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Abstract

The ever-growing demands for higher number of connected devices as well as higher
data rates and more energy efficient wireless communications have necessitated the use
of new technical solutions. One of the main enablers in this respect is Multiple-Input
Multiple-Output (MIMO) systems in which transmitting and receiving sides are equipped
with multiple antennas. Such systems need precise information of the MIMO radio
channel available at the transmitter side to reach their full potential. Owing to the
reciprocity of uplink and downlink channels in Time Division Duplexing (TDD) systems,
Base Stations (BSs) may acquire the required channel state information for downlink
transmission by processing the received uplink pilots. However, such reciprocity only
applies to the physical propagation channels and does not take into consideration the
so-called observable or effective uplink and downlink channels which also include the
possible non-reciprocal behavior of the involved transceiver circuits and antenna systems.

This thesis focuses on the channel non-reciprocity problem in TDD MIMO systems due
to mismatches in Frequency Response (FR) and mutual coupling of transmitting and
receiving chains of transceivers and associated antenna systems. The emphasis in the
work and developments is placed on multi-user MIMO precoded downlink transmission.
In this respect, the harmful impacts of channel non-reciprocity on the performance of such
downlink transmission are analyzed. Additionally, non-reciprocity mitigation methods are
developed seeking to reclaim TDD reciprocity and thus to avoid the involved performance
degradations.

Firstly, the focus is on the small-scale MIMO systems where BSs are equipped with
relatively limited number of antennas, say in the order of 4 to 8. The provided analysis
on Zero-Forcing (ZF) and eigen-based precoding schemes in single-cell scenario shows
that both schemes experience considerable performance degradations in the presence of
FR and mutual coupling mismatches. Whereas, in general, the system performance is
more sensitive to i) non-reciprocity sources in the BS transceiver; and ii) mutual coupling
mismatches. Then, assuming reasonably good antenna isolation, an Over-The-Air (OTA)
pilot-based algorithm is proposed to efficiently mitigate the BS transceiver non-reciprocity.
The numerical results indicate high accuracy in estimating the BS transceiver non-
reciprocity parameters as well as considerable improvement in the performance of the
system. In multi-cell scenario, both centralized and decentralized precoding approaches
are covered while the focus is on the impacts of FR mismatches of UE transceivers. The
results show that there is severe degradation in the performance of decentralized precoding
while centralized precoding is immune to such channel non-reciprocity impacts.
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iv Abstract

Secondly, the so-called massive MIMO systems are considered in which the number
of antennas in the BS side is increased with an order of magnitude or more. Based
on the detailed developed signal models, closed-form analytical expressions are first
provided for effective signal-to-interference-plus-noise ratios of both ZF and maximum
ratio transmission precoding schemes. The analysis covers the joint impacts of channel
non-reciprocity and imperfect uplink channel estimation and shows that while both
precoding schemes suffer from channel non-reciprocity impacts, ZF is more sensitive to
such non-idealities. Next, a concept and an algorithm are proposed, involving UE side
measurements and processing, to be deployed in the UE side to efficiently estimate the
level of BS transceiver non-reciprocity. This enables the UEs to inform the BS about the
optimum time to perform channel non-reciprocity mitigation round and thus improves the
spectral efficiency. Finally, in order to mitigate channel non-reciprocity in massive MIMO
systems, an efficient iterative OTA pilot-based algorithm is proposed which estimates and
mitigates transceiver non-reciprocity impacts in both BS and UE sides. Compared to
the state-of-the-art methods, the simulation results indicate substantial improvements in
system spectral efficiency when the proposed method is being used.

Overall, the analyses provided in this thesis can be used as valuable tools to better
understand practical TDD MIMO systems which can be very helpful in designing such
systems. Furthermore, the channel non-reciprocity mitigation methods proposed in this
thesis can be deployed in practical TDD MIMO systems to restore channel reciprocity
and thus significantly increase the spectral efficiency.
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CHAPTER 1

Introduction

1.1 Background and Motivation

Wireless technologies have experienced rapid development and growth in the past twenty
years or so, most notably in the form of mobile cellular radio evolution from Global
System for Mobile Communications (GSM) [1] to Universal Mobile Telecommunications
System (UMTS)/High Speed Packet Access (HSPA) [2] and thereon to Long-Term
Evolution (LTE) and LTE Advanced (LTE-A) [3]. LTE/LTE-A which shaped the fourth
generation of mobile broadband wireless technology, known as 4G, has been an outstanding
technology satisfying many of our current needs, particularly in the mobile broadband
domain. There are still improvements coming to 4G but at much lower pace compared to
its early days. However, new services, applications, and use cases are continuing to ask
for significantly higher data rates and substantially lower end-to-end latency compared to
what LTE/LTE-Advanced networks can provide. Additionally, the number of connected
devices including smartphones, tablets, laptops, sensors, vehicles, as well as Machine-Type
Communications (MTC) [4–7] and Internet of Things (IoT) [8–12] devices is expected
to increase exponentially. These demands are the driving forces for an evolution of the
fifth generation (5G [13–15]) of cellular networks.

In order to fulfill all the mentioned requirements, numerous technical solutions/enablers,
e.g., Non-Orthogonal Multiple Access (NOMA) [16–20], optimized waveforms [21–24],
network slicing [25–28], dynamic Time Division Duplexing (TDD) [29–31], and Integrated
Access and Backhaul (IAB) [32–35], are being studied and developed in 5G standardization
context. One of the key elements is to be able to provide more bandwidth to the
User Equipment (UE) side. To achieve this goal, the first solution is acquiring more
spectrum for 5G transmission systems. In sub-6 GHz band, e.g., C-band [36], there
are efforts and prospects to adopt spectrum of few hundreds of MHz, e.g, by operating
in shared/unlicensed spectrum [37–39]. However, in this context, the main focus in
the long-term development is on Millimeter Wave (mmWave) frequencies [40–43], i.e.,
30 GHz−300 GHz, where the amount of potential spectrum is in the order of tens of
GHz. Although mmWave frequencies can help in providing more bandwidth for the
mobile networks, in practice, the amount of highly valuable spectral resources is always
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2 Chapter 1. Introduction

limited in a certain network. Thus, more efficient spectrum utilization and higher spatial
spectrum reuse is necessary to meet 5G requirements. In this respect, especially in highly
populated areas, small cells and networks densification [44–46] help by adding more
Base Stations (BSs) and shrinking cell sizes which result into reusing the spectrum more
aggressively within a certain area. Multi-antenna communications in which transmitting
and/or receiving sides are equipped with multiple antennas can help increasing the spectral
efficiency by enabling the system to employ diversity and spatial multiplexing techniques
[47–50]. In such systems, when the transmitter knows the communication channel, it
can use this information to increase the quality of the received signal, e.g., by making the
received streams orthogonal, and/or multiplex different UEs in spatial domain which can
significantly increase the spectral efficiency and spatial spectrum reuse [48, 51].

However, having timely and accurate Channel State Information (CSI) at the transmitter
side is challenging. In Frequency Division Duplexing (FDD) [52] systems, where uplink
and downlink transmission are carried out on separate bands, acquiring CSI at the BS
requires two rounds of signaling and considerable amount of overhead [53]. In the previous
generation of cellular systems, FDD was the main duplexing scheme. However, TDD
scheme, in which uplink and downlink transmissions share the channel and are being
separated in time [52], is becoming more important in 5G, especially in higher frequencies,
i.e., above 10 GHz [54]. The reasons behind that are i) simplicity in finding one TDD
band compared to two joint FDD bands; ii) flexibility in dynamically assigning resources
between downlink and uplink transmissions. However, TDD systems have their own
drawbacks, e.g., 3 dB average power loss compared to FDD systems assuming power
amplifier is active only half the times, and the need for precise timing synchronization.
Additional advantage in using TDD systems is the reciprocity between physical uplink
and downlink propagation channels. Using this reciprocity, BSs can estimate downlink
channels based on the received uplink pilots and thus reduce the required overhead and
increase the spectral efficiency significantly [55]. This is even more interesting in massive
Multiple-Input Multiple-Output (MIMO) [14, 55–63] scenario where generally the BS
is equipped with massive amount of antennas, as the overhead for feedback signaling in
FDD systems is proportional to the number of antennas in the BS side [55]. Massive
MIMO technology is one of the main enablers of 5G networks and essential in higher
frequencies as it can compensate for greater path-loss experienced in such frequencies [41].
However, in practice, the effective uplink and downlink channels which include also the
effect of transceiver circuitries are generally not reciprocal due to non-reciprocity sources
between transmitting and receiving modes of a particular hardware. Thus, such channel
non-reciprocity impacts need to be analyzed and mitigated and this problem forms the
core of this thesis.

1.2 Objectives and Scope of the Thesis

Channel Reciprocity is an essential assumption in the capacity enhancement promises
of TDD (massive) MIMO. One of the two main objectives of this thesis is to build a
good scientific understanding of the potential loss over these promised capacity gains
in the presence of non-reciprocal radio front-ends. In order to achieve that, the nature
of effective channel non-reciprocity in TDD multi-antenna systems is studied and the
corresponding system and signal models are developed. Based on those, the impact of
channel non-reciprocity on the performance of multi-antenna systems is analyzed which
provides valuable insights in dimensioning and designing practical systems. The second
objective is to reclaim the significant percentage of the capacity loss and approach towards
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the promises of fully reciprocal TDD (massive) MIMO. For that reason, efficient digital
signal processing based channel non-reciprocity estimation and mitigation frameworks
are proposed which effectively compensate for the considered non-idealities in practical
multi-antenna systems. Finally, extensive computer simulations are carried out to evaluate
the accuracy of the provided analysis and the performance of the proposed mitigation
methods.

1.3 Outline and Contributions of the Thesis

The main contributions of this thesis are as follows.

• Considering a generic and realistic channel non-reciprocity model which takes into
account both transceiver Frequency Response (FR) and antenna mutual coupling
mismatches, detailed signal and system models are derived for different system
scenarios and precoding schemes in [P2], [P3], [P6] and [P7].

• Stemming from the signal and system models, joint impacts of the considered channel
non-reciprocity sources on performance of TDD Multi-User MIMO (MU-MIMO)
Orthogonal Frequency Division Multiplexing (OFDM) downlink transmission are
analyzed for i) small-scale MIMO systems with Zero-Forcing (ZF) and eigen-based
precoding schemes [P7]; ii) massive MIMO systems with ZF and Maximum Ratio
Transmission (MRT) precoding schemes with imperfect CSI [P2] and [P3]. These
performance degradations are quantified in terms of Signal-to-Interference-plus-Noise
Ratio (SINR) and achievable sum-rate [P2], [P3] and [P7].

• Efficient Over-The-Air (OTA)-based estimation and mitigation frameworks are pro-
posed to increase the performance of TDD MU-MIMO OFDM downlink transmission
by compensating transceiver non-reciprocity impacts at i) BS side in small-scale
MIMO systems [P8]; ii) both BS and UE sides in massive MIMO systems [P1]
and [P5].

• The impacts of FR mismatches in the UE side on the performance of both centralized
and decentralized precoding schemes in coordinated TDD multi-cell MIMO network
are analyzed [P6]. In this context, an algorithm is proposed to address the precoder
convergence problem in presence of channel non-reciprocity.

• Efficient algorithms are proposed to estimate the level of BS transceiver non-
reciprocity at the UE side in TDD multi-user massive MIMO OFDM networks [P4].
Employing such methods, the UEs are able to request for non-reciprocity calibration
rounds only when needed to increase spectral efficiency.

• Numerical evaluations of the analytical expressions and of the achievable mitiga-
tion algorithm performance are carried out by the means of extensive computer
simulations which confirm the findings [P1]– [P8].

The details of all the contributions can be found in [P1] – [P8], while this thesis summary
tries to give an overview of the essential information and main results. In order to offer
consistency throughout this thesis summary, the notation used here slightly differs from
that of the publications.

The thesis is organized as follows. Chapter 2 provides the necessary background theory,
describing the principles of MIMO transmission including the fundamental signal and
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system models. In addition to that, it introduces the basics of TDD systems and the
associated channel non-reciprocity problem. Chapters 3 and 4 focus on the contributions
of the thesis. Specifically, based on the presented results in [P6] – [P8], Chapter 3 provides
discussion about the effects of channel non-reciprocity on small-scale TDD MU-MIMO
downlink transmission in both single-cell and multi-cell scenarios. A proposed OTA
type pilot-based BS transceiver non-reciprocity mitigation framework is also covered
in Chapter 3. Extending the studies to massive MIMO systems based on the works
in [P1]– [P5], Chapter 4 first focuses on closed-form analysis of channel non-reciprocity
impacts on TDD multi-user massive MIMO downlink transmission. Subsequently, it
introduces proposed frameworks to i) estimate the level of BS transceiver non-reciprocity
at the UE side; and ii) mitigate transceiver non-reciprocity impacts in both BS and UE
sides. Finally, the conclusions are drawn in Chapter 5.

1.4 Author’s Contribution to the Publications

The research topic was proposed by Prof. Mikko Valkama. He has been a co-author and
contributed to all of the publications by sharing his feedback and thoughts in both stages
of conducting the research and writing the publications. This thesis is based on the results
of the research which were reported in publications [P1] – [P8]. The author of the thesis is
the main contributor for conducting the research, simulations and writing [P1] – [P6]. The
main contributor in [P7] and [P8] was D.Sc. Yaning Zou while the author of the thesis
was responsible mainly for simulations and partly for derivations and composition. D.Sc.
Yaning Zou was the instructor for the first half of this thesis, i.e., small-scale MIMO study.
Whereas, D.Sc. Ahmet Gökceoglu was the instructor for the massive MIMO research
which forms the second half of this doctoral study.

1.5 Mathematical Notations and Definitions

Throughout the thesis, bold and lower-case letters are used to denote vectors (e.g., v), while
bold and upper-case ones represent matrices (e.g., V). Transpose, complex-conjugate,
Hermitian-transpose, Moore-Penrose pseudo inverse, and matrix inverse operations are
indicated by superscripts (.)T, (.)∗, (.)H, (.)†, and (.)−1, respectively. Whereas, statistical
expectation and trace operators are denoted by E[.] and Tr (.), respectively. Variance
and covariance operators are shown by Var (.) and Cov (.), respectively, while Sum (.) is
used as element-wise sum of the argument matrix. All-zero and identity matrices are
represented by 0n and In, respectively. The i-th element in vector v is shown by vi,
whereas the j-th column of matrix V is shown by vj , and correspondingly, the element
on the i-th row and the j-th column of matrix V is represented by vij . The diag (.)
operator extracts the main diagonal of the input matrix as a column vector, and vice versa,
transforms a vector v to a diagonal matrix with vi being the i-th element on its main
diagonal. Finally, CN (

0, σ2) denotes a complex-valued zero-mean circularly symmetric
Gaussian distribution with variance σ2, while �{.} and �{.} are used to element-wise
extract real and imaginary parts of a complex-valued argument, respectively.



CHAPTER 2

TDD MIMO Systems and the

Associated Channel

Non-Reciprocity

In this chapter, we shortly concentrate on the basic concepts used throughout this thesis.
We first review the fundamentals of MIMO and the associated precoding schemes. We
also present the massive MIMO idea which has attracted much attention during the last
few years. Then, we focus on TDD duplexing scheme, and finally, we discuss the channel
non-reciprocity problem in TDD MIMO systems.

2.1 MIMO

Almost all the new systems and solutions which are designed to satisfy current and the
future needs for wireless communications are built on the multi-antenna principle as
opposed to Single-Input Single-Output (SISO) transmission where both the transmitter
and the receiver have only one antenna, as depicted in Figure 2.1(a). The main drawback
in using SISO systems is the challenge to have a reliable communication as the quality of
a transmission is highly dependent on its corresponding propagation channel properties,
namely, fading due to multi-path propagation and shadowing due to large obstacles.
Whereas, MIMO systems can enhance the link reliability by employing diversity techniques,
i.e., transmitting the same data streams through two or more channels with different
characteristics. In addition to that, in a well-designed MIMO system where there are
more than one antenna in both transmitting and receiving ends, the spatial degrees of
freedom allow to simultaneously send multiple streams on the same frequency, resulting
in spatial multiplexing gain which significantly improves the spectral efficiency.

Depending on the number of antennas in the transmitter and the receiver sides, multi-
antenna systems can be divided into three categories, namely, Multiple-Input Single-
Output (MISO) where the transmitter is a multi-antenna device and the receiver has
only one antenna (Figure 2.1(b)), Single-Input Multiple-Output (SIMO) where the trans-
mitter is a single-antenna device and the receiver is a multi-antenna one (Figure 2.1(c)),

5
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Figure 2.1: Different types of communication cases depending on the number of antennas and
devices in the transmitter and the receiver sides.
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and MIMO where both the transmitter and the receiver are multi-antenna devices (Fig-
ure 2.1(d)).

In the case that MIMO is used to communicate with several terminals at the same time,
the term MU-MIMO is used (Figure 2.1(e)). MU-MIMO systems can cope with one of
the main limitations in Single-User MIMO (SU-MIMO) scenario which is the propagation
channel conditions, e.g., channel rank and antenna correlation, by the means of scheduler.
As opposed to SU-MIMO which needs multi-antenna UEs to reap the benefits of MIMO,
MU-MIMO/MISO can benefit from the spatial multiplexing gain even with single-antenna
UEs, allowing to have small and cheap devices in MIMO systems. The drawback of
MU-MIMO is the interference caused from the transmissions targeted to other UEs on the
same time-frequency resources which may have significant impacts on the performance
of the initial transmission. In order to fully exploit the spatial multiplexing capabilities
of MU-MIMO and potentially mitigate Inter-Stream Interference (ISI) and Inter-User
Interference (IUI), transmitters require to have accurate and timely CSIs. Note that,
in this definition and throughout the thesis, ISI refers to the interference caused by
other streams targeted to the same UE and IUI refers to the interference due to the
transmissions targeted to other UEs.

In a basic MU-MIMO scenario, called single-cell MIMO system, a BS simultaneously
serves several UEs over the same spectrum. For downlink transmission in a single-cell
MIMO system, which is the general theme in [P1]– [P5], [P7] and [P8], the BS gathers
all CSIs from all the associated UEs in order to perform the spatial multiplexing and
eliminate both ISI and IUI without any form of information exchange with possible
neighboring BSs that are generally present in a real network. Such systems can suffer
from inter-cell interference from neighboring BSs. However, for single-cell analysis in
this thesis, it is for simplicity assumed that there is no inter-cell interference present in
the system. In more advanced network deployments, called multi-cell MIMO systems,
there can be more than one BS or transmission point on the network side which are
communicating to each other to improve the network performance by either i) jointly
precoding and transmitting the data streams, called Coordinated Multi-Point (CoMP)
transmission [44, 64]; or ii) seeking to reduce inter-cell interference and IUI through joint
precoder (and receiver filter) optimization while still supporting each UE by only one BS.
The considered scenario in this thesis is the latter which is discussed in details in [P6].
In general, such multi-cell MIMO systems are categorized into two classes as shown in
Figure 2.2 and are listed below [65].

• Centralized: The optimal system performance in the considered multi-cell MIMO
network can be achieved by adopting a central controller which collects all the CSIs
between all the BSs and the UEs [65]. Network-level optimization is then carried
out at the central controller to perform the optimal spatial multiplexing, i.e., jointly
optimize the precoders of the involved BSs and possibly also the UE side receiver
spatial filters. The knowledge about the calculated optimal multiplexing is then
distributed among all the corresponding transmitting BSs. In order to have feasible
delay between CSI acquisition and data transmission phases in this method, large
number of low-latency links are required.

• Decentralized: In many scenarios, networks cannot afford enough low-latency back-
haul resources and/or there is no central controller. Decentralized spatial multi-
plexing can then be deployed which is carried out at each BS as shown in [65]. In
such systems, due to lack of a centralized spatial multiplexer which has all the
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Figure 2.2: Multi-cell MU-MIMO systems (a) centralized; (b) decentralized.

CSIs between all the transmitters and receivers, BSs calculate their own set of
precoders and then exchange limited information with their neighboring cells to
avoid interference in the network.

In addition to the two main scenarios mentioned above, there can be other deployments
based on the requirements of the system, e.g., semi-distributed, which are out of the
scope of this thesis.

2.1.1 Principal System Model

For simplicity, let us consider downlink data transmission in a single-cell MU-MIMO
system, while the multi-cell system model is presented in details later in Section 3.4. In the
considered scenario, a BS serves K UEs on the same time-frequency resources. The BS is
equipped with N antenna elements, while the number of antennas in the k-th UE is denoted
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by Mk and
∑K

i=1 Mk = Mtot. Note that, all the following signal and system models
are written for an arbitrary subcarrier of the underlying orthogonal frequency division
multiplexing/multiple access (OFDM/OFDMA) waveform. For notational simplicity,
the subcarrier index is not shown explicitly throughout the thesis. The fundamental
multi-user downlink transmission signal model can be expressed as

r =
√

ρdHx + n, (2.1)

where H ∈ C
Mtot×N is the effective downlink channel matrix and can be written as

H = [HT
1 , · · · , HT

K ]T with Hk ∈ C
Mk×N being the effective downlink channel matrix

towards the k-th UE. In above, r ∈ C
Mtot×1 denotes the received multi-user downlink

signal vector corresponding to all Mtot antennas in the UE side, x ∈ C
N×1 is the

signal vector transmitted from the BS antennas, ρd is the transmitted Signal-to-Noise
Ratio (SNR) of the downlink channel, and n ∈ C

Mtot×1 is the additive receiver noise
vector at UE side with independent and identically distributed (i.i.d.) CN (0, 1) elements.

2.1.2 Transmit Precoding

Precoding is a processing technique responsible to perform spatial multiplexing, i.e., it
splits the transmit signal into several spatial signals towards different receivers and tries
to modify the input signal to optimally match the channel [51]. As mentioned earlier, in
order to perform such processing, the transmitter requires to have CSI of all the involved
radio links.

In (2.1), the precoded spatial transmit signal vector in the BS is denoted by x =
[x1, · · · , xN ]T, where xn is the precoded sample transmitted from the n-th antenna in
the BS. The precoded downlink transmit vector x can be expressed as

x = βUs, (2.2)

where U = [U1, · · · , UK ] ∈ C
N×Qtot is the precoder matrix with Uk ∈ C

N×Qk being
precoder matrix corresponding to the data streams targeted to the k-th UE. Here, the
total number of streams in the network is Qtot =

∑K
i=1 Qk, where Qk is the number of

downlink data streams towards the k-th UE before precoding. The precoder column vector
corresponding to the q-th data stream towards the k-th UE can be shown as uk,q ∈ C

N×1.
The normalized UE data vector is denoted by s =

[
sT

1 , · · · , sT
K

]T ∈ C
Qtot×1, where

sk ∈ C
Qk×1 is the data vector targeted to the k-th UE, sk,q denotes the q-th data stream

in sk, and E
[
ssH]

= IQtot . The transmit sum-power normalization is achieved through
β which constrains the total BS transmit sum-power to 1, i.e., E[xHx] = 1. In order to
satisfy this condition, β is chosen as [66]

β =
(√

E[Tr (UHU)]
)−1

. (2.3)

The received downlink multi-user signal vector corresponding to all Mtot antennas in the
UE side can be re-written by substituting (2.2) in (2.1) as

r = β
√

ρdHUs + n. (2.4)

Figure 2.3 illustrates downlink transmission chain in the presence of transmit precoding
and receiver processing which is denoted by Wk = [wk,1, · · · , wk,Qk

] ∈ C
Mk×Qk where
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Figure 2.3: Principal illustration of downlink transmission, including transmit precoding and
receiver processing.

wk,q ∈ C
Mk×1. Note that the precoder matrix U is constructed based on the estimated

effective downlink channel matrix Ĥ ∈ C
Mtot×N , and its design varies depending on the

available CSI and the performance criterion. In this thesis, we have covered three forms
of precoders, namely, ZF, MRT, and eigen-decomposition based ones.

2.1.2.1 Zero-Forcing

For ZF precoding scheme, the precoder matrix tries to cancel out spatial multiplexing
induced interference received at each UE and is constructed using the pseudo-inverse of
the estimated effective downlink channel matrix as [62]

UZF = ĤH
(

ĤĤH
)−1

. (2.5)

The normalization scalar βZF in (2.3) can be shown to read [62]

βZF =

(√
E

[
Tr

((
ĤĤH

)−1
)])−1

. (2.6)

Then, based on (2.4) and (2.5), the reception at the k-th UE is given in the following
which shows that both ISI and IUI are suppressed when the BS has perfect CSI.

rZF
k = βZF√

ρdHkUs + nk = βZF√
ρdsk + nk. (2.7)

In order to keep the consistency of the signal model and for simplicity, throughout the
thesis, it is assumed that Mk = Qk, i.e., there is one data stream per UE antenna, for ZF
precoding scheme.
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2.1.2.2 Maximum Ratio Transmission

The goal in MRT precoding scheme is to maximize the received SNR. Having low
implementation complexity is one of the reasons for popularity of this precoding scheme.

The MRT precoder matrix is constructed as [66]

UMRT = ĤH, (2.8)

which, based on (2.3), leads to the normalization scalar βMRT being [66]

βMRT =

(√
E

[
Tr

(
ĤĤH

)])−1

. (2.9)

Next, having perfect CSI, the signal at the receiver of the k-th UE can be shown as

rMRT
k = βMRT√

ρdHkUs + nk = βMRT√
ρdHkĤHs + nk. (2.10)

Similar to ZF precoding scheme, throughout the thesis, there is one data stream per UE
antenna when MRT precoding is deployed.

2.1.2.3 Eigen-Based

Eigen-based precoding is based on Singular Value Decomposition (SVD) [67]. The SVD of
the estimated effective downlink channel matrix from the BS to the k-th UE, Ĥk ∈ C

Mk×N ,
consists of three matrices and can be written as

Ĥk = ΛkΞkVH
k , (2.11)

where Ξk ∈ C
Mk×N is a square/rectangular diagonal matrix of the non-negative singular

values and Λk ∈ C
Mk×Mk and Vk ∈ C

N×N are complex unitary matrices.

In order to construct the precoder matrix, we first form V =
[
V̄1, · · · , V̄K

] ∈ C
N×Mtot

where V̄k ∈ C
N×Mk is achieved by collecting the first Mk columns of Vk, i.e., first Mk

right singular vectors of Ĥk. Next, Υ ∈ C
N×Mtot is calculated as Υ = V

(
VHV

)−1 which
can be shown as Υ = [Υ1, · · · , ΥK ]. In the next step, we form another reduced-size
matrix called Ῡk ∈ C

N×Qk by taking the first Qk columns of Υk ∈ C
N×Mk . Finally, we

form the precoder matrix as

UEIG =
[
Ῡ1, · · · , ῩK

]
, (2.12)

and the normalization scalar βeig reads

βEIG =

(√
E

[
Tr

(
UEIGHUEIG

)])−1

. (2.13)

Thus, for the perfect CSI scenario, the received signal at the k-th UE can be expressed as

rEIG
k = βEIG√

ρdHkUs + nk = βEIG√
ρdΛ̄kΞ̄ksk + nk, (2.14)

where Λ̄k ∈ C
Mk×Qk contains the first Qk columns (left singular vectors) of Λk and

Ξ̄k ∈ C
Qk×Qk is a diagonal matrix with the Qk largest singular values of Ĥk as its

diagonal entries.
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2.1.3 Receiver Processing

As can be seen in (2.7), (2.10), and (2.14), even with perfect CSI at the BS side, the
received signals are not necessarily the corresponding transmitted data streams and
additional receiver processing stage may thus be adopted. For detection purposes, the
receiver at the k-th UE, Wk, then seeks to further separate the Qk desired parallel data
streams from the received signal rk, while also taking the noise into account, as follows

yk = WH
k rk =

√
ρdWH

k Hx + WH
k n. (2.15)

There are various types of receiver processing approaches which can be employed based on
their complexity and the assumed precoder and system scenario. Chapter 3 and Chapter 4
provide more details regarding the ones which are used in this thesis work.

2.1.4 Rate Calculation

Having the information about the received signal, incorporating also the impacts of
the receiver spatial filters, if adopted, one can calculate SINR which is then used to
determine transmission rate. In this thesis, depending on the type of information
available at the receiver side, there are two different rate expressions which are based
on either instantaneous SINR, denoted by γ, or effective SINR, denoted by SINR in the
mathematical expressions.

In the case that the receiver has information regarding the current instance of the precoded
downlink channel, SINR can be calculated for that particular channel realization and is
called instantaneous SINR. Having instantaneous SINR corresponding to the q-th data
stream in the k-th UE, γk,q, a lower bound on the capacity associated to this stream, can
be expressed as [56, 66]

Çk,q ≥ Rk,q = E[log2 (1 + γk,q)], (2.16)

where the expectation is with respect to channel and non-reciprocity parameters realiza-
tions. In (2.16), Çk,q is the capacity and Rk,q is its lower bound which is called achievable
rate. This achievable rate can be summed over all the available streams and UEs to
obtain achievable sum-rate, R, as

Ç ≥ R =
K∑

k=1

Qk∑
q=1

E[log2 (1 + γk,q)]. (2.17)

where Ç is the system capacity.

In case the channel is deterministic and there is no information regarding the current
instance of the channel and thus statistical properties of the channel are employed to
decode the received signal [56, 62], the term effective SINR is used, which is discussed
in details in Chapter 4. Having effective SINR for the q-th data stream in the k-th UE,
SINRk,q, corresponding achievable rate and achievable sum-rate, can be given as [56, 62]

Çk,q ≥ Rk,q = log2 (1 + SINRk,q)

Ç ≥ R =
K∑

k=1

Qk∑
q=1

log2 (1 + SINRk,q) .
(2.18)
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2.1.5 Massive MIMO

Small-scale wireless devices and systems using MU-MIMO are allowing for relatively
limited number of antennas to be deployed at a particular device, i.e., at most 8. In
contrast, massive MIMO is based on the challenging idea of increasing the number of
antennas in the BS side with an order of magnitude or more, where N � Mtot, hence
improving the performance of the system in all the metrics, including spectral and radiated
energy efficiencies. Massive MIMO tries to benefit from all the advantages of small-scale
MIMO on a much greater scale. Thus, it is envisioned to be one of the key enabling
technologies for the next generation of cellular networks known as 5G [14, 15].

Utilizing more antennas in the BS side provides more degrees of freedom to massive MIMO
systems which in turn increases the maximum number of UEs that can be supported in
the same time-frequency resources. Although, conventional signal processing techniques
(e.g., maximum likelihood detection) become prohibitively complex in massive MIMO
systems, linear precoding techniques, e.g., ZF and MRT are shown to be asymptotically
optimal with increasing N [62]. It is also shown that very high spectral efficiencies can
already be achieved with N being in the order of several tens or hundreds [60–63]. A
very interesting phenomenon which helps massive MIMO systems reach such high spectral
efficiencies is called channel hardening. Channel hardening means having less fluctuations
in the norms of the beamformed channel vectors and happens as the number of antennas
in a device grows larger [68]. This phenomenon has lots of implications in massive MIMO
systems. For example, due to channel hardening, a fading MIMO channel can be seen
as a deterministic scalar channel after beamforming [69]. This characteristic of massive
MIMO systems is later on used in Chapter 4.

2.2 TDD

In order to employ the mentioned precoding schemes, the BS is required to have accurate
CSI. Generally, in FDD-based MIMO systems, this CSI is acquired by feedback received
from the UE side. In such systems, UEs try to estimate downlink channels based on
the received downlink pilots transmitted by the BS and signal the estimated downlink
channel information back to the BS [53]. This dedicated feedback signaling, however, is
not needed in TDD-based systems as they rely on the reciprocity of physical downlink
and uplink channels within each coherence interval to acquire CSI at the transmitter [55].
In such systems, UEs transmit uplink pilots to BS to facilitate uplink channel estimation.
The BS can then employ the information about the uplink channels, which in theory
matches the one of the downlink channels, for precoding purposes.

Note that, in FDD-based networks, the number of pilots required for estimating the
downlink channel is proportional to the number of antennas in the BS side which leads to
huge overhead in massive MIMO systems. Thus, massive MIMO systems are typically
assumed to employ TDD, where, especially with single-antenna UEs, the required amount
of resources is only proportional to the number of served UEs which is typically much
smaller than the number of BS antennas, i.e., K � N [55, 60].

2.3 Channel Non-Reciprocity Problem

The channel reciprocity law in TDD systems applies to physical propagation channels.
However, the effective downlink and the effective uplink channels, which incorporate also
the impacts of the involved transceiver circuits and antenna systems in addition to the
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Figure 2.4: Principal illustration of effective (a) downlink and (b) uplink channels including
propagation channels, transceivers FRs and antenna mutual coupling in the devices. Note that a
specific example of dual antenna UEs is shown here.

propagation channels, are generally not reciprocal. This non-reciprocity is caused by the
differences in transmitting and receiving mode behaviors of the transceivers and antenna
systems, which depend on the hardware configuration and the operating conditions,
e.g., temperature, [70–76]. In particular, such differences are caused by unavoidable
mismatches between transmitter and receiver chains of any individual transceiver, namely,
i) FR mismatches; ii) mismatches in mutual coupling effects between the antenna elements
(in multi-antenna devices) [77, 78].

As illustrated in Figure 2.4, the effective downlink and uplink channels are generally
cascades of transceiver FRs and antenna mutual coupling at the transmitting side, physical
propagation channels, and transceiver FRs and antenna mutual coupling at the receiving
side. Based on this, the effective downlink channel H and the effective uplink channel
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G ∈ C
N×Mtot can be shown to read [77]

H = FRXDRXPTMT XBT X

G = BRXMRXPDT XFT X ,
(2.19)

where F = diag (f1, · · · , fMtot
) ∈ C

Mtot×Mtot is the FR matrix of the UEs, block-diagonal
matrix D ∈ C

Mtot×Mtot represents the antenna mutual coupling matrix at UE side,
B = diag (b1, · · · , bN ) ∈ C

N×N is the FR matrix of the BS, M ∈ C
N×N is the antenna

mutual coupling matrix of the BS, and P ∈ C
N×Mtot is the reciprocal physical propagation

channel. The superscripts TX and RX represent the transmitting and receiving modes,
respectively.

Based on (2.19), the relation between the effective downlink and uplink channels can now
be established as

H = AGTC, (2.20)

where the matrices A and C read

A = FRXDRX
(
DT X

)−T (
FT X

)−1

C =
(
BRX

)−1 (
MRX

)−T MT XBT X .
(2.21)

In (2.20) and (2.21), the matrices A ∈ C
Mtot×Mtot and C ∈ C

N×N are denoting the
transceivers’ non-reciprocity at the UE and the BS sides, respectively. The UE side
non-reciprocity matrix A is block-diagonal and can be written as

A =

⎡
⎢⎢⎢⎢⎣

A1 0 · · · 0

0 A2
. . .

...
...

. . . . . . 0
0 · · · 0 AK

⎤
⎥⎥⎥⎥⎦ . (2.22)

In above, Ak ∈ C
Mk×Mk represents the transceivers non-reciprocity matrix in the k-th

UE. Matrices A and Ak ∈ C
Mk×Mk can then be decomposed as A = IMtot + A′ and

Ak = IMk
+ A′

k, respectively. Whereas, the overall BS transceiver non-reciprocity matrix
C which includes mutual coupling mismatch, is generally a full matrix and can be written
as C = IN + C′. Based on (2.20), the effective downlink and uplink channels can be
assumed to be reciprocal if and only if A′ = 0Mtot

and C′ = 0N . Throughout this thesis,
we assume that the elements in A′, and C′ are zero-mean.

Generally, the channel non-reciprocity characteristics in transceivers vary very slowly
compared to the variations in the propagation channel and thus A and C can be assumed
to remain constant over many channel coherence intervals [76].





CHAPTER 3

Analysis and Mitigation of

Channel Non-Reciprocity in

Small-Scale MIMO Systems

This chapter is based on the work in [P6]– [P8] and focuses on channel non-reciprocity
in small-scale TDD MU-MIMO downlink transmission. [P7] and [P8] address the non-
reciprocity problem in TDD single-cell MU-MIMO systems, while [P6] focuses on the non-
reciprocity issues in multi-cell MIMO scenario. In particular, in [P7], joint impacts of both
channel non-reciprocity sources, namely transceiver FR mismatch and antenna mutual
coupling mismatches, on precoded single-cell MU-MIMO are analyzed. Furthermore,
based on the detailed derived signal and system models, the resulting performance
degradation in terms of instantaneous SINR and the corresponding achievable downlink
sum-rate are characterized in [P7]. Efficient OTA type pilot-based estimation framework
for estimation and mitigation of FR mismatch in BS transceiver is proposed in [P8] for
precoded single-cell MU-MIMO systems. The effects of transceiver FR mismatches at
the UE side on the performance of coordinated TDD multi-cell MIMO is covered in [P6]
where both centralized and decentralized precoding schemes are considered. In general,
only the main steps and results are summarized in the following sections while all the
detailed derivations are available in the thesis publications [P6]– [P8].

3.1 Background and Prior Art

This section briefly reviews the related work in the literature focusing on channel non-
reciprocity problem in small-scale TDD MU-MIMO systems.

The impacts of transceivers FR mismatches on small-scale TDD single-cell ZF precoded
MU-MIMO systems are studied in [71, 77, 79] and references therein. [71, 77] also acknowl-
edge the channel non-reciprocity problem due to antenna mutual coupling mismatches,
however do not analyze their impact on the signal and system characteristics. Also,
eigen-based precoding, which is another important precoding technique, has not been
analyzed in this context in the existing literature. In TDD multi-cell MIMO context, only
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Systems

few works, e.g., [80], have focused on addressing the channel non-reciprocity problem.
In such systems, more sophisticated processing is required to construct precoders com-
pared to, e.g., ZF or eigen-based precoding schemes. More specifically, as described in
[65], dedicated signaling exchange between the connected UEs and the BS is needed in
decentralized precoding. It can be shown that, in this scenario, OTA signaling process
can be potentially influenced by UE transceiver non-reciprocity. However, to the best of
our knowledge, there is no previous work analyzing the impacts of such UE transceiver
non-reciprocity problem on the performance of multi-cell MIMO networks.

In the literature, there are mainly two types of estimation-mitigation approaches to
cope with transceiver non-reciprocity problem. The first one is direct offline hardware
estimation-calibration which provides a standard independent solution by employing
additional circuitries [77, 81, 82]. However, this approach substantially increases the
implementation complexity and cost for each device. The other option is OTA type
estimation-mitigation algorithms [71, 76, 77, 83–85]. In this approach, in order to estimate
the non-reciprocity parameters, a test calibration and feedback link with external Test
Equipment (TE) requires to be established. OTA estimation algorithms do not require
extra hardware to be implemented in BS devices. However, the BS needs to communicate
with the TE in dedicated calibration periods. Current OTA solutions in the literature
[71, 76, 77, 83–85] assume that the BS always has the knowledge about the downlink
channel matrix towards the TE, e.g., via accurate high-rate feedback signaling, and uses
that to compare against the measured uplink channel matrix from the TE in order to
extract the non-reciprocity parameters. In practice, however, the performance of such
solutions is always limited by the finite rate of feedback signaling from the TE to the BS.
In addition to that, the computational complexities of deployed matrix decompositions
applied in [71, 76, 77, 83–85] are far from trivial.

3.2 General Assumptions

In TDD systems, when CSI at the BS is obtained by estimating the effective uplink
channel, the estimated downlink channel reads

Ĥ = ĜT, (3.1)

where Ĝ ∈ C
N×Mtot is the estimated effective uplink channel. Assuming perfect effective

uplink channel estimation, the resulting downlink channel estimate reads

Ĥ = GT, (3.2)

which will be used to construct precoders. However, based on (2.19), even without any
additive noise or other interference sources in the estimation process, biased estimation
due to mismatches in transceivers is unavoidable.

3.2.1 Receiver Processing

In this chapter, we focus on one of the most common forms of the receiver processing,
namely, Linear Minimum Mean Squared Error (LMMSE)-based [86], which is known to
maximize the received SINR when treating the interference as noise. It minimizes the
Mean Squared Error (MSE) between the transmitted and estimated data symbol vectors
as

Wk = arg min
Wk

E

[∥∥WH
k rk − sk

∥∥2
]

, (3.3)
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and is given by [86]

Wk = β
√

ρd

(
β2ρd

K∑
i=1

HkUi (HkUi)H + IMk

)−1

HkUk. (3.4)

Throughout this chapter, it is assumed that UEs have perfect estimation of precoded
downlink channels when constructing such receivers.

3.3 Single-Cell

In this section, we focus on channel non-reciprocity in TDD single-cell MU-MIMO systems.
First, the impacts of channel non-reciprocity in terms of received instantaneous SINR and
achievable downlink sum-rate are analyzed. Next, an OTA type pilot-based estimation
algorithm, proposed in [P8], is employed to efficiently identify BS transceiver FR mismatch
parameters, which are then used in the BS to properly pre-compensate/precode the multi-
user data to mitigate the channel non-reciprocity problem.

3.3.1 Analysis

Here, the impacts of channel non-reciprocity on the performance of ZF and eigen-based
precoded TDD MU-MIMO downlink transmission are evaluated.

3.3.1.1 ZF Precoding

Incorporating (3.2), (2.20), and (2.6), in the downlink system model in (2.4), the received
signal at the k-th UE reads

rZF
k = βZF√

ρdHkUZFs + nk = βZF√
ρdAkĤkCUZFs + nk

= βZF√
ρdAksk + βZF√

ρdAkĤkC′UZFs + nk.
(3.5)

In above, the first term in the last line consists of the desired streams while the term
following that is mostly IUI.

One interesting observation, based on (3.5), is that despite having transceiver FR and
antenna mutual coupling mismatches at the UE side, we can achieve IUI-free reception if
the BS has ideal reciprocal transceiver. This can be observed in (3.5) by having C′ = 0N

(i.e., perfect reciprocity at the BS side), which then reduces to

rZF
k = βZF√

ρdAksk + nk. (3.6)

Thus, based on the provided analysis, it can be claimed that the non-reciprocity charac-
teristics of BSs transceivers are clearly more critical than those of the UE side.

In the general case, when the BS transceiver is not totally reciprocal, i.e., C′ 	= 0N ,
then the second term in the last line of (3.5) becomes a non-zero matrix with entries
depending on the values of the effective downlink channel matrix Hk and the non-
reciprocity parameters. In this general case, both ISI and IUI occur at the receiver of the
k-th UE even if the implementation at the UE side is perfect.

After receiving the downlink signal in the k-th UE receiver, an LMMSE-based receiver
spatial processing, wk,q, based on (3.4), tries to separate the q-th data stream in the k-th
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UE from the received signal and possibly suppress the interference as

yZF
k,q = wH

k,qrZF
k

= βZF√
ρdwH

k,q

(
ak,q + AkĤkC′uZF

k,q

)
sk,q︸ ︷︷ ︸

useful signal

+ zZF,ISI
k,q sk,i︸ ︷︷ ︸

ISI

+ zZF,IUI
k,q sj,l︸ ︷︷ ︸

IUI

+wH
k,qnk, (3.7)

where ak,q ∈ C
Mk×1 is the q-th column of Ak which corresponds to the q-th data stream.

Next, zZF,ISI
k,q and zZF,IUI

k,q can be expressed respectively as

zZF,ISI
k,q =

Qk∑
i=1
i �=q

βZF√
ρdwH

k,q

(
ak,i + AkĤkC′uZF

k,i

)

zZF,IUI
k,q =

K∑
j=1
j �=k

Qj∑
l=1

βZF√
ρdwH

k,qAkĤkC′uZF
j,l .

(3.8)

Considering the useful terms, ISI, and IUI, in (3.7), the corresponding instantaneous
SINR for the q-th data stream in the k-th UE is given by

γZF
k,q =

∣∣∣βZF√
ρdwH

k,q

(
ak,q + AkĤkC′uZF

k,q

)∣∣∣2

∣∣∣zZF,ISI
k,q

∣∣∣2
+

∣∣∣zZF,IUI
k,q

∣∣∣2
+

∥∥∥wH
k,q

∥∥∥2 . (3.9)

Thus, based on (2.17), the achievable sum-rate can be expressed as

RZF =
K∑

k=1

Qk∑
q=1

E
[
log2

(
1 + γZF

k,q

)]
. (3.10)

3.3.1.2 Eigen-Based Precoding

Next, we carry out the similar type of analysis for TDD MU-MIMO downlink transmission
system with eigen-based precoding. With channel non-reciprocity effect in downlink
channel estimation, the eigen-based precoder is constructed by decomposing the UE level
sub-matrices of Ĥ in (3.2), following the procedure described in Section 2.1.2.3.

The precoded downlink data signal at the receiver of the k-th UE can be expressed as

rEIG
k = βEIG√

ρdHkUEIGs + nk = βEIG√
ρdAkĤkCUEIGs + nk

= βEIG√
ρdAkΛ̄kΞ̄ksk + βEIG√

ρdAkĤkC′UEIGs + nk.
(3.11)

Based on (3.11), when C′ = 0N which corresponds to perfect transceiver reciprocity at
the BS side, there is no IUI at the k-th UE reception as the second term in the last line
of (3.11) becomes zero. In this case, only ISI cancellation at the UE side is required.

In the practical scenario of C′ 	= 0N , the second term in the last line of (3.11) would be
a non-zero matrix with elements depending on the effective downlink channel and the
mismatch parameters. In this case, the received signal at the UE receiver contains both
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ISI and IUI. Next, by applying LMMSE-based spatial processing on the received signal in
(3.11), the reception of the q-th stream in the k-th UE can be expressed as

yEIG
k,q = wH

k,qrEIG
k

= βEIG√
ρdwH

k,q

(
AkΛ̄kξ̄k,q + AkĤkC′uEIG

k,q

)
sk,q︸ ︷︷ ︸

useful signal

+ zEIG,ISI
k,q sk,i︸ ︷︷ ︸

ISI

+ zEIG,IUI
k,q sj,l︸ ︷︷ ︸

IUI

+wH
k,qnk,

(3.12)

with ξ̄k,q ∈ C
Qk×1 being the q-th column of Ξ̄k. Here, zEIG,ISI

k,q and zEIG,IUI
k,q can be

written as follows

zEIG,ISI
k,q =

Qk∑
i=1
i�=q

βEIG√
ρdwH

k,q

(
AkΛ̄kξ̄k,i + AkĤkC′uEIG

k,i

)

zEIG,IUI
k,q =

K∑
j=1
j �=k

Qj∑
l=1

βEIG√
ρdwH

k,qAkĤkC′uEIG
j,l .

(3.13)

Considering the desired useful signal and interference and noise terms in (3.12), the
corresponding instantaneous SINR for the q-th data stream in the k-th UE is given by

γEIG
k,q =

∣∣∣βEIG√
ρdwH

k,q

(
AkΛ̄kξ̄k,q + AkĤkC′uEIG

k,q

)∣∣∣2

∣∣∣zEIG,ISI
k,q

∣∣∣2
+

∣∣∣zEIG,IUI
k,q

∣∣∣2
+

∥∥∥wH
k,q

∥∥∥2 . (3.14)

Finally, the achievable system sum-rate which includes all the streams and UEs can be
obtained similarly as

REIG =
K∑

k=1

Qk∑
q=1

E
[
log2

(
1 + γEIG

k,q

)]
. (3.15)

3.3.2 Mitigation

Assuming reasonably good antenna isolation in each device and thus no antenna mutual
coupling mismatch, there are always unavoidable FR mismatches between a transmitter
and a receiver causing the channel non-reciprocity effect which degrades the system
performance. For such systems, in general case for an arbitrary precoder, the received
signal at the k-th UE can be shown as

rk = β
√

ρdHkUs + nk = β
√

ρdF̄kĤkB̄Us + nk, (3.16)

where F̄k ∈ C
Mk×Mk and B̄ are diagonal non-reciprocity matrices, containing only the

FR mismatch effects in the k-th UE and the BS, respectively, and can be expressed as

F̄k = FRX
k

(
FT X

k

)−1

B̄ =
(
BRX

)−1 BT X .
(3.17)
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As discussed earlier, ISI and IUI are inherent in such downlink transmission systems.

In order to mitigate such non-idealities, ideally, the BS requires to have the information
about the non-reciprocity parameters of its own transceiver and transceivers of all the
associated UEs. However, due to dynamic changes in the UEs accessing the channel as
well as time-dependent behavior of FRs of the UE transceivers, considerable amount of
overhead is required to follow the transceiver non-reciprocity behavior of the UE side in a
timely manner. On the other hand, as discussed in Section 3.3.1, in order to mitigate IUI,
it is enough to calibrate the non-reciprocity at the BS side, while the non-reciprocity at
the UE side can be handled by proper receiver processing.

Based on the above reasoning and the received signal model in (3.16), in order to have
IUI-free transmission under Non-Reciprocal Channel (NRC), the transformed precoder
can be given as

UNRC = ˆ̄B−1U, (3.18)

where ˆ̄B ∈ C
N×N is the estimated BS transceiver non-reciprocity matrix. Thus, after

perfect BS transceiver non-reciprocity mitigation, the received signal at the k-th UE
receiver reads

rk = β
√

ρdHkUNRCs + nk = β
√

ρdF̄kĤkUs + nk, (3.19)

which does not contain IUI.

In order to estimate the BS transceiver non-reciprocity matrix, a single antenna TE,
which can be one of the UEs or a separate device is assumed to be connected to the BS
to facilitate the estimation of non-reciprocity parameters in the BS transceiver. The FR
mismatch parameter in the TE is denoted by

f̄e = fRX
e

(
fT X

e
)−1

. (3.20)

The effective uplink channel vector from the TE to the BS is denoted by ge = [ge,1, · · · , ge,N ]T ∈
C

N×1. Considering the TE transceiver non-reciprocity, the relation between the effective
downlink channel and the effective uplink channel vectors can be established as

he = f̄egT
e B̄ ∈ C

1×N . (3.21)

During the estimation period, both the effective uplink and the effective downlink channels
are assumed to remain unchanged. In developing the estimator below, the additive noise
is ignored for notational convenience, while its impact is naturally considered in all the
simulations for evaluating the performance of the estimator.

In the first stage of estimating the BS transceiver non-reciprocity, the BS transmits one
complex pilot OFDM symbol from each of its antennas at a time to the single-antenna
TE, shown as sd

p,1, · · · , sd
p,N . Thus, having a diagonal matrix representation, the received

pilot sequence of length N at the TE receiver can be expressed as

rDL
P = heSDL

P , (3.22)

where, SDL
P = diag

(
sd

p,1, · · · , sd
p,N

) ∈ C
N×N .

Next, in order to estimate the effective downlink channel vector, he, at the TE side, pure
ZF processing is employed which results into the following estimation

ĥe = rDL
P

(
SDL

P
)−1

. (3.23)
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In [71, 77, 83], the estimated effective downlink channel, ĥe ∈ C
1×N is transmitted back

from the TE to the BS in order for the BS to compare the effective downlink and the
effective uplink channels and extract its own transceiver non-reciprocity parameters. This
feedback is assumed to be performed via perfectly accurate (infinite) feedback signaling,
while in practice the accuracy of such feedback signaling is always limited to the amount
of resources allocated to this stage. In addition to that, as shown in [71, 77, 83], the
computational complexity of extracting non-reciprocity parameters by comparing the
effective downlink and uplink channels is far from trivial. In order to tackle such problems,
[P8] proposed a method where in the first step the TE precodes an uplink pilot sequence,
sUL

P =
[
su

p,1, · · · , su
p,N

]T ∈ C
N×1, using the estimated effective downlink channel as

xUL
P = diag

(
ĥe

)−1
sUL

P =
[
su

p,1/ĥe,1, · · · , su
p,N /ĥe,N

]T
. (3.24)

Next, the precoded pilot sequence is transmitted to the BS using N OFDM symbols. Note
that, this procedure is done similarly in all the subcarriers. Assuming perfect effective
downlink channel estimation in the TE, i.e., ĥe = he, the received signal matrix over all
BS antennas and N OFDM symbols reads

RUL
P = ge

(
xUL

P
)T = f̄−1

e B̄−1

⎡
⎢⎢⎣

su
p,1 · · · su

p,N he,1

he,N

...
. . .

...
su

p,1he,N

he,1
· · · su

p,N

⎤
⎥⎥⎦ , (3.25)

where each column in the received signal matrix corresponds to the received signal vector
at an individual OFDM symbol instant. As can be seen in (3.25), assuming the pilot
sequence sUL

P is known at the BS side, a scaled version of non-reciprocity parameters of
the BS transceiver, B̄, can be easily extracted from the diagonal entries of RUL

P ∈ C
N×N

as
ˆ̄B−1 = diag

(
sUL

P
)−1 diag

(
rUL

P,diag
)

= f̄−1
e B̄−1, (3.26)

where rP,diag ∈ C
N×1 is the vector containing the diagonal elements of RUL

P . Note
that, based on (3.8) and (3.13), in order to have IUI-free transmission, the BS needs to
mitigate its transceiver non-reciprocity up to a constant scaling. Thus, the term f̄−1

e in
the estimated BS non-reciprocity matrix will not cause any IUI. Finally, after estimating
the non-reciprocity parameters of the BS, the precoder can be updated as (3.18).

Practical Aspects

In practice, the non-idealities in (3.22) and (3.25), e.g., additive channel noise, impact the
accuracy of the BS transceiver non-reciprocity estimation. However, in order to achieve
close-to-ideal performance, the accuracy of non-reciprocity parameter estimates at the
BS side should be fairly high [77]. Thus, in order to further increase the accuracy of the
proposed BS non-reciprocity estimation method, the following strategies are proposed in
[P8].

• Averaging: The accuracy of BS transceiver non-reciprocity estimation can be
improved by averaging several estimates which are collected from one or several
TEs over consecutive pilot signaling slots. The calibration time and overhead will
also increase in this method.
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Base Station

User Equipment

UE#2

UE#1

1,1lH

2 ,1lH

2 ,2lH

1 ,2lH

Figure 3.1: Illustration of simple multi-cell scenario example with two cells, each serving one
UE, while having the corresponding precoder optimization coordination.

• Nulling: As mentioned earlier, in the basic scenario, the BS transceiver non-
reciprocity estimation is performed over all the subcarriers while, in practice, the
transceiver non-reciprocity parameters in B̄ are only mildly frequency-selective [80].
Thus, if each diagonal entry of the BS transceiver non-reciprocity matrix in time
domain is modeled as an LB-tap Finite Impulse Response (FIR) filter, the length
of the filter would be much smaller than the size of the used Inverse Fast Fourier
Transform (IFFT)/Fast Fourier Transform (FFT), i.e., LB � N . Based on this,
in order to filter down part of the estimation errors, the diagonal entries in ˆ̄B are
transformed to time domain using an N point IFFT and then the last Nnull samples
are nulled, where N − Nnull > LB. Similar approach can be performed in the
effective downlink channel estimation stage in (3.23), given that the propagation
channel from the BS to TE side has short delay spread.

• Choice of TE : It is preferred to have TE/s with good channel quality in order to
achieve better accuracy in the estimation process.

