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Abstract 

Objectives: The determinants of gut microbiota composition and its effects on common childhood 

illnesses are only partly understood, especially in low-income settings. The aim of the present study 

was to investigate whether morbidity predicts gut microbiota composition in Malawian children and 

whether microbiota predicts subsequent morbidity. We tested the hypothesis that common infectious 

disease symptoms would be predictive of lower microbiota maturity and diversity. 

Methods: We used data from 631 participants in a randomized-controlled nutrition intervention 

trial, in which a small-quantity lipid based nutrient supplement was provided to pregnant and lactating 

mothers and their children at 6 to 18 months of age. Fecal samples were collected from the children at 

6, 12, 18, and 30 months of age and analyzed using 16S rRNA sequencing. Microbiota variables 

consisted of measures of microbiota diversity (Shannon Index), microbiota maturity (microbiota-for- 

age Z-score), and the relative abundances of taxa. Morbidity variables included gastrointestinal and 

respiratory symptoms and fever. 

Results: Diarrhea and respiratory symptoms from 11 to 12 months were predictive of lower 

microbiota-for-age Z-score and higher Shannon Index, respectively (p=0.035 and p=0.023). Morbidity 

preceding sample collection was predictive of the relative abundances of several bacterial taxa at all 

time points. Higher microbiota maturity and diversity at 6 months were predictive of a lower incidence 

rate of fever in the subsequent 6 months (p=0.007 and p=0.031). 

Conclusions: Our findings generally do not support the hypothesis that morbidity prevalence 

predicts a subsequent decrease in gut microbiota maturity or diversity in rural Malawian children. 

Certain morbidity symptoms may be predictive of microbiota maturity and diversity and relative 

abundances of several bacterial taxa. Further, microbiota diversity and maturity may be associated 

with the subsequent incidence of fever. 
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What is known 

• The first years of life are critical for the establishment of a healthy intestinal microbiota and

are characterized by rapid changes in microbial community composition.

• The composition of the intestinal microbiota has been associated with various acute and

chronic illnesses.

What is new 

• Diarrhea, respiratory tract infections, and fever may influence several aspects of the

microbiota composition, including bacterial taxa that change significantly during the first

years of life and contribute to the maturation of the gut microbial community.

• Microbiota diversity and maturity may be associated with the subsequent incidence of fever.



Introduction 

The first years of life are critical for the establishment of a healthy intestinal microbiota and are 

characterized by rapid changes in microbial community composition. In young children, microbial 

diversity increases with age and perturbations during this period have been associated with diseases 

later in life.(1–5) Recent studies have reported a link between healthy intestinal microbiota 

development and healthy child growth, with impaired microbiota development associated with growth 

faltering.(6–8) Infections can also affect the microbiota composition, and the microbiota can in turn 

influence an individual’s susceptibility to acute illnesses, including gastrointestinal and respiratory 

infections and malaria.(9–15) This is especially relevant in low-income settings in which infectious 

diseases are common and associated with malnutrition.(16,17) 

The main aim of  the present study was to investigate whether  the prevalence of common 

childhood infections predicts gut microbiota composition in children. We hypothesized that frequent 

morbidity would be predictive of perturbed microbiota development. To study the inverse direction of 

association between gut microbiota and morbidity, we further assessed whether the gut microbiota is 

associated with subsequent morbidity. To this end, we analyzed data from children who  were 

followed during the iLiNS-DYAD trial in Malawi. iLiNS-DYAD was a nutrition intervention trial 

conducted by the International Lipid-Based Nutrient Supplements Project study team (iLiNS-DYAD- 

M; NCT01239693),  which studied the effect of small-quantity  lipid-based nutrient supplements 

(LNS) on child growth.(18) The main results of the trial have been reported previously; in summary, 

provision of LNS to pregnant and lactating mothers and their children at 6 to 18 months of age did not 

promote child growth at 18 months of age.(18) Study participants were monitored closely between 

birth and 30 months of age and stool and other biological samples were collected at various time 

points. This enabled us to study the development of the gut microbiota as well as its associations with 

morbidity and several other potentially influential factors. 

Materials and Methods 

The iLiNS-DYAD trial was a randomized, controlled, and partly blinded clinical trial conducted 

in the Mangochi district in southern Malawi. The study enrolled 1391 pregnant women who were 



randomly assigned to receive either LNS or multiple-micronutrient tablets during pregnancy and until 

6 months after giving birth, or only iron and folic acid during pregnancy and placebo until 6 months 

postpartum. Of the enrolled women, the first 869 were allocated to a follow-up study, during which 

their children received either LNS supplementation (if the mother had received LNS) or no 

intervention (if the mother had received iron and folic acid or multiple micronutrients) between 6 and 

18 months of age. Children of these 869 women formed the study sample for the current analysis. 

