

Muhammad Junaid Iqbal

COMMISSIONING AND SYSTEM
INTEGRATION TESTS FOR AN

INDUSTRIAL MANIPULATOR
WORKSTATION

Faculty of Engineering and
Natural Sciences
Master’s Thesis
November 2019

i

ABSTRACT

Muhammad Junaid Iqbal: Commissioning and System Integration Tests for an Industrial
Manipulator Workstation
Master of Science Thesis
Tampere University
MSc. Automation Engineering
November 2019

Industrial systems are composed of several sub systems and architectures that are provided
by different manufacturers. System integration aims at enabling a developer to combine these
unit systems with limited functionality into one system that can accomplish the execution of re-
quired process. Modern integrated systems are developed on top of service-oriented architecture
and use webservices for information exchange. Such systems are swiftly deployable and ensure
platform interoperability, system adaptability and service reusability. Meanwhile, system integra-
tion tests help to reduce the complexity during the integration phase thus ensuring process uni-
formity.

This thesis focuses on deploying a robotic manipulator in an industrial cell. The robot is in-
stalled in the assembly line as service provider while services are invoked by using RESTful web
services. Second objective of the thesis is to implement a free shape path planning algorithm for
the deployed autonomous manipulator to follow the desired curve. The last component of this
thesis is focused on developing integration tests to examine and verify the designed system.

The robot was commissioned at the FASTory assembly line, installed at FAST lab of Tampere
University. The free shape paths were implemented by interpolating Bezier curves using De
Casteljau algorithm. System was successfully integrated and verified using Top-down depth first
and bottom-up breadth first integration testing approaches.

Keywords: System Integration, Integration Tests, Web services, De Casteljau algorithm,
Free shape algorithms, Bezier Curves, SCARA robot, Anthropomorphic robot.

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

PREFACE

I would like to thank Prof. Dr Jose Martinez Lastra for giving me an opportunity to be a

student of automation engineering at Tampere University and for teaching and giving us

valuable knowledge in the field. I would also like to thank Mr. Luis Gonzalez Moctezuma

and Dr Borja Ramis Ferrer for teaching and helping with automation concepts and

courses. I extend my grateful thanks to Prof. Jose M. Lastra and Luis G. Moctezuma for

supervising this thesis, and for guiding me through the project and providing valuable

inputs. Special thanks to Miika Suomalainen and Olatz De Miguel, they have been a

great help for this project. I also wish to thank all my colleagues, helping staff at Fast Lab

and all the authors and editors referenced in this thesis.

Tampere, 03 November 2019

Junaid Iqbal

TABLE OF CONTENTS
1. INTRODUCTION .. 1

1.1 Background .. 1

1.2 Problem Statement .. 1

1.3 Scope .. 2

1.4 Thesis Structure ... 3

2. LITERATURE REVIEW ... 4
2.1 Background and History ... 7

2.1.1 Industrial Robots ... 8

2.1.2 Non-Industrial Robots ... 9

2.2 Robot Classification ... 13

2.2.1 Classification based on application [27], [28] 13

2.2.2 Serial vs Parallel Robots ... 14

2.2.3 Stationary Robots ... 14

2.2.4 Mobile Robots ... 15

2.2.5 Swarm Robots .. 15

2.2.6 Classification based on Power Source .. 15

2.2.7 JIRA Classification .. 16

2.3 Assembly Lines .. 16

2.4 Assembly Line Methods ... 17

2.4.1 Classic Assembly .. 17

2.4.2 Automated Assembly .. 18

2.4.3 Modular Assembly .. 18

2.4.4 U-shaped Assembly .. 18

2.5 Path Planning... 18

2.5.1 Algorithms ... 20

2.5.2 Free Shape Algorithm ... 23

2.5.3 Drawing Bots .. 23

2.6 System Testing .. 27

2.6.1 Unit Testing ... 27

2.6.2 Integration Testing .. 28

2.6.3 Regression Testing ... 30

2.7 Manufacturing Execution Systems ... 31

2.8 TCP/IP ... 33

2.9 Web Services ... 36

3. PROPOSED METHODOLGY ... 39
3.1 RTU – Robot Communication Model .. 39

3.2 Web Services ... 41

3.3 API Identification .. 42

3.4 Interfaces ... 45

3.5 Robot Topology Selection Criteria .. 46

3.6 System Tests ... 47

4. IMPLEMENTATION .. 53
4.1 FASTory Assembly Line Description .. 53

4.2 Cell Description .. 56

4.2.1 OMRON ecobra600 Pro .. 59

4.2.2 KUKA KR3 R540... 61

4.2.3 Gripper .. 62

4.3 RTU Communication .. 64

4.4 Robot Functionalities .. 66

4.4.1 TCP Server ... 68

4.4.2 Main .. 74

4.5 Free Shape Algorithm Implementation ... 78

5. SYSTEM TESTS ON THE INDUTRIAL PILOT.. 82
5.1 Bottom-up Breadth First ... 82

5.2 Top-down Depth First ... 84

5.3 Test Cases Implementation .. 85

5.4 Test Results ... 88

CONCLUSIONS ... 91
REFERENCES... 93

LIST OF FIGURES

FIGURE 1. STATIONARY ROBOT KINEMATICS [34] ... 15

FIGURE 2. POINT-TO-POINT MOTION KINEMATIC [5] ... 19

FIGURE 3. BFS TREE [43] .. 20

FIGURE 4. DFS TREE [60] .. 21

FIGURE 5. CUBIC BEZIER CURVES [47] ... 23

FIGURE 6. NETWORK ARCHITECTURE BY KOTANI AND TELLEX [49] ... 24

FIGURE 7. FLOW CHART OF PORTRAIT DRAWING ROBOT [50] .. 25

FIGURE 8. FLOW CHART OF PEN-AND-INK DRAWING ROBOT ALGORITHM [51] 26

FIGURE 9. SYSTEM TESTING LEVELS .. 27

FIGURE 10. SYSTEM INTEGRATION TESTING .. 28

FIGURE 11. BOTTOM DOWN INTEGRATION TESTING ... 30

FIGURE 12. REGRESSION TESTING METHODS ... 31

FIGURE 13. MES CONTEXT MODEL CONCEPT BY MESA INTERNATIONAL [69] 32

FIGURE 14. PLANT INFORMATION MODEL BY MESA INTERNATIONAL [69] 32

FIGURE 15. PYRAMID OF AUTOMATION [71] ... 33

FIGURE 16. OSI MODEL AND TCP/IP MODEL COMPARISON [82] ... 34

FIGURE 17. APPLICATION LAYER [78] ... 34

FIGURE 18. TRANSPORT LAYER [78] .. 35

FIGURE 19. INTERNET LAYER [78] ... 35

FIGURE 20. DATAGRAM FRAGMENTATION [78] ... 35

FIGURE 21. NETWORK INTERFACE LAYER [78] .. 36

FIGURE 22. UPDATED TCP/IP MODEL [77] .. 36

FIGURE 23. WS-BASED MES SYSTEM INTEGRATION FRAMEWORK [75] ... 37

FIGURE 24. SOA COMPONENTS [73] ... 37

FIGURE 25. PROPOSED METHODOLOGY FLOW CHART .. 39

FIGURE 26. SEQUENCE DIAGRAM OF ORCHESTRATOR – S1000 COMMUNICATION 40

FIGURE 27. S1000 - APPLICATION EVENT NOTIFICATION ... 41

FIGURE 28. COMMUNICATION SEQUENCE MODEL .. 44

FIGURE 29. API PATTERN FOR RTU - ROBOT COMMUNICATION .. 44

FIGURE 30. ROBOT MODULES .. 48

FIGURE 31. PEN PLACEMENT CLASS DIAGRAM .. 49

FIGURE 32. PROCESS FLOW .. 50

FIGURE 33. PROPOSED TEST APPROACH .. 51

FIGURE 34. BOTTOM-UP BF .. 52

FIGURE 35. TOP DOWN DF.. 52

FIGURE 36. FASTORY WORK CELLS AT FAST LAB – TUNI ... 53

FIGURE 37. FASTORY LAYOUT ... 54

FIGURE 38. LAYOUT OF WS 1, 3 & 7 ... 54

FIGURE 39. ASSEMBLY LINE'S NETWORK CONFIGURATION ... 56

FIGURE 40. ECOBRA600 WORK ENVELOPE [80].. 58

FIGURE 41. KR3 R540 WORK ENVELOPE, SIDE VIEW [81] ... 58

FIGURE 42. KR3 R540 WORK ENVELOP, TOP VIEW [84] ... 59

FIGURE 43. ROBOT AXES ROTATION DIRECTION .. 59

FIGURE 44. ECOBRA600 PRO WITH EAIB CONTROLLER .. 60

FIGURE 45. ROBOT INTERFACE PANEL .. 61

https://d.docs.live.net/b2ad4e6a4f541948/Documents/Thesis_%20Junaid%20Iqbal%20_%20272538%20_%20updated%20_2_2%20(1).docx#_Toc23671111

FIGURE 46. HP ETHERNET SWITCH ... 61

FIGURE 47. SYSTEM CABLE DIAGRAM .. 62

FIGURE 48. END-EFFECTOR MOVEMENT DIRECTIONS ... 63

FIGURE 49. CELL COMPONENTS ... 64

FIGURE 50. NETWORK CONFIGURATION .. 64

FIGURE 51. COMMUNICATION SEQUENCE ... 66

FIGURE 52. RTU'S REST INTERFACE ... 66

FIGURE 53. END-EFFECTOR ORIENTATION ... 67

FIGURE 54. MAIN ROBOT PROGRAM MODULES .. 68

FIGURE 55. DECISION MAKING BY TCP SERVER .. 68

FIGURE 56. FLOW CHART FOR PEN PICKUP REQUEST .. 70

FIGURE 57. ACTIVITY DIAGRAM FOR PEN PICKUP DECISION .. 71

FIGURE 58. CODE FLOW FOR DRAW1 ... 72

FIGURE 59. ADDING POINTS TO DRAW POINTS ARRAY .. 74

FIGURE 60. MAIN MODULE’S FUNCTIONS .. 75

FIGURE 61. PICKUP PROCESS FOR PEN1 ... 76

FIGURE 62. DROPPEN2() CALL FROM PICKPEN1() .. 76

FIGURE 63. DRAWING PROCESS FLOW ... 78

FIGURE 64. THIRD ORDER BEZIER CURVES [82] .. 79

FIGURE 65. GRAPHICAL REPRESENTATION & PSEUDOCODE FOR DE CASTELJAU ALGORITHM [82] .. 79

FIGURE 66. CUBIC BEZIER RETURNED BY THE SVG2PATHS TOOL ... 80

FIGURE 67. BOTTOM-UP BREADTH FIRST TREE .. 86

FIGURE 68. TOP DOWN DEPTH FIRST TREE .. 87

FIGURE 69. API PERFORMANCE TABLE ... 88

FIGURE 70. BOTTOM-UP BF TEST SUMMARY REPORT ... 89

FIGURE 71. TOP DOWN DF TEST REPORT SUMMARY ... 89

FIGURE 72. SYSTEM'S EXECUTION VS DURATION GRAPH .. 90

FIGURE 73. THREE DRAWING OUTPUTS OF OMRON ROBOT ... 90

LIST OF TABLES

TABLE 1. IR APPLICATION PERCENTAGES ACCORDING TO 1996 RIA DATA .. 6

TABLE 2. FACTS: ROBOTICS TODAY [5] ... 7

TABLE 3. REST VS SOAP COMPARISON ... 38

TABLE 4. REST API LIST .. 43

TABLE 5. FASTORY CONVEYOR’S ZONE DESCRIPTION .. 55

TABLE 6. COMPARISON BETWEEN ECOBRA600 AND KR3 .. 57

TABLE 7. TEST SUITE 1: DRAWING TOOL’S UNIT MODULE TESTING .. 82

TABLE 8. TEST SUITE 2: PEN CHANGE OPERATIONS TEST ... 83

TABLE 9. TEST SUITE 3: CONFIGURE Z-AXIS REQUEST TESTING ... 83

TABLE 10. TEST SUITE 4: DRAW OPERATION TESTING ... 83

TABLE 11. TEST SUITE 1: CONFIGURE Z-AXIS .. 84

TABLE 12. TEST SUITE 2: DISCARD PEN ... 84

TABLE 13. TEST SUITE 3: PICK GREEN PEN .. 84

TABLE 14. TEST SUITES 4,6,8: DRAW .. 85

TABLE 15. TEST SUITES 5,7: CHANGE PEN .. 85

TABLE 16. TEST SUITE 9: PLACE PEN ... 85

LIST OF SYMBOLS AND ABBREVIATIONS

ACE Automation Control Environment
aibo Artificial Intelligence Robot
Aka Also known as
AMF American Machine and Foundry
API Application Programming Interface
ARC Advanced REST Client
ARP Address Resolution Protocol
BFS Breadth First Search
CPS Cyber Physical Devices
DARPA Defence Advanced Research Projects Agency (U.S.)
DCS Distributed Control Systems
DFS Depth First Search
DOF Degree of Freedom
EsaLAN Elan Safety Local Area Network
FIFO First in First out
FPGA Field-programmable Gate Array
FTP File Transfer Protocol
GM General Motors
HMI Human Machine Interface
HP Hewlett-Packard
HTTP Hypertext Transfer Protocol
IBVS Image-Based Visual Servo
ICMP Internet Control message Protocol
IFR International Federation of Robotics
IL Internet Layer
IOT Internet of Things
IP Internet Protocol
IPR Ingress Protection Rating
IR Industrial Robot
IR Industrial Robot
ISO International Standards Organization
ISS International Space Station
JIRA Japanese Industrial Robot Association
JSON JavaScript Object Notation
KRL KUKA Robot Language
KSS KUKA System Software
LLC Logic Link Control
MAC Media Access Control
MCU Micro Control Unit
MES Manufacturing execution systems
MITI Ministry of International Trade and Industry (Japan)
MTU Maximum Transfer Unit
NASA National Aeronautics and Space Administration
NL Network Layer
OSI Open Systems Interconnection
POP3 Post Office Protocol version 3
PUMA Programmable Universal Machine for Assembly
PVBS Position-Based Visual Servo
R.U. R Rossum’s Universal Robots
RARP Reverse Address Resolution Protocol
REST Representational State Transfer

RFID Radio Frequency Identification
RIA Robotics Institute of America
RPC Remote procedure call
RTU Remote Terminal Unit
SCARA Selective Compliance Assembly Robot
SIT System Integration Testing
SMTP Simple Mail Transfer Protocol
SNMP Simple Network Management Protocol
SOA Service-oriented Architecture
SOAP Simple Object Access Protocol
TCP Transmission Control Protocol
TL Transport Layer
U.S. United States
UDP User Datagram Protocol
URL Uniform Resource Locator
W3C World Wide Web Consortium
WS Web Services
WS Workstation
XML Extensible Markup Language

1

1. INTRODUCTION

1.1 Background

According to International Federation of Robotics (IFR), 384,000 robots were shipped

worldwide only in 2018. IFR predicts that only in 2021, 630,000 robots will be dispatched

around the globe.[1] It is estimated that by 2020, robotics market will grow to $40 billion.

As Robotic applications are increasing on industry floor, manufacturing systems are be-

coming more reliable and efficient. Manufacturing system’s Stability and precision are

quite important factors. Because of advantages associated with using a robotic arm in

industrial process, these manipulators are being used in helping workers lift and move

equipment and material. They also find their applications in tasks like surgeries, pressing,

welding and drawing.

Adaptability, reusability and interoperability are the key features of any manufacturing

system. Exchange of information between different devices helps in building an intelli-

gent system and a better integrated system. Service reusability and interoperability are

functionalities that make Service-Oriented architecture (SOA) an essential tool in system

development. Web services (WS) feature language transparency and they are a realiza-

tion of SOA. Language transparency makes machine-to-machine communication, over

a network, language independent. Hence, web services allow devices or applications

from different sources to communicate. WS support Remote Procedure Calls (RPCs)

enabling a client to invoke services.

System Integration Testing (SIT) is an important part of system development process. It

helps verify a system’s behaviour, interaction between the modules. SIT makes sure that

errors are detected at early stages and makes it easier to fix those errors in integrated

systems. Basic objective of integration testing is to help in developing an error free, work-

ing version of a system, where modules are interacting in required manners, data follow

and memory allocations are working as expected.

1.2 Problem Statement

Demand for innovative products has made the manufacturing processes more complex.

Processes within a factory are comprised of various subsystems which are designed by

different manufacturers. Increase in number of technology solution providers has led to

2

provision of innovative automated processes on the industrial floor but at the same time,

it has increased the system complexity. Therefore, it has become difficult to integrate

various processes on the production floor.

Difficulty in system integration arises from the inter dependencies of subsystems, and

the communication requirements between them. This thesis is focused on providing a

solution to reduce system integration complexity and aims at providing a way to ensure

process uniformity. It is important to define the common interfaces to reduce system

integration complications.

Furthermore, during application development process, the subsystems that are imple-

mented together are quite dissimilar from each other as these can be built on different

logics. Hence, it is also important to test the integration of different subsystems. There

can be different data structures for varying modules, and it is necessary to verify the

communication between hardware components in this scenario. Automated integration

test techniques are usually developed for software systems, where the response is avail-

able in milliseconds. Physical systems take more time to generate response since a

physical task must be performed before a response is generated.

1.3 Scope

This thesis is aimed at providing a solution to reduce the complexity during the integration

phase thus ensuring process uniformity. In addition to that, it aims at providing a solution

to use existing software integration test techniques to be implemented for physical sys-

tem integration testing. Focus of this thesis revolves around these questions:

• How can integration tests be used to reduce complexity in the
commissioning of industrial manipulators?

• How can testing used in traditional IT be adapted for testing in
physical industrial equipment?

• How can integration tests be automated for the realm of industrial
shop floor?

The scope of this thesis is also extended to the implementation of free shape path plan-

ning for industrial manipulator.

• How can free shape algorithms be implemented in industrial ma-
nipulators?

3

1.4 Thesis Structure

This thesis consists of five sections, Section one introduces problem statement and pro-

vides scope and objective of this thesis. Chapter 2 provides background, existing re-

search and basic concepts related to the problem. Chapter 3 is focused on proposing a

methodology to discuss the problem and it also provides the key criteria considered to

select the equipment for this project. Chapter 4 delivers the implementation of proposed

methodology and highlights the system’s functionality flow. Integrated system is verified

using integration tests which are explained in chapter 5. Chapter 6 provides a conclusion

answering the question proposed in the scope of this thesis.