More detailed discussion regarding the practical aspects of the proposed method can be
found in [P8].

3.4 Multi-Cell

This section analyzes the impacts of UE side transceiver FR mismatches on the perfor-
mance of coordinated TDD multi-cell MIMO with centralized and decentralized precoding
schemes. In this part of the thesis work, we deliberately focus on UE side non-reciprocity
to show and demonstrate that in multi-cell precoding systems, also that can be a clear
performance limiting factor.

3.4.1 Multi-Cell System Model

We expand the system model described in Section 2.1 to cover multi-cell scenario. In this
model, the network consists of L BSs where each BS is equipped with N antennas, while
the total number of UEs, antennas in the UE side, and downlink data streams are kept
as K, Mtot, and Qtot, respectively. It is assumed that the k-th UE is associated to only
one BS in the network, called lk, and thus the effective downlink channel matrix between
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the k-th UE and the BS serving the j-th UE can be written as Hlj ,k ∈ C
Mk×N as shown

in the simple example of having 2 BSs having one associated UE each in Figure 3.1.

Here, all the downlink streams are first precoded in their respective BSs and then
transmitted simultaneously to the UEs in the network. Thus, after applying an LMMSE-
based receiver processing, wk,q, the q-th data stream in the k-th UE can be extracted
as

yk,q = wH
k,qHlk,kuk,qsk,q +

K∑
i=1

Qi∑
j=1

(i �=k,j �=q)

wH
k,qHli,kui,jsi,j + wH

k,qnk. (3.27)

Note that, in the multi-cell scenario study, the transmit sum-power in each BS is not
always equal to 1 and thus the notation of β is not going to be used. Instead the precoder
matrices are designed such that the transmit sum-power in each BS is always less than a
predefined value, P. For notational simplicity, we do not use transmitted downlink SNR
notation ρd in the multi-cell scenario while instead the power of the additive receiver
noise vector nk is denoted by σ2

n which essentially defines the transmitted SNR.

The LMMSE receiver in (3.27) can be shown to read

wk,q = R−1
k Hlk,kuk,q, (3.28)

where Rk ∈ C
Mk×Mk corresponds to the covariance matrix at the k-th UE reception and

can be expressed as

Rk =
K∑

i=1

Qi∑
j=1

Hli,kui,juH
i,jHH

li,k + σ2
nIMk

. (3.29)

Considering wH
k,qHlk,kuk,qsk,q as the desired signal, instantaneous SINR for the q-th data

stream in the k-th UE reads[87]

γk,q =

∣∣∣wH
k,qHlk,kuk,q

∣∣∣2

K∑
i=1

Qi∑
j=1

(i �=k,j �=q)

∣∣∣wH
k,qHli,kui,j

∣∣∣2
+

∥∥∥wH
k,q

∥∥∥2
σ2

n

. (3.30)

Having the optimum LMMSE receiver, the minimum MSE for receiving the q-th stream
of the k-th UE, ζk,q, and its relation to the instantaneous SINR for the same stream, γk,q,
can be expressed as [88]

ζk,q = 1 − wH
k,qHlk,kuk,q =

1
1 + γk,q

. (3.31)

3.4.2 Centralized Precoding

In the centralized scenario, a central controller collects all the CSI between the BSs
and all the associated UEs, Hli,k for i = 1, · · · , K and k = 1, · · · , K, to achieve the
optimal network performance. For this reason, antenna specific pilots are first sent from
the UE side to facilitate uplink channel estimation in the BSs and then this CSI is
transmitted from the BSs to the central controller via low-latency backhaul links. Next,
the central controller carries out network-level weighted sum-rate maximization and
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obtains the optimal precoders and receivers uk,q and wk,q for all the data streams in the
network. Based on (3.31), for rate calculation purposes, one can substitute log2 (1 + γk,q)
with − log2 (ζk,q). Thus, the Weighted Sum-Rate (WSR) maximization problem can be
transformed to a log-MSE minimization one with a constraint on transmit sum-power in
each BS, expressed as

min
uk,q,wk,q

K∑
k=1

Qk∑
q=1

μk log2 (ζk,q)

s. t.
K∑

k=1
lk=l

Qk∑
q=1

‖uk,q‖ ≤ P ∀l,

(3.32)

where μk is the scheduling priority weight for the k-th UE. As described in [65, 88–90],
(3.32) is generally a non-convex problem which requires unfeasible amount of resources to
be solved. Thus, in practice, suboptimal set of precoders and receivers are calculated via
iterative processing [65, 88–90].

3.4.3 Decentralized Precoding

In many scenarios, the network cannot afford the required low-latency backhaul resources
and/or there is no central controller. In such cases, in order to maximize the network
performance, the network-level cost function in (3.32) is decomposed into smaller parts
which correspond to the contribution of each BS to the overall cost function by neglecting
all terms that do not involve any variables of that specific cell [65]. Using such method,
in addition to having some form of UE-BS signaling, each BS can construct its own local
cost function. Thus, based on [65] and references therein, with a given receiver filter, each
BS can independently maximize WSR by optimizing its precoders as

min
uk,q

ζl

s. t.
K∑

k=1
lk=l

Qk∑
q=1

‖uk,q‖ ≤ P ∀l,
(3.33)

where ζl is the cost function at the l-th BS. As shown in [65], such decentralized precoding
approach can reach the performance of a centralized one.

Next, the two main strategies proposed in [65] to implement decentralized precoding are
shortly described. Then, the impacts of transceiver non-reciprocity in the UE side on
both approaches are analyzed.

3.4.3.1 Strategy A : Network-wide iterations with busy bursts

The contribution of the l-th BS to the network-level cost function can be shown to read
[65]

ζA
l = −2

K∑
k=1
lk=l

Qk∑
q=1

� (
pk,qwH

k,qHlk,kuk,q

)
+

K∑
k=1

Qk∑
q=1

K∑
k′=1
l′
k=l

Q′
k∑

q′=1

pk,q

∣∣wH
k,qHl,kuk′,q′

∣∣2
, (3.34)

where pk,q is the weight value corresponding to the q-th stream of the k-th UE and is
calculated as pk,q = ζ−1

k,q . The second term in the right hand side of (3.34) comprises all
the signal and interference powers generated by the l-th BS.
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The l-th BS requires to have the knowledge about downlink channels towards all the
UEs as well as their LMMS receivers to evaluate (3.34). As proposed in [65], with given
precoders, UEs precode their uplink pilots with the calculated LMMSE receivers and
transmit these so-called busy bursts to BSs. Thus, after estimation, the l-th BS knows
the equivalent channels wH

k,qHl,k for k = 1, · · · , K and q = 1, · · · , Qk. If lk 	= l, the
information about the stream weight value, pk,q, is sent from the BS lk to the BS l via
backhaul [65]. This procedure is repeated until all the BSs reach their desired convergence
and find their suboptimal precoder sets.

Due to having LMMSE receive feedback rounds for each precoder update step in each
BS, strategy A has slow convergence. In order to improve the convergence speed, another
method can be employed in which each BS has local iteration rounds over precoders and
receiver filters. This method is called strategy B and is discussed in the following.

3.4.3.2 Strategy B: Cell-specific iterations with separate busy bursts and
channel sounding

As discussed in [65], in this strategy, UEs do not precode uplink pilots with their LMMSE
receiver filters. Instead, the k-th UE uses the so-called whitening filter, Θk ∈ C

Mk×Mk ,
as the precoder for its uplink pilots which tries to whiten the inter-cell interference and
noise at its receivers as

ΘH
k Θk = R̄−1

k , (3.35)
where R̄k ∈ C

Mk×Mk corresponds to the covariance matrix of inter-cell interference and
noise at the k-th UE reception and can be written as

R̄k =
K∑

i=1
li �=lk

Qi∑
j=1

Hli,kui,juH
i,jHH

li,k + σ2
nIMk

, (3.36)

with given precoders. Thus, following the reception of precoded uplink pilots, the l-th
BS, which serves UE k, can obtain the following information

H′
lk,k = ΘkHlk,k. (3.37)

Based on this information and with given precoders, BS lk can calculate an LMMSE
receiver for receiving the q-th stream of the k-th UE, w̄k,q ∈ C

Mk×1, such that

w̄H
k,qH′

lk,k = wH
k,qHlk,k. (3.38)

In the next step, at the l-th BS, the local cost function for WSR maximization can be
written as [65]

ζB
l =

K∑
k=1
lk=l

(
p̄k −

Qk∑
q=1

pk,quH
k,qHH

lk,k
�̄R−H

k Hlk,kuk,q

)
+ Iinter

l , (3.39)

where p̄k = Tr (Pk − log (det (Pk))) and Pk = diag (pk,1, · · · , pk,Qk
) ∈ C

Qk×Qk , while

�̄Rk =
K∑

i=1
li=lk

Qi∑
j=1

Hlk,iui,juH
i,jHH

lk,i + R̄k

Iinter
l =

K∑
i′=1
l′
i �=l

Q′
i∑

j′=1

K∑
i=1
li=l

Qi∑
j=1

pi′,j′
∣∣wH

i′,j′Hl,i′ui,j

∣∣2
.

(3.40)



28
Chapter 3. Analysis and Mitigation of Channel Non-Reciprocity in Small-Scale MIMO

Systems

The term Iinter
l corresponds to the inter-cell interference seen by the l-th BS, which

requires information from other cells to be calculated. To facilitate that, the k-th UE
broadcasts ζ

−1/2
k,q wk,q to be used by the interfering BSs, where ζk,q = p−1

k,q. Next, the l-th
BS can construct its suboptimal set of precoders based on the cost function in (3.39)
using both local and OTA iteration processes, as described in more details in [65].

3.4.4 Analysis

In this section, assuming perfect reciprocity in BS side transceivers, the impacts of
transceiver non-reciprocity in the UE side on the considered coordinated multi-cell
MIMO network is analyzed. Similar to 3.3.2, UEs are assumed to have reasonably good
antenna isolation and thus UE transceiver FR mismatch is the only source of channel
non-reciprocity. Therefore, the relation between the effective downlink channel, Hl,k, and
the effective uplink channel, Gl,k, between the l-th BS and the k-th UE can be expressed
as

Hl,k = FRX
k

(
FT X

k

)−1 GT
l,k = F̄kGT

l,k, (3.41)

where F̄k = IMk
+ F̄′

k and F̄′
k ∈ C

Mk×Mk represents the non-reciprocal part of the
k-th UE’s transceiver. Similar to the single-cell scenario, having perfect uplink channel
estimation, the estimated downlink channel from the l-th BS to the k-th UE can be
acquired as Ĥl,k = GT

l,k ∈ C
Mk×N .

3.4.4.1 Centralized Precoding

In centralized precoding, the centralized controller acquires downlink channel matrices
between all the BSs and all the serving UEs and calculates the MSE for all the streams
based on that information. Thus, under non-reciprocal UE transceivers, the MSE
corresponding to the q-th data stream of the k-th UE can be shown to read

ζ̂k,q = 1 − uH
k,qHH

lk,k

(
Rk + Ω

(
F̄′

k

))−H Hlk,kuk,q, (3.42)

where
Ω

(
F̄′

k

)
= σ2

nF̄′
kF̄′H

k − 2σ2
n� (

F̄′
k

)
. (3.43)

With fixed precoders and the same weights, the difference between MSEs in the ideal
reciprocal scenario and the non-reciprocal case can be expressed as

ζ̂k,q − ζk,q = uH
k,qHH

lk,k

((
Rk + Ω

(
F̄′

k

))−H − R−H
k

)
Hlk,kuk,q. (3.44)

Based on (3.44), it can be shown that transceiver non-reciprocity in the UE side does not
have essential impact on the performance of centralized precoding, unless both levels of
UE side transceiver non-reciprocity and additive noise are very high.

3.4.4.2 Decentralized Precoding

In decentralized precoding scenario, as a result of transceiver non-reciprocity in the
UE side, the obtained weight based on p̂k,q = ζ̂−1

k,q is deviated from the correct weight
calculation using true MSE information. Thus, in this section, we assume that p̂k,q is fixed
and focus on the impacts of UE transceiver non-reciprocity on the local cost functions of
both decentralized precoding strategies.
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Strategy A : Network-wide iterations with busy bursts
With transceiver non-reciprocity in the UE side, instead of having wH

k,qHl,k in the l-th
BS, the received busy bursts can be shown to read wH

k,qF̄−1
k Hl,k. Thus, at the l-th BS,

with given precoders and weights, the difference between the reciprocal cost function and
the one with non-reciprocal UE transceivers can be expressed as

ζ̂A
l − ζA

l =
K∑

i=1

Qi∑
j=1

K∑
i′=1
l′
i=l
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′′
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⎛
⎜⎜⎝ K∑

i=1

Qi∑
j=1

K∑
i′=1
l′
i=l

Q′
i∑

j′=1

p̂i,jwH
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′′
i Hl,iui′,j′

(
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i,jHl,iui′,j′
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−
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i=1
li=l

Qi∑
j=1

p̂i,jwH
i,jF̄

′′
i Hl,iui,j

⎞
⎟⎠ ,

(3.45)

where F̄
′′
i = F̄−1

i − IMi ∈ C
Mi×Mi .

Based on (3.45), transceiver non-reciprocity in each and every UE causes divergence
between the two cost functions. Therefore, severe performance degradation is expected
when combined with the mentioned inaccuracies in weight calculation for p̂k,q.

Strategy B: Cell-specific iterations with separate busy bursts and channel
sounding
With transceiver non-reciprocity in the UE side, the received signaling at the l-th BS
reads Ĥ′

l,i = ΘiF̄−1
i Hl,i ∈ C

Mi×N for li = l and wH
j,qF̄−1

j Hl,j for lj 	= l. Thus, at the l-th
BS, with given precoders and weights, the difference between the reciprocal cost function
and the one with non-reciprocal UE transceivers can be written as

ζ̂B
l − ζB

l =
K∑

i=1

Qi∑
j=1

p̂i,juH
i,jHH
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(3.46)
where

�̄R−1
i − �̄R′−1

i = �̄R−1
i

(
F̄′

iR̄iF̄′H
i + 2� (

F̄′
iR̄i

)) (
F̄′

iR̄iF̄′H
i + 2� (

F̄′
iR̄i

)
+ �̄Ri

)−1
. (3.47)

Based on (3.46) and (3.47), and following the detailed discussion in [P6], under limiting
assumptions of operating in high SNR region and good enough cell-separation, i.e., little
inter-cell interference, the impact of transceiver non-reciprocity at the UE side is not
severe. It can be further shown that without any inter-cell interference, the impacts of
UE transceiver non-reciprocity on the performance would be as small as the one in a
single-cell networks.
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Discussion

• Performance degradation: As shown in (3.45) and (3.46), there is clear deviation
between the cost functions in the ideal reciprocal transceivers scenario and the one
with non-reciprocal UE transceivers. Due to iterative nature of the problem, it is
quite challenging to carry out closed-form analysis for mapping such differences to
the resulting performance degradation. However, computer simulations provided
in the next section confirm that even with practically small UE side transceiver
non-reciprocity levels, the resulting performance degradation can be severe. Thus,
in the design and deployment of decentralized precoding scenarios, the transceiver
non-reciprocity in the UE side can be considered as a limiting factor which requires
to be mitigated.

• Convergence: As shown in [P6], in strategy B, under UE transceiver non-reciprocity,
the system sum-rate decreases after certain number of iterations. The reason is
the deviation between the cost functions in the ideal reciprocal scenario and the
non-reciprocal case. Thus, by detecting such sum-rate declining point and stopping
the iterative optimization at that particular iteration, system performance can
be improved. Based on this idea, a convergence-aware processing algorithm is
proposed in [P6] where the BS side can stop the WSR maximization process after
two consecutive drops in the calculated sum-rate. The details of this algorithm
can be found in [P6]. Computer simulation results, provided in the next section,
show that the mentioned convergence-aware algorithm can effectively eliminate the
performance degradation caused by the convergence problem.

More detailed discussion can be found in [P6].

3.5 Numerical Evaluations and Results

In this section, we first focus on the single-cell scenario where we evaluate the derived
analysis results as well as the performance of the proposed channel non-reciprocity
estimation and mitigation method. Next, for multi-cell scenario, the impacts of transceiver
non-reciprocity in the UE side on the performance of different precoding schemes are
evaluated. All the simulation results are averaged over enough channel and non-reciprocity
parameters realizations in order to achieve reliable performance results.

3.5.1 Single-Cell

In order to evaluate the impacts of channel non-reciprocity on the performance of single-
cell MU-MIMO OFDM scenario, we consider a practical case where a BS with a linear
antenna array of size 4 simultaneously serves two UEs over the same subcarriers. The
carrier frequency is assumed to be 2 GHz where 600 out of 1024 used subcarriers are active.
The subcarrier spacing is chosen to be 15 kHz to be aligned with the basic 3rd Generation
Partnership Project (3GPP) LTE specification [91]. For downlink data transmission, the
propagation channel is modeled as a Rayleigh fading multi-path channel with extended
Vehicular A channel power delay profile [92].
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In order to better distinguish the impacts of FR and antenna mutual coupling mismatches,
(2.21) can be approximated by the following

A ≈ (
FT X

)−1 FRXDRX
(
DT X

)−T

C ≈ (
MRX

)−T MT XBT X
(
BRX

)−1
,

(3.48)

where compared to (2.21) FR mismatch matrices FT X and BRX have moved to the
other side of their corresponding expressions. The approximations can be justified by
the fact that with practical levels of antenna mutual coupling mismatches, the only
non-diagonal matrices, i.e., DRX

(
DT X

)−T and
(
MRX

)−T MT X , are close to identity
(diagonal) matrices.

Then, to characterize FR mismatches over 10 MHz waveform bandwidth at each transceiver
at both the BS and the UE sides, 9 tap FIR filters are used which have randomly
selected coefficients in time-domain. The level of these mismatches is controlled such
that the variances of diagonal elements of the mismatch matrices

(
FT X

k

)−1 FRX
k and

BT X
(
BRX

)−1, denoted with σ2
F and σ2

B, respectively, can be set to specific values. In
case of having mutual coupling mismatches in transceivers, the mutual coupling mismatch
matrices are chosen such that only the neighboring antenna elements interfere with each
other, i.e., having D̄k = DRX

k

(
DT X

k

)−1 ∈ C
Mk×Mk and M̄ =

(
MRX

)−1 MT X ∈ C
N×N ,

d̄k,ij = m̄ij = 0 for |i − j| > 1. The mutual coupling mismatches between neighboring
antenna elements in the UE and the BS sides, i.e., d̄k,ij and m̄ij for |i − j| = 1, are
modeled by i.i.d. CN (

0, σ2
D
)

and CN (
0, σ2

M
)
, respectively. It can be shown that even

with high levels of non-reciprocity parameters, e.g., σ2
F = σ2

D = σ2
B = σ2

M = −20 dB (the
highest non-reciprocity levels used in numerical evaluation part), in an example scenario
consisting of a quad-antenna BS and a dual-antenna UE, the approximation in (3.48)
leads to less than 2 percent relative error in downlink channel calculation which justifies
its use.

3.5.1.1 Performance Evaluation Under Channel Non-Reciprocity

Here, we evaluate achievable system sum-rates under transceiver FR and mutual coupling
mismatches at BS and UE sides. For this scenario, two parallel data streams are targeted
to UE #1 while a single data stream is targeted to UE #2. In the ZF precoding scenario,
UE #1 is equipped with two antennas while UE #2 is assumed to be a single-antenna
device. Whereas, in the eigen-based precoding scenario, both UEs are assumed to
have two antennas which allows UE #2 to take advantage of receiver diversity. As
shown in Figure 3.2 (ZF precoding) and Figure 3.3 (eigen-based precoding), while UE
side non-reciprocity has negligible impact on the system performance, the transceiver
non-reciprocity in the BS can cause severe performance degradation, especially in high
SNR region. These observations are well inline with the findings established already in
Section 3.3.1.

3.5.1.2 Channel Non-Reciprocity Mitigation

Next, the performance of the proposed transceiver non-reciprocity mitigation method is
evaluated. In this setup, all the transceivers are assumed to have good antenna isolation
(σ2

M = σ2
D = 0) and thus FR mismatches are the only source of non-reciprocity in the

channel. The level of FR mismatches in the BS and the UEs are set to σ2
B = σ2

F = −20
dB. The propagation environment between the BS and each TE, in the non-reciprocity
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Figure 3.2: Achievable system sum-rate vs. downlink SNR (ρd) for a ZF precoding system
with two UEs. Two parallel data streams are targeted to UE #1 while a single data stream is
targeted to UE #2. The BS has 4 antennas while UE #1 is equipped with two antennas and UE
#2 is assumed to be a single-antenna device.
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Figure 3.3: Achievable system sum-rate vs. downlink SNR (ρd) for an eigen-based precoding
system with two UEs. Two parallel data streams are targeted to UE #1 while a single data
stream is targeted to UE #2. The BS is equipped with 4 antennas while both UEs are assumed
to have two antennas which allows UE #2 to take advantage of receiver diversity.

estimation phase, is modeled as a Rayleigh fading multi-path channel with pedestrian
A channel power delay profile with delay spread of 410 ns [91]. The details of reference
signals used in this stage can be found in [P8]. The considered simulation scenario
evaluates the system performance in both single TE and dual TEs cases. The impacts of
the mentioned nulling technique is also evaluated where it is employed in both downlink
channel estimation in (3.23) with Nnull = 30 and non-reciprocity parameters estimation
in (3.26) with Nnull = 20.
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Figure 3.4: BS transceiver non-reciprocity estimation MSE vs. SNR in the estimation phase.
The BS is equipped with 4 antennas while TEs are assumed to be single-antenna devices.
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Figure 3.5: Achievable system sum-rate vs. downlink SNR (ρd) for a ZF precoding system
with two UEs after BS transceiver mitigation. Two parallel data streams are targeted to UE
#1 while a single data stream is targeted to UE #2. The BS has 4 antennas while UE #1 is
equipped with two antennas and UE #2 is assumed to be a single-antenna device.

Figure 3.4 shows the effect of number of TEs, nulling technique, and SNR, on BS
transceiver non-reciprocity estimation MSE. As can be seen, increasing the number of
TEs, from one to two, helps the BS to have more accurate non-reciprocity estimation
through averaging and improves the system performance by around 3 dB. Whereas,
there is up to 10 dB gain in BS transceiver non-reciprocity estimation by employing
the proposed nulling technique. As shown, MSE of the proposed BS transceiver non-
reciprocity estimation method can be as low as −35 dB and −40 dB for downlink SNR
values of 20 dB and 25 dB, respectively.
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Figure 3.6: Per BS achievable sum-rate vs. downlink SNR. There are two BSs, each one is
equipped with 4 antennas and serves 3 dual-antenna UEs.

The performance of the system after BS transceiver non-reciprocity mitigation is evaluated
in Figure 3.5. The setup is the same as Figure 3.2 where the UEs employ LMMSE receivers
while the BS utilizes ZF precoding in order to send two data streams to a dual-antenna
UE and one data stream to a single-antenna UE. For simplicity, the rate loss due to
adding a non-reciprocity estimation phase is not taken into account as the signaling
overhead is very small. As can be seen in Figure 3.5, without mitigation, the resulting
link and system performance degradation is substantial. However, when two TEs with
high SNR are deployed for non-reciprocity estimation purposes, the performance of the
calibrated system is very close to the reciprocal ZF precoded MU-MIMO system.

3.5.2 Multi-Cell

In this part, the impacts of UE transceiver FR mismatch on the performance of multi-cell
MIMO networks are evaluated for both centralized and decentralized precoding schemes
while σ2

B = σ2
M = σ2

D = 0. As an example, we consider a scenario where there are two
quad-antenna BSs each supporting 3 dual-antenna UEs which leads to having 6 UEs in
total in the network. Frequency flat Rayleigh fading channel is chosen as the propagation
environment between each BS and UE pair. The average path-loss between a BS and its
associated UEs is assumed to be 0 dB, while the same parameter is chosen to be 3 dB
for the non-associated UEs which are supported by other BSs. The considered scenario
represents a case in which all the UEs are close to cell edges. The number of iterations
for in-cell optimization in strategy B for the faster convergence is chosen to be 15.

Figure 3.6 demonstrates the impacts of UE transceiver FR mismatch on the average
achievable sum-rate for each BS where the number of iterations is assumed to be 30.
As shown, with UE transceiver FR mismatch being σ2

F = −20 dB, there is essentially
no performance degradation in the centralized precoding scheme. Whereas, there is
substantial loss in sum-rate when decentralized precoding is used. In general, strategy
A is found to be more sensitive to UE transceiver non-reciprocity compared to strategy
B. It can be partially justified by the fact that impact of transceiver non-reciprocity in
the UE side is related to inter-cell interference in strategy B, while, in strategy A, the
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Figure 3.7: Relative per BS achievable sum-rate degradation vs. level of FR mismatch in the
UE side. There are two BSs, each one is equipped with 4 antennas and serves 3 dual-antenna
UEs.

impacts of UE transceiver non-reciprocity depends on all the interference sources and
even the useful signal.

Finally, we evaluate the impacts of transceiver FR mismatch in the UE side on relative
achievable sum-rate degradations in Figure 3.7. As illustrated, with high downlink SNR,
even with extremely high values of UE transceiver FR mismatch (σ2

F = 0 dB), the
centralized precoding scheme has negligible performance degradation. Whereas, with
lower downlink SNR values, there is clear performance degradation with relatively high
levels of UE transceiver FR mismatch, i.e., σ2

F > −10 dB. On the other hand, the
performance of decentralized precoding schemes is certainly impacted even by small levels
of UE transceiver FR mismatch and high SNR values. In this example scenario, in order
to achieve performance close to the one in ideal reciprocal case the maximum level of
transceiver FR mismatch at the UE side should be around −40 dB with strategy A, and
around −30 dB with strategy B. Such low levels of FR mismatches are in general very
hard to maintain in practical transceivers without efficient calibration procedures.





CHAPTER 4

Analysis and Mitigation of

Channel Non-Reciprocity in

Massive MIMO Systems

In this chapter we extend the channel non-reciprocity analysis and mitigation studies to
massive MIMO systems based on the publications [P1]– [P5]. The impacts of FR and
mutual coupling mismatches on the performance of precoded TDD single-cell scenario is
first analyzed based on the work in [P2] and [P3] where closed-form analytical expressions
are derived for effective SINRs and the corresponding achievable sum-rates. In particular,
[P2] investigates the channel non-reciprocity problem with multi-antenna UEs under
imperfect CSI, i.e., without assuming perfect effective uplink channel estimation. Then,
based on the analysis and depending on the availability of downlink pilots, [P4] proposes
two different algorithms to efficiently estimate the level of BS transceiver non-reciprocity at
the UE side which allows the network to schedule BS transceiver non-reciprocity calibration
rounds more efficiently. An algorithm is then proposed in [P5] to estimate BS transceiver
non-reciprocity parameters. Finally, considering the more generic case of having imperfect
uplink CSI, [P1] proposes a framework in which transceiver non-reciprocity impacts in
both BS and UE sides are estimated and mitigated. In this framework, owing to the
proposed pilot signaling scheme, BS and UE sides’ transceiver non-reciprocity matrices
are first estimated and then used in the proposed channel non-reciprocity aware precoder
to achieve performance close to that of ideal reciprocal channels.

4.1 Background and Prior Art

Due to the large potential of massive MIMO systems, there have been numerous studies
focusing on such networks and their performances during the past few years, e.g., [58, 62,
72–75, 93–95] and references therein. Most of the massive MIMO studies in the literature,
including [58, 62, 72–75, 93–95], have assumed UEs to be single-antenna devices as BSs
can employ the available extra degrees of freedom offered by massive MIMO systems to
reduce the required complexity of UEs [95]. However, in practice, most of the current

37



38
Chapter 4. Analysis and Mitigation of Channel Non-Reciprocity in Massive MIMO

Systems

generation UEs are equipped with more than one antenna. This would allow the network
to have higher per UE data rate. Another common assumption in many massive MIMO
studies, e.g., [58, 62, 75, 93, 94], is the use of statistical properties of precoded downlink
channels to acquire downlink CSIs required for detection purposes at the UE side. This
is in contrast to the small-scale MIMO system scenario where UEs rely on pilot symbols
sent from the BS side for estimating the effective precoded downlink channel for data
decoding [66].

The impacts of channel non-reciprocity on the performance of TDD massive MIMO systems
are discussed in [72–75]. In particular, [73] considers BS transceiver FR mismatch as
the only source of channel non-reciprocity while [74, 75] take also FR mismatch at the
UE side into account. The effects of mutual coupling mismatch in the BS side are then
discussed in [72] where UEs are assumed to have ideal reciprocal transceivers. [72, 74]
have focused on evaluating the impacts of channel non-reciprocity on ZF precoded TDD
massive MIMO systems, whereas [73, 75] also considered MRT precoding scheme. All
the mentioned works, i.e., [72–75], have considered perfect uplink channel estimation
and thus do not provide any insight on the joint impacts of channel non-reciprocity and
imperfect CSI in TDD networks.

The channel non-reciprocity mitigation works mentioned in Chapter 3, e.g., [71, 76, 77,
77, 81–85] are mainly developed to be applied in small-scale MIMO systems where the
number of antennas in a given BS is relatively small. In general, such methods cannot be
directly applied on massive MIMO systems as their implementations and computational
complexities grow with the number of antennas in the BS side. In this respect, [96–99]
have focused on designing channel non-reciprocity compensation methods which are
feasible for massive MIMO system use. In [96–99], each BS performs self-calibration
where pilots signals are sent from a chosen reference antenna in the BS and received
from all other antennas in the same BS. Such methods do not require additional circuitry
to be developed in the BS side. On the other hand, they only focus on mitigating
FR mismatches in the BS side while neglecting mutual coupling mismatches and also
transceiver non-reciprocity in the UE side.

4.2 General Assumptions

As mentioned in Chapter 2, each data stream is assumed to be allocated to one antenna
in the UE side in case of having ZF or MRT precoding schemes. Since the only con-
sidered precoding schemes in this chapter are ZF and MRT, {m, Mk, Mtotal} are used
interchangeably with {q, Qk, Qtotal}, for notational simplicity. In this chapter, the signal
models are written for a given antenna in the UE side, e.g., the m-th antenna in the UE
side, as opposed to a given stream in a given UE, e.g., the q-th stream in the k-th UE.
Furthermore, since each antenna has its own data stream, there is no special receiver
processing as the ones in common multi-antenna receivers. A common massive MIMO
assumption is also used throughout this chapter where the effective uplink channel matrix,
G, has i.i.d. CN (0, 1) elements [58, 61, 62, 66]. As shown in [100], with increasing number
of antennas, such assumption very accurately models the behavior of practical massive
MIMO measurements.

4.2.1 Channel Estimation

As mentioned in Chapter 2, the BS requires to estimate effective downlink channel matrix,
Ĥ, in order to construct precoders. While in Chapter 3, perfect effective uplink channel
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estimation was assumed for this purpose, the more realistic scenario of having imperfect
uplink CSI at the BS side is considered here.

In order to carry out channel estimation at the BS side, mutually orthogonal uplink pilot
sequences are simultaneously transmitted from UEs to the BS which can be illustrated as
[58, 61, 62, 66]

Yp =
√

τuρuGXp + Np, (4.1)

where ρu is the transmitted SNR of the uplink channel and τu is the number of uplink
pilots sent from each antenna in the UE side which satisfies τu ≥ Mtot in order to fulfill
the orthogonality condition. The uplink pilot matrix containing all the transmitted pilots
from all the UEs is denoted by Xp =

[
xp

1, · · · , xp
Mtot

]T ∈ C
Mtot×τu where xp

m ∈ C
τu×1

represents the uplink pilot vector transmitted from the m-th antenna in the UE side and
Xp (Xp)H = IMtot

. The received pilot matrix over all N antennas in the BS side and the
additive receiver noise matrix at the BS are denoted by Yp ∈ C

N×τu and Np ∈ C
N×τu ,

respectively, where Np has i.i.d. CN (0, 1) elements.

In general, after performing channel estimation, the estimated effective uplink channel
can be given as

Ĝ = αestG + Ĝe, (4.2)

where αest is a scaling factor and Ĝe ∈ C
N×Mtot is the corresponding channel estimation

error.

In common massive MIMO example scenario of having Minimum Mean Squared Error
(MMSE) channel estimator and i.i.d. CN (0, 1) elements for G, (4.2) can be shown to
read [58, 61, 62, 66, 101]

Ĝ =
τuρu

τuρu + 1
G +

√
τuρu

τuρu + 1
Q, (4.3)

where Q ∈ C
N×Mtot represents the estimation error with i.i.d. CN (0, 1) elements. Then,

based on (3.1), (4.3), and MMSE estimation orthogonality properties [101], the effective
uplink channel matrix can be expressed as

G = Ĝ + ET = ĤT + ET, (4.4)

where the estimated effective downlink channel, Ĥ, and the uplink channel estimation
error matrix, E = [ε1, · · · , εMtot ]

T ∈ C
Mtot×N , are independent from each other and have

i.i.d. CN
(

0, τuρu

τuρu+1

)
and i.i.d. CN

(
0, 1

τuρu+1

)
elements, respectively.

Incorporating (4.4) into (2.20), the relation between the effective downlink channel and
its estimation can then be established as

H = AGTC = A
(

Ĥ + E
)

C, (4.5)

which includes the impacts of both imperfect CSI and channel non-reciprocity on the
effective downlink channel estimation.

4.3 Analysis

In this section, the impacts of channel non-reciprocity on the performance of precoded TDD
massive MIMO single-cell systems are analyzed. For this purpose, generic and realistic
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system and channel non-reciprocity models are considered. In particular, the system
model takes into account multi-antenna UEs and imperfect uplink channel estimation
for CSI acquisition at the BS side, while the channel non-reciprocity model incorporates
the impacts of both FR and mutual coupling mismatches at both BS and UE sides.
In addition to that, the considered channel non-reciprocity model and the analysis are
valid for any statistical distributions or mutual correlation of transceivers non-reciprocity
matrices and variables, which enables them to also model any residual non-reciprocity
after performing a given channel non-reciprocity mitigation method.

In order to have such generic channel non-reciprocity model, the following assumptions
and definitions are used throughout the analysis. The elements in matrices A′ and C′

are assumed to have zero mean while the power of a′
mi is shown by σ2

a′
mi

= E

[
|a′

mi|2
]
.

Next, matrix A′
k can be represented as A′

k =
[
a′k

1 , · · · , a′k
Mk

]T
. By stacking all a′ vectors

over all the antennas in the UE side, the UE index can be dropped and thus a′
m can

be used for the m-th antenna in the UE side where m ranges from 1 to Mtot. The
covariance matrix of a′

m can then be denoted by Ra′
m

= Cov (a′
m). Similarly, in the BS

side, the covariance matrices Rc′
d

= Cov (c′
d) and Rc′

od
= Cov (c′

od) can be defined based
on c′

d = [c′
11, c′

22, · · · , c′
NN ] and c′

od =
[
c′

12, c′
13, · · · , c′

NN−1
]

which are constructed by
stacking all the diagonal and non-diagonal elements of C′, respectively. As shown in [P2],
from analysis perspective, only these defined covariances are required and the results do
not depend on the exact distribution of channel non-reciprocity variables.

Based on (2.4) and (4.5), the received downlink signal at the m-th antenna in the UE
side, which is assumed to be deployed in the k-th UE, can be written as

rm =
√

ρdβhT
mumsm +

√
ρdβ

Mtot∑
i=1
i �=m

hT
muisi + nm

=
√

ρdβ
∑

l∈UEk

aml

(
ĥT

l + εT
l

)
Cumsm +

√
ρdβ

Mtot∑
i=1
i �=m

∑
l∈UEk

aml

(
ĥT

l + εT
l

)
Cuisi + nm,

(4.6)
where hT

m ∈ C
1×N in H = [h1, · · · , hMtot

]T denotes the effective downlink channel towards
the m-th antenna in the UE side. In above, um and sm are the precoding column vector
and the data stream corresponding to the m-th antenna in the UE side, respectively.
Whereas, UEk refers to the set of antennas belonging to the k-th UE.

Then, following the common massive MIMO assumption discussed earlier in this chapter,
UEs employ statistical properties of precoded downlink channels for detection purposes,
i.e., the k-th UE uses only E

[
βhT

mum

]
to detect sm. Thus, the received signal at the

m-th antenna in the UE side can be re-written as

rm =
√

ρdβE
[
hT

mum

]
sm︸ ︷︷ ︸

useful signal

+ zSI
msm︸ ︷︷ ︸

self-interference

+ zISUI
m si︸ ︷︷ ︸

ISI and IUI

+nm, (4.7)
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where
zSI

m =
√

ρdβ
∑

l∈UEk

aml

(
ĥT

l + εT
l

)
Cum − √

ρdβE
[
hT

mum

]

zISUI
m =

√
ρdβ

Mtot∑
i=1
i �=m

∑
l∈UEk

aml

(
ĥT

l + εT
l

)
Cui.

(4.8)

Based on (4.7), the effective SINR of the downlink data stream targeted to the m-th
antenna in the UE side can be shown to read

SINRm =
∣∣√ρdβE

[
hT

mum

]∣∣2

E

[
|zSI

m |2
]

+ E

[
|zISUI

m |2
]

+ 1
, (4.9)

which can be used, based on (2.18), to calculate the achievable sum-rate as follows

R =
Mtot∑
m=1

log2 (1 + SINRm) . (4.10)

Next, analytical SINR expressions are written for ZF and MRT precoding schemes.
Building on that, performances of the two precoding schemes under non-reciprocal
channels and imperfect CSI are compared against each other.

4.3.1 ZF Precoding

For ZF precoding scheme, the normalization factor βZF can be expressed as [62]

βZF =

(√
E

[
Tr

((
ĤĤH

)−1
)])−1

=

√
(N − Mtot) τuρu

Mtot (τuρu + 1)
, (4.11)

while the useful signal in (4.7) reads
√

ρdβZF
E

[
hT

muZF
m

]
sm =

√
ρdβZFsm. (4.12)

Having (4.11) and (4.12), the effective SINR at the m-th antenna in the UE side shown
in (4.9) can be expressed as

SINRZF
m =

N − Mtot

Mtot
× τuρuρd

IZF
RC + IZF

NRC,m

, (4.13)

where
IZF

RC = ρd + τuρu + 1, (4.14)
is the interference plus noise power in ideal reciprocal scenario, whereas the additional
interference power term due to non-reciprocity in the channel can be given as

IZF
NRC,m ≈ ρd

[(
1 +

N − Mtot

Mtot
τuρu

)
Tr

(
Ra′

m

)
+

τuρu

Mtot

(
Tr

(
Ra′

m

) − σ2
a′

mm

)
+

τuρu

NMtot

(
1 + Tr

(
Ra′

m

))
Sum

(
Rc′

d

)
+

[
τuρu + 1

N

(
1 + Tr

(
Ra′

m

)) − τuρu

NMtot

(
Tr

(
Ra′

m

) − σ2
a′

mm

)](
Tr

(
Rc′

d

)
+ Tr

(
Rc′

od

))]
.

(4.15)
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4.3.2 MRT Precoding

For MRT precoding, the normalization factor βMRT can be expressed as [66]

βMRT =

(√
E

[
Tr

(
ĤĤH

)])−1

=
√

τuρu + 1
NMtotτuρu

, (4.16)

while the useful signal in (4.7) is given as

√
ρdβMRT

E
[
hT

muMRT
m

]
sm =

√
ρdβMRT Nτuρu

τuρu + 1
sm. (4.17)

Next, based on (4.16) and (4.17), the effective SINR at the m-th antenna in the UE side
can be shown as

SINRMRT
m =

N

Mtot
× τuρuρd

IMRT
RC + IMRT

NRC,m

. (4.18)

Similar to ZF precoding scenario, IMRT
RC and IMRT

NRC,m denote the power of interference plus
noise in ideal reciprocal channel and interference power due to channel non-reciprocity,
respectively, and can be given as

IMRT
RC = (ρd + 1) (τuρu + 1) , (4.19)

and

IMRT
NRC,m = ρd

[(
1 +

N + Mtot

Mtot
τuρu

)
Tr

(
Ra′

m

) − τuρu

Mtot

(
Tr

(
Ra′

m

) − σ2
a′

mm

)
+

τuρu

NMtot

(
1 + Tr

(
Ra′

m

))
Sum

(
Rc′

d

)
+

[
τuρu + 1

N

(
1 + Tr

(
Ra′

m

)) − τuρu

NMtot

(
Tr

(
Ra′

m

) − σ2
a′

mm

)](
Tr

(
Rc′

d

)
+ Tr

(
Rc′

od

))]
.

(4.20)

As can be seen in (4.15) and (4.20), the performance of the system under channel
non-reciprocity does not necessarily depend on all the characteristics of the involved
non-reciprocity parameters, e.g., it depends on the sum of variances of diagonal elements
in C′ while it is independent of the cross-correlations of off-diagonal elements in the
same matrix. In order to better distinguish such characteristics, Table 4.1 summarizes
only those statistical properties of non-reciprocity parameters which impact the power
of interference due to channel non-reciprocity and consequently the performance of the
system.

4.3.3 Asymptotic Performance for Large N

For large values of N and in the presence of channel non-reciprocity, the derived SINR
expressions for ZF and MRT precoded systems are asymptotically identical. They both
saturate to the same value which can be given as

lim
N→∞

SINRZF
m = lim

N→∞
SINRMRT

m =
1

Tr
(
Ra′

m

)
+ tm

c′
d
δ2

c′
d

+ tm
c′

od
σ2

c′
od

, (4.21)
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Table 4.1: Essential Second-Order Statistics of Channel Non-Reciprocity Variables

Variable Definition

σ2
a′

mm

Variance of the m-th diagonal element
of UE side non-reciprocity matrix A′

σ2
a′

od

Average of variances of off-diagonal elements
of UE side non-reciprocity matrix A′

σ2
c′

d

Average of variances of diagonal elements
of BS transceiver non-reciprocity matrix C′

δ2
c′

d

Average of cross-correlations of diagonal elements
of BS transceiver non-reciprocity matrix C′

σ2
c′

od

Average of variances of off-diagonal elements
of BS transceiver non-reciprocity matrix C′

where
tm
c′

d
= 1 + Tr

(
Ra′

m

)
,

tm
c′

od
= Mtot

τuρu + 1
τuρu

(
1 + Tr

(
Ra′

m

)) − Tr
(
Ra′

m

)
+ σ2

a′
mm

.
(4.22)

Note that increasing N leads to having higher number of mismatched transceiver chains
and antenna units and thus results into having higher interference power due to channel
non-reciprocity. This additional interference reduces the advantage of ZF over MRT in
terms of IUI suppression to the point that there is no difference in SINRs of ZF and MRT
precoded systems for very large values of N .

Next, the achievable sum-rates of ZF and MRT precoded systems are calculated by
substituting (4.13) and (4.18) into (4.10) and are shown as RZF and RMRT, respectively.
Based on those, the asymptotic behavior of the relative performance of ZF and MRT
precoding schemes is given for large number of BS antennas as

lim
N→∞

RZF

RMRT = lim
N→∞

Mtot∑
m=1

log2

(
1 + SINRZF

m

)
Mtot∑
m=1

log2

(
1 + SINRMRT

m

) = 1. (4.23)

Although the asymptotic behavior of relative performance expression in (4.23) is similar to
the one of ideal reciprocal scenario presented in [62], the implications are largely different.
Combining (4.21) and (4.23), it can be concluded that, in the presence of channel non-
reciprocity, achievable sum-rate for both ZF and MRT precoded systems saturates to
an identical finite value. Whereas, for an ideal reciprocal scenario, the achievable sum-
rate grows without bound for both precoding schemes. Thus, the impacts of channel
non-reciprocity and uplink channel estimation errors are fundamentally different.

4.3.4 SINR Degradation due to Channel Non-Reciprocity

By setting the ideal reciprocal channel as the reference, the relative SINR degradation
due to non-reciprocity in the channel can be defined as

α =
SINRRC − SINRNRC

SINRRC
, (4.24)
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where SINRRC and SINRNRC denote calculated SINRs under ideal reciprocal and non-
reciprocal channels, respectively. While, in general, (4.13) and (4.18) provide closed-form
expressions for SINR under non-reciprocal channels, they can also be used to calculate
SINR in ideal reciprocal scenario by setting INRC,m to 0.

In order to compare the impacts of channel non-reciprocity on the performance of ZF
and MRT precoding schemes, another metric is defined as αZF/MRT = αZF

αMRT which shows
the ratio of the relative SINR degradations in ZF and MRT precoded systems. For the
cases where ρd � 1, i.e., high SNR region, αZF/MRT for the m-th antenna in the UE side
can be given as

lim
ρd→∞

αZF
m

αMRT
m

Δ= αZF/MRT
∞,m =

I0 + τuρuIZF
NRC,m/ρd

I0 + 2τuρu

(
Tr

(
Ra′

m

) −
(

Tr
(
Ra′

m

) − σ2
a′

mm

)
/Mtot

) ,

(4.25)
where

I0 =
(

2τuρu

(
Tr

(
Ra′

m

) −
(

Tr
(
Ra′

m

) − σ2
a′

mm

)
/Mtot

)
+ IZF

NRC,m/ρd + 1
)

IZF
NRC,m/ρd.

(4.26)
Based on (4.25) and the detailed explanation and derivation in [P2], at high SNR region,
ZF precoding is more sensitive to non-reciprocity sources in the channel compared to
MRT, i.e., α

ZF/MRT
∞,m > 1, when

ρu >
1
N

, (4.27)

which, in general, holds for all practical values of ρu. This can be justified by the fact
that ZF precoding scheme requires accurate CSI in order to suppress the interference.

4.4 Level Estimation

As shown in the previous section, channel non-reciprocity can degrade the performance of
precoded TDD massive MIMO systems which certainly calls for non-reciprocity mitigation
methods to be developed at involved transceivers. However, selecting the right times to
perform such non-reciprocity mitigation rounds, e.g., [P1] and [96–99], is very important
due to i) the associated system overhead; ii) non-reciprocity characteristics deviation rate
which depends on the hardware configuration and the operating conditions [76]. Thus, in
this section, UEs try to measure the level of BS transceiver non-reciprocity to inform the
BS regarding the need for a possible non-reciprocity mitigation round.

Considering a TDD massive MIMO system with single-antenna UEs and assuming perfect
uplink channel estimation, for simplicity, the received downlink signal at the k-th UE can
be re-written based on (4.6) as

rk =
√

ρdβakkĥT
k Cuksk +

√
ρdβ

K∑
i=1
i �=k

akkĥT
k Cuisi + nk. (4.28)

By defining the precoded downlink channel towards the k-th UE as

hp
k =

√
ρdβakkĥT

k Cuk, (4.29)

and following the same format as in (4.7), (4.28) can be illustrated as

rk = ĥp
ksk︸︷︷︸

useful signal

+ zSI
k sk︸ ︷︷ ︸

self-interference

+ zIUI
k si︸ ︷︷ ︸
IUI

+nk, (4.30)
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where ĥp
k is the estimated version of hp

k used in the k-th UE for detection purposes and

zSI
k = hp

k − ĥp
k

zIUI
k =

√
ρdβ

K∑
i=1
i �=k

akkĥT
k Cui.

(4.31)

Note that, there is no ISI as the UEs are assumed to be single-antenna devices.

Assuming reasonably good antenna isolation in BS transceiver, the non-reciprocity matrix
in the BS side can also be given as C = B̄ where B̄ is the FR mismatch matrix of
BS transceiver as in (3.17) and thus c′

od = 0N(N−1)×1. Next, focusing on ZF precoded
systems scenario, based on the detailed derivation in [P4], the power of IUI in (4.30) for
one realization of channel non-reciprocity parameters can be shown to read

E

[∣∣zIUI
k

∣∣2
]

= E

⎡
⎢⎣

∣∣∣∣∣∣∣
√

ρdβ
K∑

i=1
i �=k

akkĥT
k Cui

∣∣∣∣∣∣∣
2⎤⎥⎦ ≈ √

ρd
K − 1

K
σ2

c′
d
, (4.32)

where, as mentioned in Table 4.1, σ2
c′

d
denotes the average of variances of diagonal elements

in the BS transceiver non-reciprocity matrix, C′. The approximations used in (4.32)
are justified by the law of large numbers and the fact that for practical values of UE
transceiver non-reciprocity parameters 1 + |a′

kk|2 ≈ 1.

The power of the self-interference at the k-th UE depends on the type of downlink CSI
acquisition method used in the UE side for detection purposes, which can be based on
either i) received downlink pilots sent from the BS as proposed in [66]; or ii) statistical
properties of precoded downlink channels as discussed earlier. In the former method,
the BS sends downlink pilots, proportional to the number of associated UEs, to UEs
to facilitate the estimation of precoded downlink channel at the UE side where MMSE
estimation is assumed to be deployed [66]. The estimated precoded downlink channel can
then be given as

ĥp,pilot
k = hp

k + epilot
k , (4.33)

where epilot
k is the corresponding estimation error whose power, denoted as σ2

epilot , is
assumed to be known to UEs [66]. Having the power of self-interference and IUI as in
(4.32), the total interference power for the case that downlink pilots are employed for
downlink CSI acquisition can be shown to read

σ2
zpilot

k

=
√

ρdσ2
epilot + E

[∣∣zIUI
k

∣∣2
]

≈ √
ρd

(
σ2

epilot +
K − 1

K
σ2

c′
d

)
. (4.34)

In the case where the precoded downlink channel is estimated statistically, although
the accuracy of the estimation, E[hp

k], is enough for detection purposes, it needs to be
improved for estimating the level of BS transceiver non-reciprocity. In order to achieve
that, the BS adds a new downlink CSI acquisition round based on the already detected
downlink data symbols as

ĥp,stat
k =

1
Tcoh

Tcoh∑
t=1

rk[t]
sk[t]

= hp
k +

1
Tcoh

Tcoh∑
t=1

zIUI
k si[t] + nk[t]

sk[t]︸ ︷︷ ︸
estat

k

, (4.35)
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where Tcoh is the duration of each coherence interval in data symbols. The average level
of estimation error can then be written as

σ2
estat = E

[∣∣estat
k

∣∣2
]

≈ 0, (4.36)

since in practice zIUI
k si + nk � sk and E

[
zIUI

k si + nk

]
= 0. The estimation accuracy can

be improved with higher SNR and longer coherence interval duration. Based on (4.36),
after having additional round of precoded downlink channel estimation on top of the
statistical one, the total interference power reads

σ2
zstat

k
= σ2

estat + E

[∣∣zIUI
k

∣∣2
]

≈ E

[∣∣zIUI
k

∣∣2
]

≈ √
ρd

K − 1
K

σ2
c′

d
. (4.37)

Having (4.34) and (4.37), the level of BS transceiver non-reciprocity can be estimated
based on the total interference power. In order to do that, after extracting interference
and noise from the received signal based on (4.30) and given ĥp

k in (4.33) and (4.35)
depending on the employed downlink CSI acquisition method, the k-th UE estimates the
power of total interference using a sample variance estimator as

σ2
zk

=
1

NcohTcoh

NcohTcoh∑
i=1

∣∣∣rk[i] − ĥp
k[i]sk[i]

∣∣∣2
− 1, (4.38)

where Ncoh is the number of coherence intervals used in estimating the level of BS
transceiver non-reciprocity.

Next, for the pilot-based downlink CSI acquisition scenario, based on (4.34) and assuming
that the k-th UE has information about SNR, i.e., its own receiver noise level, as well as
the downlink CSI estimation error, σ2

epilot , the level of BS transceiver non-reciprocity can
be estimated as

σ̂2
c′

d
|pilot =

K
(
σ2

zk
/
√

ρd − σ2
epilot

)
K − 1

. (4.39)

Similarly, for statistical downlink channel estimation scenario, based on (4.37), the k-th
UE estimates the BS transceiver non-reciprocity level as

σ̂2
c′

d
|stat =

Kσ2
zk√

ρd (K − 1)
. (4.40)

4.5 Mitigation

In order to tackle the channel non-reciprocity problem, the BS requires to have knowledge
regarding the non-reciprocity behavior of all the transceivers in the network. As shown
in Section 3.3.2, assuming that the BS only has an estimation of its own transceiver
non-reciprocity matrix, Ĉ, the precoder can be transformed as UNRC = Ĉ−1U to take
the non-reciprocity into account. In more general case where the BS has estimates of
both BS and UE sides’ non-reciprocity matrices, i.e., Ĉ and Â, respectively, the precoder
can be transformed as

UNRC = Ĉ−1UÂ−1, (4.41)

to mitigate the channel non-reciprocity problem. As shown in [P1], assuming perfect
estimates of uplink channel and non-reciprocity matrices, the performance of the precoder
in (4.41) reaches the one of an ideal reciprocal channel in ZF and MRT scenarios.
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In order to estimate channel non-reciprocity matrices, an iterative OTA estimation
framework was proposed in [P1]. In this method, in order to gather enough information
at the BS to start the actual non-reciprocity estimation processing, the BS transmits a
unitary pilot matrix, called XNRC ∈ C

N×N , and UEs send the conjugated version of the
received samples back to the BS without decoding them. Assuming single-antenna UEs,
the signal model for this pilot signaling phase can be written as

RNRC =
√

ρ̃dHXNRC + Z̃d

YNRC =
√

ρ̃uGR∗
NRC + Z̃u =

√
ρ̃u

√
ρ̃dGH∗X∗

NRC + Z̃tot,
(4.42)

where RNRC ∈ C
K×N and YNRC ∈ C

N×N denote the received downlink and uplink
matrices, respectively. In (4.42), ρ̃d denotes the downlink SNR, ρ̃u is the uplink SNR,
Z̃d ∈ C

K×N and Z̃u ∈ C
N×N have i.i.d. CN (0, 1) elements and are corresponding to

receiver noise matrices at the BS and the UE side, respectively, while Z̃tot =
√

ρ̃uGZ̃∗
d +

Z̃u ∈ C
N×N is the effective noise received at the BS. The tilde sign is used in (4.42) to

differentiate the parameters used in pilot transmission stage from the ones used in the
actual downlink data transmission phase.

The duration of such pilot signaling method is 2N symbols. In practice, the duration of a
coherence interval is in the range of several hundreds of symbols, while the exact value
depends on the carrier frequency as well as the mobility of the UEs. Here, the coherence
interval is assumed to be at least 2N + K to take the uplink channel estimation phase
into account as well. As mentioned earlier, since realizations of channel non-reciprocity
parameters vary much slower than channel realizations, they can be assumed to remain
unchanged during both the channel non-reciprocity estimation, including OTA signaling,
and the actual data transmission phases.

After the pilot signaling stage and assuming that the BS has already estimated the
effective uplink channel, it tries to estimate A and C. In the first stage, using the unitary
property of XNRC, the BS processes the received signal YNRC as follows

Q = Y∗
NRCXH

NRC =
√

ρ̃u

√
ρ̃dG∗AGTC + V, (4.43)

where Q ∈ C
N×N and V = Z̃∗

totXH
NRC ∈ C

N×N are the processed signal and noise
matrices, respectively.