Clinical data were collected at weekly home visits from birth until children reached 18 months of 

age and fecal samples were collected at 6, 12, 18, and 30 months of age. If a child had diarrhea, no 

fecal sample was collected and the visit was postponed by two weeks. Samples were frozen at -20°C 

within approximately 6 hours deep frozen at -80°C within 48 hours. Bacterial members of the fecal 

microbiota were characterized by PCR amplification of the variable V4 region of the 16S rRNA gene 

and sequencing of the resulting amplicons (Illumina MiSeq instrument; paired end 250 nt reads, 

Illumina Inc., San Diego, CA, USA). 16S rRNA sequences were clustered into operational taxonomic 

units (OTUs) with at least 97% sequence identity, and OTUs were assigned taxonomy based on the 

Ribosomal Database Project version 2.4 using a cutoff of 80% for the bootstrap confidence 

estimate.(19) To exclude artifacts, OTUs were filtered using a threshold of 0.1% of sequencing reads 

in at least two samples. The V4-16S sequence data generated and analyzed for this study are available 

through the European Nucleotide Archive under the study accession number PRJEB29433. 

To measure microbiota maturity, we employed a previously described Random Forests-(RF)- 

derived model that was generated from a reference cohort of healthy Malawian infants and children. 

The model was further validated among the study participants of the iLiNS-DYAD-M trial and in this 

cohort the Pearson correlation coefficient between chronological age and microbiota age was 0.71 

(p<0.0001).(8) The sparse RF-generated model is based on the relative abundances of 25 OTUs that 

were most age-discriminatory. Calculated microbiota ages of study participants were compared to the 

median microbiota age of same-aged infants in the reference group to obtain microbiota-for-age Z- 

scores (MAZ-scores). Details on this method have been described previously.(7,8) Microbiota 

diversity has been shown to increase with age during the first years of life and can thus be seen as an 

additional measure of microbiota maturity.(1,2) Shannon’s diversity index was calculated with the 



package phyloseq in R version 3.2.1.(20) To account for unequal library sizes, OTU counts were 

rarefied to 5000 reads before MAZ-scores and Shannon’s diversity index were calculated. To 

investigate associations  between childhood morbidity and  the  relative abundances  of  individual 

bacterial taxa, unrarefied OTU counts that were normalized using cumulative sum-scaling (CSS) were 

included as outcomes in descriptive analyses.(21) Further, outcomes of descriptive analyses included 

unweighted and weighted UniFrac distances between samples as measures of phylogenetic 

dissimilarity.(22,23) 

Morbidity variables consisted of measures of fever, diarrhea, and respiratory symptoms, which 

were assessed at weekly home visits between birth and 18 months. Care-givers were asked to report 

any illness symptoms that the child had in the previous seven days. Diarrhea was defined as three or 

more liquid/semi-liquid stools per day, and respiratory symptoms were defined as difficult breathing, 

cough, or nasal discharge in the absence of diarrhea. In addition, data collectors measured each child’s 

temperature at each home visit, and a temperature of 37.5o C or above was defined as fever. These 

morbidity data, which were available for each day for diarrhea and respiratory symptoms and each 

week for fever, were used to construct several predictor variables to examine the long- and short-term 

influence of morbidity on microbiota. The longitudinal prevalences of diarrhea, respiratory symptoms, 

and fever between 0 and 18 months were used as continuous variables. Longitudinal prevalence was 

defined as the percentage of days with reported diarrhea or respiratory symptoms and as the 

percentage of weeks at which a high temperature was measured for fever.(24) In addition, 

dichotomized variables defined as the presence or absence of any diarrhea, respiratory symptoms, and 

fever, were created for the 30 days preceding fecal sample collection at 6 and 12 months. 

The hypothesis that frequent morbidity is predictive of a subsequent decrease in microbiota 

maturity and diversity was tested using linear regression with MAZ-scores or Shannon’s diversity 

index as a response variable and morbidity variables as predictors. In addition, the models included a 

measure of socioeconomic status (household assets score including information on building materials 

of the house, energy and water source)(25), ownership of domestic animals, water source (piped vs. 

any other), sanitary facility (water closet or ventilation improved pit latrine vs. none or regular pit 

latrine), season of fecal sample collection, maternal characteristics (age, years of education, marital 



status, and HIV status), the exact age of the child at sample collection, child sex, delivery mode, 

library size from 16S rRNA sequencing, and sample processing pool. Breast-feeding, household 

crowding, and antibiotics use as potential confounders had to be excluded from the analysis because 

of too many missing observations at the time points studied (>20%). Before the main analyses, we 

tested for effect modification by the nutrition intervention by adding the intervention group as an 

interaction term to all models. Analyses were carried out in STATA version 13. 

