
Tampere University of Technology

Proceedings of VikingPLoP 2013 Conference

Citation
Eloranta, V-P. (Ed.), Koskinen, J., & Leppänen, M. K. (2013). Proceedings of VikingPLoP 2013 Conference.
(Tampere University of Technology. Department of Pervasive Computing. Report; Vol. 2). Tampere University of
Technology. Department of Pervasive Computing.
Year
2013

Version
Publisher's PDF (version of record)

Link to publication
TUTCRIS Portal (http://www.tut.fi/tutcris)

Take down policy
If you believe that this document breaches copyright, please contact cris.tau@tuni.fi, and we will remove access
to the work immediately and investigate your claim.

Download date:28.08.2019

https://tutcris.tut.fi/portal/en/publications/proceedings-of-vikingplop-2013-conference(9727c157-f33b-4f6a-940c-9e942700bcd3).html

Veli-Pekka Eloranta, Johannes Koskinen & Marko Leppänen (eds.)
Proceedings of VikingPLoP 2013 Conference

Tampereen teknillinen yliopisto. Tietotekniikan laitos. Raportti 2
Tampere University of Technology. Department of Pervasive Computing. Report 2

Tampereen teknillinen yliopisto. Tietotekniikan laitos. Raportti 2
Tampere University of Technology. Department of Pervasive Computing. Report 2

Veli-Pekka Eloranta, Johannes Koskinen & Marko Leppänen (eds.)

Proceedings of VikingPLoP 2013 Conference

Tampere University of Technology. Department of Pervasive Computing
Tampere 2013

ISBN 978-952-15-3166-8 (printed)
ISBN 978-952-15-3167-5 (PDF)
ISSN 2323-9174

Preface

This is the proceedings of VikingPLoP 2013 – a record of all papers workshopped

during the conference. VikingPLoP is a Nordic conference of pattern languages

of programs which took place this year in Horse Inn of Luomajärvi, Ikaalinen, Fin-

land in March 2013. VikingPLoP was organized jointly by Tampere University of

Technology and Hillside Europe. VikingPLoP 2013 was also sponsored by Wiley

which provided books for the focus group reading session. The conference was orga-

nized in Finland for the second time in a row. Previous location in 2012 was in

Saariselkä Lapland. In 2013 vikings were moving towards south and chose the Horse

Inn in Ikaalinen as the venue as it offered a luxurious opportunity for participants to

experience rustic romance, good food, horseback riding, traditional Finnish sauna, the

nature, and wilderness tracks. In March the landscape was still covered in snow mak-

ing the landscape ruggedly beautiful.

The papers in this proceedings book are updated versions of the papers work-

shopped in the conference. In the beginning, participants submitted their papers for

shepherding process. In the shepherding process, the shepherd, an experienced

pattern writer, gave ideas and feedback for the author, colloquially known as a

sheep. The sheep incorporated this feedback in to her paper. After three iterations of

shepherding the paper was discussed at the conference in a writer's workshop. The

workshop group gave comments, criticism and praise. After the conference the au-

thors updated their papers according to the workshop feedback.

This process of giving feedback was made possible by having a community of

trust. Mutual trust was built by playing non-competitive games and by having social

activities. VikingPLoP 2013 focused on patterns and their usage in various

fields of expertise. These fields included a wide range of topics from educa-

tional patterns to safety patterns and embedded system's software architecture pat-

terns. Bringing people together from various fields of expertise stimulates crea-

tivity and new ideas might emerge. These innovations are reflected in the papers

in these proceedings. VikingPLoP 2013 was especially a conference for newcom-

ers and over half of the participants were first time PLoP participants.

These proceedings contain 9 papers. In addition, a book reading workshop was ar-

ranged with Bob Hanmer who presented his new title Pattern-Oriented Software Ar-

chitecture for Dummies and discussed it with the participants using video conferenc-

ing tools.

As expected, VikingPLoP 2013 was an enjoyable and fun experience. We are

grateful for all contributors for your involvement. If you wish to participate in Vi-

kingPLoP in the future, please come and find out more information about the next

conference http://www.vikingplop.org and join the community.

We wish that these proceedings are a valuable source of information in your ef-

forts. We hope that you will enjoy reading the following pages.

October 2013

The program chairs,

Veli-Pekka Eloranta and Marko Leppänen

Thanks

We would like to send out our thanks to everybody who has helped us to organize this

event:

 the authors, who have written and submitted their papers to the conference;

 the shepherds, whose feedback to the submitted papers have helped the authors to

be accepted to the conference;

 the program committee, whose help has been invaluable;

 John Wiley & Sons, Inc., which sponsored us by providing book to discuss in the

focus group

 Staff of Horse Inn of Luomajärvi for making the experience smooth and memora-

ble!

Organization of VikingPLoP 2013

VikingPLoP is a non-profit event organized by Tampere University of Technology

with support from Hillside Europe and various individuals from pattern community.

Program chairs

 Veli-Pekka Eloranta, Tampere University of Technology, Finland

 Marko Leppänen, Tampere University of Technology, Finland

Program committee

 Ville Reijonen, Kauppalehti Online Development, Finland

 Johannes Koskinen, Tampere University of Technology, Finland

 Juha Pärssinen, VTT, Technical Research Centre of Finland, Finland

 Kai Koskimies, Tampere University of Technology, Finland

 Dirk Schnelle-Walka, Technische Universität Darmstadt, Germany

VikingPLoP supporters

 Tampere University of Technology - Department of Pervasive Computing

 Hillside Europe

 John Wiley & Sons, Inc.

Shepherds

 Marko Leppänen

 Johannes Koskinen

 Christian Köppe

 Bob Hanmer

 Dirk Schnelle-Walka

 Jari Rauhamäki

 Veli-Pekka Eloranta

 Ville Reijonen

Table of Contents
Patterns for Light-Weight Fault Tolerance and Decoupled Design in Distributed

Control Systems .. 1

Pekka Alho and Jari Rauhamäki

Patterns for Operating the Control System Remotely ... 18

Veli-Pekka Eloranta

Patterns for Decoupling Hardware and Software ... 30

Johannes Koskinen

Patterns for Designing Programming Assignments .. 48

Samuel Lahtinen

Patterns for Messaging in Distributed Machine Control Systems 63

Marko Leppänen

Catalog of Safety Tactics in the light of the IEC 61508 Safety Lifecycle 79

Christopher Preschern, Nermin Kajtazovic and Christian Kreiner

Patterns for safety and control system cooperation .. 96

Jari Rauhamäki, Timo Vepsäläinen and Seppo Kuikka

A pattern for bootstrapping ... 109

Ville Reijonen

 Probabilistic Dialog Management ... 114

Dirk Schnelle-Walka, Stefan Radomski, Stephan Radeck-Arneth

Patterns for Light-Weight Fault Tolerance and
Decoupled Design in Distributed Control Systems

Pekka Alho1, Jari Rauhamäki2

1 Tampere University of Technology, Dept. of Intelligent Hydraulics and Automation, Finland
pekka.alho@tut.fi

2 Tampere University of Technology, Dept. of Automation Science and Engineering, Finland
jari.rauhamaki@tut.fi

1 Introduction

Distributed control systems are continuously gaining importance, as more and more
devices and machines are equipped with embedded systems that control their opera-
tion. These controllers are increasingly more powerful and networked, providing in-
telligence and interoperability for the control system. Examples of such systems range
from large mobile machines to robots and intelligent sensor networks. These systems
often interact with physical processes, influencing many parts of our lives either di-
rectly or indirectly. Therefore they need to be dependable, which can be measured
with the attributes of availability, reliability, safety, integrity and maintainability [1].
However, with the increased functionality and intelligence, the complexity of these
systems is also increased, meaning that the development process becomes more de-
manding and dependability becomes more costly to achieve and verify. Another sig-
nificant requirement of these systems is that they usually are real-time systems, which
may put limitations on the architecture.

Many critical systems that have failed catastrophically are well-known – examples
such as Therac-25 radiation therapy machine and the explosion of Ariane 5 rocket are
infamous, whereas highly reliable systems receive little recognition, even though their
study might give valuable ideas for the design and architecture of new software. One
example of such systems can be found in telephony applications, namely Ericsson
AXD301 ATM switches that achieved nine nines (99.9999999%) service availability,
running software written in Erlang [2]. Erlang’s highly decoupled actor model and
fault handling based on supervisors have inspired especially LET IT CRASH and
SERVICE MANAGER patterns found in this paper.

This paper presents three software patterns that can be used to improve control sys-
tem dependability by implementing a decoupled architectural design with supporting
fault handling. The decoupled architecture can also be used to introduce additional
fault tolerance solutions – like checkpointing and rejuvenation – gradually to the sys-
tem, until a sufficient level of reliability has been achieved [3]. Our patterns have
been encountered originally in research of remote handling control systems used to
teleoperate robotic manipulators, but all patterns have examples of other known uses
as well. Some of these examples are presented in the corresponding sections of the
patterns.

