009) 255–276.

[32] I. Bhattacharya, L. Getoor, Collective entity resolution in relational data,
TKDD 1 (1).

[33] X. Dong, A. Y. Halevy, J. Madhavan, Reference reconciliation in complex
information spaces, in: SIGMOD, 2005.

[34] M. Herschel, F. Naumann, S. Szott, M. Taubert, Scalable iterative graph
duplicate detection, IEEE Trans. Knowl. Data Eng. 24 (11) (2012) 2094–
2108.

[35] N. McNeill, H. Kardes, A. Borthwick, Dynamic record blocking: efficient
linking of massive databases in mapreduce, in: QDB, 2012.

[36] W. Yan, Y. Xue, B. Malin, Scalable load balancing for mapreduce-based
record linkage, in: IPCCC, 2013, pp. 1–10.

[37] T. de Vries, H. Ke, S. Chawla, P. Christen, Robust record linkage blocking
using suffix arrays, in: CIKM, 2009, pp. 1565–1568.

[38] L. Jin, C. Li, S. Mehrotra, Efficient record linkage in large data sets, in:
DASFAA, 2003.

[39] I. P. Fellegi, A. B. Sunter, A theory for record linkage, Journal of the
American Statistical Association 64 (328) (1969) 1183–1210.

[40] A. McCallum, K. Nigam, L. Ungar, Efficient clustering of high-
dimensional data sets with application to reference matching, in: KDD,
2000, pp. 169–178.

[41] M. Hernández, S. Stolfo, The merge/purge problem for large databases,
in: SIGMOD, 1995, pp. 127–138.

[42] L. Gravano, P. Ipeirotis, H. Jagadish, N. Koudas, S. Muthukrishnan,
D. Srivastava, Approximate string joins in a database (almost) for free,
in: VLDB, 2001, pp. 491–500.

[43] J. Madhavan, S. Cohen, X. L. Dong, A. Y. Halevy, S. R. Jeffery, D. Ko,
C. Yu, Web-scale data integration: You can afford to pay as you go, in:
CIDR, 2007, pp. 342–350.

[44] L. Kolb, A. Thor, E. Rahm, Dedoop: Efficient deduplication with hadoop,
PVLDB 5 (12) (2012) 1878–1881.

[45] L. Kolb, A. Thor, E. Rahm, Multi-pass sorted neighborhood blocking with
mapreduce, Computer Science - R&D 27 (1) (2012) 45–63.

24