To describe specific differences in gut microbiota composition in relation to morbidity, 

differences in the abundances of bacterial taxa were analyzed at OTU level in STATA. Differences in 

relative abundances of specific OTUs were tested with multivariable zero-inflated negative binominal 

models to adjust for probability of zero count in relation to library size, while all the covariates 

aforementioned were included in the analysis. All OTUs that had non-zero counts in at least 5% of all 

samples were included in the analyses. To analyze whether morbidity predicts overall microbiota 

composition, differences in UniFrac distances were tested with permutational analysis of variance 

(PERMANOVA) using the adonis function in R.(26) The PERMANOVA models included all 

covariates and assessed the marginal effect of morbidity. Pseudo p-values were obtained through 1000 

permutations. 

For analyses on microbiota composition and subsequent morbidity prevalence, microbiota 

variables including MAZ-score, Shannon index, and relative abundances of OTUs at 6 and 12 months 

were used as predictor variables. Outcome variables included the longitudinal prevalence of morbidity 

symptoms at 6 to 12 and 12 to 18 months as continuous variables and any symptoms in the 30 days 

after fecal sample collection at 6 and 12 months as dichotomous variables. To analyze whether MAZ- 

score and Shannon index predict subsequent morbidity, negative binomial regression was used for 

analysis of number of days ill, with an offset for the number of observation days, and logistic 

regression was used for dichotomous outcomes. To analyze whether relative abundances of individual 

OTUs predict subsequent morbidity, abundances of all OTUs that were present in at least 5% of 

samples were transformed to three separate dichotomized variables (zero counts vs. below median 

counts, below median counts vs. above median counts, and zero counts vs. above median counts) and 

analyzed in fully covariate-adjusted negative binominal models. 



All p-values from analyses with relative abundances of individual OTUs as predictor or outcome 

variables were adjusted for multiple hypothesis testing using the Benjamini-Hochberg false discovery 

rate (FDR) correction (q-value). 

The iLiNS-DYAD study was approved by the College of Medicine Research and Ethics 

Committee (COMREC) and the ethics committee of the Pirkanmaa hospital district. All participants 

provided informed consent at enrollment by signing or thumb printing a consent form. The trial was 

registered at clinicaltrials.gov as NCT0123969. 

Results 

There were 790 live-born infants including 8 pairs of twins in the follow-up cohort of the iLiNS- 

DYAD study. By 30 months, a total of 46 participants had not consented to extended follow-up 

beyond 18 months, 78 had died, and 68 were otherwise lost to follow-up. Microbiota data were 

available for 564 participants at 6 months, 632 at 12 months, 631 at 18 months, and 579 at 30 months. 

(see Figure, Supplemental Digital Content 1, http://links.lww.com/MPG/B675). 

On average, children included in the analyses were born at 39.5 weeks gestation with a birth 

length of 49.7 cm and their mothers were 25 years of age at enrollment. Most did not have access to 

piped water or improved sanitary facilities. Compared to participants who did not provide microbiota 

data, the included participants were on average born at a higher gestational age, had higher length-for- 

age Z-score at birth, and their households had a lower mean asset index and less often access to piped 

water (see Table, Supplemental Digital Content 2, http://links.lww.com/MPG/B676). 

The mean (SD) microbiota-for-age Z-score (MAZ) was 0.77 (3.0) at 6 months, -0.24 (2.68) at 12 

months, -1.30 (1.78) at 18 months, and -3.70 (2.55) at 30 months. The mean (SD) Shannon index was 

1.63 (0.67) at 6 months, 2.40 (0.67) at 12 months, 2.95 (0.62) at 18 months, and 3.54 (0.46) at 30 

months. The two outcome measures were strongly correlated with each other at 6 (r=0.66, p<0.001), 

12 (r=0.76, p<0.001), and 18 months (r=0.77, p<0.001) and moderately correlated at 30 months 

(r=0.44, p<0.001). 

The mean (SD) prevalence of morbidity symptoms as percentage of days with symptoms between 

birth and 18 months was 2.2% (3.2%) for diarrhea and 11.5% (10.4%) for respiratory symptoms. A 

http://links.lww.com/MPG/B675)
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temperature above 37.5°C was measured on average at 1.5% (4.1%) of all weekly visits between birth 

and 18 months. 