In the next stage, the BS employs an iterative framework to estimate transceiver non-
reciprocity matrices at the BS and UE sides, where Â [t] and Ĉ [t] denote the estimates
at the t-th iteration. The iterative steps can be summarized as follows.

1. Initialize Â [0] = IK .

2. Substitute Â [0] for A in (4.43) and obtain Ĉ [1].

3. Substitute Ĉ [1] for C in (4.43) and obtain Â [1].

4. Improve the estimates Â and Ĉ by iteratively going through steps 2 and 3 while
increasing the iteration number.

In an OFDM/OFDMA system, the expression in (4.43) is valid per subcarrier. Subse-
quently, the described estimation framework can be performed per subcarrier. While G
varies based on the frequency selectivity of the propagation channel, as mentioned in
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Section 3.3.2, non-reciprocity parameters are only mildly frequency-selective, thus can be
assumed to remain unchanged over small set of adjacent subcarriers called Csc where it
is conservatively assumed that Csc ≤ 10. Therefore, the estimation framework can be
carried out over Csc adjacent subcarriers and the resulting Â and Ĉ can be averaged to
improve the estimation accuracy as

Â =
1

Csc

Csc∑
l=1

Âl

Ĉ =
1

Csc

Csc∑
l=1

Ĉl.

(4.44)

In the continuation, the actual algorithms to estimate C and A are discussed while
dropping the relative subcarrier index, l, for notational simplicity.

4.5.1 Estimating BS Transceiver Non-Reciprocity Matrix

Having the uplink channel estimate Ĝ and using Â from the previous iteration to fix A
in (4.43), the estimator tries to solve (4.43) and find an estimate for C by minimizing
the Frobenius norm criterion as

Ĉ(m + 1) = argmin
C

∣∣∣∣∣∣Q −
√

ρ̃u

√
ρ̃dĜ∗Â(m)ĜTC

∣∣∣∣∣∣2

F
, (4.45)

where the Frobenius norm is denoted by the subscript F .

By defining T(m) =
√

ρ̃u
√

ρ̃dĜ∗Â(m)ĜT ∈ C
N×N , the expression on the right hand side

of (4.45) can be written as

||Q − T(m)C||2F =
K∑

j=1

||qj − T(m)cj ||2 , (4.46)

where the qj ∈ C
N×1 and cj ∈ C

N×1 are the j-th column of matrices Q and C,
respectively. Since, there is one-to-one mapping between the terms in the sum and the
columns in C, estimating C can be simplified to separately estimating each of its columns.

In practice, the physical distance between two antenna elements controls the mutual
coupling power between those, which in turn impacts the corresponding off-diagonal
element in C. Thus, if the i-th and the j-th antenna elements in BS are far enough, cij

can be assumed to be zero. To characterize such behavior, a parameter called sparsity
threshold, D, is defined which is the maximum distance between two antenna elements for
which the corresponding off-diagonal element in C is non-zero. Any off-diagonal element
corresponding to two antennas with a distance larger than D is assumed to be zero for
estimation purposes which leads to having sparse structure for C and consequently Ĉ.
Figure 4.1 illustrates this concept in an example scenario of a 10 × 10 square BS antenna
grid with λ/2 antenna spacing where the sparsity threshold, D, is defined in multiples of
λ/2. As can be seen in Figure 4.1, there is another parameter called L(D) which defines
the maximum number of coupled neighboring antenna elements as a function of D. For
example, for the case where D = 1, the number of coupled antennas in the bottom right
corner of the antenna grid is only 2 while the maximum number of coupled antennas for
this sparsity threshold value can be found in the center of the antenna grid and thus
L(1) = 4.
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Figure 4.1: Principal illustration of sparsity threshold, D, on a 10 × 10 square BS antenna grid
with λ/2 antenna spacing.

Having the information regarding the geometry and the architecture of the antenna system,
the BS can determine the sparse structure of its transceiver non-reciprocity matrix, C.
The number of non-zero entries in the j-th column of C is denoted by Rj which always
satisfies Rj ≤ L (D) + 1. Based on the sparse structure of C, the BS knows the index of
all Rj non-zero entries of cj and thus forms a reduced vector, called cred

j ∈ C
Rj×1, which

contains all the non-zero elements of cj . Next, the BS constructs a reduced version of
T(m), called Tred

j (m) ∈ C
N×Rj , which is formed by keeping the columns in T(m) whose

column numbers are the same as the indexes of non-zero entries in cj . In other words, if
the i-th row is kept in forming cred

j , then the i-th column will be kept in forming Tred
j (m).

In the next step, the BS estimates a reduced version of the j-th column of its transceiver
non-reciprocity matrix based on cred

j and Tred
j (m) as

ĉred
j (m + 1) = argmin

cred
j

∣∣∣∣qj − Tred
j (m)cred

j

∣∣∣∣2
, (4.47)

for which the solution can be written as

ĉred
j (m + 1) =

(
Tred

j (m)
)† qj . (4.48)

The full vector corresponding to the j-th column of Ĉ(m + 1), ĉj(m + 1), can then be
formed based on ĉred

j (m + 1) by appending zeros to the proper entries.

4.5.2 Estimating UE-Side Transceivers Non-Reciprocity Matrix

Having an estimate for BS transceiver non-reciprocity matrix, i.e., Ĉ(m), the BS can refine
its UE-side transceivers non-reciprocity matrix estimation by minimizing the Frobenius
norm criterion as

Â(m) = argmin
A

∣∣∣∣∣∣Q −
√

ρ̃u

√
ρ̃dĜ∗AĜTĈ(m)

∣∣∣∣∣∣2

F
. (4.49)
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Since A is assumed to be diagonal, based on the single-antenna UEs assumption, (4.49)
can be solved as

Â(m) = diag
(

ξ̂
)

, (4.50)

where ξ̂ = [IK , iIK ] ψ̂ ∈ C
K×1 while ψ̂ ∈ C

2K×1 is given as

ψ̂ =

⎛
⎝ N∑

j=1

W̄T
j W̄j

⎞
⎠−1

N∑
j=1

W̄T
j q̄j . (4.51)

In (4.51), q̄j =
[�{qT

j }, �{qT
j }]T ∈ C

2N×1 and the matrix W̄j ∈ C
2N×2K is constructed

as
W̄j =

[�{Wj}, −�{Wj}
�{Wj}, �{Wj}

]
, (4.52)

where Wj =
√

ρ̃u
√

ρ̃dĜ∗diag
([

ĜTĈ(m)
]

j

)
, with

[
ĜTĈ(m)

]
j

being the j-th column

of ĜTĈ(m).

4.6 Numerical Evaluations and Results

In this section, extensive computer simulations are used to evaluate and illustrate the
performance of i) the derived closed-form analytical SINR expressions for precoded
multi-user massive MIMO systems under channel non-reciprocity and imperfect CSI; ii)
BS transceiver non-reciprocity level estimation algorithm; iii) channel non-reciprocity
estimation and mitigation method. To achieve reliable outputs, the simulation results are
averaged over large enough number of channel and non-reciprocity parameters realizations.

The performance of the system is also studied from spectral efficiency point of view which
is defined as [66]

ηs =
(

1 − τu + τd

Tcoh

)
R, (4.53)

where τd is the number of downlink pilots sent form the BS to UEs to facilitate downlink
CSI acquisition. In the cases where the statistical average of the precoded downlink
channel is used for detection purposes, the BS does not send any downlink pilots and thus
τd = 0, while the achievable sum-rate, R, is calculated using (2.18). If downlink pilots
are used, then τd ≥ Mtot and (2.17) is used to calculate R 66. As mentioned earlier, τu is
the number of uplink pilots sent from each antenna in the UE side, whereas Tcoh is the
duration of each coherence interval in data symbols.

The baseline simulation scenario consists of a BS which is equipped with N = 100 antennas,
simultaneously serving K single-antenna UEs, thus K = Mtot. The uplink channel matrix
between the UEs and the BS, G, is assumed to have i.i.d. CN (0, 1) elements. The
downlink SNR in data transmission phase is chosen high enough to ensure possibility of
detecting some data even without channel non-reciprocity estimation, ρd = 20 dB. The
uplink SNR of pilot transmission for channel estimation is chosen to be ρu = 0 dB while
the number of such uplink pilots are assumed to be τu = Mtot. Finally, in case of using
downlink pilots for detection purposes, the BS sends τd = Mtot pilot signals with the
same SNR as of downlink data, i.e., ρd. These are baseline simulation parameters and
may vary in some simulation scenarios.
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Figure 4.2: System spectral efficiency vs. downlink SNR (ρd) for N = 100, Mtot = K = 20,
τu = Mtot, ρu = 0 dB, Tcoh = 250.

4.6.1 Performance Evaluation Under Channel Non-Reciprocity

The simulation scenario considered for evaluating the performance of ZF and MRT
precoded multi-user massive MIMO downlink transmission consists of K = 20 UEs while
Tcoh = 250. The non-reciprocity matrices A and C are constructed based on their
essential statistical properties in Table 4.1. Since the UEs are assumed to be single-
antenna devices, off-diagonal entries of A are zero and thus σ2

a′
od

= 0. The variance of the
m-th diagonal element in A′, σ2

a′
mm

, is assumed to be equal for all the values of m and is
set to σ2

a′
d
. Next, for each channel non-reciprocity realization, the diagonal elements of A′

and off-diagonal elements of C′ are assumed to be i.i.d. CN
(

0, σ2
a′

d

)
and CN

(
0, σ2

c′
od

)
,

respectively. The diagonal elements of C′ are assumed to have Gaussian distribution with
zero mean, variance set to σ2

c′
d

and cross-correlation equal to δ2
c′

d
.

The spectral efficiency and relative SINR degradation of the example scenario are plotted
against downlink SNR in Figure 4.2 and Figure 4.3, respectively, where the lines are
representing the results based on the closed-form analysis and star markers, ∗, are the
corresponding simulation results. The perfect alignment between analytical and simulation
results proves the accuracy of the closed-form analysis and the used approximations. As
can be seen in Figure 4.2 and Figure 4.3, the impact of non-reciprocity in the channel is
much more severe in high SNR region as the performance in low SNR region is mainly
limited by noise and not the channel non-reciprocity. While both precoding schemes,
namely ZF and MRT, are suffering from channel non-reciprocity mainly in high SNR
region, it is clear that ZF precoding scheme is much more sensitive to such non-idealities,
as expected based on the analysis in Section 4.3.4.

The impacts of increasing the number of BS antennas on the spectral efficiency are
evaluated in Figure 4.4. As can be seen, the results are perfectly inline with the implications
made by analytical asymptotic performance study in Section 4.3.3 where it was concluded
that under non-reciprocal channels i) both ZF and MRT precoded systems have a finite
achievable sum-rate saturation level; ii) the saturation level is identical for both precoding
schemes. The results clearly confirm that the spectral efficiency of both ZF and MRT
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Figure 4.3: Relative SINR degradation vs. downlink SNR (ρd) for N = 100, Mtot = K = 20,
τu = Mtot, ρu = 0 dB.

Figure 4.4: System spectral efficiency vs. the number of antennas at BS (N) for Mtot = K = 20,
ρd = 20, τu = Mtot, ρu = 0 dB, Tcoh = 250. Saturation levels based on (4.21) are plotted in
green horizontal lines for the two indicated channel non-reciprocity parameter settings.

precoded systems saturate towards the value derived in Section 4.3.3. As discussed
earlier, increasing the number of antennas in the BS side, which increases the number
of non-reciprocal transceiver chains and antenna units, causes reduction in advantage
of ZF over MRT to the point that the performance of both systems saturates to the
same value. Note that as opposed to, e.g., pilot contamination [94] problem where the
performance saturation happens with having around 105 BS antennas [102], the number
of BS antennas that causes performance saturation due to channel non-reciprocity is
around 103 or even lower which shows the practical relevance of the results.

In Figure 4.5, the optimal number of simultaneously scheduled single-antenna UEs is
calculated as a function of channel non-reciprocity for two example values of downlink
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Figure 4.5: Optimal number of single-antenna UEs to maximize system spectral efficiency vs.
non-reciprocity level (σ2

a′
d

= σ2
c′

d
= channel non-reciprocity level, while σ2

c′
od

= δ2
c′

d
= channel

non-reciprocity level −10 dB) for N = 100, Mtot = K = 20, ρd = 20, τu = Mtot, ρu = 0 dB,
Tcoh = 250.

SNR, namely, ρd = 20 dB, 0 dB. This optimal number of simultaneously scheduled
single-antenna UEs, Kopt, refers to the K which maximizes the spectral efficiency and
is derived by evaluating (4.10) for all the values of N ≥ K ≥ 1. Based on the obtained
results, Kopt drops for both precoding schemes as the channel non-reciprocity level, and
subsequently interference in the UE side, increases. Such drops are more visible in high
SNR region, i.e., ρd = 20 dB, while in low SNR region, i.e., ρd = 0 dB, the performance is
limited mainly by the receiver thermal noise. Comparing ZF and MRT precoded systems,
such drops can be experienced in the case of MRT precoding scheme in fairly severe
non-reciprocity levels, e.g., σ2

a′
d

> −15 dB, whereas ZF precoded systems suffer from
a significant drop already with moderate channel non-reciprocity levels, e.g., −30 dB
< σ2

a′
d

< −20 dB. It is interesting to note that as opposed to ideal reciprocal scenario,
the optimal number of simultaneously scheduled single-antenna for MRT is higher than
that of ZF for high SNR values under moderate channel non-reciprocity levels.

Figure 4.6 illustrates the maximum tolerable channel non-reciprocity level as function of
downlink SINR at the UE side based on the derived SINR expressions in (4.13) and (4.18).
The considered example scenario covers two downlink SNR values, namely, ρd = 20 dB, 0
dB. As an example point in the obtained results, in order to guarantee 15 dB for downlink
SINR at the UE side in ZF precoded system with ρd = 20 dB, channel non-reciprocity
level cannot be higher than around −20 dB. Such analysis can be used in practical system
design and deployments, e.g., to calculate the required channel non-reciprocity calibration
levels for a given target downlink transmission performance, which proves the applicability
of the provided analytical results in practical systems.

4.6.2 BS Transceiver Non-Reciprocity Level Estimation

Assuming good antenna isolation in BS transceiver, the accuracy of the BS transceiver
non-reciprocity level estimation method is evaluated with regards to the relative estimation
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Figure 4.6: Maximum tolerable non-reciprocity level vs. target SINR (σ2
a′

d
= σ2

c′
d

= channel
non-reciprocity level, while σ2

c′
od

= δ2
c′

d
= channel non-reciprocity level −10 dB) for N = 100,

Mtot = K = 20, τu = Mtot, ρu = 0 dB.

error which is defined as

δc′
d

=

∣∣∣σ2
c′

d
− σ̂2

c′
d

∣∣∣
σ2

c′
d

, (4.54)

where σ̂2
c′

d
can be calculated based on (4.39) or (4.40), depending on the use of downlink

pilots. In the basic scenario, this estimation error is calculated directly based on the
estimated values of BS transceiver non-reciprocity level in the UE side. In order to
improve the estimation accuracy, the UEs can report their estimations to the BS where
they are averaged. In such scenarios, the averaged value is used as σ̂2

c′
d

in (4.54).

Since it is not required to have BS transceiver non-reciprocity level estimation in every
single UE, only subset of UEs which have better channel conditions can be selected for this
purpose. Thus, in this simulation example, the number of UEs which are simultaneously
supported by ZF precoding is set to K = 10 while the duration of each coherence interval is
assumed to be Tcoh = 500 symbols. The number of coherence intervals used for estimation
is chosen to be Ncoh = 50. The only channel non-reciprocity statistics assumed in this
example are σ2

a′
d

= σ2
c′

d
= −20 dB while other channel non-reciprocity characteristics are

assumed to be ideal. In case of having downlink pilots, the variance of downlink channel
estimation error in the UE side is set to σ2

epilot = −20 dB.

The estimation accuracy is plotted with respect to the number of antennas in the BS, N ,
in Figure 4.7. As illustrated, the accuracy of the estimation increases with the number of
BS antennas mainly since the approximation used in (4.32), based on the law of large
numbers, gets more accurate with higher values of N . While the estimation errors are
always less than 1 dB, it can be observed that estimation of BS transceiver non-reciprocity
level gets more accurate with averaging in the BS side and employing downlink pilots.

Figure 4.8 illustrates the accuracy of BS transceiver non-reciprocity level estimation as a
function of downlink SNR. As can be seen, when downlink pilots are used, downlink SNR
has negligible impact on the accuracy of the estimation. Whereas, as expected based
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Figure 4.7: Relative estimation error vs. number of BS antennas (N) for Mtot = K = 10,
τu = Mtot, ρu = 0 dB, ρd = 20 dB, σ2

a′
d

= σ2
c′

d
= −20 dB, σ2

epilot = −20 dB, Tcoh = 500.

Figure 4.8: Relative estimation error vs. downlink SNR (ρd) for N = 100, Mtot = K = 10,
τu = Mtot, ρu = 0 dB, σ2

a′
d

= σ2
c′

d
= −20 dB, σ2

epilot = −20 dB, Tcoh = 500.

on (4.35), estimation accuracy is very sensitive to downlink SNR in case of statistical
downlink channel estimation. Note that, while even in low SNR regime the estimation
accuracy is less than 3 dB, in practice, UEs with higher SNRs and better channel qualities
can be selected for BS transceiver non-reciprocity level estimation.

4.6.3 Channel Non-Reciprocity Mitigation

Here, the performance of channel non-reciprocity estimation and mitigation framework
is evaluated and compared to two other existing schemes in the literature, namely the
direct-path based Least Squares (LS) known as “Argos” [97] and the generalized neighbor
LS [96]. Both LS-based methods rely on downlink pilots to compensate the transceiver
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non-reciprocity in the UE side while employing mutual coupling between the BS antennas
to estimate and mitigate BS transceiver non-reciprocity. It should be noted that the
conventional method of sending downlink pilots in which the number of sent pilots is
equal to the number of antennas in the BS side is not feasible in massive MIMO context.
Thus, here we take advantage of the method proposed in [66] for massive MIMO systems,
in which the number of downlink pilots can be τd ≥ Mtot. As mentioned earlier, exact
number of such pilots used in the simulations is τd = Mtot.

In order to quantify the accuracy of BS and UE sides’ transceiver non-reciprocity estima-
tion, the normalized MSE metric is employed which is defined as

δ2
e =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣∣∣C − Ĉ
∣∣∣∣∣∣2

F

||C||2F
, for BS side∣∣∣∣∣∣diag (A) − diag

(
Â

)∣∣∣∣∣∣2

F

||diag (A)||2F
, for UE side.

(4.55)

The example simulation scenario consists of 20 single-antenna UEs where the BS is
assumed to estimate channel non-reciprocity in 4 iterations over Csc = 10 neighboring
subcarriers. The convergence aspects of the channel non-reciprocity estimation method,
which resulted into having 4 as the number of iterations of choice, is covered in details
in [P1]. In pilot signaling stage, uplink and downlink SNRs are assumed to be ρ̃u = 0
dB and ρ̃d = 10 dB, respectively, while for the two LS-based methods, the coupling SNR
between two neighboring antennas is 80 dB [96]. The entries of channel non-reciprocity
matrices are drawn based on the channel non-reciprocity model introduced in [77]. Based
on such modeling, in this example, variances of diagonal elements in FRX , FT X , BRX ,
and BT X , shown in (2.21), are set to −20 dB while the power of elements in MRX and
MT X is controlled by input reflection coefficients which have the variance σ2

rc [77]. The
antenna layout follows the one in Figure 4.1 and the carrier frequency is assumed to be
fc = 3.5 GHz.

The impacts of sparsity threshold on the channel non-reciprocity estimation normalized
MSE and the system spectral efficiency is evaluated and visualized in Figure 4.9. Here,
the baseline system settings are followed while the x-axis represents varying σ2

rc. In
this respect, Figure 4.9a shows the normalized MSE of BS and UE sides’ transceiver
non-reciprocity estimation. Based on the results, highest accuracy in UE transceiver
non-reciprocity estimation is achieved when D = 0, i.e., only the diagonal elements of
C are estimated. Note that, while the choice of D has direct impact only on estimating
C, it will in turn influence the estimation accuracy of A as A and C are estimated
iteratively. On the other hand, the lowest BS transceiver non-reciprocity estimation
error is obtained for D = 0 only when σ2

rc ≤ −21 dB, while for higher values of σ2
rc, i.e.,

σ2
rc > −21 dB, D = 1 is the optimum choice. Figure 4.9b illustrates combined impacts

of sparsity threshold on both BS and UE transceiver channel non-reciprocity estimation
through evaluating spectral efficiency. Here, the choice of D = 0 results into having
highest spectral efficiency when σ2

rc ≤ −22 dB while for σ2
rc > −22 dB, D = 1 is the best

choice.

Figure 4.10 illustrates the spectral efficiency as a function of number of scheduled UEs
for σ2

rc = −20 where based on Figure 4.9 the sparsity threshold is set to D = 1. As
can clearly be observed, the proposed method outperforms both LS-based algorithms
in both ZF and MRT precoded scenarios. The difference in spectral efficiency of the
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(a)

(b)

Figure 4.9: (a) Non-reciprocity estimation normalized MSE and (b) system spectral efficiency
vs. input reflection coefficients variance (σ2

rc) for different values of sparsity threshold D with
N = 100, Mtot = K = 20, τu = τd = Mtot, ρu = 0 dB, ρd = 20 dB, Tcoh = 250.

proposed method and the other two methods gets larger as the number of UEs increases.
Additionally, using the proposed method, the BS can simultaneously schedule more UEs
without sacrificing the overall spectral efficiency as the number of scheduled UEs which
maximizes the spectral efficiency is higher in the proposed method compared to the other
two methods.

Finally, the impact of the variance of input reflection coefficients, which controls the
power of non-diagonal elements in C, on spectral efficiency is evaluated in Figure 4.11. As
can be seen, mainly for ZF precoding which is more sensitive to channel non-reciprocity,
the performance of both LS-based methods degrades as σ2

rc increases while the impact of
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Figure 4.10: System spectral efficiency vs. the number of scheduled UEs (K) for N = 100,
Mtot = K, D = 1, τu = τd = Mtot, ρu = 0 dB, ρd = 20 dB, σ2

rc = −20 dB, Tcoh = 250.

Figure 4.11: System spectral efficiency vs. input reflection coefficients variance (σ2
rc) for

N = 100, Mtot = K = 20, D = 1, τu = τd = Mtot, ρu = 0 dB, ρd = 20 dB, Tcoh = 250.

σ2
rc on the performance of the proposed method is negligible. This is due to the fact that

the proposed method is the only method that estimates the non-diagonal entries in the
BS transceiver matrix while the other two methods only focus on the diagonal elements.



CHAPTER 5

Summary

It is evident that MIMO technology is going to be one of the key elements in upcoming
wireless communication systems, especially 5G. In this respect, this thesis addressed
the problems associated with channel non-reciprocity in TDD MIMO systems due to
mismatches in transmitter and receiver chains of a certain transceiver circuit and antenna
system. Such channel non-reciprocity problem in TDD networks complicates having
timely and accurate information of the channel at the transmitter side which is essential
in MIMO systems. The overall contribution of the thesis is two folds, namely analysis of
the performance degradation affect of various non-reciprocity parameters and mitigation
of these harmful affects via appropriate pilot signaling and digital signal processing.

Chapter 3 and [P6]– [P8] focused on channel non-reciprocity problem in small-scale
MIMO TDD systems. In single-cell scenario, for ZF and eigen-based precoded downlink
transmission, performance degradations due to channel non-reciprocity caused by both
FR and mutual coupling mismatches were analyzed. It was observed that, compared to
FR mismatch, mutual coupling mismatch has more destructive impacts on the system
performance. In addition to that, the system performance is more sensitive to BS
transceiver non-reciprocity which causes both ISI and IUI, while non-reciprocity at the
UE side only causes ISI. Based on these findings and assuming reasonably good antenna
isolation, in order to have IUI-free transmission, a pilot-based OTA BS transceiver
estimation and mitigation method was proposed. The proposed method was shown to
be capable of efficiently estimating BS transceiver non-reciprocity parameters with high
accuracy and thus improve the system performance significantly. In multi-cell scenario, the
performance impacts of FR mismatch at the UE side were analyzed in both centralized and
decentralized precoding scenarios. The results implied that while centralized precoding is
resistant to such non-reciprocity in the channel, there is severe performance degradation
in the performance of decentralized precoding. Overall, the observation that UE side FR
mismatch can severely limit the performance is one clear difference between single-cell
and multi-cell precoded systems.

In Chapter 4 and [P1]– [P5], the focus was turned to massive MIMO systems. In this
respect, closed-form analytical expressions were derived for the effective SINRs of ZF
and MRT precoded downlink transmission systems under channel non-reciprocity and

59
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imperfect uplink channel estimation. The provided analysis showed significant performance
loss under non-reciprocal channels in ZF precoded system, i.e., 42% with practical channel
no-reciprocity levels, while MRT precoded system proved to be less sensitive to such
non-idealities, i.e., 13% for the same example scenario. Due to such difference in the
behaviors of ZF and MRT precoded systems, the performance gap between ZF and
MRT precoded systems was shown to decrease significantly with the presence of channel
non-reciprocity. The study also presented very interesting findings and implications for
TDD massive MIMO systems under channel non-reciprocity which are different than
those of the ideal reciprocal one, namely, i) the asymptotic performance for large number
of BS antennas saturates to an identical finite level for both ZF and MRT precoded
systems, whereas in ideal reciprocal scenario the achievable sum-rate grows without bound;
ii) as opposed to ideal reciprocal scenario where the optimal number of simultaneously
scheduled single-antenna UEs is always higher in ZF precoded systems compared to
MRT precoded ones, under non-reciprocal channels and in high SNR regime, MRT can
optimally serve more UEs simultaneously. In order to efficiently choose optimum time
to perform channel non-reciprocity mitigation rounds at the BS and thus avoid wasting
channel resources, an efficient BS transceiver non-reciprocity level estimation method
was proposed to be deployed in the UE side. This enables UEs to report the need for a
BS transceiver calibration round using simple one-bit feedback without any additional
overhead. Additionally, in order to mitigate channel non-reciprocity in massive MIMO
TDD systems, an efficient iterative pilot-based OTA channel non-reciprocity estimation
and mitigation framework was proposed. As opposed to the existing state-of-the-art
channel non-reciprocity estimation methods used in massive MIMO systems which only
estimate the non-reciprocity in BS transceiver, the proposed method also estimates UE
side non-reciprocity matrix. The proposed method does not require having demodulation
downlink pilots to compensate for UE side non-reciprocity and can work in common
massive MIMO systems where UEs rely on statistical properties of the precoded channel
for detection purposes. The practical examples and computer simulations showed clear
advantage in using the proposed method over the existing state-of-the-art methods in
terms of the system spectral efficiency.

Overall, having timely and accurate CSI at the transmitter side is very crucial for MIMO
systems to reach their full potential. In TDD systems, channel non-reciprocity due
to FR and mutual coupling mismatches causes inaccuracies in CSI, and consequently
significant performance loss, and thus needs to be properly taken into account. The
analyses presented in this thesis provide valuable tools in understanding, dimensioning,
and designing practical TDD MIMO systems with given performance targets. In addition
to that, the proposed channel non-reciprocity mitigation methods can be deployed in
practical TDD MIMO systems to significantly enhance the system performance and help
bringing out all the benefits of MIMO systems.

Lastly, the contributions of this thesis provide a good and comprehensive starting point for
future research regarding, e.g., generalizing the performance analysis and evaluations to
cases where i) other precoding schemes such as Regularized Zero-Forcing (RZF) precoding
scheme [58] are considered; ii) receiver filters for joint processing of UE antennas and/or
pilot contamination are also considered for massive MIMO scenarios; iii) more complex well-
known estimation methods, such as maximum likelihood, are employed for non-reciprocity
estimation purposes to establish performance upper bound for computationally-feasible
approaches; iv) path-losses and shadowing are taken into account to reflect different
locations of the scheduled UEs in the network, which does not add additional complexity
when it comes to channel non-reciprocity analysis; v) and generalizing analysis and
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performance evaluations to “cell-free” massive MIMO cases with distributed beamforming
[103, 104].
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Estimation and Mitigation of
Channel Non-Reciprocity in Massive MIMO

Orod Raeesi, Student Member, IEEE, Ahmet Gokceoglu, Member, IEEE,
and Mikko Valkama, Senior Member, IEEE

Abstract—Time-division duplex (TDD) based massive MIMO
systems rely on the reciprocity of the wireless propagation chan-
nels when calculating the downlink precoders based on uplink
pilots. However, the effective uplink and downlink channels
incorporating the analog radio front-ends of the base station
(BS) and user equipments (UEs) exhibit non-reciprocity due to
non-identical behavior of the individual transmit and receive
chains. When the downlink precoder is not aware of such channel
non-reciprocity (NRC), system performance can be significantly
degraded due to the NRC induced interference terms. In this
work, we consider a general TDD-based massive MIMO system
where frequency-response mismatches at both the BS and UEs,
as well as the mutual coupling mismatches at the BS large-
antenna system all coexist and induce channel NRC. Based
on the NRC-impaired signal models, we first propose a novel
iterative estimation method for acquiring both the BS and UE
side NRC matrices and then also propose an efficient NRC-aware
downlink precoder design which utilizes the obtained estimates.
Furthermore, an efficient pilot signaling scheme between the
BS and UEs is introduced in order to facilitate executing the
proposed estimation method and the NRC-aware precoding
technique in practical systems. Comprehensive numerical results
indicate substantially improved spectral efficiency performance
when the proposed NRC estimation and NRC-aware precoding
methods are adopted, compared to the existing state-of-the-art
methods.

Index Terms—Beamforming, channel non-reciprocity, channel
state information, frequency-response mismatch, linear precod-
ing, massive MIMO, mutual coupling, time division duplexing
(TDD).

I. INTRODUCTION

MASSIVE MIMO is one of the key potential technologies

for upcoming 5G systems [1] where base stations (BSs)

deploy very large antenna arrays, e.g., several tens or hundreds

of antenna units per array, to facilitate high beamforming and

spatial multiplexing gains. In such systems, it is not feasible

to transmit downlink pilots from each BS antenna in order to

estimate the corresponding spatial channels at user equipments

(UEs) and feedback the channel state information (CSI) to BS,

as the amount of overhead in such approach is proportional

to the number of antennas in the BS side [2]. Massive MIMO

systems are thus envisioned to primarily deploy time-division

duplex (TDD) based radio access and rely on the reciprocity

O. Raeesi, A. Gokceoglu, and M. Valkama are with the Department of Elec-
tronics and Communications Engineering, Tampere University of Technology,
Tampere 33720, Finland (e-mail: orod.raeesi@tut.fi; ahmet.gokceoglu@tut.fi;
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This work was supported by the Finnish Funding Agency for Technology
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projects 284694 and 288670 and TUT Graduate School.

of the physical uplink and downlink channels when obtaining

CSI at the BS. This, in turn, requires substantially smaller pilot

or reference signal overhead being only proportional to the

number of UEs [3].

While it is a common assumption in TDD systems that the

physical propagation channels are reciprocal within a coherence

interval [2], [3], the impacts of the BS and UE side transceiver

analog front-ends on the effective downlink and uplink channels
are not reciprocal. This hardware induced phenomenon is often

referred to as the channel non-reciprocity (NRC) problem

[4], [5]. Typically, the mismatches in the frequency-responses

(FRs) of both the BS and UE side radio front-ends between the

transmit and receive modes are seen as the main cause of NRC.

Another important source of NRC considered in literature is

the differences in mutual coupling (MC) of BS antenna units

and the associated RF transceivers under transmit and receive

modes [6], [7].

The impacts of the NRC on the achievable system per-

formance have been studied in various works in the recent

literature. To this end, [5] provides downlink sum-rate analysis

for a general multi-user MIMO system with zero-forcing

(ZF) and eigen-beamforming types of precoding under NRC

due to FR mismatch. Then, specifically focusing on massive

MIMO systems, [8], [9] study achievable downlink sum-rates

for maximum-ratio transmission (MRT) and ZF precoding

schemes, demonstrating significant performance degradation

under practical values of the NRC parameters.

There is also a large amount of work reported in the literature

addressing the estimation and mitigation of NRC in TDD based

MIMO systems [2], [4], [6], [10]–[17]. These studies can be

divided into three main categories as follows:

i) The BS carries out “self-calibration” using a reference

antenna with the help of additional circuitry [4], [6]. This

method is capable of estimating the BS side NRC only.

ii) The BS carries out “self-calibration” without additional

circuitry. Coupling between the BS antennas is utilized

when exchanging pilot signals with the reference antenna

[2], [10]–[13]. Similar to i), also this method estimates

only the BS side NRC and commonly focuses only on

the FR mismatch estimation, thus neglecting the mutual

coupling mismatch.

iii) The BS transmits specific pilot signals to UEs and UEs

send back the received signals in certain properly precoded

forms to facilitate the BS side NRC parameter estimation,

which is often referred to as over-the-air (OTA) approach

[6], [14]–[17].
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In this work, we focus on OTA-based estimation and

mitigation of NRC in a multi-user massive MIMO system

context deploying MRT or ZF precoding. The novelty and

contributions of this paper can be summarized as follows:

1) We consider generalized NRC induced by coexisting FR

mismatches of all associated radio transceivers at UE

and BS sides as well as the mutual coupling mismatches

in the BS side large-array antenna system, unlike many

of the earlier works, such as [2], [4], [10]–[17], that

neglect BS mutual coupling mismatch. In this respect,

only [6] reports similar modeling, however, the proposed

estimation and mitigation scheme in [6] is suitable mainly

for small scale MIMO systems, e.g., 2-4 BS antennas

due to the excessive computational complexity as well

as unaffordable overhead in signaling back the required

downlink channel estimates from the UEs to the BS when

large antenna arrays are considered.

2) We address estimation and mitigation of the NRC sources

of both the UE and the BS sides, unlike many other works

that address only BS side NRC, e.g., [2], [4], [10]–[13],

[15]. As shown in [18], with the popular assumption of

not having downlink demodulation pilots, UE side NRC

can be a major cause of performance degradation in multi-

user massive MIMO systems, thus strongly motivating

to incorporate such effects in the NRC estimation and

mitigation processes.

3) Unlike other massive MIMO NRC mitigation works [2],

[10]–[13] which all assume the availability of downlink

demodulation pilots, we consider the appealing massive

MIMO scenario in which there are no downlink demodula-

tion pilots and thus UEs rely on the statistical properties of

the beamformed channels to decode the received downlink

signals [8], [19]–[22]. This further motivates to include

both the BS and UE side NRC sources in the estimator

and mitigation developments.

4) We demonstrate and evaluate the performance of our

proposed scheme under imperfect uplink CSI, unlike other

works which commonly rely on the perfect uplink CSI

assumption [4], [11]–[13], [15].

The organization of the paper is as follows. Fundamental

signal models of the considered massive MIMO system with

MRT and ZF-based precoding schemes under NRC are first

presented in Section II. Then, the NRC-aware downlink

precoding approach is formulated for given NRC estimates.

In Section III, a novel pilot signaling method between the

BS and UEs is introduced which is followed by the proposed

novel iterative estimation of the BS and UE side NRC matrices.

Also the corresponding complexity analysis is provided. The

results of empirical performance evaluations in terms of the

NRC estimation mean-squared error (MSE) and the achievable

system spectral efficiency are presented in Section IV, incorpo-

rating the proposed estimation-mitigation scheme together with

existing state-of-the-art NRC estimation/mitigation methods

for reference. Finally, conclusions are drawn in Section V.

Notations: Throughout the paper, vectors and matrices are

denoted with lower and upper case bold letters, respectively,

e.g., vector x, matrix Y. The superscripts (.)
∗
, (.)

T
, (.)

H
, and

(.)
†

indicate complex-conjugation, transposition, Hermitian-

transpose, and Moore-Penrose pseudo inverse operations,

respectively. The expectation operator is shown by E[.], while

Tr (.) represents the trace operator. The diag (.) operator

transforms a vector v to a diagonal matrix with the elements of

v at its diagonal, and vice versa, reads the diagonal elements

of the input matrix into a column vector. �{.} and �{.} work

element-wise and return real and imaginary parts of complex-

valued arguments, respectively. The element in the i’th row

and j’th column of matrix V is represented by vij , whereas

the i’th element on the main diagonal of a diagonal matrix

C is shown by ci. The complex-valued zero-mean circularly

symmetric Gaussian distribution with variance σ2 is denoted

as CN (
0, σ2

)
. Finally, In and 0n denote the n × n identity

and all-zero matrices, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a TDD based single-cell multi-user downlink

transmission scenario where the BS with a large number of

antenna units, denoted by N , transmits to K single-antenna UEs

simultaneously in the same time-frequency resource, where

N � K. All signal and system models are written for an

arbitrary subcarrier of the underlying orthogonal frequency

division multiplexing/multiple access (OFDM/OFDMA) wave-

form, that is, before IFFT and after FFT on the TX and RX

sides, respectively.
In an ideal TDD massive MIMO system, the effective uplink

and downlink channels consist of only the reciprocal physical

channels. Building on that, the downlink transmission is done

by beamforming the multi-user downlink data based on the

estimated channels from uplink pilot sequences of length

τu symbols [2], [3]. A fundamental assumption is that the

uplink training and downlink transmission both take place

clearly within one channel coherence interval, meaning that the

channels are essentially static. In this work, we assume the same

procedure for the uplink training and downlink transmission,

however, we consider more generalized uplink and downlink

effective channel models which are non-reciprocal due to the

radio front-end mismatches and non-idealities. In this respect,

the uplink model for channel estimation phase [19] and the

corresponding downlink received signal model in beamformed

data transmission phase under the non-reciprocal effective

channels can be expressed as

Uplink Training : Y =
√
ρuτuG+ Zu

Downlink Transmission : r =
√
ρdHx+ zd,

(1)

where x ∈ C
N×1 denotes the precoded multi-user data,

whereas G ∈ C
N×K and H ∈ C

K×N are the effective non-

reciprocal uplink and downlink multi-user MIMO channels,

respectively, which will be elaborated in detail later in Section

II-A. Zu ∈ C
N×K is the processed noise matrix at the BS,

while zd ∈ C
K×1 denotes the UE side multi-user thermal noise

vector, both assumed to consist of i.i.d. CN (0, 1) elements.

The average signal to noise ratios (SNRs) in the uplink and

downlink are denoted as ρu and ρd, respectively. This basic

system framework is largely based on and following the seminal

work by Marzetta in [19], [23] where reciprocal channels were

assumed.



ESTIMATION AND MITIGATION OF CHANNEL NON-RECIPROCITY IN MASSIVE MIMO 3

Base 
StationMutual 

Coupling

Multi-user 
MIMO 

Propagation 
Channels

UE #1

UE #2

UE #K

P

1
TXf

2
TXf

X
K
Tf

11
RXm

22
RXm

X
NN
Rm

21
RXm

1
X
N
Rm

12
RXm

2
X
N
Rm

1
X
N
Rm

2
X
N
Rm

RX
Nl

2
RXl

1
RXl

(a)

Base 
Station Mutual 

Coupling

Multi-user 
MIMO 

Propagation 
Channels

UE #1

UE #2

UE #K

1
RXf

2
RXf

X
K
Rf

TP

11
TXm

22
TXm

X
NN
Tm

21
TXm

1
X
N
Tm

2
X
N
Tm

12
TXm

1
X
N
Tm

2
X
N
Tm

1
TXl

2
TXl

X
N
Tl

(b)

Fig. 1. Basic system models for (a) uplink and (b) downlink transmission
and reception including physical propagation channels, transceiver frequency
responses and antenna mutual coupling in the devices.

A. Effective and Relative Uplink and Downlink Channels

As illustrated in Fig. 1, the complete description of the

uplink and downlink effective channels appearing in (1) can

be expressed as

G = ErPFt

H = FrP
TEt

}
⇒ H �= GT, (2)

with Er = LrMr and Et = MtLt. In above, F ∈ C
K×K is

the joint frequency-response matrix of the UEs, L ∈ C
N×N

is the frequency-response matrix of the BS, M ∈ C
N×N

is the mutual coupling matrix of the BS, P ∈ C
N×K is the

reciprocal physical channel, while the subscripts t and r denote

the transmitting and receiving modes, respectively. Note that

the frequency-response matrices, F and L, are diagonal, while

the mutual coupling matrix M in general has both non-zero

diagonal and off-diagonal entries.

In general, the effective channels with above assumptions

and modeling are clearly non-reciprocal, i.e., H �= GT, due to

differences in the TX and RX modes of the radio front-end

and array responses, i.e., Ft �= Fr, Lt �= Lr and Mt �= MT
r .

Hence, the effective uplink and downlink channels can be

described relative to each other as

H = AGTB, (3)

where, A = FrF
−1
t and B = L−1

r

(
MT

r

)−1
MtLt.

In general, A ∈ C
K×K is a diagonal matrix and the k’th

diagonal entry, denoted as ak, corresponds to the frequency-

response ratio of k’th UE at TX and RX modes. In the

following, similar to [5], [6], [8], we will use the decomposition

of the form A = IK + A′, where the diagonal matrix

A′ ∈ C
K×K measures the deviation from the ideal unity

frequency-response ratio. The k’th diagonal entry of A′ is

denoted as a′k, such that ak = 1 + a′k.

In (3), B ∈ C
N×N is a full matrix that incorporates both the

frequency-responses and mutual coupling at the BS side in TX

and RX modes. In the following, for notational convenience, we

will use the decomposition B = IN +B′, where B′ ∈ C
N×N

accounts for the deviation of diagonal and off-diagonal entries

from the ideal reciprocal response.

The detailed modeling of the entries of the above matrices is

based on the practical physical circuits driven NRC modeling

introduced in [6], in which σ2
F is denoting the variance of

the diagonal elements in Ft and Fr, while the corresponding

variance of the diagonal elements in Lt and Lr is denoted by

σ2
L. In this model [6], Mt and Mr are generated as

Mt = (IN − ΓtΦ)
−1

Mr = (IN − ΓrΦ)
−1

,
(4)

where Γt ∈ C
N×N and Γr ∈ C

N×N are diagonal matrices

representing input reflection coefficients at transmitting and

receiving modes, respectively, while Φ ∈ C
N×N is the

scattering matrix of the BS antenna system, defined as

Φ =

(
Z

Z0
+ IN

)−1(
Z

Z0
− IN

)
. (5)

In above, Z0 denotes the reference impedance of the antenna

ports and Z ∈ C
N×N is the BS impedance matrix whose

elements depend on the antenna spacing and layout [24]. As

illustrated in (4), for a chosen antenna spacing and layout

which result into a certain BS antenna system scattering matrix

Φ, the powers of the elements in Mt and Mr are controlled

by the corresponding input reflection coefficient matrices Γt

and Γr, respectively. The variance of the diagonal elements in

the input reflection coefficient matrices is denoted by σ2
rc.

The characterization as given in (2) and/or (3) is generally

referred to in the literature as channel non-reciprocity [5], [6].

The ideal reciprocal channel model is a special case where

A = B = I, i.e., A′ = B′ = 0.

B. Channel Estimation and Beamforming under NRC

First, we shortly address the influence of NRC when the

downlink transmission is carried out without any processing

against the NRC, i.e., NRC-blind precoding is adopted. In

this respect, the required downlink channel estimate in the

BS is obtained from the orthogonal uplink training signals,

with the observation model given already on the first line of

(1), complemented, e.g., with LMMSE channel estimator as

described in [19], [23]. This yields formally

Ĥ = ĜT, (6)

where Ĥ ∈ C
K×N and Ĝ ∈ C

N×K are the estimated downlink

and uplink effective channels, respectively.
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Using the estimated downlink effective channel in (6),

the user data vector s = [s1, ..., sK ]
T ∈ C

K×1 which is

assumed to have element-wise power normalization of the

form E

[
|sk|2

]
= 1, is precoded as

x = βUs, (7)

where the NRC-blind linear precoding matrix U ∈ C
N×K

reads [23]

U =

⎧⎨
⎩
ĤH, for MRT

ĤH
(
ĤĤH

)−1

, for ZF.
(8)

In above, without loss of generality, the scalar β can be chosen

to satisfy unit average transmit power constraint as [19]

β =

(√
E[Tr (UHU)]

)−1

. (9)

C. Received Signal at UE under NRC

The multi-user received downlink signal vector is given by

the second line of (1). Plugging the precoded symbol vector

expression in (7) into (1), the received signal for k’th user

corresponding to the k’th element of r can be written as

rk =
√
ρdβh

T
k uksk +

√
ρdβ

K∑
i=1,i �=k

hT
k uisi + zd,k, (10)

where uk and hT
k denote the k’th column and row vectors

of the precoder and the effective downlink channel matrices,

respectively. Notice that by denoting the k’th column of the

uplink effective channel matrix as gk, the effective downlink

channel towards the k’th user can be expressed as

hT
k = akg

T
kB. (11)

In general, conventional MIMO systems employ downlink

pilots to acquire downlink CSI for detection purposes. However,

in massive MIMO systems, as shown in [8], [19]–[22], it

is commonly assumed that UEs employ only the statistical

properties of the beamformed channel, namely E
[
βhT

k uk

]
,

as the downlink CSI to decode the received signal. This

assumption is justified by the law of large numbers which

implies that hT
k uk → E

[
hT
k uk

]
when BS array size N

increases, commonly known as the channel hardening concept

[23], [25]. Utilizing such approach in acquiring downlink CSI

in UEs eliminates the need for sending downlink demodulation

pilots which directly reduces downlink overhead. Alternatively,

blind downlink channel estimation [26] can also be pursued.

Building on this and plugging (11) into (10), the received

signal under NRC can be re-written in a general form as

rk =
√
ρdE

[
βhT

k uk

]
sk + zSI,k + zIUI,k + zd,k, (12)

where the self-interference (SI), zSI,k, and the inter-user-

interference (IUI), zIUI,k, are given by

zSI,k =
√
ρdβ

(
akg

T
kBuk − E

[
hT
k uk

])
sk

zIUI,k =
√
ρdβ

K∑
i=1,i �=k

akg
T
kBuisi.

(13)

Note that the basic received signal model in (12) and (13)

holds independently of the channel hardening phenomenon.

However, the channel hardening assumption is in practice

needed in order to obtain good decoding performance with

statistical beamformed channel based downlink CSI. In general,

the statistical beamformed downlink CSI, E
[
hT
k uk

]
, can be

interpreted either for given NRC realizations or averaged also

over the NRC variable statistics. In this manuscript, we will

take the latter approach as that is independent of the NRC

realizations, and thus facilitates efficient UE data decoding

without any downlink demodulation pilots. This is also well

motivated by the main topic of the article which is the joint

estimation and mitigation of the BS and UE side NRC at the

BS. Finally, we note that static channels within uplink training

and downlink transmission are assumed, and thus practical

aspects such as channel aging within one uplink training and

downlink transmission cycle are not considered.

Based on (13), it can be clearly observed that the NRC-

blind precoder u which is constructed based on the estimated

uplink effective channel Ĝ, through Ĥ = ĜT, cannot take

into account the NRC effects from ak and B, which results

into increased interference levels and thus reduced downlink

spectral efficiency. This is illustrated through an elementary

system spectral efficiency evaluation in Fig. 2, with the detailed

evaluation assumptions being described in Section IV. It can be

noticed that in particular in the ZF precoder case, NRC-blind

precoding results into substantial performance degradation,

hence strongly motivating to develop efficient NRC estimation

and mitigation techniques.

D. NRC-Aware Downlink Precoding Principle

As shown in Section II-C above, if MRT and/or ZF precoders

are applied naively without accounting for NRC, there are

additional SI and IUI terms that can substantially degrade

the quality of the received signal at the UE side. Here, we

introduce an efficient NRC mitigation approach, called NRC-

aware precoding, which seeks to cancel out the effects of NRC

by properly modifying the precoder.

Assuming that the BS has already estimates of the NRC

matrices A and B, denoted by Â and B̂, the NRC-aware

precoding approach transforms the basic linear precoders given

in (8) as

Unrc = B̂−1UÂ−1. (14)

With ideal estimates of A and B and ideal uplink channel

estimation, the above transformed precoder can be easily shown

to diagonalize the beamformed multi-user channel matrix

HUnrc. This applies in an exact form with ZF precoding

while is a very good approximation with MRT precoding when

the BS array size N is large. Note that, in the special case

where the NRC estimation method is capable of estimating the

BS side NRC only, (14) reduces to Unrc = B̂−1U.

The system spectral efficiency performance with the NRC-

aware precoder, assuming ideal NRC estimates, is shown in

Fig. 2. As can be observed, the NRC-aware precoder achieves

the ideal system performance, i.e., the performance with fully

reciprocal channels. The evaluation setup and details of spectral

efficiency calculations will be described in Section IV.
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It is also noted that an alternative approach to construct

NRC-aware downlink precoder is to first correct the effective

downlink channel estimates based on the estimated NRC

matrices Â and B̂ as Ĥcor = ÂĤB̂, and then calculate the

precoder matrix based on this corrected downlink channel

estimate. However, in this work, we focus on the NRC

mitigation approach described in (14) which is shown in Fig. 2

to practically reach the performance of the ideal reciprocal

channel as long as accurate estimates of A and B are available.

III. PROPOSED ESTIMATION OF NRC MATRICES

The NRC mitigation method, i.e., the NRC-aware precoder

described in Section II-D requires the knowledge of the

matrices A and B at the BS. The information about these

matrices is not readily available, hence calling for efficient

estimation approaches. Thus, in this section, we will propose

a novel iterative OTA estimation framework for acquiring

accurate estimates of A and B, based on a novel pilot signaling

concept between the BS and UEs. Furthermore, computational

complexity analysis of the proposed estimation method is

pursued.

In general, the NRC variances σ2
F, σ2

L, σ2
rc, and the corre-

sponding realizations of the elements of A and B depend

on hardware characteristics and operating conditions, e.g.,

temperature, which vary slowly in time. Thus, the NRC

characteristics and the corresponding realizations of A and

B can be assumed to stay constant over many propagation

channel coherence intervals [14]. Therefore, it is sufficient to

perform the NRC estimation relatively infrequently, e.g, once

in every 10 minutes or even more irregularly [2], [10], which

makes the estimation pilot overhead negligible, when compared

to other signaling and pilot overheads that commonly rise from

channel estimation procedures.

A. Proposed Pilot Signaling

In order to estimate the matrices A and B, we propose the

following round-trip pilot signaling approach:

1) BS transmits an N ×N orthonormal pilot matrix Xnrc.

2) Upon reception, without decoding, UEs send back the

conjugated versions of the received samples.

Based on the above scheme, the received multi-user pilot

signal matrix at UE side can be written as

Rnrc =
√

ρ̃dHXnrc + Z̃d, (15)

where ρ̃d is the downlink SNR and Z̃d is the K ×N multi-

user receiver noise matrix with i.i.d. CN (0, 1) entries. The

tilde sign is used in above and what follows to distinguish

these variables between the actual data transmission and pilot

signaling phases. Then, the corresponding received signal at

the BS with the UEs sending back the conjugated version of

(15) reads

Ynrc =
√

ρ̃uGR∗
nrc + Z̃u

=
√

ρ̃u
√

ρ̃dGH∗X∗
nrc + Z̃tot,

(16)

where ρ̃u is the uplink pilot SNR and Z̃u is the N ×N BS

receiver noise matrix with i.i.d. CN (0, 1) entries. The total

effective noise matrix seen at the BS is denoted as Z̃tot =√
ρ̃uGZ̃∗

d + Z̃u. Note that, for notational simplicity, we have

assumed all the UEs to have the same uplink pilot SNR value

ρ̃u, while in practice, ρ̃u is likely to be different for different

UEs.

In above, the duration of the described overall NRC-related

pilot signaling is 2N symbols where the uplink and downlink

channels are assumed to be fixed. The coherence time of the

physical channels is typically in the order of several hundred

symbol intervals, determined mostly by the mobility of the

UEs and the system center-frequency. Hence, we assume

a scenario where the coherence time is at least 2N + K
symbols, taking into account both NRC-related pilot signaling

and uplink channel estimation. As mentioned in the previous

section, matrices A and B are expected to change very slowly

compared to channel coherence time and hence it is assumed

that their values are fixed during the above pilot signaling.

Fig. 3 illustrates the overall assumed radio frame or sub-

frame structure of the considered massive MIMO TDD system

including the proposed NRC estimation phase.

B. Overall Estimation Framework

As the initial step in estimating A and B, the BS processes

the received signal Ynrc in (16) as Q = Y∗
nrcX

H
nrc. Since

the pilot matrix Xnrc has the property XH
nrcXnrc = IN , the

processed signal can be expressed as

Q =
√
ρ̃u
√

ρ̃dG
∗AGTB+V, (17)

where the processed noise matrix is given by V = Z̃∗
totX

H
nrc.

Now the target is to estimate A and B from (17) assuming

that the BS has the uplink channel estimate Ĝ. In this respect,

denoting the estimates at m’th iteration as Â(m) and B̂(m),
we propose the following iterative estimation framework:

1) Initialize, Â(0) = IK , obtain the estimate B̂(1).
2) Substitute B̂(1) for B in (17) and obtain estimate Â(1).
3) Successively refine the estimates Â and B̂ by fixing the

current value of one and solving for the other from (17).

In above, IK is used for initialization since the deviation

matrix A′ in A = IK +A′ is in practice small. Notice that
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Fig. 3. Assumed radio frame or sub-frame structure incorporating CSI and NRC estimation as well as actual data transmission phases.

the processed received signal in (17) and the corresponding

uplink channel estimate are available at multiple parallel sub-

carriers in an OFDM/OFDMA based radio system. Hence, the

above iterative estimation scheme can be carried out in a per

subcarrier manner as well. Furthermore, as mentioned in [6],

transceivers’ baseband-to-baseband behavior can be modeled

by allpass-like transfer functions, therefore it is reasonable to

assume that the NRC matrices A and B are largely similar

over a set of adjacent subcarriers Csc where we conservatively

assume Csc ≤ 10, whereas G is subject to variations depending

on the frequency selectivity of the propagation channels. Based

on these assumptions, the estimates Â and B̂ can be obtained

by averaging the per subcarrier estimates over Csc neighboring

subcarriers, i.e.,

Â =
1

Csc

Csc∑
l=1

Âl

B̂ =
1

Csc

Csc∑
l=1

B̂l,

(18)

where l denotes the relative subcarrier index. Next we will

present the actual proposed methods to obtain the estimates for

A and B. To simplify the notation, we will drop the relative

subcarrier index l. Note that the above averaging helps reducing

the NRC estimation errors, mainly caused by additive receiver

noise, regardless of how small the particular NRC values are,

unless being below the machine precision and thus swallowed

by finite word-length effects.

