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Abstract

We introduce and investigate a range of general notions of a game.
Our principal notion is based on a set of agents modifying a relational
structure in a discrete evolution sequence. We also introduce and study
a variety of ways to model incomplete and erroneous information in
the setting. We discuss the connection of the related general setting
to logic and computation formalisms, with emphasis on the recently
introduced Turing-complete logic based on game-theoretic semantics.

1 Introduction

We introduce and investigate a range general formalisations of the notion of
a game. Games here refer to multiplayer interaction systems as conceived in,
e.g., the field of multiagent systems. Our main formalisation is an iterative
setting where the players jointly modify a relational structure in a discrete
sequence of steps. The approach is very general. Indeed, generality is one of
our principal aims.

To gain intuition into the setting, the relational structures can be considered,
e.g., to represent the board of some board game—chess for example—at
different points of time. The individual pawns and other pieces can then be
naturally modeled by constant symbols or singleton predicates, for example.
The players move the pieces about, i.e., modify the relational structure.

In the general setting, we put no limitations to what the modifications could
be like in a particular scenario. It may be possible to remove domain ele-
ments and introduce new ones to the structures. Likewise, it may be possible
to delete and remove tuples from the relations of the structures. Each game
round corresponds intuitively to a new, modified structure. In any particular
modeling scenario, only the game rules restrict the set of allowed modifica-
tions in each round. A function modeling chance is also included into the
setting to enable investigations requiring related features and capacities.
∗ISBN 978-952-03-1193-3
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Board games, however, are only a starting point. The setting we define
is intended to provide a very general modeling framework. The framework
aims to offer a wide range of options for studying different kinds of interaction
scenarios involving a concrete dynamic environment (the changing relational
structures) and a set of agents acting in that environment. This will then
be connected to a very general approch to logic using a powerful, Turing-
complete logic formalism introduced recently in [7]. The logic provides a full
range of ways to formally control the new setting.

Using relational structures as the starting point of our formal systems has
two principal advantages. Firstly, relational structures are highly general
as well as natural, being able to model more or less everything in a flexible
way. Secondly, relational structures enable us to indeed directly use different
logics to control the time evolution and flow of changing structures.

Logic plays a crucial role in our study. We first observe that the Turing-
complete logic L of [7] is intimately connected to our main formalisation
of the notion of a game. Indeed, the evaluation of formulae via the game-
theoretic semantics of L is all about modifying relational strucures, so L can
be viewed as a particular game system included in our formal framework
of games. Conversely, we analyse how to directly simulate formal game
evolutions of our framework within the setting of L. Moreover, we discuss
further general ways to control game systems via logic, including, e.g., ways
of representing knowledge of agents and beyond.

In addition to obviously considering perfect information scenarios, we intro-
duce a simple and natural yet highly general way to deal with incomplete
and potentially false information. The approach is based on two maps. The
perception map provides—based on the current relational structure—a men-
tal model that reflects the way an agent sees the actual current world (i.e.,
the current relational structure). The agent then acts in one way or another,
basing her/his actions on the particularities of the mental model. The ac-
tions can depend on the agent’s (possibly limited) reasoning capacities. All
this is captured formally by a decision map that takes the mental model
as an input and outputs an action. The mental model can be a relational
structure, but we also consider more elaborate approaches to better account
for incomplete information issues.

To supplement our principal notion of a system, we also consider some gen-
eralizations. For example, we consider ways to abstract away the discrete
iterations leading from a structure to another. This gives rise to a potentially
continuous flow of structures. Furthermore, the approach provides a way to
model situations with infinite past, cyclic time, et cetera.

2



There is of course a vast literature investigating notions related to our study,
especially in the field of multiagent systems [15]. The concurrent game mod-
els used in Alternating-time temporal logic [1] relate to our notion of a game
system, but the main focus is not on relational structures there. In first-order
temporal logics (see, e.g., [6] and the references therein), however, the setting
typically involves a flow of relational structures. Formalisms that bear some
similarity to the original motivations of the logic L, as given in [7], include,
e.g., Abstract State Machines [3], but that approach is—unlike L—only re-
motely related to our study of multiagent interactions. The idea that the
general notion of a game should be formulated in terms of agents jointly
modifying a relational structure (or model) has been stated in [8, 9] and
formulated in further detail in [12]. We elaborate on those suggestions, de-
veloping an elaborate notion of a game system and drawing links with logic.
This leads to a framework with a reasonably flexible capacity to model—at
least in some sense—more or less everything.

Our approach is foundational and thus we provide relatively detailed dis-
cussions of most definitions we give, justifying the theoretical and formal
choices. After the brief technical preliminaries in Section 2, we introduce
and discuss formal notions of a system (i.e., notions of a game or interaction
framework) in Section 3. In Section 4 we then draw connections to logic,
especially the Turing-complete logic L, but also other systems.

2 Preliminaries

The power set of a set S is denoted by P(S). For any signature σ, the empty
σ-structure is in general allowed. Note that the empty sructure is not the
same object as ∅. We suppose this holds holds even if σ = ∅.

A structure (or model) typically refers to a first-order model as conceived in
standard logic. However, below structures can also be more general objects,
such as—to name a few of the many possibilities—sets or classes of first-
order structures; sets of logical formulas; first-order models with relations
having probabilistic weights on the relation tuples; or pairs (B, f) where
B is a first-order model and f and assignment function mapping some set
of variable symbols into the domain of B. This generality can be advan-
tageous. For example, a set of first-order structures can represent a set of
conceived possible worlds, while a reasonable setting for modeling quantum
phenomena could be to consider sets of first-order models, each model having
a complex number weight.1 However, standard relational first-order models
are by far the most important notion of structure that we consider below,

1In one simple case, the domain of the first-order models in that setting would corre-
spond to space coordinates.
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providing background intuition for all the technical as well as conceptual is-
sues. However, we use the word model as a synonym for structure, and refer
to first-order models when it is indeed only standard first-order models that
we are considering.

We assume that each structure can be associated with a signature σ that
relates to the objects of that structure. In the paradigmatic case of standard
first-order models, the signature is as defined in standard logic. We define
relational first-order models to have a purely relational signature, so con-
stant symbols and obviously function symbols are not included. First-order
models are not assumed to be finite by default, as is sometimes the case in
mathematics relating to computation (especially finite model theory).

3 Systems

In this section we define a general notion of a system. We begin with some
preliminary definitions.

Consider a triple (σ,A, I), where σ is a signature, A a set of actions and
I a set of agents (or agent names). Let S be a set of σ-structures. An
(S,A, I)-sequence is a finite sequence

(B0, a0,B1, a1, . . . ,Bk,ak)

where Bi ∈ S and ai ∈ AI for each i ≤ k. We note that also the empty
sequence, denoted by ε, is considered an (S,A, I)-sequence.

Definition 3.1. A system frame base over (σ,A, I) is a pair (S, F ) such that
the following conditions hold:

1. S is a set of σ-structures.

2. F is a function F : T → P(S), where T is some subset of the set of
all (S,A, I)-sequences.

Intuitively, a system frame base consists of a set S of possible worlds and
a function F that (nondeterministically) indicates how finite sequences of
possible worlds are allowed to evolve to longer sequences. The sequences
correspond to time evolutions of possible worlds.

In a bit more detail, consider a sequence

(B0,a0,B1,a1, . . . ,Bk−1, ak−1,Bk).
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of possible worlds Bi and (tuples of) actions ai ∈ AI carried out2 in those
possible worlds. This sequence ends with the possible world Bk that could
be considered the current possible world, or the current state of affairs. Now,
if the tuple of actions ak ∈ AI is carried out in the current possible world
Bk, we get the extended sequence

(B0,a0,B1, a1, . . . ,Bk,ak).

Now the function F gives the set

F
(
(B0, a0,B1,a1, . . . ,Bk, ak)

)
of new possible worlds, one of which is to become the new current possible
world. Note indeed that F does not deterministically give a single new
current possible world, but instead only a set of new candidates. In the
special case where F outputs the empty set, it is natural to interpret the
situation so that the actions ak lead to termination of the evolution.

Note also that the domain of the function F is specified to be a subset T
of the set of all (S,A, I)-sequences, with no particular restrictions on T .
Thus it can happen that F is defined even on some (S,A, I)-sequences that
do not belong to the set TF of all possible sequences that F gives rise to.3

This feature could of course be avoided by putting extra conditions on F .
But, this extra flexibility and generality in the definition of F can also be
beneficial.4

Since F is indeed a partial function on the set of (S,A, I)-sequences, there
indeed may be cases where F gives no output. This is subtly different from
the case where F outputs the empty set. Supposing F is undefined on the
input t = (B0, a0,B1,a1, . . . ,Bk, ak), we can interpret this to mean, e.g.,
that the tuple ak contains some forbidden actions in the possible world Bk

when the history leading to Bk is (B0,a0,B1, a1, . . . ,Bk−1, ak−1). If an
evolution terminates this way due a tuple of actions that is not allowed,
the situation is indeed subtly different from termination resulting in from
F outputting ∅ (which corresponds to termination via an allowed tuple of
actions). Of course—in different scenarios—one could talk about possible or
available actions rather than allowed and forbidden actions. It all depends
on the background interpretations.

2The actions in ai can most naturally be considered to be carried simultaneously in
Bi. However, interpreting these actions simultaneous is by no means the only possibility.

3The set TF is the set of sequences obtained by starting from the empty sequence ε
and inductively generating all possible sequences according to what F outputs.

4For example, we could define some function Fr according to some natural behaviour
restriction r and then study what kinds of evolutions the function Fr would allow when
starting from a sequence t 6= ∅ such that t 6∈ TFr .
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It is often natural to allow non-actions in addition to actions. Then we can
define A so that it contains a special symbol (or perhaps many special sym-
bols) that correspond to taking no action whatsoever. For example, suppose
A = {x, y} with x indicating no action taken and y corresponding to some
action. Let I = {0, 1}. Then the tuples (x, x), (x, y) and (y, x) correspond
to situations with non-actions. If F is undefined, say, on some sequence
ending with (x, x), then this can correspond for example to a scenario where
at least one action in the action tuple is required and the total non-action
tuple (x, x) is simply not allowed or somehow impossible.

Now, F is indeed nondeterministic in the sense that it only gives a set of new
possible worlds in a frame base (S, F ). Therefore, to decide which one of the
new possible worlds given by F becomes the new current possible world, we
define the notion of a system frame. The key is simply to define a choice
function G that picks a new possible world from the set of possibilities given
by F .

Definition 3.2. A system frame over (σ,A, I) is triple (S, F,G) such that
the following conditions hold:

1. (S, F ) is a system frame base as defined above.

2. G : E → S ∪ {end} is a function with E ⊆ T ×P(S) where T is the
set of all (S,A, I)-sequences. For all inputs (t,W ) where G is defined
and G((t,W )) 6= end, we require that G((t,W )) ∈W .