We found no evidence of effect modification by the nutrition intervention (p>0.1 for all 

interaction terms) and participants from all three intervention groups were analyzed together. Children 

who had any diarrhea at 11 to 12 months had on average a 0.582 (95% CI -1.124;-0.041) lower MAZ- 

score at 12 months than children who did not have diarrhea, and children with respiratory symptoms 

at 11 to 12 months had on average a 0.129 (95% CI 0.018;0.241) higher Shannon Index at 12 months 

than children with no respiratory symptoms (Table 1). No associations between the longitudinal 

prevalence of morbidity symptoms between birth and 18 months and MAZ-score or Shannon Index at 

18 or 30 months were found (see Table, Supplemental Digital Content 3, 

http://links.lww.com/MPG/B677). 

In analyses of differences in microbiota composition at the level of individual taxa, longitudinal 

prevalences of fever, diarrhea, and respiratory symptoms between birth and 18 months were 

predictive of relative abundances of 25 OTUs at 18 and 28 OTUs at 30 months (q<0.05). Any fever, 

diarrhea, and respiratory symptoms in the 30 days preceding sample collection was predictive of 

relative abundances of 64 OTUs at 6 and 95 OTUs at 12 months. All OTUs included in the analyses 

are listed in the Table in Supplemental Digital Content 4 (http://links.lww.com/MPG/B678) and 

visualized as volcano plots in Supplemental Digital Content 5 (http://links.lww.com/MPG/B679). 

Several associations were observed with OTUs that have been previously associated with age or 

growth phenotypes. Among others, diarrhea in the 30 days preceding sample collection was at 6 

months negatively associated with the relative abundances of an OTU assigned to the species 

Bifidobacterium bifidum (q<0.001) and an OTU assigned to the species Bifidobacterium 

pseudolongum (q=0.002) and positively associated with the relative abundance of an OTU assigned to 

the genus Ruminococcus (q=0.04), while respiratory symptoms were positively associated with the 

relative abundance of an OTU assigned to the species Prevotella copri (q=0.01) and fever was 

negatively associated with the relative abundance of an OTU assigned to the genus Faecalibacterium 

(q=0.04). At 12 months, diarrhea preceding sample collection was positively associated with the 

relative abundances of OTUs assigned to the species Clostridium aldenense (q=0.03) and Clostridium 

http://links.lww.com/MPG/B677)
http://links.lww.com/MPG/B677)
http://links.lww.com/MPG/B677)
http://links.lww.com/MPG/B677)
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sordellii (q=0.005). Longitudinal prevalence of fever at 0 to 18 months was negatively associated with 

the relative abundance of an OTU assigned to the genus Prevotella (q=0.04) at 18 months. (Table 2) 

Diarrhea in the 30 days preceding sample collection was associated with both unweighted and 

weighted UniFrac distances at 6 months (p=0.002 and p=0.001) and at12 months (p=0.002 and 

p=0.005). Additionally, respiratory symptoms were associated with unweighted UniFrac distances at 

12 months (p=0.018, p=0.056 for weighted UniFrac distance). (See Table, Supplemental Digital 

Content 6, http://links.lww.com/MPG/B680) 

Significant associations between microbiota composition and subsequent morbidity were also 

observed. Higher MAZ-scores and diversity at 6 months were both predictive of less fever at 6 to 12 

months. For every one-unit increase in MAZ-score at 6 months, the number of days with fever 

between 6 and 12 months decreased by 13% (rate ratio [RR] 0.87, 95% CI 0.78; 0.96), and for every 

one-unit increase in Shannon Index, it decreased by 33% (RR 0.67, 95% CI 0.47; 0.96). All results of 

analyses on microbiota maturity and diversity and subsequent morbidity outcomes are shown in 

Tables 3 and 4. In analyses with relative abundances of individual OTUs as predictors, no OTUs at 6 

or 12 months were found to predict presence of fever, diarrhea, or respiratory symptoms in the 30 

days after sample collection after correcting for multiple hypothesis testing. 

Discussion 

The present study investigated whether morbidity prevalence is predictive of future microbiota 

composition in a low-income setting and tested the hypothesis that frequent morbidity is associated 

with less mature and less diverse microbiota in children in rural Malawi. Secondary analyses 

identified bacterial OTUs whose relative abundances were significantly associated with previous 

morbidity. This study also assessed whether measures of microbiota composition are predictive of 

subsequent morbidity. 