C. Proposed Estimation of B

As described earlier, B̂ is iteratively refined using the current

estimate of A. The proposed estimator builds on solving the

matrix equation in (17) based on minimizing the Frobenius

norm criterion. With this setting, the refined estimate of B can

be formulated as

B̂(m+ 1) = argmin
B

∣∣∣∣∣∣Q−
√

ρ̃u
√

ρ̃dĜ
∗Â(m)ĜTB

∣∣∣∣∣∣2
F
,

(19)

where the subscript F denotes the Frobenius norm.

Next, by denoting T(m) =
√
ρ̃u

√
ρ̃dĜ

∗Â(m)ĜT ∈
C

N×N , we have the following identity

||Q−T(m)B||2F =
K∑
j=1

||qj −T(m)bj ||2 , (20)

where qj ∈ C
N×1 and bj ∈ C

N×1 denote the j’th columns

of Q and B, respectively. Since the j’th term in the sum

/2

/ 2

corresponding antenna unit

0, ( ) 0D C D

1, ( ) 4D C D

2 , ( ) 8D C D

Fig. 4. Illustration of sparsity threshold D on 10×10 rectangular BS antenna
grid with λ/2 antenna spacing.

depends only on bj , minimizing the total sum is equivalent to

separately minimizing each term ||qj −T(m)bj ||2. Thus, the

estimation of matrix B is eventually simplified to estimation

of each column of B, independently.

As mentioned earlier, the BS NRC matrix incorporates both

the frequency-responses and the mutual coupling effects at

the BS side. The power of mutual coupling between two

different antenna units is related to their physical distance,

thus the off-diagonal elements in B become smaller as the

distance between the two corresponding antenna units increases.

Here, in estimating the BS NRC matrix B, we treat those off-

diagonal entries which are corresponding to two antennas with

a distance larger than a pre-defined threshold, called sparsity

threshold D, as zeros, yielding a sparse matrix structure for B̂.

We also define the maximum number of coupled neighboring

antenna elements as C(D). In Fig. 4 an example 10 × 10
rectangular antenna layout with λ/2 antenna spacing between

the neighboring elements is shown with 3 different values of

D, namely D = 0, 1 and
√
2, measured as multiples of λ/2.

When D = 0, it is assumed that there is no mutual coupling

and C(D) = 0, whereas for D = 1 and D =
√
2, the central

antenna elements are coupled with at most C(D) = 4 and

C(D) = 8 closest neighboring antenna elements. Note that,

the antenna elements close to the edges of the grid are coupled

with lower number of antenna units. This is illustrated in Fig. 4

where for D = 1, the bottom left antenna element is assumed

to be coupled with only 2 ≤ C(1) = 4 antennas.

The following column-wise estimator will build on the
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assumption that B has a sparse structure and the number of

non-zero row entries in any column j, denoted as Rj , satisfies

Rj ≤ R (D) , (21)

where R(D) = C(D)+1. It is further assumed that the index of

non-zero entries of bj are known, which is directly determined

by the antenna system architecture and geometry, and the

assumed pre-defined coupling threshold discussed above. With

these assumptions, we define a reduced vector of dimension

Rj × 1, bred
j , that contains the non-zero entries of bj . The

indexes of non-zero entries of bj are then mapped to the column

numbers which we keep when constructing Tred
j (m) ∈ C

N×Rj .

If the j’th row is kept when constructing bred
j , then similarly,

the j’th column is kept to construct Tred
j (m). Based on these,

we can formulate the estimation of columns of B̂(m + 1)
through a reduced system of equations as

b̂red
j (m+ 1) = argmin

bred
j

∣∣∣∣qj −Tred
j (m)bred

j

∣∣∣∣2 . (22)

The solution to (22) is then given by

b̂red
j (m+ 1) =

(
Tred

j (m)
)†

qj . (23)

Once the vector b̂red
j (m+1) is solved from (23), then b̂j(m+1)

can be obtained straightforwardly by appending zeros to the

appropriate rows.
Note that, when A ≈ IK , we also have G∗AGT ≈ G∗GT,

where the matrix G∗GT =
(
GGH

)∗
is positive semi-definite

matrix and of rank K if G is of rank K. The obtained b̂red
j

and the corresponding minimum expression from (22) depend

on the corresponding values of K and D. The column space of

Tred
j (m) has higher dimensionality for larger K. Thus, when

D is fixed, for larger K one can solve for b̂red
j from (23)

which yields smaller values of
∣∣∣∣qj −Tred

j (m)bred
j

∣∣∣∣2.

D. Proposed Estimation of A
Next, given B̂(m) from (19), the (refined) estimate of A

can be formulated based on minimizing the Frobenius norm

criterion as

Â(m) = argmin
A

∣∣∣∣∣∣Q−
√

ρ̃u
√
ρ̃dĜ

∗AĜTB̂(m)
∣∣∣∣∣∣2
F
. (24)

For diagonal A, the solution to (24) can be obtained as

Â(m) = diag
(
ξ̂
)
. (25)

where ξ̂ = [IK , iIK ] ψ̂ and the vector ψ̂ ∈ C
2K×1 is given as

ψ̂ =

⎛
⎝ N∑

j=1

W̄T
j W̄j

⎞
⎠−1

N∑
j=1

W̄T
j q̄j . (26)

In above, q̄j =
[�{qT

j },�{qT
j }
]T ∈ C

2N×1, and defining

the N ×K matrix Wj =
√
ρ̃u

√
ρ̃dĜ

∗diag
([

ĜTB̂(m)
]
j

)
,

with
[
ĜTB̂(m)

]
j

being the j’th column of ĜTB̂(m),

W̄j ∈ C
2N×2K is given as

W̄j =

[
�{Wj}, −�{Wj}
�{Wj}, �{Wj}

]
. (27)

Proof: See Appendix.

E. Computational Complexity Analysis

The computational complexity of the proposed NRC estima-

tion method includes the complexity of both the BS side NRC

estimation and the UE side NRC estimation phases, with all

estimation processing carried out at the BS side. The order of

the computing complexity is here analyzed, strictly-speaking

per iteration round. However, since the numerical results of

Section IV show that only 2−4 iterations are needed in practice,

the below analysis reflects correctly the overall order of the

estimation complexity.

For BS side, (23) should be performed to estimate j’th

column of B. The first step here is to invert Tred
j (m). The

size of Tred
j (m) is N ×Rj , thus the complexity is O (NR2

j

)
.

In the next step, there is a matrix-vector multiplication as(
Tred

j (m)
)†

qj where the size of
(
Tred

j (m)
)†

is Rj ×N and

the size of qj is N × 1. Thus the complexity is O (NRj). As

mentioned, these two steps are required to be performed to

construct each of the K columns of B̂. Therefore, the total

complexity for BS NRC estimation is of the form

O
⎛
⎝ K∑

j=1

NR2
j

(
1 +

1

Rj

)⎞⎠ ≈ O
(
KNR (D)

2
)
. (28)

For UE side NRC estimation, the first step is to calculate∑N
j=1 W̄

T
j W̄j where the size of W̄j is 2N × 2K. Thus the

complexity of each matrix multiplication is O (NK2
)

and

total complexity is O (N2K2
)
. Next, the obtained 2K × 2K

matrix is inverted and the complexity is O (K3
)
. Then, in

order to calculate
∑N

j=1 W̄
T
j q̄j , a 2K × 2N by 2N × 1

matrix multiplication is required to be performed N times.

Thus, the complexity is O (N2K
)
. Finally, a matrix-vector

multiplication,
(∑N

j=1 W̄
T
j W̄j

)−1∑N
j=1 W̄

T
j q̄j , is needed

where the sizes of the matrix and the vector are 2K × 2K
and 2K × 1, respectively. Thus, the complexity is O (K2

)
.

Therefore, the total complexity for UE NRC estimation is of

the form

O
((

N2K2 +K3
)(

1 +
1

K

))
≈ O (N2K2 +K3

)
. (29)

Based on the derived complexity orders in (28) and (29),

we can express the total complexity for our proposed NRC

estimation method as

Total complexity ≈ O
(
KNR (D)

2
+N2K2 +K3

)
. (30)

For reference, the computing complexity of the method

proposed in [6] is shown in [27] to be of the or-

der O
((

N2 +K2
)2)

. Thus, the method proposed in this

manuscript is of substantially lower complexity, especially

when the BS array size N is large.

IV. NUMERICAL EVALUATIONS AND ANALYSIS

A. Basic Evaluation Settings and Performance Measures

In this section, by using extensive computer simulations,

we evaluate the performance of the proposed NRC estimation
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and mitigation scheme. We also compare its performance to

the performance of two other existing schemes in literature,

namely the direct-path based least squares (LS) known as

“Argos” [2] and the generalized neighbor LS [11]. The latter is

the optimized version of the generalized LS method presented

in [10] and is shown in [11] to have the best performance

amongst several existing NRC estimation methods. Both LS

based methods estimate the BS NRC by the means of mutual

coupling between the BS antennas, while they depend on the

downlink demodulation pilots to compensate the NRC in the

UE side.

At communication system level, we consider the downlink

spectral efficiency as the key performance metric. For the

proposed method and the corresponding system which does

not utilize downlink demodulation pilots, this is defined as

ηs,1 = K
(
1− τu

T

)
log2 (1 + SINReff) . (31)

In above, T refers to the total number of symbols in a channel

coherence interval, while SINReff in (31) is the effective signal

to interference and noise ratio (SINR) [19], [21], which can

be written, based on (10)−(13), as

SINReff =

∣∣√ρdα̂k

∣∣2
ISI + IIUI + 1

, (32)

where α̂k = E
[
βhT

k uk

]
is the assumed statistical complex

beamforming gain of the useful signal term available at the

receiver of the k’th UE. Note that the expression in (31) is

strictly-speaking a lower-bound, reflecting a worst-case scenario

with uncorrelated Gaussian interference [19], [21]. In (32), the

powers of the SI and IUI terms are given by

ISI = ρdE
[∣∣βhT

k uk − α̂k

∣∣2]
IIUI = ρdβ

2
K∑

i=1,i �=k

E

[∣∣hT
k ui

∣∣2] , (33)

where the expectations are over different NRC variable and

propagation channel realizations. Finally, we note that the

expectations in (33) are evaluated numerically.

On the contrary, the other two NRC estimation methods

utilize τd ≥ K downlink pilots for downlink CSI acquisition

as described in [23]. Thus, we redefine the lower-bound on

spectral efficiency as [23]

ηs,2 = K

(
1− τu + τd

T

)
E [log2 (1 + SINRinst)] . (34)

Furthermore, the instantaneous SINR, SINRinst, is defined as

[23]

SINRinst =

∣∣√ρdα̂k,MMSE

∣∣2
K∑
i=1

E

[∣∣√ρdεi
∣∣2]+ K∑

i=1,i �=k

∣∣√ρdα̂i,MMSE

∣∣2 + 1

,

(35)

where α̂i,MMSE is the MMSE estimate of βhT
k ui, while εi =

βhT
k ui − α̂i,MMSE is the MMSE channel estimation error and

is uncorrelated to α̂i,MMSE [23]. Finally, the expectations in

(34)–(35) are evaluated numerically.

The other highly relevant performance metric is the normal-

ized mean squared error (MSE) for NRC estimation which is

defined as

δ2e =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣∣∣B− B̂
∣∣∣∣∣∣2
F

||B||2F
, for BS side∣∣∣∣∣∣diag (A)− diag

(
Â
)∣∣∣∣∣∣2

F

||diag (A)||2F
, for UE side.

(36)

As a baseline simulation scenario, we consider a BS which

is equipped with N = 100 infinitely thin λ/2 dipole antennas

in a 10 × 10 square layout with λ/2 spacing as illustrated

in Fig. 4. The impedance matrix Z in (5) is computed based

on [24] for the assumed carrier-frequency of fc = 3.5 GHz

while Z0 = 50 Ω [6]. The impedances are assumed to be

frequency-independent, as the modulated signal RF bandwidth

is much smaller than the carrier frequency. The uplink channel

matrix G is assumed to have i.i.d. CN (0, 1) elements. The

BS serves K = 20 single-antenna UEs simultaneously on

the same time-frequency resource through either ZF or MRT

precoding. We assume a block-fading scenario where each

coherence interval contains T = 250 OFDM symbols. The

number of uplink pilots sent by each UE in each coherence

interval is equal to the number of scheduled UEs, τu = K,

and the uplink SNR in this phase is assumed to be ρu = 0
dB. As already stated in Section II-C, we assume that the

statistical beamformed downlink CSI, E
[
βhT

k uk

]
, used by

the UEs for data detection when no downlink CSI pilots are

available, is computed through averaging over both channel

and NRC variables. For the specific assumed example case of

G having i.i.d. CN (0, 1) elements, this can be shown to yield

[23]

E
[
βhT

k uk

]
=

⎧⎨
⎩
√

(N−K)τuρu

K(τuρu+1) , for ZF√
Nτuρu

K(τuρu+1) , for MRT.
(37)

Whereas, for the cases where UEs rely on downlink pilots for

decoding purposes, i.e., direct-path based LS and generalized

neighbor LS methods, the number of downlink pilots in each

coherence interval is set to be τd = K [23], and their SNR is

equal to the downlink SNR in data transmission phase which

is assumed to be ρd = 20 dB. The SNR of the coupling

channel between two neighboring antennas is set to be 80 dB

for the two mentioned NRC mitigation reference methods [11].

The uplink and downlink SNRs for the pilot signaling in the

proposed NRC estimation framework are set to be ρ̃u = 0
dB and ρ̃d = 10 dB, respectively. Note that while different

UEs are likely to have different ρ̃u values in practice, in order

to have fair comparison between the proposed and the two

mentioned state-of-the-art NRC estimation methods, we have

deliberately assumed a worst case scenario in which all the

UEs have very low uplink SNR value of ρ̃u = 0 dB. In the

proposed method, the estimated NRC matrices are averaged

over 10 neighboring subcarriers, Csc = 10, over which the

NRC realizations are assumed to be constant. Finally, the

variances of transceivers frequency-responses in both the BS

and the UE side are assumed to be −20 dB, i.e., σ2
L = σ2

F =
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Fig. 5. (a) NRC estimation normalized MSE and (b) system spectral efficiency
vs. input reflection coefficients variance (σ2

rc) for different values of the sparsity
threshold D with N = 100, K = 20, τu = K, ρu = 0 dB, T = 250.

−20 dB. For simulation simplicity, the distributions of the NRC

variables are assumed to be Gaussians. These are the baseline

simulation settings, while some of the parameter values are

also varied in the evaluations.

B. Numerical Results

1) Effect of the Sparsity Distance Threshold D: Here, we

will study the effect of D on the normalized MSE and the

system spectral efficiency. In this respect, Fig. 5a illustrates the

normalized MSE of the UE and BS NRC estimation under the

baseline system settings, with the value of σ2
rc being varied. It

can be seen that the choice of D = 0, i.e., estimating only the

diagonal elements of B, yields the lowest MSE for UE NRC

estimation. Note that, in the proposed NRC estimation method,

the choice of D influences the UE side estimation as well since

A and B are estimated iteratively as described in Section III-B.

On the other hand, the highest BS NRC estimation accuracy is

achieved for D = 0 only when σ2
rc ≤ −21 dB, whereas higher

estimation accuracy is obtained for D = 1 when σ2
rc > −21

dB. Following that, the spectral efficiencies plotted in Fig. 5b

illustrate the combined effect of UE and BS NRC estimation.

As can be seen, the highest spectral efficiency is achieved for
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Fig. 6. (a) NRC estimation normalized MSE and (b) system spectral efficiency
vs. number of UEs (K) for N = 100, τu = K, ρu = 0 dB, T = 250.
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Fig. 7. NRC estimation normalized MSE vs. input reflection coefficients
variance (σ2

rc) for different values of the sparsity threshold D with N = 100,
K = 40, τu = K, ρu = 0 dB, T = 250.

D = 0 when σ2
rc ≤ −22 dB and for D = 1 when σ2

rc > −22
dB.

For fixed NRC characteristics of σ2
L = σ2

F = σ2
rc = −20

dB, Fig. 6 evaluates the normalized estimation MSE and the

system spectral efficiency for different values of D and against

the number of scheduled UEs K. Fig. 6a shows that higher
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for N = 100, K = 20, τu = K, ρu = 0 dB, T = 250.

UE and BS NRC estimation accuracy is achieved for D = 0
when K < 20, whereas when the number of scheduled users

exceeds K ≥ 20 the choice of D = 1 yields the highest BS

NRC estimation accuracy. For K ≥ 20, UE NRC estimation

performances are largely similar for all three choices of D.

Following these, Fig. 6b illustrates that from spectral efficiency

perspective, the optimum sparsity distance threshold is D =
0 for K < 20 and D = 1 for K ≥ 20. Thus, except in

Fig. 7 which similarly evaluates the impacts of D on the NRC

estimation performance, in the continuation D = 0 and D = 1
will be used under the settings of K < 20 and K ≥ 20,

respectively. As discussed in the previous section, when A ≈
IK , G∗AGT which is used in the estimation process is of

rank K. Therefore, having higher number of K increases the

accuracy of the BS NRC estimation in the proposed method

which facilitates the estimation of more non-diagonal elements

in B, i.e., higher values for D. In order to better illustrate

this point, Fig. 7 provides additional results for higher σ2
rc

values with K = 40, while keeping other simulation setup and

parameter settings the same as in Fig. 5a. As expected, for

the considered higher value of K (i.e., K = 40), D =
√
2

outperforms D = 1 at higher σ2
rc values.

It should be noted that for all the cases in Fig. 5, Fig. 6,

and Fig. 7, the proposed iterative NRC estimator is executed

over a sufficient amount of iterations such that convergence

is obtained. This is commonly in the order of 4 iterations, as

illustrated more specifically next.

2) Effect of the Number of Iterations: Fig. 8 illustrates

the reduction in NRC estimation normalized MSE over NRC

estimation iteration steps. It is shown in Fig. 8 that, even with

high NRC levels of σ2
L = σ2

F = σ2
rc = −15 dB, having 4

iteration rounds is sufficiently good for the proposed NRC

estimator to converge. Therefore, in the continuation, we set

the number of iteration rounds to 4.

3) Effect of the Number of Scheduled Users K: In Fig. 9,

the NRC estimation normalized MSE and the system spectral

efficiency are plotted against the number of scheduled UEs K
for σ2

rc = −20 dB. Fig. 9a shows that while the direct-path

based LS has the worst performance, the proposed method is

the best option for estimating BS NRC for K ≥ 20 with a
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Fig. 9. (a) NRC estimation normalized MSE and (b) system spectral efficiency
vs. number of UEs (K) for N = 100, τu = K, ρu = 0 dB, T = 250.

high accuracy where MSE is in the order of 10−3. For the

direct-path based LS [2] and the generalized neighbor LS

[11], the normalized MSE for UE side NRC is not shown. It

is mentioned in [2] and [11] that additional downlink pilot

signaling per coherence interval can be used together with

UE side estimation for UE side NRC acquisition. However,

no detailed description is provided on the actual pilot signal

structure or the actual estimation method.

The corresponding system spectral efficiency performances

are evaluated and shown in Fig. 9b. The proposed NRC

estimation and mitigation scheme clearly outperforms the direct-

path based LS and the generalized neighbor LS methods. The

difference between the performance of the proposed method

and the other two methods increases as K grows. Remarkably,

for K = 70, the difference between the proposed method and

the other two methods is already in the order of 100 bits/s/Hz.

Another advantage in utilizing the proposed NRC estimation

scheme is that the optimum number of UEs Kopt, which is

defined as the number of scheduled UEs which maximizes the

spectral efficiency, is higher compared to the other two NRC

estimation methods. For instance under ZF precoding Kopt is

around 60 for the proposed method whereas for the LS based

methods Kopt is between 40 and 50.
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4) Effect of Downlink SNR: In Fig. 10, the system spectral

efficiency is plotted against the downlink SNR when σ2
rc = −20

dB. The results show clear advantage in employing the proposed

method in estimating NRC for all SNR values. The proposed

estimation and mitigation method outperforms the LS based

methods for both low and high SNR regions. Especially, the

performance difference is most visible for high SNR region

under ZF precoding.

5) Effect of the Input Reflection Coefficient: Fig. 11 shows

the impact of the variance of the input reflection coefficients on

the achievable spectral efficiency. The proposed estimation and

mitigation method again outperforms the other two LS based

methods. The difference between the proposed method and the

other two methods increases as σ2
rc grows, which is due to the

ability of the proposed method to estimate the non-diagonal

elements in the BS NRC matrix. It should be noted that D = 1
is used for obtaining the results in Fig. 11, and there is still

room for improving the performance of the proposed method

by adaptively selecting the optimum D according to the level

of σ2
rc as shown already in Fig. 5b and Fig. 7.

6) Summary of the Obtained Results: Overall, as observed

through the extensive numerical evaluations in various sce-

narios, the proposed NRC estimation method outperforms the

other two state-of-the-art methods. Selected technical aspects

can be summarized as follows:

• Employing the proposed NRC estimation method elimi-

nates the need to send downlink demodulation pilots since

the proposed OTA framework facilitates estimating both

the BS side and UE side NRC characteristics in the base

station. Therefore, more time-frequency resources can be

allocated in each coherence interval for actual downlink

data transmission purposes which improves the spectral

efficiency.

• The proposed NRC estimation method is more and

more superior over the two reference methods when

the number of scheduled UEs K grows. One reason for

this is that increasing K is forcing the other two NRC

estimation methods to spend more time for downlink pilot

transmission in each coherence interval, while a larger

number of scheduled users improves the accuracy of the

proposed NRC estimation method.

• Due to the ability to estimate also non-diagonal elements

of the BS NRC matrix, the difference between the

performance of the proposed NRC estimation method

and the other two methods increases as the power of BS

antenna mutual coupling mismatch grows.

V. CONCLUSION

In this work, we proposed an efficient NRC estimation and

mitigation framework for multi-user massive MIMO TDD

networks to compensate the jointly coexisting BS and UE

side NRC. In general, even relatively modest NRC levels can

cause significant performance loss in the achievable spectral

efficiency when only standard NRC-blind MRT or ZF downlink

precoding is employed. A novel OTA-based approach incor-

porating a dedicated round-trip pilot signaling with feasible

pilot overhead together with sparsity-aided efficient iterative

estimation techniques were proposed for the acquisition of

the NRC matrices at the BS. Unlike the existing state-of-the-

art methods, the proposed NRC estimation method acquires

both the UE transceiver NRC as well as the BS transceiver

and antenna system NRC, and does not rely on downlink

demodulation pilots during the actual data transmission phase

to compensate the NRC in the UE side. Therefore, it can

be efficiently employed in massive MIMO systems that rely

only on the statistical knowledge of the beamformed downlink

channels at terminals for data decoding with very low system

pilot overhead. The extensive computer simulations showed

that for practical values of the NRC levels, SNRs and the

number of spatially multiplexed users, the proposed estimation

and mitigation method clearly outperforms the existing state-

of-the-art methods in terms of the system spectral efficiency.

APPENDIX

PROOF FOR ESTIMATION OF A

Let

L Δ
=
∣∣∣∣∣∣Q−

√
ρ̃u
√

ρ̃dĜ
∗AĜTB̂(m)

∣∣∣∣∣∣2
F
. (38)



12 IEEE TRANSACTIONS ON SIGNAL PROCESSING

Then,

L =

N∑
j=1

∣∣∣∣
∣∣∣∣qj −

√
ρ̃u
√

ρ̃dĜ
∗A
[
ĜTB̂(m)

]
j

∣∣∣∣
∣∣∣∣2

=

N∑
j=1

∣∣∣∣
∣∣∣∣qj −

√
ρ̃u
√

ρ̃dĜ
∗diag

([
ĜTB̂(m)

]
j

)
ξ

∣∣∣∣
∣∣∣∣2 ,

(39)

where ξ
Δ
= [a1, a2, · · · , aK ]

T
.

By using Wj =
√
ρ̃u

√
ρ̃dĜ

∗diag
([

ĜTB̂(m)
]
j

)
, (39)

can be re-written as

L =
N∑
j=1

||qj −Wjξ||2

=
N∑
j=1

∣∣∣∣q̄j − W̄jψ
∣∣∣∣2 Δ

= L̄ (ψ) ,

(40)

where ψ
Δ
=
[�{ξT},�{ξT}]T. Therefore, the solution Â(m)

can be obtained by

Â(m) = diag
(
[IK , iIK ] ψ̂

)
, (41)

where

ψ̂ = argmin
ψ∈RK

L̄ (ψ) . (42)

Since L̄ (ψ) is convex, (42) can be solved from the partial

derivative equation
∂L̄(ψ)
∂ψ = 0, which finally yields the solution

given by (26).

ACKNOWLEDGMENT

The estimation of A is building on the work presented in

[28]. The proof in Appendix A is a result of discussion with the

authors of [28], H. Q. Ngo and E. G. Larsson, whose technical

guidance is greatly acknowledged.

REFERENCES

[1] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski,
“Five disruptive technology directions for 5G,” IEEE Communications
Magazine, vol. 52, no. 2, pp. 74–80, February 2014.

[2] C. Shepard, H. Yu, N. Anand, E. Li, T. Marzetta, R. Yang, and L. Zhong,
“Argos: Practical many-antenna base stations,” in Proceedings of the 18th
Annual International Conference on Mobile Computing and Networking,
ser. Mobicom ’12. New York, NY, USA: ACM, 2012, pp. 53–64.

[3] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive
MIMO for next generation wireless systems,” IEEE Communications
Magazine, vol. 52, no. 2, pp. 186–195, February 2014.

[4] A. Bourdoux, B. Come, and N. Khaled, “Non-reciprocal transceivers in
OFDM/SDMA systems: Impact and mitigation,” in Radio and Wireless
Conference, 2003. RAWCON ’03. Proceedings, Aug 2003, pp. 183–186.

[5] Y. Zou, O. Raeesi, R. Wichman, A. Tolli, and M. Valkama, “Analysis
of channel non-reciprocity due to transceiver and antenna coupling
mismatches in TDD precoded multi-user MIMO-OFDM downlink,” in
2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall), Sept
2014, pp. 1–7.

[6] M. Petermann, M. Stefer, F. Ludwig, D. Wubben, M. Schneider, S. Paul,
and K. D. Kammeyer, “Multi-user pre-processing in multi-antenna OFDM
TDD systems with non-reciprocal transceivers,” IEEE Transactions on
Communications, vol. 61, no. 9, pp. 3781–3793, September 2013.

[7] H. Wei, D. Wang, and X. You, “Reciprocity of mutual coupling for TDD
massive MIMO systems,” in Wireless Communications Signal Processing
(WCSP), 2015 International Conference on, Oct 2015, pp. 1–5.

[8] W. Zhang, H. Ren, C. Pan, M. Chen, R. C. de Lamare, B. Du, and
J. Dai, “Large-scale antenna systems with UL/DL hardware mismatch:
Achievable rates analysis and calibration,” IEEE Transactions on
Communications, vol. 63, no. 4, pp. 1216–1229, April 2015.

[9] F. Athley, G. Durisi, and U. Gustavsson, “Analysis of massive MIMO
with hardware impairments and different channel models,” in 2015 9th
European Conference on Antennas and Propagation (EuCAP), May 2015,
pp. 1–5.

[10] R. Rogalin, O. Y. Bursalioglu, H. Papadopoulos, G. Caire, A. F. Molisch,
A. Michaloliakos, V. Balan, and K. Psounis, “Scalable synchronization
and reciprocity calibration for distributed multiuser MIMO,” IEEE
Transactions on Wireless Communications, vol. 13, no. 4, pp. 1815–
1831, April 2014.

[11] J. Vieira, F. Rusek, and F. Tufvesson, “Reciprocity calibration methods
for massive MIMO based on antenna coupling,” in 2014 IEEE Global
Communications Conference, Dec 2014, pp. 3708–3712.

[12] H. Wei, D. Wang, H. Zhu, J. Wang, S. Sun, and X. You, “Mutual coupling
calibration for multiuser massive MIMO systems,” IEEE Transactions
on Wireless Communications, vol. 15, no. 1, pp. 606–619, Jan 2016.

[13] H. Wei, D. Wang, J. Wang, and X. You, “TDD reciprocity calibration
for multi-user massive MIMO systems with iterative coordinate descent,”
Science China Information Sciences, vol. 59, no. 10, p. 102306, 2015.

[14] M. Guillaud, D. T. M. Slock, and R. Knopp, “A practical method for
wireless channel reciprocity exploitation through relative calibration,” in
Proceedings of the Eighth International Symposium on Signal Processing
and Its Applications, 2005., vol. 1, August 2005, pp. 403–406.

[15] Y. Zou, O. Raeesi, and M. Valkama, “Efficient estimation and compensa-
tion of transceiver non-reciprocity in precoded TDD multi-user MIMO-
OFDM systems,” in 2014 IEEE 80th Vehicular Technology Conference
(VTC2014-Fall), Sept 2014, pp. 1–7.

[16] M. Guillaud and F. Kaltenberger, “Towards practical channel reciprocity
exploitation: Relative calibration in the presence of frequency offset,”
in 2013 IEEE Wireless Communications and Networking Conference
(WCNC), April 2013, pp. 2525–2530.

[17] F. Kaltenberger, H. Jiang, M. Guillaud, and R. Knopp, “Relative channel
reciprocity calibration in MIMO/TDD systems,” in 2010 Future Network
Mobile Summit, June 2010, pp. 1–10.

[18] O. Raeesi, A. Gokceoglu, Y. Zou, E. Bjrnson, and M. Valkama,
“Performance analysis of multi-user massive MIMO downlink under
channel non-reciprocity and imperfect CSI,” IEEE Transactions on
Communications, vol. PP, no. 99, pp. 1–1, 2018.

[19] H. Yang and T. L. Marzetta, “Performance of conjugate and zero-forcing
beamforming in large-scale antenna systems,” IEEE Journal on Selected
Areas in Communications, vol. 31, no. 2, pp. 172–179, February 2013.

[20] J. Jose, A. Ashikhmin, P. Whiting, and S. Vishwanath, “Channel
estimation and linear precoding in multiuser multiple-antenna TDD
systems,” IEEE Transactions on Vehicular Technology, vol. 60, no. 5,
pp. 2102–2116, Jun 2011.

[21] J. Jose, A. Ashikhmin, T. L. Marzetta, and S. Vishwanath, “Pilot contam-
ination and precoding in multi-cell TDD systems,” IEEE Transactions on
Wireless Communications, vol. 10, no. 8, pp. 2640–2651, August 2011.

[22] E. G. Larsson and H. V. Poor, “Joint beamforming and broadcasting
in massive MIMO,” IEEE Transactions on Wireless Communications,
vol. 15, no. 4, pp. 3058–3070, April 2016.

[23] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Massive MU-MIMO
downlink TDD systems with linear precoding and downlink pilots,” in
Communication, Control, and Computing (Allerton), 2013 51st Annual
Allerton Conference on, Oct 2013, pp. 293–298.

[24] S. A. Schelkunoff and H. T. Friis, Antennas Theory and Practice. New
York: John Wiley & Sons, 1952.

[25] B. M. Hochwald, T. L. Marzetta, and V. Tarokh, “Multiple-antenna
channel hardening and its implications for rate feedback and scheduling,”
IEEE Transactions on Information Theory, vol. 50, no. 9, pp. 1893–1909,
Sept 2004.

[26] H. Q. Ngo and E. G. Larsson, “No downlink pilots are needed in
TDD massive MIMO,” IEEE Transactions on Wireless Communications,
vol. 16, no. 5, pp. 2921–2935, May 2017.

[27] M. Petermann, M. Stefer, D. Wbben, M. Schneider, and K. D. Kammeyer,
“Low-complexity calibration of mutually coupled non-reciprocal multi-
antenna OFDM transceivers,” in 2010 7th International Symposium on
Wireless Communication Systems, Sept 2010, pp. 285–289.

[28] H. Q. Ngo and E. G. Larsson, “EVD-based channel estimation in multicell
multiuser MIMO systems with very large antenna arrays,” in 2012 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), March 2012, pp. 3249–3252.



ESTIMATION AND MITIGATION OF CHANNEL NON-RECIPROCITY IN MASSIVE MIMO 13

Orod Raeesi received his M.Sc. degree (with dis-
tinction) from Tampere University of Technology
(TUT), Tampere, Finland, in 2011, and is currently
pursuing the Ph.D. degree at TUT. Currently, he
is working as a communications system specialist
with Nokia Mobile Networks, Espoo, Finland. His
research interests include IEEE 802.11 MAC and
PHY layer challenges, massive MIMO systems, TDD
channel non-reciprocity, ultra-reliable low latency
communications, system-level simulations, and 5G
mobile radio networks.

Ahmet Gokceoglu received M.Sc. (2010) and Ph.D.
Degrees (2014) from the Department of Electronics
and Communications Engineering, Tampere Univer-
sity of Technology, Finland, where he also held a
postdoctoral researcher position (2014-2016) together
with a visiting researcher position at Linköping uni-
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Performance Analysis of Multi-User
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Abstract—This paper analyzes the performance of linearly
precoded time division duplex based multi-user massive MIMO
downlink system under joint impacts of channel non-reciprocity
(NRC) and imperfect channel state information (CSI). We
consider a generic and realistic NRC model that accounts
for transceiver frequency-response as well as mutual coupling
mismatches at both user equipment (UE) and base station (BS)
sides. The analysis covers two most prominent forms of linear
precoding schemes, namely, zero-forcing (ZF) and maximum-
ratio transmission (MRT), and assumes that only the statistical
properties of the beamformed channel are used at the UE side
to decode the received signal. Under the approximation of i.i.d.
Gaussian channels, closed-form analytical expressions are derived
for the effective signal to interference and noise ratios (SINRs)
and the corresponding capacity lower bounds. The expressions
show that, in moderate to high SNR, the additional interference
caused by imperfect NRC calibration can degrade the perfor-
mance of both precoders significantly. Moreover, ZF is shown
to be more sensitive to NRC than MRT. Numerical evaluations
with practical NRC levels indicate that this performance loss in
the spectral efficiency can be as high as 42% for ZF, whereas
it is typically less than 13% for MRT. It is also shown that
due to the NRC, the asymptotic large-antenna performance of
both precoders saturate to an identical finite level. The derived
analytical expressions provide useful tools and valuable technical
insight, e.g., into calculating the NRC calibration requirements
in BSs and UEs for any given specific performance targets in
terms of effective SINR or the system capacity bound.

Index Terms—Capacity, channel reciprocity, frequency-
response mismatch, inter-user interference, linear precoding,
multi-user massive MIMO, mutual coupling, SINR.

I. INTRODUCTION

MASSIVE multiple-input multiple-output (MIMO) sys-

tems are envisioned to be one key enabling technology

for the next generation cellular networks, known as 5G [1], [2].

In massive MIMO systems, a base station (BS) uses an array
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with a large number of antennas N to serve K user equipments

(UEs) simultaneously on the same time-frequency resource,

where typically N � K [2]–[5]. Large-scale system analysis

shows that linear precoding techniques, e.g., zero-forcing (ZF)

and maximum ratio transmission (MRT) are asymptotically

optimal with increasing N , while very high spectral-efficiencies

can already be achieved with N being in the order of several

tens or hundreds [5]–[8].

The key requirement for employing the above precoding

schemes is to have accurate channel state information (CSI) at

the BS for efficient multi-user spatial precoding. In conventional

frequency-division duplex (FDD) based MIMO systems, where

the number of BS antennas is relatively low, UEs commonly

estimate downlink (DL) channels based on the received DL

training signals transmitted by the BS, and feed the estimated

DL channels back to the BS [9]. The number of DL pilots

required for estimating the channels is proportional to the

number of antennas in the BS which complicates the adoption

of such DL channel estimation and reporting methods in

massive MIMO systems. As an alternative approach, massive

MIMO systems are typically assumed to employ time-division

duplex (TDD), and thus estimate the DL channel based on

uplink (UL) pilots, relying on the reciprocity of the physical

DL and UL channels within channel coherence interval [10].

Thereby, the required amount of resources in such a TDD

based approach is only proportional to the number of served

UEs which is typically much smaller than the number of BS

antennas, i.e., K 
 N [5], [10].

The channel reciprocity in TDD systems holds only for the

physical propagation channels. However, when the effective

baseband-to-baseband transmission channels between the BS

and UEs are considered, incorporating also the impacts of

the involved transceiver circuits and antenna systems, the

reciprocity does not hold anymore due to the mismatches in

transmit and receive mode characteristics of the transceivers and

antenna systems [11]–[14]. More specifically, such mismatch

characteristics include the unavoidable differences between the

frequency-responses (FRs) of transmitter and receiver chains of

any individual transceiver, as well as the mutual coupling effects

between the antenna elements in multi-antenna devices [15]–

[17]. The impacts of such transceiver hardware and antenna

system induced non-reciprocity, also commonly referred to as

channel non-reciprocity (NRC), have been studied for massive

MIMO systems to a certain extent in [18]–[22]. To this end,

[18]–[22] study the system performance degradation in terms
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of signal to interference and noise ratios (SINRs) and the

corresponding achievable rates due to NRC, while assuming

otherwise ideal system with perfect CSI. Furthermore, the

system models in [20]–[22] consider only FR mismatch and

thus ignore the NRC induced by possible mutual coupling

mismatches, reported, e.g., in [15]–[17], [19] to be one

important practical source of non-reciprocity. Furthermore, only

the BS side NRC is considered in [19], [20].

In this paper, we analyze the SINR and achievable sum-

rate of linearly precoded TDD multi-user massive MIMO DL

transmission systems under the joint impacts of imperfect

CSI and NRC. We consider a generic and realistic NRC

model which takes into account both the FR and mutual

coupling mismatches at the UEs and the BS. The analysis

is carried out for the two most widely-adopted forms of linear

precoding, namely, ZF and MRT. As in [7], [22]–[24], we also

assume that UEs rely only on statistical DL CSI to decode

the received signals, and thus more sophisticated precoding

schemes, e.g., block diagonalization-based precoding, requiring

instantaneous demodulation CSI at UE receivers are excluded.

Based on the developed signal and system models, closed-

form expressions are derived for the effective SINRs and

the corresponding capacity lower bounds. To highlight the

substantial differences between this work and the existing

literature on performance analysis of NRC impaired massive

MIMO systems, we summarize the novel contributions of this

manuscript as follows:

1) In contrast to the simplified NRC models in [20]–[22]

which consider only FR mismatches, a more practical

and generic NRC model is considered in this work which

incorporates both FR and mutual coupling mismatches

in both BS and UE sides.

2) In contrast to the existing literature, the analysis in this

work does not impose any restrictions on the structure of

NRC matrices and the involved NRC variables, in terms

of their statistical distributions or mutual correlation.

Therefore, in addition to covering the systems without

explicit NRC calibration, the provided analytical results

can also be used in connection with residual non-

reciprocity after any given NRC calibration method, e.g.,

[25]–[27].

3) In contrast to [19], [21], a performance comparison

between ZF and MRT precoding schemes is also carried

out which shows the relative sensitivity of these precoders

to different NRC levels, with and without UL channel

estimation errors, in both non-asymptotic and asymptotic

cases.

4) In contrast to [18]–[22] which consider NRC alone, in

this work we consider the joint impacts of co-existing

NRC and UL channel estimation errors (called imperfect

CSI).

5) In contrast to [18]–[22], the derived analytical expressions

decompose the total received interference into two

parts, namely, interference power due to imperfect CSI,

without NRC, and the interference term due to NRC

(see expression (20) for ZF, and (25) for MRT). With

this decomposition, it is straightforward to quantify

the specific performance degradation due to NRC with

respect to the ideal reciprocal case, and also to draw

technical insight and establish design criteria for both

UL pilot signaling and reciprocity calibration.

In general, given the specific performance targets, such as

effective SINRs and/or capacity lower bound, the derived

analytical expressions reported in this manuscript can be

directly used in designing and dimensioning the system, e.g.,

choosing the appropriate precoder based on the performance-

complexity trade-off, deciding on the number of active antenna

elements, and/or extracting the needed accuracy of NRC

calibration schemes, as well as understanding the trade-offs

between UL pilot based channel estimation accuracy, NRC

calibration accuracy and the achievable system performance.

The rest of the paper is organized as follows. Section II

describes the fundamental multi-user massive MIMO system

model under transceiver and antenna system non-reciprocity

and imperfect CSI. Then, in Section III, analytical expressions

are derived for the effective DL SINR and capacity lower

bound under ZF and MRT precoding schemes. In Section

IV, the asymptotic SINR and achievable rate expressions are

derived for ZF and MRT precoding schemes, and also an

analytic performance comparison is pursued in both asymptotic

and non-asymptotic cases. In Section V, extensive numerical

results are provided to evaluate and verify the derived analytical

expressions and illustrate the impact of various non-reciprocity

sources and parameters on the system performance. Finally,

conclusions are drawn in Section VI. Selected details regarding

the derivations of the reported analytic expressions are provided

in an Appendix.

Notations: Throughout this paper, matrices (vectors) are

denoted with upper-case (lower-case) bold characters, e.g., V
(v). The superscripts (.)

T
, (.)

∗
, and (.)

H
stand for transpose,

conjugate, and conjugate-transpose, respectively. Expectation

operator is shown by E[.], Tr (.) represents the trace oper-

ator, Sum (.) yields the element-wise sum of the argument

matrix, while Var (.) and Cov (.) refer to the variance and

covariance operators, respectively. In and 0n denote n × n
identity and all-zero matrices, respectively. The element in

i-th row and j-th column of matrix V is represented by vij .

A diagonal matrix with elements (v1, · · · , vn) is shown by

diag (v1, · · · , vn), corresponding block-diagonal matrix is de-

noted by blkdiag (A1, · · · ,Ak), and CN (
0, σ2

)
represents a

circularly symmetric zero-mean complex Gaussian distribution

with variance σ2.

II. SYSTEM MODEL

We consider precoded downlink data transmission in a TDD

based multi-user massive MIMO system, where a BS with

N antennas serves K UEs simultaneously on the same time-

frequency resource. The number of antennas in k-th UE is

denoted by Mk and
∑K

i=1 Mk = Mtot, where N � Mtot. For

notational convenience, we assume that the total set of Mtot

antennas at the UE side is logically indexed such that the first

M1 antennas belong to UE 1, the next M2 antennas belong to

UE 2, and so forth. We also assume that all antenna elements

in the considered system are omni-directional, for simplicity.
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We further assume that the spatial transmit signal vector is

generated using linear precoding techniques, e.g., ZF or MRT.

All system models are written for an arbitrary subcarrier of the

underlying orthogonal frequency division multiplexing/multiple

access (OFDM/OFDMA) waveform, that is, before IFFT and

after FFT on the TX and RX sides, respectively, without

explicitly showing the subcarrier index. It is further assumed

that the cyclic prefix (CP) length is larger than the channel

delay spread.

A. Uplink Training, Downlink Transmission and Effective
Channels

The DL linear precoder is designed based on the CSI

acquired from UL pilots. The fundamental multi-user signal

models for the UL pilot and DL data transmission phases can

be expressed as [6], [28]

UL : Yp =
√
τuρuGXp +Np

DL : r =
√
ρdHx+ n,

(1)

where G ∈ C
N×Mtot and H ∈ C

Mtot×N are the effective

UL and DL channel matrices, respectively, that are explicitly

defined in the next paragraph. Regarding the UL pilot signal

model, ρu is the transmitted signal to noise ratio (SNR) of the

UL pilots, Yp = [yp
1, · · · ,yp

N ]
T

is the received signal matrix

at the BS receiver, stacking the received UL pilots over τu
symbol durations, where yp

n ∈ C
τu×1 contains the received

UL pilots at n-th BS antenna, and Np = [np
1, · · · ,np

N ]
T

is the

additive receiver noise matrix at the BS with i.i.d. CN (0, 1)
elements, where np

n ∈ C
τu×1 is the additive receiver noise

sequence at n-th BS antenna. The matrix stacking all the

transmitted UL pilots at all the antennas in the UE side is

shown by Xp =
[
xp
1, · · · ,xp

Mtot

]T
, where xp

m ∈ C
τu×1 is

the UL temporal pilot vector transmitted from m-th antenna

in the UE side. Then, for the DL, r ∈ C
Mtot×1 denotes the

received multi-user DL signal vector corresponding to all Mtot

antennas at the UE side, ρd is the transmitted SNR of DL

channel, and n ∈ C
Mtot×1 is the normalized additive receiver

noise vector at UE side with i.i.d. CN (0, 1) elements. The

precoded spatial transmit signal vector in the BS is shown

by x = [x1, · · · , xN ]
T

, where xn is the precoded sample

transmitted from n-th antenna in the BS.

As illustrated in Fig. 1, the effective DL and UL channels

are generally cascades of transceiver frequency-responses and

antenna mutual coupling at BS side, physical propagation

channels, and transceiver frequency-responses and antenna

mutual coupling at UE side. Thus, the effective DL channel

H and the effective UL channel G can be written explicitly

as [15], [16]

H = FRXDRXPTMTXBTX

G = BRXMRXPDTXFTX ,
(2)

where F = diag (f1, · · · , fMtot
) is the total FR matrix of

the UEs, D = blkdiag (D1, · · · ,DK) ∈ C
Mtot×Mtot is a

block-diagonal matrix representing the antenna mutual coupling

matrix at UE side, B = diag (b1, · · · , bN ) is the FR matrix of

the BS, M ∈ C
N×N is the antenna mutual coupling matrix of

the BS, and P ∈ C
N×Mtot is the reciprocal physical channel,

while the superscripts TX and RX specify the transmit and

receive modes, respectively. Notice that while the overall

UE side antenna mutual coupling matrices, DTX and DRX ,

are assumed to be block-diagonal, because of clear physical

separation of the different UE devices, the element matrices

DTX
k and DRX

k are generally full matrices of size Mk ×Mk.

B. Channel Non-Reciprocity Problem

As outlined above, in TDD networks the BS obtains DL CSI

based on the estimated UL channel, since DL and UL channels

share the same spectrum and are assumed to be reciprocal

within each channel coherence interval. The reciprocal nature

applies, however, only to the physical propagation channels

shown in Fig. 1. In addition to the physical channels, the

effective channels also include the responses of electronics

components used in the transmitting and receiving devices

which results into the effective DL and UL channels expressed

in (2).

Based on (2), the relation between the effective DL and UL

channels can now be expressed as

H = AGTC, (3)

where the matrices A and C are

A = FRXDRX
(
DTX

)−T (
FTX

)−1

C =
(
BRX

)−1 (
MRX

)−T
MTXBTX .

(4)

In (3) and (4), the matrices A ∈ C
Mtot×Mtot and C ∈ C

N×N

are incorporating the effects of transceivers and antenna systems

on the non-reciprocity in UEs and BS, respectively. The

matrix A is block-diagonal and can in general be written

as A = IMtot
+ A′ where A′ can be expressed as A′ =

blkdiag (A′
1, · · · ,A′

K), while the full matrix A′
k ∈ C

Mk×Mk

represents the NRC in the k-th UE. On the other hand, C which

represents the overall BS transceiver and antenna system non-

reciprocity, including mutual coupling mismatch, is generally

an N×N full matrix and can be decomposed as C = IN +C′.
In general, the channel non-reciprocity values vary very

slowly in time with respect to the variations in the propagation

channel [26] and hence A and C can be assumed to remain

constant over many channel coherence intervals. Furthermore,

it can easily be deduced that the effective DL and UL channels

are reciprocal if and only if the mismatch matrices satisfy

A′ = 0Mtot
and C′ = 0N .

For the purpose of the upcoming analysis, we next define

and assume the following. First, we write A′
k as A′

k =[
a′k1 , · · · ,a′kMk

]T
and by dropping the UE index k for

notational simplicity, we define Ra′
m

= Cov (a′m) for the

m-th antenna at the UE side ranging from 1 to Mtot. In matrix

A′, the elements are assumed to be zero-mean and the power

of a′mi is denoted by σ2
a′
mi

= E

[
|a′mi|2

]
. Similarly at the BS

side, C′ is also assumed to have zero-mean elements. Then, we

stack all the diagonal and non-diagonal elements of C′ in c′d =
[c′11, c

′
22, · · · , c′NN ] and c′od =

[
c′12, c

′
13, · · · , c′NN−1

]
, respec-

tively, and define Rc′d = Cov (c′d) and Rc′od = Cov (c′od).
Then, as explicitly shown in the appendix, the final closed-

form analysis results depend only on these NRC covariances
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(a)

(b)

Fig. 1. Principal illustration of (a) DL and (b) UL transmissions and receptions including physical propagation channels, transceiver frequency responses and
antenna mutual coupling in the devices in an example case of dual-antenna UEs.

but not, e.g., on the exact distributions of the NRC variables.

In all the forth-coming analysis and derivations, we adopt the

simplifying assumption or approximation that the elements of

the effective UL channel G are unit-variance i.i.d. Gaussians.

While the exact distribution and correlation characteristics of

real-world effective UL channel entries depend, among others,

on the exact antenna array configuration and angular spread

of the propagation environment, we adopt such simplifying

approximation since the closed-form rate expressions that one

can deduce by using such model have been shown to match

very accurately with practical massive MIMO measurements

[29]. This is a result of the channel hardening and favorable

propagation phenomena, which makes the performance less

dependent on the actual channel distribution. Hence, we use

i.i.d. Rayleigh fading in this work to study the channel non-

reciprocity aspects in a clean and rigorous manner.

C. Channel Estimation

To facilitate the channel estimation at the BS, the UEs si-

multaneously transmit mutually orthogonal UL pilot sequences

of length τu such that Xp (Xp)
H

= IMtot
with τu ≥ Mtot.

To estimate the UL channels, the BS multiplies Yp in (1) by

(Xp)
H

, which yields [7]

Y = Yp (Xp)
H
=

√
τuρuG+Q, (5)

where Q ∈ C
N×Mtot is the processed noise matrix with

i.i.d. CN (0, 1) elements. Using minimum mean-square error

(MMSE) channel estimator, the estimated effective UL channel

Ĝ ∈ C
N×Mtot can be shown to read [7], [28]

Ĝ =

√
τuρu

τuρu + 1
Y =

τuρu
τuρu + 1

G+

√
τuρu

τuρu + 1
Q, (6)

while the corresponding effective DL channel estimate, called

Ĥ, that is utilized by the NRC-unaware BS for downlink

precoding is obtained by Ĥ = ĜT. Based on (6) and the

orthogonality principle of MMSE estimators, the effective UL

channel matrix G can also be decomposed as [7], [28]

G = Ĝ+ ET = ĤT + ET, (7)

where E = [ε1, ..., εMtot
]
T ∈ C

Mtot×N accounts for the

UL channel estimation errors and has i.i.d. CN
(
0, 1

τuρu+1

)
elements. The estimated effective DL channel Ĥ has i.i.d.
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CN
(
0, τuρu

τuρu+1

)
elements and is independent of E . The

considered pilot signaling and UL channel estimation method

is the most common form of UL CSI acquisition for massive

MIMO systems in the existing literature [3], [6], [7]. Alternative

partial CSI acquisition based approaches, such as [30], are also

important but are outside the scope of this paper.

Incorporating (7) into (3), we finally obtain the relation

between the estimated and true effective DL channels as

H = AGTC = A
(
Ĥ+ E

)
C, (8)

which summarizes the joint effects of two co-existing non-

ideality sources, namely, UL channel estimation error and the

channel non-reciprocity, on the effective DL channel estimation.

III. PERFORMANCE ANALYSIS UNDER NRC AND

IMPERFECT CSI

In this section, we characterize the impacts of coexisting

NRC and imperfect CSI on the performance of linearly

precoded multi-user massive MIMO DL transmission. In this

respect, we will derive analytical expressions for the received

SINR and achievable rates for both ZF and MRT precoding.

A. Downlink Received Signal Model and SINR

We first express the linearly precoded DL transmit vector

x ∈ C
N×1 as

x = βUs, (9)

where U = [u1, ...,uMtot
] ∈ C

N×Mtot is the precoder matrix.

The normalized multi-user data vector including one stream

per UE antenna is denoted by s = [s1, ..., sMtot
]
T ∈ C

Mtot×1,

where E
[
ssH
]
= IMtot

. The transmit sum-power normalization

is achieved through β which constrains the total BS transmit

sum-power to 1, i.e., E[xHx] = 1. In order to satisfy this

condition, β is chosen as [28]

β =

(√
E[Tr (UHU)]

)−1

. (10)

Substituting (9) in (1), the received DL multi-user signal

vector corresponding to all Mtot antennas in the UE side reads

r = β
√
ρdHUs+ n. (11)

We express the effective DL channel matrix as H =
[h1, ...,hMtot

]
T

, where hT
m is the effective DL channel from

the BS to the m-th antenna at the UE side. Then, based on

(8) and (11), the received DL signal at the m-th UE antenna,

which is assumed to belong to UE k, can be expressed as

rm =
√
ρdβh

T
mumsm +

√
ρdβ

Mtot∑
i=1,i �=m

hT
muisi + nm

=
√
ρdβ

∑
l∈UEk

aml

(
ĥT
l + εTl

)
Cumsm

+
√
ρdβ

Mtot∑
i=1,i �=m

∑
l∈UEk

aml

(
ĥT
l + εTl

)
Cuisi + nm,

(12)

where UEk refers to the set of logical antenna indices belonging

to UE k.

Similar to [7], [22]–[24], we assume that the UEs rely only on

the statistical properties of the beamformed channel to decode

the received DL signal, i.e., the k-th UE uses only βE
[
hT
mum

]
as the DL complex gain in detecting sm. Therefore, the received

signal in (12) can be decomposed as

rm =
√
ρdβE

[
hT
mum

]
sm︸ ︷︷ ︸

useful signal

+zSIm + zISIm + nm, (13)

where zSIm and zISIm are the self-interference (SI) and inter-

stream interference (ISI), respectively, which can be explicitly

expressed as

zSIm =
√
ρdβ

∑
l∈UEk

aml

(
ĥT
l + εTl

)
Cumsm

−√
ρdβE

[
hT
mum

]
sm

zISIm =
√
ρdβ

Mtot∑
i=1,i �=m

∑
l∈UEk

aml

(
ĥT
l + εTl

)
Cuisi.

(14)

Note that, in this definition, the ISI consists of both inter-stream

interference from other streams targeted to the same UE and of

inter-user interference (IUI) due to the streams of other UEs.

Based on (13), the effective SINR at the m-th antenna in

the UE side can be written as

SINRm =
Var

(√
ρdβE

[
hT
mum

]
sm
)

Var (zSIm) + Var (zISIm ) + 1
, (15)

where in defining (15) we used the fact that zSIm and zISIm are

uncorrelated.

In deriving capacity lower bounds, we follow the same

approach as in [7], [31]. The total noise/interference term is

uncorrelated with the useful signal whose entropy is upper-

bounded with the entropy of Gaussian noise with equal variance

[32]. Hence, a lower-bound on the achievable sum-capacity

can be expressed as

R =

Mtot∑
m=1

log2 (1 + SINRm) . (16)

Next, we derive analytical expressions for the SINR and

achievable sum-capacity R, given in (15) and (16), respectively,

for two different linear precoding techniques, namely, ZF and

MRT.