1

2 Context of the Patterns

Fault tolerance cannot be implemented without redundancy of some kind. To have
fault tolerance for e.g. computer failures, we would need at least two computers – if
one fails the other one can detect the error and try to correct it. Software faults on the
other hand are typically development faults, which are harder to detect and correct
than hardware faults. To have good coverage for software faults, we would need di-
verse redundancy, but even this form of fault tolerance has been criticized of being
susceptible to common mode failures [4]. Development costs for design diversity are
also often seen as prohibitive.

The patterns in this paper present an alternative approach to fault tolerance, based
on dividing the system into highly decoupled modules and using this to implement
lightweight form of fault tolerance. We present an architectural pattern for this called
DATA-CENTRIC ARCHITECTURE but this is of course not the only way to achieve a high
level of decoupling. One of the key points of decoupling is that it should by itself
improve reliability by limiting fault propagation and improving modularity and un-
derstandability of the system. In a way, modular approach can be seen like compart-
mentalization of ships – without compartments, every leak can sink the ship. An ex-
ample of a software system that uses modularity to successfully implement fault isola-
tion and resilience is the MINIX operating system, based on the idea of microkernel
[5].

Modular and decoupled architecture can also be used to implement other reliabil-
ity-improving patterns like SERVICE MANAGER and LET IT CRASH documented in this
paper or other well-known patterns like LEAKY BUCKET COUNTER [6], WATCHDOG [6]
[7], etc. The patlets of the patterns presented in this paper are listed in the Table 1.
List of all referenced patterns with short descriptions can be found in an appendix.

Table 1. Patlets

Pattern Description
DATA-CENTRIC
ARCHITECTURE

How to implement reliable and scalable distributed control sys-
tem? Use data-centric middleware based on PUBLISH/SUBSCRIBE
model [8] to reduce level of coupling between modules.

SERVICE
MANAGER

How to detect faults and restart modules or processes after a
failure? Implement a service manager that can monitor, start and
stop modules.

LET IT CRASH How to react to failures without crashing the whole system?
Flush the corrupted state by “crashing” the process instead of
writing extensive error handling code. Let some other process
like service manager do the error recovery e.g. by restarting the
crashed process.

The presented patterns work together by building on the top of features provided
by the higher abstraction level patterns as shown in Fig. 1, but all of the patterns are
also typically used separately and in contexts other than distributed control systems.

2

The DATA-CENTRIC ARCHITECTURE provides the decoupled architectural model need-
ed to use LET IT CRASH for fault handling. The SERVICE MANAGER pattern provides a
way for trying recovery after failures, in addition to providing error detection and
monitoring.

Fig. 1. Graph of pattern relationships

The idea of crashing a process suggested by LET IT CRASH may sound like a risky
action to take. However, the idea is to offer recovery from transient physical and in-
teraction faults (sometimes called Heisenbugs), ability to keep the system as a whole
functioning, even if some internal process would crash, and possibility to hot-swap
code and bug-fixes. The downside of this approach is of course that it is not suited for
fail-operate systems like flight controllers that must be operational all the time – this
type of systems would be the right domain to apply design diversity.

3 Patterns

3.1 Data-Centric Architecture

Intent. Implement an architecture based on decoupled modules (e.g. services, com-
ponents or processes) that are connected with data-centric middleware.

3

Context. You are developing a distributed control system that consists of several
subsystems and needs to interact with other heterogeneous systems like mobile ma-
chines or plant systems. The system has CPU and memory resources available to run
an operating system – rather than being based on a basic time-triggered scheduler
used in resource-constrained embedded systems. Failures in control functions (e.g.
boom or manipulator control) may cause damage to the environment and equipment,
meaning that some subsystems may be categorized as safety-critical.

Problem. How to implement a reliable and scalable distributed control system?

Forces.

Throughput: Some time-critical data like sensor measurements may be updated
with short period, producing large amounts of communication.
Scalability: New nodes and subsystems can join the system any time; assumptions
about interfaces between modules should be minimized.
Changeability: System configuration and functionality might change. Changing
interfaces in a tightly coupled system requires code changes at both ends (and at all
clients), so assumptions about expected behavior should be minimized. Point-to-
point protocol based client-server architectures (like sockets or remote method in-
vocation) are not ideal because of complexity and coupling introduced.
Maintainability and long expected life-cycle: The control system has long expected
lifetime and needs to be maintainable and extensible in the future – if subsystems
are added or substituted, changes to existing modules need to be minimized. Sys-
tem should be easy to understand and modify without breaking it.
Reusability: Same modules could be used in other control system implementations.
Interoperability: Distributed control systems consist of and/or need to communi-
cate with heterogeneous platforms.
Testability: Tightly coupled modules are difficult to test because they are more
dependent on other modules.
Availability: The system as a whole should remain available, even if some subsys-
tems or processes experience failures.
Reliability: A single fault in the control system software should not endanger func-
tionality of the whole system (i.e. no single point of failures).
Real-time performance: Control system interacts with the real world and needs to
react in a deterministic manner.
Safety: Need to detect if a module has crashed or is down (not releasing new in-
formation) so that the system can enter SAFE STATE [7] in a controlled fashion.
Safety-critical and non-safety-critical subsystems cannot be tightly coupled, since
errors may propagate.

4

Quality of service: Different subsystems may have different requirements for quali-
ty of service1 (QoS) policies. There is an impedance mismatch between e.g. real-
time control systems that operate on a timescale of milliseconds and enter-
prise/high level systems that are several orders of magnitude slower.

Solution. Use data-centric middleware based on PUBLISH/SUBSCRIBE model to
reduce level of coupling between modules.

Implement data exchange between modules by adopting a middleware that pub-
lishes data to a global data space instead of sending point-to-point messages or remote
procedure calls; data-centric architecture is based on removing direct inter-module
references by exposing the data and hiding the code. Management of the global data
space is externalized to the middleware that implements a topic-based
PUBLISH/SUBSCRIBE model. The middleware acts as a single source of up-to-date state
information in the system, instead of applications managing state separately.

Modules do not need to know recipients of the data when publishing it, which re-
duces coupling. Instead of sending data directly to a recipient, it is published to a
topic. Data can be e.g. sensor measurements, events or commands, but it must follow
a shared data model which is represented as topics in the actual system implementa-
tion. Publishers register as data writers to a topic and interested subscribers can join
the topic as data readers. The middleware automatically discovers new readers and
writers, which means that new nodes can join the system on the fly. Single topic can
have multiple readers and writers, as shown in Fig. 2. Moreover, a topic can have
multiple instances, which are identified by a key value.

Fig. 2. Data is published to topics that can have multiple data writers and readers. Topic A has
two instances, identified by the id number key value.

Expose data and hide the behavior. Instead of designing interfaces for components,
you must design how to represent the state of the system and the external or internal

1 QoS policies provide the ability to specify various parameters like rate of publication, rate of
subscription, reliability, data lifespan, transport priority, etc. to control end-to-end connec-
tion properties. Policies can be matched on a request vs. offered basis.

5

events that can affect it. This needs a common data model, which captures the essen-
tial elements of the physical system and application logic. Conceptually the data mod-
el is similar to class diagram in object-oriented programming, since it consists of
identifying entity types, which have data attributes assigned to them, and associations.
The difference is that the data model focuses exclusively on data and not behavior.

Separate communication and application logic. Delegate network communications
to a “data bus” formed by the publish/subscribe middleware (Fig. 3), so that the ap-
plication logic can focus on the core functionality. Middleware takes care of maintain-
ing the data up-to-date, automatically updating new nodes that join. If the middleware
uses a central server as a message BROKER [8], it becomes a single-point-of-failure
and possibly a bottleneck. Therefore, choose a decentralized middleware solution if
possible to avoid this problem

Define appropriate QoS attributes for the data topics (reliability, durability, dead-
lines, etc.). Middleware manages the data lifecycle according to the associated QoS
policy and matches policies offered by publishers vs. policies requested by subscrib-
ers.

Fig. 3. Middleware implementation as a data bus that has no central components or brokers.
Services and subsystems can join topics as publishers and/or subscribers.

Choose module granularity (size of the communicating modules) so that perfor-
mance is not compromised. On the other hand, too large modules size may diminish
the benefits of the data-centric architecture. The communication participants can be
e.g. subsystems, applications, processes or modules, depending on the environment.
Note that communicating modules can also exist on a same computer and use the data
bus to get benefits of loose coupling locally.

Compared to message-centric publish/subscribe, the difference in data-centric
model is that middleware “messages” – i.e. topic samples – are transparent to the
middleware. In message-centric model, middleware does not know or care about mes-
sage contents. With smart, QoS-aware data-centric middleware, application compo-
nents can be leaner and take less time to develop because the logic that implements
the QoS functionality is pushed down into the middleware. The application specifies
these policies to the middleware during launch and it gets notified by the middleware
during operation when QoS requirements are not being met.