Diarrhea from 11 to 12 months of age was predictive of reduced microbial maturity at 12 months, 

and respiratory symptoms from 11 to 12 months were predictive of increased microbial diversity at 12 

months. At all time-points, morbidity preceding sample collection was predictive of the relative 

abundances of specific bacterial taxa, several of which are part of the model used to construct MAZ- 

http://links.lww.com/MPG/B680)
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scores (i.e., age-discriminatory taxa) or have previously been found to be part of random forests 

derived models predicting lean mass or weight gain in mice (i.e., growth-discriminatory taxa).(8) 

UniFrac distances were associated with diarrhea preceding sample collection at 6 and 12 months and 

with respiratory symptoms preceding sample collection at 12 months. Higher levels of both 

microbiota maturity and diversity at 6 months were found to be predictive of reduced fever incidence 

in the subsequent 6 months. After correcting for multiple hypothesis testing, relative abundances of 

individual OTUs were not predictive of subsequent morbidity. 

Our study had several strengths including a large sample size, an intensive and standardized 

follow-up of study participants, and a longitudinal study design. Morbidity data were collected weekly 

during the first 18 months, which enabled us to study associations between the gut microbiota and 

morbidity both before and after fecal sample collection. The process of fecal sample collection was 

designed to ensure sample quality through short transport times and timely freezing of samples after 

collection. However, data on diarrhea and respiratory illness prevalence were self-reported, and fever 

was the only morbidity variable measured by trained data collectors during weekly home visits. Our 

study was limited by missing data on breast-feeding, household crowding, and antibiotics use. 

Previous studies suggest that there is little variation in infant feeding practices in this area as almost 

all children are breastfed during the first 18 months of life, while exclusive breast-feeding beyond one 

month is very rare, but we cannot exclude potential bias by differences in antibiotic intake.(27) 

Because sequencing of the 16S rRNA V4 region provides low accuracy in taxonomic classification at 

species level, there is some uncertainty in the exact species assigned to the OTUs analyzed.(28) In 

addition, participants who did not provide data for this study had higher socioeconomic status than 

participants from whom data were analyzed, although the differences were small and unlikely to 

affect the validity of the results. Because the time points at which microbiota composition was 

examined in our study were 6 months apart, it is conceivable that short-term changes at particular ages 

in between those time-points were not detected. 

Overall, our findings generally do not support the hypothesis that morbidity prevalence predicts a 

subsequent decrease in gut microbiota maturity or diversity. They do, however, suggest that diarrhea 

and respiratory symptoms from 11 to 12 months of age are predictive of microbiota maturity and 



diversity at 12 months of age and that morbidity prevalence may influence overall microbiota 

composition and relative abundances of several bacterial taxa. These include taxa that have previously 

been shown to be age-discriminatory in this study sample and growth-discriminatory in gnotobiotic 

mice colonized with the fecal microbiota of participants from this study.(8) There was no consistent 

pattern in differences of taxa abundances across the time points and types of symptoms studied. 

Microbiota diversity and maturity may also be associated with the subsequent incidence of fever in 

children in rural Malawi. The observed associations were different for specific morbidity symptoms 

which suggests that the studied symptoms cannot be thought of as one entity in terms of their 

relationship with the gut microbiota. 

It is not clear whether morbidity is a cause or consequence of changes in microbiota composition. 

Moreover, the effect of morbidity on the microbiota could be mediated through increased antibiotics 

use, which has been shown to influence microbiota composition and an individual’s susceptibility to 

infections.(12,29,30) Previous studies suggest that diarrhea leads to at least short-term changes in gut 

microbiota, which is also supported by our findings.(10,31,32) Abundances of several age- 

discriminatory OTUs were associated  with prior diarrhea frequency. It is thus conceivable that 

diarrhea affects age-dependent changes in microbiota composition. Since we did not collect samples 

during acute episodes of diarrhea, these associations are likely not due to changes in stool consistency, 

which has been reported to influence microbiota composition.(33) The finding that respiratory 

symptoms are positively associated with microbiota diversity at 12 months is unexpected. It is 

possible that this is a random finding or a reflection of changes in overall microbiota composition as 

UniFrac distances seem to be associated with preceding respiratory symptoms. In the course of 

normal gut microbiota development, diversity increases rapidly around the age of 12 months. 

Therefore, morbidity could have a stronger influence on overall microbiota maturity and diversity at 

12 months than at other time points. 