4

2. LITERATURE REVIEW

The term “Robotic” is defined as the range of technologies, in the form of physical ma-

chines having computational intelligence that gives it ability to perform tasks which can-

not be performed using the unintegrated core components alone. [2] Machine’s ability to

move on its own make way for a wide range of applications in robotics. Robotic systems

are more efficient and precise than humans, faster than machines. Tasks performed by

robotic systems are usually complex and cannot be performed by conventional ma-

chines. [2]

Robotics have existed since thousands of years. People have been creating robot like

machines and devices since Roman-Greece times. But in 1921, a Czech writer Karel

Capek introduced the word “Robot” in his science fiction Rossum's Universal Robot. Ac-

cording to Capek, robot is an artificial device without unnecessary qualities of a human

such as feelings and it is brilliant at its work. The first human body shaped robot was

made by Leonarda da Vinci in 1945. This robot was capable of moving arms and legs.[3]

Cambridge dictionary has defined robot as a machine that is controlled by some compu-

tational system such as a computer or completes the given tasks autonomously.[4] While

the RIA (Robotics Institute of America) has defined robot as a multifunctional and repro-

grammable device that is programmed to perform some certain predefined tasks such

as moving an object. While in engineering, robots are defined as multipurpose and com-

plex device that has autonomous control system, a mechanical structure and a sensory

system.[5]

In industry, robots are replacing human operators by taking over the tasks that can be

harmful or dangerous since 1960s. The introduction of robots in production processes

has not only made the production process more accurate and faster but also has opened

the doors for researches to develop more intelligent and flexible robots for these pro-

cesses. Increase in robotic applications and the level of sophistication, in completing a

task, introduced by a robot have motivated the research organization to create new

needs for robots outside the production processes. Currently, not only the robots are

being developed for manufacturing processes, but also there is a vast demand for robots

that are service-oriented or can satisfy social need. [6]

In 1920s, a science fiction: The Robot as a Human Servant gave the idea of robot that

can serve humans as a servant and thus created the demand for robot servants. Now

researchers are aimed at developing service-robots that can fulfil human social needs.

5

This has changed our market viewpoint from industrial robots to social and personal ro-

bots.[6]

According to Gates, the robotic industry today is developing at the same speed the as

the computer industry developed three decades ago. Now, on one hand, the industrial

robots working in assembly lines are manufacturing automobiles. On the other hand,

robots are disposing roadside bombs in Afghanistan and Iraq. They are performing sur-

geries, cleaning floors. They are also changing our hobbies and toys.[3]

Movies and other science fictions are playing quite a role in popularizing the robots

among people. People are becoming more open not only to the idea of robots working

and helping in daily lives but also the idea of robot companions. Even though lots of

advancement has been made in robotics industry, but we are quite far away from devel-

oping those science fiction robots.[3]

Currently, domestic robots are capable for carrying out one dedicated task. These tasks

include keeping a diary, message delivery, educational functions, home safety and en-

tertainment. But these robots are not advanced enough to do more than one job with that

much accuracy and efficiency. Research is also focused on the interaction of these ro-

bots with human. But more and more studies in the field are making it possible for com-

panies to develop multi-tasking robots. Such as, Sony aibo, it can interact with children

and can study growth, learning abilities and their emotions.[7] Sony aibo and its design

is inspired by dog. Artificial intelligence and advanced electro-mechanical system have

made it smart.[8]

According to Asimov, there will be a need to introduce new discipline, for robotic intelli-

gence, under the name “robo-psychology” because of its different from human intelli-

gence. Pransky has introduced the concept of robot assistant as: robotic nanny, robot

assistant, robotic butler. Robotic nanny can raise and feed the children; assistant can

serve as a secretary at home while butler can help with housework. This seems like a

very luxurious future where robots are working as servants. Robotic intelligence will

reach to a level where they’ll be evolving and reproducing themselves.[9]

By the year 2006, industrial robot population was 0.95 million out of 4.49 million robot

population. It made 21.16% of total population. The qualities of industrial robot defined

by RIA are following: Multifunctional, reprogrammable and can move objects. Currently,

industrial robots are working in all the manufacturing, packaging, medical, communica-

tion, optical and food industries ranging from optical electronics manufacturing to auto-

motive manufacturing.[10]

6

In Industry, robotic automation has helped with workplace safety, reduction in labour

costs, increase in productivity, better product quality and in making the production pro-

cess more consistent and a faster. Due to Environmental regulations, and global com-

petitiveness, all the manufacturing and production industries to continue research in

making their production process better by introducing and improving automation.[10]

Batch production of products has been the focus of industrial automation to this date.

Product quality increase in productivity and better life at workplace has been the aims of

automation. In japan, MITI has been focused on the concept of fully automated factories

by aiming their research at machine vision, machine understanding of spoken languages.

Material handling in assembly lines by industrial robots, visual inspection of process and

product is also a focus of this research.[11]

Application Percentage shared in IR applica-
tions

Welding Process 41%

Material Handling 27%

Coating and painting 20%

Material Removal, Dispensing and As-

sembly Applications

4%

Table 1 below shows the percentage in which IR were deployed in different industries

according to 1996 RIA data. Table shows that, at that time, robots were more common

in welding and material handling. By 2008, not only the IR maintained their position in

these applications, but they were also introduced in food and automotive industry.[10]

Robot manufacturers are also focused on multi-robot controls, because robot working in

pipeline reduces the production cost and improve the speed of the production process.

Since multiple robots are being controlled by one controller, it helps to avoid collision,

saves floor space. Multi robot system is made more flexible when robot is used to hold

the work price and other robot works on it.[12]

Wireless communication between robot sensors and controller is also under develop-

ment. Although, this communication is quite efficient already, but wireless communica-

tion will help in case of emergency and safety. Wireless communication between teach

panel and robot controller will make it safer for user. Machine vision has been in use for

force control in robotic applications for a long time now. Future robotic applications look

very promising where they will be able to perform tasks like cutting, sorting, cleaning with

higher level machine vision. [12]

Table 1. IR application Percentages according to 1996 RIA data

7

In short, IR are being used in all most every modern industry to help in improving the

manufacturing and production systems, in increasing the efficiency, in helping the glob-

alization, demographic and environmental issues, cost efficiency, in improving the work

place environment more human friendly.[10] But to ensure safety in work place environ-

ment, there are three laws of robotics:

1. A robot must not injure or hurt a human being.
2. A robot must obey the orders given by human being if it doesn’t conflict with first

law.
3. A robot must protect itself as long as it obeys the both laws given before.[13]

Some books also state a zeroth law that is: A robot must not injure humanity, or let harm

humanity through inaction.[14]

For safety reasons, IR were placed in a cage. But now, they have started to come out of

their cages. Input/output systems and fail-safe buses and real time robot controller are

helping with safety issues. EsaLAN Systems developed in 2006 is a development in ro-

botic workplace safety to make sure that those laws are followed. It has introduced the

software limits to limit the working range of a robot.[12]

Organizations in the Field of Robotics More than one thousand

Magazines about robotic More than five hundred

Yearly conferences about robotics One hundred or more

Degrees in robotics Fifty or more

Table 2 states the facts given by Jazar in his book: Theory of Applied Robotics. Accord-

ing to Jazar, robots are better than humans at completing a task with higher accuracy

and precision. Moreover, robots do not have human like needs of fresh air, suitable tem-

perature and proper lightening. They can work in any kind of environment. That is the

reason, robots are becoming more common in industries and a large number of industrial

applications depend on them.[5]

2.1 Background and History

In history, robots are highlighted by science fiction and cinema writers. Those writers

gave birth to a fantasy that has been changed to reality. Since, in fiction, robots are

usually given a human like form, so, the definitions of a robot given by different experts

varies from a multipurpose, reprogrammable industrial manipulator to a humanoid ma-

chine that is able to perform tasks like a human.[14]

The word robot was introduced in last century, but the field or robotics has existed since

long before that. As described earlier the word robot was introduced by Capek in his play

Table 2. Facts: Robotics Today [5]

8

fiction Rossum’s Universal Robots which was published in 1923. R.U.R was premiered

in1921 for first time. Hence the word robot dates to 1921. The word robot seems to be

derived from two Czech word robota and robotnik which means servitude and peasant

respectively. Before Capek, word “automation” was in use instead of “robot”.

The word Robotics was first used by another science fiction writer Isaac Asimov. In his

book “I, Robot”, which was published in 1950, Asimov wrote robot-themed short stories.

In these short stories, he stated the “Three Laws of Robotics”. These laws have been

stated above in this document. Later, 1985, he introduces 4th law which was called “Ze-

roth Law”. So, The world of robotics have Capek and Asimov to thank for their contribu-

tion to the field in the form science fictions.[14]

 Industrial Robots

The first industrial robot that made it to market was The Unimate #001. In 1956, George

C. Devol and Engelberger met at a cocktail party and started talking about the Asimov’s

science fiction which started a partnership between these two, which led to this invention.

Engelberger is known as “Father of Robotics”. The first robot was installed at General

Motors’ assembly line in 1959 and it was controlled by cams and limit switches. The first

mass produced robots were Unimate 1900. By 1961, around 450 robots were being used

in die casting. [14], [15]

In 1960, another robot Versatran (derived from words versatile transfer) mean was de-

veloped by two brilliant minds at AMF: Veljko Milenkovic and Harry Johnson. Later, six

Versatrans were installed at Ford factory in Canton and by 1963, robot was commercially

available.

A Norwegian company Trallfa Nills Underhaug designed a hydraulic robot named Trallfa

robot in 1964. The robots were designed due to the shortage of labour in wheelbarrow

manufacturing. The robot had five or sex DOF and were used for wheelbarrows’ painting

purposes. Continuous path motion and revolute coordinate systems were used for the

first ever time in these robots. Later in 1976, these robots were modified by Sims, Jeffer-

ies and Ransome for arc welding application. Machine vision was first introduced by GM

in installing the Consight system in 1970. [14]

JIRA (Japanese Industrial Robot Association) was founded in 1971, because of the fact

the Japan was making vast advancement in using robots in manufacturing. In 1974, Ka-

wasaki improved the Unimate robot’s design to use in arc welding of motorcycle frames.

A Unimation robot assembly line was already in work at their Nisan plant since 1972.

9

Meanwhile in 1973, for their Hi-T-Hand robot, Hitachi created force controlling and touch

sensing abilities.[14]

First micro-computer controlled, Hydraulic actuated Industrial robot T3 (The Tomorrow

Tool) was developed by Cincinnati Milacron Corporation in 1973. The robot was used for

transferring bumpers, welding and loading machine tools in automobile industry. The

robot was later upgraded to perform drilling tasks in 1975.[14]

Victor Scheinman, in 1974, designed a robotic arm that was controlled by a minicom-

puter. This arm was named as Vicarm but renowned as standard arm. PUMA was de-

veloped from Scheinman’s Vicarm by GM in 1977.[14]

In 1970, a Swedish company ASEA Group of Vaster created automated electric IRb-6

and IRb-60 robot for grinding tasks. Later in 1977, ASEA created two more microcom-

puter-controlled robot that were powered by electricity. 1988, Brown Boveri Ltd and

ASEA merged to form ABB. ABB is working in automation and power technology and it

is one of the leading companies today.[14]

In 1979, SCARA, a robot with revolute joints, was designed by the joint efforts of IBM,

Yamanash University and Sankyo. Since joints were revolute, its arm was rigid and pro-

vided better assembly for vertical tasks. In 1983, company under the name Adept Tech-

nology was founded and it introduced its first SCARA robot under the name AdeptOne

SACARA. In 2015, Adept Technology merged with OMRON. OMRON adept is now

providing robots in all the services industries from automotive, electronics to research

labs.[14]

 Non-Industrial Robots

Mariner 2 was the first space probe that was used in space exploration. In 1962, it was

passed as close as 34,400 kms from Venus, and it gathered data about temperature,

and atmosphere and sent it back to Earth. Venera 7 was the first spacecraft to land on

another planet. It landed on Venus in 1970 and transmitted the data back to Earth, though

transmission was limited because of very high temperature on the planet. In 1982, an-

other soviet lander, Venera 7 landed on Venus and sent coloured pictured from the there.

Another achievement of Venera 7 was that it took surface samples by drilling, analysed

the data, and transmitted the result back to Earth.[14]

Mariner 10 was first space probe that was sent to two planets: Venus and Mercury. Mar-

iner 10 was first sent to Venus and it used Venus’ gravitational pull to enter Mercury’s

orbit. Between 1974 and 1975, it crossed Mercury thrice at 203 kms. It took 2800 pictures

and transmitted them back to Earth.[14]

10

In 1975, NASA sent two probes Viking 1 and Viking 2 to Mars. Soon after the spacecrafts

started orbiting the planet, both landers were sent the surface of Mars leaving the orbiters

in space. Both orbiters kept transmitting the photographs and results of biological exper-

iments back to Earth for an extended period of time: till 1980 and 1978 respectively.[14]

The Opportunity rover, one of NASA’s twin rovers: Spirit and Opportunity. They were

launched in 2003 and landed in 2004 on two different places on Mars. There rovers were

provided with microscope imager, panoramic camera and spectrometer. Their mission

was to find water and analyse surface and capture images.[14]

Falcon 9, rocket launched by SpaceX in 2017, launched a geosynchronous satellite. This

rocket was first launched in 2016 to supply cargo at NASA’s space station. The relaunch

of the rocket in 2017 shows that a milestone to reuse a rocket has been achieved.[16]

Similar to space programs, robots also find their application in military and police tasks

from sweeping landmines to sending a traffic stop robot to print speeding ticket on high-

way.[17] Developing a robot that can identify landmines just like human’s is a topic of

interest for humans that can help save lives of many soldiers. Icosystems, swarm intelli-

gence-based robots, a system of 120 robots. These robots are will use tail and fail meth-

odology to search for landmines or most efficient paths rescue paths.[14]

Military drones are quite popular among U.S. military since they can use them to attack

terrorists from the air. First drone Predator UAV was used in 2002 to destroy Al-Qaeda

militants in Afghanistan, though drones had been under military use since 1999 for in-

vestigation purposes. DARPA funded researchers are also focused on designing robots

that can monitor the secure areas in remote locations and can inform military base in

case of a break in.[14]

Apart from saving lives in military operations, robots have been in use for medical appli-

cation since past 20 years. They find applications from developing medicines to perform-

ing surgeries. In 1984, Engelberger developed HelpMate robot. In 1988, these robots

were helping in delivering medical supplies at hospital wards.[14]

High precision and absence of human like feelings like trembling and shaking makes

robots more useful in performing surgeries than humans themselves. In 1990, a device

Robodoc was used to hip replacement surgery on a dog, the device was developed by

Howard Paul and an orthopaedist doctor Willian Bargar in 1990. Later in 1993, this robot

was used in first human surgery. Before Robodoc, surgeons needed to cement the hip

to femur by digging down a channel. Over time of 10 to 15 years, cement breaks down

and surgery was needed again. Robodoc helped the surgeons to dig channel so pre-

cisely that no cement was needed to keep the new substitute hip in place.[14], [18]

11

Surgical incision effects recovery time of tissues and it may leave a mark. But robotics

incisions are small, and which reduces the recovery time a lot and these MIS (minimally

invasive surgeries) are quite popular. Because of their popularity they are being used in

Endoscopy since 1980s: inserting a tiny sized camera into body through a small incision.

This camera helps with surgeries allowing the doctor to see where surgical tool is go-

ing.[14]

New robotics systems let a doctor to operate surgeries using a fully remote-control sys-

tem: jogging camera and tools through a use panel. Even the heart surgery is performed

using this remote surgical system.[14]

Development of prosthetics is a quite success in medical robotics. A robotics device re-

places the missing body part while providing the natural movements of missing part. In

1988, the first robotic arm, equipped with artificial skin, moveable fingers, motorized

shoulder and rotating wrists, was fitted to Mr. Campbell Aird.[14]

Apart from finding applications in industry, space exploration, military and medicine, ro-

bots are being used in in other fields as well, such as entrainment industry. In 1988, a

robotic toy Furby became popular in market, because it was equipped with sensors to

help it react to environment. In addition to its own Furbish language, it could learn English

language through human interaction.[14]

In 1988, another robotic toy Lego MINDSTORMS were released. LEGOS are reconfigu-

rable. They became quite popular in educational programs because they were quite

helpful in teaching about robotics sensor and actuators.[14]

Inspired from space exploration robots, deep sea explorers are focused on using robotics

to explore deep waters. Odysseys llb was developed for sea exploration while Dante II

was designed for volcanic exploration. Robots are also being developed for helping in

disaster and emergence situations or to provide fast life support such as drone ambu-

lance with oxygen supply.[14]

Robots have already become an important part of our lives. Now, it is much likely that,

with the help of robots, we can industrialize the moon. Today, robot technology has be-

come very advanced, but robotics has not reached its saturation point yet. A lot of re-

search and advancement is still going on in the field especially on the robot control be-

cause it controls the robot performance. [12], [19]

These days, quadcopters are quite popular because of their applications from photog-

raphy to use in shipment. Phenox is a reprogrammable, intelligent and interactive quad-

12

copter developed by Phenox lab, Japan in 2012. FPGA and MCU makes self-localiza-

tion, self-stabling and fast image processing possible. It is gesture and voice controlled

hence interactive, self-stabling and light weight.[20]

In 2005, an Austrian company Schiebel developed CAMCOPTER S-100, that is an au-

tomatic drone, that can complete entire mission on its own. It can be used for military

application, supply line monitoring or laser scanning and, because of it is completely

automated, it is called Unmanned Air System (UAS). It can take-off and land vertically,

without any extra help, can operate in any conditions: day, night, bad weather. Its range

is 200km and it is has a GPS system that can be programmed for flight direction.[21]

SmartPal is a cleaning robot developed by a Japanese company Yaskawa Electric Cor-

poration. It can detect and pickup boxes and objects from floor using its hands and arms

that has 7 DOF. Robot has IR sensor to detect humans, distance sensors to detect rel-

ative position, and a camera mounted on the head to detect the objects to pick. It also

has wireless communication system to interact with other SmartPals or peripherals like

elevators.[22]

Rollin Justin is a mobile humanoid robot developed by German company German Aero-

space Center (DLR) in 2008. It finds its applications in household work or to assist as-

tronauts in space. It has stereo camera and motion detection sensors, that only make it

capable to reconstruct its environment but also make it possible to move independently

and autonomously while avoiding obstacles. It has multiple DOF, can multitask and ca-

pable of catching things thrown at it with 80% accuracy. It can serve beverages while

monitoring its environment and avoiding obstacles or can even bring coffee from a coffee

machine. [23]

In 2005, Boston Dynamics developed a four-legged dog like robot named “BigDog”. It

has 16 joints, Gasoline Engine, hydraulic joints and a payload capacity of 45 kg. It has

the ability to absorb shocks and can recycle energy while walking. It is equipped with

sensors for join force, position, ground load and contact, navigation, stereo camera, and

gyroscope. Its local computer based control system monitors and handles user interac-

tion and it can walk on any different kinds of surface while carrying load.[24]

YuMi is first ever collaborative robot developed by ABB in 2015. Since YuMi is a collab-

orative robot, it brought the idea of humans and robot working side by side, without any

cages, to reality. It is intuitive robot that can perform repeated tasks with precision. It is

a dual arm robot, with on cameras mounted on gripper and is meant for industrial as-

sembly line operations. Lead-through programming is one of the features of YuMi, that

13

means, to make this robot able to perform a task, it is not necessary to write code in-

structions, it can be taught by guiding through the task.[25]

Pi4 Workerbot is a two-armed, humanoid robot developed by Fraunhofer IPK Berlin Ger-

many. It has payload capacity of 10kg per arm and can detect the location of parts by

itself. It can load and unload its workstation on its own thus provides completely auto-

mated solution. It is safe to work alongside humans and has an integrated safety and

force monitoring technology. It has 7 DOF, a forehead mounted 3D camera, two cameras

on the sides and an LCD to display smile while working and providing feedback. Imped-

ance control makes it able to adjust to the disturbances and errors. Similar to YuMi, this

robot can also be taught by physically guiding through a task making the programming

much easier.[33]

2.2 Robot Classification

Robots can be classified based on multiple parameters such as application or based on

their movement mechanism: kinematics and locomotion. In case classification is based

on later criteria, a robot can be further classified to provide more detailed information

about its structure.