6

Consequences.
+ Publishers do not need to know about subscribers.
+ Middleware provides interoperability between heterogeneous platforms
+ Decoupled design provides error confinement and other benefits like improved
maintainability.
+ Modules can be changed dynamically because late joiners receive new data auto-
matically; ability to hot-swap code can be easily implemented.
+ Network transport layer is abstracted as communications are externalized to mid-
dleware, which reduces communication related code and simplifies implementation.
+ Gives developers control of data delivery with QoS management; QoS can be used
e.g. to guarantee reliable delivery eventually or that available data is kept up-to-date
with best effort. Former would be useful for sending status changes or commands
whereas latter could be used for sensor measurement for which guaranteeing delivery
of old information makes no sense.
+ Reusability is improved since modules are using shared memory and have their own
namespaces, etc.
+ Publish/subscribe based middleware scales effectively since recipients for data are
not explicitly defined.
+ Performance gains can be achieved on multi-core machines since modules can be
easily parallelized and they communicate asynchronously.
+/- Needs good and consistent data-models that must be managed and maintained.
- Sending of commands is not as straightforward as in client-server architectures since
commands need to be parsed from the data. Serialization and deserialization of the
data structures for transmission may also add overhead.
- Parsing of data complicates debugging because it adds another potential source for
faults. If data is parsed incorrectly, it may not be self-evident where the fault origi-
nates.
- Errors in the middleware itself might complicate testing and be hard to detect.
- Middleware solution adds some overhead to message size and uses system re-
sources.
- Possible vendor lock-in to the middleware provider.

Examples. Data Distribution Service for Real-Time Systems (DDS) is decentralized
and data-centric middleware based on the publish/subscribe model. DDS is aimed at
mission-critical and embedded systems that have strict performance and reliability
requirements. Therefore, its implementations have typically been optimized and tested
to suit the needs of these systems. DDS is used as the information backbone in the
Thales TACTICOS naval combat management system that integrates various subsys-
tems like weapons, sensors, counter measures, communication, navigation, etc. to a
“system of systems”. Applications are distributed dynamically over a pool of comput-
ers in order to provide combat survivability and avoid single-point-of-failures. System
configuration can be adapted for use in various mission configurations, on-board &
simulator training, and different ship types.

7

Related Patterns. BUS ABSTRACTION [7], and PUBLISHER-SUBSCRIBER.
MEDIATOR [9] increases decoupling in a similar fashion, but is designed to de-

crease connections between objects locally.

3.2 Service Manager

Also Known as. SUPERVISOR or SERVICE GATEWAY.

Intent. Service manager starts, stops, and monitors processes locally and takes care of
resource allocation for systems that need high availability and real-time performance.

Context. You are developing a system with highly decoupled architecture (e.g. using
DATA-CENTRIC ARCHITECTURE) that consists of large number of processes or tasks
(services). These processes have dependencies and therefore need to be started in
specific order. Process composition may change dynamically during runtime because
your system will have intelligent functionality, it needs to adapt to new situations, or
different functionalities need to be tested without stopping/restarting the whole sys-
tem.

You know rough upper-limit estimates for how much system resources like
memory and CPU time the processes will use.

The system has long expected life-cycle. It is likely to be deployed on a remote lo-
cation like a forest or a control cubicle, making direct physical interaction with the
system a bothersome task.

If you have a real-time operating system and a task gets stuck in a while loop or
some other control structure, it freezes the whole system as other lower priority pro-
cesses (including input devices and network connections) cannot get CPU time. In
this case, the only option is usually to restart the whole computer manually.

Problem. How to ensure that all dynamic modules in your control system are
running correctly and you have enough system resources to achieve determinis-
tic real-time performance?

Forces.

Availability: The system as a whole should remain available, even if some subsys-
tems or processes experience failures, in order to able to use other parts of the sys-

8

tem that are not connected to the failed subsystem. The system must detect faults
and try to recover from them automatically. If a failure needs immediate reaction
from a human operator, the system will not scale cost-efficiently and reliably.
Data logging/testability: If a process fails, the failure should be detected and
logged.
Real-time performance: The control system needs to respond in a deterministic and
predicable manner. Predictability includes system behavior when a fault is trig-
gered.
System resources: Control systems are typically deployed on embedded devices
that have limited memory and CPU resources available. They may need to be mon-
itored in order to guarantee the real-time performance of the system.

Solution. Implement a service manager that can monitor, start and stop modules.
Create a local parent process (the service manager) that is responsible for starting,

stopping and monitoring its child processes. The basic idea of the service manager is
to keep its child processes alive by restarting them when necessary. Location of the
service manager is on the same computer as the child processes in order to keep im-
plementation simple. Therefore, all computers in the system need their own, inde-
pendently functioning, service managers. The service manager is given the highest
process priority in the system or put in the kernel so that a faulty real-time process
cannot prevent it from functioning by consuming all available CPU time.

Start the child processes based on a fixed order or a dependency table read from a
configuration file, similar to START-UP MONITOR [7], and/or implement a user inter-
face that can be used to start and stop processes.

Use the service manager to allocate resources like CPU time and memory for the
child processes and monitor their use. Expected maximum resource consumption can
be specified in the same configuration file that is used for starting services. New pro-
cesses are not started if there are not enough resources available. If a process con-
sumes more resources than expected, it can be restarted, leading to error handling
according to the LET IT CRASH pattern. Resource use can be followed e.g. with proc
filesystem or getrusage call in Unix-like systems.

Since the key functionality of service manager is to monitor processes for failures,
error detection can be based on additional or alternative techniques besides resource
monitoring. This can be done with e.g. operating system features, HEARTBEAT [6] [7]
or WATCHDOG.

If the service manager is deployed on a system that uses DATA-CENTRIC
ARCHITECTURE, service startup interfaces can be implemented through the middle-
ware. Since the middleware abstracts the location of the data, it can be used to re-
motely start dependencies. Example: service manager SM_A must start a service
called S1. However, it has a dependency called S2 which cannot be found locally, so
the service manager publishes a start request for S2. A second service manager SM_B
on another computer notices the request, starts S2 and publishes information about the
successful startup. SM_A receives information that S2 is available and starts S1.

The implementation for service manager needs to be kept fairly simple, since it
acts as a single point of failure locally. This conflicts with the need to use of configu-

9

ration files, making resource checks, and providing user interface, so they should be
based on external components or libraries that have been proven in use.

Consequences.
+ Detects and initializes recovery from transient faults that cause a process to con-

sume too much system resources or become unresponsive. If the fault is persistent,
LEAKY BUCKET COUNTER can be used to limit the number of restarts.

+ Ensures other processes stay alive and have sufficient resources.
+ Simplifies starting procedure of complex system that consists of large number of

processes, making possible to start and stop a large number of processes automatically
and in a specific order.

+ Cost-efficiency: the same service manager implementation can be reused on sev-
eral systems.

+ Supports logging and reporting of errors so that they do not go undetected.
- Cannot detect faults that cause erroneous output for monitored components.
- Cannot recover persistent faults like development and physical faults, e.g. com-

puter failures.
- Potential single point of failure that may stop the entire system from working if

services are incorrectly terminated.
- Restarting a service may cause the system to behave in non-deterministic way

and miss deadlines, which is a failure for a hard real-time system. However, it should
be noted that the failure would have likely cause the system to miss the deadlines or
exhibit some other unwanted behavior in the first place.

- Resource utilization needs to be estimated for the processes in order to set limits.
- Service manager uses system resources and may reduce performance.

Examples. The MINIX, a POSIX conformant operating system, based on a microker-
nel that has minimal amount of software executing in the kernel mode. The rest of the
operating system runs as a number of independent processes in user mode, including
processes for the file system, process manager, and each device driver. The system
uses a special component known as the driver manager to monitor and control all
services and drivers in the system [5]. Driver manager is the parent process for all
components, so it can detect their crashes (based on POSIX signals). Additionally the
driver manager can check the status of selected drivers periodically using HEARTBEAT
messages. When a failure is detected, the driver manager automatically replaces the
malfunctioning component with a fresh copy without needing to reboot the computer.
The driver manager can also be explicitly instructed to replace a malfunctioning com-
ponent with a new one.

Open source tool Monit (http://mmonit.com/monit/) can function as a service man-
ager in non-real time systems. Following code listing shows an example configuration
for Spamassassin daemon that restarts the daemon if its memory or CPU usage ex-
ceeds 50% for 5 monitoring cycles:

10

check process spamd with pidfile /var/run/spamd.pid
 start program = "/etc/init.d/spamd start"
 stop program = "/etc/init.d/spamd stop"
 if 5 restarts within 5 cycles then timeout
 if cpu usage > 50% for 5 cycles then restart
 if mem usage > 50% for 5 cycles then restart
 depends on spamd_bin
 depends on spamd_rc

Related Patterns. FAULT OBSERVER [6], HEARTBEAT, SAFE STATE, SOMEONE IN
CHARGE [6], START-UP MONITOR, STATIC RESOURCE ALLOCATION [7], and
WATCHDOG.