B. Zero-Forcing

For the ZF precoding scheme, the precoder matrix is

constructed using the pseudo-inverse of the estimated effective

DL channel matrix as [7]

UZF = ĤH
(
ĤĤH

)−1

. (17)

Next, based on (10), the normalization scalar βZF reads [7]

βZF =

(√
E

[
Tr

((
ĤĤH

)−1
)])−1

=

√
(N −Mtot) τuρu
Mtot (τuρu + 1)

,

(18)

and based on (13), the useful signal term for the detection at

the m-th antenna at the UE side is
√
ρdβ

ZF
E
[
hT
muZF

m

]
sm =

√
ρdβ

ZFsm. (19)
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TABLE I
ESSENTIAL SECOND-ORDER STATISTICS OF NRC VARIABLES

Variable Definition

σ2
a′
mm

Variance of the m-th diagonal element
of UE side NRC matrix A′

σ2
a′
od

Average of variances of off-diagonal elements
of UE side NRC matrix A′

σ2
c′
d

Average of variances of diagonal elements
of BS NRC matrix C′

δ2
c′
d

Average of cross-correlations of diagonal elements
of BS NRC matrix C′

σ2
c′
od

Average of variances of off-diagonal elements
of BS NRC matrix C′

By substituting (19) into (14) and (15), the effective SINR

at the m-th antenna in the UE side for ZF precoding can be

written as

SINRZF
m =

N −Mtot

Mtot
× τuρuρd

IZFRC + IZFNRC,m

, (20)

where IZFRC = ρd+τuρu+1 is the interference plus noise power

under ideal reciprocal channel (no NRC), whereas IZFNRC,m

denotes the additional interference power due to NRC, which

can be explicitly written as

IZFNRC,m ≈ ρd

[(
1 +

N −Mtot

Mtot
τuρu

)
Tr
(
Ra′

m

)
+

τuρu
Mtot

(
Tr
(
Ra′

m

)− σ2
a′
mm

)
+

τuρu
NMtot

(
1 + Tr

(
Ra′

m

))
Sum

(
Rc′d

)
+

[
τuρu + 1

N

(
1 + Tr

(
Ra′

m

))
− τuρu

NMtot

(
Tr
(
Ra′

m

)− σ2
a′
mm

)]
×
(
Tr
(
Rc′d

)
+Tr

(
Rc′od

))]
.

(21)

Proof: See Appendix A.

Note that based on (21), the only NRC characteristics

that eventually affect the power of interference are σ2
a′
mm

(denoting the variance of the m-th diagonal element in A′),
Tr(Ra′

m
) (denoting the sum of variances of all the elements

in the corresponding row of A′
k), Tr(Rc′od) (denoting the

sum of variances of off-diagonal elements in C′), Tr(Rc′d)
(denoting the sum of variances of diagonal elements in C′),
and Sum(Rc′d) (denoting the sum of variances and cross-

correlations of diagonal elements in C′). Whereas, other

statistical quantities, namely, the cross-correlations of diagonal

and off-diagonal elements in A′ as well as cross-correlations

of off-diagonal elements in C′, do not affect the interference

power. In general, different entries of the involved NRC

covariance matrices (the R matrices) can have different values.

However, since only the sum of the diagonal values or the

sum of all the values in the covariance matrices have impact

on the interference power, we parameterize these essential

NRC characteristics by their average values for notational

simplicity. Thus, the essential NRC characteristics which affect

the interference power are listed in TABLE I. Note that when

these NRC characteristics are set to 0, then IZFNRC,m = 0, and

if further interpreted in the special case of single-antenna UEs,

(20) reduces to the SINR expression given in [7] for the ideal

reciprocal case.

C. Maximum Ratio Transmission

For the MRT case, the precoder matrix is constructed as

[28]

UMRT = ĤH. (22)

Therefore, based on (10), the normalization scalar βMRT reads

[28]

βMRT =

(√
E

[
Tr
(
ĤĤH

)])−1

=

√
τuρu + 1

NMtotτuρu
. (23)

Based on (13), the useful signal term for the detection at the

m-th antenna in the UE side is

√
ρdβ

MRT
E
[
hT
muMRT

m

]
sm =

√
ρdβ

MRT Nτuρu
τuρu + 1

sm. (24)

Stemming from this, the effective SINR at the m-th antenna

in the UE side, defined in (15) can now be expressed as

SINRMRT
m =

N

Mtot
× τuρuρd

IMRT
RC + IMRT

NRC,m

, (25)

where IMRT
RC = (ρd + 1) (τuρu + 1) is the interference and

noise power under reciprocal channel, whereas IMRT
NRC,m denotes

the additional interference power due to NRC, and can be

explicitly written as

IMRT
NRC,m = ρd

[(
1 +

N +Mtot

Mtot
τuρu

)
Tr
(
Ra′

m

)
− τuρu

Mtot

(
Tr
(
Ra′

m

)− σ2
a′
mm

)
+

τuρu
NMtot

(
1 + Tr

(
Ra′

m

))
Sum

(
Rc′d

)
+

[
τuρu + 1

N

(
1 + Tr

(
Ra′

m

))
− τuρu

NMtot

(
Tr
(
Ra′

m

)− σ2
a′
mm

)]
×
(
Tr
(
Rc′d

)
+Tr

(
Rc′od

))]
.

(26)

Proof: See Appendix B.

With the very same reasoning as in the ZF precoding

scenario, the only NRC characteristics which affect the power

of interference are the ones listed in TABLE I. Thus, when

these NRC parameters are set to 0, then IMRT
NRC,m = 0 and in

the single-antenna UE scenario, (25) reduces again to the SINR

expression given in [7] for the ideal reciprocal case.

IV. ASYMPTOTIC AND NON-ASYMPTOTIC COMPARISONS

AND IMPLICATIONS

In this section, we will address several important implications

stemming from the derived closed-form SINR and achievable

rate expressions. To this end, both the asymptotic and non-

asymptotic performance behavior of ZF and MRT precoding

based systems are first derived and compared. Then, the SINR

degradation due to NRC is quantified and analyzed for both

precoding techniques.
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A. Asymptotic Performance for Large N

For growing N , the previously-derived SINR expressions

for ZF and MRT based systems, under NRC, can be shown to

be asymptotically identical and have the saturation value

lim
N→∞

SINRZF
m = lim

N→∞
SINRMRT

m

=
1

Tr
(
Ra′

m

)
+ tmc′d

δ2c′d
+ tmc′od

σ2
c′od

,
(27)

where

tmc′d
= 1 + Tr

(
Ra′

m

)
,

tmc′od
= Mtot

τuρu + 1

τuρu

(
1 + Tr

(
Ra′

m

))− Tr
(
Ra′

m

)
+ σ2

a′
mm

.

(28)

Note that the number of mismatched transceiver chains and

antenna units increases with the number of antennas which in

turn increases the level of interference power due to NRC. Thus,

the system is subject to additional interference which cannot

be suppressed by NRC-unaware spatial precoders, even if the

number of antennas tends towards infinity. Therefore, for mas-

sive MIMO systems with practical non-reciprocal transceivers

and antenna systems, the advantage of ZF over MRT in terms

of IUI suppression, and hence in SINR performance, reduces

and eventually vanishes with increasing number of antennas

and transceiver chains. This is one important finding and will

be illustrated also through numerical examples in Section V.

We next quantify the relative achievable rate performance un-

der ZF and MRT precoding schemes with the ratio RZF/RMRT,

where RZF and RMRT are obtained by substituting (20) and

(25) into (16), respectively. The asymptotic behavior of this

relative achievable rate performance for large number of

antennas can be shown to read

lim
N→∞

RZF

RMRT
= lim

N→∞

Mtot∑
m=1

log2
(
1 + SINRZF

m

)
Mtot∑
m=1

log2
(
1 + SINRMRT

m

) = 1. (29)

Based on above, the asymptotic behavior of relative achievable

rate under NRC is similar to the reciprocal case presented in

[7]. However, the implications of these two results are largely

different. More specifically, the combination of (27) and (29)

establishes that the achievable rates for both precoders have an

identical and finite saturation level in the presence of NRC. This

saturation level can be expressed in closed-form by substituting

the expression in (27) to (16). Importantly, even if the UL pilot

SNR (ρu) tends towards infinity, reflecting perfect uplink CSI,

the rates saturate to an identical finite level. On the other hand,

for an ideal reciprocal channel, by substituting zeros for all the

NRC parameters in the denominator of (27), the asymptotic

result implies that the SINRs, and therefore the rates, grow

without bound for both precoding schemes even under finite UL

pilot SNR [7], [29]. Hence, there is a fundamental difference in

the impacts of NRC and UL channel estimation errors. These

differences will be illustrated through numerical examples in

Section V and are other important findings of this article.

B. Non-Asymptotic Comparison of SINR Performance

We next pursue a non-asymptotic comparison of the achiev-

able SINRs at the m-th antenna in the UE side between ZF

and MRT precoding schemes under NRC. Building on the

SINR expressions in (20) and (25), the following relation can

be deduced

SINRZF
m

SINRMRT
m

= 1 +
Mtot

N

(
SINRZF

m − 1
)
+

(
1− Mtot

N

)

×
2ρdτuρu

(
Tr
(
Ra′

m

)− (Tr (Ra′
m

)− σ2
a′
mm

)
/Mtot

)
ρd + τuρu + 1 + IZFNRC,m

.

(30)

Based on above, since N > Mtot, ZF outperforms MRT in

the achievable SINR, and consequently in the capacity lower

bound, if SINRZF
m ≥ 1. In the special case of N → ∞, the

ratio in (30) tends towards one, conforming with the previous

asymptotic results.

In practical scenarios where the channel non-reciprocity level

is not overly high, and considering the high SNR region with

reasonably good UL channel estimation accuracy, the SINR is

always greater than one for ZF precoding scheme. Therefore,

in the high SNR region, (30) shows that ZF has better non-

asymptotic performance compared to MRT. On the other hand,

in the low SNR region, the performance of both systems are

limited by noise and the difference becomes negligible.

C. SINR Degradation at High SNR

In order to quantify the SINR degradation under non-

reciprocal channels with respect to ideal reciprocal channel

reference case, we define the metric

α =
SINRRC − SINRNRC

SINRRC
. (31)

In (31), SINRNRC stands for the SINR with non-reciprocal

channels calculated based on (15) and for which closed-

form analytic expressions are given in (20) and (25) under

ZF and MRT precoding schemes, respectively. Furthermore,

SINRRC denotes the SINR with reciprocal channels for which

closed-form expressions can be obtained under ZF and MRT

precoding schemes from [7] for the single-antenna UE scenario,

or by setting the NRC parameters to 0 in (20) and (25),

respectively, in a more general case. To compare the relative

SINR degradation of ZF and MRT precoding schemes, we

also define the ratio αZF/MRT = αZF

αMRT , where αZF and αMRT

are calculated using (31) with their corresponding SINRNRC

and SINRRC expressions for ZF and MRT precoding schemes,

respectively.

In the high SNR region, when ρd � 1, this ratio for the

m-th antenna in the UE side can be shown to read

lim
ρd→∞

αZF
m

αMRT
m

Δ
= αZF/MRT

∞,m

=
I0 + τuρuI

ZF
NRC,m/ρd

I0 + 2τuρu

(
Tr
(
Ra′

m

)− (Tr (Ra′
m

)− σ2
a′
mm

)
/Mtot

) ,
(32)
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where

I0 =
(
2τuρu

(
Tr
(
Ra′

m

)− (Tr (Ra′
m

)− σ2
a′
mm

)
/Mtot

)
+ IZFNRC,m/ρd + 1

)
IZFNRC,m/ρd.

(33)

From (32), it can be seen that α
ZF/MRT
∞,m > 1 when

IZFNRC,m/ρd > 2
(
Tr
(
Ra′

m

)− (Tr (Ra′
m

)− σ2
a′
mm

)
/Mtot

)
,

implying that ZF precoding is more sensitive to channel non-

reciprocity than MRT, that is, the SINR degradation due to NRC

is higher for ZF than for MRT, at large SNR. This is intuitive as

the ZF based interference suppression requires accurate channel

knowledge. Note that based on (21), for practical setting of

τu ≥ Mtot, this holds when

ρu >
1

N −Mtot
. (34)

This is because when N � Mtot, the inequality given in (34)

boils down to ρu > 1/N , which will be satisfied, in general,

for all practical values of ρu.

V. NUMERICAL RESULTS, IMPLICATIONS AND DISCUSSION

In this section, we provide extensive numerical evaluations

of the derived analytical SINR and achievable rate expressions

for precoded multi-user massive MIMO system under NRC and

imperfect CSI. We also study the behavior of the DL system

spectral efficiency, defined as [7]

ηs =
(
1− τu

T

)
R =

(
1− τu

T

)Mtot∑
m=1

log2 (1 + SINRm) ,

(35)

where T refers to the channel coherence interval measured in

number of symbols. Finally, we will discuss and summarize

the novel findings of this work based on the derived analytical

expressions and obtained numerical results.

A. Obtained Numerical Results

The baseline evaluation scenario consists of a BS which is

equipped with N = 100 antenna elements and either single-

antenna, dual-antenna or 4-antenna UEs, with a total of Mtot =
20 antennas, that are served simultaneously through either ZF

or MRT precoding. We assume that the channel coherence

time is 1ms, which corresponds to one radio sub-frame in

3GPP LTE/LTE-Advanced radio network [33] and specifically

each coherence interval contains T = 196 symbols, while the

number of UE antenna-specific UL pilots is always equal to

the total number of the UE side antennas, i.e., τu = Mtot. The

UL SNR is set to ρu = 0 dB, while DL SNR is chosen to be

ρd = 20 dB. These are the baseline simulation settings, while

some of the parameter values are also varied in the evaluations.

In the simulations, NRC matrices A and C are generated

based on A′ and C′ since A = IMtot
+A′ and C = IN +C′.

As shown in Section III and TABLE I, only the averages

of certain variance and cross-correlation values affect the

performance, while in principle the individual values could all

be different. However, for simulation simplicity, we assume that

all the individual entries of the involved second-order statistics,

i.e. those listed in TABLE I, are the same as their average
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Fig. 2. (a) System spectral efficiency vs. DL SNR (ρd) with σ2
a′
od

= −30

dB, and (b) relative SINR degradation (α) vs. σ2
a′
od

with ρd = 20 dB, for

N = 100, Mtot = 20, τu = Mtot, ρu = 0 dB, T = 196, σ2
a′
d
= −20 dB,

σ2
c′
d
= −20 dB, σ2

c′
od

= −30 dB, and δ2
c′
d
= −30 dB.

values. We also assume that σ2
a′
mm

is the same for all the values

of m and is equal to σ2
a′
d
. Thus, for each realization, the block-

diagonal matrix A′ is generated based on A′
k in which the

diagonal entries are generated as i.i.d. CN
(
0, σ2

a′
d

)
whereas

off-diagonal entries are i.i.d. CN
(
0, σ2

a′
od

)
. Similarly, the off-

diagonal entries of C′ are generated as i.i.d. CN
(
0, σ2

c′od

)
,

while the diagonal entries have Gaussian distribution with zero

mean and variance σ2
c′d

and cross-correlation δ2c′d
. Kindly note

that Gaussian distribution is chosen only as an example for the

simulation and evaluation simplicity while the provided results

apply to any distribution with the same variance and cross-

correlation values. Also note that the independence assumption

applies only to the entries whose cross-correlations do not have

any impact on the system performance.

In Fig. 2(a), the system spectral efficiency is plotted against

DL SNR for different number of antennas in each UE, while the

total number of antennas in the UE side is fixed at Mtot = 20.

In obtaining the curves, the derived analytical expressions in

(20) and (25) are plugged into (35) for ZF and MRT precoding
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schemes, respectively. In addition to that, simulated points

are obtained via extensive empirical SINR and corresponding

spectral efficiency evaluations, without any approximations,

which are averaged over 1000 independent channel and NRC

variable realizations. As can be seen, when the total number

of antennas in the UE side is fixed, the spectral efficiency of

the system is slightly higher in networks with lower number

of antennas in each UE. This can be understood based on

Fig. 2(b) where the relative SINR degradation is plotted against

σ2
a′
od

, which is an indicator of mutual coupling mismatch

variance between the antenna elements of each individual

UE (in dual- and quad-antenna UE cases). As illustrated, the

number of antennas in each UE has essentially no impact on

the performance when UE side mutual coupling mismatch

level is small. Whereas, for higher values of σ2
a′
od

, the relative

SINR degradation is already clearly higher in the scenarios

with higher number of antennas per UE and the difference gets

larger as σ2
a′
od

increases. However, as shown in Fig. 2(a), even

for relatively poorly NRC calibrated scenario (high practical

NRC parameter values, e.g., σ2
a′
d

= σ2
c′d

= −20 dB and

σ2
a′
od

= σ2
c′od

= δ2c′d
= −30 dB), the difference between

single-antenna and multi-antenna UE scenarios is very small.

Therefore, in the continuation, we focus on single-antenna UE

scenario which is commonly of highest interest in massive

MIMO literature [3]–[8], [10], [18]–[22], [28], [31].

In Fig. 3 and Fig. 4, the spectral efficiency and relative

SINR degradation curves are plotted against DL SNR for

indicated NRC parameter settings. Simulated curves in Fig. 3

are similarly obtained via extensive empirical evaluations by

averaging 1000 independent channel and NRC realizations. In

general, as can be seen in Fig. 2 and Fig. 3, the analytical and

simulated curves for both ZF and MRT have a perfect match

evidencing the excellent accuracy of derived expressions despite

the involved approximations. Thus, in the continuation we will

use only the derived analytical expressions. As illustrated in

Fig. 3 and Fig. 4, in low SNR region, the effect of channel

non-reciprocity on both precoding schemes is negligible as the

performance is limited by noise. On the other hand, in high

SNR region, there is a substantial performance loss, especially

for ZF precoding scheme. For instance, from Fig. 3 we can

observe that for ZF at ρd = 15 dB, when the system is subject

to relatively low-quality NRC calibration (σ2
a′
d
= σ2

c′d
= −20

dB and σ2
c′od

= δ2c′d
= −30 dB), the system spectral efficiency

has decreased by 27 bits/s/Hz compared to the fully reciprocal

channel case. For the same settings, the degradation for MRT

precoding scheme is only 3 bits/s/Hz showing that MRT is

substantially less sensitive to channel non-reciprocity compared

to ZF.

Based on the derived expressions in (21) and (26), the

contributions of σ2
c′od

, σ2
a′
d
, δ2c′d

, and σ2
c′d

to the total received

interference are proportional to N ×Mtot, N , N , and Mtot,

respectively. In typical settings with N � Mtot (which is also

the case with N = 100 and Mtot = 20), these cofactors satisfy

the relation N × Mtot > N > Mtot, and hence the system

has the highest sensitivity with respect to σ2
c′od

and the lowest

sensitivity with respect to σ2
c′d

. This is one of the important

technical implications, relevant in practical large-array system

Fig. 3. System spectral efficiency vs. DL SNR (ρd) for N = 100, Mtot =
20, K = 20, τu = Mtot, ρu = 0 dB, T = 196.

Fig. 4. Relative SINR degradation (α) vs. DL SNR (ρd) for N = 100,
Mtot = 20, K = 20, τu = Mtot, ρu = 0 dB, T = 196.

deployments and NRC calibration algorithm development, that

are stemming from this work. In order to demonstrate this effect,

in Fig. 5, the relative SINR degradation is plotted against

different levels of each channel non-reciprocity parameter

individually, i.e., when the level of one channel non-reciprocity

parameter is varied, all other channel non-reciprocity parameter

values are deliberately set to 0. Note that, in order to better

demonstrate the impacts of δ2c′d
on the SINR degradation, the

effects of σ2
c′d

and δ2c′d
are grouped together, since the level of

cross-correlation between elements in c′d, δ2c′d
, is always upper-

bounded by the corresponding variances of those elements,

σ2
c′d

. The effects of both σ2
c′d

and δ2c′d
can be distinguished by

the offset chosen between these two variables which ranges

from δ2c′d
= σ2

c′d
to δ2c′d

= 0. As expected, the obtained results

show that both ZF and MRT precoding schemes are most

sensitive to the variance of the off-diagonal elements of the

BS non-reciprocity matrix. For instance, for the case with

σ2
c′od

= −25 dB, the SINR degradation is approximately 85%

for ZF and 25% for MRT, which will be mapped to 42%

and 13% of spectral efficiency degradation, respectively. The

SINR degradation is, in turn, the least sensitive against the

variance of the diagonal entries of BS side non-reciprocity

matrix. It is seen that when δ2c′d
= 0, ZF precoded system
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(a)

(b)

Fig. 5. Relative SINR degradation (α) in (a) ZF and (b) MRT precoded
systems vs. the level of an individual non-reciprocity source (with others being
zero, i.e., ideal) for N = 100, Mtot = 20, K = 20, ρd = 20, τu = Mtot,
ρu = 0 dB, T = 196.

starts to have observable performance loss, i.e., the SINR

degradation is more than 10%, for values of σ2
c′d

> −23 dB,

whereas for MRT precoded system this threshold value is as

high as σ2
c′d

> −10 dB. The sensitivity with respect to the

variance of diagonal elements in the UE side NRC matrix and

the cross-correlations between diagonal elements in the BS

side NRC matrix are also considerably high especially for ZF

precoding. For instance, the SINR degradation increases from

17% to 40%, when σ2
a′
d

is increased from −25 dB to −20 dB,

and from 24% to 50%, when δ2c′d
and σ2

c′d
are jointly increased

from −25 dB to −20 dB.

The analytical expressions for the asymptotic achievable

performance, derived in Section IV, indicated two new results

and findings which differ from the ordinary reciprocal channel

case; 1) there is a finite saturation level for both MRT and ZF

precoding schemes, and 2) this saturation level is identical for

both precoding techniques. In order to verify and demonstrate

this behavior, the spectral efficiency is plotted against the

number of BS antennas in Fig. 6. It can be clearly seen that

both MRT and ZF spectral efficiency curves indeed saturate

towards the levels predicted by the derived analytical expression

in (27). As discussed earlier in Section IV-A, the system is

Fig. 6. System spectral efficiency vs. the number of antennas at BS (N )
for Mtot = 20, K = 20, ρd = 20, τu = Mtot, ρu = 0 dB, T = 196.
Saturation levels based on (27) are plotted in green horizontal lines for the
two indicated NRC parameter settings.

Fig. 7. Optimal number of single-antenna UEs to maximize system spectral
efficiency vs. non-reciprocity level (σ2

a′
d
= σ2

c′
d
= NRC level, while σ2

c′
od

=

δ2
c′
d
= NRC level −10 dB) for N = 100, Mtot = 20, K = 20, τu = Mtot,

ρu = 0 dB, T = 196.

subject to increasing levels of SI and ISI with increasing

number of antennas and corresponding mismatched transceiver

chains. Since this interference cannot be suppressed by NRC-

unaware spatial precoders, in contrast to the reciprocal case, the

advantage of ZF over MRT in terms of inter-user interference

suppression and higher achievable rates gradually vanishes.

It is also important to note that these saturation levels are

of large practical relevance since the NRC-induced saturation

occurs already with antenna numbers in the order of 103 or

even below, while the saturation levels caused, e.g., by pilot

contamination often requires 105 antennas to be approached

[34].

Fig. 7 shows the impact of channel non-reciprocity on the

optimal number of simultaneously scheduled single-antenna

UEs, Kopt, to achieve maximal spectral efficiency for two

different values of DL SNR, namely, ρd = 20 dB, 0 dB. This

optimum number is achieved by evaluating (16) for all the

values of K in the range N ≥ K ≥ 1, and choosing the one

which maximizes the spectral efficiency while the number of

antennas in each UE is assumed to be one. The optimal number
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Fig. 8. Maximum tolerable non-reciprocity level vs. target SINR (σ2
a′
d
=

σ2
c′
d
= NRC level, while σ2

c′
od

= δ2
c′
d
= NRC level −10 dB) for N = 100,

Mtot = 20, K = 20, τu = Mtot, ρu = 0 dB, T = 196.

of single-antenna UEs drops for both precoding techniques as

the system is subject to increasing interference power with

increasing non-reciprocity levels. In the low SNR regime (0 dB),

this drop is not severe as the thermal noise has dominating

impact on system performance. However, in the high SNR

regime (20 dB), there is a significant drop in the optimal number

of single-antenna UEs for ZF, even for moderate channel non-

reciprocity levels, say −30 dB < σ2
a′
d
< −20 dB, whereas for

MRT there is a drop only at fairly severe non-reciprocity levels,

e.g., σ2
a′
d
> −15 dB. An interesting and new observation is

that, in contrast to high SNR regime behavior in the ordinary

reciprocal case, the optimal number of UEs for MRT is higher

than that of ZF under moderate channel non-reciprocity levels.

In Fig. 8, based on the derived closed-form expressions for

SINR in (20) and (25), the maximum tolerable NRC level

is evaluated as a function of target SINR in the UE side,

for two example values of DL SNR, namely, ρd = 20 dB,

0 dB. Based on the obtained results, in order to have SINR

at UEs for example equal to 15 dB in ZF precoded system

when ρd = 20 dB, the maximum NRC level which can be

tolerated is around −20 dB. This demonstrates the value and

applicability of the provided analytical results in practical

system design and deployments, in for example evaluating and

extracting the required NRC calibration levels such that given

DL transmission performance can be achieved.

B. Summary of New Findings and Future Work

In this subsection, we briefly summarize the novel scientific

findings and concrete technical contributions of this work

compared to the existing literature regarding the performance of

massive MIMO systems with practical mismatched transceiver

chains and antenna systems:

1) Based on (30), for the same channel non-reciprocity

levels, ZF outperforms MRT in terms of the SINR and

achievable rates. However, based on derived expressions

in (32), the performance difference between the two

precoding techniques starts to reduce as the level of

channel non-reciprocity grows.

2) In previous literature, UE side non-reciprocity was

assumed to have negligible effect on the total received

interference [18]. However, this is only true when DL

demodulation pilots are used to further enhance the detec-

tion at UEs. On the other hand, when UEs rely only on

statistical channel properties, the UE side non-reciprocity

has significant contribution to total received interference

power. As can be inferred from derived expressions

in (21) and (26), for both precoding techniques, this

contribution scales with N which is a large number in

the massive MIMO framework.

3) The received SINR and achievable rates of ZF and MRT

precoded systems under NRC saturate at a finite and

identical value asymptotically with increasing N . This is

different from the reciprocal case where adding more an-

tennas decreases the residual IUI and hence increases the

spatial separation of UEs. This NRC-induced saturation

phenomenon is due to the additional interference caused

by adding more mismatched transceivers and antenna

units with increasing N .

4) Optimal number of scheduled single-antenna UEs under

MRT is higher than that with ZF when considering

moderate channel non-reciprocity levels. This is in

contrast to the ideal reciprocal case where the optimal

number of scheduled users is always higher for ZF

precoding scheme [7].

In general, in addition to the channel non-reciprocity problem,

pilot contamination [10] and interference non-reciprocity [35]

can easily be performance limiting factors, especially in multi-

cell systems. Thus, joint consideration of these aspects together

with NRC is an interesting research topic for our future

work. Furthermore, extending the work to cover also more

elaborate precoders in multi-antenna UE context, such as

block-diagonalization, together with DL demodulation CSI

acquisition, are interesting and important topics.

VI. CONCLUSION

Closed-form performance analysis of TDD-based linearly

precoded massive MIMO DL system under channel non-

reciprocity and imperfect CSI was carried out in this paper. The

derived analytical SINR and achievable rate expressions show

that in general ZF precoding scheme is more sensitive to NRC

levels compared to MRT. The derived analytical expressions

also show that with inaccurate NRC calibration, the perfor-

mance gap between the two precoders decreases significantly.

Moreover, in contrast to ideal reciprocal case, it was shown that

the SINRs and achievable rates saturate to a finite and identical

level with increasing antenna array size. Overall, the derived

analytical expressions provide fundamentally useful and generic

tools in dimensioning and designing practical massive MIMO

systems with given performance targets, e.g., choosing the

appropriate precoder based on performance-complexity trade-

off, deciding the number of active antenna elements, and/or

extracting the needed frequency and accuracy of adopted NRC

calibration schemes.
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APPENDIX

In order to calculate SINR in (15), we need to compute the

powers of the different interference terms, namely, zSIm and zISIm ,

under ZF and MRT precoding schemes. In the continuation,

the following properties and approximations are used.

• Property 1:

N∑
l=1

N∑
p=1

E
[
εmlε

∗
mp

]
=

N∑
l=1

E[εmlε
∗
ml], (36)

since E
[
εmlε

∗
mp

]
= 0 for l �= p.

• Property 2:

N∑
l=1

N∑
p=1

E

[
uZF
lmuZF∗

pm

]
=

N∑
l=1

E

[
uZF
lmuZF∗

lm

]
, (37)

since E
[
uZF
lmuZF∗

pm

]
= 0 for l �= p.

• Property 3:

N∑
l=1

N∑
p=1

E

[
ĥmlĥ

∗
mp

]
=

N∑
l=1

E

[
ĥmlĥ

∗
ml

]
, (38)

since E

[
ĥmlĥ

∗
mp

]
= 0 for l �= p.

• Approximation 1: For mathematical tractability, we employ

the following approximation [20]

uZF
li ≈ ĥ∗

il

vZF
, (39)

where vZF is a constant that is chosen to satisfy

E

[∣∣uZF
li

∣∣2] = 1
NMtot

E

[
Tr
(
UZFH

UZF
)]

, and hence can

be expressed as

vZF =
√

N (N −Mtot)
τuρu

τuρu + 1
. (40)

While allowing us to derive the analytical closed-form

expressions, the high accuracy of this approximation is

demonstrated by the excellent match of the analytical and

empirical results in Section V.

A. Interference Powers under ZF Precoding

Based on (14), (17), and (19), the power of the self

interference can be expressed as

Var
(
zSI,ZFm

)
= E

[∣∣∣∣∣√ρdβ
ZF

∑
l∈UEk

aml

(
ĥT
l + εTl

)
CuZF

m sm

− √
ρdβ

ZFsm
∣∣2]

(41)

= ρd
(
βZF

)2
E

⎡
⎢⎢⎣
∣∣∣∣∣∣∣∣a

′
mmsm +

∑
l∈UEk
l �=m

amlĥ
T
l u

ZF
m sm

∣∣∣∣∣∣∣∣
2⎤⎥⎥⎦

︸ ︷︷ ︸
tSI,ZF
1

+ ρd
(
βZF

)2
E

⎡
⎣∣∣∣∣∣ ∑

l∈UEk

amlĥ
T
l C

′uZF
m sm

∣∣∣∣∣
2
⎤
⎦

︸ ︷︷ ︸
tSI,ZF
2

+ ρd
(
βZF

)2
E

⎡
⎣∣∣∣∣∣ ∑

l∈UEk

amlε
T
l CuZF

m sm

∣∣∣∣∣
2
⎤
⎦

︸ ︷︷ ︸
tSI,ZF
3

.

Next we will derive analytical expressions for the terms

tSI,ZF1 , tSI,ZF2 , and tSI,ZF3 . Starting with tSI,ZF1 , we obtain

tSI,ZF1 = E

⎡
⎢⎢⎣
⎛
⎜⎜⎝a′mmsm +

∑
l∈UEk
l �=m

N∑
p=1

amlĥlpu
ZF
pmsm

⎞
⎟⎟⎠

×

⎛
⎜⎜⎝a′mmsm +

∑
q∈UEk
q �=m

N∑
r=1

amqĥqru
ZF
rmsm

⎞
⎟⎟⎠

∗⎤⎥⎥⎦
≈ E

[
|a′mm|2

]
+

1

(vZF)
2

∑
l∈UEk
l �=m

N∑
p=1

E

[
|aml|2

]
E

[∣∣∣ĥlp

∣∣∣2]E [∣∣∣ĥmp

∣∣∣2]

= σ2
a′
mm

+
1

N −Mtot

(
Tr
(
Ra′

m

)− σ2
a′
mm

)
.

(42)

In obtaining the expression on the third and the fourth lines,

we used Approximation 1 and Property 3.

Following that, tSI,ZF2 can be expressed as

tSI,ZF2 ≈ 1

(vZF)
2

∑
l∈UEk

∑
q∈UEk

N∑
p=1

N∑
r=1

N∑
i=1

N∑
j=1

E
[
amla

∗
mq

]
× E

[
ĥlpĥ

∗
mrĥ

∗
qiĥmj

]
E

[
c′prc

′∗
ij

]
=

1

(vZF)
2

N∑
p=1

N∑
r=1

N∑
i=1

N∑
j=1

E

[
|amm|2

]
︸

×E

[
ĥmpĥ

∗
miĥ

∗
mrĥmj

]
E

[
c′prc

′∗
ij

]
︸

tSI,ZF
21

+
1

(vZF)
2

∑
l∈UEk
l �=m

N∑
p=1

N∑
r=1

E

[
|aml|2

]

× E

[∣∣∣ĥlp

∣∣∣2]E [∣∣∣ĥmr

∣∣∣2]E[∣∣c′pr∣∣2]
(43)
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=
1

(vZF)
2

(
tSI,ZF21 +

(
Tr
(
Ra′

m

)− σ2
a′
mm

)

×
(

τuρu
τuρu + 1

)2 (
Tr
(
Rc′d

)
+Tr

(
Rc′od

)))
.

In above, we used Approximation 1 when obtaining the

expression on the first two lines, whereas the expression on

the third to the sixth lines are obtained using Property 3. In

the next step, tSI,ZF21 is expressed as

tSI,ZF21 = E

[
|amm|2

] N∑
p=1

N∑
r=1
r �=p

E

[∣∣∣ĥmp

∣∣∣2]E [∣∣∣ĥmr

∣∣∣2]E[∣∣c′pr∣∣2]

+ E

[
|amm|2

] N∑
p=1

N∑
j=1
j �=p

E

[∣∣∣ĥmp

∣∣∣2]E [∣∣∣ĥmj

∣∣∣2]E[c′ppc′∗jj]

+ E

[
|amm|2

] N∑
p=1

E

[∣∣∣ĥmp

∣∣∣4]E[∣∣c′pp∣∣2]

=
(
1 + σ2

a′
mm

)( τuρu
τuρu + 1

)2

×
(
Tr
(
Rc′od

)
+ Sum

(
Rc′d

)
+Tr

(
Rc′d

))
,

(44)

where Property 3 is used in obtaining the expression in the

first three lines.

Substituting (44) in (43), we have

tSI,ZF2 ≈ 1

N (N −Mtot)

((
1 + σ2

a′
mm

)
Sum

(
Rc′d

)
+
(
1 + Tr

(
Ra′

m

)) (
Tr
(
Rc′d

)
+Tr

(
Rc′od

)))
.

(45)

Finally, the term tSI,ZF3 can be expressed as

tSI,ZF3 =
∑

l∈UEk

N∑
p=1

N∑
r=1

E

[
|aml|2

]
× E

[
|εlp|2

]
E

[
|cpr|2

]
E

[∣∣uZF
rm

∣∣2]
=

1 + Tr
(
Ra′

m

)
NMtot (βZF)

2
(τuρu + 1)

×
(
N +Tr

(
Rc′d

)
+Tr

(
Rc′od

))
.

(46)

In obtaining the expression on the first two lines, we used

Property 1 and Property 2.

Similarly, based on (14), the power of the ISI under ZF

precoding scheme can be written as

Var
(
zISI,ZFm

)
= E

⎡
⎢⎣
∣∣∣∣∣∣∣
√
ρdβ

ZF
Mtot∑
i=1
i �=m

∑
l∈UEk

aml

(
ĥT
l + εTl

)
CuZF

i si

∣∣∣∣∣∣∣
2⎤⎥⎦
(47)

= ρd
(
βZF

)2
E

⎡
⎢⎢⎣
∣∣∣∣∣∣∣∣
∑

i∈UEk
i �=m

amisi

∣∣∣∣∣∣∣∣
2⎤⎥⎥⎦

︸ ︷︷ ︸
tISI,ZF
1

+ ρd
(
βZF

)2
E

⎡
⎢⎣
∣∣∣∣∣∣∣
Mtot∑
i=1
i �=m

∑
l∈UEk

amlĥ
T
l C

′uZF
i si

∣∣∣∣∣∣∣
2⎤⎥⎦

︸ ︷︷ ︸
tISI,ZF
2

+ ρd
(
βZF

)2
E

⎡
⎢⎣
∣∣∣∣∣∣∣
Mtot∑
i=1
i �=m

∑
l∈UEk

amlε
T
l CuZF

i si

∣∣∣∣∣∣∣
2⎤⎥⎦

︸ ︷︷ ︸
tISI,ZF
3

.

Next, we will derive analytical expressions for the terms

tISI,ZF1 , tISI,ZF2 and tISI,ZF3 . Starting with tISI,ZF1 , we obtain

tISI,ZF1 =
∑

i∈UEk
i �=m

E

[
|ami|2

]
E

[
|si|2

]
= Tr

(
Ra′

m

)− σ2
a′
mm

.

(48)
Following that, tISI,ZF2 can be expressed as

tISI,ZF2 ≈ 1

(vZF)
2

Mtot∑
i=1
i �=m

∑
l∈UEk

N∑
p=1

N∑
r=1

N∑
o=1

N∑
w=1

E

[
|aml|2

]

× E

[
ĥlpĥ

∗
irĥ

∗
loĥiw

]
E

[
c′prc

′∗
ow

]
=

1

(vZF)
2

∑
i∈UEk
i �=m

E

[
|ami|2

] tSI,ZF21

E

[
|amm|2

]

+
1

(vZF)
2

⎛
⎜⎝ Mtot∑

i=1
i/∈UEk

(
1 + Tr

(
Ra′

m

))

+
∑

i∈UEk
i �=m

(
1+Tr

(
Ra′

m

)− σ2
Ami

)
⎞
⎟⎟⎠

×
(

τuρu
τuρu + 1

)2 (
Tr
(
Rc′d

)
+Tr

(
Rc′od

))
=

1

N (N −Mtot)

(((
1 + σ2

a′
mm

)
+ (Mtot − 2)

× (
1 + Tr

(
Ra′

m

))) (
Tr
(
Rc′d

)
+Tr

(
Rc′od

))
+
(
Tr
(
Ra′

m

)− σ2
a′
mm

)
Sum

(
Rc′d

))
.

(49)

In above, we used the Approximation 1 in obtaining the

expression on the first two lines and Property 3 in obtaining

the expressions on the first six lines.
Then, tISI,ZF3 can be expressed, similar to tSI,ZF3 , as

tISI,ZF3 = (Mtot − 1)
1 + Tr

(
Ra′

m

)
NMtot (βZF)

2
(τuρu + 1)

×
(
N +Tr

(
Rc′d

)
+Tr

(
Rc′od

))
.

(50)
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Here, we used Property 1 and Property 2.
The total interference power can be obtained by summing

all the calculated interference terms. Then, it is straightforward

to re-arrange the terms and express the total interference power

as IZFRC + IZFNRC,m after which we reach the SINR expression

presented in (20).

B. Interference Powers under MRT Precoding
Based on (14), (22), and (24), the power of self interference

under MRT precoding scheme can be expressed as

Var
(
zSI,MRT
m

)
= E

[∣∣∣∣∣√ρdβ
MRT

∑
l∈UEk

aml

(
ĥT
l + εTl

)
CuMRT

m sm

− √
ρdβ

MRT
E
[
hT
muMRT

m

]
sm
∣∣2]

= ρd
(
βMRT

)2
E

[∣∣∣ammĥT
mĥ∗

msm − E

[
ĥT
mĥ∗

m

]
sm︸

+
∑

l∈UEk
l �=m

amlĥ
T
l ĥ

∗
msm

∣∣∣∣∣∣∣∣
2⎤⎥⎥⎦
︸

tSI,MRT
1

+ ρd
(
βMRT

)2
E

⎡
⎣∣∣∣∣∣ ∑

l∈UEk

amlĥ
T
l C

′ĥ∗
msm

∣∣∣∣∣
2
⎤
⎦

︸ ︷︷ ︸
tSI,MRT
2

+ ρd
(
βMRT

)2
E

⎡
⎣∣∣∣∣∣ ∑

l∈UEk

amlε
T
l Cĥ∗

msm

∣∣∣∣∣
2
⎤
⎦

︸ ︷︷ ︸
tSI,MRT
3

.

(51)
Next we derive analytical expressions for the terms

tSI,MRT
1 , tSI,MRT

2 and tSI,MRT
3 . Starting with tSI,MRT

1 , we get

tSI,MRT
1 = E

[∣∣∣ammĥT
mĥ∗

msm − E

[
ĥT
mĥ∗

m

]
sm

∣∣∣2]︸ ︷︷ ︸
tSI,MRT
11

+ E

⎡
⎢⎢⎣
∣∣∣∣∣∣∣∣
∑

l∈UEk
l �=m

amlĥ
T
l ĥ

∗
msm

∣∣∣∣∣∣∣∣
2⎤⎥⎥⎦

︸ ︷︷ ︸
tSI,MRT
12

.

(52)

Following that, tSI,MRT
11 can be expressed as

tSI,MRT
11 = E

[∣∣∣ammĥT
mĥ∗

msm

∣∣∣2]− E

[∣∣∣E [ĥT
mĥ∗

m

]
sm

∣∣∣2]

= E

[
|amm|2

]⎛⎜⎝ N∑
p=1

N∑
r=1
r �=p

E

[∣∣∣ĥmp

∣∣∣2]E[∣∣∣ĥmr

∣∣∣2]

+

N∑
p=1

E

[∣∣∣ĥmp

∣∣∣4]
)

−N2

(
τuρu

τuρu + 1

)2

(53)

= N
(
1 + σ2

a′
mm

(N + 1)
)( τuρu

τuρu + 1

)2

.

Next we express tSI,MRT
12 as

tSI,MRT
12 =

∑
l∈UEk
l �=m

N∑
p=1

E

[
|aml|2

]
E

[∣∣∣ĥlp

∣∣∣2]E[∣∣∣ĥmp

∣∣∣2]

= N
(
Tr
(
Ra′

m

)− σ2
a′
mm

)( τuρu
τuρu + 1

)2

,

(54)

where Property 3 is used in obtaining the expression on the

first line.

Substituting (53) and (54) in (52), we have

tSI,MRT
1 = N

(
1 +Nσ2

a′
mm

+Tr
(
Ra′

m

))( τuρu
τuρu + 1

)2

.

(55)

Then, we can express tSI,MRT
2 , similar to tSI,ZF2 , as

tSI,MRT
2 =

(
τuρu

τuρu + 1

)2 ((
1 + σ2

a′
mm

)
Sum

(
Rc′d

)
+
(
1 + Tr

(
Ra′

m

)) (
Tr
(
Rc′d

)
+Tr

(
Rc′od

)))
.

(56)

In obtaining the final expression, we used Property 3.

Following that, tSI,MRT
3 can be expressed, similar to tSI,ZF3 ,

as

tSI,MRT
3 =

τuρu

(τuρu + 1)
2

(
1 + Tr

(
Ra′

m

))
×
(
N +Tr

(
Rc′d

)
+Tr

(
Rc′od

))
.

(57)

In obtaining the final expression, we used Property 1 and

Property 3.

Then, based on (14), the power of ISI under MRT precoding

scheme can be written as

Var
(
zISI,MRT
m

)
= E

⎡
⎢⎣
∣∣∣∣∣∣∣
√
ρdβ

MRT
Mtot∑
i=1
i �=m

∑
l∈UEk

aml

(
ĥT
l + εTl

)
CuMRT

i si

∣∣∣∣∣∣∣
2⎤⎥⎦

= ρd
(
βMRT

)2
⎛
⎜⎜⎜⎜⎜⎜⎜⎝
E

⎡
⎢⎣
∣∣∣∣∣∣∣
Mtot∑
i=1
i �=m

∑
l∈UEk

amlĥ
T
l Cĥ∗

i si

∣∣∣∣∣∣∣
2⎤⎥⎦

︸ ︷︷ ︸
tISI,MRT
1

+ E

⎡
⎢⎣
∣∣∣∣∣∣∣
Mtot∑
i=1
i �=m

∑
l∈UEk

amlε
T
l Cĥ∗

i si

∣∣∣∣∣∣∣
2⎤⎥⎦

︸ ︷︷ ︸
tISI,MRT
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(58)

Next, we will derive analytical expressions for the terms

tISI,MRT
1 and tISI,MRT

2 . Starting with tISI,MRT
1 , similar to
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tISI,ZF2 , we get

tISI,MRT
1 =

(
τuρu

τuρu + 1

)2 ((
(Mtot − 2)

(
1 + Tr

(
Ra′

m

))
+
(
1 + σ2

a′
mm

))(
N +Tr

(
Rc′d

)
+Tr

(
Rc′od

))
+
(
Tr
(
Ra′

m

)− σ2
a′
mm

)(
N2 + Sum

(
Rc′d

)))
.

(59)

In obtaining the final expression, we used Property 3.

Following that, tISI,MRT
2 can be expressed, similar to tISI,ZF3 ,

as

tISI,MRT
2 = (Mtot − 1)

τuρu

(τuρu + 1)
2

(
1 + Tr

(
Ra′

m

))
×
(
N +Tr

(
Rc′d

)
+Tr

(
Rc′od

))
.

(60)

In obtaining the final expression, we used Property 1 and

Property 3.

Finally, the total interference power is obtained by summing

all the calculated interference terms. Then, it is straightforward

to re-arrange the terms and express the total interference power

as IMRT
RC + IMRT

NRC,m after which we reach the SINR expression

presented in (25).
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Abstract — In this paper, we analyze the impact of channel
non-reciprocity due to two implementation imperfections, namely,
transceiver frequency-response and antenna mutual coupling
mismatches at the base-station side in multi-user massive MIMO
system context. Signal models are first developed to characterize
the joint effects of these two imperfections in precoded multi-user
downlink transmission, covering both zero-forcing (ZF) and max-
imum ratio transmission (MRT) based transmitter processing.
Then closed-form expressions for evaluating the resulting perfor-
mance degradation are derived in terms of effective SINR at ter-
minal receiver input as well as lower bound of maximum achieva-
ble sum-rate in the system. Based on the derived results, it is also
possible to directly evaluate non-reciprocity calibration require-
ments at the BS with given performance targets, e.g., desired effec-
tive SINR for each user or the overall system throughput, at given
SNR level. The analysis also shows that the ZF precoding can be
sensitive to the channel non-reciprocity problem even in the case that
large amounts of antennas are deployed while the impact of imple-
mentation imperfections on MRT precoded system is less severe.
Keywords—channel reciprocity, massive MIMO, multi-user

MIMO, mutual coupling, non-reciprocity, precoding, time-division
duplexing, transceiver frequency response mismatch.

I. INTRODUCTION

As one important disruptive technology for the design of the
fifth generation (5G) wireless networks [1], the so-called mas-
sive multiple-input multiple-output (MIMO) and large scale an-
tenna systems have started to attract great interest in both aca-
demia and industry in recent years [2], [3]. One key element is to
enable highly spectrally-efficient multi-user wireless access sys-
tem by deploying very large antenna arrays at the base-station
(BS) side, e.g., 100 and above, which is also much larger than
the number of simultaneously served user equipment (UEs) in
the BS coverage area. From practical system design point of
view, in order to establish efficient downlink (DL) transmission
from the BS to multiple UEs at the same time and at the same
frequencies, the BS needs to acquire channel state information at
the  transmitter  (CSIT).  In  FDD  based  systems,  this  is  done  by
estimating DL CSI at the UEs and sending feedback signaling
from the UEs back to the BS, which generally requires allocation

of system resources proportional to the number of antennas at
the BS. As the number of antennas grows significantly in mas-
sive MIMO context, such feedback type channel estimation ap-
proach will consume extensive system resources and the pro-
cessing time may even exceed channel coherence time.

As a  result,  system design  of  practical  massive  MIMO net-
works are likely to rely on channel reciprocity property of time
division duplexing (TDD) based systems [3]. Under ideal chan-
nel reciprocity assumption, DL CSI can be directly obtained by
measuring uplink (UL) channels at the BS, which consumes
system resources proportional to the number of UEs in the cov-
erage  area  instead  of  the  number  of  antennas  at  the  BS.  But  as
discussed in [5]-[10] and reference therein, effective UL and DL
channels are, in practice, not reciprocal due to the so-called
transceiver non-reciprocity problem. Generally speaking, trans-
ceiver non-reciprocity problem is stemming from frequency-
response (FR) mismatches between the transmitter (TX, contain-
ing, e.g., mixers, power amplifier and RF filtering) and receiver
(RX, e.g., RF filtering, LNA, mixers, and lowpass filtering)
chains implemented in the same transceiver. As described in [1]-
[3], transceivers implemented in the massive MIMO BS may
operate at much lower TX/RX power levels than those in more
traditional BSs. This property can help transceivers to achieve
better performance in terms of, e.g., enhanced linearity. Yet, it
does not directly help in resolving the component differences
between TX and RX stemming from unavoidable physical limi-
tations of the used electronics [4], especially if rather low-cost
transceivers are expected to be deployed and implemented at the
BS [1]-[3] to keep the total costs feasible. The problem can be-
come even worse when the channel non-reciprocity can also be
influenced by the differences in antenna mutual coupling charac-
teristics between the DL and UL antennas/RF chains [6], [10].
Thus, in general, the impact of channel non-reciprocity due to
implementation imperfections in massive MIMO devices should
be carefully studied and understood. As discussed in [6], the non-
reciprocity at the BS side is the major problem and thus BS side
calibration should be sufficient for addressing this problem.
However, no systematic study has been reported yet in the exist-
ing literature, regarding the impact of increased number of anten-
nas and reciprocity calibration requirements in massive MIMO
system context.

This work was supported by the Finnish Funding Agency for Technology
and Innovation (Tekes), Broadcom Communications Finland and Huawei
Finland under the project “Energy-Efficient Wireless Networks and Connec-
tivity of Devices – Densification (EWINE-D)”, the Academy of Finland under
the projects 251138 “Digitally-Enhanced RF for Cognitive Radio Devices”
and 138424 “Joint Analysis and DSP-Based Mitigation of Multiple RF Im-
pairments in Future Radio Devices”, and TUT Graduate School.



In this paper, we analyze the impact of channel non-
reciprocity due to transceiver FR and antenna mutual coupling
mismatches on multi-user MIMO DL downlink transmission
with large number of antennas at the BS. Both zero-forcing (ZF)
and maximum ratio transmission (MRT) based precoding
schemes are considered and detailed signal and system models
are derived. Based on this modeling, closed-form expressions are
then derived for evaluating the resulting performance degradation
due to RF implementation imperfections, in terms of effective
signal-to-interference-and-noise ratios (SINRs) and lower bounds
on system sum-rate capacity. In general, ZF precoding based
transmission is shown to be much more sensitive to the channel
non-reciprocity problems than MRT precoding based system.
Based on the obtained expressions and analysis, it is possible to
directly calculate non-reciprocity calibration requirements at the
BS with given performance targets, e.g., desired effective SINR
for each user or overall system throughput, at given SNR level.
Those findings establish a solid analytical foundation for fully
understanding and appreciating the non-reciprocity problem on
the performance of emerging massive MIMO systems.

The rest of the paper is organized as follows: Section II out-
lines the fundamental multi-user massive MIMO downlink system
models and corresponding performance metrics. Essential trans-
ceiver non-reciprocity and antenna mutual coupling models are
then formulated in Section III. In Section IV, these are combined
to analyze the impact of channel non-reciprocity due to transceiver
FR and antenna coupling mismatches on massive MIMO down-
link transmission. Section V provides numerical evaluations and
illustrations while conclusions are drawn in Section VI.

II. PRECODED MULTI-USER MASSIVE MIMO DOWNLINK
TRANSMISSION

A. Principal downlink system model
We consider a general multi-user MIMO DL transmission

system with one BS and K users, at arbitrary OFDM(A) subcar-
rier. The BS is equipped with a large number of antennas, denot-
ed here by BN , while each UE is assumed to have only one an-
tenna for notational simplicity, hence indicating single-stream
transmission per UE. At the BS side, a 1K  data vector x

1[ , , ]TKx x  is precoded using an BN K  matrix U  as

p Ux (1)

where each element of x  has normalized power of the form
2 2E[ ]k xx  while the sum transmitted power of data vector

x  is thus 22 2
1
E[ ]

K
k xk
x Kx . Furthermore,  refers

to a power normalization scalar that keeps the total aggregate
signal power 2

x  unchanged after precoding and can be obtained
by

tr HK U U (2)

In general, the precoding matrix U  is constructed by combining
different precoder column vectors as 1[ , , ]KU u u , each of
which is responsible for precoding a specific data symbol for a
specific user. For example, the precoded data for the k-th user in
(1) can be written as

k k kxp u (3)

Next we assume the propagation channels from the BS to the
k-th user, written as 1 BN  vector 1, ,[ , , ]

B

T
k k N kh hh with

normal distribution of (0, )
BN

CN I  distributed entries. Then the
received signal at the k-th user antenna input can be expressed as

1,

KT T
k k k k k i i ki i k
y x x nh u h u (4)

where we consider T
k k kxh u  as  the  desired  signal  and

1,

K T
k i ii i k
xh u  as inter-user-interference (IUI), while kn

refers to additive zero-mean complex Gaussian channel noise at
the k-th user receiver input with variance 2 2[ ]k kE n .

By stacking next the receptions for all K users into a column
vector, we build a system level MIMO transmission model as

y Hp n HUx n (5)

where the overall DL channel matrix and noise vector are denot-
ed by 1[ , , ]TKH h h  and 1[ , , ]TKn nn , respectively.

Based on (2) and (4), from individual user point of view, e.g.,
at the k-th UE reception, the instantaneous received SINR at
each terminal  reads

22 2

22 2 2
1,

2

2

1,

SINR

tr

T
k k x

k K T
k i x ki i k

T
k k

K T H
k ii i k

h u

h u

h u

h u U U

(6)

where 2 2 2 2/ /k x kKx  denotes the total transmitted
signal-to-noise ratio (SNR)  [2], [3]. The effective SINR, de-
fined here, similar to, e.g., [11], as the ratio of the average
desired signal power to the average interference plus noise
power is then given by

2

2

1,

E

E E tr

T
k k

k K T H
k ii i k

h u

h u U U
(7)

where k  approaches to the value of SINRk  when BN .

B. Sum-rate capacity of massive MIMO DL transmission
Based on the formulated instantaneous SINR at the k-th us-

er input given in (6), it is possible to evaluate the maximum
achievable sum-rate based on the classical capacity expressions
over different channel realizations as

2
1

E log 1 SINR
K

k
k

R (8)

As discussed, e.g., in [2], [3], [11], the interference term in (4) is
non-Gaussian distributed and its entropy is upper-bounded by
the entropy of Gaussian noise having the same variance. There-
fore, the sum-rate R  is also lower bounded by the rate evaluated
using effective SINR or SNR in the presence of non-Gaussian
distributed interference as



2
1

log 1
K

k
k

R (9)

The actual values of instantaneous and effective SINRs vary
with different precoding techniques. In this paper, we considered
two most prominent precoding candidates for multi-user massive
MIMO DL transmission, namely, ZF and MRT [1]-[3].