Intuitively, G simply chooses one option from the set W of possible worlds
given by F , and this choice depends also on the history t ∈ T . When
G outputs end, the interpretation can be that G terminates the evolution
of the underlying system. When G is undefined, we can interpret this for
example to indicate that G has no resources to determine the output. Note
also that G is undefined or outputs end always when F outputs ∅. This
reflects the idea that if evolution is terminated due to F , then G complies
with this and the evolution indeed will not continue.

The background intuitions between F and G are different; while F provides
a set of restrictions on how a system could potentially evolve, G determines,
within those restrictions, how the system then actually evolves. Thus F can
be seen as providing the rules how a system must evolve, and G is a bit like,
e.g., luck or chance that then determines what happens within the allowed
constraints. More on the interpretation of F and G (and beyond) will be
given later on.

We are now ready to define the notion of a system. To this end, we first
define that a structure-ended (S,A, I)-sequence is any sequence that can be

6



obtained by extending an (S,A, I)-sequence by some structure in S. More
formally, a structure ended (S,A, I)-sequence is a sequence

(B0, a0, . . . ,Bk−1,ak−1,Bk)

where (B0,a0, . . . ,Bk−1,ak−1) is an (S,A, I)-sequence and Bk ∈ S with
k ≥ 0. We then define the notion of a system. This amounts to adding
agents fi that act (choose actions in A) in each current possible world.

Definition 3.3. A system over (σ,A, I) is a structure (S, F,G, (fi)i∈I) de-
fined as follows.

1. (S, F,G) is a system frame as defined above.

2. Every fi is a function fi : Vi → A where Vi is a subset of the set of all
structure-ended (S,A, I)-sequences.

Agents are partial functions on the set of structure-ended (S,A, I)-sequences.
Intuitively, an agent makes choices in models of S based on the current model
Bk and also the (S,A, I)-sequence that gave rise to that model. If an agent
is undefined on some entry, this can perhaps most naturally be interpreted
so that the entry is irrelevant for the underlying study,5 to give one option.
If an agent fi dies for example, then it can still be technically desirable to
keep fi defined on sequences that occur later, to enable longer and longer
evolutions to be free of entries where functions have no defined value.6 The
deceased agent can, for example, systematically output some special non-
action symbol (say, d ∈ A) corresponding to death. Similar considerations
can concern agents that have not yet entered the system, or have temporarily
left the system. These can be associated with different symbols (for example
u ∈ A for a not yet born agent and ta ∈ A for an agent temporarily absent).7

An agent who is present but chooses not to act would output some other non-
action symbol. Using special outputs for non-actions has the benefit that we
can indeed differentiate reasons why the agent is inactive.

It is at this stage quite clear that together withG, the agents fj make systems
evolve within the constraints given by F . The agents act in a possible world

5The same interpretation for the cases where F or G is undefined is also important.
Indeed, one reason for allowing F , G and each fi to be partial functions is to enable finite
(or otherwise limited) systems to be defined.

6Some crucial action tuple ai = (fj(ti))j∈I (where ti is a structure-ended (S,A, I)-
sequence) can then have all its entries defined even if some agents j ∈ I are not present
in the last world of ti.

7It is of course self-evident that agents need not be associated with living entities, and
different symbols with different intuitions can be used.
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Bi, and then F determines, based on the actions, a set W of potential new
possible worlds. The actual new possible world is then chosen from W by G.

The set of finite evolutions of a system (S, F,G, (fi)i∈I) is the set that con-
tains all structure-ended (S,A, I)-sequences

(B0,a0,B1,a1, . . . ,Bk−1, ak−1,Bk)

such that B0 = G((ε, F (ε))) and the following conditions hold for each i
such that 0 ≤ i ≤ k − 1:

1. ai =
(
fj
(
(B0, a0,B1,a1, . . . ,ai−1,Bi)

) )
j ∈ I

2. Bi+1 = G
( (

(B0,a0, . . . ,Bi,ai), F ((B0,a0, . . . ,Bi,ai))
) )

.

Also the empty sequence is a finite evolution. Infinite evolutions are defined
in the analogous way to be infinite sequences (B0, a0,B1,a1, . . . ) of the
ordinal length ω and satisfying the above conditions 1 and 2 with B0 =
G((ε, F (ε))).

If B = (S, F,G, (fi)i∈I) is a system and E a structure-ended (S,A, I)-
sequence, then (B, E) is called an instance. If E is also a finite evolution of
the system, we may call (B, E) a realizable instance. An instance (realizable
or not) can also be called a pointed system in analogy with pointed models
in modal logic. The last structure Bk of E is called the current structure or
current world of (B, E) (and also of E). The set S of B = (S, F,G, (fi)i∈I)
is called the domain or universe of B (and also the domain of the system
frame base (S, F ) and system frame (S, F,G)).

Systems (and frames and frame bases) where all functions are total are called
strongly regular. We below analyse systems, and occasionally ignore techni-
cally anomalous features arising in systems that are not strongly regular.

3.1 On interpretations of systems

While there are numerous natural interpretations of systems as defined here,
the following rather ambitious interpretation stands out. A system frame
base (S, F ) of a system (S, F,G, (fi)i∈I) can be interpreted to represent the
material or physical part of the the system, while G and the functions fi
are the non-physical or non-material part. The functions fi can indeed be
considered to be individual agents,8 while G can be regarded as some kind
of a higher force—or perhaps chance or luck—that determines the ultimate

8The functions fi encode behaviour strategies of agents and the indices in I can be
thought to provide agent names or something of that sort, a unique name (or index) for
each agent. If desired, it is of course possible to construct a physical counterpart (a body)
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evolutive behaviour of the system.9 The agents pick actions from the set
A, and based on the actions, F determines a set of new possible worlds.
The actual new world is then picked by G from that set. It is natural to
consider F to to correspond mainly to physical constraints within which
the evolution happens, while G is a more abstract (perhaps intuitively non-
physical), chance-like entity.10

Within the collection of various interpretations, it is highly natural to con-
sider systems where the tuples ai of agents’ choices are determined by the cur-
rent structure Bi, as opposed to entire sequence (B0,a0, . . . ,Bi−1,ai−1,Bi)
ending with Bi. This of course implies that for each j ∈ I, there exists a
function hj such that

fj((B0, a0, . . . ,Bi−1, ai−1,Bi)) = hj(Bi)

holds for every i. Note that for each structure Bi ∈ S, the function fj must
be defined either on every structure-ended sequence ending with Bi or none
of such structure-ended sequences.11 Thus the domain of hj is precisely the
structures Bi such that fj is defined on sequences ending with Bi.

This reflects the idea that evolution histories—at least up to the extent
that the agents can see them—must be encoded in the current structure, if
anywhere. The current structure could naturally represent, e.g., the physical
world at the current time instance, and the agents’ behaviour would then be
assumed to depend only on the current physical world. Indeeed, even the
full sequence

(B0,a0, . . . ,Bi−1, ai−1)

for an agent and encode it into the structures in S. The body need not necessarily be a
connected or somehow local pattern. One natural choice is to pick a new relation symbol
Ri for each agent index i ∈ I to represent the body. But that is just one choice. The
related function fi can in suitable cases be modeled by letting some part of the encoding
(or body) of the agent encode, e.g., a Turing machine, possibly with some fault tolerance
included. The input to fi then is most naturally encoded by some small, distinguished
part of the current structure, suitably local to the body. The output is of course the
action. We will discuss these issues in a bit more detail below.

9G can be interpreted in several different ways. It could indeed simply represent chance
or luck. But it could even—if desired—represent somekind of god or something intuitively
similar, to give some examples of the various possibilities.

10It is worth noting that interpretations of systems and the related metaphysical issues
do not necessarily have to be taken in some overtly literal sense. Interpretations can also be
flexible frameworks that guide thinking in intuitive and fruitful ways. Moreover, it is worth
remembering that systems also model various frameworks that can appear rather concrete
and even mundane, such as concrete games, simple physical systems, computations, et
cetera. Nevertheless, the more literal interpretation attempts are important as they relate
to quite fundamental issues.

11This is because the outputs of fj are determined by the last structure of each input
sequence. Thus also a possible lack of an output is taken to be so determined.
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can be partially (or even fully, within suitable situations) encoded into the
current world Bi of the extended sequence

(B0,a0, . . . ,Bi−1,ai−1,Bi).

Obviously, different agents fj can be made to see (i.e., depend on) different
(typically rather small) parts of that encoding.12

Also F can be made dependent upon the last structure only. This is perhaps
natural when F is interpreted to be the part of the physical nature that
is not dependent upon chance. Then it may be natural that all past time
events affecting F should be readable (and thus encoded into) the current
structure.

In contrast to fj and F , it is typically most natural (but of course optional)
to keep the behaviour of G dependent on full input tuples (which are of
type ((B0,a0, . . . ,Bi,ai),W ) for G). This is natural if G is interpreted to
be some kind of a pure luck factor or something similar, a higher force or
so on. Then it can be reasonable that the function output is not readable
from the concrete current physical world but can be arbitrary, which in this
case means simply dependence upon the full history of structures and choices
(and the set W ).13

3.2 Eliminating features

It is worth noting that for conceptual reasons, it is nice to have both F and
G, although the combined action of F and G is essentially a single partial
function. We could define systems differently, of course. It is also worth
noting that history features can often be relatively naturally simulated in
current structures by using suitable encodings. This bears a resemblance to,
e.g., defining tree unravelings in temporal logic, where each node then fully
determines the history of that node.

Furthermore, we can make some of the functions F , G and fj concrete (or
perhaps physical) in the sense that some or all of their features get encoded
in the structures Bi. Indeed, we already mentioned this possibility in rela-
tion to agent functions. These possibilities can be accomplished by suitable

12Naturally agents can also have a limited picture of the current world Bi. This issue
will be discussed more later on below.

13The article [12] defines systems according to the intuition that indeed only G depends
on full sequences. We note here that there is an obvious typo in [12]. There we should
have

1. ai = (fj(Bi))j∈I

2. Bi+1 = G
(
(B0,a0, . . . ,Bi,ai)

)
,

while the typo version has the first line ai = (fi(Bi))i∈I , which is obviously wrong.

10



encodings. For example, we can indeed encode Turing machines into the
structures in system domains. The Turing machines are then required to
fully indicate how the concretized functions must operate.

Let (S, F,G, (fi)i∈I) be a system and h ∈ {fi}i∈I a concretized function.
Suppose that each structure in S encodes h using some distinguished relation
symbols Rh,j . For simplicity, suppose h always depends only on the current
structure. Now, the relations Rh,j are required “output” the same choices in
each sequence ending with B as what h would output with the input B. Of
course it is natural to make h depend only on some small part of B, a part
that could be somehow encoded close to where the relations Rh,j have tuples.
Closeness here can be measured in relation to some binary distance relation
R. This makes the facts Rh,j(b1, . . . , bl) (here b1, . . . , bl are elements of B)
correspond to the material body of the agent h. Note that while we assumed
h depends only on current structures, we could encode history features into
structures for h to see.