To see how to design an application in a way that it can be easily restarted at any
time, see LET IT CRASH.

MANAGER design pattern [10] can be used to manage multiple objects of same type
– the idea is similar to SERVICE MANAGER (keep track of entities and provide unified
interface for them) but the MANAGER focuses on different scope, i.e. managing enti-
ties (objects) of the same type and does not include resource monitoring or fault de-
tection.

SYSTEM MONITOR [6] can be used to study behavior of system or specific tasks and
make sure they operate correctly, e.g. by using HEARTBEAT or WATCHDOG. If a
monitored task stops, SYSTEM MONITOR reports the error. Compared to it, SERVICE
MANAGER has a more active role in managing the tasks.

3.3 Let It Crash

Also Known as. CRASH-ONLY [11], FAIL-FAST, LET IT FAIL or OFFENSIVE
PROGRAMMING.

Intent. Avoid complex error handling for unspecified errors. Instead, crash the pro-
cess and leave error handling for other processes in order to build a robust system that
handles errors internally and does not go down as a whole.

11

Context. You are developing a distributed control system that consists of several
processes and subsystems that need to cooperate to complete tasks.

DATA-CENTRIC ARCHITECTURE or some other asynchronous decoupled architectur-
al design has been utilized so that processes are not using shared memory.

Some subsystems might have safety-critical functionality, but it is possible to move
the system to SAFE STATE (i.e. the system is fail-safe type, not fail-operate). The sys-
tem has dynamic state information from the user inputs and working environment in
the process memory, e.g. tool tracking data in the case of a robot manipulator. This
state data needs to be recovered after a failure.

The system has a mechanism like monitoring layer, supervisors or a restart manag-
er for restarting the processes. This can be implemented at operating system, pro-
gramming language or framework level, e.g. with the SERVICE MANAGER.

Problem. How to implement lightweight form of error handling that improves
reliability and predictability?

Forces.

Availability: The system as a whole should remain available, even if some subsys-
tems or processes experience failures, since degraded functionality is better than no
functionality. In case of a fault, only minimal part of the system should be affected.
Recovery from failures should happen without human intervention and with mini-
mal downtime.
Reliability: Generation of incorrect outputs should be prevented, otherwise errors
may propagate and the system could cause damage to the environment.
Safety: If an error is detected, any functionality using the affected process should
be stopped and taken to a safe state in order to prevent and minimize damages.
Cost-efficiency: Design diverse fault tolerance techniques are oversized or imprac-
tical for the application, but the system needs to be able to recover from errors.
Real-time performance: Control system needs to react within a certain time-limit;
exceeding the time-limit causes a failure.
Predictability: The system should behave in a consistent manner. If the process
tries to repair its corrupted state, behavior of the system cannot be predicted, which
complicates debugging and verification of reliability. Predictability includes sys-
tem behavior when a fault is triggered.
Error handling: Because it is impossible to foresee all possible faults, specifica-
tions do not cover all possible error situations. Error situations occur seldom, are
difficult to handle and non-trivial to simulate in testing [11]. If the programmers try
to implement error handling, they will make ad hoc decisions not based on the
specifications (i.e. they cannot know how the error should be handled), possibly
causing unwanted and undocumented behavior.

Solution. Make processes crash-safe and fast to recover; flush corrupted state by
“crashing” the process instead of writing extensive error handling code.

12

Commodore 64, DOS machines and other old computers were designed to be shut
down by simply turning the power off, essentially crashing the system. On the other
hand, if an operating system caches disk data in memory, workstation crash may cor-
rupt the file system, which is inconvenient and slow to repair. Control system pro-
cesses and subsystems should also be designed to be easily terminated and recovera-
ble with a simple recovery path if an error is detected, instead of guessing how error
recovery should be attempted, possibly corrupting program state further and causing
unpredictable behavior.

Therefore, implement error handling by terminating the process that has encoun-
tered the error. Only program extended error recovery routines if they are based on
the specification or it is self-evident how the error should be handled – otherwise
crash the process. However, only the module or process where the error is should be
crashed, not the whole system.

Fig. 4. Process 1 encounters an error and dies, after which it is restarted by the service manager,
represented as an eye. If the process 2 detects a deadline overrun, it needs to stop, potentially
interrupting process 3, and wait until process 1 is active again before resuming work. Alterna-

tively the process 2 does not notice any deadline overruns and continues working normally.

Processes that have been designed with LET IT CRASH can 1) help to find faults, by
making them more visible (“offensive programming”), and 2) be used to implement
fault tolerance (recovery from faults or software rejuvenation). In latter case it is pos-
sible to do recovery without affecting service availability if the recovery process is
fast enough. Recovery (and rejuvenation) also needs an external entity to initiate it,
since the process itself has crashed (see Fig. 4). This pattern focuses mostly on the
second case since it is more problematic to implement correctly.

You have a monitoring layer that can recover the system (e.g. by restarting). How-
ever, to detect a failure, the failed application or system service may first have to die.
In this case the process terminates itself immediately upon encountering an error.
Abnormal program termination can be forced e.g. by using abort() or
raise(SIGSEGV). If the monitoring layer has implemented failure detection – based
on watchdog, heartbeat, etc. – it can also hard-fail the service using e.g. kill(pid,
SIGTERM).

Error recovery is performed by restarting the process. Therefore, make processes
fast and easy to restart in order to minimize service failures and downtime. To keep

13

recovery path simple, use the single responsibility principle, thereby minimizing re-
sponsibilities of a single process. If the process encounters an error and crashes, it
might be possible to recover from the error without causing deadline misses for other
processes and tripping the system to a SAFE STATE. However, if a control loop has a
period of e.g. 1 ms and restarting of a process that provides information for the loop
takes several milliseconds, control loop execution will be interrupted temporarily.

Recovery paths can be tested extensively by terminating the system forcibly every
time it needs to be shut down or restarted, instead of letting it run through a normal
shutdown process. This forces the system to do a recovery during the startup

Make processes crash-safe. Processes typically handle three types of state data: dy-
namic, static, and internal. Internal state is related to current computations and is usu-
ally discarded after use. If a process crashes, you must think if you want to recycle its
internal state. If you recycle everything you risk hitting the exact same fault again and
crashing, so it might be reasonable to recycle only parts of this state. Static state is
configuration data that can be easily recovered or read from other processes. Finally,
the dynamic state data is generated as the program is executed by reading user inputs,
interacting with other processes and environment, etc. Some of it can be computed
from other data or read directly from sensors, but the critical problem is the data from
user or environment that cannot be reconstructed. This data must be protected by
using checkpointing, journaling or some other form of dedicated state store like data-
bases and distributed data structures.

Implement a reporting functionality that reports failures so that they do not go un-
noticed. Failure information can be forwarded e.g. by using a service manager or
supervisors to send NOTIFICATION messages [12].

The corollary to the LET IT CRASH approach is that you must design your software
to be ready for processes failing. There is now a possibility that a dependency is not
available because it has been crashed and is being restarted. To detect this situation,
add timeouts or appropriate QoS policies to interactions between components. If the
timeout is triggered, move the system to a SAFE STATE. Normal operation can be re-
sumed when dependencies are back online. A missing dependency is therefore not
considered to be an error that would necessitate a crash.

Consequences.
+ Enables simple error handling & recovery; avoids complex error handling con-
structs in code, therefore improving predictability of the system.
+ Cost-effective (lightweight) form of fault tolerance that does not require use of re-
dundancy.
+ Allows error handling to be implemented separately (externally) from the business
logic, e.g. with supervisors.
+ Supports recovery from transient faults since a restart is usually enough to handle
them.
+ Possible to achieve high availability (for the system as a whole, not necessary for all
services provided by the system).
+ Compatible with other fault tolerant designs like redundancy.

14

+ Processes can be updated to new versions on-the-fly, since the old process can be
killed and replaced using the normal recovery path.
+ Limits error propagation to other parts of the system (babbling idiot failure) by
acting as an ERROR CONTAINMENT BARRIER [6].
+ Errors are less likely to cause the system to perform unpredictable and potentially
dangerous or irreversible operations.
+ Finding faults should be easier, since they are made more visible by crashing and
reporting.
- Availability of some services provided by the system is lower (when compared to
redundant fault tolerance solutions) – on the other hand availability of other unrelated
services provided by the system should be unaffected.
- Cannot mitigate persistent faults.
- Processes need additional code to react to missing dependencies (i.e. other services,
when waiting for them to come back online).
- Possible performance cost if state needs to be saved to enable recovery.
- Recovery speed is non-deterministic since it depends on how fast the processes can
be restarted, loading of saved state, loading of dependencies, system load level, etc.

Examples. Erlang actor model and supervisors (Erlang is used e.g. in Ericsson
AXD301 ATM switches) [2]. Supervisors are processes that are responsible for start-
ing, stopping and monitoring their child processes. The basic idea of a supervisor is
that it should keep its child processes alive by restarting them when necessary [13].