C. System performance with ZF precoding
With ZF precoding, the precoder and power normalization

parameter are constructed using the pseudo-inverse of the total
channel matrix as

11( ) , trH H H
ZF ZF KU H HH HH  (10)

Incorporating (10) into the link model in (5), the reception at the
k-th user input can be written as

ZF T
k ZF k ZF k ZF k ky n x nh U x (11)

which is, by design, totally IUI free. The resulting instantaneous
and effective S(I)NRs at the k-th user reception then read

2 2 2

2

1
E tr

ZF ZF

k

xZF
k

ZF
k

H

SNR
K

HH

(12)

respectively, where 2
x  and 2

k  refer to the powers of each
transmitted symbol and channel noise at the k-th user receiver
input respectively. As shown in [2], [3] and references therein,
with large K  and BN , we have

1
1 / ( 1)E tr HHH (13)

where /BN K  refers to the ratio between the number of
antennas at the BS and the number of single-antenna UEs in the
coverage area. Inherently, effective S(I)NR per terminal can be
directly written as a function of  and transmitted SNR  as

( 1)ZF
k (14)

D. System performance with MRT precoding
As described in [2], [3], MRT is a fairly simple technique

where the precoding parameters are defined as

, trH H
MRT MRT KU H HH (15)

Again, incorporating (15) into the link model in (4), the recep-
tion at the k-th user input can be written as

1,

K
MRT T T
k MRT k k k MRT k i i k

i i k

y x x nh h h h  (16)

which is now, in general, contaminated by both IUI and additive
noise. The resulting instantaneous and effective SINRs then read

2

2

1

2

2

1

E

t

E

r

trE

T
k k

K
T
k i

i
i k

T
k k

MRT
k

H

MR
K

T
k i

i
k

T
k

H

i

SINR
h h

h h

h h

h HHh

HH

 (17)

respectively. As shown in [11], with large number of antennas at
the BS, the transmission channels have the following properties

2 2

2

E

E ,   if

E tr

T
k k B B

T
k

H
B

i B

N N

N i

KN

k

h h

h h

HH

(18)

Based on (18), the effective SINR defined in (17) can then be
further simplified as

( 1)

1 1
MRT
k

BN
K (19)

which is now a function of  and transmitted SNR  [2], [3].

III.TRANSCEIVER FR AND ANTENNA MUTUAL COUPLING
MISMATCHES AND THEIR IMPACT ON TDD CHANNEL

RECIPROCITY

In general, as outlined above, the design of both ZF and
MRT precoders at the BS requires DL channel knowledge. In
TDD systems, DL CSIT can be obtained by measuring UL
channels, denoted here by ULH  and ,

T
kULh , as DL and UL oper-

ate at the same center-frequency, and thus ideally T
ULH H  and

,
T

k k ULh h  [3]. However, as depicted in Figure 1 and Figure 2,
the effective DL and UL channels are generally cascades of
transceiver responses and antenna mutual coupling at the TX
side, physical propagation channels, and antenna mutual cou-
pling and transceiver responses at the RX side. Then, the effec-
tive  DL and UL channel  matrices  between the  BS and the k-th
user device, and between the BS and all the users 1, 2,...,k K ,
are given by

, , ,

, , , , ,

T T
k k R k B T BT
T T T
kUL B R B R kUL k T

a

a

h h M A

h A M h
(20)

where , , ,1 , ,diag ,...,
BB T BT BT Na aA  and , diagB RA

, ,1 , ,( ,..., )
BB R B R Na a . In above, , , BBT na , , , BB R na , ,k Ta  and ,k Ra

refer to the frequency-responses of TX and RX chains, at con-
sidered subcarrier, in the Bn -th transceiver at the BS side and in
the k-th UE while ,B RM  and ,BTM  are RX and TX mutual cou-
pling matrices at the BS, respectively. In general, , ( ) ,BRT i j

M
( i j ) represents the leakage coefficient from the j-th antenna
to the i-th antenna at the RX and TX sides of the BS, respective-
ly.
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Figure 1: Principal illustration of physical DL transmission and reception
including propagation channels, transceivers and antenna mutual coupling.

Figure 2: Principal illustration of physical UL transmission and reception
including propagation channels, transceivers and antenna mutual coupling.

Based on (20), the effective DL channels can now be written,
in terms of the effective UL channels, as

, , , , ,

,

,

( )
TT T T T

k k k UL B R B R BT BT
TT

k k UL B B

k k UL B

a

a

a

h h A M M A

h M A

h C

(21)

where 1
, ,k k R k Ta a a  and 1

, ,B BT B RA A A  depict transceiver
FR mismatches at the k-th user and at the BS, respectively [10].

1
, ,B B R BTM M M  refers to the mutual coupling mismatch ma-

trix at the BS while B B BC M A  denotes the joint effects of
transceiver FR and antenna mutual coupling mismatches.

In general, the transceiver frequency mismatch matrix BA  is
diagonal and antenna mutual coupling mismatch matrix BM  is
non-diagonal [6], [10]. Here, we define

BB B NC C I . For
analysis  purposes,  we  assume  that  all  entries  of BC  are zero-
mean complex Gaussian distributed random variables and each
column of BC , denoted by

:,B i
C , has equal sum-power of the

form 2
:, :,

[ ]
H

C B Bi i
E C C . For each column

:,B i
C , the

power of diagonal entry
,B i i

C  and sum power of non-diagonal
entries are denoted as 2

D  and 2
O , respectively, and

2 2 2
C D O (22)

When the mutual coupling coefficients for TX and RX antennas
are identical, implying BM I , and thus there is only trans-
ceiver FR mismatch at the BS, we have 2 0O  and 2 2

C D .

IV. CLOSED-FORM ANALYSIS OF CHANNEL NON-RECIPROCITY
EFFECTS ON PRECODED MASSIVE MIMO DL TRANSMISSION

In this section, the performance degradation due to transceiv-
er FR and antenna mutual coupling mismatches at the BS is ana-
lyzed  in  terms  of  effective  SINR  at  each  UE  input  and  lower
bound of achievable system downlink sum-rate in the multi-user
massive MIMO context.

A. General signal model under channel non-reciprocity
We assume that the deployed precoder 1

ˆ ˆ ˆ, , KU u u  and
normalization scalar ˆ  are constructed based on perfectly esti-
mated UL effective channel matrix ˆ T

ULH H

1, ,, ,
TT T

UL KULh h  where ,
ˆT
k kULh h . Thus, incorporating (21)

into the signal model in (4), the reception at the k-th user input
becomes

1,

1,

ˆ ˆ

ˆ

ˆ ˆ

ˆˆ ˆ ˆ ˆ

K

k k k i i k
i i k

K

k B k k k B i i k
i i

T T
k k

T T
k k

k

y x x n

a x a x n

u u

C u u

h h

Ch h

  (23)

and the instantaneous SINR at the k-th user input reads
2 2

2 2 2 2
1,

ˆ
S

ˆ

ˆ
INR

ˆ ˆ/

T
k x

k K T

k B k

k x ki i ik k B

a

a

C u

C u

h

h
 (24)

In the following, based on (24), we carry out closed-form analy-
sis for evaluating the effective SINR over different channel and
non-reciprocity coefficient realizations using ZF and MRT pre-
coders, respectively. The lower bound of system sum-rate capac-
ity can then be obtained through (9) in closed-form by applying
the obtained effective SINR expressions.

B. Effective SINR using ZF precoding
By replacing Hwith Ĥ  in (10), we construct the estimated

ZF precoder ˆ
ZFU  and power normalization constant ẐF . Then,

after passing through the effective DL channel, the receiver input
signal at the k-th user reads
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The instantaneous SINR at k-th user input can then be expressed
as
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As the entries of BC  are much smaller than 1 and
ˆˆ 1ZF
B

T
kkC uh  and

2

1,
ˆ ˆˆ ˆ

KT T
k k

ZF ZF
B k B ii i k

C uhC uh  with
large K, the effective SINR over different channel and non-
reciprocity realizations can be approximated as
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In general, the implementation impairment elements in BBC  are
independent of transmission channels ˆT

kh  and Ĥ .  All  the  en-
tries in BBC  and ˆT

kh  ( Ĥ ) are thus independent random varia-
bles, and therefore the first term in the denominator of  (27) can
be simplified as
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Then, the closed-form expression for effective SINR at the k-th
user input reads
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where the gain of UE non-reciprocity scalar is assumed to be
close to one, i.e., 2

1ka , which is most likely the case in
practical UE implementation. Then the SINR performance loss
due to the non-reciprocity at the BS can be quantified as

10 10
2

1010 log ( ) 10 log ( ) 10 log ( 1)ZF ZF
ZF k k CD  (30)

and the relative SINR performance loss compared to the ideal
effective SINR is defined as

10

10
2

10

/ log ( )

log ( 1) / log ( 1)

ZF
R ZF k

C

D D
(31)

Based on (30), for given performance loss specification ZFD ,
we can now derive calibration requirement for maximum tolera-
ble mismatch noise power 2

C , defined in (22),  as
/12 0(10 1) /ZFD

C (32)

If there is no antenna mutual coupling mismatch at the BS and
2 0O , the corresponding calibration requirement for the max-

imum tolerable transceiver FR mismatch noise level 2
D  reads

/12 0(10 1) /ZFD
D (33)

We will discuss the implications of the obtained analysis results
in (31)-(33) in more details in Section IV. D.

C. Effective SINR using MRT precoding
Again, by replacing H  with Ĥ  in (15), we construct esti-

mated MRT precoder ˆ
MRTU  and power normalization constant

ˆ
MRT . Then, after sending data using MRT precoding and expe-

riencing effective DL channel, the reception at the k-th user input
reads
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k k Bay x naxh h h hC C  (34)

The instantaneous SINR at the k-th receiver input can then be
written as
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Following similar procedures as when deriving (19) and (29), the
effective SINR over different channel and  non-reciprocity reali-
zations can then be shown to read
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where again, 2
ka  is assumed to be approximately equal to 1.

Then, the SINR performance loss due to frequency-response
mismatch inside transceiver and mutual coupling mismatch be-
tween antenna TX and RX modes can be written as
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C

k kD
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Notice that with reasonable design and implementation re-
sources, it should be reasonable to achieve mismatch level

2 1C  at the BS. Thus, based on the above expression, the
performance degradation due to the considered implementation
imperfections is fairly modest in MRT precoded massive MIMO
system, i.e., MRTD  is close to 0dB.

D. Discussion
Considering ZF precoded massive MIMO DL with large K,

analyzed in Section IV.B, the absolute SINR performance loss
in (30) is only related to the mismatch noise level 2

C  at the
BS side and transmitted SNR  while the relative SINR
performance loss in (31) is related to 2

C ,  and also . In
general, the value of 2

C  is heavily dependent on detailed
transceiver and antenna array implementation at the BS. In
order to provide further insight on the obtained formulas  (30)
and (31), we consider the following two cases:

1) 2
C  and  are fixed for any large BN

a) The absolute SINR performance loss at each UE input
is independent of the number of UEs K served in the coverage
area and the number of antennas BN . It does not decrease by
increasing BN  or /BN K .

b) Based on (9), the absolute performance loss in terms
of sum-rate is proportional to the number of UEs K  in the
coverage area and is independent of BN .



c) The relative SINR performance loss at each UE input
is dependent on /BN K . With increasing , RD
approaches to zero.

2) 2
C  varies as a function of BN  as

0

2 2 F( )C BC
N  and

 is fixed for any BN
a) The absolute SINR performance loss ZFD  at each UE

input is independent of the number of UEs K  but dependent
on the number of antennas BN . If F( )BN  increases or
decreases with growing number of BN , ZFD  increases or
decreases as well.

b) The absolute performance loss in the system overall
sum-rate is proportional to the number of UEs K  in the
coverage area and but also dependent on BN , based on (9).

c) The relative SINR performance loss RD  at  each  UE
input is dependent on /BN K . Depending on the exact
function F( )BN , RD  may even increase with growing .

V. SIMULATIONS AND NUMERICAL RESULTS

In this Section, the derived analytical results are evaluated
using extensive computer simulations. As a practical example,
multi-user massive MIMO DL transmission using BS with 20-
1000 antennas is assumed, serving 10-100 single-antenna UEs
simultaneously over the same spectrum. The deployed carrier
frequency is assumed to be 2 GHz.

First, the accuracy of the proposed closed-form analysis is
examined. As shown in Figure 3-Figure 5, system sum-rates
with zero impairments (for reference), with transceiver FR mis-
match only ( 2 20D dB) and with joint effects of transceiver
FR  ( 2 20C dB) and antenna mutual coupling mismatches
( 2 15O dB) are compared with different system setups. The
system setups for obtaining each figure are described in details
below each figure. Here the empirical sum-rates are obtained by
averaging instantaneous rates over different channel and im-
pairment realizations as indicated in (8). Based on the simulation
results, it is very interesting to observe that the analytical lower
bounds of system sum-rates are very close to the actual system
sum-rates even if the interference is not Gaussian distributed.
The derived analytical results are, in general, seen to provide
very good match to the empirical system sum-rates when trans-
ceiver FR and/or antenna mutual coupling mismatches are pre-
sent, thus verifying and demonstrating the usefulness and validi-
ty of the analysis. In general, the impact of channel non-
reciprocity on MRT precoded transmission is also seen to be
very modest. In case of ZF precoded transmission, there is al-
most constant performance gap between ideal sum-rate and de-
graded sum-rate if 2

C  ,  and K are fixed as in Figure 4.
Next, we consider ZF precoding only, and analyzing calibra-

tion requirements for the BS. Based on (32), we examine non-
reciprocity calibration requirement at the BS with different per-
formance loss margins and transmitted SNRs. As shown in Fig-
ure 6, targeting for near zero performance loss, the BS has to
achieve non-reciprocity calibration accuracies in the order of

2 -30, -35, -40C dB for 15, 20, 25 dB, respectively.
Targeting for 1dB performance loss, on the other hand, calibra-
tion accuracy 2

C  of around -25dB is already sufficient.

Figure 3: Comparison of simulated and analytical system sum-rate capacity of
massive MIMO DL transmission with 10 users and 100 antennas at the BS.
Both ZF and MRT precoders are considered with zero impairments (for refer-
ence), with transceiver FR mismatch only and with both transceiver FR and
mutual coupling mismatches.

Figure 4: Comparison of simulated and analytical system sum-rate capacity of
massive MIMO DL transmission with 10 users and 20 to 500 antennas at the
BS. ZF precoding is considered with zero impairments (for reference), with
only transceiver FR mismatch and with both transceiver FR and mutual cou-
pling mismatches. =15dB.

Figure 5: Comparison of simulated and analytical system sum-rate capacity of
massive MIMO DL transmission with 10 to 100 users and 1000 antennas at
the BS. ZF precoding is considered with zero impairments (for reference),
with only transceiver FR mismatch and with both transceiver FR and mutual
coupling mismatches. =15dB.



Figure 6: Calibration requirements for maximum tolerable mismatch level 2
C

against absolute SINR performance loss based on (32).  refers to transmit-
ted SNR.

Figure 7: Relative SINR performance loss defined in (31) with fixed mis-
match level 2

C  and varied value of  from 2 to 1000. =15dB.

Figure 8: Relative SINR performance loss defined in (31) with varied mis-
match level

0

2 2 F( )C BC
N (

0

2
C

= -50dB) and varied value of  from 2 to
1000. =15dB.

Finally, we evaluate the relative SINR performance loss de-
fined in (31) with different numbers of /BN K . As shown
in Figure 7, with fixed

0

2
C

, the relative performance loss is fairly
constant except for the smallest values of , and already with
calibration accuracy of -20dB the relative loss is only around 3%.
However, if

0

2
C

grows when the number of antennas is increas-

ing at the BS, denoted by
0

2 2 F( )C BC
N ,  the  relative  SINR

performance loss can grow as shown in Figure 8. For example,
the benefits of using larger amounts of antennas at the BS is se-
riously reduced if the non-reciprocity mismatch noise

0

2
C

grows
linearly with increased BN . On the other hand, the relative per-
formance loss keeps almost unchanged with different antenna
numbers if 1/4F( )B BN N . Thus, in general, the derived analy-
sis results provide efficient tools for system and circuit designers
to fully understand and deal with the non-reciprocity problems in
the massive MIMO systems.

VI. CONCLUSIONS

This paper studied the impact of channel non-reciprocity due to
transceiver FR and antenna mutual coupling mismatches on the
performance of multi-user massive MIMO DL transmission sys-
tems using both ZF and MRT precoded transmission schemes.
Closed-form expressions for evaluating the performance degra-
dation in terms of effective SINR at the UE input and lower
bound of system sum-rate were derived. In general, ZF precoded
system is found to be more sensitive to channel non-reciprocity
problems than MRT precoded system. The analysis generally
shows that the performance loss caused by the considered mis-
match problems does not disappear with increased number of
antennas implemented at the BS. However the negative impact
imposed on the overall system performance becomes less severe
with increased number of antennas at the BS unless the mis-
match level grows substantially at the same time.
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Abstract—This paper proposes efficient algorithms for esti-
mating the base-station transceiver non-reciprocity character-
istics in precoded TDD multi-user MIMO-OFDM networks,
such that the estimation processing is carried out on the user
equipment (UE) side. First, detailed signal models are derived
to characterize the effects of transceiver non-reciprocity on both
base-station and UE sides, in case of zero-forcing precoded multi-
user MIMO-OFDM downlink transmission. The developed signal
models show that transceiver non-reciprocity on the base-station
side is the main cause of downlink performance degradation,
resulting in general to inter-user interference. Then, based on
closed-form analysis of the overall interference or distortion
level on the receiver side, two efficient UE-based algorithms
are proposed, depending on the availability of downlink pilot
symbols, to estimate the level of base-station transceiver non-
reciprocity without any specific calibration procedure. The per-
formance of the proposed estimation methods are evaluated using
extensive computer simulations. The obtained results show that
even without any downlink pilot symbols, the estimation of
the base-station non-reciprocity characteristics is still feasible,
while further improved estimation accuracy can be obtained
if downlink pilots are available in the system. In general, by
being able to estimate the level of base-station transceiver non-
reciprocity on the UE side, dedicated calibration procedures and
the associated system overhead can be avoided, thus enabling the
base-stations to carry out calibration only when truly needed.

Keywords—Channel reciprocity, massive MIMO, multi-user
MIMO, non-reciprocity, time-division duplexing, transceiver fre-
quency response mismatch, non-reciprocity level estimation.

I. INTRODUCTION

Massive MIMO or large-scale antenna systems are com-
monly regarded as one of the most promising candidate
technologies for the fifth generation (5G) wireless networks
[1]. By employing very large numbers of antenna elements on
the base-station (BS) side, highly-efficient multi-user (MU)
MIMO where several user equipments (UEs) are served si-
multaneously can be realized with simple and computing-
feasible linear processing in the devices [2]. This can enable
significantly increased spectral- and radiated energy-efficiency
in the networks [2].

In general, a majority of the associated spatial precoding
techniques, such as maximum ratio transmission (MRT) and

This work was supported by the Finnish Funding Agency for Technology
and Innovation (Tekes) and Huawei Finland under the project “Energy-
Efficient Wireless Networks and Connectivity of Devices - Densification
(EWINE-D”, the Academy of Finland under the projects 284694 and 288670,
the Tuula and Yrjö Neuvo fund, and TUT Graduate School. The work was
also supported by the National Natural Science Foundation of China (NSFC).

zero-forcing (ZF), build on the availability of accurate channel
state information (CSI) on the transmitter side [2]. In conven-
tional frequency-division duplex (FDD) based MIMO systems,
where the number of BS antennas is reasonably low, UEs
estimate the downlink (DL) channels based on DL reference
signals transmitted by the BS. Then, these estimated channel
responses are communicated from UEs to the BS by means of
feedback signaling. However, such CSI acquisition approach
is not considered feasible in massive MIMO networks since
it requires reference signal and feedback signaling resources
proportional to the number of adopted antennas in the base
station. Therefore, massive MIMO systems are commonly
assumed to build on the time division duplexing (TDD) prin-
ciple, resulting to the reciprocity between the uplink (UL) and
downlink channels within the channel coherence time interval
[3]. Hence, the BS can estimate the downlink channels based
on the uplink reference signals, and calculate the precoders
directly based on such estimates.

However, in practice, the hardware chains in the BS and
UE transceivers are not fully reciprocal between the downlink
and uplink. As discussed, e.g., in [4]–[7], even with the as-
sumption of having reasonably good antenna isolation in each
device, there are always unavoidable mismatches between the
frequency responses (FRs) of transmitter and receiver chains
in each individual device. Therefore, the resulting effective
DL and UL channels are not reciprocal anymore which is
commonly called channel non-reciprocity problem in TDD
networks. As shown in [6]–[8], while the FR mismatches in
the UE transceivers can be easily mitigated as part of the
precoded effective DL channels, transceiver non-reciprocity
on the BS side can cause severe performance degradation.
As a result, specific calibration methods are proposed, e.g.,
in [9], in order to recover the reciprocal nature of the effec-
tive channels. However, such channel reciprocity calibration
methods require both DL training signals from BS to UEs and
feedback signaling from UEs to BS where the overhead in
each phase is proportional to the number of antenna elements
on the BS side. Thus, although calibrating the BS transceiver
is certainly required in TDD systems, it should be done
only if necessary, in order to minimize the associated system
overhead. Furthermore, the rate at which the non-reciprocity
characteristics deviate or change over time depends on the
hardware configuration as well as the operating conditions, in
particular operating temperature [10]. For these reasons, being
able to estimate the level of BS transceiver non-reciprocity
on UE side, during the normal downlink transmission, is
intriguing and would be very beneficial in order to let the



BS perform the non-reciprocity calibration only when truly
needed. This is the leading theme of this paper.

In this paper, we develop efficient processing algorithms
for estimating the BS transceiver non-reciprocity level in
TDD multi-user massive MIMO-OFDM networks, with special
focus on ZF precoded downlink transmission. First, detailed
signal and system models are derived, incorporating the es-
sential precoding, MIMO channel and non-reciprocity models.
Based on the developed models, a closed-form expression is
obtained for calculating the power of the overall distortion or
interference on the UE side, stemming from the BS transceiver
non-reciprocity. Building on this analysis, two alternative BS
transceiver non-reciprocity level estimation methods are then
proposed in which UEs are able to estimate the level of non-
reciprocity during the normal DL transmission. Using such
estimates, the UEs are then able to inform the BS whether or
not to execute an actual reciprocity calibration round. The more
detailed rationale of the estimation and associated signaling
can be summarized as:

1) UEs estimate the level of BS transceiver non-
reciprocity based on one of the proposed methods
in Section IV.

2) The estimated values are then compared to a given
threshold level, say Y . This threshold is chosen as the
lowest BS transceiver non-reciprocity level causing
considerable performance degradation [7], [8]. In
each BS non-reciprocity level estimation round, the
estimated values in UEs can be used either with or
without averaging as

• with averaging: UEs report the estimated val-
ues to the BS and the BS takes the average
of received estimated values and compares it
to Y .

• without averaging: UEs directly compare
their estimated values to Y and only send one
bit flag whether or not the estimated value is
higher than Y .

3) If the average or majority of the reported values are
higher than Y , the BS initiates its transceiver non-
reciprocity calibration round, e.g. the one described
in [9]. Otherwise, no calibration is needed.

The rest of the paper is organized as follows. Section
II outlines the fundamental ZF precoded multi-user MIMO
OFDM downlink system models. Transceiver non-reciprocity
and its impact on ZF precoded DL transmission are then
formulated in Section III. In Section IV, two different BS
transceiver non-reciprocity estimation methods are proposed
by analyzing the power of the signal distortion on the UE
side. Section V evaluates the performance of the proposed
methods by means of comprehensive computer simulations.
Finally, conclusions are drawn in Section VI.

Notations: We use upper (lower) bold letters to denote
matrices (vectors). The superscripts T, ∗, and H stand for
the transpose, conjugate, and conjugate-transpose, respectively.
Tr(A) denotes the trace of a matrix A, while In is the n× n
identity matrix. The expectation operator is shown by E[.], and
finally, we use CN (0, 1) to denote a zero-mean unit-variance
complex Gaussian distribution.

II. MULTI-USER MIMO SYSTEM MODEL

We consider ZF precoded multi-user MIMO DL transmis-
sion system with one BS and K UEs, at an arbitrary OFDM(A)
subcarrier. For notational simplicity, the subcarrier index is
dropped and thus not explicitly shown. The BS is equipped
with large number of antenna elements denoted by N � K,
while all UEs are assumed to be simple single-antenna devices.
One data stream is allocated to each UE which results into
having an overall of K streams transmitted simultaneously in
the network. The data symbol vector in the BS is denoted

by s = [s1, . . . , sK ]
T ∈ C

K , where the average power of each

element is E
[
|sk|2

]
= δ2s . The data vector s is precoded using

a zero-forcing precoder matrix U = [u1, . . . ,uK ] ∈ C
N×K

constructed as [11]

U = HH
(
HHH

)−1
, (1)

where H ∈ C
K×N denotes the total DL channel matrix be-

tween the BS and all the UEs. The total channel matrix can be
written as H = [h1, . . . ,hK ]

T
, where hT

k = [hk1, . . . , hkN ] ∈
C

N is the spatial channel vector between the BS and the k-th
UE with i.i.d. CN (0, 1) elements.

Using precoder matrix U, the precoded transmit data vector
can be written as

x = βUs, (2)

where β denotes a transmit power normalization scalar and is
assumed to be constructed as follows [11]

β =
√
K/Tr ((UHU)) =

√
K/Tr

(
(HHH)

−1
)
. (3)

The precoded data towards a particular UE k is thus of the
form

xk = βuksk. (4)

Therefore, the downlink signal received by k-th UE can be
expressed as

rk = hT
k xk +

K∑
i=1,i �=k

hT
k xi + nk, (5)

where nk denotes additive zero-mean complex Gaussian noise

at the k-th UE with power E
[
|nk|2

]
= δ2k.

Incorporating (4) in (5), the received signal at the k-th UE
can be re-written as

rk = βhT
k uksk + β

K∑
i=1,i�=k

hT
k uisi + nk. (6)

Stemming from the structure of ZF precoders in (1), it can be
easily shown that hT

k uk = 1 and hT
k ui = 0 ∀i �= k. Thus, the

received signal at the k-th UE reads

rk = βhT
k ukxk + nk = βxk + nk, (7)

which is, by design, totally free from inter-user interference
(IUI). While all developments above assume perfect CSI on
the BS side, we next address how the transceiver and effective
channel non-reciprocity impacts the transmission.
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Fig. 1. Principal illustration of physical DL transmission and reception
including propagation channels, transceivers and FR mismatches

III. IMPACTS OF TRANSCEIVER NON-RECIPROCITY ON

ZF PRECODED TDD MU-MIMO DL TRANSMISSION

A. Effects of Transceiver Non-Reciprocity on TDD Channel
Reciprocity

In order to construct ZF precoders as in (1), channel state
information is obviously needed at the BS. In TDD systems,
such information can be obtained via UL channel estimation,
since DL and UL channels are in principle reciprocal within
the channel coherence interval, written here as H = HDL =(
HUL

)T
.

However, as depicted in Fig. 1, in practice the actual
effective channels also include the frequency responses of
transmitter and receiver circuits. Due to the unavoidable non-
idealities and tolerances in the analog circuits, there are always
FR mismatches between the deployed transmitter and receiver
chains in each transceiver. As a result, even with perfect
channel estimation at the BS side, the effective DL and UL
channels are not reciprocal. As discussed, e.g., in [6], [12] and
references therein, the channel non-reciprocity model can be
formulated as

HNR = Au

(
H̄UL

)T
Ab = AuĤAb, (8)

where HNR , H̄UL and Ĥ refer to the effective DL channel,
effective UL channel, and estimated DL channel between
the BS and UEs, respectively. Transceiver FR mismatches at
UE and BS sides are denoted by Au and Ab, respectively.
Furthermore, Au can be expressed as Au = IK +A′

u while
Ab = IN +A′

b. Both A′
u and A′

b are diagonal matrices, and it
is assumed for analysis purposes that all the diagonal entries
of both A′

u and A′
b are i.i.d. zero-mean circularly symmetric

complex Gaussian random variables with variance δ2u and δ2b ,
respectively.

Based on above, the effective channel between the BS and
UE k can be now expressed as

hNR
k = auk ĥkAb, (9)

where auk = 1 + au
′

k is the k-th diagonal element of Au and

Ab has diagonal elements 1 + ab
′

1 , . . . , 1 + ab
′

N , which are
representing the transceiver FR mismatches at k-th UE and
the BS, respectively. In general, the channel non-reciprocity
values vary very slowly and thus the realization values of Au

and Ab can be assumed to remain constant over many channel
coherence intervals.

B. Effects of Channel Non-Reciprocity on ZF Precoded TDD
MU-MIMO DL Transmission

Under the channel non-reciprocity described in (8), the BS
generates ZF precoders based on the estimated DL channel Ĥ,
obtained using the UL pilots, as

Û = ĤH
(
ĤĤH

)−1

, (10)

while the normalization factor reads now

β̂ =

√
K/Tr

(
ÛHÛ

)
=

√
K/Tr

((
ĤĤH

)−1
)
. (11)

Thus, under non-reciprocal channels, the received DL trans-
mission at the k-th UE receiver reads

rk = β̂
(
hNR
k

)T
ûksk +

K∑
i=1,i �=k

β̂
(
hNR
k

)T
ûisi + nk

= β̂auk ĥ
T
kAbûksk +

K∑
i=1,i�=k

β̂auk ĥ
T
k (IN +A′

b) ûisi + nk

= β̂auk ĥ
T
kAbûksk +

K∑
i=1,i�=k

β̂auk ĥ
T
kA

′
bûisi + nk. (12)

By defining

cij � β̂aui ĥ
T
i Abûj , (13)

and

Ik =
K∑

i=1,i �=k

ckisi, (14)

the expression (12) can also be re-written as

rk = ckksk +
K∑

i=1,i�=k

ckisi + nk = ckksk + Ik + nk, (15)

where Ik is IUI at the k-th UE caused by the effective channel
non-reciprocity.

Based on (15), it can be observed that although the level
of IUI at UE k depends on transceiver non-reciprocity at
both BS and the UE itself, assuming the only imperfection
in CSI is the channel non-reciprocity, IUI free reception can
be achieved by having reciprocal transceiver at BS side. This
follows directly from substituting Ab = IN in (12) and (13).
This relation is next used to estimate the level of BS transceiver
non-reciprocity δ2b at UE side.

IV. ANALYSIS AND ESTIMATION OF THE LEVEL OF BS
TRANSCEIVER NON-RECIPROCITY

In this section, we derive analytical expressions for the
level of BS transceiver non-reciprocity, measurable at UE side,
assuming either pilot based or statistical DL channel estimation
in UEs. Building on that, we then propose an estimator to
estimate the level of BS transceiver non-reciprocity on the UE
side.



A. Measurable BS Transceiver Non-Reciprocity Level at UE

In order to estimate the BS transceiver non-reciprocity level
δ2b using the received signal in (15), UE k needs to estimate the
effective precoded DL channel, ckk. In general, conventional
OFDM systems typically adopt DL pilots to acquire CSI for
detection purposes. However, such approach is not necessarily
efficient or feasible in massive MIMO systems, since the
amount of overhead is proportional to the number of BS
antennas N . Therefore, alternative techniques to acquire DL
CSI are proposed in massive MIMO system context, e.g., in
[11], [13], [14].

Assuming now that the k-th UE has estimated the effective
precoded DL channel ckk, denoted with ĉkk, the unwanted
distortion or interference term can be extracted as

zk = rk − ĉkksk = (ckk − ĉkk) sk + Ik + nk

= εk + Ik︸ ︷︷ ︸
dk

+nk, (16)

where dk refers to interference plus the residual term of
transmitted data sk which reads

εk = (ckk − ĉkk) sk, (17)

and is due to the estimation error of precoded DL channel at
the k-th UE. Here, we assume that this processing is done after
data decoding such that also sk is available.

The power of the unwanted distortion or interference term
zk at the k-th UE, defined in (16), can then be written as

δ2z,k = E

[
|zk|2

]
= E

[
(εk + Ik + nk)

∗
(εk + Ik + nk)

]
= E

[
|εk|2

]
+ E

[
|Ik|2

]
+ δ2k

= E

[
|ckk − ĉkk|2

]
δ2s + E

[
|Ik|2

]
+ δ2k, (18)

where the expectation is over different data symbols and chan-
nel coherence intervals. We emphasize already here that due to
the slowly-varying nature of the non-reciprocity characteristics,
the underlying non-reciprocity parameters, namely the realized
values of auk and Ab, can be assumed unknown but constants,
within the processing interval, when evaluating (18) further in
the forth-coming subsections.

Following from (18), the power of the term dk denoted as

δ2d,k = E

[
|dk|2

]
reads then

δ2d,k = δ2z,k − δ2k = E

[
|ckk − ĉkk|2

]
δ2s + E

[
|Ik|2

]
, (19)

where the average IUI power can be written as

E

[
|Ik|2

]
= E

⎡
⎢⎣
∣∣∣∣∣∣

K∑
i=1,i �=k

N∑
l=1

β̂auk ĥkla
b′
l ûli

∣∣∣∣∣∣
2
⎤
⎥⎦ δ2s , (20)

in which ûli represents the element at the l-th row and i-th
column in precoder matrix Û.

Assuming next that for large N , the element wij at the i-th
row and j-th column of the matrix W = ĤĤH, reads

wij = ĥT
i ĥ

∗
j ≈

{
N i = j

0 i �= j
, (21)

and thus overall W ≈ NIK . Therefore, ûli in (10) can
be approximated by ĥ∗

il/N and β̂ =
√

K/Tr(W−1) ≈ √
N

which result in

E

[
|Ik|2

]
≈ E

⎡
⎢⎣
∣∣∣∣∣∣

K∑
i=1,i �=k

N∑
l=1

1√
N

auk ĥkla
b′
l ĥ

∗
il

∣∣∣∣∣∣
2
⎤
⎥⎦ δ2s

=

⎛
⎜⎜⎝ K∑

i=1
i �=k

K∑
j=1
j �=k

N∑
l=1

N∑
m=1

E

[
ĥklĥ

∗
km

]
ab

′
l a

b′
m

∗
E

[
ĥ∗
ilĥjm

]⎞⎟⎟⎠
× 1

N
|auk |2 δ2s

=
1

N
|auk |2 δ2s

K∑
i=1,i�=k

N∑
l=1

E

[∣∣∣ĥkl

∣∣∣2] ∣∣∣ab′l ∣∣∣2 E
[∣∣∣ĥil

∣∣∣2]
≈ (K − 1) |auk |2 δ2b δ2s
≈ (K − 1) δ2b δ

2
s . (22)

The second approximation is due to the law of large numbers

N∑
l=1

∣∣∣ab′l ∣∣∣2 ≈ Nδ2b , (23)

where the left hand side converges asymptotically to the right
hand side with increasing N . Finally, the approximation on
the last line of (22) is due to the fact that |auk |2 ≈ 1.

Next, we derive expressions for δ2d,k under both pilot based
as well as statistical DL channel estimation.

1) Pilot Based DL Channel Estimation: In order to acquire
DL CSI at UE side, authors in [13] proposed beamforming-
based DL training scheme. In this scheme, where the overhead
is proportional to the number of UEs K, an appropriate pilot
matrix is transmitted from BS to UEs while UEs then employ
MMSE estimation to acquire DL CSI. It can be shown that by
using this scheme, the estimated precoded DL channel at UE
k can be expressed as

ĉPILOT
kk = ckk + ek, (24)

where ek is the estimation error with power E

[
|ek|2

]
= δ2e

where δ2e is known to UEs [13].

Substituting next (24) in (19), the resulting power of the
IUI and the residual part of transmitted data signal at the k-th
UE reads

δ2d,k = E

[
|ek|2

]
δ2s + E

[
|Ik|2

]
. (25)

Incorporating finally (22) in (25), δ2d,k can be expressed as

δ2d,k ≈ δ2eδ
2
s + (K − 1) δ2b δ

2
s . (26)

2) Statistical DL Channel Estimation: In [11], [14], the au-
thors deploy selected statistics of the channel, namely E [ckk],
to acquire DL CSI for detection purposes which gets more
and more accurate as the number of antenna elements on
the BS side N increases [13]. This is because with large
N , ckk becomes practically deterministic. The accuracy of
such DL channel estimation is assumed sufficient for the
UEs to decode their corresponding transmitted data, but is



not necessarily accurate enough to estimate the level of BS
transceiver non-reciprocity. Therefore, another round of DL
CSI acquisition is adopted, building on the already detected
data. With the assumption that the received SNR is reasonably
high and thus that the k-th UE is able to successfully decode its
corresponding transmitted data sk, the precoded DL channel in
each coherence interval can be estimated, with higher accuracy,
as

ĉSTAT
kk =

1

M

M∑
m=1

rk [m]

sk [m]

=
1

M

M∑
m=1

(
β̂auk ĥ

T
kAbûk +

Ik [m] + nk [m]

sk [m]

)
≈ β̂auk ĥ

T
kAbûk, (27)

where M is the total number of data symbols within each
coherence interval. The approximation on the last line is due to
the fact that for practical scenarios Ik [m] + nk [m] 
 sk [m]
and E [Ik + nk] = 0 which get more and more accurate when
the received SNR and the length of the observation period
increase.

Using ĉSTAT
kk to estimate the precoded DL channel, the

power of the residual part of transmitted data signal in (19)
reads

E

[
|εk|2

]
= E

[∣∣∣β̂auk ĥT
kAbûk − ĉSTAT

kk

∣∣∣2] δ2s ≈ 0, (28)

which, based on (22), results then in

δ2d,k ≈ E

[
|Ik|2

]
≈ (K − 1) δ2b δ

2
s . (29)

B. Estimation of BS Transceiver Non-Reciprocity Level

In this subsection, based on the derived expressions in (26)
and (29), practical sample estimators are proposed to estimate
the level of BS transceiver non-reciprocity. Note that these
estimates are then utilized in the mitigation and calibration of
BS transceiver non-reciprocity as discussed in Section I.

First, the unwanted distortion or interference component is
estimated based on the signal model in (16). In doing so, ĉkk
is obtained either by (24) or (27) depending on the method to
acquire DL CSI. Following that, and assuming that the mean
is zero, the unwanted distortion or interference power at k-th
UE is estimated via standard sample variance estimator as

δ̂2z,k =
1

NcohM

NcohM∑
i=1

|zk [i]|2 , (30)

where M is the number of processed symbols in one coherence
interval and Ncoh is the number of coherence intervals used in
the BS non-reciprocity level estimation. We assume a slowly-
varying fading channel such that M can be typically in the
order of few hundreds, while all the modeling and estimator
developments are applicable also in faster fading scenarios.
Then, using (30), and assuming that the UE k knows the
receiver thermal noise power δ2k, the power of dk can be
estimated as

δ̂2d,k = δ̂2z,k − δ2k. (31)

Next, based on (26) and assuming that δ2s and δ2e are known
to UEs [13], the level of BS transceiver non-reciprocity under
pilot-based DL CSI can be estimated at k-th UE as

δ̂2b,PILOT =
δ̂2d,k/δ

2
s − δ2e

K − 1
. (32)

Similarly, based on (29), the level of BS transceiver non-
reciprocity under statistical DL CSI can be estimated at UE k
as

δ̂2b,STAT =
δ̂2d,k

(K − 1) δ2s
. (33)

In the next section, we evaluate and discuss the quality
of the above estimators given by (32) and (33) as functions
of the essential system parameters, namely, received SNR,
number of antennas at the BS, as well as levels of BS and
UE transceiver non-reciprocity. For a particular set of non-
reciprocity parameters, i.e., fixed Au and Ab, the quality of the
estimator is measured by the relative estimation error defined
as

ψ =

∣∣∣δ2b − δ̂2b

∣∣∣
δ2b

. (34)

This is then naturally averaged over multiple random re-
alizations of the non-reciprocity parameters, to get reliable
understanding of the estimation performance.

V. NUMERICAL EVALUATIONS AND ANALYSIS

In this section, we evaluate the performance of the al-
gorithms proposed in Section IV for estimating the level of
BS transceiver non-reciprocity at the UE side using extensive
computer simulations. A single-cell multi-user massive MIMO
network is deployed where the BS is equipped with large
number of antennas and UEs are assumed to be single-
antenna devices. The propagation environment between the
BS and any individual UE, at an arbitrary OFDM subcarrier,
is modeled as a frequency flat Rayleigh fading channel. The
performance of each algorithm is evaluated in terms of relative
estimation error, defined in (31). The number of data samples
in each coherence interval is M = 500, number of coherence
intervals in each BS non-reciprocity level estimation round is
Ncoh = 50, and all the results are averaged over 1000 non-
reciprocity parameter realizations. In each simulation scenario,
the accuracy of both proposed algorithms are shown by means
of relative estimation error. In the case of pilot based DL
channel estimation, the pilot scheme of [13] is adopted. The
result are shown for both cases, where UEs either report the
estimated non-reciprocity values to the BS and the BS takes
the average of them, or there is no averaging on the BS side
while the error between estimated value and the real value is
calculated at the UE side.

The typical simulation scenario consists of a BS which is
equipped with 100 antenna elements and 10 single-antenna
UEs that are served simultaneously through ZF precoding,
with each UE having transceiver non-reciprocity with relative
variance δ2u,dB = -20 dB. The level of non-reciprocity in the

BS transceivers is assumed to be as low as δ2b,dB = -20 dB
which is shown in [8] to have only a fairly small impact on
the system sum-rate. We specifically choose such relatively
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Fig. 2. Sample probability density function of estimated BS transceiver non-
reciprocity level across all the UEs using pilot based DL channel estimation.
The true value of non-reciprocity level is -20 dB.
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Fig. 3. Sample probability density function of estimated BS transceiver non-
reciprocity level across all the UEs using statistical DL channel estimation.
The true value of non-reciprocity level is -20 dB.

low non-reciprocity level, as the baseline case, to demonstrate
that also low reciprocity levels can be reliably estimated. UE
receiver SNR is set to 20 dB while ek is assumed to be i.i.d
zero-mean circularly symmetric complex Gaussian random
sequence with relative variance δ2e,dB = -20 dB. These are
the baseline values in all the simulations, but are also varied
in the experiments as indicated in the result figures.

Figs. 2–5 show the sample probability density functions of
estimated BS transceiver non-reciprocity level over different
non-reciprocity parameter realizations, in a single UE or across
all the UEs, for both DL channel estimation methods. The
obtained results clearly show that the estimates have very
well concentrated distribution around the true value which
demonstrates the good reliability of the estimation process.
More specifically, the variances are in the order of 1 dB in
all cases, even when interpreted from a single UE perspective.
Therefore, results from this process can indeed be used by BS
after only a few coherence intervals Ncoh.

Fig. 6 illustrates the accuracy of the estimators for different
numbers of antenna elements N at the BS side. As can be seen,
the accuracy improves as the number of antennas in the BS

Estimated Level of BS Transceiver Non-Reciprocity, δ̂2
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variance = 0.64857 dB
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Fig. 4. Sample probability density function of estimated BS transceiver non-
reciprocity level for one UE using pilot based DL channel estimation. The
true value of non-reciprocity level is -20 dB.
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Fig. 5. Sample probability density function of estimated BS transceiver non-
reciprocity level for one UE using statistical DL channel estimation. The true
value of non-reciprocity level is -20 dB.

side increases. The reason is that the approximation used in
(23) gets more accurate with higher values of N . Obtained
results also clearly show that the accuracy of BS transceiver
non-reciprocity level estimates is higher if the DL channel is
estimated using DL pilots. In all cases, the estimation errors
are always less than 20% which corresponds to at most 1 dB.

The effect of UE receiver SNR on the performance of
both estimation methods is examined next in Fig. 7. As can
be seen, the SNR does not practically have any effect on
the estimation accuracy if DL pilots are used. In the case
that the DL channel is estimated statistically, stemming from
the estimation method in (27), the impact of the SNR on
the estimation performance is, in turn, considerable, although
the UEs are still able to estimate the level of BS transceiver
non-reciprocity fairly reliably. Even for low SNR values, the
estimation error is less than 3 dB.

In Fig. 8, the relative estimation error is measured for
different levels of transceiver non-reciprocity at BS. As can be
seen, using DL pilots, the estimation accuracy is excellent even
for the lowest levels of BS transceiver non-reciprocity. On the
other hand, if DL pilots are not available, the estimation error



Number of Antennas at BS, N

Statistical - w/o Averaging

Statistical - Averaged in the BS

Using Pilots - w/o Averaging

Using Pilots - Averaged in the BS

Fig. 6. Relative estimation error in identifying the level of BS transceiver
non-reciprocity at the UE side with respect to the number of BS antennas.

SNR (dB)

Statistical - w/o Averaging

Statistical - Averaged in the BS

Using Pilots - w/o Averaging

Using Pilots - Averaged in the BS

Fig. 7. Relative estimation error in identifying the level of BS transceiver
non-reciprocity at the UE side with respect to the UE receiver SNR.

increases as BS transceiver non-reciprocity level decreases.
However, it should be noted that UEs are still able to estimate
BS transceiver non-reciprocity levels as low as δ2b,dB = -30 dB
with error values lower than 3 dB.

The impact of transceiver non-reciprocity level at the UE
side on the accuracy of estimation methods is shown in Fig.
9. Since the only approximation related to UE transceiver
non-reciprocity (|auk |2 ≈ 1) made in analyzing the level of
IUI is common to both estimation methods, both methods
are affected relatively similarly by the increase in δ2u. It is
important to observe that reliable estimates of BS transceiver
non-reciprocity can be obtained, despite high levels of non-
reciprocity at the UE side.

In general, as can be observed via the different simulated
scenarios, the difference in mean relative estimation error
between the cases with and without averaging in the BS is
around 5% for low to moderate values of δ2u. Therefore, there
is basically no need to report the estimated BS transceiver non-
reciprocity levels from the UE side to the BS for averaging
purposes. Thus, based on the obtained results, it is sufficient
that the UEs directly inform the BS, via one-bit feedback,
whether or not to execute an actual BS transceiver calibration

Transceiver Non-Reciprocity Level in BS, δ2
b
(dB)

Statistical - w/o Averaging

Statistical - Averaged in the BS

Using Pilots - w/o Averaging

Using Pilots - Averaged in the BS

Fig. 8. Relative estimation error in identifying the level of BS transceiver
non-reciprocity at the UE side with respect to the level of transceiver non-
reciprocity in the BS transceivers on dB scale.

Transceiver Non-Reciprocity Level in UEs, δ2
u
(dB)

Statistical - w/o Averaging

Statistical - Averaged in the BS

Using Pilots - w/o Averaging

Using Pilots - Averaged in the BS

Fig. 9. Relative estimation error in identifying the level of BS transceiver
non-reciprocity at the UE side with respect to the level of transceiver non-
reciprocity in the UE transceivers on dB scale.

procedure. This is a substantial benefit, in terms of the report-
ing overhead, and overall enables executing the BS transceiver
calibration only when truly needed. The one (or few) -bit flags
can then be easily processed in the BS, through, e.g., a simple
majority fusion rule.

VI. CONCLUSION

This paper proposed efficient methods to estimate the
level of BS transceiver non-reciprocity at the UE side, in
ZF precoded TDD multi-user MIMO-OFDM networks with
large number of antenna units at BS. Stemming from the
developed signal and system models, it was first shown that
the BS transceiver non-reciprocity is the main cause of having
unwanted inter-user interference in the received signal. Based
on this observation, analytical expressions were derived to
quantify the level of unwanted distortion or interference term
at the UE receiver, depending on the availability of DL pilots
to acquire DL CSI. Then, stemming from these expressions,
two actual BS transceiver non-reciprocity level estimation
algorithms were developed. The proposed estimation methods
do not require any additional system overhead, and can operate



in both cases of with or without DL pilots in the system.
Using extensive computer simulations, it was shown that both
estimation methods have high accuracy in different practical
scenarios, the performance being somewhat higher especially
at low SNRs and low levels of BS non-reciprocity if DL pilots
can be adopted to estimate the precoded DL channels. It was
also shown, through numerical experiments, that the estimation
accuracy of the BS transceiver non-reciprocity level does not
benefit substantially from additional averaging of raw UE-
based estimates in the BS. This leads to the conclusion that
very simple one-bit feedback, whether or not to execute an
actual BS transceiver calibration procedure, is sufficient where
UE compares the estimated level to a given threshold. This is
a substantial benefit, in terms of the reporting overhead, and
can facilitate TDD network operation where the BS transceiver
calibration is executed only when truly needed.
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Abstract—In this paper, we study the estimation of chan-
nel non-reciprocity in precoded time division duplexing (TDD)
based massive MIMO systems. The considered channel non-
reciprocity model covers both the frequency-response and the
mutual coupling mismatches between the transmitter and the
receiver chains of a massive MIMO base-station. Based on the
assumed non-reciprocity model, it is shown that the effective
downlink channel can be decomposed as a product of the
uplink channel and another sparse matrix, referred to as the BS
transceiver non-reciprocity matrix. Stemming from such model-
ing, we then propose an efficient estimator of the BS transceiver
non-reciprocity matrix exploiting its sparse nature, combined
with an appropriate formulation of the associated over-the-air
pilot-signaling. The mean-squared error (MSE) performance
of the overall proposed estimation method is finally evaluated
using extensive computer simulations which indicate that the
non-reciprocity characteristics can be estimated very efficiently
and accurately, thus potentially facilitating large system-level
performance gains in multi-user massive MIMO systems.

Index Terms—Channel non-reciprocity, frequency-response
mismatch, massive MIMO, mutual coupling, sparsity, time di-
vision duplexing (TDD).

I. INTRODUCTION

One of the key potential technologies for 5G systems is the

so called large array or massive MIMO transmission which

can facilitate very high cell-level and network-level spectral

efficiencies [1]. The key element in such technology is to have

high number of antenna units in the base stations (BSs) compared

to the number of spatially multiplexed users (user equipment,

UE) in the system. Massive MIMO systems typically rely on

the reciprocity of the physical downlink (DL) and uplink (UL)

channels in time-division duplex (TDD) based radio access to

acquire DL channel state information (CSI) for precoding pur-

poses using UL pilots, where the overhead is proportional to the

number of UEs in the system [2]. The reason is that collecting DL

CSI as in the conventional MIMO systems, where BSs send DL

pilots to UEs and UEs report DL CSI back towards BSs using UL

control channel or feedback signaling, requires system resources

proportional to the number of antennas in the BS side which, in

turn, is unfeasible in massive MIMO systems [3].

Although within a coherence interval the physical propagation

channels can be assumed reciprocal [2], [3], the responses of

transmitters and receivers hardware chains are commonly not

identical. Therefore, the resulting effective DL and UL channels

This work was supported by the Finnish Funding Agency for Technology
and Innovation (Tekes) under the project “5th Evolution Take of Wireless
Communication Networks (TAKE-5)”, by the Academy of Finland under the
projects 284694 and 288670 and TUT Graduate School.

are not reciprocal, which is known as channel non-reciprocity

problem in TDD systems [4], [5]. As shown in [6], [7], channel

non-reciprocity has two main sources, one is the frequency-

response (FR) mismatches between transmitter and receiver

chains of any individual transceiver, and the other one is the

difference in the mutual coupling effects between the antenna

elements in antenna array based devices in transmitting and

receiving modes.
In literature, there are various works that study the achiev-

able system performance under non-reciprocal channels. In this

respect, [5] provides downlink sum-rate analysis for a gen-

eral multi-user MIMO system with zero-forcing (ZF) or eigen-

beamforming based DL precoding under channel non-reciprocity

due to FR mismatch. Then, [8], [9] study achievable down-

link sum-rates for maximum-ratio transmission (MRT) and ZF

precoding schemes in massive MIMO systems, demonstrating

significant performance degradation under practical values of

channel non-reciprocity parameters. The results of such studies

clearly show the need to estimate the channel non-reciprocity

parameters in order to mitigate the non-reciprocity problem.
The estimation of channel non-reciprocity in TDD based

MIMO systems has also been addressed in various works [3],

[4], [6], [10]–[12]. These studies can be divided into three

main categories. The first two refer to such methods which

are performed in BS using a reference antenna and are called

“self-calibration” methods [3], [4], [6], [10], [11]. These two

categories can be further differentiated based on the availability

of additional circuitry. The third category refers to over-the-air

(OTA) methods in which BS transmits pilot signals to UEs and

receives back properly precoded signals from UEs [6], [12] to

facilitate non-reciprocity estimation.
In general, as shown in [10], [11], the channel non-reciprocity

at the UE side does not have major impact on the system perfor-

mance. Thus, in this work, we propose an OTA-based method

to estimate the channel non-reciprocity due to BS side imper-

fections in multi-user massive MIMO systems. As novel con-

tributions, we consider a massive MIMO system model which

incorporates both FR mismatch and mutual coupling mismatches

unlike many of the works that consider only FR mismatch such

as [3], [4], [6], [10]–[12] or works that focus on more classical

small scale MIMO systems [6], e.g., 2-4 BS antennas.
The paper is organized as follows. Fundamental effective chan-

nel non-reciprocity model is presented in Section II. In Section

III, first a novel pilot signaling method between the BS and UEs

is introduced. Then, we propose a novel BS side non-reciprocity

matrix estimation method, building on the pilot-signaling and the
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Fig. 1. Principal illustration of physical (a) DL and (b) UL transmissions and
receptions including propagation channels, transceivers frequency responses
and antenna mutual coupling in the BS.

associated system model sparsity characteristics. In Section IV,

using the results of empirical performance evaluations, we eval-

uate and demonstrate the performance of our proposed channel

non-reciprocity estimator in terms of normalized mean squared

error (MSE) and compare it to the existing methods. Finally,

conclusions are drawn in Section V.

Notations: We use upper-case (lower-case) bold letters to

denote matrices (vectors), e.g., matrix X and vector y. The super-

scripts (.)
T

, (.)
∗
, (.)

H
, and (.)

†
indicate transposition, complex-

conjugation, Hermitian-transpose, and Moore-Penrose pseudo

inverse operations, respectively. In denotes the n × n identity

matrix. Finally, we use CN (0, 1) to denote a circular-symmetric

zero-mean unit-variance complex Gaussian distribution.

II. EFFECT OF TRANSCEIVER AND MUTUAL COUPLING

MISMATCHES ON THE CHANNEL NON-RECIPROCITY

We consider a TDD based system and focus on a single cell

with one BS and K single-antenna UEs, and carry out the basic

modeling at an arbitrary OFDM(A) subcarrier. For notational

simplicity, the subcarrier index is dropped and thus not explicitly

shown. It is assumed that the BS is equipped with large number

of antenna units, N , where N � K.