 Classification based on application [27], [28]

• Aerospace Robots: Aerospace robots are classified from space robots to simple
that can fly in the air such as drones.

• Consumer Robots: These are robots that individual can buy and use them at
home for fun or to help with simple tasks such as cleaning.

• Disaster Response: These robots are used in case of a disaster as clear from
their name. They can be either used to search for survivors or can be used to
do aftermaths of a disaster.

• Education Robots: These robots are aimed at helping with education either in
classroom or at home such as Legos.

• Entertainment Robots: As clear from their name, these robots are meant for en-
tertainment purposes from making us laugh to playing music.

• Exoskeletons: These robots are used to help with rehabilitation of a physically
disabled person such as to help paralyzed patient walk again.

• Humanoid Robots: These are the robots that we usually see in the movies: a ro-
bot that looks like a human.

• Industrial Robots: Industrial robots are used to help in industry to perform dan-
gerous or repetitive tasks. These are usually manipulator arms.

• Medical Robots: Medical Robots ranges from the robots that perform surgeries
to the first aid robots or robots that lift the equipment.

14

• Military Robots: These robots help in military operation from bomb disposal to
transportation robots. Search and rescue robots are also included in this cate-
gory.

• Telepresence Robots: These are remote control robots that can help a person
walk around without physically being present in that area. A person can login to
a robot avatar and can control it from distant place.

 Serial vs Parallel Robots

• Serial Robots: These robots have sequentially fashioned links connected via
joints, have a fixed base and an end-effector. Example of these robots is a sim-
ple industrial manipulator.[29]

• Parallel Robots: They can have prismatic or revolute joints and are shaped like
one or more loops. There is no defined first or last link. They workspace of
these robots is restricted but they can handle more payload with greater accu-
racy. [30]

 Stationary Robots

Stationary robots are usually serial robots with one end fixed and the other end is open:

end-effector. It is used to perform task with the movement of its arms which are called

links as stated before. Main types of stationary robots are Cartesian, Cylindrical, Spher-

ical, SCARA, Articulated and Parallel robots as shown in Figure 1.

• Cartesian Robots: These robots have three joints, all of which are prismatic,
and they use the cartesian coordinate system i.e. their motion is along x, y and
z.[31]

• Cylindrical Robots: These robots have one prismatic and one revolute joint.
Revolute joint is usually at the base, so, it has rotational motion on the base and
cartesian on the top.[31]

• Spherical Robots: In these robots, while arm is connected to the base with a
twisting joint and they have two revolute joints and one prismatic joint. The axes
form a polar coordinate system and because of that, these robots are also
called Polar robots.[31]

• SCARA Robots: SCARA robot has 2 revolute joints which have parallel axes of
rotation and one linear joint, it is compliant to x and y axes, while it is rigid in z
axes. It is quite useful for vertical assembly tasks.[31]

• Articulated Robots: All the joints in these robots are revolute joint and they pro-
vide a human arm like motion. Number of joints can vary from 2 to 10 or more.
[31], [32]

• Parallel Robots: They can have prismatic or revolute joints and are shaped like
one or more loops. There is no defined first or last link. They workspace of
these robots is restricted but they can handle more payload with greater accu-
racy. [30]

15

 Mobile Robots

Mobile robots are capable of movement i.e. locomotion. Usually, their bases are plat-

forms that make them capable of motion. It can be wheels, legs, drones or swimming

robots i.e. robots are capable of locomotion in air, on ground and even under water i.e.

they can move around within their predefined workspace.[31]

 Swarm Robots

Swarm robots is the idea to use multiple robots work in collaboration on a task i.e. team

of robots working on a task. They can be mobile robots or manipulators that have a

communication and sensor network. Swarm robotics approach is inspired by insects:

large grouped robots should be able to coordinate like insects, and to create an intelligent

system, individual robots should be able to interact. [33]

Figure 5. Stationary Robot Kinematics [34]

 Classification based on Power Source

Robots can be classified based on power source. Currently, power sources can be di-

vided into 3 categories: electromotive, pneumatic and hydraulic.[34]

16

• Hydraulic actuated robots are used for heavy loads, where high power to size
ratio is required.

• Pneumatic actuated robots are usually open loop and inexpensive and are used
for fast operations.

• Electric robots use electricity to power electric motors: stepper and servo mo-
tors. They are usually used for small payloads.

 JIRA Classification

JIRA (Japanese Industrial Robot Association) has divided robot in 6 classes naming

them from class 1 to class 6.[5]

• Class 1: A device that is manually operated by a user but has multiple DOF.

• Class 2: A device that is preprogramed and performs all the tasks based on that
predefined program and this program cannot be changed i.e. fixed sequence
robot.

• Class 3: A device that performs tasks according to predetermined program and
this program can be changed i.e. programmable device.

• Class 4: Robot/device can be programmed by physically walking through a sys-
tem. An operator manually operates the robot for first time and robot learns
those steps and becomes capable of performing that task on its own.

• Class 5: Instead of manually teaching the robot, operator provides the motion
program.

• Class 6: A robot that can learn about changes in its environment and can per-
form a task successfully while understanding the new environment.

2.3 Assembly Lines

Assembly line is a pipelines system, where a workpiece is passed through different work-

stations through a transport system like a conveyor belt. Workstations are productive

units where different operations are performed on the workpiece to develop a product

from it.[35] Assembly lines were invented to make the factory process fast and production

cost effective. In assembly line, workpiece passes through stationary workstations, which

are ordered in some certain order. Workstation takes some time to process a workpiece,

this time is called cycle time, and it is quite optimal to keep the cycle time even for all

workstations for smooth flow of operations. This optimal distribution problem is termed

as assembly line balancing problem. [36]

In 1798, because of war threat with France, U.S. needed a large quantity of weapons.

Problem was solved by Eli Whitney, who distributed the task in workstations by creating

templates for each part and then put machines in productions system. Before Eli, a

craftsman was expected to be an expert of the whole process, but Eli changed that con-

17

cept by creating the part templates. In the next century, Elihu Root introduced the con-

cept of: “divide the work and multiply the output”. In 1849, Root divided the operations

into very basic units. Even though assembly lines were being used in production before

that, but by dividing the tasks into basic operations, Root made the process faster and

accurate.[37]

Each worker in assembly line has an optimal working pace. Inaccuracy increases if

worked is pushed to work faster than that. According to Fredrick W. Taylor: If work and

tools needed for that work are placed in the right order, a worker’s time can be saved.

Thus, manufacturing technology owes Taylor for introducing methods of motion and time

study. Later, Henry Ford described the similar principle for modern manufacturing pro-

cess that all the tools and operators in the assembly line should be places in an order to

make sure that a workpiece has to travel least possible distance before reaching the

finish line.[37]

Ford’s assembly line technique was first used to develop a flywheel magneto. The pro-

duction time was effectively reduced from 20 minutes to 5 minutes by dividing the task

into workstations and placing the workstations at an ideal height and in optimal fashion.

Ford also came up with the idea of setting up a pilot plant: Mass production was made

more accurate by advance correction of errors in development of process by using the

same tools, devices and labour in an assembly line for development of a sample product.

All assembly line production systems are now following this standard.[37]

2.4 Assembly Line Methods

Over the years, assembly lines have seen lot many methodologies and production sys-

tems. There are various factors that affect these production systems ranging from capital

limitations and international, environmental or cultural laws. Some of the popular assem-

bly line production methods are discussed in this section.

 Classic Assembly

Classic assembly or team assembly line is manual assembly line where human workers

are working on workstations. Work is divided among several workstations where a

worker who is expert at one part of the whole process is doing his job on the relevant

workstation. The product can be simple, large or complex, but they are identical. The

tasks are repetitive and cycle time depends on individual’s working speed and experi-

ence.[37]

18

 Automated Assembly

Automated or cell manufacturing assembly is the use of machines or robots in assembly

line for the development of robots. Like classic, work is divided among different work-

stations and end products are identical but instead of humans, dedicated machines are

completing the tasks at hand. Automation can range from user operated machines to

fully automated factories. In this assembly, skills are easy to inherit, and system is more

accurate and cost effective in long-terms.[38]

 Modular Assembly

In Modular Assembly line, the parts are created in subassembly lines separately and

then they are fed into the main assembly line for integration. Like in automobile industry,

body, interior etc are designed separately and then they are combined. This method

reduces the production time since several parts are created in a parallel.[39]

 U-shaped Assembly

In U-shaped assembly, workers are placed on the inside of the shape, thus making it

easier to communicate and observe the process. This assembly makes it possible to

revisit some stations, hence there is no need to duplicate a station. But U-shaped as-

sembly is not as flexible as line assembly since line assemblies can be used in produc-

tion of multiple design products as the same time. But U-shape is more efficient than line

assembly.[36]

2.5 Path Planning

Kinematics is the science of motion which deals with position, velocity and acceleration

of body: in kinematics, motion of a body is studied without paying any interest to the force

that causes the motion. It involves the study of links: how the move with respect to each

other. Kinematics can be divided in 2 categories: forward and inverse kinematics.[40]

In forward kinematics, robot’s joint variables are given, which are used to calculate the

orientation and position of end-effector. In inverse kinematics, end-effector’s orientation

and position are known, and joint variables are calculated.

While dynamics is the study of relationship between force/torque and resulting motion.

Like kinematics, dynamics can also be divided into 2 categories: forward and inverse

kinematics. [5]

• In forward dynamics, joint torque is known and resulting motion/acceleration is
calculated from it.

19

• In inverse dynamics, joint torque is calculated from given acceleration i.e. here
acceleration is known.

Kinematics and dynamics are related to control science, which optimizes the system

behaviour. Path is geometric description of motion or it can be stated as: set of points

that manipulator passes through in order to reach from initial to final position. If time

profile is specified for a path, it is called trajectory. Path planning is also a part of control

science and it involves: specifying the curve between two points for end-effector to follow,

specifying motion between two end-effector positions, time function for motion between

initial and final point.[5]

When robot manipulator moves from initial to final point: point to point motion, trajectory

generated by the algorithm can be described by a cubic polynomial given by equation

(1).

q(t) = a3t3 + a2t2 + a1t + a0 (1)

q′(t) = 3a3t2 + 2a2t + a1 (2)
q′′(t) = 6a3t + 2a2 (3)

Equation (1), (2) and (3) represents position, velocity and acceleration respectively. In

motion from initial point to final point, boundary conditions can be written as given below.

𝑞(0) = q0 𝑞′(0) = 0 𝑞(tf) = qf 𝑞′(tf) = 0

Figure 6. Point-to-Point Motion Kinematic [5]

20

 Algorithms

Drawing is an important activity and a part of almost every human being. Now, it is be-

coming a part of robot’s life also. Different algorithms, techniques and robotic systems

have been developed for drawing and or mobile robot’s trajectory planning. Some of

these systems and algorithms are discussed in this section.

In tasks like welding, drawing or walking, path followed by end-effector is important and

complex. For such tasks, n-points must be defined, other than initial and final points, for

end-effector to follow. These points are called via points and method to follow the path

from first to last point is needed.[41]

Moving a robot from one point to other, while avoiding the obstacles and keeping the

distance as short as possible is a challenge for path planning. In BFS, a robot while at

root node (initial point), starts planning all the possible paths in all probable directions

i.e. robot starts planning next nodes. While planning the next nodes, the possibility of

going outside the workspace, nodes that already have been visited and nodes with ob-

stacles are ruled out. If successor node is not the final node, then BFS keep expanding

the next node till it reaches the destination point.[42]

BFS is like a tree, with FIFO array that is populated with nodes. FIFO means that nodes

are executed in the order they were added in the list, and oldest node in the array will be

executed next. FIFO array keeps adding possible nodes till the final point is reached.

When Final point is reached, Robot can map a path of nodes that lead to that point.[42]

Figure 7. BFS Tree [43]

21

BFS will keep populating the tree starting from initial point which is 1 in this case. The

next possible nodes are 2,3 and 4. Since it is FIFO, BFS will execute 2,3 and 5 next and

will keep on populating the oldest present node first, till it reaches 11, which is final node.

If solution exists, it can always be found with BFS. Hence, in robotics, it can be used to

find the path from initial to final point. But BFS can only be used for a small workplace,

because it stores every node in memory. For large workspaces, the number of nodes

that should be stored in memory grows exponentially and hence a large memory is

needed.[42]

DFS is like BFS in a sense that algorithm starts from initial point and keep on tracing till

it reaches the final point. But contrary to BFS, DFS is LIFO. The last added node is

executed first. That means DFS will find all possible nodes for the newest added node

and since it is LIFO, the next node that will be executed, is the last added node in the

array. DFS keeps on expanding till it reaches a dead end, after that it starts expanding

the node that was added last but has not been expended yet.[42]

Figure 8. DFS Tree [60]

DFS will keep populating the tree, starting from 1, and it will add 2,3 and 4. Now, it will

expand last added node, which is 4, and it will keep expanding newest added nodes till

it reaches 11. After 11, it will move to 3 and then 2, since they were last added nodes in

the stack in that order. It will keep on doing so, till it reaches 10, which is final point here.

Since DFS does not expand and store every node in the memory, it uses less memory

than DFS. But problem with DFS is that it keeps expanding newest added nodes, till it

reaches the final point. As soon as DFS reaches final point, it stops expanding and re-

turns that path, but that path is not necessarily the shortest path. Other problem with

22

DFS is that it keeps on expanding newest node forever without any certainty that required

end point exists on that path or not.[42]

BFS calculates the path that has smallest number of nodes to reach the final point, but

it does not have any information on the distance between the nodes or how far the robot

has travelled. Hence, Dijkstra provides a solution for that. Dijkstra is a special case of

BFS, which provides information about the distance between 2 nodes: it executes nodes

in increasing order of their distance from the root node and selects the node with shortest

distance. Hence, Dijkstra makes a path of nodes by selecting the nodes with shortest

distances from the root nodes, and hence comes up with path of shortest possible dis-

tance.[44]

In some system, visual feedback is being used to minimize the error, these systems are

called visual servoing control systems. Usually the error in a conventional system is

caused by called math processing error: error in current or upcoming state of the system.

But in visual feedback systems, the error is caused by image that is taken by a camera.

These cameras are either attached to end-effector or mounted on some other place from

where they can observe the workspace. The visual servoing system offers higher flexi-

bility as compared to the conventional sensor systems. Visual servoing system either

use a position-based or image-based technique for feedback, they are called PVBS and

IVBS respectively.[45]

Visual servoing control system works by minimizing the error in between the target posi-

tion and robot’s position through a visual feedback system. In PVBS, 3-D target features

should be defined, and it is quite sensitive to robot calibration and camera errors. In

PVBS, 3-D features of images taken by camera are used to calculate the error between

robot position and target.[46]

In IVBS, there is no need to define target features, positioning error can be calculated

from the images directly, so feedback control is directly enclosed in the image. But IVBS

is stable only around the wanted pose.[46]

Fioravanti et el (2008) has defined a modelling technique for positioning tasks using

IVBS, for 6 DOF manipulator with a camera mounted on end-effector, using a fixed target

as a reference. To calculate the error between the desired and actual position, the control

defined is using camera’s geometric projection model. which is Euclidean geometry

mapped into digital image. They used Euclidean homography structure for image path

planning. [46]

23

 Free Shape Algorithm

Bezier curves are used for smooth path planning, such as, in robotics, Bezier curves are

used in planning the movement of arm for welding. These curves are used for modelling

indefinitely scaled smooth path or curves. A Bezier curve, having k+1 control points, can

be represented by the following summation:

𝐏(𝑡) = ∑ 𝐵𝑗
𝑘(τ)𝐏j

𝑘
𝑗=0 (4)

Where 𝐵𝑗
𝑘(τ) can be given by Bernstein polynomial. The curves are useful for path plan-

ning because they always start and end at 𝐏0 and 𝐏k respectively, and at the start and

end point they are always tangent to the 𝐏0𝐏1 and 𝐏k−1𝐏k respectively.[47]

De Casteljau Algorithm is easier to implement and relatively faster method and it controls

the end effector by generating Bezier curve.[48] Casteljau’s algorithm divides the Bezier

curves into 2 sub Bezier curve segments. The control points in this case can be denoted

by the summation:

𝐏𝑗
𝑘 = (1 − τ) 𝐏𝑗

𝑘−1 + 𝜏𝐏𝑗+1
𝑘−1 (5)

Where k = 1,2,3, . . ., n and j = 0,1,2, . . ., n-k, 𝜏 ∈ (0,1).