Related Patterns. ERROR CONTAINMENT BARRIER, NOTIFICATIONS, SAFE STATE,
SERVICE MANAGER, REDUNDANCY [6].

Software REJUVENATION [11][14] is a proactive technique where the system has
been designed to be booted periodically. Microrebooting [11] refers to a technique
where suspect components are restarted before they fail.

MINIMIZE HUMAN INTERVENTION (MHI) is about how the system can process and
resolve errors automatically before they become failures [6]. LET IT FAIL could be
implemented as part of MHI as a final resort or instead of MHI in case there is no
specification for error handling.

References

1. Avizienis, A., Laprie, J.-C., Randell, B., & Landwehr, C. (2004). Basic Concepts and Tax-
onomy of Dependable and Secure Computing. Transactions on Dependable and Secure
Computing, 1(1).

2. Armstrong, J. (2003). Making Reliable Distributed Systems in the Presence of Software
Errors. Stockholm, Sweden: Royal Institute of Technology.

3. Dunn, W. (2002). Practical Design of Safety-Critical Computer Systems. Reliability Press.
4. Knight, J., & Leveson, N. (1986). An Experimental Evaluation of the Assumption of Inde-

pendence in Multi-Version Programming. Transactions on Software Engineering, 12, 96-
109.

15

5. Herder, J. (2010). Building a Dependable Operating System: Fault Tolerance in MINIX 3.
Netherlands: Vrije Universiteit. USENIX Association.

6. Hanmer, R. (2007). Patterns for Fault Tolerant Software. John Wiley & Sons.
7. Eloranta, V.-P., Koskinen, J., Leppänen, M., & Reijonen, V. (2010). A Pattern Language

for Distributed Machine Control Systems. Tampere University of Technology, Department
of Software Systems.

8. Buschmann, F., Henney, K., & Schmidt, D. (2007). Pattern Oriented Software Architec-
ture: A Pattern Language for Distributed Computing. John Wiley & Sons.

9. Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley.

10. EventHelix.com Inc. Manager Design Pattern. Retrieved January 2, 2013, from EventHe-
lix:
http://www.eventhelix.com/realtimemantra/ManagerDesignPattern.htm#.UOQm6kUbR8E

11. Candea, G. & Fox, A. (2003). Crash-Only Software. Proceedings of HotOS IX: The 9th
Workshop on Hot Topics in Operating Systems.

12. Eloranta, V.-P. (2012). Event Notification Patterns for Distributed Machine Control Sys-
tems. Proceedings of VikingPLoP 2012 Conference. Tampere University of Technology,
Department of Software Systems.

13. Erlang/OTP R16A documentation. Retrieved February 13, 2013, from:
http://www.erlang.org/doc/

14. Hanmer, R. (2010). Software Rejuvenation. Proceedings of 17th Conference on Pattern
Languages of Programs. ACM.

Acknowledgements. Authors would like to thank Robert Hanmer for providing valu-
able comments during the shepherding process and VikingPLoP 2013 participants for
the feedback. This work was carried out under the EFDA Goal Oriented Training
Programme (WP10-GOT-GOTRH) and financial support of TEKES, which are great-
ly acknowledged. The views and opinions expressed herein do not necessarily reflect
those of the European Commission.

Appendix: List of Referenced Patterns

Table 2. Short descriptions of referenced patterns.

Pattern Pattern intent
BUS
ABSTRACTION
[7]

Nodes communicate via a message bus. The bus is abstracted so it
can be changed easily.

ERROR
CONTAINMENT
BARRIER [6]

System should stop the flow of errors from one part to another by
isolating them to a unit of mitigation and initiating error recovery.

FAULT
OBSERVER [6]

Coordinate reporting to all observers that a fault is present, report-
ed, and recovery actions escalated.

HEARTBEAT [6]
[7]

Send a status report at regular intervals to let other parts of the
system know their status.

LEAKY BUCKET Implement a method to ride over transients by keeping a counter

16

COUNTER [6] that is automatically decremented and incremented by errors.
MONITOR [10] Support many entities of same or similar type. The MANAGER

object is designed to keep track of all the entities. In many cases,
the MANAGER will also route messages to individual entities.

MEDIATOR [9] Define an object that encapsulates how a set of objects interact.
Mediator promotes loose coupling by keeping objects from refer-
ring to each other explicitly, and it lets you vary their interaction
independently.

NOTIFICATIONS
[12]

Communicate noteworthy or alarming events and state changes in
the system using a dedicated message type.

PUBLISH/SUBSC
RIBE [8]

Define a change propagation infrastructure that allows publishers
in a distributed application to disseminate events that convey in-
formation that may be of interest to others. Notify subscribers
interested in those events whenever such information is published.

REDUNDANCY
[6]

Maximize availability by having alternate hardware or software
that can perform the same function.

REJUVENATION
[11][14]

Periodically rejuvenate a software item by shutting it down and
restarting it.

SAFE STATE [7] If something potentially harmful occurs, all nodes should enter a
predetermined safe state.

SOMEONE IN
CHARGE [6]

Every fault tolerance action undertaken by the system should have
a clearly identified entity controlling and monitoring the action.

START-UP
MONITOR [7]

During start-up all devices are started in certain order and with
correct delays. Additionally, care is taken that there are no mal-
functions.

STATIC
RESOURCE
ALLOCATION [7]

Critical services are always available when all resources are allo-
cated when the system starts.

SYSTEM
MONITOR [6]

Some errors will only manifest themselves at a system level.
Check for them at this level.

WATCHDOG [6]
[7]

Build a special entity to watch over another to make sure that it is
still operating well.

17

Patterns for Operating the Control System Remotely

Veli-Pekka Eloranta

Department of Pervasive Computing,

Tampere University of Technology

Tampere, Finland

{firstname.lastname}@tut.fi

Abstract. Modern work machine has to communicate with other systems. Fur-

thermore, the machine operator might use the machine using remote controls to

ensure the safety of the operations. These features make the system design more

complex. In this paper, we present two patterns to tackle the new design chal-

lenges set by remote controlling requirements.

Keywords: Control Systems, Software Architecture, Patterns, Remote Access

1 Introduction

In this paper we present two patterns for using the machine control system remotely.

These patterns are not really connected to each other and solve two different prob-

lems. The first pattern solves usability problem and the second one is related to data

management and how the data on the machine can be accessed from the remote loca-

tion. These patterns are a part of a larger pattern language that constitutes of approxi-

mately 80 patterns.

The patterns in this paper are presented using pattern format which is a combina-

tion of Portland form [11] and Alexandrian form [12]. First we describe the context

and then present the problem in bold font face. Next we explain the forces and give

the essential part of the solution in bold font face, followed by the discussion of the

solution. Finally, we present the consequences and known usage separated with three

stars. All patterns include a sketch of the solution and sketch icon for the pattern as

well. Pattern names are written in SMALL CAPS throughout the paper.

Confidence towards patterns is marked with asterisks after the name of the pattern.

Two asterisks mean that the pattern manages capture the profound problem and solu-

tion in the pattern. Patterns marked with one asterisk capture the profound problem

and solution at least partially. There might be other possible solutions for the problem,

but the presented one is the most likely to be the optimal solution. Patterns without

asterisk may be lacking the profound solution and there might be other viable solu-

tions. However, a solution is presented for these problems too.

18

mailto:%7Bfirstname.lastname%7D@tut.fi

2 Patterns

In this section, two patterns for remotely operating the machine are presented.

2.1 Alternative Operating Station *

a.k.a ALTERNATIVE CONTROL METHOD

…in a CONTROL SYSTEM with HUMAN-MACHINE INTERFACE the operator is typi-

cally in front of an operating station where she has controls and a graphical user inter-

face to operate the machine. The machine itself can be quite large and thus the view

from the operating station can have blind spots; there might be pillars blocking the

view or the moving parts of the machine, e.g. boom, can block the view to the actual

work. Sometimes the operator needs to have a better view to carry out the work tasks

properly. For example, if the work implement is connected to the back of the machine

and the cabin does not have rear window and mirrors, the operator would need to go

out of the cabin to get better view on the task.

✥ ✥ ✥

The operator may not be able to observe all the details of the task at

hand from the default operating station or the view from the operating station is

blocked, e.g. by machine itself.

Operating the machine might require high precision control from the machine and

the operator. For example, when positioning the boom for drilling, it needs to be posi-

tioned carefully into correct angle, so that the hole will be drilled to the correct direc-

tion. It might be hard to see the exact angle and the position of the boom from the

cabin. Furthermore, it might be easier to control the operation from a position that is

closer to the operation. For example, when lowering the tail gate of a truck, it can be

hard to see from the cabin that there is nothing in the way. It is easier to move to the

tail gate and see the situation from there.

19

Although modern work machine's cabins are designed for high visibility and com-

fort, there still might be obstacles, e.g. supporting pillars, blocking the view. This is

troublesome when the machine is operated in a place where there is not much space

around and the machine can not be positioned for better visibility. The operator could,

of course, exit the cabin and observe the situation and then come back to the cabin

and steer the machine and if necessary repeat this process. However, this would make

the operator's work inefficient and physically exhausting if carried out over long peri-

od of time.