Owing to the assumed reciprocity of the physical channel in

DL and UL transmissions in a TDD network, the BS forms DL

precoders based on the estimated UL channel. This will lead to

high beamforming gains and efficient spatial multiplexing capa-

bilities in an ideal case where the effective DL and UL channels

are assumed to be totally reciprocal. However, in practice, in

addition to the reciprocal physical channel, the effective DL and

UL channels also contain the hardware impacts of BS and UE

sides. As mentioned earlier, in this work we focus only on the

effects of BS transceivers and antenna array on the reciprocity of

the effective channels as UE side transceiver non-reciprocity has

been shown to have negligible impact on the system performance

[10], [11]. Thus, as shown in Fig. 1, the effective DL and UL

channels at an arbitrary OFDM(A) subcarrier can be expressed

as
HDL = HTBTXATX

HUL = ARXBRXH,
(1)

where H is the reciprocal physical multiuser MIMO channel,

of size N × K, and HDL and HUL are the corresponding

effective DL and UL channels, respectively. In above, A is

a diagonal matrix and incorporates the BS frequency-response

characteristics, B is the antenna mutual coupling matrix of the

BS, while the subscripts TX and RX denote the transmit and

receive modes, respectively.

Based on (1), the relation between the effective DL and UL

channels can be easily expressed as

HDL = HT
ULC, (2)

where the matrix C is incorporating the overall transceiver non-

reciprocity at the BS, and reads

C = A−1
RX

(
BT

RX

)−1
BTXATX . (3)

As can be seen in (2) and (3), due to the mismatches in BS

hardware responses and mutual coupling between the transmit-

ting and receiving modes, the effective DL and UL channels are

not reciprocal. This phenomenon is referred to as channel non-

reciprocity in literature [5], [6]. The fully reciprocal effective

DL and UL channels is obtained as a special case in which

ARX = ATX and BRX = BTX , and thus C = IN .

III. ESTIMATION OF BS TRANSCEIVER NON-RECIPROCITY

In order to retrieve the reciprocity of the effective DL and

UL channels, the BS needs the knowledge of its overall non-

reciprocity matrix C. In practice, this information is not directly

available to the BSs and thus needs to be estimated. In this

respect, in this section, we present a novel method to estimate the

BS transceiver non-reciprocity matrix building on simple pilot-

signaling and the resulting sparsity of the corresponding signal

model.

In general, the values of C can be assumed to remain constant

over many channel coherence intervals, since the channel non-

reciprocity values vary very slowly compared to the variations

in the propagation channel [12]. Therefore, as mentioned in

[3], [10], there is no need to perform the BS transceiver non-

reciprocity estimation frequently and it can be done, e.g, once

in every 10 minutes or even once a day. This makes the system-

level overhead of channel non-reciprocity estimation negligible,

while offering the possibility for substantially improved system

performance.

A. Pilot Signaling and Proposed Estimation Method
In order to estimate the BS transceiver non-reciprocity, we are

proposing an OTA-based estimation approach which will allow

us to have the information about the effective DL channel in BS.

In this approach, the BS first transmits an N × N orthonormal

pilot matrix called P which yields

YUE =
√
ρdHDLP+NUE =

√
ρdH

T
ULCP+NUE , (4)



where YUE collects the received pilot signals at UE side,
√
ρd

is the DL transmission signal to noise ratio (SNR), and NUE is

a matrix of noise samples at UE receivers with CN (0, 1) i.i.d.

elements.

Then, UEs conjugate their received signal samples and send

them back in the UL phase to BS, which results into a received

signal model of the form

YBS =
√
ρuHULY

∗
UE +NBS

=
√
ρu

√
ρdHULH

H
ULC

∗P∗ +Q,
(5)

where YBS is the received signal matrix at BS,
√
ρu is the UL

transmission SNR, and NBS is the receiver noise matrix at BS

with CN (0, 1) i.i.d. elements, while Q = HULNUE
∗ + NBS

incorporates the effects of noise sources in both DL and UL

directions.

In the next step, the BS processes the received pilot signal

samples as

R = Y∗
BSP

H

=
√
ρu

√
ρdH

∗
ULH

T
ULC+ Z,

(6)

where R is the processed overall signal and Z = Q∗PH denotes

the processed noise.

Assuming then that the BS has perfect UL CSI available, it

can estimate its own transceiver non-reciprocity matrix as

Ĉ = argmin
C

∣∣∣∣R−√
ρu

√
ρdH

∗
ULH

T
ULC

∣∣∣∣2
F

= argmin
C

||R−UC||2F = argmin
C

K∑
i=1

||ri −Uci||2 ,
(7)

where U =
√
ρu

√
ρdH

∗
ULH

T
UL, ri and ci denote the i-th

columns of R and C, respectively, while the subscript F shows

the Frobenius norm. Since the i-th term in the summation is

only depending on the i-th column of C, the problem can be

reformulated as

ĉi = argmin
ci

||ri −Uci||2 ∀i, (8)

which means that estimating BS transceiver non-reciprocity ma-

trix, as shown in (7), can be simplified to estimating each of its

column independently.

As shown in (3), C incorporates all the transceiver and an-

tenna array mismatches, including both FR and antenna mutual

coupling. Since the level of mutual coupling and its correspond-

ing mismatch depends on the distance between the antennas, the

power of off-diagonal entries decreases as the distance between

two corresponding antenna elements grows. Therefore, if two

antenna elements are far apart, the power of the corresponding

element in C is very low and its effect on the system performance

is negligible. For that reason, we define a threshold for the

distance between two antennas, called T , and try only to estimate

the off-diagonal elements in C which are corresponding to the

antennas with distance T or less, assuming all the other elements

are zero. This leads to having a sparse structure for C and Ĉ
which clearly reduces the complexity of the BS non-reciprocity

estimation process.

The index of the non-zero entries of C can be determined by

the BS antenna array geometry and architecture which are known

to BS. Having the information regarding the sparse structure

of BS transceiver non-reciprocity matrix, we define cspi which

contains only the non-zero elements of ci. Similarly, we define

Usp
i which contains only the columns with the same index as

non-zero entries of ci, i.e., the j-th column of U is kept only if

j-th row of ci is kept while constructing cspi . Therefore, with the

involved sparsity assumption, the estimation problem in (8) can

be further simplified to

ĉspi = argmin
csp
i

||ri −Usp
i cspi ||2 ∀i, (9)

where the solution for ĉspi can be obtained as

ĉspi = (Usp
i )

†
ri. (10)

Once the value of ĉspi is calculated, BS appends zeros to appro-

priate rows and obtains ĉi.

B. Practical Considerations
In the proposed BS transceiver non-reciprocity estimation

method, we assumed that the channel is fixed for the duration of

pilot signaling which is 2N samples. The coherence time of the

physical channel is mostly defined by the mobility of the UEs

and is typically in the order of several milliseconds. Therefore,

we essentially assume relatively low-mobility scenarios in which

the channel coherence time is at least 2N .

As mentioned earlier, all the derivations are for an arbitrary

subcarrier of the underlying OFDM(A) radio access waveform.

The transceiver responses and thus their mismatches can be

modeled by very mildly frequency-selective transfer functions

[6], and can be assumed to remain unchanged over a set of

subcarriers M where typically M ≤ 10, while depending on

the frequency selectivity of the propagation channel, HUL can

change from a subcarrier to another. Owing to that, in order

to improve the estimation accuracy of the BS transceiver non-

reciprocity characteristics, we take the average of calculated Ĉ
matrices over M subcarriers as

Ĉ =
1

M

M∑
l=1

Ĉl, (11)

where l denotes the subcarrier index inside one block of subcar-

riers over which the averaging is performed.

IV. NUMERICAL EVALUATIONS AND ANALYSIS

In this section, we evaluate the performance of the BS

transceiver non-reciprocity estimation method proposed in Sec-

tion III, using extensive computer simulations. The considered

performance metric is the normalized MSE which is defined as

Δ =

∣∣∣∣∣∣C− Ĉ
∣∣∣∣∣∣2
F

||C||2F
. (12)

We also compare the performance of the proposed method to

two other BS transceiver non-reciprocity estimation methods

available in the existing literature, namely “Argos” [3] and “gen-

eralized neighbor least squares” [11], where the latter has already
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Fig. 2. BS transceiver non-reciprocity estimator’s normalized MSE vs. δ2B
for N = 100, K = 20.

been shown to outperform several other BS non-reciprocity esti-

mation methods available also in the literature [11] and will be

called “GNELS” in the rest of the paper for notational simplicity.

A. Basic Simulation Settings

We consider a BS with linear array of infinitely thin λ/2
dipole antennas where N = 100, serving K = 20 single-

antenna UEs simultaneously through spatial multiplexing. The

UL channel HUL is assumed to have i.i.d. CN (0, 1) elements,

for which multiple random realizations are drawn. The estimated

BS transceiver non-reciprocity matrices are averaged over M =
10 subcarriers in the proposed method, while the values of C
are assumed to remain unchanged over those subcarriers. In the

proposed method, the DL and UL SNRs for pilot signaling are

assumed to be ρd = 20 dB and ρu = 0 dB, while for the

other two reference methods, the SNR of the channel between

two neighboring antennas is assumed to be 80 dB [11]. The

operating frequency is chosen to be fc = 3.5 GHz, based on

which the BS input and the mutual impedances are computed as

given in [13]. The detailed modeling of BS transceiver frequency

responses and mutual couplings between antennas are based on

[6], in which δ2A denotes the variance of diagonal elements in

ATX and ARX and is fixed to δ2A = −20 dB, while the power

of elements in BTX and BRX is controlled by the reflection

coefficient denoted here as δ2B and here set to be δ2B = −20 dB.

Throughout the simulations, the matrices ATX and ARX are

chosen independently as well as the matrices BTX and BRX .

These are the baseline values in all the simulations, but are also

varied in the experiments as indicated in the result figures.

B. Obtained Numerical Results

As mentioned in Section III, the number of non-zero entries

in each column of the estimated BS transceiver non-reciprocity

matrix is depending on the sparsity threshold T . We define T
as the antenna distance threshold relative to λ/2, which means

that the coupling mismatch due to any two antennas with the

distance greater than T × λ/2 is assumed to be zero in the

proposed BS transceiver non-reciprocity estimation method. In
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Fig. 3. BS transceiver non-reciprocity estimator’s normalized MSE vs. number
of UEs (K) for N = 100, δ2B = −20 dB.

order to find the optimum value of T for different scenarios, in

Fig. 2, the effect of T on normalized MSE of BS transceiver

non-reciprocity estimation is evaluated against various levels of

δ2B which controls the power of mutual coupling between the BS

antennas. As can be seen, for low BS antenna mutual coupling

power, say δ2B ≤ −30 dB, T = 0 which corresponds to a purely

diagonal estimation of BS transceiver non-reciprocity matrix

produces the best result, whereas T = 1 has better performance

in the cases where the power of antenna mutual coupling is

moderate, say −20 dB ≥ δ2B > −30 dB, and finally T = 2
is the best option if mutual coupling level is high, δ2B > −20 dB.

The effect of the number of scheduled UEs K on the perfor-

mance of the proposed BS transceiver non-reciprocity estimation

method is examined in Fig. 3. The results show that the normal-

ized MSE of the proposed estimation method decreases as K
grows. The reason is that the column space of Usp

i in (10) has

higher dimensionality for larger values of K, since H∗
ULH

T
UL

in U is positive semi-definite matrix and of rank K if HUL is

of rank K. Fig. 3 also shows that when the number of scheduled

UEs grows, say K ≥ 25, the optimum value for sparsity distance

increases, from T = 1 to T = 2.

Fig. 4 shows the comparison between the proposed estimation

method and the two other methods with respect to the impact

of the power of BS antenna mutual coupling on the normalized

MSEs. As can be seen, Argos has the worst performance, while

for low levels of BS antenna mutual coupling power GNELS

method which only estimates the diagonal elements of C is

the best option. However, as the power of BS antenna mutual

coupling grows the difference between the proposed method

and GNELS method gets lower. From moderately low levels of

BS antenna mutual coupling, say δ2B > −27 dB, the proposed

method is outperforming all the other methods, since contrary to

other two methods, it has the ability to estimate the off-diagonal

elements of BS transceiver non-reciprocity matrix.

Fig. 5 compares the effect of the number of scheduled UEs

on the normalized MSEs for all the considered BS transceiver

non-reciprocity estimation methods. As can be seen, even for the

lowest number of scheduled UEs K = 10, the proposed estima-
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tion method outperforms Argos and GNELS reference methods.

The difference between the performance of the proposed method

and the other two methods increases as K grows, up to the case

of K = 70 where the accuracy of the proposed method is already

around 10 times better than that of the GNELS method. The

reason is that while increasing K does not have any effect on the

performance of the other two estimation methods, as mentioned

earlier it improves the accuracy of the proposed method as the

rank of H∗
ULH

T
UL in U grows.

The estimation accuracy of the proposed method depicted

in Fig. 4 and Fig. 5 can be improved when compared to two

other methods, by adaptively selecting the optimum value of T
according to the results shown in Fig. 2 and Fig. 3, respectively.

Overall, owing to the sparse nature of the BS transceiver non-

reciprocity matrix C, the proposed BS non-reciprocity estima-

tion method outperforms other methods for moderate to high

levels of BS mutual coupling power and/or higher numbers of

scheduled UEs K as it can estimate off-diagonal entries of C
with high accuracy.

V. CONCLUSION

This paper proposed an efficient channel non-reciprocity esti-

mation framework for fully capitalizing the channel reciprocity

benefits in TDD massive MIMO networks with non-reciprocal

transceiver and antenna array hardware. Based on the provided

channel non-reciprocity model, it was first shown that the ef-

fective DL channel is the product of the effective UL channel

and a sparse matrix which incorporates the effects of both

transceiver FR and antenna array mutual coupling mismatches

at BS. Then, exploiting the sparse nature of the BS transceiver

non-reciprocity matrix, a novel OTA-based BS non-reciprocity

estimation method with reasonable pilot overhead was proposed.

The comprehensive computer simulations show the superiority

of the proposed estimation method compared to two other well-

known existing methods for practical levels of BS antenna mu-

tual coupling power. It was also shown that the accuracy of the

proposed channel non-reciprocity estimation method improves

as the number of scheduled UEs in the system grows.
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Abstract — In this paper, we study the effects of effective chan-
nel non-reciprocity in coordinated TDD multi-cell MIMO network 
based on weighted sum rate (WSR) maximization. More specifical-
ly, we focus on UE transceiver non-reciprocity while the base sta-
tions (BS) are assumed to be perfectly calibrated, and both centra-
lized and decentralized beamforming schemes are considered. In 
the centralized scheme, the cost function is constructed in a central 
controller using antenna specific UL pilots for channel estimation 
from all the connected BSs in the network. Then, even though the 
transceiver frequency response (FR) mismatches at the UE side 
corrupt the effective channel reciprocity, it is shown to have only a 
trivial impact on the WSR objective in such centralized case. How-
ever, when decentralized beamforming is deployed, the optimization 
is carried out in each BS and the corresponding cost function and 
optimization process depend on information acquired by over-the-
air signaling between the BSs and all the users using precoded UL 
pilots. In this case, it is then shown that the transceiver FR mis-
matches at the UE side can cause severe performance degradation 
and even influence the convergence properties of the sum-rate 
optimization process. Further insight is provided for improving the 
performance by modifying the weight calculations in the optimiza-
tion process and connecting users with good cell separations. Then 
a convergence-aware processing algorithm is also proposed to im-
prove the performance of the decentralized scheme under UE 
transceiver non-reciprocity. Numerical experiments demonstrate 
that efficient processing algorithms for calibrating UE transceiver 
mismatches to be less than -30dB to -35dB are, in general, required 
in the decentralized system in order to achieve performance close 
to the ideal case without any RF imperfections. 

Keywords—centralized beamforming, channel reciprocity, 
decentralized beamforming, multi-cell MIMO, precoding, time-
division duplexing, transceiver frequency response mismatch. 

I.   INTRODUCTION  

As one promising approach to improve network spectral effi-
ciency, the coordinated multi-cell MIMO transmission concept 
has attracted lots of research interests in both academy and indus-
try [1], [2]. By coordinating multiple BSs for achieving optimal 
overall network performance, it provides good frequency usage 
among neighboring cells and/or base-stations (BSs) and is espe-
cially suitable for the development of advanced small cell sys-
tems. In theory, a central controller can be deployed to collect 
downlink (DL) channel state information (CSI) from all the con-
nected BSs via low-latency backhaul, compute optimal precoder 

for each transmitted stream based on, e.g., weighted sum-rate 
(WSR) maximization, and then distribute precoder information to 
the BSs that transmit the corresponding streams [3]-[6]. However, 
in many scenarios, the central controller and the large amount of 
needed low-latency backhaul resources may not be available or 
feasible. Decentralized beamforming is then proposed, as an alter-
native, to enable multi-cell transmission where the optimization 
task is shifted from the central controller to each BS [7].  

In both centralized and decentralized beamforming schemes, 
acquisition of precise DL channel state information at the trans-
mitter side (CSIT) is a very critical task for the precoder optimi-
zation process. In time-division duplex (TDD) based networks, 
assuming TDD channel reciprocity within coherence time, the 
CSIT at the BS can be conveniently acquired via uplink (UL) 
channel estimation using antenna specific pilots. In practice, 
however, as discussed in [8]-[10], and reference therein, the TDD 
channel reciprocity is destroyed by the so-called transceiver 
non-reciprocity problem at both the BS and the UE sides. In 
general, the transceiver non-reciprocity stems from frequency-
response (FR) mismatches between the transmitter and receiver 
chains implemented in the same transceiver. In the literature, the 
impacts of transceiver FR mismatches on basic multi-user (MU) 
MIMO transmission systems have been extensively studied with 
zero-forcing precoding [9], [10]. It has been shown that the tran-
sceiver non-reciprocity at the BS side is the major problem while 
the FR mismatches in the UE transceivers can be easily mitigated 
as a part of precoded channel matrix. This is a useful observation 
as reciprocity calibration is then only needed at the BS side which 
has more implementation resources than UEs. It thus imposes no 
additional cost at the UE side even when its own transceiver im-
plementation is not perfectly reciprocal.   

In the coordinated TDD multi-cell MIMO network, however, 
the construction of precoders requires more sophisticated 
processing than, e.g., simple zero-forcing precoding or eigen-
beamforming. More specifically, dedicated signaling exchange 
between the BSs and connected UEs in the decentralized beam-
forming is needed as described in [7]. UE transceiver non-
reciprocity will then potentially influence the over-the-air signal-
ing process. To the best of our knowledge, there is no previous 
work addressing such UE transceiver non-reciprocity problem in 
the multi-cell MIMO network context. This is the leading theme 
of this paper. 

In this paper, we investigate the impact of transceiver FR mis-
matches at the UE side on the performance of both centralized and 
decentralized beamforming in coordinated TDD multi-cell MIMO 
network. To this end, we analyze the effects of UE transceiver non-

This work was supported by the Finnish Funding Agency for Technology 
and Innovation (Tekes), Broadcom Communications Finland and Huawei
Finland under the project “Energy-Efficient Wireless Networks and Connec-
tivity of Devices – Densification (EWINE-D)”, the Academy of Finland under
the projects 251138, 138424, 284694 and 288670, the Foundation of Nokia
Corporation and TUT Graduate School. 



 

reciprocity on the constructed cost function for optimization 
process in the coordinated beamforming. We assume that the CSI 
acquisition is carried out using antenna specific and precoded UL 
pilots for centralized and decentralized schemes, respectively [7]. 
The analysis shows that the UE transceiver non-reciprocity has 
only minimal impact on the performance of centralized beamform-
ing while it results in severe performance degradation in the decen-
tralized beamforming case. Based on the developed analysis and 
extensive computer simulations, further insight is provided for im-
proving the performance of decentralized beamforming. A simple 
convergence aware processing algorithm is proposed to cope with 
convergence problem under non-reciprocity and thus improve the 
network performance. In general, the obtained results also motivate 
towards developing efficient non-reciprocity calibration algorithms 
at the UE side for achieving ideal network performance with im-
perfect UE transceivers.  

The rest of the paper is organized as follows. Section II out-
lines the fundamental coordinated multi-cell MIMO downlink 
transmission system model as well as basic ideas of centralized 
and decentralized beamforming. The DL-UL channel relation 
under UE transceiver non-reciprocity is then formulated in Sec-
tion III. In Section IV, the impact of transceiver FR mismatch at 
the UE side on coordinated multi-cell MIMO downlink transmis-
sion is studied. Section V provides numerical evaluations and 
illustrations while conclusions are drawn in Section VI. 

II. COORDINATED MULTI-CELL MIMO DL TRANSMISSION 
BASED ON WEIGHTED SUM-RATE MAXIMIZATION 

A. Multi-cell MIMO DL Transmission 
In this paper, we consider a TDD multi-cell MIMO network 

with bN  BSs. Each BS is equipped with TN antennas and K 
users are served at the same time-frequency resource. Each user 
device has RN antennas and the k-th user is associated to only 
one BS in the network, i.e., BS kb , 1, ,k K . At the BS 
side, kM  streams are allocated to the k-th user where the km -th 
transmitted stream is denoted as , kk ms  and the average power of 
each data streams is normalized to unity. In total, 

1

K
tot kk
M M data streams are transmitted in the network. 
The DL MIMO channel matrix between BS jb  and k-th user is 
denoted by , R TN N

j kH  and 1, , bj N . 
In the DL transmission, the km -th stream of user k is first 

precoded with precoder , kk mu  at the BS kb  for all  
1, ,k km M  and 1, ,k K , and then transmitted simul-

taneously to all the users in the network. At the k-th user recep-
tion, after applying a minimum mean-square error (MMSE) re-
ceiver H

,k mw  on the received signal for extracting the km -th 
stream, we have 
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and the MMSE receiver reads 

 1
, , ,k k kk m b k k mkw R H u  (2) 

where kR  denotes covariance matrix at the k-th user reception 
and is given by 
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while 2
n  refers to the noise power.   

If we consider H
, , ,, k k kk
b k k m k mk m

sw H u  as the desired signal and 
the second term in (1) as interference, the resulting signal-to-
interference-plus-noise ratio (SINR) can be expressed as 
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Meanwhile, using the optimum MMSE receiver, we can also 
calculate the minimum mean-square error (MSE) for receiving 
the km -th stream of the k-th user as 
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B. Centralized Beamforming 
In order to achieve optimal network performance in the con-

sidered multi-cell network, a central controller is adopted to col-
lect CSI between all the connected BSs and all the serving UEs, 
denoted by ,j kH  for 1, , bj N  and 1, ,k K , and ob-
tained via UL channel estimation using antenna specific pilots. 
Network-level weighted sum-rate maximization is then carried 
out at the central controller to find the optimal precoder and de-
coder set , kk mu  and , kk mw , for 1, ,k km M  and 

1, ,k K . Using the relation between the rate and MSE per 
stream, , 2 ,log (1 SINR )k kk m k mR  2 ,log kk m , 
WSR maximization can be formulated as the equivalent log-
MSE minimization problem under per-BS power constraint as  
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where k  is the weight indicating the scheduling priority of the 
k-th user. As described in [4]-[7], finding optimal precoder and 
decoder set based on (6) is generally a non-convex problem that 
is hard to be solved in a reasonable time. For practical network 
implementation, several algorithms have been proposed to find 
suboptimal precoder set via iterative processing [4]-[7]. 

C. Decentralized Beamforming 
In many scenarios, a central controller is not available and/or 

there are very limited low-latency backhaul resources in the net-
work. Decentralized beamforming can then be deployed to max-
imize network sum-rate via optimization carried out at each BS 
as shown in [7]. This is achieved by decomposing network-level 
cost function in (6) into different parts that are contributed by 
individual BSs. Together with using different UE-BS signaling 



 

strategies, the cost function for local optimization can be con-
structed at each BS. In addition, as described in [7] and reference 
therein, for achieving optimal linear receiver processing, it is suffi-
cient to obtain optimal precoders from the set that diagonalizes all 
the MMSE matrices without any loss in WSR or breach of power 
constraints. Thus, with given receiver filter, precoder optimization 
process can then be carried out in each BS independently as  
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where b is the cost function at BS b. 
As shown in [7], the decentralized beamforming can achieve 

similar performance as the centralized beamforming. Here, for 
understanding the effects of UE transceiver non-reciprocity, we 
briefly describe following two strategies proposed in [7].  

1) Strategy A : Network-wide iterations with busy bursts 
As shown in [7], it is possible to decouple contribution of BS 

b to the network-level cost function in (6) as 
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where kb  refers to the BS which serves k-th UE. The second 
term in (8) contains all the signal and interference power gener-
ated by the BS b .  

In order to evaluate (8), the BS b needs to know MMSE re-
ceivers of all the UEs as well as the DL channels ,b kH  to all the 
UEs in the network. One efficient way to acquire this informa-
tion is proposed in [7]. To this end, with given precoders, each 
UE calculates its own MMSE receiver as in (2) and then pre-
codes the pilots with this MMSE receiver. The precoded pilots 
are denoted as busy bursts. At the BS b, the equivalent channels 

H
,, k
b kk m

w H , for 1, ,k K  and 1, ,k km M , are then es-
timated from the precoded pilots. For each stream, a weight val-
ue , kk mp is also calculated as 1

, ,k k
k m k m
p  

1
H
, , ,

1
k k kk m b k k m

w H u  at BS kb based on (5).  If kb b , the 
information on , kk mp is sent from BS kb  to BS b via backhaul 
[7]. After repeating the above-mentioned procedures until con-
vergence for BS 1, , bb N , suboptimal precoder sets can be 
found with little coordination between BSs.  

However, the above strategy A may require a large number 
of over-the-air adaptation steps and hence slow convergence. 
This is due to the fact that the MMSE receiver update is only 
sent for one precoder update step in one BS at a time. In the fol-
lowing, another strategy is introduced which allows each BS 
locally iterate over the transmitters and receivers of its own cell 
and thus improve the overall convergence speed. 

2) Strategy B: Cell-specific iterations with separate busy 
bursts and channel sounding  
As described in [7], instead of sending MMSE receiver at each 
UE, this strategy precodes channel sounding pilot transmission 
from k-th UE with whitening filter kQ that intends to whiten 
inter-cell interference and noise at the k-th user reception as   

 1
kk k

HQ Q R  (9) 

where kR refers to the covariance matrix of inter-cell interfe-
rence and noise observed at the k-th user and is defined as 
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with given precoders. After passing through UL channels from 
the k-th user to BS kb  the following knowledge can be obtained 
at the BS kb  given by  

 , ,k kb k bk kG Q H  (11) 

With given precoders, the MMSE receiver for receiving the km -
th stream of the k-th user can be also evaluated at the BS kb  as 
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and based on (9)-(12), we can obtain the MMSE precoded 
equivalent channels again as  

 H H
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Next, as shown in [7], the cost function for WSR maximiza-
tion at the BS b reads 
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where 
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=Tr log detk k kp P P  and ,1 ,diag{ , , }kk k k Mp pP . The 
term INTb in (14) represents inter-cell interference seen by the 
BS b. In order to evaluate INTb , we need information from oth-
er cells as well. For this purpose, each UE calculates also MMSE 
receivers , kk mw  and their weights  1

, ,k k
k m k m
p  and broad-

casts 1/2
, , kkk m k mw  to be used by the interfering BSs. For streams 

served at BS b, the corresponding weights are calculated at BS b 
as 1

, ,k k
k m k m
p  

1
H

,, ,
1 k k

b kk m k m
w G u  stemming from 

(5). Then the suboptimal precoders can be calculated based on 
the constructed cost function (14) for BS b via in-cell and over-
the-air iteration process using (7) as described in more details in 
[7]. 



 

III.   IMPACTS OF TRANSCEIVER NON-RECIPROCITY ON TDD 
CHANNEL RECIPROCITY 

As elaborated in Section II, UL channel estimation and/or 
UL signaling are needed to construct the cost functions defined 
in (6) and (7) at the BS. This is based on the TDD channel reci-
procity assumption implying that the UL channel matrix is the 
transposed version of DL channel matrix within coherence time. 
However, due to the FR mismatches between transmitter and 
receiver implemented in the same transceiver, even with perfect 
channel estimation and without any additive noise, the effective 
DL and UL channels are not reciprocal. As discussed in [9], 
[10], and reference therein, the channel non-reciprocity model 
between BS jb  and k-th user can be formulated as 

 DL UL DL
, , ,

ˆ ˆ
jj j j

T

k bb k b k b k
H H A H A  (15) 

where DL
,

ˆ
jb k

H , UL
,

ˆ
jb k

H and DL
,jb k

H refer to the estimated DL channel, 
effective UL channel and effective DL channel between BS 
jb and k-th user, respectively. kA and jbA are diagonal matrices 

which represent the FR mismatches at the UE and BS sides, re-
spectively. Here we focus only on FR mismatches at the UE 
side. Thus assuming perfect reciprocity calibration at the BS, the 
non-reciprocity model in (15) reads 
 DL DL

, ,
ˆ
j j

kb k b k
H A H  (16) 

The FR mismatch matrix kA  can also be rewritten as 
k kA I A , where all the diagonal entries of kA are as-

sumed to be zero-mean complex Gaussian random variables 
with variance equal to 2

kA
. The effective DL and UL channels 

are fully reciprocal when we have 2 0A . 

IV. EFFECTS OF UE TRANSCEIVER NON-RECIPROCITY IN 
COORDINATED MULTI-CELL MIMO NETWORK 

In this section, we analyze the effects of UE transceiver non-
reciprocity in the considered coordinated multi-cell MIMO net-
work described in Section II, deploying the non-reciprocity 
models reported in Section III. 

A. Effects in Centralized Beamforming 
In centralized beamforming, the acquired DL channel ma-

trices between all the connected BSs and all the serving UEs are 
contaminated by the UE transceiver non-reciprocity as 

DL DL
, ,

ˆ
kj k j kH A H   for 1, , bj N  and 1, ,k K . Incorpo-

rating such contaminated channel knowledge in (2) and (5), with 
given precoders, the MMSE receiver and cost function read 
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and 1
k kA A I . 

With fixed precoder , kk mu  and the same weights, the differ-
ence between the cost functions in (5) and (17) is given by 

 H H
, , , , ,

H H
,

(ˆ )kk k k k k
k m k m k m b k b k kk k m

H uRu H R  (18) 

and after some straightforward manipulations, we have 

 
11 1 1 ( ) ( )k k k k kkA AR R R R  (19) 

In the special case of perfect RF implementation, i.e., 
0k kA A , we have 1 1 0k kR R and , kk m  

,ˆ 0kk m . With practical non-reciprocity level at the UE and 
reasonable high SNR, we also have ( )k kA R  and 

1 1
k kR R 1 1( ) 0kk kAR R . Thus, with the fixed 

precoder, the cost function under UE non-reciprocity ,ˆ kk m  is 
practically the same as the cost function constructed with ideal 
channel knowledge , kk m .  Unless both the non-reciprocity and 
additive noise levels are very high (e.g., 2 10

kA
dB and 

0dB SNR), the UE transceiver non-reciprocity is expected to 
impose no essential impact on the performance.  

B. Effects in Decentralized Beamforming 
Here, we consider the two decentralized schemes described in 

Section II.C operating under the effects of UE transceiver non-
reciprocity. Notice that under UE transceiver non-reciprocity, it 
can be shown that the last two steps of (5) for calculating MSE 
of each stream reception at the BS side do not exactly hold any 
more. However, without taking into account the above-
mentioned problem in the WSR optimization design, similar to 
[7], if we apply the same formulas to calculate the MSE of each 
stream given by H

, , , ,
ˆˆ ˆ1

k k k kk m k m b k k m
w H u and 

,
ˆ

kk m
H

,, ,
ˆˆ1 k k
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w G u for strategy A and strategy B, re-
spectively, the obtained MSE information is certainly not cor-
rect. The resulting weight calculation using the obtained MSE 
information as 1

, ,
ˆˆ k k

k m k m
p  is deviated from the ideal weight 

calculation using correct MSE information.  Next assuming 
fixed ,ˆ kk mp , we study further the impact of UE non-reciprocity 
problem and particularly its impact on the cost functions. 

1) Strategy A  
Again, in order to construct the cost function in each BS as de-

fined in (8), k-th user calculates the MMSE receiver for km -th 
stream reception and sends it back via busy burst to all the BSs. 
Under UE transceiver non-reciprocity, the received information at 
the BS b is not H

,, kk
b kk m

w H  but actually reads H
,, kk
kk k bm

Aw H . Then 
by applying this impaired information, the cost function becomes  
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With fixed precoders and weights at the BS b, the difference 
between the cost functions in (8) and (20) can be evaluated as 
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Based on (21), the difference between the two cost functions is 
dependent the transceiver non-reciprocity characteristics kA  of 
all the connected UEs in the network, 1, ,k K . Together 
with deviation of weight calculation for ,ˆ kk mp , severe perfor-
mance degradation is thus expected. More detailed discussion 
will be given in Subsection IV.B. 3). 

2) Strategy B  
In this strategy, in order to construct the cost function at each 

BS, the k-th user first calculates whitening filter based on (9) and 
sends it back via channel sounding to the connected BS. It then 
calculates MMSE receiver for the km -th stream based on (2) 
and broadcasts it via busy bursts to BSs other than the connected 
BS [7]. Under UE transceiver non-reciprocity, the received in-
formation at the BS b reads , ,

ˆ
kkb k k b kkQ A HG for kb b and 

H
,, k
b km kk

Aw H  for kb b . Then with fixed precoder, the 
equivalent MMSE receiver and cost function at the BS b are 
obtained as 
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where  
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ˆ ˆdiag ,k kpP    

,ˆ, kk Mp . Notice that the weighting value used for calculating 
INTb in (23) is the ideal weighting value , kk mp  as it is calcu-
lated at the UE side and sent back via busy burst signaling. 

With fixed precoder at the BS b as well as fixed weights 
,ˆ kk mp and , kk mp , the difference between cost functions in (14) 

and (23) reads  now 
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and 1
1

1 1 ( ) ( )k k k k k kR R R A A R . Again, 
as shown in (24), the difference between two cost functions is 
dependent the transceiver non-reciprocity characteristics kA  of 
all the connected UEs in the network, 1, ,k K . However, 
when inter-cell interference approaches to 0, the second term in 
(24) also approaches to 0. If the channel noise is also small, 

0kR  as well, and assuming practical non-reciprocity level at 
the UEs, we then have ( ) 0kA , 

1 1 1 1( ) ( ) 0k k k k kR R R A R  and hence 
B̂ B
b b  0 . This implies that, in high SNR range, if cell 

separation is good in the network and there is little inter-cell interfe-
rence at the UE receivers, UE transceiver non-reciprocity will not 
play a big role in the decentralized beamforming using strategy B. 
This, however, applies only under such limiting assumptions. 
When inter-cell interference vanishes, the considered network is 
equivalent to a single-cell network and the impact of transceiver 
non-reciprocity in UEs on system performance becomes to be 
again marginal.  

3) Discussion 
Performance degradation: As shown in (21) and (24), when 

0kA , there is clear deviation between the cost function con-
structed with ideal channel knowledge and with imperfect chan-
nel knowledge due to UE transceiver FR mismatches. In general, 
it is rather challenging to directly map these differences into the 
resulting performance degradation analytically, as the considered 
sum-rate optimization process is iterative and small deviations in 
cost function may lead to very different optimization results. As 
will be shown later through computer simulations, performance 
degradation is severe even with realistic fairly small non-
reciprocity levels. Thus, the UE transceiver non-reciprocity 
problem clearly forms an adverse and performance-limiting fac-
tor in the decentralized beamforming design and deployment. 

 Convergence: Due to the mismatch between the constructed 
cost function at the BS under UE transceiver FR mismatches and 
ideal cost function with perfect DL channel and user informa-
tion, when strategy B is deployed, the achievable network sum-
rate deteriorates after certain number of iterations, as illustrated 
in Figure 1. This thus indicates that it is possible to improve the 
network performance by detecting the sum-rate deteriorating 
point and stopping the iterative optimization process. We assume 
that there is anyway certain amount of low-latency backhaul 
information available in the network, and the BSs can exchange 
sum-rate information in the optimization process. Then we pro-



 

pose a convergence-aware processing algorithm for the BS side, 
given in Table 1. It is based on the observation that the sum-rate 
calculated at the BS side can indicate the convergence property 
of the achievable sum-rate over iterations even if it is not the 
same as the actual rate realized in the network. Then the BS side 
can stop the WSR optimization process after the calculated sum-
rate drops consecutively in two iterations. As will be shown in 
the computer simulations section, by applying the proposed pro-
cedures, we can effectively compensate for the performance 
degradation caused by convergence problem.  

Weight calculation at the BS: In decentralized beamforming, 
the weights are calculated based on the MSE calculation at the 
BS using the simplified formula H

, , , ,
1k k k k

k m k m b k k m
w H u  

with known H
, ,k kk m b k

w H  and 
, kk m
u in (5). However, under UE 

transceiver non-reciprocity, such equality is not valid any more. 
If the same formula is still used, severe performance degradation 
is certainly expected because the decentralized WSR objective in 
(7) is not equivalent to the centralized WSR objective in (6) any 
more. In addition to cope with the convergence problem at the 
BS side, system designers thus need to take non-reciprocity 
problem into account and modify the weight calculation algo-
rithm accordingly for the decentralized scheme. 

UE calibration: Even though the above-mentioned conver-
gence and weight calculation problems can be tackled with 
proper system design, efficient UE reciprocity estimation-
calibration algorithm is potentially still needed in order to 
achieving close to ideal network performance. This generally 
increases implementation complexity of the system and needs to 
be taken into account in the network design. This is a direct con-
sequence of the findings reported in this paper, and forms an 
interesting topic for our future work. 

V.  SIMULATIONS AND NUMERICAL RESULTS 
In this Section, we evaluate the impacts of UE non-reciprocity 

on the performance of different beamforming schemes using ex-
tensive computer simulations. An example multi-cell network 
with 2 BSs and 6 UEs is considered. Each BS is equipped with 4 
antennas and each UE employs 2 antennas. The propagation envi-
ronment between a BS and a UE is modeled as a frequency flat 
Rayleigh fading channel. The average path loss between a BS and 
its own associated UEs and non-associated users are set by de-
fault to be 0dB and 3dB respectively. This represents a scenario 
where all the users are close to cell edge. For strategy B, 15 itera-
tion of in-cell optimization is deployed to accelerate convergence 
speed. The level of the FR mismatch in the UE side is defined as 
the variances of the diagonal element of the mismatch matrices 
A  and is denoted by 2

A  in dB scale. The system performance is 
evaluated in terms of achievable network sum-rate, and all the 
results are averaged over 1000 random channel realizations.  

First, we examine the convergence properties of the consi-
dered schemes in Figure 1. The results show that when the strat-
egy B is deployed, under UE transceiver non-reciprocity, the 
sum-rate value starts to drop after certain number of iterations in 
the decentralized beamforming network. This convergence prob-
lem can be tackled with the proposed convergence-aware algo-
rithm presented in Table 1. 

Table 1: Description of the proposed convergence-aware processing algorithm 
Algorithm 1 Convergence-Aware Processing 
1: Initialize Sum_flag, Rate, and Old_rate to 0 

2: BS b b : Initialize H
,

,
k

kk m
k mu  

3: BS b b : Receive over-the-air signaling from all UEs 

4: BS b b : Compute cost function b̂ based on (20) or (23) using 
precoder H

,
, ,
k

kk m
k mu  and UE information. Then, send the ac-

quired information to BS 0b .  

5: BS 0b  calculate network sum-rate based on (6) and put in Rate 

6: If Old rate > Rate, increment Sum flag 

7: If Sum flag = 2, stop the algorithm and choose H
, kk m
u correspond-

ing to the highest sum-rate as the optimum sum-rate, , kk m . 
Jump to 11. 

8: If Sum flag  2, make Old rate equal to Rate. 

9: BS b b : Compute precoder  H
,

, ,
k

kk m
k mu  based on received 

UE information and estimated b̂  

10: Repeat steps 3-9 (until total allowed number of iterations is 
reached) 

11: End. 

 
Then average achievable sum-rate per BS for both the ideal 

reciprocal channel case and the case with transceiver FR mis-
match at the UE side are examined with 30 iterations. As shown 
in Figure 2, the imperfections at the UEs have essentially no 
impact on the system performance of centralized beamforming. 
Decentralized beamforming, on the other hand, suffers from 
substantial performance degradation. In general, strategy A is 
found to be much more sensitive to the non-reciprocity problem 
than the strategy B. This can be partially explained by the fact 
that the impact of UE non-reciprocity on strategy B is highly 
related to the inter-cell interference level while the impact of UE 
non-reciprocity on strategy A depends on the joint effects of the 
useful signal and all the interference.  

Next, the relative performance degradations compared to the 
ideal network sum-rate with different levels of UE FR mismatch 
are illustrated in Figure 3. As can be seen, at an example SNR = 
20dB, in case of the centralized scenario, even with extreme 
values of UE non-reciprocity ( 2 0A dB), the system has close 
to ideal performance. At lower SNR’s, like SNR = 0 dB, and 
assuming non-reciprocity as high as 2 10A dB, certain per-
formance degradation can be observed. On the other hand, even 
small FR mismatches at the UEs clearly impact the performance 
of both decentralized methods. In the considered transmission 
scenario, to achieve close-to-ideal performance, maximum toler-
able level of transceiver FR mismatch at the UEs is around          
-40dB with strategy A, and around -30dB with strategy B. In 
general, these are very challenging levels to achieve, especially 
without specific calibration procedures. 

As discussed in Subsection IV.B. 2), in strategy B, the im-
pact of UE transceiver non-reciprocity on the network perfor-
mance is related to the level of inter-cell interference power. As 
shown in Figure 4, the relative performance degradation de-
creases as the cell separation increases. When the cell separation 
is sufficiently large, e.g., around 15dB, there is almost no per-
formance degradation as was already envisioned in Subsection 
IV.B. This property should be also taken into account in the net-
work design of decentralized beamforming. However, in order to 
achieve close to ideal performance with any network parameters, 
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Figure 1: Performance comparison of different beamforming schemes in 
terms of average sum-rate per BS vs. iteration number, with 3dB cell separa-
tion and 20dB SNR. 
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Figure 2: Performance comparison of different beamforming schemes in 
terms of average sum-rate per BS vs. SNR, with 3dB cell separation. 

the results demonstrate that accurate non-reciprocity estimation-
calibration algorithms are in any case required at the UE side. 
Such finding has not been reported earlier in the literature. 

VI. CONCLUSIONS 
This paper studied the effects of channel non-reciprocity 

due to UE transceiver FR mismatches in the coordinated TDD 
multi-cell MIMO DL transmission systems. Both centralized 
and decentralized beamforming schemes were considered in 
the analysis. Based on the developed signal models, centralized 
beamforming was shown to be resistant to UE transceiver non-
reciprocity problem while decentralized beamforming using 
precoded UL pilot signaling suffers from severe performance 
degradation with non-reciprocal UE transceiver implementa-
tions. In this context, several insights were provided for alle-
viating the performance losses via proper system design. The 
analysis also shows, in addition to the widely recognized BS 
reciprocity calibration requirement, that efficient reciprocity 
calibration algorithms should be developed also at the UE side 
for achieving desired performance in the coordinated TDD 
multi-cell systems with decentralized beamforming scheme. 
This forms an important topic for future work. 
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Abstract — This paper studies the impact of two implementa-

tion imperfections, namely, transceiver frequency-response non-
reciprocity and antenna mutual coupling mismatches at the base-
station and user equipment on the channel reciprocity assumption 
in TDD systems. Comprehensive signal models are first developed 
to analyze the joint effects of these two imperfections in the TDD 
multi-user MIMO-OFDM downlink transmission system context, 
covering both zero-forcing (ZF) and eigenbeamforming based 
transmitter processing. The corresponding performance degrada-
tion is then evaluated in terms of SINRs and maximum achievable 
sum-rate. The analysis shows that during downlink transmission, 
the transceiver non-reciprocity and antenna mutual coupling mis-
matches at the base-station introduce inter-user interference (IUI) 
and are the major causes for the resulting performance degrada-
tion. Implementation imperfections at user equipment side, in turn, 
only introduce inter-stream interference (ISI) that can be fairly 
easily suppressed in detector processing as part of effective pre-
coded channels. In order to achieve throughputs close to the ideal 
case, transceiver frequency-response mismatches and antenna 
mutual coupling at the base-station side need to be extremely well 
calibrated, generally below 35-40dB in terms of relative mismatch 
levels. 

Index Terms — channel reciprocity, multi-user MIMO-OFDM, 
mutual coupling, non-reciprocity, precoding, time-division duplexing, 
transceiver frequency response mismatch. 

I.   INTRODUCTION  

Time division duplexing (TDD) based wireless systems are 
drawing more and more interest, not only in wireless local area 
networks (WLAN/WiFi) but also in mobile cellular networks 
[1]. Based on the so-called channel reciprocity property, one 
important advantage of TDD systems, compared to frequency 
division duplexing (FDD), is the ability to acquire channel state 
information at transmitter (CSIT) by measuring reverse channels 
without using dedicated feedback signaling [1]. If multiple an-
tennas are implemented at the base-station (BS), several multi-
user (MU) MIMO-OFDM transmission schemes stemming, e.g., 
from zero-forcing (ZF) precoding [2]  or eigenbeamforming [4], 
can then be developed based on the available downlink (DL) 

CSIT to spatially multiplex users to share the same spectral re-
sources. This, in turn, can substantially improve the system spec-
tral efficiency and user equipment throughputs with reasonable 
complexity.  

However, in practice, the effective physical channels linking 
the devices include also all the transceivers and antennas used in 
the transmitting and receiving devices. As discussed in [5] and 
[6], there are unavoidable mismatches already between the fre-
quency responses (FRs) of transmitter (TX) and receiver (RX) 
chains of any individual transceiver, as well as further mutual 
coupling effects between the antenna elements in multiantenna 
devices. The resulting effective downlink (DL) and uplink (UL) 
channels are thus not reciprocal anymore and performance de-
gradation is expected in any system that is building on the reci-
procity assumption. In the existing literature, in [7]-[9] and refer-
ence therein, the effect of transceiver non-reciprocity is studied 
in the ZF precoded MU MIMO-OFDM context. In [8] and [9], 
antenna mutual coupling mismatches are also mentioned yet 
their impact on the signal and system characteristics is not ana-
lyzed. Also another important precoding technique, i.e., eigen-
beamforming based transmitter processing [4], has not been ana-
lyzed in this context in the existing literature.  

In this paper, we analyze and characterize the joint impacts 
of channel non-reciprocity due to transceiver FR and antenna 
mutual coupling mismatches on precoded TDD multiuser (MU) 
MIMO-OFDM downlink transmission. Both ZF and eigenbeam-
forming based precoding schemes are considered, and detailed 
signal and system models are derived. Based on this modeling, 
the resulting performance degradation in terms of maximum 
achievable signal-to-interference-and-noise ratios (SINRs) and  
the corresponding downlink sum-rate are analyzed. The analysis 
shows that the implementation imperfections at the BS side are 
the key limiting factor for the achievable system performance, 
while the corresponding UE imperfection effects can be more 
easily handled in downlink detector processing. In general, the 
system performance is also shown to be more sensitive to anten-
na mutual coupling mismatch than transceiver frequency re-
sponse mismatches. Thus, the analysis outcomes developed in 
this paper strongly motivate and call for the development of ad-

This work was supported by the Finnish Funding Agency for Technology 
and Innovation (Tekes), Broadcom Communications Finland and Huawei
Finland under the project “Energy-Efficient Wireless Networks and Connec-
tivity of Devices – Densification (EWINE-D)”, the Academy of Finland under 
the projects 251138 “Digitally-Enhanced RF for Cognitive Radio Devices” 
and 138424 “Joint Analysis and DSP-Based Mitigation of Multiple RF Im-
pairments in Future Radio Devices”, and TUT Graduate School. 



 

vanced reciprocity calibration techniques at the BS side in the 
emerging TDD-based multi-user wireless systems. 

The rest of the paper is organized as follows: Section II out-
lines the fundamental precoded multi-user MIMO-OFDM down-
link system models. Essential transceiver non-reciprocity and 
antenna mutual coupling models are then formulated in Section 
III. In Section IV, these are combined to analyze the impact of 
imperfect CSIT due to non-reciprocity and antenna coupling 
mismatches on downlink transmission. Section V provides nu-
merical evaluations and illustrations while conclusions are drawn 
in Section VI. 

Notations: The statistical expectation is denoted with opera-
tor E[.] , while diag[.]  and bdiag[.]  denote diagonal and block-
diagonal matrices, respectively, formed from their input argu-
ments. Physical propagation channel matrices are denoted with 
H  while the corresponding effective channel matrices are de-
noted with H  which incorporates transmit chains’ frequency 
responses, transmitter and receiver antenna coupling effects, and 
receiver chains’ frequency responses. The i,j-th element of ma-
trix H  is denoted with ,[ ]i jH . The i-th row and j-th column of 
matrix H  are denoted with ,:[ ]iH  and :,[ ] jH , respectively. 

II.  PRECODED MULTI-USER (MU) MIMO-OFDM DOWNLINK 
TRANSMISSION 

A. Principal Downlink System Model 
Here, we consider a generic precoded L-user multiantenna 
MIMO-OFDM DL transmission system. The number of anten-
nas at the BS side is assumed to be BN  while the l-th user 
equipment has l

UN  antennas, 1,  2,  ...,  l L . Altogether there 
are thus 

1

L l
U Ul
N N  antennas at the users’ side. During DL 

transmission, OFDM waveforms are constructed using N -point 
IFFT preceded by proper sub-carrier level precoding and stream 
multiplexing. At k-th subcarrier, a total of Q  parallel data sym-
bols (Q  streams) ( )ks  are precoded into BN  transmission lay-
ers using BN Q  precoding matrix ( )T kW  and transmitted 
from BN  transmit antennas using OFDM modulation. The pre-
coding is written here as  
 ( ) ( ) ( )k Tk k kx W s  (1) 

where 1 2( ) ( ) ,  ( ) ,  ,  ( )
TT T T

Lk k k ks s s s , ( )l ks denotes a 
1lQ  data vector of the l-th user given as 

,1 ,2 ,( ) [ ( ), ( ), , ( )]
l

T
l l l l Qk s k s k s ks , 

1

L
ll
Q Q  and k  is 

the normalization scalar that adjusts total sum power to be un-
changed after precoding at the BS at k-th subcarrier, i.e., 

/ ( ( ) ( ))H
k T TQ tr k kW W .  

After propagating through a noisy multi-path channel, the in-
put at the l-th user receiver at k-th subcarrier is given by  

 ,( ) ( ) ( ) ( )l DL l lk k k kr H x n  (2) 

where , ( )DL l kH  denotes l
U BN N  DL propagation channel 

matrix and ( )l kn  is 1l
UN  noise vector at the receiver input. 

Then by applying l
U lN Q  spatial filter , ( )R l kW , the receiver 

detector input is given by 

 ,

, , ,

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

H
l R l l

H H
k R l DL l T R l l

k k k

k k k k k k

y W r

W H W s W n
 (3) 

In the multi-user transmission context, the precoder ( )T kW  
and combiners , ( )H

R l kW are generally designed so that inter-user 
interference (IUI) and inter-stream interference (ISI) are con-
trolled or minimized at detector input. In this paper, we consider 
two precoding schemes, namely zero-forcing (ZF) [2] and ei-
genbeamforming [4]. For both schemes, we first assume that full 
CSIT, i.e., ( )DL kH ,1 ,2 ,[ ( ), ( ), , ( )]T T T T

DL DL DL Lk k kH H H , is 
perfectly known at the BS. Then, in Sections III and IV, the im-
pacts of non-reciprocity and antenna mutual coupling mis-
matches are explicitly modeled and taken into account. 

B. Zero-Forcing (ZF) Precoding  
Based on the ZF criterion [2], and assuming l

l UQ N  for sim-
plicity, the total BN Q  precoding matrix at the k-th subcarrier 
is constructed through pseudo-inverse of the full CSIT as  

 1
, ( ) ( )( ( ) ( ))H H
T ZF DL DL DLk k k kW H H H  (4)  

and , , ,/ ( ( ) ( ))H
k ZF T ZF T ZFQ tr k kW W . Then, the reception at 

the l-th user device is given by 

 , , , ,

,

( ) ( ) ( ) ( ) ( )

( ) ( )
l ZF k ZF DL l T ZF l

k ZF l l

k k k k k

k k

r H W s n
s n

 (5) 

showing that all the IUI and ISI is suppressed. A variant of ZF is 
block diagonalisation [3], which is not covered in this paper. In 
practice, further LMMSE receiver processing against, e.g., inter-
ference from other co-channel transmissions can be deployed. 
We elaborate on this later in the paper. 

C. Eigenbeamforming -based Precoding 
As shown in [4], eigenbeamforming is based on singular value 
decomposition (SVD) of DL channel matrices , ( )DL l kH  from 
the BS to the l-th user at the k-th subcarrier, written as 

 , , , ,( ) ( ) ( ) ( )H
DL l l h l h l hk k k kH U V  (6)  

where , ( )l h kU  and , ( )l h kV  are complex unitary matrices, con-
taining the left and the right singular vectors as columns, and 

, ( )l h k  represents a (rectangular) diagonal matrix with positive 
singular values on its diagonal. Now, a reduced-size matrix 

( )l kV  is formed by collecting the first l
UN  right singular vectors 

(first l
UN  columns of , ( )l h kV ), while another matrix ( )kW is 

calculated as 1( ) ( )( ( ) ( ))Hk k k kW V V V where 
1 2( ) [ ( ), ( ), ,k k kV V V ( )]L kV . Finally, the total precoder can 

then be constructed as 

 , 1 2( ) ( ),  ( ),  ,  ( )T EM Lk k k kW W W W  (7) 

where ( )l kW  contains the first lQ  columns of ( )l kW and  
1 2( ) [ ( ),  ( ),  ...,  ( )]Lk k k kW W W W . The transmit power 

normalization scalar is then calculated as 
, , ,/ ( ( ) ( ))H
k EM T EM T EMQ tr k kW W .  

After experiencing DL propagation channel, the reception at 
the l-th user is given by  



 

 , , , ,

,

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
l ZF k EM DL l T EM l

k EM l l l l

k k k k k

k k k k

r H W s n

U s n
 (8) 

where ( )l kU contains lQ  left singular vectors (columns of 
, ( )l h kU )  and ( )l k  is an ordinary diagonal matrix with the lQ  

largest singular values of , ( )DL l kH  as entries [4]. Then the de-
sired parallel signals can be separated by applying a receiver 

, ( )H
R l kW  that can be, e.g., ( )H

l kU , stemming from orthogonality 
of singular vectors, or more generally an LMMSE-based spatial 
filter which can accommodate also external co-channel interfe-
rence. 