Figure 9. De Casteljau Algorithm subdividing a cubic Bézier
curve with 𝜏 = 0.4[47]

The control points for 2 segments derived from equation (5) will be {𝐏0
0, 𝐏0

1, . . . , 𝐏0
𝑛} and

𝐏0
𝑛, 𝐏0

𝑛−1, . . . , 𝐏𝑛
0.[47] Nugroho et el. Has described that implementation of Bezier curve in

Casteljau’s Algorithm only takes 3 control points. This algorithm is quite flexible and

makes the tool movement smooth by decreasing acceleration and deceleration jerks.[48]

 Drawing Bots

Kotani and Tellex, from Brown university, have developed a robot that can draw and

copy handwritings from a given image. This robot can copy ten different languages on

paper, white board and can draw characters from language without learning those lan-

guages, it just replicates the given bitmap image of characters. They have divided the

problem in two different scales: local scale and global scale. Local scale is a window of

5x5 pixels while global scale is whole is the whole image.[49]

Figure 5. Cubic Bezier Curves [47]

24

To reproduce target image, Kotani and Tellex defined it as binary image of 100x100

pixels. Based on the image, they created an action sequence, that robot follows to re-

produce image. The pen/writing brush is shifted in x and y axis by ∆x and ∆y respectively

and Boolean variable defines if pen should draw or not, it is represented as (∆x, ∆y,

touch).[49]

They divided the task in two scales: local and global scale. Since, local scale is 5x5

pixels, it defines where the pen will move in that limited pixels environment. When the

pen has covered those 5x5 pixels, the global model is used to define the starting point

of next stroke. These steps are repeated till the whole action sequence has been com-

pleted. [49]

Figure 6. Network architecture by Kotani and Tellex [49]

Where 𝑋𝑡𝑎𝑟𝑔𝑒𝑡 is the target image that should be drawn, 𝑋𝑡
𝐿𝑒𝑛𝑣 , 𝑋𝑡

𝐿𝑐𝑜𝑛 , 𝑋𝑡

𝐿𝑑𝑖𝑓
 are local

model’s already visited locations and difference between target and current image i.e.

future locations respectively. Rest of the terms are coming from the global scale, the

represent current location, already visited location, current local model’s recent location,

and difference between the current global and yet to visit regions of target image respec-

tively.[49]

A humanoid robot by Lau et el., called betty, for portrait drawings using furthest neigh-

bour theta graphs. For face detection, they have used OpenCV and to compute line-art

portraits, they have used Canny edge detection. Line-art portrait can be converted to

robot kinematics.[50]

25

Figure 7 shows the flow chart implementation of the robot. Picture fed to the robot is first

converted to a grey-scale image and then, it is converted to a binary image to remove

noise by applying a threshold. Threshold has a fixed value, and pixels that do not match

the threshold are filtered. Next step is to produce Boolean image from the given filtered

image, this is done by using Canny edge detector that returns only black and white pixel

image.[50]

Figure 7. Flow chart of portrait drawing robot [50]

Black and white pixels are inverted in next step using XOR operation and then, convolu-

tion is used to reduce the number of pixels to an acceptable value. Last step is the use

of furthest neighbour theta-graph algorithm for portrait sketching.[50]

Lu, Lam and Yam have proposed a method for drawing by robotic manipulator of 5 DOF,

though, they have used only 3 DOF in the described method. They have placed the

drawing paper right below the gripper that is holding the pen, while a camera is used for

feedback. Since, camera is mounted on 30 degrees with respect to paper, the image

obtained by camera is distorted. Lu et el. have proposed a homographic equation to

obtain the rectified image from the captured image.[51]

26

Figure 8. Flow chart of pen-and-ink drawing robot algorithm [51]

In this pen-and-ink method, outlines are important, since they express structural infor-

mation. The outlines of lower structural importance are drawn thinner than those of

higher importance. First, image scale space is constructed by convoluting the image by

first order derivative of Gaussian kernel. In second step, the Canny edge detector is used

to obtain edges, which are then traced. Scale space lifetime is used to measure the

structural importance of an edge.[51]

After portraying the outlines, hatching process starts. In hatching, camera feedback is

used to describe the stroke positions, while gradient describes its orientation. Iterative

hatching process continues until criterion function discovers that structural importance

has dropped below threshold, thus criterion function terminates the process.[51]

Calinon, Epiney and Billard’s humanoid robot that draws face of person, facing the ro-

bot’s camera, on a paper. They used Fujitsu HOAP2 robot, an external webcam for hu-

man face tracking purposes. Developers used OpenCV to capture and process the face

image, while robot’s built-in controller library is used for robot movements. As soon as a

person sits on the table in front of the robot, robot asks for permission to draw person’s

avatar. A speaker and mic has been used for this purpose, and if person gives permis-

sion, robot starts the process by taking a facial picture of the person.[52]

Facial picture is then converted to a black and white image and a threshold criterion is

selected. The selection of threshold is dependent on the mean square error. Calinon et

el. have used inverse-kinematic model to define the workspace, and to search for draw-

ing plane. Robot starts drawing according to the Freeman code length, it starts from a

rough contour and keeps on adding details. Spline fit of order 3 has been used with 2D

trajectory of freeman code to make sure the smooth movement. Meanwhile, to move

27

from one contour to other, a 3rd vertical dimension is added to this 2D trajectory. After the

robot has drawn a picture, it draws a frame around it and signs it using the pre-set tra-

jectory.[52]

2.6 System Testing

 Unit Testing

Unit testing is quite necessary part of software or system development. In unit testing,

isolated parts or modules of a system are tested. This isolated unit can be a code a

procedure or function and developers use unit testing to verify their work. Since, the goal

of unit testing is to assure that system is working according to the client’s requirements,

thus, a thorough system testing is desired, which makes the testing process as expen-

sive as the system development. [53]

Usually, unit test is carried out before integration testing, by executing small process or

program that provides the input to unit of the system. The output of the unit is monitored,

while trying to maintain the execution environmental conditions close to the actual envi-

ronment.[53]

Figure 9. System Testing Levels

Unit testing is first stage of system testing, while Beta testing is last. Beta testing is post

development testing and it is also known as Application Testing. Unit testing saves time

and helps fix the bugs in time. Since, unit testing is performed on small units, it makes it

quite easier for developers to reuse small parts of code.[54] Unit testing can be either

state based or interaction based testing. State based testing is used to test output of a

system to a given input while interaction based testing is used to verify that system can

invoke different services when called.[55], [56]

28

Currently, developers can seek assistance from already present testing tools such as:

JUnits and EMMA for Java language[57], [58], Nunit for .net language[59] and PHPUnit

is for php programmes[60].

 Integration Testing

Integration test are carried out on complete integrated systems to compare their behav-

iour against specified requirements. Integrated system can be software or hardware sys-

tem. These tests are usually carried out to ensure that system is working according to

client’s requirements before handing over the system to customer. In case of some hard-

ware systems, sometimes the simulation models are used to test full load scenarios and

system failure safety responses. System design, used equipment and performance are

usually the main characteristic that are tested in Integration tests.[61]

System Integration Testing (SIT) verify the communication and interaction between the

different modules and components of a system. SIT is also used to verify system’s be-

haviour along with other systems. In this case, systems or modules are first verified indi-

vidually and then they are tested as an integrated system.[61]

Figure 10. System Integration Testing

SIT are performed to verify the system under following conditions[62]

• System is under Thermal Load

• System is working on normal and/or emergency power conditions

• Several modes of system’s mechanical operations

• System failure

• Under different temperature, humidity and heat load conditions

29

Software integration testing is done in host environment, while keeping the target envi-

ronment condition. Then these testing is repeated in host environment. In case, the soft-

ware is quite large, then integration is divided into several levels. Lower levels are tested

in host environment while higher levels are tested in target environment since, for some

systems, system and target environment coupling can be strong that makes is impossible

to perform integration test in host environment.[61]

Three levels of system testing are: Intra-system testing, Inter-system testing and Pair-

wise testing. Intra-system testing focuses on combining the systems together to make a

unified system. This is a lower level of testing. Inter-system testing is focused on building

independently tested systems, it is a higher level of integration. Pair-wise testing is used

to test two connected modules at a time. It is used to ensure that two modules can work

perfectly when combined.[63]

Normally, a system is integrated in advance and then whole system it is tested. But error

probability is quite high in this case, several system errors may appear. Identification and

correction of these errors in the integrated system is quite difficult, and there is a high

probability that after correction of these errors, some new faults can appear. To avoid

this situation, several incremental integration testing approaches have been in use.[61]

Incremental Integration testing divides the testing process in different steps. Modules are

first tested separately and after that, testing is performed on combination of modules.

Since the small chunks of program or small parts of system are being tested, it is easier

to detect and remove errors.[61] Three types of incremental testing methods are listed

here: Top down integration approach, Bottom up integration approach and functional

incremental integration approach.[64]

Top down integration approach, as name suggests, starts from the top and it increments

in accordance with depth first or breadth first algorithm, that have been explained in sec-

tion 2.6. User interface is tested at the beginning of process, and then system keeps on

integrating new modules. These new modules are called stubs and they are temporary

replacement for the actual modules. Stubs behave in the same way as original module.

Top down integration testing determines the confidence level by calculating the threshold

failure density of the system. This approach is applied to the systems that have already

been tested, and process ends when the desired confidence level has been achieved.

In case of failure, system increases the number of test-cases and keeps on testing the

decomposed modules till the desired confidence level is achieved.[61], [65]

30

Unlike the top down testing, bottom up system starts from the bottom. Modules are tested

first and then system starts testing combination of integrated modules. Since the mod-

ules needed for testing are already present, so, there is no need for stubs. Input and

output of integrated modules it defined by drivers. As modules combine, required number

of drivers reduces, since now, there are a smaller number of decomposed modules.

Drivers assist in simulating the interface with top level modules which are yet to be inte-

grated.[61]

Figure 11. Bottom Down Integration Testing

Functional testing is based on system’s functional requirements i.e. system is taken as

integrated cluster of functions rather than modules. In this approach, system’s output is

tested against given input, while program’s structure is ignored. System is treated like a

black box and only the resulted output or response is taken into consideration. [66]

 Regression Testing

Regression testing is performed to ensure that changes made in a system, do not make

any harm. It is carried out when a system is modified. Regression testing begins during

the development phase when errors are corrected, system is re-evaluated to establish

trust in post changes system. Regression Testing is a big part of maintenance phase, a

lot many corrections and updates are made in system over time. After a system has been

modified, the original test can no longer be used to test the modified system, hence, new

tests are developed for verification.[67]

31

Figure 12. Regression Testing Methods

Regression testing can be carried out using these techniques: Retest All, Regression

Test Selection, Prioritization of Test cases. Simplest approach is to execute all the orig-

inal tests. This approach is called retest approach, and it is quite expensive and time

consuming because as the software changes, testing programs also need modification

and number of tests needed also increases as system grows. Hence, other Regression

testing approaches are used for testing. [68]

In order to save time and resources, it is better to test only modified modules or parts of

the system, which is carried out by selecting a subset of test cases that were used to test

the changed parts. Third approach to regression testing is quite useful in saving time and

efforts. Test cases are periodized on the basis of functionality and most important or

frequently used application help prioritize test cases.[68]

2.7 Manufacturing Execution Systems

Manufacturing execution systems also known as MES are developed to fill the gap be-

tween planning, manufacturing and control systems used on a factory floor. MES is an

information system which monitors the production process on factory floor and makes it

effective and efficient. MES tracks and collect real-time data of a production process.

MES controls the complete production process: taking orders from customers, evaluating

and planning resources and then producing the high-quality goods at low cost. [69]

Currently, manufacturing software can be categorized in the following systems: Enter-

prise Resources Planning (ERP), Supply Chain Management (SCM), Sales and Service

Management (SSM), Product and Process Engineering (P&PE) and Controls, Manufac-

turing Execution Systems (MES). Each of these systems have different functions but

MES overlaps all these categories and it links different types of systems.[69]

32

Figure 13. MES Context Model Concept by MESA International [69]

Figure 14. Plant Information Model by MESA International [69]

MES provides an intermediate layer between ERP and control systems as shown in fig-

ure 14. It integrates planning and manufacturing process in an industry. The lowest level

of pyramid of automation consists of physical devices such as sensors and actuators.

Layer 1 is called control level and it is made of logical devices such as PLC to perform

numerical operations. SCADA is used to access data and provide supervision of control

system used in previous layers. Top layer is ERP which is company’s management level,

this layer corresponds to planning and scheduling of work. While MES is in middles of

ERP and SCADA to help and control production scheduling according to the resources

and capacity constraints while monitoring the plant operations.[70]

33

Figure 15. Pyramid of Automation [71]

MES provides automation from order request to delivery, from administrative work to

technical development and production. According to Kamal, Core of integrated manufac-

turing is to provide right information at right time and place. MESA provided a model in

1997, defining the functionality of MES. This model is called MES-11 and defined func-

tions are listed in this section.[69]

• Managing and allocating resources in the production plant.

• Scheduling the operations to optimize the production time.

• Dispatching information in order in the production units should work.

• Provides the document that are mandatory for smooth flow of process.

• Collects data and information from factory floor.

• Keeps track and manages labour during the shifts.

• Monitors the product quality and identifies the problem that require attention.

• Keeps track of production and keeps the process flow smooth or assists the op-
erator for correcting in process activities.

• Helps in keeping track of maintenance schedule of equipment to prevent the
production failures.

• Provides full history of product during the production process and makes it visi-
ble thorough out the process.

• Provide reports and analyse the operation results by comparing them with ex-
pected results and history.

2.8 TCP/IP

TCP or Transmission Control Protocol is the basic communication language of the inter-

net. Even though name stands for protocol, but it is in fact a set of protocols, TCP and

IP are two main ones. TCP/IP are the set of communication protocols that are used to

connect hosts on the internet. TCP/IP defines how data should be divided into packets

34

and address, how it should be transmitted and received, and how applications can create

communication channels over a network.

International Standards Organization (ISO) has defined a model for communication be-

tween two systems, regardless of their architecture. OSI model facilitates the communi-

cation in between systems without requiring any logical changes in software or hardware.

OSI model consists of seven layers. Originally, TCP had 4 layers and since, TCP model

was developed before OSI, so, these layers do not exactly correspond.[77]

Figure 16. OSI Model and TCP/IP Model Comparison [82]

Each layer in TCP model has its only functionality that is based on set of protocols ded-

icated to that layer:

• Application layer provides application with standardized protocols
for data exchange such as HTTP, SMTP, FTP, SNMP and POP3.
Application layer uses a port for communication with Transport
layer. Ports are numbers and these numbers are associated with
protocols.

Figure 17. Application Layer [78]

• Transport layer (TL) is responsible for host-to-host communication
and it is responsible for reliability, multiplexing and flow control

35

over a network. Transport protocols are TCP or UDP (User Data-
gram Protocol. UDP is faster than TCP, but it is unreliable.

Figure 18. Transport Layer [78]

• Internet Layer (IL) connects different networks and it is responsi-
ble for transporting data packets across these networks. IL proto-
cols are IP and ICMP (Internet Control message Protocol), ARP
(Address Resolution Protocol), RARP (Reverse Address Resolu-
tion Protocol). Data packets are sent using IP, while ICMP is used
for error reporting.

Figure 19. Internet Layer [78]

• Data received from TL is divided into Datagrams by IP. Max data-
gram size can be 65535 bytes. MTU (Maximum Transfer Unit) de-
fines the maximum frame size that can be sent across the net-
work. For Ethernet networks MTU size 1500 bytes.

Figure 20. Datagram Fragmentation [78]

• Network layer (NL) is defined by physical network that is con-
nected to the computer. This layer defines protocols or methods
which operate only on a link. These links interconnect hosts
across the network. Ethernet has three layers: LLC (Logic Link
Control), MAC (Media Access Control) and Physical.

36

Figure 21. Network Interface Layer [78]

In the Updated TCP mode, Network layer is divided into Data link and Physical layer,

and Internet layer is changed to Network layer.

Figure 22. Updated TCP/IP Model [77]

2.9 Web Services

MES systems require quite tight connectivity between system, all software should be

integrated in way that they can share data and communicate. Different architectures

have been under study for this purpose, but Web Services are the most prominent solu-

tion in this domain.[72] Web Services are applications that are self-describing and self-

contained, WS can be published, located and invoked across the web.[73]

W3C has given an extensive definition of WS, according to them: A WS is software sys-

tem, which is structured to support interoperable machine-to-machine communication

over a network. WS interface is defined in machine-processable format. Other systems

use SOAP messages, usually conveyed by using HTTP with an xml serialization or other

standards to interact with WS. [74]

According to W3C definition, one main feature of WS is interoperability. WS can be used

by any browser or application regardless of platform. Interoperability is aimed at making

37

and smooth automatic connection from one software or application to other. Reusability

is another feature of WS.[73]

Now a days, WS system technologies are leading in the field of information systems,

since, WS allows network communication for sharing information and functionalities. In

their paper, Qifeng and Zhangjian have proposed a WS-based communication between

layers MES system.[75]

Figure 23. WS-based MES system integration framework [75]

The concept of Service-oriented architecture (SOA) has gained quite popularity in MES,

because of its flexibility and re-configurability. This high-level service-based architecture

provides entirely new perspectives in communication.[76] W3C has defined SOA as a

set of components which can which can be invoked, and whose interface description can

be published and discovered.[74] SOA is used with in network or services that work to-

gether, for providing complete functionality of system.[73]

Figure 24. SOA Components [73]

Service broker is like a service registry or directory and it is used to locate or publish a

service over a network. Interoperability, reusability, message exchange and monitoring,

control, transformation and security, and service discovery are the main feature of SOA.

38

Web represents web-based implementation of SOA, when they establish a communica-

tion framework that encapsulates applications within services which interact using a com-

mon communication network.[76]

Web services can be used in MES system to control the flow of data, services can be

invoked over web by an application client.[72] Web services can be used to monitor the

devices on factory floor, while on higher level web services can be used to keep track of

work to assist in scheduling and taking new orders from clients.

Web Services are of two kinds: SOAP and REST. Simple Object Access Protocol

(SOAP) is a standard communication protocol that is used to exchange XML-based

structured information over web services. SOAP uses Hypertext Transfer Protocol

(HTTP) or Simple Mail Transfer Protocol (SMTP).[73]

Representational State Transfer (REST) is an architectural style that emphasis on design

rules for providing stateless communication and determines the principles for transmit-

ting data. Data is usually transmitted over a standardised interface such as HTTP. In

REST, data and services are considered as resources, hence, they are accessed

through URLs.[73]

REST SOAP

is an architectural style. is XML-based message exchange proto-

col.

uses XML or JSON for communication. uses Web Services Description Language

(WSDL) for communication.

calls services through URLs. invokes services though Remote Proce-

dure Call (RPC).

transfer is over HTTP. transfer is over HTTP or SMTP.

requires less bandwidth comparatively. requires higher bandwidth comparatively.

Table 3. REST vs SOAP Comparison

39

3. PROPOSED METHODOLGY

This section proposes a methodology that will be used for the system development. In

first subsection, a communication model has been proposed based on the RTU, that is

selected during this proposal, key criteria for RTU preferences are mentioned in that

section. Subsection 2 compares the different webservices and identifies why RESTful

webservices are better suited for this implementation. Next section identifies the RESTful

APIs that can be used to invoke different services. Since this system is comprised of

different subsections and applications, it is important to define inputs and outputs for

each system to design a data flow structure for the system. Furthermore, this chapter

proposes a criterion that should be used for robot selection for the given application. Last

part of the chapter defines a system test methodology and proposes different system

integration test approaches.

Figure 25. Proposed Methodology Flow Chart

3.1 RTU – Robot Communication Model

RTUs or Remote Terminal units are microprocessor-controlled devices that are used in

Distributed Control Systems (DCS) to transmit data to master system, and to receive

messages from master system to control connected devices. RTUs can execute small

programs independently to simplify the process. This thesis proposes to use INICO

S1000 RTU device, which is a programmable device and it offers a web-based human-

machine interface. Some of the features that make it useful for this implementation are

given below:

• S1000 offers logic control using IEC61131-3 Structured Text with built
in compiler, which makes it useful to implement simple logics at RTU
level.