Safety is important aspect in the work. Usually the machine operator needs to be

sure that there is no one in the working area of the machine or will enter the area

while machine is working. In some cases, it is hard to see from the cabin that no one

is at risk, as pillars or other machine parts create blind spots. Additionally, the ma-

chine operator herself should not be able risk her own neck by accidentally entering

the working area when the work is in progress.

Sometimes the machine operator also does mechanical work and her hands might

get dirty or she might be wearing work wear which prevents the usage of the sophisti-

cated control equipment such as touch displays, etc. This might limit the range of

which kind of controls can be used by the operator in this situation. Washing hands or

taking protective gloves off multiple times might soon get annoying from the opera-

tor’s point of view.

Therefore:

Add an alternative operating station which provides the minimal con-

trols for carrying out the task from a position where the operator can observe

the work process better.

Design the alternative operating station so that it has only the controls, e.g. buttons,

joysticks, etc., required by the special task that it is intended for. In this way, carrying

out the task is efficient as there are no extraneous controls. The controls in this alter-

native operating station can be specifically tailored for the task, which is supposed to

be carried out using the alternative operating station. In this way, the operator can

wear the required equipment while using this operating station. For example, the al-

ternative operating station’s controls can be operated with gloves on whereas the main

operating station would require removing the gloves. In addition, when the alternative

operating station is tailored for a specific task, it will probably not be used as a prima-

ry user interface, but only for the task it is intended for. This gives some freedom in

the user interface design, for example, when considering on which screen different

notifications should be shown.

It should also be considered if an additional display is needed for presenting infor-

mation about the system state or for example, HMI Notifications. Furthermore, it

should be decided if the alternative controls are fixed to the machine or if they are on

a separate piece of equipment. The latter option can be implemented, for example, by

using radio frequency controller or by using the controller that can be attached with a

separate cable when the alternative operating station is needed.

20

Fig. 1. – HMI bus master selects which control method is in use.

As shown in Fig. 1, there typically is a HMI bus master which bridges the HMI bus

to system bus and delivers data and possible control signals to the engine, transmis-

sion, etc. using the system bus. So, it is natural to define and implement an interface

to HMI bus master which provides necessary methods for alternative operating sta-

tion. Now, when using the alternative operating station, the HMI bus master can de-

cide which control signals to use: the signals coming from the alternative operating

station which is attached to the interface or from the primary HMI which is attached

to the HMI bus. The HMI bus master must ignore the command messages coming

from the source that is not selected to be used, except emergency stop that should be

functional. This is also stated in the European Union’s machinery directive, section

1.2.5 [10]. Furthermore, the switching to the alternative operating stations must not

cause unintentional movements in any case. For example, if there is another operator

pressing a button while the switchover is being carried out, it should not cause any

movements.

In some cases, where the alternative operating station is fixed to the machine, a

separate bus for the alternative operating station is used. If this is the case, alternative

control interface in Fig. 1 is replaced with another bus. HMI bus master then selects

from which bus, the received control commands are bridged to the system bus and to

controllers of the system.

The control method in use should be selected from the HMI in the operating station

in the cabin of the machine, e.g. by using a switch or button. In this way, the con-

trol system can decide which safety mechanisms should be used and e.g. limit boom

movements accordingly. Different set of safety precautions, e.g. which of the func-

tionalities can be used, should be applied when using the alternative operating station,

as the machine operator is likely to be closer to the work implement when using the

alternative operating station. For example, if a forest harvester is operated using the

remote control, there is a risk that the operator can hit herself with the log while ma-

neuvering the boom.

If the OPERATING MODES pattern has been applied, it is rather easy to implement a

separate alternative operating mode for the machine. The nodes of the system can

change their state to the corresponding mode when the switch selecting the alternative

21

operating station in use is turned to different position. For example, nodes in the HMI

bus can stop sending control messages when they enter an alternative control mode.

Furthermore, the nodes on the system bus can start acting differently, e.g. actuators

can limit the range of movements. The operator activates the alternative control mode

from the switch in the cabin and after that the alternative control station can be used.

The deactivation of the control method is carried out in similar way. Other strategies

for changing the mode can be used as well, for example, the control method is auto-

matically switched to the normal mode when the cable of the alternative control unit

is unplugged.

Typically, the alternative operating station is used in mobile work machines. How-

ever, it can be used also for example in process automation systems, where the moni-

toring station might be physically far away from the actual process, so it might be

impossible to see the process from the monitoring station and control the process, e.g.

in fault situation. So, it might be advisable to place simple controls for manually op-

erating the machine near the places where they might be needed to sort out the prob-

lems. For example, in paper mill, the paper flow might get interrupted because of a

fault and the continuous sheet of paper might break and it has to be fed through the

system before starting the automated paper flow. So, there might be controls for man-

ual feeding right next to the places where the paper roll is probable to break.

The solution presented in this pattern is not suitable for implementing the emer-

gency stop switch. It is usually implemented on the hardware level to make sure it is

functional even though there is software fault. Hardware implementation also gives

usually faster response times. Additionally, one should remember that even when the

alternative operating station is used, the emergency stop button should be functional

from any operating station.

The VARIABLE MANAGER pattern helps to share the data for the alternative operat-

ing station. If HMI Notifications pattern has been applied to show the machine opera-

tor information about the events occurring in the system, it needs to be decided on

which display the notification is shown - probably on the one that the operator is cur-

rently using. If alternative operating station does not have its own display to inform

the operator BEACON pattern could be applied to draw operator's attention to ma-

chine's primary controls when a noteworthy event occurs.

If the alternative operating station is not fixed to the machine, the connection to the

control unit may be lost. For example, the battery of the control unit can be depleted

or the cable may break. There should be a mechanism to detect these kinds of situa-

tions so that the machine can enter SAFE STATE if the connection to the alternative

control unit is lost. This is also pointed out in the machinery directive section 3.3.3.

[10]. Typically, if the connection is lost, a separate emergency stop mechanism is

used to stop the machine. For example, if the system has remote control unit, it can

have CAN module which sends the commands to CAN bus. In addition, the remote

control unit has safety certified relay telling if the connection is ok. This relay breaker

is connected to emergency stop circuit, so it stops the machine when necessary. In this

way, the emergency stop messages are not delivered through the alternative operating

station’s interface. HEARTBEAT can be used to monitor the health of the connection

between the HMI bus master and the alternative control unit. Furthermore, when us-

22

ing remote control unit as an alternative operating station, one should take care of

security, so that the system can not be controlled from the unauthorized alternative

operating station.

✥ ✥ ✥

The operator can control the machine or work implement near the place where the

actual work is done. Now, the operator has a good view on the work she is carrying

out as obstacles are not blocking the view. Still, the system should be designed so that

the need to go outside the control station should be minimized.

Alternative Operating Station functions also as a redundant control station which

can be if the main control station is broken down. This makes it possible to do some

controlling in fault situation, for example, move the boom to the transportation posi-

tion.

The connection to alternative control unit may be more unreliable and it must be

monitored. This may need some additional resources, e.g. bandwidth, CPU time, etc.

As the machine operator is controlling the functionality close to the work imple-

ment, it potentially puts the machine operator in danger. So care must be taken while

operating the machine from the secondary operating station, the machine operator can

not end up in the way of the boom or other moving parts of the machine.

Alternative Control Station increases the development costs and might increase the

cost of the machine. Therefore one might consider providing it as Control System

Option as the customer may not be willing to pay for the extra control station.

✥ ✥ ✥

Ground heat wells are typically drilled with low-end drilling machines. The ma-

chine usually needs to be driven to the drilling site in narrow pathways of the garden.

The machine operator has to avoid destroying the vegetation or hitting garden sheds

or other obstacles. The cabin of the machine has poor visibility to the front side of the

machine as there is boom blocking the view and if the machine operator was to drive

the machine from cabin she would be likely to hit some of the obstacles. Thus, the

machine operator is provided an alternative control method: remote control unit. The

operator turns the alternative control method on from the HMI in the cabin by press-

ing a button. After this mode change, the machine responds only to steer commands

from the remote control unit. Now the machine operator can go in front of the drilling

machine and steer the machine with better view. On the architecture level, HMI bus

master is set to alternative control mode, where it ignores all the control messages

coming from the HMI bus. Instead of it, the alternative control interface is used to

receive the control commands which are then sent forward to the boom and drilling

controllers. Furthermore, HMI bus master sends status information to the remote con-

trol unit using remote controller's interface instead of bridging this information to

HMI bus and to actual devices.

23

2.2 Remote Access

...there is a distributed CONTROL SYSTEM and the system has a MESSAGE BUS that is

used for communication between nodes. However, all the data the nodes have to ac-

cess may not be stored locally on-board the work machine. For example, in the case

of drilling machine, drilling plans are produced remotely by managers in a mine con-

trol room and the FLEET MANAGEMENT application on the machine needs to access

them. In addition, some third-party applications may need to access remote data

sources, e.g. navigation software may need to download map updates. Similarly, the

remote systems might want to access the data on the machine, e.g. remote diagnostics

application would like to read diagnostic data from the machine.