Suppose we encode a concretized agent function h into the model domains,
and suppose we also somehow encode the body of the related agent. It is
then natural (but of course not necessary) to let the body of the related
agent contain the tuples encoding h. It is also natural (but not necessary)
to make the body local, as discussed above. When considering encodings, it
is worth noting that tuples of relations (in standard first-order models) do
not have a clear identity that carries from a model to another. Indeed, if we
have a relation with two tuples, and the model changes so that in the new
model we again have two tuples but now somewhere else in the model, then
there is no obvious way of telling which new tuple corresponds to which old
tuple—if there is any intended correspondence in the first place. If we wish to
encode identities for tuples (in first-order models), one idea is to use ternary
relations to encode binary relations, with the first coordinate providing an
indentity for the tuple. For example, a fact R(b1, b2, b3) would correspond
to a tuple encoding the pair (b2, b3) and having b1 as its indentity.

As we have noted, perceiving only a part of the current model is natural for
agents, and it is natural if the perceived part is in the vicinity of the material
body of the agent. Next we discuss issues related to perception, and beyond.

3.3 Partial and false information

Generally agents make their choices based on sequences

(B0, a0, . . . ,Bk−1, ak−1,Bk).

In other words, the functions fj are functions of such sequences. The setting
where all agents fj depend on the current structure Bk only (i.e., the last
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structure of the input sequence) will be below referred to as the positional
scenario. The general setting is refferred to as the general scenario.

In the general scenario, it is natural that agents fj do not use the full sequence

(B0, a0, . . . ,Bk−1,ak−1,Bk)

leading to the current structure Bk, but instead some representation of that
full sequence. Similarly, in the positional scenarion, it is natural to assume
that the agents only see some representation of Bk.

In both scenarios, the representation may not necessarily resemble the rep-
resented sequence/structure at all, but could instead be partially or even
wholly different. The intuition of the representation is that it is the mental
model the agent has about reality. Let us make this precise.

We first consider the positional scenario. Fix a system (S, F,G, (fi)i∈I).
While the functions fi can indeed depend on all of the current model Bk,
which can be quite reasonable when modeling perfect information games, it
is highly natural to define perception functions to cover the scenario of partial
and even false information. Perception functions will make the agent func-
tions fi depend upon perceived models or mental models. We let a perception
function for agent i to be a map pi : S → Si, where Si is a class of structures
whose signature may be different from those in S. The class Si is the class of
mental models of agent i. We then dictate that fi(B) = di(pi(B)) for each
input B ∈ S, where di : Si → A is called the decision function of agent i,
and A is simply the set of actions of the system we are considering.

For a concrete example, pi could be a first-order reduction, more or less in
the sense of model theory or descriptive complexity, giving a very crude,
finite approximation of the original model (which is the input to pi). Now,
even if the input model to pi is infinite, the output model can be finite and
depend only on some small part of the input model.14 Note that parts of
the agents’ epistemic states can be encoded into the original models in S.
Thus the agents can try to take into account those parts of the other agents’
epistemic states that they believe to have access to. How much agent i knows
about the other agents’ epistemic states in B ∈ S will be reflected in the
structure of the mental model pi(B).15 But of course this information can

14That part could indeed quite naturally be mostly in the vicinity of the encoded body
of the agent.

15The mental model can reflect the agent’s beliefs about the other agents’ mental states,
and the agent’s beliefs about beliefs about beliefs, and so on, possibly in a way that includes
all agent-mixed nested modalities. But, of course, a mental model does not have to try
to do too much. Concerning modalites about nested beliefs, it is typically unrealistic to
have everything in the mental model. Indeed, concerning information in general, it is very
much realistic to have somehow strongly partial (and perhaps false) information in the
mental model. This relates directly to, e.g., limited memory capacities as well as limited
perception.
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be highly partial, even false, and obviously each agent tends to see different
parts of information of the other agents’ epistemic states. Of course agents
do not even have to know the full set of agents operating in the framework.

The case in the general scenario is very similar and analogous to the posi-
tional scenario. The conceptual issues are more or less the same to a large
extent. The difference in the formalism is that now pi maps from the set of
structure-ended sequences of the original system into the set Si of mental
models of agent i. The mental model can, in both the general and positional
setting, encode how much the agent i remembers and understands about
the sequence that has lead to the current model in S. In the general sce-
nario, however, the mental model that pi outputs can directly depend upon
the sequences, as the inputs to pi are sequences. In the positional scenario,
the sequence leading to the current model is available only to the (possibly
nonexisting) extent that the sequence is encoded in the current model.

Different agents i can of course have different sets Si. But, in general, what
should the mental models in the sets Si look like? One option is that they
encode sets of models in S. Such a set corresponds to the models in S
that the agent considers possible. This is a very classical approach. It is
completely unrealistic in many scenarios, as the agent would simply have
too much information. Furthermore, it requires that all the models that the
agent consider possible are actually models in S.

A somewhat more realistic scenario goes as follows. A mental model in Si
is simply a set A of axioms in some logic. Intuitively, it axiomatizes mainly
what the actual current model (and the history leading to it) should look
like. It also describes what the full global system (including possible futures,
the other agents and their mental models, the location of the current model,
et cetera) looks like.16 We here concentrate mainly on how well the current
model is known. The set A could now contain the following.

1. A set F of facts.17 These are atoms R(b1, . . . , bk). The elements
b1, . . . , bk are taken from some set B′ (which does not have to be the
domain of any model in S). Intuitively, the agent regards b1, . . . , bk to
be domain elements of the actual current model (which formally is the
model B such that pi(B) = A). The relation symbol R intuitively be-
longs to the signature of the models in Si. Thus R(b1, . . . , bk) could be
for example the fact TallerThan(John, Jack) representing the agent’s
belief that John is taller than Jack in the current actual model18 B.

16The picture of reality is indeed typically highly partial.
17We note that facts do not have to be true in any sense. Perhaps atoms would be a

better term.
18Jack and John are both elements of B′ (but need not really be anything in B, although
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The relation R can be something the agent considers to somehow be
an actual relation in B, but R can also be some relation internal to
the thinking of the agent. In that case also the elements b1, . . . , bk can
perhaps represent something that the agent does not consider belong-
ing to B. Indeed, such a virtual or purely mental category of facts can
be very important. It could be desirable to include, e.g., beliefs about
other agents’ beliefs into mental models. This will involve encoding
related issues into facts in F .

2. A set F ′ of negative facts. These are fully analogous to facts in F ,
but represent beliefs that the agent thinks false. Formally, these are
literals ¬R(b1, . . . , bk), where R(b1, . . . , bk) is as described above. Note
that there is no problem if the agent holds a fact in F and its negation
in F ′. Then the agent simply has contradictory beliefs. It may be
difficult for the agent to detect the contradiction.

3. A set B of other axioms. These are, in the most obvious cases, state-
ments that the agent thinks the actual current model satisfies. They
could also be statements about more abstract issues that are not (nec-
essarily) directly related to the current model, for example statements
about the beliefs of other agents. The only difference between these
and the facts and negative facts in F∪F ′ is that these need not be liter-
als. These non-literals can still, of course, make use of the elements in
B′, if desired. Again the agent can have contradictory beliefs, as some
subset of B can have a contradiction as a logical consequence. It could
simply be difficult for the agent to deduce that contradiction. Or even,
it is possible that the agent later on does easily deduce that contradic-
tion, but at this stage of evolution, the agent has not yet been able to
obtain the contradiction. Such a situation occurs even in mathematical
proofs; we typically do not immediately obtain a contradiction, but it
takes some effort.

To give an example of the above scenario, let the system domain S consist of
first-order models. Let the set B′ be the union of the domains of the models
in S. Suppose the current model B ∈ S consists of a domain {a, b} and a
relation R = {(a, a), (a, b)}. Let the mental model pi(B) be given by

F = {R(a, a)}, F ′ = {¬R(b, a)}, and B = {¬∃≥8x(x = x)}.

it is natural if they are). It is worth noting that generally the elements in B′ can be
differentiated—if desired—from the possible constant symbols in the signature of mental
models. For example, one may wish to keep the elements in B′ identical to supposed
actual elements, while constant symbols are simply names of supposed actual elements.
We note that Jack and John here are not meant to be agents (although they could possibly
be). Instead, they are simply what the agent i considers to be elements of B.
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We are here discussing a scenario where the mental model simply tries to
identify B to the best possible extent. The agent knows that R(a, a) and
¬R(b, a) as well as ¬∃≥8x(x = x) hold, but the agent has no idea about
whether—for example—the fact R(b, b) holds or whether there are more than
two elements. The agent knows, we suppose in this scenario, that the actual
model is one of the models in the set of {R}-models that satisfy F ∪F ′ ∪ B
and have domain D such that {a, b} ⊆ D ⊆ B′.19 Thus the setting resembles
open world querying. Now, to fully know the model B, the mental model
could be given by

F = {R(a, a), R(a, b)}, F ′ = { ¬R(b, a),¬R(b, b) }
and B = {∃=2x(x = x)}.

Note that here we give the full relational diagram of B and specify that there
are no more elements than those mentioned in the diagram. This suffices to
fully specify the model in this case.20

Now, the agent i must choose an action based on the mental model pi(B).
This is done via a function di : Si → A that maps mental models to actions in
A. Now, a typical agent has limited reasoning resources, not being logically
omniscient. Indeed, as we have discussed, it could even in some cases be
difficult for the agent to deduce a contradiction from a fact in F and its
negation in F ′. This is even typical if F and F ′ are large (physical) look-up
tables. And deducing a contradiction from a contradictory set B is likewise
not always straightforward.

One natural way to model di is to use the limited reasoning capacities de-
scribed in [10]. The idea is that the agent uses logical reasoning, but has
access only to a possibly too small collection of inference rules and may also
have to truncate reasoning patterns after quite short reasoning chains. The
premises consist of the set F ∪ F ′ ∪ B. It is natural for example to impose
a fixed limit n dictating how many times the agent is allowed to use the
inference rules. Also, it is natural to put similar limitations onto the set of

19If M is an {R}-model and has a and b as domain elements, then we define that
M |= F ∪ F ′ ∪ B if the expansion N of M with constant symbols a and b (interpreted
such that aN = a and bN = b) satisfies all formulae in F ∪ F ′ ∪ B. (Note that R(a, b)
already implies that there must be two elements at least (a and b are different elements),
and note indeed that we do not even interpret these formulae on models without a and b
in the domain. Of course one could avoid all this, if desired, and work only with the usual
conventions concerning constant symbols.)