Fever as measured weekly by data collectors was predictive of microbiota composition and was 

also predicted by microbiota maturity and diversity. This association has not been reported before; 

however, fever can be seen as a marker of systemic inflammation and interactions between the 



immune system and gut microbiota are well documented.(34) The gut microbiota has also previously 

been linked with malaria, which is a common cause of fever in the study population.(14,35) 

Taken together, our results suggest that in the studied rural Malawian setting, diarrhea from 11 to 

12 months of age is predictive of lower levels of microbiota maturity at 12 months, respiratory 

symptoms from 11 to 12 months of age are predictive of higher levels of microbiota diversity at 12 

months, and higher levels of microbiota maturity and diversity at 6 months may be associated with a 

lower subsequent incidence of fever. Specific morbidity symptoms might be associated with changes 

in the relative abundances of several bacterial taxa and overall microbial community composition. 

There was no clear consistent pattern in the associations between microbiota and morbidity. 

Therefore, we cannot conclude from these findings whether a reduction in disease burden could 

contribute to a healthy microbiota development or whether modifications of the microbiota could 

reduce morbidity. Further studies on the mechanisms of interactions between pathogens, microbiota 

and immunity are needed to assess whether microbiota related interventions could have the potential 

to improve child health outcomes in this population. 
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Table 1. Morbidity at 30 days before sample collection predicting the study participants’ 
microbiota diversity and maturity at 6 and 12 months. Results from covariate adjusted 
multivariable analysis.a 

6 months 

Exposure variables 
MAZ-score Shannon Index 

Coefficient (95%CI) P-value Coefficient (95%CI) P-value 
Fever 5-6 months -0.4 (-1.105;0.304) 0.265 -0.156 (-0.353;0.041) 0.12 
Diarrhea 5-6 months 0.088 (- 0.403;0.579) 0.724 0.095 (-0.043;0.233) 0.178 
Respiratory symptoms 5-6 
months 

-0.02 (-0.384;0.343) 0.91 -0.035 (-0.137;0.068) 0.505 

12 months 

Exposure variables 
MAZ-score Shannon Index 

Coefficient (95%CI) P-value Coefficient (95%CI) P-value 
Fever 11-12 months 0.097 (- 0.859;1.053) 0.842 -0.059 (-0.308;0.189) 0.638 
Diarrhea 11-12 months -0.582 (-1.124;-0.041) 0.035 -0.126 (-0.264;0.013) 0.075 
Respiratory symptoms 11-
12 months 

-0.012 (-0.45;0.426) 0.958 0.129 (0.018;0.241) 0.023 

  MAZ-score, microbiota-for-age Z-score; CI, confidence interval 
a adjusted for Household assets Z-score, ownership of any chicken, goats, and cows, source of drinking  
water, type of sanitary facility, maternal education, age, marital status, and HIV, child sex, delivery   
mode, season of sample collection, exact age at sample collection, sequencing depth, and 
sample processing pool 



Table 2. Time points at which age and growth discriminatory OTUs were associated 
with preceding morbidity 

Outcome Exposure variable Random forests 
derived model 

OTU ID Taxonomy Fever Diarrhea Respiratory 
symptoms Age Weight 

gain 

Lean 
mass 
gain 

191361 Ruminococcus sp 5 1 39BFAA 6 months X 

199145 Faecalibacterium sp DJF VR20 6 
months X 

365385 Bifidobacterium bifidum 6 months X 

681370 Bifidobacterium pseudolongum 6 months X X X 

4436552 Prevotella copri 6 months X 

2148365 Clostridium aldenense 12 
months X 

242298 Clostridium sordellii 12 
months X 

4318208 Prevotella 18 
months X 

The time point at which the OTU is associated with preceding morbidity is marked in green for 
positive and red for negative associations. The last columns indicate whether the OTU was 
previously found to be part of a random forests derived model predicting age in Malawian children 
or weight gain or lean mass gain in mice.(8) 



Table 3. The study participants’ microbiota diversity and maturity at 6 and 12 months 
predicting the number of days ill in the subsequent 6-month period. Results from negative 
binomial covariate adjusted multivariable analysis.a 

6-12 months 

Exposure variables 
 Fever     Diarrhea Respiratory symptoms 

RR (95%CI) P-value RR (95%CI) P-value RR (95%CI) P-value 
MAZ-score at 6 
months 

0.87 (0.78;0.96) 0.007 0.99 (0.91;1.08) 0.837 0.97 (0.92;1.03) 0.323 

Shannon Index at 6 
months 

0.67 (0.47;0.96) 0.031 0.98 (0.72;1.34) 0.914 0.97 (0.78;1.19) 0.759 

12-18 months 

Exposure variables 
 Fever  Diarrhea Respiratory symptoms 

RR (95%CI) P-value RR (95%CI) P-value RR (95%CI) P-value 
MAZ-score at 12 
months 