III.  IMPACTS OF TRANSCEIVER NON-RECIPROCITY AND 
ANTENNA COUPLING MISMATCH ON CHANNEL RECIPROCITY  

In TDD systems, DL and UL transmissions basically share the 
same spectrum. If channel coherence time is sufficiently long 
and thus the channels change fairly slowly over time, CSIT at 
the BS can be obtained from the UL received signals directly, 
and thus directly deployed in downlink transmission as 
ˆ ˆ( ) ( )T
DL ULk kH H  where ˆ ( )UL kH  refers to estimated uplink 

channel responses.  
However, as depicted in Fig. 1 and Fig. 2, the effective DL 

and UL channels are generally cascades of transceivers and an-
tenna mutual coupling at TX side, physical propagation chan-
nels, and antenna mutual coupling and transceivers at RX side. 
Then, the effective DL and UL channel matrices between the BS 
and the l-th user device, and respectively between the BS and all 
the users 1,  2,  ...,  l L , are given by  

 

, , , , , ,

, , , , , ,

, , , ,

, , , ,

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

DL l l R l R DL l BT BT

UL l B R B R UL l l T l T

DL U R U R DL BT BT

UL B R B R UL U T U T

k k k k k k

k k k k k k

k k k k k k

k k k k k k

H A C H C A

H A C H C A

H A C H C A

H A C H C A

 (9) 

where 

 

, , ,1 , ,

, , ,1 , ,

, , ,1 , ,

, , ,1 , ,

, 1, ,

,

( ) diag( ( ),  ,  ( ))

( ) diag( ( ),  ,  ( ))

( ) diag( ( ),  ,  ( ))

( ) diag( ( ),  ,  ( ))

( ) bdiag( ( ),  ,  ( ))

( ) bdia

B

B

l
U

l
U

BT BT BT N

B R B R B R N

l T l T l T N

l R l R l R N

U T T LT

RT

k a k a k

k a k a k

k a k a k

k a k a k

k k k

k

A
A
A

A

A A A
A 1, ,g( ( ),  ,  ( ))R L Rk kA A

 (10)  

in which , , ( )
BB T na k , , , ( )

BB R na k , 
, ,

( )l
Ul T n

a k  and 
, ,

( )l
Ul R n

a k refer 
to the frequency-responses of TX and RX chains in the Bn -th 
transceiver at the BS side and in the l

Un -th transceiver at the l-th 
UE side. , ( )l R kC , , ( )l T kC , , ( )B R kC and , ( )BT kC , in turn, are 
RX and TX mutual coupling matrices at the l-th UE and BS, 
respectively, while , 1, ,( ) bdiag( ( ),  ,  ( ))U R R L Rk k kC C C  and 

, ( )U T kC  1, ,bdiag( ( ), , ( ))T LTk kC C  are the overall RX and 
TX mutual coupling matrices at the UE side.  

Based on (9), propagation channel reciprocity 
( ) ( )T

DL ULk kH H , and simple manipulations, the effective UL 
channels can now be written, in terms of effective DL channels, as 
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Fig. 1. Principal illustration of physical DL transmission and reception includ-
ing propagation channels, transceivers and antenna mutual coupling in the 
devices.  
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Fig. 2. Principal illustration of physical UL transmissions and reception in-
cluding propagation channels, transceivers and antenna mutual coupling in the 
devices. 

 
, ,

( ) ( ) ( )( ( )) ( ) ( )

( ) ( ) ( )( ( )) ( ) ( )

T
UL B B DL U U

T
UL l B B DL l l l

k k k k k k

k k k k k k

H A C H C A

H A C H C A
 (11) 

where 1
, ,( ) ( ) ( )l l T l Rk k kA A A , 1

, ,( ) ( ) ( )U U T U Rk k kA A A  , ( )B kA  
1
, ,( ) ( )BT B Rk kA A , 1

, ,( ) ( ) ( )l l T l Rk k kC C C , ( )U kC  
1

, ,( ) ( )U T U Rk kC C  and 1
, ,( ) ( ) ( )B BT B Rk k kC C C  are transceiver 

frequency response and mutual coupling mismatch matrices, 
respectively, at the l-th user, as well as in all the users 

1,  2,  ...,  l L , and the BS side. Both type of mismatches (fre-
quency responses and antenna coupling) are typically mildly 
frequency-selective over several MHz transmission bandwidths 
[5], [6], and hence depend on subcarrier index k. 

Unlike diagonal frequency response mismatch matrices, mu-
tual coupling mismatch matrices are generally non-diagonal and 
the exact values of ( )B kC  and ( )l kC  are dependent on the de-
tailed implementation of antenna arrays. In [6], as a practical 
example, a fairly simple and widely-used coupling model is es-
tablished where the circuit-level coupling matrix is of the form 

1( )( )A T T NZ Z ZC Z I where the parameters AZ and  
TZ and the elements of the matrix Z  depend on the impedances 

of the antenna elements and the associated transceiver circuits 
[6]. In this paper, to simplify the notations and the presentation, 
the diagonal elements of mutual coupling matrices are assumed 
to be normalized to 1, i.e., ( ), ( ) ,

( ) 1B l R T i i
kC  [6]. In general, 

( ), ( ) ,
( )B l R T i j
kC  ( i j ) represents the leakage coefficient from 

the j-th antenna to the i-th antenna at the RX and TX sides of the 
BS and the l-th UE, respectively. 

Now, if CSIT at the BS is obtained by measuring effective 
UL channel matrices, biased estimation is unavoidable due to 



 

mismatches (even without any additive noise or other interfe-
rences in the estimation process). This is established here, dep-
loying (11),  as 

  

1 1

ˆ ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ( ) ) ( )( ( ) )
U B

T
DL UL

T T T T
U U DL B B

U DL B

U N DL B N

k k

k k k k k

k k k

k k k

H H

A C H C A

G H G

G I H G I

 (12) 

where ( ) ( ) ( )T T
U U Uk k kG A C , ( ) ( ) ( )T T

B B Bk k kG C A , 
1( ) ( )

UU U Nk kG G I  and 1( ) ( )
BB B Nk kG G I . When the 

mismatch matrices ( ) ( ) 0U Bk kG G , transceiver FR and 
mutual coupling are perfectly matched at the UE and BS sides.  

IV.   ANALYSIS OF CHANNEL NON-RECIPROCITY EFFECTS ON 
PRECODED MU MIMO-OFDM DL TRANSMISSION 

In this section, the impacts of biased or imperfect channel esti-
mates obtained through uplink reception, as given in (12), are 
analyzed in the precoded TDD MU MIMO-OFDM DL trans-
mission context, in terms of instantaneous received SINR and 
achievable downlink sum-rate.  

A. Effects of Channel Non-reciprocity in ZF Precoded MU 
MIMO-OFDM Systems 

With imperfect CSIT given in (12), the ZF precoder in (4) reads 
now 

 1
,

ˆ ˆ ˆˆ ( ) ( )( ( ) ( ))H H
T ZF DL DL DLk k k kW H H H  (13) 

and , , ,
ˆ ˆ ˆ/ ( ( ) ( ))H
k ZF T ZF T ZFQ tr k kW W . Then incorporating (13) 

in the downlink system model in (2) with the effective downlink 
channel matrix , ( )DL l kH  for the l-th user, the l-th user received 
signal reads 

, , , ,

1 1
, , ,

1
,

ˆ ˆ( ) ( ) ( ) ( ) ( )
ˆˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

ˆ ( ) ( ) ( ) ( ) ( )

l ZF k ZF DL l T ZF l

k ZF l DL l B T ZF l

k ZF l l ZF l

k k k k k

k k k k k k

k k k k k

r H W s n

G H G W s n

G s C s n

 (14) 

where 1
, , ,

ˆˆ ˆ( ) ( ) ( ) ( ) ( )ZF k ZF l DL l B T ZFk k k k kC G H G W and 
( ) ( ) ( )T T
l l lk k kG A C . In above, the first term consists of the 

desired streams while the second term is mostly IUI. 
Now, based on (14), it is interesting to observe that IUI free 

reception ( ( ) 0ZF kC ) can be obtained, despite of transceiver 
frequency response and antenna mutual coupling mismatches at 
the UE device side, if the BS device has perfect matching. This 
follows directly from (14), and the expressions below it, by subs-
tituting ( ) 0B kG  (i.e. perfect match at BS side). This then 
reduces the observation to 1

, ,
ˆ( ) ( ) ( ) ( )l ZF k ZF l l lk k k kr G s n . 

Hence, the first outcome of the analysis is that BS device match-
ing characteristics are clearly more critical than the UE side. 

In the general case, when either transceiver frequency re-
sponse mismatch or antenna mutual coupling (or both) appear at 
the BS side, meaning that ( ) 0B kG , then ( )ZF kC  becomes a 
non-zero matrix with entries depending on the values of DL ef-
fective channel matrix ( )DL kH  and the mismatch parameters. In 
this general case, both IUI and ISI occur at the l-th user reception 

even if the implementation at the UE side is perfect. At the l-th 
user receiver, applying standard receiver spatial processing de-
noted by , ( )H

R l kW  and operating on the received signal in (14), 
the processed signal is given by 

, , ,

, , , , ,
( )

,

( ) ( )
, ,1,

( ) ( )
1,

( ) ( ) ( )
ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

H
l ZF R l l ZF

H H
k ZF R l DL l T ZF R l l
H l
R l l

Ll lH H
R l l l R l i i li i l
l l
l l i ii i

k k k

k k k k k k

k k k k

k k k k k k k

k k k k

y W r

W H W s W n

W F s n

W F s W F s n

F s F s ( )
L

ll
kn

   

  (15) 
where ( ) ( )( )

, , , 1 2
ˆ ˆ( ) ( ) ( ) [ ( ), ( ), ,l ll
k ZF DL l T ZFk k k k kF H W F F  

( )( )]l
L kF , ( )( )l

l kF  is an l
U lN Q  matrix,  ( ) ( )

,( ) ( ) ( )l lH
i R l ik k kF W F  

and ,( ) ( ) ( )H
l R l lk k kn W n . Then the processed reception at 

the lq -th spatial stream at the l-th user is given by 

( ) ( )
, , ,1,, ,

( )
1, ,:

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

l

l ll l l l

l

Ql l
l ZF l l q l l ii i qq q q q i

L l
i i li i l q

k k s k k s k

k k k

y F F

F s n
(16) 

where ( )
, ,1,

[ ( )] ( )l

ll

Q l
l q i l ii i q
k s kF  is the residual ISI and 

( )
,:1, [ ( )] ( )
l

L l
i q ii i l k kF s  depicts the IUI in the reception.  

In general, , ( )H
R l kW  can be designed to primarily suppress 

ISI while it is much more difficult to suppress IUI due to limited 
degrees of freedom, especially when the number of UE antennas 
is close to the number of own streams. Clear system perfor-
mance degradation due to IUI is thus expected. Here, we seek to 
quantify this issue, especially from IUI perspective. Considering 
thus the first term, say ( )

, , ,( ) [ ( )] ( )
l l l l

l
l q l q q l qy k k s kF , in (16) as the 

desired useful signal and other terms as the overall interference 
and noise, respectively, the corresponding instantaneous signal-
to-interference-plus-noise ratio (SINR) for the l-th user’s lq -th 
data stream is given by 
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 (17) 

where 

 

2
( )

, 1, ,

( ) ( )
, 1, ,0 ,0

( ) ( )
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ll
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l l

Qq l
ZF l li i q q i

H
Lq l l

ZF l i ii i l q q

P k k
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F

F F

    (18) 

and 2 2/s n   represents the so-called transmitted signal-to-
noise ratio (SNR), per stream and subcarrier, and equal stream 
powers are assumed for simplicity. The concept of instantaneous 
SINR is here to be understood as being defined for given effec-



 

tive channel matrix ( )DL kH  realization and given mismatch 
parameters. Then the system sum-rate over streams and users, 
and averaged over subcarriers and different channel and impair-
ment realizations, can be evaluated as 

  2 ,
1 1 1

1
log (1 ( ))

lQN L
q

ZF l ZF
k l q

r E k
N

 (19) 

Notice that the above characterization is carried out for arbitrary 
receiver processing, hence any particular receiver , ( )H

R l kW  can 
be deployed. Widely used receiver principle is LMMSE which 
can be written for user l   as 

1
( ) ( ) ( )

, 1
( ) ( ) ( ) / ( )l

U

HL l l lLMMSE
R l i i lNi

k k k kW F F I F  

  (20) 
where the associated precoded effective channel matrices F  are 
defined below (15). This is deployed in the forthcoming numeri-
cal evaluations in Section V. 

B. Effects of Channel Non-reciprocity in Eigenbeamforming 
-based MU MIMO-OFDM DL Systems 

Next similar analysis is carried out for eigenbeamforming based 
system. With imperfect CSIT in (12), the eigenbeamforming 
based precoder ,

ˆ ( )T EM kW  is constructed by decomposition of 
the UE level sub-matrices of ˆ ( )DL kH  in (12) into ˆ ( )l kV , ˆ ( )H

l kU  
and ˆ ( )l k  following the procedures described in Section II.C. 
After precoding and experiencing the effective transmission 
channels, the signal arrives at the l-th user receiver as  

, , ,

1 1
, , ,

1 1
,
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k k k k k
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r H W s n

G H G W s n

G U s G C s n

(21) 

where  , , ,
ˆ ˆ ˆ/ ( ( ) ( ))H
k EM T EM T EMQ tr k kW W  and 
1

, , ,
ˆˆ ˆ( ) ( ) ( ) ( ) ( )EM k EM l DL l B T EMk k k k kC G H G W . 

In the case that ( ) 0B kG  which corresponds to perfect 
transceiver reciprocity and zero antenna mutual coupling at the 
BS side, there is no IUI at the l-th user reception as it directly 
follows that ( ) 0EM kC . Only ISI cancellation is then needed 
at the UE side.  

In the more general case of ( ) 0B kG , ( )EM kC  appears to 
be a non-zero matrix with entries which are dependent on 

( )DL kH  and the mismatch parameters. Again, both IUI and ISI 
are then present at the UE receptions. Applying now standard 
receiver spatial processing of the form , ( )H

R l kW  on the reception 
in (21), the detector input at the l-th user receiver then reads 
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where ( ) ( )( )
, , , 1 2

ˆ ˆ( ) ( ) ( ) [ ( ), ( ), ,l ll
k EM DLl T EMk k k k kF H W F F  

( )( )]l
L kF , ( )( )l

l kF  is an l
U lN Q  matrix,  

( ) ( )
,( ) ( ) ( )l lH

i R l ik k kF W F  and ,( ) ( ) ( )H
l R l lk k kn W n . Then the 

reception for the lq -th stream at the l-th user reads 
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      (23) 
where ( )

, ,1,
[ ( )] ( )l

ll

Q l
l q i l ii i q
k s kF  and ( )

,:1, [ ( )] ( )
l

L l
i q ii i l k kF s  

denote the residual IUI and ISI in the reception, respectively. 
Again, we quantify the received signal quality, especially from 
IUI perspective below. Considering thus that the first component 

( )
, , ,( ) [ ( )] ( )
l l l l

l
l q l q q l qy k k s kF  in (23) is the desired useful signal 

term while the others represent interference and noise, respec-
tively, the corresponding instantaneous SINR for the l-th user’s 
lq -th data stream at k-th subcarrier is given by 
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where 
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and 2 2/s n  is again the per-stream transmitted SNR at an 
arbitrary subcarrier.  Then the system sum-rate over streams and 
users, which is averaged over subcarriers and different channel 
and impairment realizations, can be obtained as 

  2 ,
1 1 1

1
log (1 ( ))

lQN L
q

EM l EM
k l q

r E k
N

 (26) 

As in the previous section, one example of widely-deployed RX 
processing matrix , ( )R l kW can be constructed following the 
LMMSE receiver principle as  

1
( ) ( ) ( )

, 1
( ) ( ) ( ) / ( )l

U

HL l l lLMMSE
R l i i lNi

k k k kW F F I F   

  (27) 
where the associated precoded effective channel matrices F  are 
defined below (22). 

In general, following from the above analysis, and illustrated 
numerically in the following section, transceiver non-reciprocity 
and antenna mutual coupling at the BS side can be substantial 
sources of IUI thus resulting to severe performance degradation. 
Implementation imperfections at the UE side, on the other hand, 



 

cause only ISI at the reception which is fairly well processed by 
the receiver as part of precoded effective channel matrix. This 
observation provides important insight and motivation for the 
development of efficient reciprocity calibration techniques in the 
emerging TDD MU MIMO-OFDM systems. 

V.   SIMULATIONS AND NUMERICAL RESULTS 

In this Section, the derived analysis results are evaluated and 
illustrated numerically. As a practical example, MU MIMO-
OFDM DL transmission scenario with 4-antenna BS is consi-
dered, serving two UEs simultaneously over the same subcar-
riers. In more details, the BS is sending two parallel data streams 
to UE #1 and a single data stream to UE #2. In case of ZF pre-
coding, UE #1 is assumed to contain two antennas while UE #2 
is equipped with only a single antenna. In the eigenbeamforming 
-based precoding case, both UEs are assumed to be equipped 
with two antennas so that UE #2 can have enhanced reception 
through receiver diversity. We emphasize that these assumptions 
are made only to have a concrete and fairly practical evaluation 
scenario, and any other antenna and stream configurations could 
also be used. The deployed carrier frequency is assumed to be 2 
GHz, and a total of 1024 subcarriers, out of which 600 are ac-
tive, are deployed in the OFDM waveform processing with sub-
carrier spacing of 15 kHz conforming to the basic 3GPP-LTE 
specifications [1].  

The wireless propagation environment is modeled as a Ray-
leigh fading multipath channel with extended Vehicular A chan-
nel power delay profile [10]. Frequency response mismatches 
over the 10MHz waveform bandwidth at each transceiver at both 
the BS and UE sides are characterized as 9 tap FIR filters with 
randomly selected coefficients in time-domain. The level of 
these mismatches is controlled such that the variances of diagon-
al elements of the mismatch matrices ( )B kA   and ( )U kA , de-
noted with 2

,F B  and 2
,FU ,  respectively, are set to given values. 

The mutual antenna coupling matrices, in turn, are set such that 
only the neighboring antenna elements interfere with each other, 
i.e., ( ), ( ) ,[ ( )] 0B U R T i jkC  if 1i j , and the mutual coupling 
mismatches between neighboring antenna elements, i.e., 

1
( ), ( ), ,[ ( ) ( )]B U R B U T i jk kC C  for 1i j , are modeled by zero 

mean complex normal distributed random variables with control-
lable variances 2

,C B  and 2
,C U . In the result figures, these va-

riances are given in relative dB scale as 2
1010 log ( )  . 

First, the achievable average system sum-rates with transceiver 
frequency-response mismatches and/or mutual coupling mis-
matches at the BS and/or UEs are examined, individually as well 
as jointly. As shown in Fig. 3 (ZF precoded) and Fig. 4 (ei-
genbeamforming), the imperfections at the UEs have no noticea-
ble impact on the system performance. Mismatches at the BS, on 
the other hand, result in substantial performance degradation 
especially when average SNRs are higher than 15dB. This con-
firms the initial insight established already in Section IV. 

Next, the performance degradation with different levels of 
BS mismatches is compared at an example SNR of = 25dB. 
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Fig. 3. Comparison of average sum-rates for two-user ZF pre-coded MIMO-
OFDM DL system with different frequency response mismatch and antenna 
coupling mismatch levels at the base-station and/or UEs. 2  denotes the 
relative mismatch variances, expressed in dB’s. X-axis refers to average 
transmitted per-stream, per-subcarrier SNR. 
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Fig. 4. Comparison of average sum-rates for two-user eigenbeamforming-
based MIMO-OFDM DL system with different frequency response mismatch 
and antenna coupling mismatch levels at the base-station and/or UEs. 2  
denotes the relative mismatch variances, expressed in dB’s. X-axis refers to 
average transmitted per-stream, per-subcarrier SNR. 

As illustrated in Fig. 5 and Fig. 6, with both precoding schemes, 
the system is more sensitive to antenna mutual coupling mis-
matches than transceiver frequency response mismatches. How-
ever, both BS imperfections clearly impact the performance. In 
the considered transmission scenario, to achieve close to ideal 
performance, maximum tolerable levels of transceiver frequency 
response mismatches and mutual coupling mismatches at the BS 
side are around -35dB and -40dB with ZF precoding, and around 
-40dB and -45dB with eigenbeamforming, respectively. Thus 
accurate BS calibration techniques are required in order to truly 
capitalize the channel reciprocity. 
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Fig. 5. Comparison of average sum-rates for two-user ZF precoded MIMO-
OFDM DL system with frequency response mismatch or/and antenna mutual 
coupling mismatch at the BS. 2  denotes the relative mismatch variances, 
expressed in dB’s. UE devices are ideal (zero mismatches). The average 
transmitted per-stream, per-subcarrier SNR is fixed to = 25dB.  
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Fig. 6. Comparison of average sum-rates for two-user eigenbeamforming-
based MIMO-OFDM DL system with frequency response mismatch or/and 
antenna mutual coupling mismatch at the BS. 2  denotes the relative mis-
match variances, expressed in dB’s. UE devices are ideal (zero mismatches). 
The average transmitted per-stream, per-subcarrier SNR is fixed to = 25dB.   

VI.   CONCLUSIONS 

This paper studied the impact of channel non-reciprocity due to 
transceiver frequency response and antenna mutual coupling 
mismatches on the performance of TDD-based precoded MU 
MIMO-OFDM DL transmission systems. Based on the devel-
oped signal and system models, performance degradation in 
terms of UE receiver instantaneous SINR and average system 
sum-rate were analyzed and evaluated. The analysis shows that 
the transceiver non-reciprocity and antenna mutual coupling 
mismatches at the BS side cause both IUI and ISI whereas the 

implementation imperfections at the UE cause only ISI. In gen-
eral, the system performance is more sensitive to antenna mutual 
coupling than transceiver frequency responses mismatches, but 
both clearly affect the performance. Thus, overall, the analysis 
results strongly motivate towards accurate (non)reciprocity esti-
mation and calibration techniques and their development at the 
BS side in the emerging TDD-based multi-user wireless systems. 
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Abstract— In this paper, we propose an efficient transceiver 
non-reciprocity estimation-compensation framework for precoded 
TDD multi-user MIMO-OFDM downlink transmission systems. 
General signal models are first developed to analyze the effects of 
transceiver non-reciprocity at both the base-station and user 
equipment sides. The analysis shows that transceiver non-
reciprocity at the base-station causes inter-user interference and 
thus substantial performance degradation, while the impact of 
transceiver non-reciprocity at the user equipment side can be fairly 
easily handled with downlink detector processing. Next, an over-
the-air (OTA) type pilot-based estimation algorithm is devised for 
efficient identification of base-station non-reciprocity parameters, 
which are then used in pre-compensating or precoding the 
multiuser data properly in the base-station. Compared to the 
existing work in the literature, the proposed approach does not 
require the use of feedback signaling or complicated channel 
matrix decomposition techniques for extracting the non-reciprocity 
parameters. The resulting link and system performance of the 
proposed estimation-compensation framework is then evaluated 
using extensive computer simulations in linear precoded TDD 
multiuser MIMO-OFDM system context. Based on the obtained 
results, the proposed estimation-compensation approach can 
provide a simple, practical and flexible solution to efficiently 
restore the channel reciprocity with reasonable calibration 
overhead. 

Keywords— channel reciprocity; transceiver non-reciprocity; 
reciprocity calibration; multiuser MIMO-OFDM. 

I. INTRODUCTION  
Channel reciprocity is considered as one of the most important 
elements in the development and efficient deployment of time-
division duplexing (TDD) based multi-user (MU) MIMO-
OFDM systems [1]-[3]. In TDD systems, downlink (DL) and 
uplink (UL) operate at the same center frequency and thus the 
DL channel state information at transmitter (CSIT) can be 
acquired by the base-station (BS) through simply measuring the 
UL signals, given that the UL-DL switching period is 

sufficiently short relative to the channel coherence time. In 
practice, however, the effective transmission channels include 
also the radio hardware of the devices, namely transmit chains, 
receive chains and antennas [7]-[10]. Even if assuming 
reasonably good antenna isolation in each device, there are 
always unavoidable frequency response (FR) mismatches 
between the transmitter (TX, containing, e.g., mixers, power 
amplifier and RF filtering) and receiver (RX, e.g., RF filtering, 
LNA, mixers, and lowpass filtering) chains implemented in the 
same transceiver, which, in turn, distort the reciprocal nature of 
the effective DL and UL channels. As shown in [5]-[10], if the 
CSIT at the BS is obtained by measuring the UL signals under 
transceiver non-reciprocity, inter-user interference (IUI) occurs 
at user equipment (UE) reception and thus causes severe 
performance degradation in TDD MU MIMO-OFDM DL 
transmission. 

In order to cope with transceiver non-reciprocity problem, 
two types of estimation-compensation approaches have been 
proposed in the literature. In [5]-[8], direct offline hardware 
estimation-calibration is proposed. It provides a standard 
independent solution yet adds substantial implementation 
complexity and cost for each device. In [8]-[10], as an alternative 
to hardware based approaches, over-the-air (OTA) type 
estimation-compensation algorithms are developed which 
require establishing a test calibration and feedback link with 
external test equipment (TE) for parameter estimation. This 
approach does not require implementation of extra hardware in 
the base-station devices but is based on dedicated calibration 
period in which communication takes place with the TE. In this 
type of OTA estimation, the current solutions in the literature 
[8]-[10] assume further that the DL channel matrix towards the 
TE is always known by the BS, e.g. via accurate high-rate 
feedback signaling. Then, the non-reciprocity parameters are 
extracted by measuring the UL channel matrix from the TE 
transmission, followed by comparison and decomposition of the 
measured TE DL and UL channel matrices. The performance of 
such approach is, however, always limited in practice by the 
finite rate of feedback signaling from TE towards the BS. 
Furthermore, the computational complexity of deployed matrix 
decompositions applied in [8]-[10] are far from trivial. 

In this paper, we develop an efficient estimation-
compensation framework and algorithms for the compensation 
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School.



of BS transceiver non-reciprocity in TDD precoded MU MIMO-
OFDM DL transmission systems. First, based on the developed 
signal and system models, the non-reciprocal transceivers at the 
BS side are shown to be a major cause of downlink performance 
degradation, stemming from IUI while non-reciprocal 
transceivers at UEs result only in inter-stream interference (ISI) 
which can be fairly easily handled in downlink detector 
processing. Then, an OTA type pilot-based estimation 
framework is proposed to estimate the essential non-reciprocity 
parameters at the BS. The proposed approach does not require 
the use of any feedback signaling nor computationally intensive 
channel matrix decomposition techniques as done in the existing 
reference methods in the literature. Incorporating the estimated 
non-reciprocity characteristics properly into the spatial precoding 
in the actual data transmission phase, close to ideal linear 
precoded MU-MIMO downlink performance can be achieved. 
This is explored and demonstrated through extensive computer 
simulations. Furthermore, in the estimation phase, only short 
training period is required incorporating low system overhead.  

II. EFFECT OF TRANSCEIVER NON-RECIPROCITY IN LINEAR 
PRECODED TDD MU MIMO-OFDM DL TRANSMISSION 

A. Link Model of Linear Precoded MU MIMO-OFDM DL 
Transmission System 

Here, we consider an L-user U BN N  linearly precoded 
MIMO-OFDM DL transmission system. As shown in Figure 1, 
BN  transmission antennas are deployed at the BS side while 
l
UN  antennas are deployed at the l-th user equipment, and thus 

altogether there are 1
L l

U UlN N  antennas at the UE side. 
Furthermore, OFDM transmission is assumed with a total of N  
subcarriers. At the k-th subcarrier, 1Q  size overall data vector 
( )ks  is precoded into BN  streams using BN Q  precoding 

matrix ( )T kW  and transmitted using the BN  transmit antennas 
deploying OFDM waveform. The total precoded subcarrier 
spatial vector reads thus 

 ( ) ( ) ( )Tk k kx W s  (1) 

where 1( ) ( ) , ( ) , , ( )
TT T T

l Lk k k ks s s s  and  ( )l ks  denotes 
the 1lQ  data vector of the l-th user at the considered k-th 
subcarrier and 1

L
llQ Q .  

After experiencing multipath MIMO radio propagation from 
the BS to the l-th user, the receiver input vector at the l-th user at 
the k-th subcarrier is given by   

 ,

,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
l DL l l

DL l T l

k k k k

k k k k

r H x n
H W s n

 (2) 

where , ( )DL l kH  refers to l
U BN N  DL channel matrix from 

the BS to the l-th user and ( )l kn  is 1l
UN  noise vector at the l-

th user  receiver at the k-th subcarrier. Now, based on (1) and (2), 
in order to avoid inter-user interferences (IUI) at the l-th user 
reception, the linear precoder ( )T kW  deployed at TX should be 
designed such that the overall equivalent l

UN Q  transmission 
matrix ( )l kT , ( ) ( )DL l Tk kH W  can be structured as 

�̅����

�̅����

�̅����

�
�
���� �

�
����

Base-Station

�����

User #1
��

��
�

�

���� �����

���� �����

��

��

���

�

�
��

�
�
�

User #L

��

 
Figure 1: Principal illustration of the proposed base-station 
transceiver non-reciprocity mitigation scheme for linear precoded 
TDD MU MIMO-OFDM DL transmission with L users. 
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1 11 1

( )  ( )l L
ll l

U l U l
l l l

l Q
N Q N Q

k kT 0 C 0  (3) 

This precoder design guarantees that the impact of streams of all 
other users are nulled at the target receiver and thus the reception 
in (2) becomes essentially 

 ( ) ( ) ( ) ( )
ll Q l lk k k kr C s n  (4)  

where ( )
lQ
kC  denotes l

U lN Q  matrix with non-zero diagonal 
entries. Then by applying l

l UQ N  spatial filter , ( )H
R l kW , the 

detector input ,( ) ( ) ( )H
l R l lk k ky W r  at the l-th user receiver is 

given by   

 , ,( ) ( ) ( ) ( ) ( ) ( )
l

H H
l R l Q l R l lk k k k k ky W C s W n  (5) 

where the receiver , ( )H
R l kW  can be designed, e.g., to minimize 

the interstream interference (ISI) and noise power at the filter 
output using the linear minimum mean square error (LMMSE) 
principle as 

1

, ( ) ( ) ( ) / ( )l
l l lU

H

R l Q Q QN
k k k kW C C I C  where 

 denotes the ratio of subcarrier-level per-stream transmit 
power and the subcarrier-level received  noise power. 
Furthermore, if the receiver has sufficient amount of antennas, 
the receiver spatial filter can also partially assist in IUI reduction 
(if precoder does not null it perfectly), which implies that the 
total spatial channel , ,( ) ( ) ( )H

R l DL l Tk k kW H W  suppresses the 
effect of other users’ streams while also controlling the ISI 
between own streams and noise. 

B. Modeling Transceiver Non-reciprocity and Its Impact on 
Channel Reciprocity in TDD Mode 

In general, as outlined above, the design of optimal linear 
precoder ( )T kW  at the BS requires DL channel knowledge. In 
TDD systems, DL CSIT can be obtained by measuring UL 
channels, denoted here by , ( )UL l kH , as DL and UL operate at the 
same center-frequency, and thus ideally , ,( ) ( )T

DL l UL lk kH H  
[1], [2]. However, in practice, the actual effective DL and UL 
channels, say , ( )DL l kH  and  , ( )UL l kH , include also the responses 
of electronics components used in the transmitting and receiving 
devices. Due to circuit and process variations, there are thus 
always some unavoidable mismatches between the frequency 
responses (FRs) of transmitter and receiver chains of any 
individual transceiver. As modeled in more details in [5]-[10], 
under such transceiver non-reciprocity at both the BS and UE 



sides, and even with perfect channel estimation, the estimated 
effective DL channel matrices ,

ˆ ( )DL l kH  obtained from the 
estimated UL channel matrices ,

ˆ ( )UL l kH  as , ,
ˆ ˆ( ) ( )T
DL l UL lk kH H  

are thus always biased. Using now the notation  

 
,1 ,

,1 ,

( ) [ ( ),  ...,  ( )]

( ) [ ( ),  ...,  ( )]

T T T
DL DL DL L

T T T
UL UL UL L

k k k

k k k

H H H

H H H
 

and similarly for the corresponding estimated effective channels, 
the downlink channel non-reciprocity can be described as 

  , , ,
ˆ ˆ( ) ( ) ( ) ( ) ( )
ˆ ˆ( ) ( ) ( ) ( ) ( )

T
DL l UL l l DL l B

T
DL UL U DL B

k k k k k

k k k k k

H H A H A

H H A H A
 (6) 

where ( )l kA , ( )U kA  and ( )B kA  are diagonal matrices 
depicting transceiver FR mismatches at the l-th user, at all the 
users and at the BS, respectively. Clearly, under transceiver 
non-reciprocity, ( )l kA , ( )U kA  and ( )B kA  are not identity 
matrices and thus in general it follows that , ,

ˆ ( ) ( )DL l DL lk kH H  
and ˆ ( ) ( )DL DLk kH H . As shown in [7], the FR mismatches in 
each transceiver is typically mildly frequency-selective within 
commonly deployed waveform bandwidths in the order of 
several or several tens of MHz. 

C. Impact of Channel Non-reciprocity on Linear Precoded 
MU MIMO-OFDM Systems 

Under channel non-reciprocity described in (6), the realizable 
precoder  ˆ ( )T kW  is obtained through estimated CSIT ˆ ( )DL kH . 
Using similar precoder optimization principle as in (3), but under 
estimated CSIT, the effective precoded channel towards l-th user 
from precoder optimization perspective reads now 

 
1

1 1
1 11 1

,
ˆ ˆ( ) ( ) ( )

 ( )l L
ll l

U l U l
l l l

l DL l T

Q
N Q N Q

k k k

k

T H W

0 C 0
 (7) 

where ( )
lQ
kC  denotes l

U lN Q  matrix with non-zero diagonal 
entries. However, the actual downlink transmission towards the 
l-th UE is subject to the true effective channel , ( )DL l kH , and 
thus the reception at the l-th user receiver reads 

 
,

1 1
,

1
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r H W s n
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 (8) 

where ( ) ( )
BB B Nk kA A I and 1

,
ˆ( ) ( ) ( )l DL lk k kC A H  

ˆ( ) ( )B Tk kA W . Now, if transceivers at the BS are reciprocal and 
thus ( ) 0B kA , it implies that ( ) 0kC  and there is no IUI in 
the reception. Inter-stream interference, in turn, appears at the 
reception if and when ( )

lQ
kC  is a non-diagonal matrix but it can 

be easily suppressed in the receiver spatial processing. On the 
other hand, in the case that the transceivers at the BS are non-
reciprocal and thus ( ) 0B kA , it directly implies that 

( ) 0kC  which in turn means that both IUI and inter-stream 
interference take place in the receiver. In the general case, 
especially if the number of own streams is close to the number of 

UE antennas, IUI cannot be efficiently suppressed by receiver 
processing, and hence significant performance degradation is 
expected. This, in turn, calls for the development of advanced 
reciprocity calibration or restoration techniques at the BS side to 
prevent such performance losses. 

III. COMPENSATION OF TRANSCEIVER NON-RECIPROCITY IN 
PRECODED TDD MU MIMO-OFDM SYSTEMS 

Ideally, if all the transceiver non-reciprocity parameters of the 
BS device ( ( )B kA ) and the UEs ( ( )U kA ) are perfectly known 
at the BS side, the transceiver non-reciprocity problem can be 
easily solved by calibrating the estimated UL channel matrix to 
correspond to the actual effective DL channel matrix before 
constructing the precoder as 

 1 1
, , ,

ˆ( ) ( ) ( ) ( ) ( )DL l l DL l B DL lk k k k kH A H A H  (9)  

However, in modern cellular systems, the UEs accessing the 
channel change dynamically, through dynamic scheduling. 
Furthermore, the exact frequency responses of the transceivers 
are actually time-dependent due to, e.g., temperature changes. 
Thus, it is very challenging to track the transceiver non-
reciprocity parameters ( )l kA  of all the connected UEs in the 
network in a timely manner, without causing a large amount of 
overhead. Therefore, direct channel non-reciprocity correction as 
described in (9) is not a realistic solution. On the other hand, as 
discussed in Section II.C, only the transceiver non-reciprocity at 
the BS is causing IUI in the UE receivers, while the transceiver 
non-reciprocity at the UE side can actually be suppressed by 
proper RX processing.  

Based on the above reasoning, we propose a BS-UE 
transceiver non-reciprocity co-processing framework operating 
as follows. Firstly, as illustrated in Figure 1, a compensator filter 

( )C kW  is applied on the precoded signal in the BS so that after 
propagating through the MIMO channels, the reception at the l-
th user receiver is given by 

 
, ,

1

1

 

ˆ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
l

l C DL l C T l

l l l

C l Q l l

k k k k k k

k k k k

a k k k k k

r H W W s n

A T s n

A C s n

 (10) 

where ( )Ca k  is a free design parameter that can be used, e.g., to 
adjust and keep the overall transmission power unchanged after 
non-reciprocity compensation, ( )

lQ
kC  denotes a l lQ Q  matrix 

with non-zero diagonal entries and 

 
1

1 1
1 11 1

1
, 

ˆ ˆ( ) ( ) ( ) ( ) ( )

( )  ( )l L
l

l l l l
l l l

l DL l B C T

C Q
Q Q Q Q

k k k k k

a k k

T H A W W

0 C 0
  (11) 

Due to the structure of ( ),l kT this compensation processing 
results to zero IUI, despite of transceiver non-reciprocity. At the 
UE receiver side, the desired signal vector ( )l ks  can then be 
efficiently recovered by applying RX processing , ( )H

R l kW  on the 
reception , ( )l C kr . A widely used receiver principle is the 
LMMSE receiver which can now be written for the user l as  



 
1

( ) ( ) ( )
, ( ) ( ) ( ) / ( )l

U

Hl l l
R l N
k k k kW F F I F  (12) 

where ( ) 1( ) ( ) ( ) ( )
l

l
C U Qk a k k kF A C .  

To elaborate further on the processing solution, we proceed 
as follows. Based on (8), one simple solution is to set 

1( ) ( ) ( )
BB C C Nk k a kA W I  so that , ˆ ˆ( ) ( ) ( ) ( )l C DL l Tk a k k kT H W  

( ) ( )C la k kT . The compensator itself can then be obtained as 

 ( ) ( ) ( )C C Bk a k kW A  (13) 

As the above developments demonstrate, the derived pre-
compensation solution calls for efficient estimation of the BS 
transceiver non-reciprocity matrix ( )B kA . It is also interesting 
to notice that according to (11) and (13), the BS in fact does not 
need to estimate the exact value of ( )B kA  but it is sufficient to 
estimate it up to scalar scaling, say ( ) ( )C Ba k kA , as shown in 
(13). Such estimation procedure is next proposed and formulated 
in detail. 

IV. ESTIMATION OF TRANSCEIVER NON-RECIPROCITY 
PARAMETERS AT THE BASE-STATION 

In order to estimate the transceiver non-reciprocity parameters at 
the BS, a radio link between the BS and a test-equipment (TE) is 
assumed to be established as shown in Figure 2. This TE can in 
practice be one of the UE devices or a separate device, and is 
here assumed to operate with a single antenna. The frequency 
response mismatch coefficient at the k-th subcarrier in TE device 
is denoted by , ,( ) ( ) / ( )e e RX eTXa k a k a k . The effective DL 
channel vector at the k-th subcarrier is denoted as , ( )e DL kh  

,1 ,2 ,[ ( ), ( ), , ( )]
Be e e Nh k h k h k  while the effective UL channel 

vector can now be written in terms of , ( )e DL kh and non-
reciprocity parameters as , ,( ) ( ) ( ) ( )T

eUL B e DL ek k k a kh A h . Both 
DL and UL channels are assumed to stay constant during the 
estimation period. For notational convenience, we ignore the 
additive channel noise in the below estimator developments but 
is naturally included properly in all performance simulations.  

A. Pilot-based Estimation of Transceiver Non-reciprocity at 
the BS   

As the estimation period starts, a complex pilot sequence of 
length BN  OFDM symbols, written here at subcarrier k as 

,1 ,
( ), , ( )

B

d d
p p N
s k s k , is first transmitted from the BS to the TE 
without precoding. As the TE is a single-antenna device, we 
assume that the BS transmits one OFDM symbol through one 
antenna at a time, hence overall there are BN  OFDM symbols 
transmitted towards TE. Using next a diagonal matrix 
representation ,1 ,

( ) diag([ ( ), , ( )] )
B

DL d d T
P p p N
k s k s kS  for the pilot 

sequence at subcarrier k, the received signal at the test-
equipment over BN  consecutive OFDM symbols is then given 
by 

 ,( ) ( ) ( )DL DL
P e DL Pk k kr h S  (14)  

Then, a straight-forward approach is to deploy pure zero-forcing 
type inverse processing at TE side and estimate the effective 
downlink channel vector from BN  BS antennas to TE antenna as 

  1
,

ˆ ( ) ( ) ( )DL DL
e DL P Pk k kh r S  (15) 
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Figure 2: Principal illustration of the proposed estimation framework 
for BS non-reciprocity parameter identification deploying a test 
equipment (TE) and comprising of one round of DL and one round of 
UL transmissions, respectively. 

Notice that due to diagonal structure, the above processing maps 
simply to subcarrier-wise processing. In [8]-[10], in order to 
extract the non-reciprocity parameters of the BS, this estimated 
DL channel matrix ,

ˆ ( )e DL kh  is next assumed to be sent back to 
the BS via perfectly accurate (infinite) feedback signaling from 
TE. In practice, however, the accuracy of feedback signaling is 
obviously always limited to finite rate, thus directly 
compromising the accuracy of the effective channel estimates. 
Furthermore, extracting transceiver non-reciprocity parameters 
from DL and UL channel matrices can be computationally very 
complex as shown in [8]-[10]. 

To avoid the above problems of the existing solutions, we 
proceed as follows. An uplink pilot sequence of length BN  
OFDM symbols, denoted here at subcarrier k by 

,1 ,
( ) [ ( ), , ( )]

B

UL u u T
P p p N
k s k s ks , is ZF-precoded in time using the 

obtained TE DL channel responses as 

  
1

,

,1 ,1 ,,

ˆ( ) diag( ( )) ( )
ˆ ˆ[ ( ) / ( ),  ,  ( ) / ( )]

BB

UL UL
P e DL P

u u T
p e e Np N

k k k

s k h k s k h k

x h s
 (16) 

This is implemented at all deployed subcarriers and the precoded 
uplink pilot is transmitted using BN  OFDM symbols from the 
TE to the BS. Assume the DL channel estimates are perfect as 

, ,
ˆ ( ) ( )

B Be n e nh k h k for 1, ,B Bn N . The BS receives the pilot 
transmission in parallel with all the BN  antennas, and over the 
BN  consecutive OFDM symbols, yielding a total received 

signal matrix of the form 
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R h x
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(17) 

 
where the individual columns correspond to received spatial 



vectors at individual OFDM symbol instants. Thus, as shown in 
(17), the  combination of ZF precoding with downlink channel 
estimate and propagation through effective uplink channel 
results in an observation matrix ( )UL

P kR  at BS receiver where 
the diagonal entries depend only on the non-reciprocity 
characteristics.  Then, applying a zero-forcing type processing 
on those diagonal entries of the BS observation matrix with the 
known pilot sequence ( )UL

P ks , an estimate of the non-reciprocity 
matrix ( )B kA  of the BS can be obtained up to constant scaling. 
This is written here as 

 
1ˆ ( ) diag ( ) diag diag ( )

( ) ( )

UL UL
B P P

e B

k k k

a k k

A s R
A

 (18) 

In above, diag(.) operator, when operating on matrix, will yield 
a column vector of the argument matrix diagonal elements. 
Notice that the computational complexity of the above 
processing is almost trivial and can in practice be implemented 
as just a parallel collection of BN  complex multiplications. 
Furthermore, the deployed pilot sequences 

, B
d
p n
s and 

, B
u
p n
s  for 

the DL and UL pilot transmissions, respectively, can in practice 
be freely optimized for efficient implementation purposes. As a 
practical example, the so-called Zadoff Chu sequences [1] can be 
deployed which are already in use, e.g., in 3GPP LTE/LTE-
Advanced mobile cellular radio systems. Finally, after estimating 
the non-reciprocity parameters of the BS, the pre-compensator is 
constructed as explained in Section III, i.e. 

 ˆˆ ( ) ( ) ( )C C Bk a k kW A  (19) 

In above, ( )Ca k  is an additional design parameter which can be 
used to adjust, e.g., the transmission power at each subcarrier. 

B. Practical Aspects 
In practice, additive channel noise is naturally always present 

in the test link which has impact on the estimation accuracy. As 
shown in [8], in order to achieve system performance close to 
the ideal case, the BS requires very accurate knowledge on the 
channel non-reciprocity characteristics. Denoting the error first 
by ˆ( ) ( ) ( ) ( )B B C Be k k a k kA A , it follows that the maximum 
tolerable parameter estimation error variance, expressed here as 

2
1010 log ( )

Be
, should be in the range of  -35 to -40dB [8]. In the 

context of the proposed OTA estimation algorithm, we propose 
the following enhancement strategies to improve the efficiency 
and accuracy of the proposed estimation algorithm.  

1) Averaging: It is possible to obtain multiple estimates as 
in (18) by processing multiple consecutive pilot slots. This can 
be done with the single dedicated TE or with different TEs. 
Then, the final estimation quality of BS non-reciprocity 
characteristics can be directly improved by averaging over the 
obtained estimates. This naturally also increases the 
calibration time. 

2) Nulling: In the basic formulation in the previous 
subsection, the estimation processing is basically carried out at 
all the subcarriers while the transceiver non-reciprocity 
parameters ,1( ) ( ( ), ,B Bk diag a kA  , ( ))

BB Na k  are in practice 
only mildly frequency-selective [7]. This then implies that if 
each diagonal entry of  ( )B kA  is modeled in time-domain as 
an eL -tap FIR filter with impulse response 

,
( )

B

t
B n
a n , the 

length of such non-reciprocity filter 
,

( )
B

t
B n
a n  is much shorter 

than the size of the used IFFT/FFT, i.e., eL N . Thus, the 
effect of estimation errors in the core estimation processing 
can be filtered down by transforming the diagonal entries of 
ˆ ( )B kA , denoted here with ,ˆ ( )

BB na k , to time-domain with N 
point IFFT yielding 

,
ˆ ( )

B

t
B n
a n  and then nulling the last nullN   

samples  as   

 ,
,

ˆ ( ) 1
ˆ ( )

0
B

B

t
nullt B n

B n
null

a n n N
a n

N n N
 (20) 

where null eN N L . Such additional processing is very 
effective in suppressing noise, especially if eN L  and 

nullN N  are close to N. Similarly, if the propagation channel 
in the test link has a short delay spread, the same noise reduction 
technique described in (20) can also be applied for DL channel 
estimation step in (15) as well.  

3) Choice of TE: If otherwise feasible, it is preferable to 
choose a device that has good channel connection with the BS 
(e.g., short delay spread and small path loss), implying 
reduced noise effects in the estimation.  

4) Periodic updates: In general, frequency responses of 
the used transceivers can change over time, due to e.g. 
temperature changes. Hence, the non-reciprocity 
characteristics need to be also updated periodically. Further 
details are subject to BS operating conditions, mounting 
location, and other circuitry and environment-related aspects. 

5) Pilot sequence time-frequency mapping: The basic 
estimator developments in Subsection A did not explicitly 
address the time-frequency mapping of the pilot sequences. 
One practical possibility is to follow the DL and UL reference 
signal features of 3GPP LTE [1], e.g. scattered demodulation 
reference symbol (DMRS) in downlink and sounding 
reference signal (SRS) type signal structure in the uplink.   

V. SIMULATIONS AND NUMERICAL RESULTS 

In this Section, we evaluate the performance of the proposed 
transceiver non-reciprocity estimation-compensation framework 
using extensive computer simulations. As a practical example, a 
four antenna BS is deployed and transmits OFDM waveforms 
using a total of 1024 subcarriers out of which 600 are active. 
Furthermore, the subcarrier spacing is 15 kHz conforming to the 
basic 3GPP-LTE specifications [1], and an operating carrier 
frequency of 2GHz is assumed. Frequency response mismatches 
over the 10MHz waveform bandwidth at each transceiver at both 
the BS and UE sides are characterized as 9 tap FIR filters with 
randomly selected coefficients (Gaussian distribution) in time-
domain. The level of these mismatches is controlled such that the 
variances of the diagonal elements of the mismatch matrices 

( )B kA   and ( )U kA , denoted with 2
B  and 2

U ,  respectively, are 
set to be -20dB when given in dB scale (i.e. , 2

10 ( )10 log ( )B U ).  
As depicted in Figure 2, one or more calibration links are 

first established between the BS and the TE(s).  The propagation 
environment between the BS and each TE is modeled as a 
Rayleigh fading multipath channel with pedestrian A channel 
power delay profile with delay spread of 410ns [1]. For 
parameter estimation purposes, the reference signals specified in 
LTE standard are utilized here as the downlink and uplink 



calibration pilot sequences with 3dB transmission power boost 
[1]. More specifically, cell-specific reference signal (RS) 
targeted for serving 4 antenna port transmission in one subframe 
is applied for constructing ( )DL

P kS at assigned subcarriers and 
symbol positions [1] while the sounding reference signals (SRS) 
from two subframes are deployed for constructing ( )UL

P ks at 
assigned subcarriers and symbol positions [1]. As both RS and 
SRS used by the DL and UL estimators are sparsely located 
along the subcarriers, a linear interpolator is implemented at both 
the BS and UE sides for obtaining the estimates ,

ˆ ( )e DL kh   and 
ˆ ( )B kA  at all the subcarriers. Then by conducting the proposed 

calibration flow, non-reciprocity parameter estimate ˆ ( )B kA is 
obtained at the BS side. In these experiments, both one TE and 
two TE cases are explored, and also the effect of deploying the 
nulling technique as described in (20) is demonstrated. The 
nulling technique is applied in both DL channel estimation in 
(15) with  30nullN  and non-reciprocity parameter estimation 
in (18) with 20nullN .  

First, we experiment the parameter estimation performance 
alone. As shown in Figure 3, adding one extra test link with 
another TE can improve the performance, through averaging, by 
around 3dB while the proposed nulling procedure in (20) can 
improve the parameter estimation accuracy even up to 10dB in 
this experimentation scenario. In general, at average transmitted 
SNR values of 20dB and 25dB, meaning the ratio of transmit 
power and received channel noise power, the proposed 
estimators can achieve close to -35dB and -40dB estimation 
accuracy, respectively.  

Next, we apply the obtained non-reciprocity parameter 
estimates in the actual downlink transmission. The considered 
example scenario is that the 4-antenna BS is serving 
simultaneously 2 UEs, equipped for generality with two and one 
antennas, respectively. Thus overall, it can be seen as a 4 3  
MU MIMO-OFDM DL system [3]. Furthermore, ZF precoding 
is deployed together with non-reciprocity pre-compensation in 
the BS transmitter. The non-reciprocity parameters are obtained 
using one or two TE(s) together with the nulling technique while 
the SNRs at DL and UL receiver inputs are set either to 20dB or 
25dB in the calibration phase. In the actual downlink data 
transmission phase, the BS is transmitting two parallel data 
streams to UE #1 (with two UE antennas) and one data stream to 
UE #2 (single-antenna device). The wireless transmission 
environment in the data transmission is modeled as a Rayleigh 
fading multipath channel with extended Vehicular A channel 
power delay profile [11]. 64QAM is used as the subcarrier data 
modulation, and the downlink detection error rates are analyzed 
over multiple independent channel and impairment realizations. 
As described in (10)-(12), the developed pre-compensation and 
precoding calls for additional RX processing at the UE in order 
to remove the non-reciprocity of UE transceiver as well as the 
residual channel distortion due to pre-compensation scaling 
carried out at the BS as given in (19). In case of single-antenna 
UE, the receiver processing reduces to constant scaling while for 
dual-antenna UE this corresponds to spatial processing between 
the antennas. For the estimation of the effective precoded 
channel matrix ( )( )l kF  at UE receiver, cell-specified RS 
specified for 4 antenna port transmission in 3GPP LTE standard 
[1] is again deployed with sparsely located pilot positions along 
frequency and a linear interpolator is, again, applied to obtain 
response estimates at the actual data subcarriers. Then, the  
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Figure 3: Estimation error variances (in dB scale) in identifying 
transceiver non-reciprocity parameters when different numbers of 
TEs are used, and with (w/) and without (w/o) the nulling technique. 
SNR refers to the ratio of average transmit power and received noise 
power. 
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Figure 4: Performance comparison of the proposed estimation-
compensation algorithm using 1 and 2 TE(s) and with 20dB or 25 dB 
SNR ( ) in the test link, in terms of average SER in MU MIMO-
OFDM downlink transmission with two UEs. X-axis refers to the 
average transmitted per-stream per-subcarrier SNR in the actual 
downlink MU MIMO transmission phase. 

LMMSE receiver in (12) is calculated and applied before 
detecting the data.  

As shown in Figure 4 and Figure 5, and without 
compensation, the resulting link and system performance 
degradation in terms of average symbol error rate (SER) and 
system data transmission sum-rate are substantial. The sum-rate 
is here calculated from realized received SINRs at each UE, 
which are mapped to rates through classical Shannon link 
capacity formula. These are then averaged over different 
channel and non-reciprocity parameter realizations to get 
reliable average sum-rates. As the BS only needs to update 
parameter estimates periodically for the calibration purpose  
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Figure 5: Performance comparison of the proposed estimation-
compensation algorithm using 1 and 2 TE(s) and with 20dB or 25 dB 
SNR ( ) in the test link, in terms of average data transmission sum-
rate in MU MIMO-OFDM downlink system with two UEs. X-axis 
refers to the average transmitted per-stream per-subcarrier SNR in the 
actual downlink MU MIMO transmission phase. 

and the proposed estimation algorithm actually requires very 
few signaling overhead for each update time, the rate loss during 
parameter estimation period is hereby not considered in the sum-
rate calculation for simplicity. Then, the figures show the 
corresponding performance characteristics when the proposed 
estimation-compensation is deployed. As seen from the figures, 
by deploying two TEs for calibration and assuming calibration 
link SNR of 25dB, the proposed estimation-compensation 
scheme can achieve link and system performances very close to 
the ideal ZF pre-coded MU MIMO-OFDM system.  

VI. CONCLUSIONS 

This paper proposed an efficient transceiver non-reciprocity 
estimation-compensation framework for fully capitalizing the 
channel reciprocity in TDD linear precoded MU MIMO-OFDM 
DL transmission systems under non-reciprocal RF components 
and antennas. Based on the developed link models, it was first 
shown that reciprocity calibration at the BS is sufficient to 
remove all the inter-user interference and the effect of transceiver 
non-reciprocity at user equipment side can be compensated as 
part of the precoded channels applying proper RX processing. 
Then, an over-the-air (OTA) type pilot-based approach for the 
estimation of transceiver non-reciprocity parameters at the BS 
was proposed and developed which can provide accurate and 
flexible parameter identification with low system overhead and 
computational complexity. It was also demonstrated using 
comprehensive computer simulations that all the essential 

interference due to transceiver non-reciprocity can be efficiently 
removed with reasonable amount of pilot symbols and system 
resources, in realistic MU-MIMO OFDM system context.  
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