• It offers web-based HMI with automatic data refreshing capabilities.

40

• S100 offers built in web server for monitoring and configuration. IT can
be used with both REST and SOAP webservices.

• S1000 provides fast Ethernet interface and can be used to communi-
cate over TCP.

• It can be used to monitor events or alarm detection.

• It offers real time control, and web-based programming and configura-
tion.

INICO S1000 can be used for client - server communication model. In client – server

communication, service provider is referred as server, while service requester is client.

Client is concerned only with the response of its request and does not share any re-

sources with server. While server is the one performing the tasks and delivering re-

sponse when completed. It is suggested to use client – server model on TCP/IP for

Robot - RTU communication.

Communication between client and server only happens when they are in the same in-

ternet network. Client – Server communication is bidirectional communication, where cli-

ent requests the service and server responds to it. Client opens a communication number

by addressing the server through IP address and port number. Port number identifies

the communication protocol and it defines the communication endpoint.

Once the server has fulfilled client’s request and has delivered the service completion

message, any of the two devices can close the connection. TCP server can serve multi-

ple clients at a time, but client can communicate with only one server. In case of multiple

clients, server allows multiple clients to establish connection. As soon as a client opens

a connection, server takes its request and starts a separate sub job for that client.

Figure 26. Sequence Diagram of Orchestrator – S1000 Communication

Event notification capabilities are important feature of S1000 RTU. It is proposed to re-

quest services using the ARC, and when server has provided the requested service, an

41

event can be published using the RTU, which can be used to notify the operator that now

robot is available for next request. An event can also be published when operator makes

a request to let the operator know that the request has been received and accepted.

Figure 27. S1000 - Application Event Notification

Advanced Rest Client (ARC) is developed by Google and it is an API testing tool. ARC

is a REST client that can be used to create and test HTTP requests, it provides full control

over the connection and request and response headers. Even though ARC can be used

with all HTTP methods, it is only suggested to use GET and POST methods since, rest

of the method actions are not useful in this implementation.

GET and POST are HTTP methods, GET is used to request data from a resource, POST

is used to send data to update or create a resource. POST request cannot supply entire

data through URL, so, it uses binary string to send message or data from client to server,

While GET method do not need any additional binary string, entire data is contained in

URL.

3.2 Web Services

A detailed description of webservices is given in section 2 of this thesis along with a

comparison of REST and SOAP webservices. This subsection suggests using RESTful

webservices based on the comparison given earlier, with reasons that make it useful for

this implementation.

SOAP is an xml-based messaging protocol for, with a machine processable format inter-

face which is called WSDL. A webservice is defined as XML notation that has all the

essential details like message format, transport protocol and location to interact with

webservices. On the other hand, REST is architectural style, here the data format is

defined using JSON, and it uses the HTTP transport protocols.

42

REST is a concept, it can use any protocol like SOAP or HTTP, while SOAP being a

protocol, cannot use REST. REST can use different data formats such as: HTML, XML,

JSON or even plain text. While SOAP can only use XML. REST requires less bandwidth

and resources as compared to SOAP. REST is slower and less reliable then SOAP and

it can transfer only over HTTP. REST inherits the security from the underlying transport

protocol, and it can invoke services through URLs, which makes RESTful webservices

more useful in the implementation as compared to SOAP.

3.3 API Identification

API or Application programming Interface are used for communication between different

software components or by different applications. Both APIs and webservices are used

for communication between client and server. In fact, all the webservices are APIs but it

cannot be said the other way around. REST API is a webservice API since, it makes a

request over a network using HTTP methods. Components of a REST request are given

below:

• URL Path

• HTTP Method: GET and POST are used in this implementation

• Header: The additional information that is sent from the client to
server is mentioned in the header, such as content body type.

• Parameter: They define how the resources will be returned.

• Body: Contains the data that needs to be delivered.

To identify the APIs, it is important to identify the services needed. For this implementa-

tion, the services needed are listed below

• Pick a pen

• Pick Green Pen

• Pick Red Pen

• Pick Blue Pen

• Change Pen

• Configure Z

• Draw

• Draw 1

• Draw 2

• Till Draw 9

• Place Pen

• Discard Pen

43

• Publish Events

• Pen Change Started Event

• Pen Change Ended Event

• Draw Started Event

• Draw Ended Event

Pick pen and change pen can be invoked with the same API and if gripper is already

holding a pen, it can place it back before going for a new pen. Events are published when

server starts providing or ends providing a specific service, these events are listed above.

The APIs used for these REST services and HTTP methods used are listed below along

with the description of what they can be used for.

Service API HTTP

Method

Body

Pick Green

Pen

http://{RTU_IP}/rest/services/picGreenPen POST {"destUrl":""}

Pick Red

Pen

http://{RTU_IP}/rest/services/picRedPen POST {"destUrl":""}

Pick Blue

Pen

http://{RTU_IP}/rest/services/picBluePen POST {"destUrl":""}

Draw 1 http://{RTU_IP}/rest/services/Draw1 POST {"destUrl":""}

Draw 2 http://{RTU_IP}/rest/services/Draw2 POST {"destUrl":""}

Draw 3 http://{RTU_IP}/rest/services/Draw3 POST {"destUrl":""}

Draw 4 http://{RTU_IP}/rest/services/Draw4 POST {"destUrl":""}

Draw 5 http://{RTU_IP}/rest/services/Draw5 POST {"destUrl":""}

Draw 6 http://{RTU_IP}/rest/services/Draw6 POST {"destUrl":""}

Draw 7 http://{RTU_IP}/rest/services/Draw7 POST {"destUrl":""}

Draw 8 http://{RTU_IP}/rest/services/Draw8 POST {"destUrl":""}

Draw 9 http://{RTU_IP}/rest/services/Draw9 POST {"destUrl":""}

Configure

Z

http://{RTU_IP}/rest/services/ConfigureZ POST {"destUrl":""}

Place pen http://{RTU_IP}/rest/services/PlacePen POST {"destUrl":""}

Discard

Pen

http://{RTU_IP}/rest/services/DiscardPen POST {"destUrl":""}

Pen

Change

Started

http://{RTU_IP}/rest/events/PenChangeStarted GET

Pen

Change

Ended

http://{RTU_IP}/rest/events/PenChangeEnded GET

Draw

Started

http://{RTU_IP}/rest/events/DrawStarted GET

Table 4. REST API List

44

Draw

Ended

http://{RTU_IP}/rest/events/DrawEnded

GET

Figure 28. Communication Sequence Model

Figure 29. API Pattern for RTU - Robot Communication

45

3.4 Interfaces

There are two main machines used in this process: Robot and RTU, and four different

components or programming environments are proposed: robot programming environ-

ment, RTU programming environment, environment for free shape algorithm implemen-

tation and testing software. The communication between all these applications or soft-

ware is quite important part of this thesis. This section suggests input and output for each

interface.

 Robot Programming environment will be used for implementing all the robot related

functionalities, from picking a pen to drawing. Robot will be used as a server in this im-

plementation, a TCP server will be created here, that will be listening to a client. Input to

the robot will be REST request from client to perform a specific task. The output of the

robot will be the actual task required such as drawing. But in addition to that, there are

other outputs that will be used as input for other systems or message displays which are

given here:

• Inputs to the robot are

▪ Instructions from RTU to perform a certain task.

▪ Drawing point coordinates from the free shape algorithms
and instructions to clear the already existing drawing
points on that specific draw point array.

• Outputs of the robot will be

▪ Task Starting and task ending messages/notifications or
confirmations to RTU.

▪ Notifications or messages displayed on the robot teach
pendant for the user to monitor the operational activities.

▪ An output message over the network socket that is used
for receiving the drawing coordinates.

RTU – Robot communication has already discussed in detail in the previous subsection.

The RTU is used to send instruction over ethernet, to perform a certain task. RTU inputs

and outputs are listed below:

• Inputs to RTU will be

▪ Certain request from the user through ARC to perform a
certain task.

▪ Messages from the robot about starting or finishing a task.

• Outputs of the RTU are proposed as

▪ Service requests sent to the robot

▪ Event notifications

46

Free shape algorithm implementation is explained in the section 4 of this thesis. The

suggested implementation is different programming environment and drawing coordi-

nates are sent to the robot over a TCP network socket. The output of the algorithm script

is the instruction to clear the existing points in the draw array. After that, it will start send-

ing the drawing coordinates over the socket. Input to the script will be a success message

after all the points have been received by the robot.

Different tools are used for communication testing purposes, input, outputs and other

testing criteria are defined for testing separately. Testing environment and procedure

details are discussed in section 5 of this document.

3.5 Robot Topology Selection Criteria

Selection of robot, for automation assembly tasks, is a quite a challenging task. The

decision maker needs to select the robot that can perform the given task in lowest pos-

sible cost. But there are several other criteria that effect this selection process and over

the time, various quantitative methods have been proposed to help identify the best

suited robot. The criteria used to select the robots for this task are given below:

• Application

First step in selecting a robot is to identify the problem or applica-
tion for which it is needed. Work environment is also an important
factor. If the task requires a robot – human collaboration, Cobots
are the best option. Gripper or tool selection is also an important
part of planning a robot-based application.

• Payload

Payload is the maximum load, including workpiece and
tool/griper, that a robot is going to carry in performing tasks. So,
the load capacity of a robot should be higher than payload.

• DOF

DOF is directly related to number of axis. In performing simple
pick and place assembly tasks, a 4-axis robot is enough. But 6 or
7-axi robots are a better option if work involves lots of twisting in
small workplace.

• Range

A robot’s workspace is quite an important factor in choosing a ro-
bot. Figure 4 in this thesis, shows the work envelop associated
with different robot configurations. OMRON ecobra600 robot has
a reach of 600mm which is quite enough for this application.

• Positioning Accuracy

In applications such as welding, drawing or assembling an elec-
tronic circuit, quite precise robots are needed that can perform the
same task repeatedly with the same positioning accuracy.

47

• Speed

Rate, at which a robot should perform its job in an assembly line,
also a deciding factor in choosing a robot. Manufacturers usually
specify the maximum speed (per second) of each joint of a robot,
because during speed varies from zero to maximum. Hence, the
acceleration is also important in choosing a robot.

• Body weight

A robot’s weight is an important factor if robot needs to be placed
over a rail, conveyor or on another machine.

• Braking System

Enough brakes on robot’s axis ensure accuracy but, it also ensure
that robot will lockup in case of accidental power out, and it will
not cause any destructions or harm.

• Protection level

Protection level of a robot is defined by its IP (Ingress Protection
Rating) rating. Robot’s IP rating requirements depend on the task
and environment i.e. different IP ratings are needed for different
applications or environment, such as IP67 rating defines that ro-
bot can work in dust tight, it can work in dusty environment and, it
can be continuously stay underwater as well.

Selected robot will be installed at FASTory assembly line of FAST lab at Tampere Uni-

versity’s Hervanta campus. This line is being used by students for academic research

and learning purposes. Hence, safety is quite an important aspect of this selection pro-

cess. SCARA robots are most suited for the assembly line tasks where payload is small.

Another reason for selecting SCARA assembly is given as: For best drawing output, pen

should be held in parallel to robot’s axis, which is quite possible with SCARA. Selection

is based on these questions:

• Does this robot have suitable work envelop and enough range?

• Is the robot assembly compatible for this task?

• Even though pen is quite light, is the robot payload reasonable?

• Choosing a robot with way too large payload is not recommended
for this application.

• Does this robot offer enough speed and positioning accuracy?

• Does this robot have enough protection level and good braking
system to avoid mishaps in emergency situations?

3.6 System Tests

For this implementation, three testing techniques have been suggested.

• Unit testing: unit testing to verify a program or a module as soon
as it has been developed. This testing can be manual, since pur-
pose is to validate a block after development.

48

• Integration testing: Integration testing is more time consuming,
and it is done to test the integrated system. Automated integration
is recommended since integration testing is more time and money
consuming.

• Post development Beta testing: Which will be manual in this case
since, it is demo of this thesis.

Before defining test cases, it is important to define the system modules, how they will be

integrated and the process flow. Then the modules which will be tested during unit testing

will be selected. Inputs and outputs of each system have already been defined in the

previous sections. This section first defines the system modules and information flow,

then it describes the tests that will be performed as part of system development.

Figure 30. Robot Modules

The main modules of the robot are shown in figure 29, server function in TCP server will

be able to communicate with s1000 as shown in figure 28, meanwhile it will be able to

receive draw point coordinates over the network socket.

49

Figure 31. Pen Placement Class Diagram

PlacePen class is super class, that is used to decide which pen is being hold at the time,

and it will make the decision to class the either of three classes to place then pen based

on that. All the functions or classes are called through server(), based on the received

request. It is shown in the next figure.

50

Figure 32. Process Flow

Individual functions used for picking and placing a certain number pen can be tested via

unit tests, but they will also be tested after the system has been integrated. State based

unit testing will be used to test that system is operating in the required manner i.e. it is

giving desired output to defined input. Integration testing will be interaction based to

make sure that different system components are communicating in the required manner

and system’s decision making will be verified in integration testing. System Integration

tests has been described in detail in section 5. Following testing strategy will be used for

system integration testing:

• Perform integration tests on the system

• If something fails, use Unit tests to figure out the cause

• Fix the errors

• Repeat the process

51

Figure 33. Proposed Test Approach

Bottom-up breadth first and Top Down depth first integration techniques will be used for

testing. Bottom-up BF testing starts at lower level and test driver will used to call certain

operation in case needed. This testing technique will be used to test all the modules to

verify the different system conditions that have been defined. While in Top Down, testing

starts at top, this technique will be used to test system flow as it will be used in the actual

operation. Stubs will be used to provide required resources to the top modules. Following

figures show the test flow for both techniques.

52

Figure 34. Bottom-up BF

Figure 35. Top Down DF

53

4. IMPLEMENTATION

4.1 FASTory Assembly Line Description

FASTory is an assembly line installed at FAST lab of Tampere university’s Hervanta

campus. This line has 12 workstations, 10 of which are identical; these identical work-

stations are used to draw mobile models. WS7 is used to load and unload pallets, While

the last workstation, which is WS1, loads and unloads papers on the pallets. Each WS

on this line offers 9 different type of designs in 3 different possible colours. FASTory

robots draw frames, screens and keypads of mobiles, offering 9 variance of each part

which makes FASTory able to produce 729 different products. Each WS has 2 types of

conveyors. Main conveyor which is used if WS is idle or pallet requires design from the

that cell. Bypass conveyor is used in case the WS is busy or no services are required

from that station.

Figure 36. FASTory Work Cells at FAST Lab – TUNI

FASTory has been a testbed for several EU projects such as
eSONIA, eScop, ASTUTE and C2NET. [79]

54

Figure 37. FASTory Layout

All identical WS have robots, which is the main element of each cell. Most of these robots

are caged because they are industrial robots. All the robots installed at FASTory were

Sony SRX-611 SCARA robots. These robots have 4 joints, 3 revolute joints and 1 pris-

matic joint, and 4 DOF which is represented by x, y, z coordinates and rotation around

z- axis i.e. (x, y, z, Rz). These Robots have custom made grippers which can hold a pen,

structure and working of these grippers is explained in the section 4 of this thesis. Cells

also have custom made pen holders in each cell, that has the capacity to store 3 pens

at a time.

Figure 38. Layout of WS 1, 3 & 7

Rest of the WS are identical to workstation 3. Numbers on the conveyor represent the

five different zones, all these zones have sensors to detect the presence of pallet. All

the pallets have unique RFID tags, which are read by RFID readers located on each

workstation. RFID are installed at zone 1 of each station and they are used to identify

the pallet and stoppers at each zone are used to stop the pallet in that zone if needed,

while the rest of the pallets keep moving. Figure 38 shows that WS1 does not have

zone 4, while WS7 lacks zone 1 and 4. The functionality of these zones is described

the table 5.

55

Zone 1 This zone is used for decision making,

whether the pallet will be transferred to

this WS or next. RFID readers installed at

this zone helps to identify the pallet.

Zone 2 This zone is used for queuing the extra

pallet, before it is transferred to next zone.

When the zone 3 is free, pallet is moves

from zone 2 to zone 3.

Zone 3 Zone 3 is used to perform the actual task.

Pallet stays in this zone till the robot has

finished drawing.

Zone 4 Zone 4 is used to bypass the WS. This

zone makes decision from which zone (3

or 4) pallet will move to zone 5, if zone 5

is empty.

Zone 5 This is the exit zone for pallet to leave that

WS.

Actuators installed at FASTory are pneumatic actuators, which are controlled by an elec-

tronic valve. Now a days, a few changes has been made in the line, WS7 has been

removed and Sony SCARA robots installed at workstation 3, 5 and 8 have been removed

with SCARA robots SDA20D from KUKA and OMRON manufacturers. Now, WS1 is

equipped with dual arm Yaskawa Motoman robot designed for complex assembly tasks.

This robot has 15-axis; and this is the first robot that has introduced FASTory line to

collaborative robotics.

Robots and conveyors installed at this assembly line are controlled through Remote Ter-

minal Units (RTUs), these RTUs communicate via local network, which is Ethernet in this

case. RTU used in this thesis is INICO S1000, which is a programmable device. S1000

offers web-based Human-Machine interface (HMI), It can be programmed using DPWS

and RESTful webservices to control the process. Each of these devices, which con-

nected through Ethernet, have their unique IP, but same subnet mask which is

255.255.0.0.

Table 5. FASTory Conveyor’s Zone Description

56

Figure 39. Assembly Line's Network Configuration

Based on the comparison given in table 3 of section 2, webservices used in this thesis

are RESTful. REST uses XML or JSON. Since, all requests in this communication are

independent of each other, and no data is requested from previous requests, suggests

that REST is a better choice since, it is stateless.

The communication between HMI and S1000 is only using GET and POST methods.

HMI used in this case is Advanced Rest Client (ARC), which is developed by Google.

ARC is a REST client that can be used to create and test HTTP requests. When a request

is made though ARC, RTU responds to the application with an empty message which is

202 or 404. 202 is used for accepted requests and 404 for forbidden. RTU forwards this

request to robot, and when request is completed RTU sends a confirmation message

through POST method, which is an empty message. Messages are sent on top of TCP/IP

using client-server protocol.

4.2 Cell Description

Robots used in this thesis are ecbora600 pro and KR3 R540. Ecobro600 is a SCARA

robot, while KR3 is 6-axis a robot. These robot topologies are fit for this implementation

since, they offer enough accuracy, payload is quite light in this application and work en-

velope satisfies the requirement of this job.