✥ ✥ ✥

All services using the data that the machine collects do not necessarily reside

on-board the machine. Similarly, the applications on-board needs data which is

produced off-board in a different location.

In a ubiquitous environment, the applications inherently need to communicate with

other applications and systems. Applications need to exchange information in order to

produce additional value. For example, if the application is meant to display drilling

plans, the application is not useful for the user if the application can not access the

newest drilling plans created by explosives expert in the mine control room. In gen-

eral, work planning applications are typically located in a remote place, so applica-

tions on-board the machine needs a way to retrieve data from them. On the other

hand, applications from the remote locations may use the data produced by the ma-

chine to produce additional value.

DIAGNOSTICS data should be transferred to maintenance service's system so that the

maintenance personnel can analyze the data before the scheduled maintenance break

and find out if spare parts need to be ordered from the manufacturer. However, the

machine might be far away from the service station, so it is not feasible to fetch the

DIAGNOSTICS data with USB stick or some other physical media. Especially, if there

are many machines and some of them are located abroad, the data gathering is hard.

The controllers of the machine may have limited processing power and thus de-

tailed analysis of DIAGNOSTIC data can not be executed on-board. Furthermore the

central repository can store data from a longer time period than could be stored on the

machine as the machine typically has limited storage space.

24

During the life cycle of the machine, the control system software is likely to be up-

dated (see UPDATEABLE SOFTWARE pattern). The new software version could offer

higher productivity or improved features. However, updating each machine separately

would be too laborious for maintenance personnel. If the update packages are deliv-

ered to the customers with USB sticks or other media, they might feel that service

quality is low as the machines are not updated by the manufacturer. Furthermore, the

customer might have multiple machines and it would also be too laborious for the

customer to distribute the updates.

If production plans change, the machine operator needs to be informed about the

changes as soon as possible to avoid working on tasks which results are not needed

anymore. On the other hand, the production planning system or FLEET MANAGEMENT

might need to know already carried out tasks, e.g. how many cubic meters of pulp-

wood is already sawed today. If a machine breaks down, information about already

completed work could help FLEET MANAGEMENT system to re-allocate tasks allocated

for the machine to other machines. This kind of real time planning and reporting

needs frequent update cycle of work plans.

Sometimes the work environment where the machine is used is such that it would

be more comfortable or safer for the machine operator to operate the machine remote-

ly. For example, demining is safer to be done remotely.

Therefore:

Add a remote connection gateway on-board which enables communication be-

tween the machine and the remote party. The remote connection gateway trans-

forms the used messaging scheme to suit the local and remote parties' needs and

can take care of authentication.

In the simplest case the remote connection gateway is a node attached to the bus

bridging the traffic from and to the remote location. For example, the gateway node

reads CAN messages that are targeted to the node and sends the data to remote loca-

tion over TCP/IP. The other way round, the incoming messages are converted to CAN

messages and sent to the bus. For many bus technologies, COTS (Commercial Off

The Shelf) solutions exist for implementing this kind of remote connection gateways.

The remote connection can be seen as a special case of MESSAGE BUS.

Fig. 2. Remote connection gateway connected directly to CAN bus.

25

If the SEPARATE REAL-TIME pattern has been applied the system is divided into the

real-time machine control level and non-real-time operator level. The operator level is

typically implemented with a PC. If this is the case, the remote connection gateway

has s a natural place on this PC as the operating system offers ready-made facilities,

e.g. communication interface to manage communication with remote parties. If a

communication interface exists, applications can use it in the operating system's na-

tive way. Furthermore, as remote connection gateway is placed on the operator level,

it can not interfere with real-time machine control.

One should decide if the machine's control system which connects to remote party

and acts only as a client or does it need to support incoming connections as well, and

act as a server. If this is the case, there needs to be a service taking care of incoming

connections. Typically this server is deployed on the PC. This means that the server

resides on the operator level, and will not interfere with the real-time machine con-

trolling. Sometimes this server can be just an in-house application listening to a cer-

tain TCP/IP port or sometimes a ready-made implementation such as Nginx [6],

lighttpd [7] or even Apache web server [1]. If file server is needed, one could use

Cerberus [2] for instance.

A server creates an attack vector for hackers and thus one should carefully consider

deploying one. The server's software might have vulnerabilities that can be utilized to

gain access to the machine. In addition, adding a server makes the machine vulnerable

to DoS (Denial of Service) attacks meaning that it becomes unavailable to its intended

users. One common method of DoS attack is to saturate the target server with external

communications requests, so much so that it cannot respond to legitimate traffic, or

responds so slowly that it will be rendered essentially useless. In general, one should

make sure that proper measures are taken to ensure the security of the system. One

should also consider if the communication needs to be encrypted to prevent eaves-

dropping the traffic. If so, one might want to use VPN (Virtual Private Network) [3]

technique, e.g. IPSec [5], OpenVPN [9], or Secure Shell (SSH) [4] to make the con-

nection secure.

The remote connection gateway can be used to transfer the DIAGNOSTICS data from

the machine to the manufacturer or to the service station. Data can be transferred au-

tomatically without requiring the machine operator to do anything. The remote party

might be a cloud service, so it has enough capacity to process the data from a plethora

of machines. Now as the data is transferred to this kind of environment with potential-

ly unlimited processing capabilities more thorough analysis on the data can be run.

Furthermore, as data from multiple machines is gathered in the centralized place, data

originating from different machines can be compared with each other to detect differ-

ent patterns and malfunctions. For example, gathered data of oil pressure readings can

form a certain pattern in normal use. Now, if the machine does not comply with this

pattern, it can be a malfunction that needs to be inspected more closely. Over a longer

period of time, data from different malfunctions can be also gathered and recognized

which kind of malfunction causes certain changes in the patterns of normal behavior

of the machine.

Depending on the available communication channel between the machine and re-

mote party, the properties of the channel may vary. For example, sometimes the

26

communication may be expensive and the transferred data amount should be limited.

One should refer to DYNAMIC MESSAGE CHANNEL SELECTOR pattern on how to

choose the optimal communication channel for each situation.

If the VARIABLE MANAGER pattern has been applied to share the system wide in-

formation as variables, the REMOTE ACCESS can be used to share this information to

remote location. If the machine is working as a part of a fleet, the REMOTE ACCESS is

a key component in coordination between multiple work machines. In this case, the

SUBSYSTEM ADAPTER pattern may need to be used to ensure compatibility with other,

possibly legacy, systems. MACHINE-TO-MACHINE COMMUNICATION introduces peer-

to-peer communication between work machines. In this case the REMOTE ACCESS is

used to communicate with other machines. When implementing a remote access to a

work machine one must consider the implications for the functional safety. There is a

systematic approach to assess whether a given technological solution for remote ac-

cess to control system implies an unacceptable risk in, in terms of jeopardizing the

safety integrity level (SIL) of the system [8].

✥ ✥ ✥

As the information on the machine can be accessed remotely, the data gathering for

preventive maintenance, production management, etc. is faster as the data can be

transferred more frequently. Additionally, the data transfer becomes independent of

the machine location as the machine does not have to be accessed physically.

Software updates (see UPDATEABLE SOFTWARE) for the control system can be de-

livered over the air. This enables faster delivery of the updates and decreases the up-

dating effort from the machine owner as the updates do not need to be delivered using

removable media, e.g. USB memory sticks. For updating the software there are two

options: pull or push. Regardless of which approach is selected, the updates should be

installed only when the machine operator (or service person) wants to do so. Further-

more, updating system requires taking it to the special updating mode (see

OPERATING MODES). Furthermore, as the remote connection gateway is the only ac-

cess point to the machine, if vulnerabilities are discovered, only this component needs

to be updated. On the other hand, when new vulnerabilities are discovered, the soft-

ware needs to be updated more urgently to avoid the consequences of a possible at-

tack. So REMOTE ACCESS increases the required update frequency.

If the customer thinks that the machine is malfunctioning, the maintenance person-

nel can take a remote connection to the machine and try to diagnose the problem

without physically visiting the machine. This might reduce costs as the maintenance

persons do not need to travel the remote location. On the other hand, if the malfunc-

tion can be diagnosed remotely and it can be recognized if there is a need to bring the

machine in for maintenance or not, it would reduce costs. Additionally, if the system

has Parameters, the remote connection can be used to adjust these parameters, so cali-

brating the devices on-board becomes easier as the maintenance person does not need

to visit the machine physically in order to do such adjustments.

Production reports and work orders can be transferred more frequently. This makes

FLEET MANAGEMENT more flexible.