0.96 (0.90;1.03) 0.259 1.02 (0.96;1.09) 0.427 1.03 (0.98;1.07) 0.243 

Shannon Index at 12 
months 

0.9 (0.7;1.16) 0.428 1.16 (0.9;1.5) 0.261 1.14 (0.97;1.34) 0.117 

MAZ-score, microbiota-for-age Z-score; RR, rate ratio; CI, confidence interval 
a adjusted for Household assets Z-score, ownership of any chicken, goats, and cows, source of 
drinking water, type of sanitary facility, maternal education, age, marital status, and HIV, child sex, 
delivery mode, season of sample collection, exact age at sample collection, sequencing depth, and 
sample processing pool 



Table 4. The study participants’ microbiota diversity and maturity at 6 and 12 months 
predicting morbidity in the subsequent 30 days. Results from covariate adjusted multivariable 
logistic regression.a 

6-7 months 

Exposure variables 
 Fever  Diarrhea Respiratory symptoms 

Odds ratio 
(95%CI) 

P-value Odds ratio 
(95%CI) 

P-value Odds ratio (95%CI) P-value 

MAZ-score at 6 
months 

0.95 
(0.73;1.24) 

0.731 1.01 
(0.87;1.16) 

0.921 1.01 (0.91;1.12) 0.880 

Shannon Index at 6 
months 

0.66 
(0.24;1.82) 

0.419 1.20 
(0.74;1.97) 

0.461 0.77 (0.53;1.12) 0.170 

12-13 months 

Exposure variables 

 Fever  Diarrhea Respiratory symptoms 
Odds ratio 
(95%CI) 

P-value Odds ratio 
(95%CI) 

P-value Odds ratio (95%CI) P-value 

MAZ-score at 12 
months 

0.80 (0.63;1.00) 0.054 1.06 
(0.96;1.16) 

0.259 0.98 (0.91;1.06) 0.631 

Shannon Index at 12 
months 

0.47 (0.22;1.01) 0.053 1.38 
(0.94;2.03) 

0.096 1.10 (0.83;1.46) 0.509 

MAZ-score, microbiota-for-age Z-score; CI, confidence interval 
a adjusted for Household assets Z-score, ownership of any chicken, goats, and cows, source of 
drinking water, type of sanitary facility, maternal education, age, marital status, and HIV, child sex, 
delivery mode, season of sample collection, exact age at sample collection, sequencing depth, and 
sample processing pool 
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46 did not consent to add-on visits 
7 deaths 
22 drop-outs 
19 samples missed at 30 months 
51 no morbidity data available 

9310 pregnant women approached 

522 simplified follow-up 

782 women giving birth to 790 children (including 8 sets of 
twins) 

869 women in complete follow-up (10 twins) 

Stool sample available from 631 at 18 months, all data 
available for 575 

1391 pregnant women enrolled 

22 abortion or stillbirth 
65 drop-outs 

71 deaths 
46 drop-outs 
42 samples missed at 18 months 
56 no morbidity data available 

Stool sample available from 579 at 30 months, all data 
available for 528 

7919 Exclusions 
3470 not interested 
2760 out of area 
1333 >20 gestation weeks or duration of 
pregnancy unknown 
310 not available 
9 underage 
1 earlier participation 
30 medical condition 
6 other 

8 sets of twins 
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Supplemental Digital Content 2. Characteristics of included and excluded study 
participants 

Characteristic Included Excluded P-value 

Participants, n 651 228 

Maternal age at enrollment, 
years  25 (20;29) 23 (19;28) 0.009 

Maternal education 
completed, years 3 (0;6) 4 (2;8) 0.006 

Positive malaria RDT of the 
mother at enrollment 23% 23% 0.837 

Positive HIV status of the 
mother 12% 12% 0.9 

Gestational age at birth, 
weeks 39.7 (38.7;40.6) 39.3 (37;40) 0.0003 

Child born by cesarean 
section 6% 5% 0.62 

Child sex (female) 52% 54% 0.723 

LAZ at birth -1.0 (1.1) -1.6 (1.3) <0.001 

Length at birth 49.7 (2.2) 48.9 (2.4) 0.002 

LAZ at 18 months -1.6 (1.1) -2.1 (1.5) 0.027 

Length at 18 months 77.0 (3.0) 75.8 (4.5) 0.024 
Household assets Z-score -0.1 (0.9) 0.4 (1.2) <0.001 
Ownership of any chicken 55% 46% 0.053 
Ownership of any goats 29% 24% 0.292 
Ownership of any cows 5% 2% 0.237 
Source of drinking water is 
borehole, well, river or lake 
(instead of piped) 

86% 69% <0.001 

Type of sanitary facility is 
none or regular pit latrine 
(instead of ventilation 
improved pit latrine or water 
closet) 