57

 OMRON ecobra600 pro KR3 R540

Number of Axis 4 6

Number of Controlled axes 4 6

Rated Payload 5.5 kg 2 kg

Maximum Reach 600 mm 541 mm

Work Envelope Figure-40 Figure-41

Controller eAIB KR C4 Compact

Accuracy/Repeatability xy ±0.017 mm

z 0.003 mm

theta ±0.019°

±0.02 mm

Joint speed J1 386°/s

J2 720°/s

J3 1100 mm/s

J4 1200°/s

- -

- -

A1 530°/s

A2 529°/s

A3 538°/s

A4 600°/s

A5 600°/s

A6 800°/s

Joint Range J1 ±105°

J2 ±157.5°

J3 210 mm

J4 ±360°

- -

- -

A1 ±170°

A2 -170°/50°

A3 -110°/155°

A4 ±175°

A5 ±120°

A6 ±350°

Programming Environment ACE WorkVisual

Programming Language eV+ KRL

Weight 41 kg 26.5 kg

Protection Rating IP20 IP40

Mounting Position Floor Floor, Ceiling, Wall

Table 6. Comparison Between ecobra600 and kr3

58

Figure 40. ecobra600 Work Envelope [80]

Figure 41. KR3 R540 Work Envelope, Side View [81]

Based on the comparison, it can be concluded that both robots can be used for the given

application. They are suitable to work in the target environment; work envelope covers

the desired locations in the work cell. They have enough joint speed and accuracy to

follow the given path efficiently and accurately.

59

Figure 42. KR3 R540 Work Envelop, Top View [84]

Figure 43. Robot Axes Rotation Direction

 OMRON ecobra600 Pro

As stated before, OMRON ecobra600 is industrial SCARA robot with 4 joints, installed

at cell number 8 of FASTory assembly line. Figure 43 shows that joints 1,2 and 4 are

rotational, while joint 3 is translational, joint ranges are given in Table-7. The robot is

attached to built-in eAIB controller, which is mounted on the base of the robot. Hence, it

can be used as a standalone robot without any need for external controllers, servo con-

trols and amplifiers are contained in eAIB. Cell 8 is also equipped with a T20 pendant

60

that provides manual control of joints for jogging to different locations. A Front panel is

also attached to robot that has three controls: a key for switching between manual and

computerized mode, a button for high power control and E-stop safety button, as shown

in Figure 45.

Figure 44. ecobra600 pro with eAIB Controller

If more features and connectivity are needed, eCobra robots can
be integrated a SmartController EX motion controller. More vision
support can be added by adding SmartVision support.

eAIB is programmed using Automation Control Environment (ACE) using eV+ program-

ming language. ACE have total control of the controller, it can be used for jogging, IO

monitoring, programming, debugging and executing purposes. It can be used for online

or offline programming, it has 3 main windows: Workspace Explorer, Editor window, and

3D virtual display. Workplace explorer can be used to explore or write V+ programming

files or writing, to save location, variables can be created or updated here; ACE work-

place explorer interface can also be used for C# programming.

61

Figure 45. Robot Interface Panel

Robot can be connected to NJ/NX Machine automation controller for IEC61131-3 pro-

gramming; this controller can be used to control operations and program the robot di-

rectly from a PLC. Controller is connected to s-1000 or any other device at FAST lab

through a HP switch. The pneumatic connections at the back of the gripper are internally

connected to the air connectors at Joint-2, from where they are attached to the gripper.

Figure 46. HP Ethernet Switch

 KUKA KR3 R540

KR3 is a 6 joint anthropomorphic manipulator, installed at cell number 3. The robot is

attached to an external controller KR C4 Compact.

62

Figure 47. System Cable Diagram

• 1 is Manipulator which is attached to KR C4 controller (shown by
number 4) through cable 5 and 6 which are data and motor cables
respectively.

• 3 is a connection cable that connects SmartPAD control panel
(number 2) to control panel.

• Controller can be attached to pc or s-1000 through cable 7, which
is an ethernet connection cable port.

SmartPAD can used for jogging the robot, but it has a lot more functions as compared to

ecobra’s T20 Pendant. Smart controller can be used for inline programming and to exe-

cute a program. It has all the required functions for programming and operating an in-

dustrial robot. It has KUKA System Software (KSS) installed for operations and control.

WorkVisual can be used for programming and debugging purposes. It is a software in-

terface from KUKA, it can be used for I/O mapping, and it can import or update the files

on SmartPAD. KUKA Robot Language (KRL) can be used to program KUKA robots.

EthernetnetKRL can be installed on the controller for TCP/IP communication to use it as

a server for s-1000, which is main objective of this thesis.

 Gripper

FASTory robots are equipped with custom made grippers to hold the pens. These Grip-

pers have 1 mechanical slider for vertical motion and two fingers to hold the pen. End-

effector is pneumatic powered and air supply is controlled via external SMC solenoid

valves. Solenoid are powered via output ports of the robot.

63

Figure 48. End-Effector Movement Directions

Gripper is equipped with 3 electrical sensors, which also have a red light for visual feed-

back.

• UM-R5TVP is a photoelectric sensor, it is used to verify the pres-
ence of pen inside the gripper finger.

• SMC – DA93 is a Reed switch, it works as a position sensor for
SMC – MXS6 – 30 slide table. It is used to calibrate the z-axis of
gripper for drawing.

• D - M9P is a solid-state auto switch, it is used as a feedback for
gripper fingers to verify that gripper is open or close.

 Pen holders are placed inside the cell, within the reach of the robots, so, they can pick

and place the pens on instruction to start drawing. S1000 and solenoid valves have been

added in the control box of the robot, which is below the floor on which robot is mounted.

As stated in the section 3, S1000 is an RTU, which supports RESTful webservices and

can be integrated with Service-Oriented-Architecture. It is being used as a TCP client

with the robot server.

64

•

Figure 49. Cell Components

4.3 RTU Communication

FASTory can be programmed in using REST or SOAP webservices, but as described

earlier, the implementation used in this thesis is based on RESTful webservices. The

robots and RTUs are communicating over internet using and they are addressed through

their IP addresses.

Figure 50. Network Configuration

S1000 interface can be accessed using it’s IP address. S1000 has 2 modes, configura-

tion mode and run mode. All the changes are made in configuration mode. There are 4

steps that are followed to configure the device for this thesis:

1. Network tab is used to configure the IP address of the s1000 device.

65

2. I/O tab is used to configure the I/O modules. S1000 device usually comes with

pre-configured I/O modules. Net Connection module of I/O tab was used to con-

figure it as a TCP client. The module is configured by assigning an alias which

is netconn for this implementation, server IP address and server’s port number.

One digital output from robot is fed into s1000 as input to track the status of the

robot. The I/O is named as “DI_robot_busy”.

3. Logic tab is used for logic programming, which is written in ST. During this imple-

mentation, one ST program function is used for one request only, So, in total,

there are 16 functions: 9 programs for drawing figure selection, 3 programs for

pen selections, 2 for placing or discarding the pen, 1 for configuring z-axis and

last program is called ROBIO.

a. ROBIO isn’t assigned an alias, because it is being used to receive a mes-

sage from the robot. The received message is then used to publish events

that describe if robot is free or busy. User can monitor/subscribe to these

events to verify the robot activities.

Events are also assigned aliases in REST tab. User can use the following

request to access all the events

GET: S1000_IP/rest/events

b. Rest of the 13 programs are used to request robot to perform certain ac-

tivity. All these programs are assigned an alias. A user can request a

function by using post method

POST: {S1000_IP}/rest/services/{alias_name}
Body: {"destUrl":"192.168.3.21:8080"}

Aliases are names after the function. Whenever user post a request, ST

program verifies the robot’s status

IF (DI_robot_busy = FALSE) THEN
 netconn_open(netconn);

If robot is free, then it s1000 opens the TCP connection with server and

unique string that indicates the services which is requested.

4. Last step in s1000 configuration is to configure the REST services. In REST tab,

services are created with certain names which are called alias. Each alias is

linked to ST program, that contains a logic. Whenever an alias is called through

POST method, linked ST program logic is executed, which sends a message to

robot.

66

Figure 51. Communication Sequence

Figure 52. RTU's REST Interface

4.4 Robot Functionalities

As stated before, the robots have custom made grippers, designed specially to hold the

pens. Since, the paper is placed in XY plane so, it is important that pen is held in z plane.

The pen is held in a way that it is parallel to the axis of rotation of last joint and parallel

to the axis of robot itself.

67

Figure 53. End-Effector Orientation

Ecobra600 was programmed using eV+ language in ARC environment. The robot had 2

kind of files V2 files that contained and VAR files that contained data such as constants,

variables and locations. On the other hand, KUKA was programmed in WorkVisual en-

vironment using KRL language. KUKA’s files were also divided in categories: SRC files

that contained the actual programs, and DAT files that are called data lists and they

contain data. SRC file along with its DAT file are called a module.

Ecobra’s code is categorised in 3 main functions: server function that is used for creating

and receiving data over TCP server, main function that contains all the task programs

and third function called auto. Auto is a default name for OMRON programs, which is

used to state the programs that will start running automatically when robot is started.

This way, there is no need to start the task manually. While for KUKA, each program has

different SRC file and user must start the TCP server from SmartPAD every time con-

troller is restarted. A component diagram is shown in Figure 54, for ecobra600.

68

Figure 54. Main Robot Program Modules

 TCP Server

TCP server has been created receive requests from client. When Server is started, it

keeps on waiting for a request. When a request is made, it can call one of these functions:

PickPen1, PickPen2, PickPen3, Draw1, Draw2 till Draw9 and then DrawConfigure func-

tion. Server is also used to receive draw points from free shape algorithm implemented

in python, it is explained in next section.

Figure 55. Figure 1 Decision Making by TCP Server

69

Whenever a request is received by the server, if it is valid request it is used calls to call

one of those functions. There are 3 decisions for picking a pen, 9 decision for drawing

and 9 for adding draw points.

When a function is called through server, robot executes it and when the execution is

completed, it writes back to RTU that request has been completed and it notifies the user

through T20 pendant. ‘rob.run’ states if robot is busy or free, if robot is busy then rob.run

is true.

rob.run = TRUE

WAIT (rob.run == FALSE)

WRITE (lun, handle) $ENCODE("pickPenEnded")

PDNT.NOTIFY "Info", "Pen 3 picked"

When robot is started, it checks if there is already a pen on board, if not, it marks global

variable Pen_on_board as zero. Then it creates a server and starts waiting for the client

request. Ecobra robot has a normally open rely on XDIO connector, high power must be

provided to close that. Robot has a braking system that stops the robot in case of emer-

gency. Joint 3 brakes are electromechanical, and they are controlled by high power but-

ton. Whenever high-power button is on, brake is released. In addition to that, robot has

an E-stop button for emergency cases, button is mounted on the front panel, along with

high power button and a switch for manual or automatic mode. Whenever E-stop button

is pressed, robot’s high power is disabled, operator can enable it manually after releasing

the E-stop button through front panel, or it is also possible to do get high power from

virtual front panel provided in the ACE software.

After initializing the server, robot tells the operator to enable the high-power, and it waits

till operator has enabled it. Now, robot is ready to receive requests from client. After

receiving a request from the client, it acts based on the client’s request.

In case, client has requested for it to pick a pen by sending a string “picGreenPen#”, it

checks if high-power is enabled or not. If high-power is enabled, it moves forward. If not,

it sends back a message to RTU that says: “error”. After sending a message, it notifies

the operator through T20 pendant that about the problem. In case, high-power was en-

ables, server executes the relevant function on task 1.

eAIB controller can execute multiple tasks in parallel, for this implementation, server is

running on task 2, error handler is running on task 3. Error handler notifies the operator

about E-stop error and specifies if the E-stop button should be released from the T20

70

pendant or front panel. When E-stop is released, it reminds the operator to turn enable

the high power by printing a message on T20 pendant.

Apart from executing the picking pen function, server responds back to RTU with a mes-

sage “pickPenStarted”, and it also notifies the operator via pendant. After calling the pick

pen function on task 1, server, which is running on task 2, waits till robot is busy. As soon

as, robot finishes picking up a pen, it informs the RTU by sending a string and it also

notifies the operator. RTU receives that message and publishes an event to which user

can subscribe. RTU also receives a message and publishes the event when robot starts

picking up a pen, process is shown in figure 56.

Figure 56. Flow Chart for Pen Pickup Request

In the figure 56, only one pen pickup function is shown, in actual, there are 3 programs

for picking up a pen. Each colour pen has a different program, figure 57 shows the activity

diagram with the actual names of the functions the have been used for each colour pen.

71

Figure 57. Activity Diagram for Pen Pickup Decision

For cell 8, Blue pen can be requested by using the following URL using the HTTP POST

method:

1. http://192.168.8.11/rest/services/picBluePen
2. http://192.168.8.11/rest/services/Draw1

Second URL on the list is used for a for a request to draw first shape. A user can request

a shape or drawing out of 9 available options. There is only one function for drawing but

9 different set of points that are passed from server to drawing function. Whenever client

requests for a drawing, server first figures out that it is a ‘draw’ request, then it checks if

high-power is enabled, if not, it tells the user through pendant to enable high power and

try again. If the high power was enabled and draw request went through, server draws

the request shape. Code for first set of drawing points or Draw1 is given below:

VALUE $MID($in[0],1,4) == "draw":

$drawnumber = $MID($in[0],5,1)

IF SWITCH(POWER) THEN

PDNT.NOTIFY "Info", "Drawing starts" ;T20 notification

CASE VAL($drawnumber) OF ;Which point array is requested

72

VALUE 1:

rob.run = TRUE ;Robot is working

EXECUTE/c 0 rob.draw(drawpoints1[,]), 1 ;execute drawing on task 1

WRITE (lun, handle) $ENCODE("drawStarted") ;message to client

WAIT (rob.run == FALSE) ;wait for drawing

WRITE (lun, handle) $ENCODE("drawEnded") ;message to client

PDNT.NOTIFY "Info", "Drawing Ended"

END

ELSE

PDNT.NOTIFY "Info", "can't execute Draw. Enable high power and try again" ;T20

notification

END

Figure 58. Code Flow for Draw1

In case, the draw points are sent from the python file, server identifies them, separates

the coordinates and populates the draw points array with those coordinates. If server

identifies that first letter or receiving message is X, it takes it as incoming array of points.

After receiving the array, it removes the first letter from first index of the array which is

letter ‘X’. Following code line shows the message sent from python script:

MESSAGE = "X:"+ str(coord[0]) + " Y:" + str(coord[1])+ " Z:" + str(coord[2]) + ":" +

sys.argv[2]

After removing the first letter ‘X’ from the script, it removes the ‘:’ or from the 2nd index.

73

$temp = $DECODE($in[0],":",0) ;removes X

$temp = $DECODE($in[0]," :",1) ;remove empty space and :.characters

After removing ‘X’ and ‘:’ the next value in received message is the actual coordinates

for x-axis, so they are stored in the relevant variable:

$xvalue = $DECODE($in[0]," :",0)

After the x-coordinates, message contains the y coordinates, but to differentiate between

x and y values, a space has been placed between the x coordinates and Y character.

So, the program first removes that space and then it similarly removes the ‘Y’ and ‘:’

characters.

$temp = $DECODE($in[0]," :",1) ;removes space

$temp = $DECODE($in[0],":",0) ; removes letter Y

$temp = $DECODE($in[0]," :",1) ;removes ‘:’

$yvalue = $DECODE($in[0]," :",0) ;saves coordinates for y-axis

The process to get coordinates for z-axis are same as y-axis. After all 3 coordinates have

been received, server finds the draw index in the receiving message, which specifies the

array number in which the coordinates will be saved. Process for differentiating the draw

number from the received message is same as the process for xyz-coordinates.

 $temp = $DECODE($in[0]," :",1) ;removes ‘:’

 $drawnumber = $DECODE($in[0]," :",0) ;saves draw number

After receiving the draw number, server passes all the values to the srvr.addpoint func-

tion, which saves those values in the related draw point arrays.

CALL srvr.addpoint(VAL($xvalue), VAL($yvalue), VAL($zvalue), VAL($drawnumber))

After calling the function, server sends back a message saying “ok”. But before starts

sending a draw points, python script makes sure that draw point array is empty, which is

done by calling a clear draw points function.

MESSAGE = "clear" + sys.argv[2]

s.send(MESSAGE.encode('utf-8'))

74

Message contains the string “clear” to tell server which case should be processed and

sys.argv[2] contains the draw point array number. Hence server first calls the srvr.clear-

draw function and then srvr.addpoint function.

Functions for clearing the draw points is defined as: srvr.cleardraw(drawnumber), only

argument this function receives is draw number, and it changes xyz-axis values to -1 in

the array associated to that draw number. While add points function is defined as:

srvr.addpoint(x, y, z, drawnumber), it received coordinate values and draw array number

to add these coordinates to relevant array. It first finds the last non -1 value of x and y

coordinates, and then starts populating the draw point array the from that point back-

wards.

Figure 59. Adding Points to Draw Points Array

Configuration function is called in the same manner from the server, if there is a request

to configure the drawframe, server calls the configuration function and notifies the T20

Pendant if high power is enabled otherwise, it displays an error message requesting to

enable for high power and then user should try again to send the configuration request.

 Main

Functions of the Main module or the program are shown in the figure 60. Close Tool and

Open tool are used to activate the outputs that are associated to the pneumatic solenoid

valves, which in turn close and open the gripper finger. Flow on and Flow off functions

are used for the valves that operate the slider. Flow on brings the slider to most extended

position, while flow off turn that valve off and cuts off air supply, making the slider flexible.

75

Figure 60. Main Module’s Functions

Functions that can be called from the server are 3 pick pen function, draw and draw

configuration functions. Drop pen functions are called from pick pen functions. In case,

server receives a request to pick a pen, server calls the pickpen function. Pickpen func-

tion first verifies if there is already a pen in the gripper, pen presence is checked via the

photoelectric sensor installed on the gripper. If there is already a pen, it calls DropPen

function. After that, OpenTool function is called, which open the gripper, if it fails then

program stops and notifies the pendant. Otherwise, it picks up the requested pen. After

picking up a pen, it goes back to home position, see figure 61.

DropPen function figures out which pen is already present in the gripper, and it calls the

function that can drop that pen back to its position.

 IF pen_on_board == 1 THEN
 CALL rob.drop_pen1()
 END
 IF pen_on_board == 2 THEN
 CALL rob.drop_pen2()
 END
 IF pen_on_board == 3 THEN
 CALL rob.drop_pen3()

END

DropPen function, drops the pen and goes to a safe location defined near the pen holder

so, it can get ready to pick up the next pen. In case of failure to drop a pen, it goes back

to home location since now, PickPen() function will not do anything as seen in figure 62.

76

Figure 61. Pickup Process for Pen1

Figure 62. DropPen2() Call from PickPen1()

In case, Gripper does not open while dropping pen, PickPen() function will not do any-

thing as seen in figure 62. PlacePen() and DiscardPen() functions are used to put the

pen in the mentioned place, they check if gripper is holding the pen. Then they go to the

appropriate drop place and put the pen there. In case of pneumatic problems, these

functions show an error message.