20Here we did not include atoms a = a in the diagram, but of course one would generally
have to include them to always be able to tell what the domain is by looking at the full
diagram. When diagrams indeed mean sets of literals where the constants in the literals
are domain elements, we can specify models fully with suitable diagram notions, not only
up to isomorphism, if we so wish for one reason or another. But there is nothing technically
deep behind this, and different conventions are possible for different ways of modeling.

15



formulae the agent can know at any time. So, if the agent reasons starting
from F ∪F ′∪B, the agent cannot add new formulae into the setting without
a limit when reasoning. The agent may have to throw some formulae away
during the reasoning process. While this mainly models finite memory ca-
pacities, note, however, that of course the agent could use external look-up
tables to store information. But those could, on the other hand, become
large and slow to read. Anyway, in an ideal case, the agent can deduce the
full structure of the current model B based on the mental model, and per-
haps even the full history leading to B, and beyond, all the way to the global
features of the system. If the agent i can always deduce the full history, then
fi can depend on full histories.

It is obviously dependent upon the agent what reasoning tools can be used,
and how complex reasoning patterns are allowed. Concerning reasoning
tools, it is reasonable to add inference rules to the set F ∪ F ′ ∪ B. An
additional set I could be used. There should be ways to modify the set I
based on the current world and the history. Such ways can be encoded into
the function pi that produces the mental models. A later mental model is
typically dependent upon an earlier one, e.g., pi(Bj+1) upon and pi(Bj);
this dependence could be mediated via the actual world Bj+1.

Of course one does not have to use standard logic to model truncated and
limited reasoning, but also, e.g., complexity classes and computation devices
with suitably limited capacities. The mental models above are a starting
point, but of course one would like to add more general features to the
picture. For example, probabilistic and fuzzy features (e.g., probabilistic
weights on the literals and even general axioms) are surely interesting. And
obviously probability theory is not likely to suffice, but generalizations are
needed. Other approaches that also immediately suggest themselves include
using neural networks and other frameworks that involve possibilities for
heuristic reasoning. The obvious places where to use neural networks concern
the perception and decision functions pi and di. A neural network device
would be a natural option for producing the outputs of pi. It would look at
some small part of the current model (and perhaps its history) and operate
based on that. Also di could quite naturally be computed, based the mental
model, via a neural network device. We could even remove the mental model
from between pi and di altogether, if desired. However, concerning human
agents, it would ultimately perhaps be more informative to combine the use
of neural networks with more classical features.

It is worth noting that in our concrete example of a mental model, the set
F ∪F ′ approximated a first-order model. But human agents more typically
entertain picture-like representations of models, that is, drawings of struc-
tures rather than the structures themselves. It can be difficult to detect, e.g.,
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graph isomorphism. To account for more geometric mental models, we could
modify the F ∪F ′ ∪B approach a bit. The idea is to add three-dimensional
grids to the setting. Let G1, . . . , G` be such grids.21 We let each grid have a
finite domain and thus correspond to a finite set of points in a rectangular
array. Now, we identify each (or alternatively, some) of the elements b ∈ B′
appearing in the literals of F∪F ′ with some grid point. If there are elements
in the formulae of B that do not occur in the literals, then those elements
can also be identified with grid points. It is natural (but not necessary) to
require that each literal has its elements in a single grid. Now the patterns
described via F ∪ F ′ have become geometric objects. We have drawings in
three dimensions (and these could be made two dimensional as well). The
reason we have started with several rather than a single grid is that typically
an agent entertains a collection of mental images rather than a single one.

It is interesting to note that while F ∪ F ′ corresponds to knowledge, B in
some sense relates to understanding, or at least more abstract knowledge. We
could add a set C to F∪F ′∪B, this being a set of suitably encoded reasoning
algorithms that the agent could then use on the formulae in F ∪F ′ ∪B and
their more or less immediate logical consequences. C could contain at least
some proof rules (as the set I discussed above did). Now C would relate quite
nicely to understanding and the look-up-table-like set F ∪F ′ to knowledge.
Of course somehow truncated reasoning, not full logical consequence, would
be natural. Indeed, full logical consequence seems to relate to potential
knowability rather than knowledge.

Summarizing this section so far, we have identified ways to model incomplete
information and even false information via mental models given by pi. A
partially false and strongly incomplete picture is a reasonably natural start-
ing point for modeling attempts. We have also discussed how di could take
into account limitations in reasoning capacities. There are many ways to do
this, and obviously a huge range of issues to investigate.

So far we have concentrated on the positional scenario. In the general sce-
nario, however, the functions pi and di are very much conceptually analogous
to their counterparts in the positional scenario, so the above investigations
also apply conceptually in the general setting for the relevant parts. For-
mally, the domain of pi is the set of structure-ended (S,A, I)-sequences and
the output is a mental model. It is perhaps most natural to make the domain
of di simply the set of mental models, as in the positional scenario. Indeed,
even in the positional scenario, some parts of histories would often become
encoded in the mental models. However, more general inputs can also be
considered.

21These are models with three binary relations, H indicating the left-to-right neighbour
relation, V indicating the down-to-up neighbour relation, and D indicating the closer-to-
the-viewer relation. The relations are analogous to 3D coordinate axis orientations.

17



3.4 Further issues

Systems can be used to model games, computation and physics systems, to
name a few possibilities. Indeed, all kinds of interactive scenarios are rea-
sonably naturally modeled by systems. Concerning applications in physics
systems, the advantage of our formal systems is the possibility of concretely
modeling supposed mental entities (agents and G) together with the suppos-
ably physical part (structures and F ).22

Cellular automata provide a starting point for digital physics, but systems,
as defined above, are much more flexible.23 The metaphysical setting of
systems provides a lot of explanatory power for understanding phenomena.24

The way the supposedly mental constructs (G and each fi) interact with the
material parts is highly interesting. As systems are fully formal, concrete
modelling attempts will force new concepts and insights to emerge.

One of the most concrete and obvious advantages of systems when compared
to, e.g., standard cellular automata, is that it is not necessary to keep agents
(and other entities) local. Furthermore, it is not necessary (although can
be natural) to keep agents and other entities computable. However, com-
putability and semi-computatbility are obviously very important issues. As
suggested in [9], extensions of the Turing-complete logic L can be naturally
used as logics to guide systems. We will discuss this issue below in Section
4.

3.5 More general systems

Our notion of a system can of course be generalized. Indeed, currently every
current structure has a finite history leading to it. To allow for infinite past
evolutions, and to get rid of the discreteness of the steps between subsequent
models, we define the following notion.

22We note that the division “agents and G” vs “structures and F ” does not necessar-
ily provide a strict gap between what would be conceived as mental and what physical.
Indeed, of course the supposed mental and physical realms are likely to show some con-
nection between them to enable interaction between the realms. The agents realistically
have perception functions pi via which they see the structures in the system domain. And
the function F looks at the actions of the agents and provides an output partially based
on that.

23Of course one of the most obvious ideas is to make functions computable or semi-
computable. But it is interesting to keep also more general functions in the picture, for
example it could be quite natural to let G be uncomputable. And it is often natural to
let F output infinite sets.

24Indeed, it is natural to regard systems as a framework providing a formal metaphys-
ical setting for modeling seemingly less fundamental frameworks with more contingent
properties, such as particular physical processes, for instance.

18



A total g-system (g for general25) is defined to be a tuple

(S, (Rj)j∈J , F, (fi)i∈I , G)

such that the following conditions hold.

1. S is a set of structures.

2. Each Rj ⊆ Skj is a kj-ary relation over S. Intuitively, Rj could for
example give a partial order of the structures in S that corresponds to
time. But of course other interpretations are possible.

3. F is a function P(S) × AI → P(P(S)). Intuitively, F maps each
history (a set of structures in S) to a set of extended evolutions (a
collection of subsets of S). The output depends also on the actions of
the agents.

4. Each fi is a function P(S)→ A from histories to actions.

5. G is a function P(S) × AI → P(S) such that G(t) ∈ F (t) for each
input where F (t) 6= ∅. If F (t) = ∅, then G(t) = ∅. Intuitively, G just
picks the actual outcome from the set of possible outcomes given by
F .26

This is a relatively general approach. For example, it is possible to cover
cyclic approaches to time, even dense ones, for example by embedding S
into R2. And of course one can consider approaches with no time concept in
the first place.

A basic notion in total g-systems is a set of structures. The principal intuition
of such a set is a history of some kind. Note that histories do not this time
contain actions, so single action tuples in AI are perhaps most naturally
continuous processes acting all the way through the input (a history). But
of course actions could be embedded into histories in a different way, leading
to generalizations. Another one of the reasonable further generalizations is
to base actions on sets of histories instead of a single one. This leads to
systems (P(S), (Rj)j∈J , F, (fi)i∈I , G) with the following specification.27

1. S is a set of structures.

2. Each Rj ⊆ Skj is still simply a kj-ary relation over S.
25A g-system is defined to be a system that can be obtained from a total g-system by

allowing some of the involved functions to be partial.
26We could of course combine the actions of F and G and thereby only have one function,

but it is nice and natural to include both of them.
27The specification is close to simply replacing S in the previous specification by P(S),

but not exactly the same.
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3. F is a function P(P(S))×AI → P(P(P(S))).

4. Each fi is a function P(P(S))→ A.

5. G is a function P(P(S))×AI → P(P(S)) such that G(t) ∈ F (t) for
each input where F (t) 6= ∅. If F (t) = ∅, then G(t) = ∅.

Further generalizations would involve, e.g., putting weights on structure sets
and sets of structure sets. And so on and so on.

A highly general setting to model nested beliefs can be based on the concur-
rent game models of Alternating-time temporal logic. Consider the reason-
ably flexible concurrent game models as defined in, inter alia, [4]. These can
be given canonical tree unravelings; we begin from a single state and unravel
from there. This gives an unraveled model T with a root.

Now, each state of T has a unique history. (Recall that a state is now a
copy of a state in the original model, but also with a unique history.) Given
the set of agents is K, suppose there is, for each k ∈ K, a binary relation
Rk ⊆ Q × Q, where Q is the set of states of T . Intuitively, (q1, q2) ∈ Rk

if in the state q1, the agent k considers it possible that (s)he is currently
in state q2. So these are epistemic relations. The nice thing here is that
the states have a unique history, so the binary relations are also binary
epistemic relations over the set of histories. And each history has a sequence
of changing beliefs about the current history, et cetera.