90% 89% 0.717 

Values are in mean or median (standard deviation or interquartile range) or percentages.  
P-values are obtained from Mann-Whitney test or t-test (continuous variables) or chi-square 
test (proportions). 
LAZ, length-for-age Z score; RDT, rapid diagnostic test 
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Supplemental Digital Content 3. Morbidity prevalence at 0-18 months predicting the 
study participants’ microbiota diversity and maturity at 18 and 30 months. Results from 
covariate adjusted multivariable analysis.a

MAZ-score, microbiota-for-age Z-score 
a adjusted for Household assets Z-score, ownership of any chicken, goats, and cows, source of 
drinking water, type of sanitary facility, maternal education, age, marital status, and HIV, 
child sex, delivery mode, season of sample collection, exact age at sample collection, 
sequencing depth, and sample processing pool 

18 months 

Exposure variables 

MAZ-score Shannon Index 
Coefficient 
(95%CI) P-value Coefficient 

(95%CI) P-value 

Prevalence of fever 0-18 months -0.025 
(-0.11;0.06) 0.565 0.016  

(-0.013;0.045) 0.284 

Prevalence of diarrhea 0-18 
months 

-0.01  
(-0.061;0.041) 0.703 0.002  

(-0.015;0.02) 0.810 

Prevalence of respiratory 
symptoms 0-18 months 

-0.003  
(-0.02;0.015) 0.771 0.002  

(-0.004;0.007) 0.589 

30 months 

Exposure variables 

MAZ-score Shannon Index 
Coefficient 
(95%CI) P-value Coefficient 

(95%CI) P-value 

Prevalence of fever 0-18 months -0.044  
(-0.172;0.084) 0.503 0.0005  

(-0.022;0.023) 0.964 

Prevalence of diarrhea 0-18 
months 

-0.052  
(-0.128;0.025) 0.184 0.011  

(-0.002;0.025) 0.097 

Prevalence of respiratory 
symptoms 0-18 months 

0.004  
(-0.02;0.029) 0.753 0.0002  

(-0.004;0.005) 0.924 
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Differences in relative abundances of OTUs at 6 and 12 months predicted by any diarrhea, respiratory symptoms or fever in the 30 days preceding sample collection and differences in relative abundances of 

OTUs at 18 and 30 months predicted by longitudinal prevalence of diarrhea, respiratory symptoms or fever at 0 to 18 months. Ln fold-change plotted against respective q-values (fdr-corrected p-values), dots 

represent OTUs and are colored by phylum. Plots of 18 and 30 months data are scaled differently from 6 and 12 months data for better visualization.
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Supplemental Digital Content 6. Morbidity predicting differences in UniFrac distances 

6 months 

Exposure variables 
unweighted UniFrac distance weighted UniFrac distance 
R2-value pseudo P-value R2-value pseudo P-value 

Fever 5-6 months 0.002 0.625 0.002 0.392 
Diarrhea 5-6 months 0.006 0.002 0.015 0.001 

Respiratory symptoms 5-6 months 0.003 0.177 0.001 0.751 

12 months 

Exposure variables 
unweighted UniFrac distance weighted UniFrac distance 
R2-value pseudo P-value R2-value pseudo P-value 

Fever 11-12 months 0.002 0.731 0.001 0.737 
Diarrhea 11-12 months 0.006 0.002 0.008 0.005 

Respiratory symptoms 11-12 
months 

0.004 0.018 0.004 0.056 

18 months 

Exposure variables 
unweighted UniFrac distance weighted UniFrac distance 
R2-value pseudo P-value R2-value pseudo P-value 

Fever 0-18 months 0.002 0.527 0.003 0.121 
Diarrhea 0-18 months 0.001 0.714 0.001 0.834 

Respiratory symptoms 0-18 
months 

0.001 0.708 0.001 0.929 

30 months 

Exposure variables 
unweighted UniFrac distance weighted UniFrac distance 
R2-value pseudo P-value R2-value pseudo P-value 

Fever 0-18 months 0.002 0.427 0.001 0.717 
Diarrhea 0-18 months 0.002 0.151 0.001 0.953 

Respiratory symptoms 0-18 
months 

0.002 0.474 0.001 0.879 

Results from permutational analysis of variance models assessing the marginal effect of morbidity and including 
household assets Z-score, ownership of any chicken, goats, and cows, source of drinking water, type of sanitary facility, 
maternal education, age, marital status, and HIV, child sex, delivery mode, season of sample collection, exact age at 
sample collection, sequencing depth, and sample processing pool as covariates. Pseudo p-values were obtained through 
1000 permutations. 
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