77

Drawframe configuration is important part of this implementation. It is implemented by

defining three points: Origin, drawx and drawy points; drawx and drawy are points to the

x-axis and y-axis of the origin. These points are defined through the teach pendant, but

they are updated in the configuration function, which is used to calibrate the starting

position of drawing process. It is mandatory to pick up a pen before configuration, after

picking up a pen, when draw_config() function is called, robot goes to the user defined

origin. Here, it calls the flowOn function, and slider becomes fully extended and its sensor

gets activated. Now, manipulator starts going down at origin till the slider sensor is giving

a true value, as soon as, slider signal cuts off, manipulator stops, goes a bit up and

updates the origin to that point.

After updating the origin, manipulator goes up and then repeats the same process at

drawx and drawy coordinates. After updating all three points, program defines the draw-

frame position from these points. 4th value in the frame defines the orientation of the tool.

SET drawframe=FRAME(draworigin, drawx, drawy, draworigin)

Now, after defining the drawframe coordinates, robot is ready to be used for drawing.

During conversion of picture to draw points, value of z-axis defines it robot should draw

in that area of not. If value of z-axis is zero, that means robot should not draw, if it is 1,

then robot should draw.

78

Figure 63. Drawing Process Flow

4.5 Free Shape Algorithm Implementation

Path planning is an important part of this implementation. For tasks like drawing, free

shape algorithms can be used for manipulator’s end effector movements. In the section

2.6 of this document Bezier curves and De Casteljau algorithm has been defined. This

section covers them in more details and describes how Bezier curves were implemented

for this thesis.

Bezier curve points can be defined by evaluating a parametric function, which is ex-

pressed in a polynomial form. [82] It was described earlier that cubic Bezier curves, or

third order Bezier curves can be used to accurately follow complex paths. Cubic polyno-

mial for third order curve is given as:

𝐵(𝑡) = (1 − τ)3𝑃0 + 3𝑡(1 − τ)2𝑃1 + 3𝑡2(1 − τ)𝑃2 + τ3𝑃3 (6)

Where τ is a function parameter and it ranges from 0 to 1 i.e. τ ∈ [0,1]. The entire curve

points can be reconstructed by evaluating the polynomial by changing function parame-

ter from 0 to 1, its each value gives a different point on the curve. It was described earlier

that curve always start at 𝑃0 and stop at 𝑃𝑛, a cubic Bezier curve starts at 𝑃0 and ends at

𝑃3. The curve is always tangent to 𝑃0𝑃1
̅̅ ̅̅ ̅̅ , 𝑃1𝑃2,̅̅ ̅̅ ̅̅ ̅ 𝑃2𝑃3

̅̅ ̅̅ ̅̅ here 𝑃1and 𝑃2 are gravitational points

or also known as control points, and the curve tend to go through them hence, the ar-

rangement of these points control the shape of curve. For a cubic Bezier curve, these

four points are known as descriptors.

79

Figure 64. Third Order Bezier Curves [82]

Complex shapes can be approximated by using piecewise Bezier curves, which are

called B-spline curves. According to Lastra, Lobov & Moctezuma, in order to make a

robot controller able to interpolate Bezier either a composition of arc and linear segments

is used or composition of linear segments. [82]

For the first composition, algorithm first finds the inflection points and then subdivides

the curve at inflection points in biarcs with acute angles. For second composition, Bezier

curve is approximated by computing and joining points with linear line segments. By in-

creasing the number of points, better approximation can be achieved, but it increases

the amount of data. Points can be computed by evaluating the equation directly or by

using De Casteljau algorithm. Direct method becomes unstable for lower values of func-

tion parameter.

De Casteljau algorithm is slower but stable method, and it computes a single point of the

curve by interpolating 6 compositions which are given in figure 65. In these interpolations,

smaller increment step for function parameter, brings more data but closer approximation

of Bezier curves.

Figure 65. Graphical Representation & Pseudocode for De Casteljau algorithm [82]

For arc approximation method low interpolations are required hence amount of data is

less as compared to linear approximation, also the movements with arc approximations

are smoother relatively. But linear approximation algorithm is relatively less complex,

and it can be applied for any Bezier curves while arc approximation fails in certain cases.

80

For this thesis, python’s svgpathtools were used for point calculation. The script is used

via sys.argv list from python. Sys.argv has arguments, which represent following things

respectively: sys.argv[0] is name of the python script, sys.argv[1] is used for filename or

picture name in this case, while sys.argv[2] is used to represent the draw points array

number that ranges from 1 to 9. The picture is first converted to dot svg and then it can

be used with this script. The following statement is used to call the python’s path tool for

conversion from svg to paths.

paths, attributes = svg2paths(sys.argv[1])

Svgpathtools contains bezier.py that can be used for nth order Bezier curves. This svg

tool has five path segment classes: path, Line, Arc, Cubic Bezier and Quadratic Bezier.

These classes take different parameters given as:

• Line: start and end points.

• Path: Segments

• Arc: Start point, radius, rotation, large_arc, sweep and end point.

• Quadratic Bezier: Start, Control and end points

• Cubic Bezier: Start point, control 1 and control 2 points, and end point.

The picture provided to python script is svg format, it is converted to a list of path objects

and attributes of each path, as shown in program 1 of this section. These paths are made

of cubic Bezier objects. The returned coordinates are in the form of complex numbers

where real part is used for x-axis and imaginary part represents y-axis.

Figure 66. Cubic Bezier Returned by the svg2paths Tool

It can be seen from the picture that returned path consists of multiple segments. For this

implementation, these segments were taken on by one, as shown in the picture. Each

segment was converted into tuplex and these tuplex were appended as coordinates:

tuplex = (round(seg.point(i/5).real,2),round(seg.point(i/5).imag,2),z)

coordList.append(tuplex)

The z-axis value is not given by the svg path tools, in this implementation, it is normally

set to one, but if it is the end of the last segment of the path, z is set to zero. In the given

program 2, the index (i) goes from 0 to 5, so, for every segment, a 0.2 step size is used.

81

After appending all the coordinates, script sends a message to clear the point array al-

ready present on that draw number and then sends those points over a TCP socket to

populate the respective draw number array. Tuple of control points are used to represent

Bezier curves.

MESSAGE = "X:"+ str(coord[0]) + " Y:" + str(coord[1])+ " Z:" + str(coord[2]) + ":" +

sys.argv[2]

 s.send(MESSAGE.encode('utf-8'))

82

5. SYSTEM TESTS ON THE INDUTRIAL PILOT

This section focuses on the testing of the system implemented in the section 4. It is

important to define the test cases and pre-requisites and expected results to perform a

test. The following sections focus on defining and validating the test suits using two dif-

ferent system integration testing techniques.

5.1 Bottom-up Breadth First

Test suite id TS-1

Test case summary This test suite is used to verify that robot can pick, place and

discard a certain pen when asked.

Pre-requisites RTU and robot-server are running, and there are pens in pen

holder.

Test procedure Related APIs are called via the testing software.

Test data http://192.168.8.11/rest/services/picGreenPen

http://192.168.8.11/rest/services/picRedPen

http://192.168.8.11/rest/services/picBluePen

http://192.168.8.11/rest/services/PlacePen

http://192.168.8.11/rest/services/DiscardPen

Expected results • If gripper is empty, it will pick new pen.

• If gripper is empty, it will not execute place or discard

pen requests.

• If gripper is holding a pen, I will execute the place or dis-

card pen requests.

• After execution or denial, robot will inform the RTU about

the process completion and RTU will publish an event.

Test Cases a. TC-1: Pick, place and discard Green pen, in the

order.

b. TC-2: Discard, pick and then place Red pen.

c. TC-3: Place, pick and discard Blue pen, in given

order.

Table 7. Test Suite 1: drawing tool’s unit module testing

83

Test Suite id TS-2

Test case summary The objective of this test is to verify that robot can change a pen.

Pre-requisites RTU and robot-server are running, and there are pens in pen

holder.

Test procedure Related APIs are called via the testing software.

Test data http://192.168.8.11/rest/services/picGreenPen

http://192.168.8.11/rest/services/picRedPen

http://192.168.8.11/rest/services/picBluePen

Expected results • When asked, robot will pick a pen if gripper it empty.

• If gripper is not empty, robot will place the pen back and

pick the requested pen.

• After execution or denial, robot will inform the RTU about

the process completion and RTU will publish an event.

Test Cases TC-1: Pick Green pen.

TC-2: Change to Blue pen.

TC-3: Change to Red pen.

Test suite id CONFIGUREZ

Test case summary To verify that RTU can call the z-axis calibration services.

Pre-requisites RTU and robot-server are running, and gripper is already hold-

ing a pen.

Test procedure Related APIs are called via the testing software.

Test data http://192.168.8.11/rest/services/ConfigureZ

Expected results That RTU will request the server to calibrate the drawframe and

server will inform the RTU after it has been completed.

After execution or denial, robot will inform the RTU about the

process completion and RTU will publish an event.

Test Cases TC-1: z-axis calibration request.

Test Suite id TS-4

Test case summary To verify that robot can draw.

Pre-requisites RTU and Robot-server are running, gripper is holding a pen,

drawframe has been configured, and drawpoints have been

added.

Test procedure Related APIs are called via the testing software.

Test data http://192.168.8.11/rest/services/Draw1

Expected results • Robot will start drawing if it is holding a pen, otherwise,

it will refuse.

Test Cases TC-1: Robot is sent “Draw1” request.

Table 8. Test Suite 2: Pen change operations test

Table 9. Test Suite 3: Configure z-axis Request Testing

Table 10. Test suite 4: Draw Operation Testing

84

5.2 Top-down Depth First

Test Suite id TS-1

Test case summary To verify that robot can calibrate.

Pre-requisites RTU and Robot-server are running.

Test procedure Related APIs are called via the testing software.

Test data http://192.168.8.11/rest/services/ConfigureZ

Expected results • Robot will calibrate the z-axis.

Test Cases TC-1: Robot is asked to calibrate z-axis.

Test Suite id TS-2

Test case summary To verify that robot can discard a pen.

Pre-requisites RTU and Robot-server are running.

Test procedure Related APIs are called via the testing software.

Test data http://192.168.8.11/rest/services/DiscardPen

Expected results • Robot will discard the pen it is holding.

Test Cases TC-1: Robot is requested to discard pen.

Test Suite id TS-3

Test case summary To verify that robot can pick a pen.

Pre-requisites RTU and Robot-server are running.

Test procedure Related APIs are called via the testing software.

Test data http://192.168.8.11/rest/services/picGreenPen

Expected results • Robot will pick Green pen

Test Cases TC-1: Pick Green Pen

Table 11. Test Suite 1: Configure z-axis

Table 12. Test Suite 2: Discard Pen

Table 13. Test Suite 3: Pick Green Pen

85

Test Suite id TS-4, 6, 8

Test case summary To verify that robot can draw.

Pre-requisites RTU and Robot-server are running, gripper is holding a pen.

Test procedure Related APIs are called via the testing software.

Test data http://192.168.8.11/rest/services/Draw1

http://192.168.8.11/rest/services/Draw2

http://192.168.8.11/rest/services/Draw3

Expected results • Robot will start drawing if it is holding a pen, otherwise,

it will refuse.

Test Cases TS4: TC-1: Robot is sent “Draw1” request.

TS6: TC-1: Robot is requested to draw 2nd shape.

TS8: TC-1: Robo asked to draw 3rd figure.

Test Suite id TS-5, 7

Test case summary To verify that robot can change a pen.

Pre-requisites RTU and Robot-server are running.

Test procedure Related APIs are called via the testing software.

Test data http://192.168.8.11/rest/services/picRedPen

http://192.168.8.11/rest/services/picBluePen

Expected results • Robot will change the pen.

Test Cases TS5: TC-1: Pick Red Pen

TS7: TC-1: Pick Blue Pen

Test Suite id TS-9

Test case summary To verify that robot can place a pen back to pen holder.

Pre-requisites RTU and Robot-server are running, gripper is holding a pen.

Test procedure Related APIs are called via the testing software.

Test data http://192.168.8.11/rest/services/PlacePen

Expected results • Robot will drop the pen at the right position in the pen

holder.

Test Cases TC-1: Place a pen

5.3 Test Cases Implementation

The tests are implemented by using mentioned two algorithms. In the first algorithm,

drivers used are the pen numbers, provided to the system to decide where it should place

the pen among pen holding slots. All other functions on the first level i.e bottom work

independently. Figure 67 show the first tree that was implemented, in this tree:

Table 14. Test Suites 4,6,8: Draw

Table 15. Test Suites 5,7: Change Pen

Table 16. Test Suite 9: Place Pen

86

• Numbers 1 to 9 are used to test basic system units individually. Testing go

through all kind of condition, like Discard function, it is called thrice, but it works

only one time. Other two time, there is no pen in the gripper to discard. It is used

to verify that all conditions are met in individual functions.

• Number 10, 11 and 12 are not acutally called during testing. They explain the

functions that are designed for drawing tools. Discard function is common for all

3 pens, and one function is used to discard any required pen.

• Number 13 and 14 are used to verify the pen change operation. It verifies the

integration of pen placement and pen picking up functions. Even though only 2

combinatons are called out of all possiblities, but it still verifies that functions are

integrated in the right manner.

• Z-axis callibration and only Draw1 functions are called out of 9 drawing functions

to verify that point transfer alogrith and callibration functions are working in the

right manner.

• The functions are called in the serial sequence, and their order is shown in the

first test that was implemented. After calling a request, system waited till the RTU

publishes the task complete the event.

Figure 67. Bottom-up Breadth First Tree

87

Figure 68. Top Down Depth First Tree

Figure 68 show the Top Down Depth First test implementation, it starts from the

calibration. For calibration, gripper should be holding a pen, that is why stub is

added to provide the system with required resources. Even though stubs are

called from the main function under testing, but in this case, pen was provided by

calling one of the pick pens functions at the start of test suite.

This test verifies the actual flow of the system, in which the robot will be working

in the FASTory line. Functions are called according to the numbers mentioned in

the figure.

This system also flows in the serial sequence. Katalon Studio version 6.3.3 was

used for testing, and before testing, robot was already installed at the FASTory.

So, the testing was done in the Targeted physical environment. Katalon studio is

free, Java/Groovy based automated testing tool, and it supports number of other

languages such as python.[83] The reasons for choosing this tool specifically are

given below:

• It allows automated API testing or web services testing in serial
and parallel manner, and it provides ready to use data functions
for data evaluation. Test cases and test suits can be managed in
quite organized manner with all the given test scenarios.

• Reporting system can be analysed in different ways using the
Katalon Analytic tools. It keeps track of all the test cases execu-
tions and provides graphs and status reports on passed, failed
and incomplete tests.

During testing, APIs are called via Katalon studio’s test cases, there are 9 test

cases which are used multiple times to design the test suits shown in the figures.

Each test case in a way that it can be used more than once in test suites and can

be re-used for other system testing as well. Each test has three main functions:

88

• To make a post request and verify the API response.

• To call and subscribe for a certain event and then wait for the no-
tification to stop move towards the next test. Event subscription
and listener are added in each test cases to make sure that those
test cases can be reused multiple times in any order, and then
they can be used for unit testing in case needed.

• Third function of the test code is to make sure that system doesn’t
end up waiting for ever for the event. A timer has been added in
each test case, that waits for a certain time span for each test
case then is closes the listener and moves towards next test
case.

5.4 Test Results

The basic purpose of testing was to verify the communication between Orchestrator,

RTU and Robot. The HTTP status code of the API post request was compared against

200 status code, to verify if the RTU is performing the required actions that was re-

quested. 200 status code stands for “OK” which means request has succeeded

Figure 69. API Performance Table

Figure 69 shows the API performance for different test cases, it shows the time taken by

a post request during a test. On average it took 4.5 seconds to make a post request, it

also shows how many times a function was called during the test. Request response was

verified during the tests, following 2 figures show the different test cases that were called

during the testing and their status. Figure 70 and 71 show the number of test cases called

during the test, passed test cases, and time taken by each test. Time mentioned in the

pictures is the time taken from starting the test to the end of last task, each testcase is

called after the previous test case has been completed and marked as passed based on

its published event. Even though tests are completed after the related event has pub-

lished, but enough delays were added to compensate for the system lags and maximum

89

event wait time was also set to 42 seconds for pen related operations and configuration

and 2.5 minutes for drawing.

Figure 70. Bottom-up BF Test Summary Report

Figure 71. Top Down DF Test Report Summary

Figure 72 shows the graph of 14 different executions of both tests repeatedly. Some of

the tests were run in loop and iterated repeatedly, API count went up to 70 times during

6th execution, making the test time 34 minutes and 70 seconds. All the API requests went

through successfully and response were verified. This ensures system’s ability to per-

form same tasks repeatedly in the assembly line.

90

Figure 72. System's Execution vs Duration Graph

Figure 73. Three Drawing Outputs of OMRON Robot

91

CONCLUSIONS

In the problem statement, it was mentioned that system integration is a complex process

because it is developed from several subsystems provided by different manufacturers.

The complexity arises from the communication requirements of subsystems and identi-

fication of communication errors in the integrated system takes lots of time and efforts.

This thesis provided a way to reduce the complexity by using the system integration tests

to identify the errors in the integrated modules. These errors can be identified, isolated

and fixed by using the proposed methodology to perform integration test in figure 33 of

section 3.6.

 It was further stated that automated tests have been developed to test software systems

and this thesis described a way to use existing test approaches for physical industrial

equipment. During this development, it was implied that the success of an integrated

system lies in flawless communication between different modules and SITs can be used

to test the communication between the modules using the existing software testing tech-

niques. Automated SITs for physical systems are more time consuming, since physical

system takes more time to perform a task as compared to software systems and test

system should wait for the completion of task before start testing the next combined

modules.

Furthermore, it was described that path planning is an important part of robotic cell de-

ployment, to make sure that it can perform required assembly tasks while avoiding the

hurdles. In this thesis, few path planning algorithms were discussed, and it was seen that

Bezier curves were better option for free shape implementation. Bezier curves were im-

plemented using De Casteljau algorithm implemented by using Python’s svg to path tools

library.

During implementation, path planning algorithm was not implemented in the industrial

robot controller. Instead, it was implemented for a computer system, that has more com-

putation power than an industrial controller. Points can be calculated from a given picture

at any given location, there is no need to access the robot memory every time to add a

new figure. Rather, it can be done more efficiently from a remote location by uploading

the points to robot’s memory over a network socket.

Focus of this thesis was extended to integrate webservices in a robotic cell, so they can

be used to invoke and request services. Service-Oriented architecture was used to im-

plement webservices, and robot’s functionalities were implemented as services that can

92

be requested from an orchestrator using webservices. RTU is used as a middleware to

integrate the robot controller with orchestrator.