Now we can analyse interesting nested beliefs that also involve temporal
statemens. Suppose k is at qa and Rk points only to qb from qa. Now k
believes to be at qb. Suppose the predecessor of qb is qc. Now k thinks the
previous state was qc. Now suppose qc is also the predecessor of qa. Then k
is right about the previous state but for a wrong reason.28

Here we did not nest the beliefs of different agents, k and l for example.
But that is of course possible, leading to belifs about beliefs with a temporal
dimension, and so on and so on. All this is nice and quite general. However,
in the current article we are mostly interested in using (what would be for
most parts) the internal structure of states. The setting of T uses epistemic
relations that in a sense seem blind to the possible internal structures of
states. Nevertheless, both the internal view and the external one can be
useful, and surely the approaches can be combined. Indeed, states might
as well be relational structures, and conversely, the structure-based setting
with mental models does suggest global epistemid relations for agents.

28All kinds of questions rise about the setting and the structure of the epistemic rela-
tions, but we shall not discuss this setting in detail here.
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4 Systems and logic

The article [7] defines a natural Turing-complete extension L of first-order
logic FO. This new logic is Turing-complete in the sense that it can define
precisely all recursively enumerable classes of finite structures. The logic
is based on adding two new capacities to FO. The first one of these is
the capacity to modify models. The logic can add new points to models
and new tuples to relations, and dually, the logic can delete domain points
and tuples from relations.29 The second new capacity is the possibility of
formulae to refer to themselves. The self-referentiality operator of L is based
on a construct that enables looping when formulae are evaluated using game-
theoretic semantics.30

The reason the logic L is particularly interesting lies in its simplicity and
its exact behavioural correspondence with Turing machines. Furthermore, it
provides a natural and particularly simple unified perspective on logic and
computation. Also, the new operators of L directly capture two fundamen-
tal classes of constructors—missing from FO—that are used all the time in
everyday mathematics:

1. fresh points are added to constructions and fresh lines are drawn, et
cetera, in various contexts in, e.g., geometry, and

2. recursive operators are omnipresent in mathematical practice, often
indicated using the three dots (...).

One of the advantageous properties of L (in relation to typical logics) is that
it can indeed modify models. And models surely do not have be static, al-
thought that is still the typical approach. Even in classical mathematics, we
modify our structures. For example in compass-and-straightedge construc-
tions, we draw new points and lines. While there exist logics that modify

29Strictly speaking, the system defined in [7] did not include the capacity to delete points
from model domains. However, this possibility was briefly discussed, and it was then ruled
out only due to page limitations in the paper. The reason for leaving out the capacity to
delete domain points was mainly related to the fact that this can lead to variables x whose
referent has gone missing from the model domain. Also empty models appear. However,
in the current article we let L refer to the logic that also has the domain element deletion
operator (and the empty model is fine). Furthermore, [7] made the some other limitations
to the syntax of L so that a semantic game does not lead to pathologial situations where
again x may have no value (even if there are no domain element deletions). Such situations
were described to result in from non-standard jumps. Here we impose no limitations on the
syntax. Basically the result of these relaxations is simply more situations where neither
player has a winning strategy in the game. Also, domain element deletion is crucial for
allowing all computable model transformations to be modeled directly.

30See [7] for sufficient details on game-theoretic semantics, and see [5], [14] for some
early ideas leading to the notion of game-theretic semantics.
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structures (e.g., sabotage modal logic, some public announcement logics, et
cetera), L offers a fundamental framework for modifications.

4.1 The syntax and semantics of L

Here we give the syntax and semantics of L. For the full formal details, see
[7]. We let L denote the language that extends the syntax specification of
first-order logic by the following formula construction rules:

1. ϕ 7→ Ixϕ

2. ϕ 7→ IR(x1,...,xn) ϕ

3. ϕ 7→ Dxϕ

4. ϕ 7→ DR(x1,...,xn) ϕ

5. Ci is an atomic formula (for each i ∈ N)

6. ϕ 7→ Ci ϕ

7. We also allow allow atoms X(x1, . . . , xk) where X ∈ tsymb is a k-
ary relation symbol not in the signature considered. The set tsymb
contains a countably infinite set of symbols for each positive integer
arity.31

Intuitively, a formula of type Ixϕ(x) states that it is possible to insert a fresh,
isolated element u to the domain of the current model so that the resulting
new model satisfies ϕ(u). The fresh element u being isolated means that u
is disconnected from the original model; the relations of the original model
are not altered in any way by the operator Ix, so u does not become part
of any relational tuple at the moment of insertion. (Note that we assume a
purely relational signature for the sake of simplicity.)

A formula of type IR(x1,...,xn) ϕ(x1, . . . , xn) states that it is possible to insert
a tuple (u1, . . . , un) to the relation R so that ϕ(u1, . . . , un) holds in the
obtained model. The tuple (u1, . . . , un) is a sequence of elements in the
original model, so this time the domain of the model is not altered. Instead,
the n-ary relation R obtains a new tuple. The deletion operators Dx and
DR(x1,...,xn) have obvious dual intuitions to the insertion operators.

The new atomic formulae Ci can be regarded as variables ranging over for-
mulae, so a formula Ci can be considered to be a pointer to (or the name

31The name tsymb comes from the fact that these symbols are analogous to Turing
machine tape symbols, i.e., symbols not part of the input language. It is conjectured in
[7] that the symbols in tsymb are not needed for Turing-completeness of L, unless the
background signature contains no symbols of arity at least two. The R in the operators
IR(x1,...xn) and DR(x1,...xn) can be a relation symbol in the signature or a symbol in tsymb.
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of) some other formula. The formulae Ci ϕ could intuitively be given the
following reading: the claim Ci, which states that ϕ, holds. Thus the for-
mula Ci ϕ is both naming ϕ to be called Ci and claming that ϕ holds.32

Importantly, the formula ϕ can contain Ci as an atomic formula. This leads
to self-reference. For example, the liar’s paradox now corresponds to the
formula Ci ¬Ci. .

The logic L is based on game-theoretic semantics GTS which directly extends
the standard GTS of FO. Recall that the GTS of FO is based on games
played by the verifier and falsifier, or more accurately, between Eloise and
Abelard, Eloise first holding the verifying role (which can change if a negation
is encountered). In a game for checking ifM |= ϕ, Eloise is trying to show (or
verify) that indeed M |= ϕ and the Abelard is opposing this, i.e., Abelard
wishes to falsify the claim M |= ϕ. The players start from the original
formula and work their way towards subformulae and ultimately atoms. See
[7] for further details concerning FO and also L.

We now discuss how the rules for the FO-game are extended to deal with L.
Further details are indeed given in [7]. Each game position involves a model
-assignment pair (M, f) and a formula ψ. The point of the assignment f is to
give interpretations to the free variable symbols of ψ in the domain of M. A
game position also specifies which one of Eloise and Abelard is the verifying
player. Furthermore, there is an assignment that gives interpretations of the
relations X not in the signature. In the beginning of the game play, the
relations X are all empty relations, so they must be built by adding tuples
during the game play. For simplicity, we do not explicitly write down this
assignment for relations X below, but instead assume it is somehow encoded
into the models involved.33 The game rules go as follows.

1. In a position involving (M, f) and the formula Ixψ(x), the game is
continued from a position with (M′, f [x 7→ u]) and ψ(x), where M′ is
the model obtained by simply inserting a fresh isolated point u to the
domain of M. The fresh point is thus named x.

32It is worth noting that the approach in L to formulae Ci ϕ bears some degree of
purely technical similarity to evaluations fixed point operators of the µ-calculus via game-
theoretic semantics. However, that approach to fixed-point operators has not—to the
author’s knowledge—been connected to self-referentiality and the related concepts in any
way. Indeed, the approach of L is—to the author’s knowledge—conceptually novel, and
has game-theoretic semantics as an underlying primitive starting point. Furthermore,
the approach in L is fully general and not explicitly related to any fixed-point concepts.
For example, there are no monotonicity restrictions imposed on formulae, unlike in the
µ-calculus for example. Another thing worth noting here is that [7] simply uses numbers
as formula variables (which here are symbols Ci).

33For example, we could assume that each X in the formula we are evaluating is in-
terpreted in the model we are investigating, being originally interpreted as the empty
relation. But despite that, the relations X are not considered part of the official signature
of the model.
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2. In a position with (M, f) and IR(x1,...,xn)ψ(x1, . . . , xn), the verifier
chooses a tuple (u1, . . . , un) of elements in M and the game is con-
tinued from the position with (M′, f [x1 7→ u1, . . . , xn 7→ un]) and
ψ(x1, . . . , xn) where M′ is obtained from M by inserting the tuple
(u1, . . . , un) to the relation R. Note that R can be part of the signa-
ture or one of the relations X outside the signature.

3. Consider a position involving (M, f) and the formula Dxψ. Now the
game is continued from a position with (M′, f \ {(z, u) | z ∈ VAR})
and ψ, where M′ is the model obtained by deleting the point u such
that f(x) = u from M (and VAR is the set of all first-order variable
symbols). If no such point u exists, i.e., if f does not have x in the
function domain, then nothing is done. Note that the assignment func-
tion f \ {(z, u) | z ∈ VAR} is of course obtained from f by removing
the pairs of type (z, u) where z is a variable. Thus, in particular, the
pair (x, u) is removed.

4. In a position with (M, f) and DR(x1,...,xn)ψ(x1, . . . , xn), the verifier
chooses a tuple (u1, . . . , un) of elements in M and the game is con-
tinued from the position with (M′, f [x1 7→ u1, . . . , xn 7→ un]) and
ψ(x1, . . . , xn) where M′ is obtained from M by deleting the tuple
(u1, . . . , un) from the relation R. If there is no such tuple in R, then
the relation stays as it is. As above, we note that R can be in the
signature or one of the relations X outside the signature.

5. In a position involving (M, f) and Ci ψ, we simply move to the position
involving (M, f) and ψ.

6. In an atomic position involving (M, f) and Ci, the game moves to the
position (M, Ci ψ). Here Ci ψ is a subformula of the original formula
that the semantic game began with. If there are many such subfor-
mulae Ci ψ, the verifying player can freely jump to any of them. If
there are no such formulae, the game play ends with neither player
winning.34

7. In a position with (M, f) and an atom of type R(x1, . . . , xn) or x = y,
the game play ends. We denote the atom by ψ and note that R can
once again be in the signature or one of the symbols X. The verifier
wins if (M, f) |= ψ, where |= is the semantic turnstile of standard FO.
The falsifier wins if (M, f) |= ¬ψ. If ψ contains any variables that are
not in the domain of f , then neither player wins.

34An alternative convention would be to jump to the immediately superordinate formula
Ci ψ in the cases where there are many choices. If no such immediately superordinate
choice was available, the game play would end with neither player winning.
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8. The positions involving ∃, ∧, ¬ are dealt with exactly as in standard
first-order logic.

Just like the FO-game, the extended game ends only if an atomic position
with an atom R(x1, . . . , xn) or x = y is encountered. Here R can be in the
signature or one of the relations X. The winner is then decided precisely
as in the FO-game. That is, the verifying player wins if the pair (M, f) in
that position satisfies the formula involved, and the falsifying player wins if
(M, f) satisfies the negation of the formula. In the pathological cases where
f does not interpret all of the variables in the formula R(x1, . . . , xn) or x = y
of the position, neither player wins the play of the game.

Since the play of the game can end only if an atom R(x1, . . . , xn) or x = y is
encountered, the game play can go on forever, as for example the games for
CiCi and Ci ¬Ci demonstrate. If a play indeed goes on forever, then that
play is won by neither of the players.

Turing-machines exhibit precisely the kind of behaviour captured by L, as
they can

1. halt in an accepting state (corresponding to Eloise—who is initially the
verifier—winning the semantic game play),

2. halt in a rejecting state (corresponding to Abelard—who is the initial
falsifier—winning),

3. diverge (corresponding to neither of the players winning).

Indeed, there is a precise correspondence between L and Turing machines.
Let M |=+ ϕ (respectively, M |=− ϕ) denote that Eloise (respectively,
Abelard) has a winning strategy in the game beginning with M and ϕ.
Let enc(M) denote the encoding of the finite model M according to some
standard encoding scheme.35 Then the following theorem shows that L cor-
responds to Turing machines so that not only acceptance and rejection but
even divergence of Turing computation is captured in a precise and natural
way. The proof follows from [7]. In the theorem, by a Turing machine for a
structure problem, we mean a Turing machine TM that gives an equivalent
treatment to isomorphic inputs: for isomorphic M and N, TM either accepts
both enc(M) and enc(N); rejects both; or diverges on both inputs.

35The domain of a finite model is supposed to be a subset of N so an implicit natural
linear ordering is readily available for obtaining the encoding.
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Theorem 4.1. For every Turing machine TM for a structure problem, there
exists a formula ϕ ∈ L such that

1. TM accepts enc(M) iff M |=+ ϕ,

2. TM rejects enc(M) iff M |=− ϕ.
Vice versa, for every ϕ ∈ L, there is a TM such that the above two conditions
hold.

Technically this is a result in descriptive complexity theory showing that L
captures the complexity class RE (recursive enumerability). While the re-
sult concerns finite models, it is possible to extend the result to deal with
arbitrary models. The idea is to extend Turing machines to suitable hyper-
computation models while allowing iteration in L to repeat for ω rounds and
beyond.

Since L captures RE, it cannot be closed under negation. Thus ¬ is not the
classical negation. However, L has a very natural translation into natural
language. The key is to replace truth by verification. We read M |=+ ϕ as
the claim that “it is verifiable that T (ϕ)" where T is the translation from L
into natural language defined below. We give two ways to translate atoms
x = y and R(x1, . . . , xn). The first way (given in clause 1 below) covers the
case where in each game position, every first-order variable must get a value
assigned to it via the assignment function f . Clause 9 gives a more careful
reading for x = y and R(x1, . . . , xn) which covers also the pathological cases
where f may not give values to all variables.

1. We translate x = y and R(x1, . . . , xn) to themselves, so for example
T (x = y) simply reads x equals y.

2. The atoms Ci are read as they stand, so T (Ci) = Ci.

3. The FO-quantifiers translate in the standard way, so we let T (∃xϕ) =
there exists an x such that T (ϕ) and analogously for ∀x.

4. Also ∨ and ∧ translate in the standard way, so T (ϕ∨ψ) = T (ϕ) or T (ψ)
and analogously for ∧.

5. However, T (¬ψ) = it is falsifiable that T (ψ). Thus negation translates
to the dual of verifiability.

6. Concerning the insertion operators, we let

T (Ixϕ) = it is possible to insert a new element x such that T (ϕ).

Similarly, we let

T (IR(x1,...,xn) ϕ) =

it is possible to insert a tuple (x1, . . . , xn) into R such that T (ϕ).

26



7. Deletion operators can also be given similar natural readings.

8. Finally, we let

T (Ci ϕ ) = it is possible to verify the claim Ci which states that T (ϕ).

9. We can always give the following alternative and more careful readings
to first-order atoms x = y and R(x1, . . . , xn):

(a) T (x = y) states that the referent of x is equal to the referent of y.

(b) T (R(x1, . . . , xn)) = the referents of x1, . . . , xn form a tuple in R
in the given order.36

Thereby L can be seen as a simple Turing-complete fragment of natural lan-
guage. Indeed, the simplicity of L is one of its main strengths. Also, as
typical computationally motivated logics translate into L more or less di-
rectly, L can be used as a natural umbrella logic for studying complexities
of logics. This can be advantageous, as the number of different logic for-
malisms is huge. Thus L offers a natural unified framework for a programme
of studying, e.g., validity and satisfiability problems. First-order logic is not
a suitable umbrella logic for such a programme, being expressively too weak.
The expressivity of L, on the other hand, is of a fundamental nature, due
to its Turing-completeness. Furthermore, L offers a top platform for de-
scriptive complexity. Indeed, L can easily capture classes beoynd the class
ELEMENTARY, while no k-th order logic can. Once again, L would serve
as a natural umbrella logic.37 All in all, L could be used as a unified frame-
work for working on—inter alia—reasoning issues (validity, satisfiability) as
well as topics relating to expressivity. In the next section we analyse some
central conceptual issues concerning L.

4.2 Further properties of L

It is interesting to note that ¬ can be read as the classical negation (rather
than falsifiability) in those fragments of L where the semantic games are
determined. Standard FO is such a fragment. Furthermore, adding a gener-
alized quantifier to L corresponds to adding a corresponding oracle to Turing
machines; see [7] for further details.

We also note that the liar’s paradox sentence Ci¬Ci is not paradoxical if we
indeed read ¬ as falsifiability. The sentence Ci¬Ci is indeterminate, and so

36Note that even ending up with an atom x = x (or ¬x = x), without f specifying
a value for x, leads to neither player winning the game. This is natural with the given
reading for atoms. The formulae can indeed quite naturally be considered indeterminate
with respect to verification/falsification when x has no value.

37We note that RE, as a limit of computation, is indeed a reasonable upper bound for
standard descriptive complexity.
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is CiCi. To analyse whether this is natural, let us consider CiCi first. Now,
a typical logic (such as FO) is compositional, with well-founded formulae.
This means each formula is essentially an algebra term f(t1, . . . , tk). And
the formula f(t1, . . . , tk) has a meaning which is determined by applying the
function f to the meanings of t1, . . . , t2. The well-foundedness means that
the algebra term is finite, and ultimately has atomic formulae x1, . . . , xk
whose meaning is fully determined in some uncontroversial and independent
way. Thus we can evaluate f(t1, . . . , tk) in a finite process, since the ulti-
mately reachabe atoms have already fully defined, independent meanings.
Such logical reductionism is handy indeed.

However, at least in the sense of our semantics, CiCi does not have this
kind of a well-founded evaluation process. Syntactically CiCi is an algebraic
term (the first Ci is an operator and the second one an atom). However,
semantically, the meaning of the atom Ci is not already defined, but instead,
it must be evaluated based on the full formula CiCi (because from the atom
Ci we jump back to the operator Ci and continue checking from there).
Therefore the meaning of CiCi is defined based on CiCi itself. Thus it is
natural to consider it indeterminate.38 The same holds for Ci¬Ci. It also
tries to define its meaning based on itself. It is indeed natural to require
meanings to be dug from an external source in a reductionist way: if we
define q to be true if and only if q is true, and no further information about
the situation can appear, it is natural to consider q indeterminate. Digging
up the truth value from the atomic level is impossible in the case of CiCi and
Ci¬Ci. We note that, if one accepts the semantic game of Ci¬Ci to also be
the evaluation procedure of the actual liar sentence, then the explained lack
of well-foundedness applies as such. This leads to an indeterminate truth
value. However, of course, this can be considered paradoxical, as now the
statement “this sentence is false” seems false, as the sentence was supposed
to be indeterminate. But false is not indeterminate, and so onwards, in the
usual way, it seems to get different flipping truth values.

As we have discussed above, our formal systems, as defined in Section 3, can
be used to model a wide variety of dynamical frameworks rather naturally.
Now, it is obvious that the semantic games of the logic L are systems in
our formal sense. Thus L can be directly used, inter alia, to model evolving
physical frameworks. However, L is also a natural setting for formalizing
mathematics. Indeed, L can be used as a possible, highly strict measure
of what counts as a mathematical claim. Indeed, mathematics is intuitively
and informally something fully rigorous and somehow predetermined and
objective. It is often considered somehow mind independent and perhaps
even of a Platonic nature. Now, can we capture this intuition of strict
objectivity?

38This is our external truth value definition.
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A nice starting point for capturing the intuition would be to assert that
a claim is mathematical if we can determine whether it holds using some
uniform systematic procedure. The idea here is that there exists a systematic
procedure P with a carefully defined set of inputs and the set {yes, no}
of outputs. The (not necessarily nice) requirement here is that the set of
inputs I is somehow rigorously fixed and quite limited. A natural option
here would be that the set I must be somehow extremely simple (for example
the collection of all finite strings over the alphabet {0, 1} or the—suitably
simple and certainly decidable—collection of all formulae of some logic; we
are thinking about L here).

Another (not necessarily nice) requirement is that we must pick a single
systematic procedure P to check, for each input i ∈ I, whether i holds or
not.39 Now, I is precisely the set of mathematical statements, and we have
a systematic and somehow objective procedure P for verifying truth40 of the
statements, but P does not have to produce an output on every input, so
P could correspond to a Turing machine. Thus it is possible to consider
formulae of L to be I. For each input ϕ ∈ L, we check whether ϕ is verified
or falsified in the empty model.41 It is of course possible that ϕ is neither
verified nor falsified. The way the procedure P now works is, for its essential
parts, described in [7], proof of Theorem 4.3. The nice thing is that L is a
logic, so our inputs are statements rather than, e.g., binary strings.42

Now, the setting is still quite restrictive, because L does not directly talk
about, e.g., infinite sets. Thus it will not be sensible to equate the setting
with real mathematics. But it can be viewed as a possible formulation

39A Turing machine is a systematic procedure. Sometimes Turing machines are de-
scribed to capture what can be mechanically executed. But “mechanical” is perhaps not
as good a word as “systematic.” This is because the word “mechanical” has a quite strong
connotation relating to physicality. Physical systems can do things that seem more or less
impossible to explain/calculate/describe, even in principle. Turing machines are physi-
cally realizable in principle, but the converse (from physically realized devices to Turing
machines) is problematic. This is because we cannot tell precisely what the full com-
ponents of an actual, physically realized device are. It can be more or less impossible
to somehow write down a precise Turing specification based on the physical construct.
For example, in principle, a series of coin tosses could keep giving heads on precisely the
rounds j ∈ S ⊆ N, where S is undecidable. Given a physically realized device, perhaps it
is essentially a Turing machine, but the problem is that it is hard to know which one. Thus
it may be more to the point to make the hypothesis that Turing machines capture the
notion of systematic executability rather than mechanical. Nevertheless, it can of course
even be natural to make the hypothesis that nature is a essentially a Turing machine,
but this does not imply that we understand, simply by looking at physcal systems, what
machine that systems should correspond to. This is especially true if we cannot—and we
almost never can—isolate the system from its environment.