INICO S1000 RTU is integrated with robot as a client, while robot is main service provider

in the whole system. RESTful webservices are used in the implementation and services

can be invoked just by posting some related APIs. Communications between robot –

RTU and RTU – orchestrator are two-way communications, Services can be requested

from the orchestrator, request goes to the robot via RTU, meanwhile after completing a

job, robot informs the RTU about completion of the job, which publishes an event to

inform the orchestrator. System is implemented using asynchronous webservices, but

still next request can only be made when the previous request has been served and

S1000 called back the endpoint provided during the event notification subscription.

Last objective of the thesis was to design an automated integration test to verify the

system integration. Two different integration techniques (Top-Down depth first and Bot-

tom-up breadth first) were used to verify the system. Both techniques were executed

using Katalon studio and they were executed various times in different number of itera-

tions, execution plot is shown in Figure 70. Testing was started from unit testing and

moved forward testing integration of different units, and it ended at the top, verifying the

entire system. Maximum of 214 API requests were made in one day during testing and

all of them passed successfully and system performed requested tasks in response.

Which proved that system can perform the required task in desired manner, while making

two-way communication with orchestrator over ethernet using TCP/IP protocol and it can

perform up to the requirements of an assembly line expectations.

93

REFERENCES

[1] [1] S. Wyatt, “Summary - OUTLOOK on World Robotics Report 2019 by

IFR,” IFR International Federation of Robotics, 04-Oct-2019. [Online]. Available:

https://ifr.org/ifr-press-releases/news/summary-outlook-on-world-robotics-report-

2019-by-ifr. [Accessed: 14-Sep-2019].

[2] [2] G. bekey et al., Robotics: State of The Art And Future Challenges. Lon-

don : Singapore : Imperial College Press ; Distributed by World Scientific Pub. Co

cop. 2008., 2008.

[3] [3] B. Gates, “A Robot in Every Home,” Scientific American Special Editions,

no. 18, pp. 4–11, Feb-2008.

[4] [4] “ROBOT | meaning in the Cambridge English Dictionary,” Cambridge Ac-

ademic Content Dictionary. Cambridge University Press, Dec-2008.

[5] [5] R. N. Jazar, Theory of Applied Robotics: Kinematics, Dynamics, and Con-

trol (2nd Edition), 2nd ed. Springer US, 2010.

[6] [6] E. Garcia, M. A. Jimenez, P. G. D. Santos, and M. Armada, “The evolu-

tion of robotics research,” IEEE Robotics Automation Magazine, vol. 14, no. 1,

pp. 90–103, Mar. 2007.

[7] [7] K. Dautenhahn, S. Woods, C. Kaouri, M. L. Walters, Kheng Lee Koay,

and I. Werry, “What is a robot companion - friend, assistant or butler?,” in 2005

IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, pp.

1192–1197.

[8] [8] J. Boyd, “Sony Unleashes New Aibo Robot Dog,” IEEE Spectrum: Tech-

nology, Engineering, and Science News, 01-Nov-2017. [Online]. Available:

https://spectrum.ieee.org/automaton/robotics/home-robots/sony-advanced-aibo-

robot-dog-unleashed. [Accessed: 29-May-2019].

[9] [9] J. Pransky, “Social adjustments to a robotic future,” pp. 1–10, 2004.

[10] [10] A. Sirinterlikci, A. Karaman Akgul, and O. Imamoglu, “Automation and Ro-

botics in Processes,” in Instrument Engineers’ Handbook: Fourth Edition, 2011,

pp. 158–168.

[11] [11] D. Nitzan and C. A. Rosen, “Programmable Industrial Automation,” IEEE

Transactions on Computers, vol. C–25, no. 12, pp. 1259–1270, Dec. 1976.

[12] [12] T. Brogårdh, “Present and future robot control development—An indus-

trial perspective,” Annual Reviews in Control, vol. 31, no. 1, pp. 69–79, Jan.

2007.

94

[13] [13] S. Y. Nof, Handbook of Industrial Robotics. John Wiley & Sons, 1999.

[14] [14] T. R. Kurfess, Robotics and Automation Handbook, 1st ed. CRC Press,

2004.

[15] [15] J. F. Engelberger, Robotics in Practice: Management and applications of

industrial robots, Illustrated. Springer Science & Business Media, 2012, 2012.

[16] [16] “Reusability: The Key to Making Human Life Multi-Planetary,” SpaceX,

10-Jun-2015. [Online]. Available: https://www.spacex.com/news/2013/03/31/reus-

ability-key-making-human-life-multi-planetary. [Accessed: 01-Jun-2019].

[17] [17] “SRI International, Silicon Valley Robotics and NEDO Host US-Japan Ro-

botics Conference ‘The Rise of the Robots’ | SRI International.” [Online]. Availa-

ble: https://www.sri.com/newsroom/press-releases/sri-international-silicon-valley-

robotics-and-nedo-host-us-japan-robotics. [Accessed: 02-Jun-2019].

[18] [18] W. L. Bargar, “Robots in Orthopaedic Surgery: Past, Present, and Fu-

ture,” Clinical Orthopaedics and Related Research, pp. 31–36, Jul. 2007.

[19] [19] B. Singh and K. P, Evolution of Industrial Robots and their Applications. .

[20] [20] K. Miyoshi, R. Konomura, and K. Hori, “Entertainment Multi-rotor Robot

That Realises Direct and Multimodal Interaction,” in Proceedings of the 28th In-

ternational BCS Human Computer Interaction Conference on HCI 2014 - Sand,

Sea and Sky - Holiday HCI, UK, 2014, pp. 218–221.

[21] [21] T. Arnold, M. D. Biasio, A. Fritz, and R. Leitner, “UAV-based measure-

ment of vegetation indices for environmental monitoring,” in 2013 Seventh Inter-

national Conference on Sensing Technology (ICST), 2013, pp. 704–707.

[22] [22] Y. Yang and Q. Cao, “A Fast Feature Points-Based Object Tracking

Method for Robot Grasp,” International Journal of Advanced Robotic Systems,

vol. 10, no. 3, p. 170, Mar. 2013.

[23] [23] D. Leidner, W. Bejjani, A. Albu-Schaeffer, and M. Beetz, “Robotic Agents

Representing, Reasoning, and Executing Wiping Tasks for Daily Household

Chores,” in Proceedings of the 2016 International Conference on Autonomous

Agents & Multiagent Systems, Richland, SC, 2016, pp. 1006–1014.

[24] [24] M. Raibert, K. Blankespoor, G. Nelson, and R. Playter, “BigDog, the

Rough-Terrain Quadruped Robot,” IFAC Proceedings Volumes, vol. 41, no. 2, pp.

10822–10825, Jan. 2008.

[25] [25] “ABB unveils the future of human-robot collaboration: YuMi® - Press Re-

lease,” 13-Apr-2015. [Online]. Available:

http://www04.abb.com/global/seitp/seitp202.nsf/0/5869f389ad26c612c1257e260

01c974c/$file/15_23+GPR+YuMi+Hannover+pr.pdf. [Accessed: 03-Jun-2019].

95

[26] [26] S. Bouchard, “With Two Arms and a Smile, Pi4 Workerbot Is One Happy

Factory Bot - IEEE Spectrum,” IEEE Spectrum, 03-Feb-2011. .

[27] [27] “Types of Robots - ROBOTS: Your Guide to the World of Robotics,” Ro-

bots Your Guide Through the World of Robotics. [Online]. Available: https://ro-

bots.ieee.org/learn/types-of-robots/. [Accessed: 10-Jun-2019].

[28] [28] V. Kapila, “Introduction to Robotics,” New York University.

[29] [29] A. Ghosal, “MODULE 1 – INTRODUCTION: ROBOTICS: ADVANCED

CONCEPTS & ANALYSIS,” Indian Institute of Science, Bangalore, India, 2010.

[30] [30] D. B. Williams, “An Introduction to Robotics.” Dr. Bob Productions, 2019.

[31] [31] F. SHAKHATREH, “The Basics of Robotics,” Mechatronics Thesis, Lahti

University of Applied Sciences, Lahti, Finland, 2011.

[32] [32] “What Are The Main Types Of Robots?,” RobotWorx. [Online]. Available:

https://www.robots.com/faq/what-are-the-main-types-of-robots. [Accessed: 10-

Jun-2019].

[33] [33] E. Şahin, “Swarm Robotics: From Sources of Inspiration to Domains of

Application,” in Swarm Robotics, 2005, vol. 3342, pp. 10–20.

[34] [34] J. M. Lastra, “Lecture 2: Robot Components (Part:1),” presented at the

Class Lecture: ASE-9306 Introduction to Robotics and Automation, TUNI.

[35] [35] N. Boysen, M. Fliedner, and A. Scholl, “A classification of assembly line

balancing problems,” European Journal of Operational Research, vol. 183, no. 2,

pp. 674–693, Dec. 2007.

[36] [36] S. Ullah, Z. GUAN, J. MIRZA, and S. HUANG, “A survey on assembly

lines and its types | SpringerLink,” Higher Education Press and Springer-Verlag

Berlin Heidelberg 2014, vol. 9, no. 2, pp. 95–105, Jun. 2014.

[37] [37] G. Boothroyd, Assembly Automation and Product Design, 2nd ed. CRC

Press, 2005.

[38] [38] K. Hughes, G. Szkilnyk, and B. Surgenor, “A System for Providing Visual

Feedback of Machine Faults,” in Enabling Manufacturing Competitiveness and

Economic Sustainability, 2012, pp. 305–309.

[39] [39] T. Feng and F. Zhang, “The Impact of Modular Assembly on Supply

Chain Efficiency,” Prod Oper Manag, vol. 23, no. 11, pp. 1985–2001, Nov. 2014.

[40] [40] J. L. M. Lastra, “Coordinate transformations 1/2,” presented at the IRA

Class Room, TUNI.

96

[41] [41] M. Mihelj et al., Robotics, 2nd ed., vol. 43. Springer International Publish-

ing.

[42] [42] J. Hing and K. Sevcik, “Breadth-First and Depth-First Search for Path

Planning,” Tutorial.

[43] [43] V. Velardo, “How to Implement Breadth-First Search in Python,” Python in

Wonderland, 18-Mar-2017. .

[44] [44] S. A. Fadzli, S. I. Abdulkadir, M. Makhtar, and A. A. Jamal, “Robotic In-

door Path Planning Using Dijkstra’s Algorithm with Multi-Layer Dictionaries,” in

2015 2nd International Conference on Information Science and Security (ICISS),

2015, pp. 1–4.

[45] [45] T.-T. Wang, X. Han, J. Zhou, and H. Chen, “Path planning for visual ser-

voing with search algorithm,” Advances in Mechanical Engineering, vol. 10, no. 1,

p. 1687814017750264, Jan. 2018.

[46] [46] D. Fioravanti, B. Allotta, and A. Rindi, “Image based visual servoing for

robot positioning tasks,” Meccanica, vol. 43, no. 3, pp. 291–305, Jun. 2008.

[47] [47] J. Choi, R. E. Curry, and G. H. Elkaim, “Curvature-continuous trajectory

generation with corridor constraint for autonomous ground vehicles,” in 49th IEEE

Conference on Decision and Control (CDC), 2010, pp. 7166–7171.

[48] [48] D. F. Nugroho, A. Dharmawan, M. I. Fikri, I. N. Ahmad, and M. R. Fuadin,

“Implementation of De Casteljau’s Algorithm for Pattern Generation on BIOLOID

Based Humanoid Robot’s Leg Movement,” in ResearchGate, Yogyakarta, Indo-

nesia, 2018, p. 4.

[49] [49] A. Kotani and S. Tellex, “Teaching Robots to Draw,” presented at the In-

ternational Conference on Robotics and Automation, Montreal, Canada, 2019,

pp. 1–7.

[50] [50] M. C. Lau, J. Baltes, J. Anderson, and S. Durocher, “A portrait drawing ro-

bot using a geometric graph approach: Furthest Neighbour Theta-graphs,” in

2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics

(AIM), 2012, pp. 75–79.

[51] [51] Yan Lu, J. H. M. Lam, and Y. Yam, “Preliminary study on vision-based

pen-and-ink drawing by a robotic manipulator,” in 2009 IEEE/ASME International

Conference on Advanced Intelligent Mechatronics, 2009, pp. 578–583.

[52] [52] S. Calinon, J. Epiney, and A. Billard, “A humanoid robot drawing human

portraits,” in 5th IEEE-RAS International Conference on Humanoid Robots,

2005., 2005, pp. 161–166.

97

[53] [53] N. Tillmann, W. Grieskamp, and W. Schulte, “Unit test generalization,” US

7.587,636 B2, Sep-2009.

[54] [54] “Unit Testing Tutorial: What is, Types, Tools, EXAMPLE,” Guru 99.

[Online]. Available: https://www.guru99.com/unit-testing-guide.html. [Accessed:

11-Sep-2019].

[55] [55] S. Kolodiy, “Unit Tests, How to Write Testable Code and Why it Matters,”

Toptal Engineering Blog. [Online]. Available: https://www.toptal.com/qa/how-to-

write-testable-code-and-why-it-matters. [Accessed: 11-Sep-2019].

[56] [56] S. Elbaum, H. N. Chin, M. B. Dwyer, and J. Dokulil, “Carving differential

unit test cases from system test cases,” in Proceedings of the 14th ACM SIG-

SOFT international symposium on Foundations of software engineering - SIG-

SOFT ’06/FSE-14, Portland, Oregon, USA, 2006, p. 253.

[57] [57] S. Bechtold, S. Brannen, J. Link, M. Merdes, M. Philipp, and C. Stein,

“JUnit 5 User Guide.” .

[58] [58] V. Roubtsov, “EMMA User Guide,” EMMA. [Online]. Available:

http://emma.sourceforge.net/userguide/userguide.html. [Accessed: 11-Sep-2019].

[59] [59] C. Poole, R. Prouse, and S. Busoli, “NUnit.org,” NUnit. [Online]. Available:

https://nunit.org/. [Accessed: 11-Sep-2019].

[60] [60] S. Bergmann, “PHPUnit – The PHP Testing Framework,” PHPUnit.

[Online]. Available: https://phpunit.de/. [Accessed: 11-Sep-2019].

[61] [61] “What is System Integration Testing (SIT) with Example,” Guru 99, 05-

Sep-2019. [Online]. Available: https://www.guru99.com/system-integration-test-

ing.html. [Accessed: 05-Sep-2019].

[62] [62] “Integration System Test,” Critical Systems Testing, Inc., Case Study,

2010.

[63] [63] “What is System Integration Testing (SIT): Learn with Examples,” Soft-

ware Testing help, 21-Aug-2019. [Online]. Available: https://www.softwaretest-

inghelp.com/system-integration-testing/. [Accessed: 06-Sep-2019].

[64] [64] “Incremental Testing,” Tutorial Point - Simple Easy Learning. [Online].

Available: https://www.tutorialspoint.com/software_testing_dictionary/incremen-

tal_testing.htm#. [Accessed: 09-Sep-2019].

[65] [65] R. Paul, “End-to-end integration testing,” in Proceedings Second Asia-Pa-

cific Conference on Quality Software, Hong Kong, China, 2001, pp. 211–220.

[66] [66] W. E. Howden, “Functional Program Testing,” IIEEE Trans. Software

Eng., vol. SE-6, no. 2, pp. 162–169, Mar. 1980.

98

[67] [67] H. K. N. Leung and L. White, “Insights into regression testing (software

testing),” in Proceedings. Conference on Software Maintenance - 1989, 1989, pp.

60–69.

[68] [68] S. Yoo and M. Harman, “Regression testing minimization, selection and

prioritization: a survey,” Software Testing, Verification and Reliability, vol. 22, no.

2, pp. 67–120, 2012.

[69] [69] “MES Explained: A High Level Vision,” in White Paper Number 6, 1997, p.

24.

[70] [70] D. Diep, P. Massotte, and A. Meimouni, “A distributed manufacturing exe-

cution system implemented with agents: the PABADIS model,” presented at the

IEEE International Conference on Industrial Informatics, 2003. INDIN 2003. Pro-

ceedings., Banff, Alberta, Canada, Canada, 2003, pp. 301–306.

[71] [71] K. A. Germany Frankenthal, “Field level,” KSB. [Online]. Available:

https://www.ksb.com/centrifugal-pump-lexicon/. [Accessed: 12-Sep-2019].

[72] [72] L. Canché, M. de J. Ramírez, G. Jiménez, and A. Molina, “Manufacturing

Execution Systems (MES) Based on Web Services Technology,” IFAC Proceed-

ings Volumes, vol. 37, no. 5, pp. 135–140, Jun. 2004.

[73] [73] A. Lobov, “III Lecture 02: Information retrieval: (Networked) Devices at the

factory,” presented at the Introduction to Industrial Informatics, TUNI, 09-Apr-

2017.

[74] [74] “Web Services Glossary,” W3C, 02-Nov-2004. [Online]. Available:

https://www.w3.org/TR/ws-gloss/. [Accessed: 12-Sep-2019].

[75] [75] W. Qifeng and W. Zhangjian, “Web Services-based System Integration

Approach for Manufacturing Execution System,” in 2011 International Conference

on Internet Computing and Information Services, 2011, pp. 469–472.

[76] [76] F. Jammes, H. Smit, J. L. M. Lastra, and I. M. Delamer, “Orchestration of

service-oriented manufacturing processes,” in 2005 IEEE Conference on Emerg-

ing Technologies and Factory Automation, 2005, vol. 1, pp. 8 pp. – 624.

[77] [77] B. A. Forouzan, TCP/IP Protocol Suite, Fourth Edition. Raghothaman

Srinivasan, 2009.

[78] [78] G. Torres, “How TCP/IP Protocol Works - Part 1,” Hardware Secrets, 28-

Mar-2012. .

[79] [79] W. M. Mohammed, A. Lobov, B. R. Ferrer, S. Iarovyi, and J. L. M. Lastra,

“A web-based simulator for a discrete manufacturing system,” in IECON 2016 -

42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, It-

aly, 2016, pp. 6583–6589.

99

[80] [80] “eCobra 600 Lite / Standard / Pro SCARA Robots/Dimensions | OMRON

Industrial Automation,” OMRON - Industrial Automation, 04-Jan-2016. [Online].

Available: http://www.ia.omron.com/products/family/3516/dimension.html. [Ac-

cessed: 20-Sep-2019].

[81] [81] “Robots KR 3 AGILUS Specification.” KUKA, 28-Feb-2019.

[82] [82] L. E. G. Moctezuma, A. Lobov, and J. L. M. Lastra, “Free shape paths in

industrial robots,” in IECON 2012 - 38th Annual Conference on IEEE Industrial

Electronics Society, 2012, pp. 3739–3743.

[83] [83] “A Comparison of Automated Testing Tools,” Katalon Studio, 24-Jan-

2017.

100

APPENDIX A: USING TEXT STYLES IN MS WORD