40Indeed, one could claim that P even defines, or can define, which claims hold.
41More rigorously, we consider the empty model in the signature of ϕ.
42The setting is, however, reasonably similar to equating mathematical statements with

Turing machines with the empty input.
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of the strict core of mathematics. The framework based on L is objective,
finitary and captures the notion of systematicity. It indeed fully and formally
captures systematicity if we define systematicity according to the Church-
Turing thesis to correspond to Turing machines. In a sense, systematicity is
also precisely and exactly what logic is all about, so it is possible to entertain
the view that L provides a definition of logicality.43

Note especially that the perspective of using L to define mathematical state-
ments banishes typical incompleteness issues. Every statement ϕ ∈ L corre-
sponds to posing the questions “∅ |=+ ϕ ?” and “∅ |=− ϕ ?”. The answer is
given by P. If ∅ |=+ ϕ, then P outputs yes, and if ∅ |=− ϕ, then P outputs
no. If P diverges,44 then P will not output anything. Indeed, we take P to
define thruth and falsity here. Thus there are no true but not verifiable (or
false but unfalsiable) staments.

In conclusion, L gives a possible, strict standard for strict mathematicity (or
logicality, we do not differentiate here). The thesis that logicality equals sys-
tematicity can be appealing, and if systematicity equals Turing executability
(RE), then L hits some fundamental mark. Thus it could be regarded as a
fundamental logic. For those in favour of the perspective that there is a
unique fundamental logic, L could perhaps be one possible candidate. But
of course this requires one to favour (1) the uniqueness thesis; (2) the idea of
logicality being systematicity; (3) the Church-Turing thesis that systematic-
ity is captured by Turing machines; and (4) the position that L should be
a system capturing Turing computation in some fundamentally natural way.
The naturality could be due to the links between L and natural language
and the apparent minimality of L in achieving its central features such as
the structure modification capacities, self-reference, and the containment of
FO. This can be quite a lot to entertain.

4.3 Controlling systems with L and its fragments

We have already noticed that the semantic games of L are system evolutions.
This is easy to see. Roughly, we can take Eloise to be the sole agent and
associate Abelard with G. The system constraint function F relates to the
constraints given by the formula evaluated (and the semantic game rules).
This is a turn-based game, so we need dummy moves. The current world is
the current model assignment pair, and we can put the remaining situation
specification (where the game is in relation to the evaluated formula, and
who is the current verifier) into mental models.45

43We do not really differentiate between logicality and mathematicality here, but instead
identify both notions with the the notion of rigorous objective systematicity.

44Here divergence is equated with ∅ 6|=+ ϕ and ∅ 6|=− ϕ, i.e., neither player having a
winning strategy.

45They can be made part of the current model as well.
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This phenomenon has a converse. A typical system controllable by Turing
machines can reasonably naturally be simulated in a setting with a semantic
game of L. The key feature of L is the looping operator, allowing semantic
games with indefinitely long plays. The other key feature is the possibility
to modify models and thereby simulate phenomena relating to the structure
evolution in the system modeled. Typically Eloise controls the agents for
most parts. The choices of the agents can be represented by direct modifi-
cations of the current model. If necessary, we can add a some novel points
and a predicate A that those points satisfy. Then choices can be represented
by, e.g., colouring the elements in A with different singleton predicates. In-
tuitively, Abelard controls G and modifies the structures so that the new
current models become as desired. However, many kinds of modeling so-
lutions can be made, based on what kinds of correspondences between the
original game and the semantic game are desired. Note that there is no ex-
plicit winning notion in any way present in systems, while semantic games
are reachability games. Nevertheless, Eloise and Abelard are free to make
any choices within the rules of the semantic game framework, and indeed,
they are not obliged to try to win the game plays.

To define more custom-made logics, let us turn to fragments et cetera. To
investigate model transformations, let us define modifiers. These can be
used for jumps from models to other models, similarly to what happens in
L. Modifiers are defined as follows. Let S be a class of pairs (M, X) where
M is a first-order structure and X an assignment; X can also be a team
or a domain point, depending on the exact application. Futhermore, to
streamline our exposition, (M, X) can even represent a class of structures
(N, f) where N is a first-order model and f an assignment. Such classes
(called model sets) are considered in [11]. Now, fix one of the above possible
interpretations for structures (M, X).

A modifier m is a map
m : S → P(S)

such that if (M, X) ∼= (N, Y ) for some two elements of S, then there is a
bijective map p : m((M, X))→ m((N, Y )) such that (A, U) ∼= p((A, U)) for
all inputs (A, U) to p. Now, mixing syntax and semantics, (M, X) |= (m)ϕ
iff (N, Y ) |= ϕ for all (N, Y ) ∈ m((M, X)).

Note that if U and V are teams, then (A, U) ∼= (B, V ) if (A, rel(U)) ∼=
(B, rel(V )) and U and V have the same domain. The relations of teams
are determined in the usual way, using the ordering of the subindices of the
variable symbols to determine the internal ordering of tuples. If U and V are
assignments, then they correspond to singleton teams, so the above specifi-
cation suffices to define ∼=. If U and V are domain points, they correspond
to singleton assigments, so again the case is covered. In the case of model
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sets T and T ′, we have an isomorphism if there is a bijective map g from T
to T ′ such that (N, f) is isormophic to g((N, f)) for all inputs (N, f) to g.

Modifiers are a simple way to jump from structures to others. Altering things
a bit, define (M, X) |= 〈m〉ϕ iff (N, Y ) |= ϕ for some (N, Y ) ∈ m((M, X)).
One can also consider variants with, e.g., “most.” Going further, we can
define (M, X) |= ((F ))(ϕ1, . . . , ϕk) iff some fixed Boolean combination B of
the statements (Ni, Yi) |= ϕi holds for each tuple

((N1, Y1), . . . , (Nk, Yk)) ∈ F ((M, X)),

where F maps from S into P(Sk). Here, if (M, X) ∼= (M′, X ′), then there
is a bijection h : F ((M, X)) → F ((M′, X ′)) such that the jth entry of
((N1, Y1), . . . , (Nk, Yk)) is isomorphic to the jth entry of

h(((N1, Y1), . . . , (Nk, Yk)))

(for all j and all inputs to h). And there are more, of course. Indeed,
classifying operator classes via L can be quite a bit simpler when done with
care. Let us leave modifiers and discuss model sets. The discussion will
relate to knowledge representation and the issues in Section 3.3.

Suppose we consider systems where the mental model is the conceived set
of possible current models. This is the classical approach. Now, for those
systems, we can directly use model sets [11]. Using the team semantics of
[11] on a first-order formula ϕ, we have

M |= ϕ if and only if M, f |=FO ϕ for all (M, f) ∈M,

where M is a model set, i.e., a collection of pairs (M, f) where f is an
assignment. As established in [11], this variant of team semantics gives es-
sentially a semantics for proofs. Disjunction corresponds to splitting into
cases and negation to going from verification to falsification. In Section 3.3
we discussed the possibility of using truncated reasoning when determining
the output of the decision function di. A semantics for proofs can be use-
ful in this context, as typical proof steps—such as splitting into cases—are
reflected in the semantics. It is interesting, e.g., to consider what can be
established with a strongly limited number of such semantic counterparts of
proof steps. All this directly relates to issues in knowledge representation.
Indeed, consider querying under the open world setting. It is all about deal-
ing with very delicate consequence relations. Let us see an example of open
world querying and relate it to model sets.

Let (σ,O, q(x)) be an ontology-mediated query (see [2]). Here we define O
to be an ontology, σ a signature and q(x) a query over σ∪ signature(O). Let
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F be a σ-database, i.e., a set of literals46 over the signature σ. Let a be a
tuple of elements occurring in F . We here define that F |= (σ,O, q(a)) if
and only if M |= q(a) for all models M of the signature σ ∪ signature(O)
such that

1. M |=
∧
O

2. The diagram of M contains F as a subset.

Let M[σ,O,F , x 7→ a] denote this model set (defined by the above two
conditions), with every assignment mapping the elements of x to the respec-
tive elements of a. Then we have M[σ,O,F , x 7→ a] |= q(x) if and only if
F |= (O, σ, q(a)). Thus we can turn the logial consequence issue into model
set satisfaction, which uses the team semantics of model sets. (This obvious
connection of ontology-based data access to model sets was briefly noted in
[13].) As already discussed, all this can be useful when considering different
reasoning notions with limited reasoning capacities and truncated reasoning
patterns. Note that, if desired, we can put even quite severe cardinality
limits to the models in the model set. And we can stay in the finite if we
want to. If we want more complex data than literals, an approach via model
sets can still be used. It is simply about delicate consequence relations, and
model sets relate directly to those.

To seriously study delicate consequence relations used in knowledge repre-
sentation, one must understand very delicate fragments of FO and L, as this
helps in various kinds of classification attempts. For example, antecedent
formulae could be only atoms, while consequent formulae are more elabo-
rate. For such studies, we need tools for flexible, fine-grained classification.
To classify logics in a flexible, delicate and very fine-grained way, it would
be beneficial to have access to related algebraic approaches. These are not
difficult to obtain. In the next section we take some related first steps.

4.3.1 First-order logic via functions on relations

Here we define an algebraic approach to first-order logic. The system re-
sembles the approach of Codd, but employs a finite signature and considers
standard first-order logic. The key is to deal with identities and relation per-
mutations by operations that operate only in the beginning of tuples. We
can arbitrarily permute any tuple by combining swaps of the first two coor-
dinates with a cyclic permutation operation. Furthermore, we can identify
(i.e., force equal) any two tuple elements by first bringing the elements to
the beginning of a tuple and then applying an identity operation that checks
only the first two coordinates. What we formally mean by these claims will
be of course made clear below.

46Here we allow positive and negative relational facts
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A first-order formula ϕ(x1, . . . , xk) defines the relation

{(a1, . . . , ak) ∈ Ak |A |= ϕ(a1, . . . , ak) }

over the model A. This requires that the free variable symbols xi are linearly
ordered. Here we let the linear ordering be associated with the subindices
of the variable symbols. Now, what would be the relation defined by the
formula ϕ(x2, . . . , xk+1)? It would be natural to let it be

{(a2, . . . , ak+1) ∈ Ak |A |= ϕ(a2, . . . , ak+1) }.

This is precisely the same relation as the relation given by ϕ(x1, . . . , xk)
because we obviously have

{(a2, . . . , ak+1) |A |= ϕ(a2, . . . , ak+1) } = {(a1, . . . , ak) |A |= ϕ(a1, . . . , ak) }.

One way around this is to let formulae define sets of assignment functions,
i.e., the “relation” defined by ϕ(x1, . . . , xk) over A is now

{
(
(x1, a1), . . . , (xk, ak)

)
|A |= ϕ(a1, . . . , ak) }.

And the “relation” defined by ϕ(x2, . . . , xk+1) over A is

{
(
(x2, a2), . . . , (xk+1, ak+1)

)
|A |= ϕ(a2, . . . , ak+1) }.

So, in some sense, first-order formulae do not really define relations over
models but sets of assignments (which could be characterized as index labeled
relations.)47

Now, we shall here work with relations, not sets of assignments. The relation
defined by a first-order formula ϕ in a model A is, strictly speaking, specified
as follows.

1. Let (xi1 , . . . , xik) enumerate exactly all the free variables in ϕ, with
the subindices i1, . . . , ik given in a strictly increasing order.

2. Then the relation defined by ϕ is then given by

{(a1, . . . , ak) ∈ Ak |A |= ϕ(a1, . . . , ak) }.

Therefore, the relations defined by the (strictly speaking non-equivalent)
formulae ϕ(x1, . . . , xk) and ϕ(x2, . . . , xk+1) will be the same. Note that the
relation defined by a sentence ϕ such that A |= ϕ is the nullary relation
{∅} where ∅ represents the empty tuple. The relation defined by a sentence
χ such that A 6|= χ is the nullary empty relation. We suppose there is a

47It is worth noting that relational database theory is not based on relations but these
kinds of labeled relations.
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different empty relation for each arity, starting with arity zero. This way
the complement of the completement of the total k-ary relation is the total
k-ary relation itself. We lose no information about the arity. We also assume
that models must have a non-empty domain.

We will next define functions that map relations in A to relations in A.
We will then show that this approach defines exactly the same relations as
first-order logic.

4.3.2 Functions on relations

Consider the algebraic signature (u, I,¬, p, s, ∃, J) where

1. u is a nullary symbol,48

2. I,¬, p, s, ∃ have arity one,

3. J has arity two.

To consider models with relation symbols R1, . . . , Rk, add R1, . . . , Rk to be
nullary symbols in the algebraic signature, just like u. Terms are built from
variable symbols and the constants (nullary symbols u,R1, . . . , Rk) using
the symbols I,¬, p, s, ∃, J in the usual way to compose new terms. Below we
will consider only terms without variable symbols and use the word “term”
to refer to these.

Given a model A, every term T defines some relation T A ⊆ Ak where A is
the domain of A. Let us look at the semantics of terms. Let T be a term
and suppose we have defined a relation T A. Then the following conditions
hold.

Ri ) Here Ri is a relation symbol in the signature of A, which is a nullary
term in the algebraic signature. The nullary term is interpreted to be
the relation RA, i.e., the relation

{(a1, . . . , ak) |A |= R(a1, . . . , ak) }.

This is natural indeed.49

u ) We define uA = A. The constant u is referred to as the universal unary
relation constant.

48Recall that nullary function symbols in an algebraic signature represent constants
49Note here that if Ri is a nullary relation, RA is either {∅} or ∅0 corresponding to

true and false, respectively. Here ∅0 is the nullary empty relation. The empty tuple is
identified with ∅ in {∅}.
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I ) If T A is of arity at least two, we define

(I (T ))A = {(a1, . . . , ak) | (a1, . . . , ak) ∈ T A and a1 = a2}.

If T A is a unary or a nullary relation, we define I (T )A = T A. The
function I is referred to as the identity operator, or equality operator.

¬ ) We define

(¬(T ))A = {(a1, . . . , ak) | (a1, . . . , ak) ∈ Ak \ T A },

where we recall that A0 = {∅} in the case where k is zero.50 The
operator ¬ is referred to as the negation operator or complementation
operator. Recall that the empty relation is different for each arity.

p ) If T A is of arity at least two, we define

(p(T ))A = {(a2, . . . , ak, a1) | (a1, . . . , ak) ∈ T A },

where the k-tuple (a2, . . . , ak, a1) is the one obtained from the k-tuple
(a1, . . . , ak) by simply moving the first element a1 to the end of the
tuple. If T A is a unary or a nullary relation, we define (p(T ))A =
T A. The function p is referred to as the permutation operator, or
cyclic permutation operator.

s ) If T A is of arity at least two, we define

(s(T ))A = {(a2, a1, a3, . . . , ak) | (a1, . . . , ak) ∈ T A },

where the k-tuple (a2, a1, a3, . . . , ak) is the one obtained from the k-
tuple (a1, . . . , ak) by swapping the first two elements a1 and a2 and
keeping the other elements as they are. If T A is a unary or a nullary
relation, we define (s(T ))A = T A. The function s is referred to as the
swap operator.

∃ ) If T A has arity at least one, we define

(∃(T ))A = {(a2, . . . , ak) | (a1, . . . , ak) ∈ T A for some a1 ∈ A },

where (a2, . . . , ak) is the (k − 1)-tuple obtained by removing the first
element of the tuple (a1, . . . , ak). When T A is a nullary relation, we
define (∃(T ))A = T A. The function ∃ is referred to as the existence
operator.

50When k = 0, the tuple (a1, . . . , ak) represents the empty tuple ∅.
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J ) We define

(J(T ,S))A =

{(a1, . . . , ak, b1, . . . , b`) | (a1, . . . , ak) ∈ T A and (b1, . . . , b`) ∈ SA}.

Here we note that if k = 0 and thus (a1, . . . , ak) = ∅ (the empty tuple),
then (a1, . . . , ak, b1, . . . , b`) represents the tuple (b1, . . . , b`). Similarly,
if ` = 0, then (b1, . . . , b`) = ∅ and (a1, . . . , ak, b1, . . . , b`) represents
(a1, . . . , ak). When both k and ` are zero, (a1, . . . , ak, b1, . . . , b`) rep-
resents the empty tuple ∅. The function J is referred to as the join
operator.

The terms that can be formed using the above symbols will be called l-terms
(l for logic). If ϕ and an l-term define exactly the same relation over every
model A (in a signature interpreting the required symbols), then ϕ and the
l-term are called l-equivalent.

The following theorem bears some similarity to Codd’s theorem. However,
we discuss standard first-order logic and have a somewhat different operator
set (and we concentrate on relations rather than sets of assignments). Our
signature is finite (provided that there are only finitely many relation symbols
Ri in the signature of the models A considered).

Theorem 4.2. For every first-order formula ϕ, there exists an l-equivalent
l-term. Vice versa, for every l-term, there exists an l-equivalent first-order
formula.

Proof. Let ϕ be a first-order formula. We need to find the corresponding
algebraic term. If ϕ is >, the corresponding term is ∃u, and if ϕ is ⊥, the
term is ¬∃u. If ϕ is some formula x = x, then the term u will do. If ϕ is a
formula x = y, then the corresponding term is I(J(u, u)).

Now suppose ϕ is R(xi1 , . . . , xik), where k ≥ 0. Assume first that no variable
symbol in the tuple (xi1 , . . . , xik) gets repeated.51 Assume also that the
(subindices of the) variable symbols in (xi1 , . . . , xik) are linearly ordered
(i.e., strictly increasing) from left to right. Then the term corresponding to
ϕ is simply R.

Consider then the cases where the tuple (xi1 , . . . , xik) in R(xi1 , . . . , xik) may
contain repetitions and the variables may not necessarily be in an increasing
order. Firstly, note that we can permute any relation arbitrarily by using
the operators p and s. To see this, note the following two facts.

51Thus for example R(x1, x1, x2) is not allowed in this case as it repeats x1.

37



1. In a tuple (a1, . . . , ai, . . . , a`), we can move the element ai any number
n of steps to the right—keeping the tuple otherwise in the same order—
as follows.

(a) Apply p repeatedly so that ai becomes the leftmost element.

(b) Apply the composed function ps (meaning “s first and then p”)
exactly n times.

(c) Repeatedly apply p until the tuple is in the desired configuration.

2. Moving ai to the left is no different from moving it to the right, as
moving to the left corresponds to moving to the right and past the end
of the tuple. Thus moving n steps to the left is achieved by the above
steps a,b,c, with the combined function ps applied exactly ` − n − 1
times in step b.

Thus we can move a single element anywhere, keeping the rest of the tuple
in order. Thereby we can, one by one, move elements where we like, and
thus all permutations can indeed be achieved using s and p only.

Notice then that since we can permute relations arbitrarily, also repetitions
of variables can be dealt with. The idea is simply to bring element pairs to
the left end of tuples, after which we can use the indentity operator I to get
rid of tuples without the desired repetition. For example, it is easy to see
that R(x2, x1, x2) corresponds to the term p ∃ Ip p(R). It is easy to see how
to systematically produce translations of all atoms by using combinations of
p, s, ∃ and I.

To translate a conjunction, suppose by induction that we have translations
T (ψ) and T (χ) for ψ and χ. Let ψ ∧ χ be the formula ϕ to be translated.
Now, J(T (ψ), T (χ)) is almost what we need. The only thing we need ad-
ditionally to take into account is the possibility of having repeated symbols
that occur in both ψ and χ and also the ultimate order of the variable sym-
bols. Thus, similarly to the case for atoms, we apply p, s, ∃ and I (often
repeatedly) to the term J(T (ψ), T (χ)) to get the required term.

Translating a negation is trivial, we translate ¬ψ to the term ¬(T (ψ)) where
T (ψ) is obtained from the induction hypothesis. Translating a quantifier ∃xi
is similarly easy. However, we may first have to do some preprocessing as
the variable xi can refer to some other than the first position in the relation
corresponding to the quantified formula. Thus, suppose we want to translate
∃xiψ and we have a translation T (ψ) of ψ by the induction hypothesis. Now
use p (typically repeatedly) to make the coordinate corresponding to xi the
leftmost coordinate in the relation tuples, obtaining a term pn(T (ϕ)), where
n denotes how many times p was repeated. Then use ∃ and use p again
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(typically repeatedly) to put the remaining tuple into the right order. Thus
the ultimate term is of type pm∃ pn(T (ψ)).

The direction from terms to first-order logic is straightforward.

This representation of first-order logic can be used to obtain very fine-grained
classifications of first-order fragments. Thus it can be a fruitful starting
point for novel classifications of different decidability and complexity issues
of first-order fragments.52 For example, it seems plausible to expect that
some fragments with fluted-logic-like properties can be obtained via dropping
the swap operator s. Anyway, there are many ways to directly apply the
framework, and it should be a nice and useful setting for building decidability
and complexity classifications based on fine-grained classifications of syntax.

The algebraic approach generalizes to second-order logic quite directly. There
we can make use of relations whose tuples have individuals and relations. We
leave this for later.
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