27

Possibility for REMOTE ACCESS creates risks for unauthorized access to the ma-

chines information. This might also be a reason why one might not want to implement

remote controlling of the machine using this approach. Furthermore, denial-of-service

attacks could slow down the node where the server is running. The remote connection

gateway requires some processing power (especially in a case of a server), so it might

slightly decrease the performance of the operator level node in general.

As the remote communication is isolated in one module, it is easy to limit the

bandwidth usage, e.g. communication is possible only for trusted applications.

Remote connection gateway makes it possible to implement remote operating of

the machine.

✥ ✥ ✥

Company manufacturing excavator discovers a serious software bug in one of their

control system versions. Unfortunately, they don't have records of machines and

which software version they have. However, REMOTE ACCESS pattern has been ap-

plied and the control system has a server that can be connected from the factory when

the machine is powered. Manufacturer implements a client application which con-

nects to the work machine and checks the software version. If the control system has

the faulty software version, the manufacturer can send the software update package to

the machine owner, so they can update it.

3 Acknowledgements

The author would like to thank all the participants of the VikingPLoP 2013 for val-

uable feedback on this work. Without you the patterns wouldn’t have improved to the

level where they are now. Additionally, I would like to thank Marko Leppänen for

shepherding this paper.

4 References

1. The apache software foundation: The apache web server. (2013). Website, available online

http://httpd.apache.org/, visited 19.9.2013

2. Cerberus FTP Server (2013). Website, available online http://www.cerberusftp.com , visit-

ed 19.9. 2013

3. Mason, A. G. Cisco Secure Virtual Private Network. Cisco Press, 2002, p.7.

4. IETF Network Working Group: RFC 4252, The Secure Shell (SSH) Authentication Proto-

col, January 2006

5. Kent, S.; Atkinson, R.: IP Encapsulating Security Payload (ESP), RFC 2406, IETF, No-

vember 1998

28

http://httpd.apache.org/

6. Engine X (nginx) HTTP server. Website, available online http://nginx.org/, visited 19.9.

2013

7. Lighttpd webserver. Website, available online http://www.lighttpd.net/ , visited 19.9. 2013

8. Jaatun, M. G.; Grøtan, T. O.; Line, M.B.: Secure Safety: Secure Remote Access to Critical

Safety Systems in Offshore Installations. In proceedings of 5th International Conference

ATC: Autonomic and Trusted Computing, Editors: Rong, C.; Jaatun, M.; Sandnes,

F.;Yang, L. and Ma, J., LNCS, Volume 5060, 2008, pp. 121-133, ISBN; 978-3-540-69294-

2

9. Open source VPN (OpenVPN). Website, available online http://openvpn.net/, visited 19.9.

2013

10. Directive 2006/42/EC of the European parliament and of the council on machinery, and

amending. Directive 95/16/EC (recast, May 2006). Available online, http://eur-

lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:157:0024:0086:EN:PDF, visited

19.9. 2013

11. Portland Pattern Repository. 2003. Portland form. http://c2.com/cgi/wiki?PortlandForm,

retrieved 19.9. 2013.

12. Portland Pattern Repository. 2011. Alexandrian form.

http://c2.com/cgi/wiki?AlexandrianForm, retrieved 19.9. 2013.

29

http://nginx.org/
http://openvpn.net/
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:157:0024:0086:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:157:0024:0086:EN:PDF

Patterns for Decoupling Hardware and Software

Johannes Koskinen

Department of Pervasive Computing

Tampere University of Technology

Finland

{firstname.lastname}@tut.fi

1 Introduction

The patterns presented in this paper are part of a larger pattern language that is cur-

rently formed in collaboration with large global machine control companies. The

patterns have been collected from the real-life systems using architecture evaluations

and interviews. The previous version of the language is available in [1].

A control system is a device, or set of devices to manage, command, direct or regu-

late the behavior of other devices or system1. In this paper by an embedded control

system we mean a software system that controls large machines such as harvesters

and mining trucks. Such systems are often tightly coupled with their environment. For

example in case of a harvester, harvester head hardware needs special-purpose appli-

cations to control it. In a distributed control system, the system is divided into subsys-

tems with each controlled by one or more controllers. Networks connect these con-

trollers.

2 Patterns

In this section a set of patterns from the pattern language (refer Fig. 1) is present-

ed. The selected patterns for the paper are HARDWARE ABSTRACTION LAYER,

OPERATING SYSTEM ABSTRACTION and VIRTUAL RUNTIME ENVIRONMENT. The pat-

tern language graph could be seen as a designer’s map for solving design problems.

The design process begins so that the first pattern to be considered is CONTROL

SYSTEM in the middle of the graph. After the designer has made the design decision to

use the pattern, she may follow the arrows to the next patterns. An arrow means that

the following pattern can be applied in the context of the resulting design from the old

pattern. In other words, the subsequent pattern refines the design. However, a single

pattern may be used regardless of the usage of previous patterns if the context of the

pattern matches the current design situation.

The patlets for the patterns as well as the referenced patterns not included to this

paper are presented in Table 1.

1 http://en.wikipedia.org/wiki/Control_system

30

mailto:%7bfirstname.lastname%7d@tut.fi
http://en.wikipedia.org/wiki/Control_system

Fig. 1. Part of the pattern language for distributed control systems.

Table 1. Patlets for the included and referenced patterns.

Pattern Patlet

CONTROL

SYSTEM

Productivity of a work machine can not be increased significant-

ly anymore only with traditional way of building the machine, i.e.

using hydraulics, electronics and mechanics. Additional ways to

control the machine needs to be introduced in order to enhance the

system functionality and to increase the amount of automated func-

tionalities.

Therefore:

Implement control system software that observers the work en-

vironment and controls the machine accordingly. Control system

software can automate many functionalities which have previously

been carried out by the machine operator manually. In addition,

the control system software can provide the operator more fine-

grained information about the work environment.

31

THIRD-

PARTY

SANDBOX

The end users require more features to the system and the man-

ufacturer has to outsource the development of some applications

that are not in their core competence area. These applications can-

not always be trusted not to compromise the operation of the sys-

tem as a whole inadvertently or on purpose.

Therefore:

Provide an interface and tools for third-party application devel-

opers. Third-party applications can use the machine services only

through this interface so that they will not interfere with the ma-

chine's own applications. The interface provides common ways to

access data and services.

32

2.1 Hardware Abstraction Layer

...there is a Control System where applications must access two kinds of devices to

control the machine: sensors and actuators. Sensors provide input data for the applica-

tions and applications use actuators, e.g. valves and motors, to manipulate the envi-

ronment. It is usually possible to identify different types of devices. For example, all

the temperature sensors have common characteristics: they output an analog or digital

value according the current temperature measurement. In addition, the possible ac-

tions for the all devices in the same category are more or less the same: one can read a

value corresponding the sensor's measurement or give control signals for the actua-

tors. However, even though the devices were meant to be used for the same purpose,

the outputs and control signals might vary between device models and devices from

the different vendors.

✥ ✥ ✥

Each vendor may have its own way to control hardware devices. If all the de-

vices are controlled in vendor specific way, it makes the application code to de-

pendent on the selected hardware. To make applications portable, the hardware

should be decoupled from the applications.

The life cycle of the control system is usually long and it is independent from the

life cycle of its devices. In many cases, the devices' life cycle is shorter. During the

life cycle of the product, there may be a need to change the device vendor, for exam-

ple, if the current device is not available anymore. There seldom exist standardized

ways for different vendors' devices to interpret the control signals. Thus, the change

of device vendor may usually require changes to way the hardware is controlled. For

example, each vendor may have different method for reading the measurement of the

temperature sensor. One vendor could prefer 4-20 mA current loop, that corresponds

to certain, usually vendor specific temperature range the other outputs the reading

digitally. The change of the device may require changes in the application code. It

may be error-prone and expensive to modify code.

The system may have Control System Options and there might arise need for new

options. So, it might be difficult to know all the needs for future changes in hardware.

New devices may be required or some of the existing ones are discarded as the needs

change. Moreover, there may even emerge a need for different sensor types. Still, the

application should be unaffected by the implementation details of the devices. For

example, changing the vendor of the sensor should not cause changes in various plac-

es in the application.

In a product platform, there can be multiple machines of the same product family.

These machines have slightly differing hardware setup. To save costs, the same con-

trol applications may be used in various products, regardless of the physical devices.

Thus, the application should be easily portable.

33

https://tstwiki.cs.tut.fi/display/patternsbook/Control+System+Options

There often are vendor-specific features in devices. Usually, using those features

would make application development faster, but it would make the application depend

on the vendor-specific hardware as these features are not available on other vendors’

products. To avoid vendor lock-in, it should be possible to have a common feature set

that is used for all the products.

Therefore:

Create a Hardware Abstraction Layer (HAL) between the application soft-

ware and the hardware implementation of the controlling mechanisms of the

devices. In this layer, provide generic interfaces to access the devices of a certain

type in a uniform way. HAL abstracts implementation details of the hardware

under these interfaces.

Classify the devices into groups by their functionality. For example, temperature

sensors form a single group regardless of the actual hardware implementation used for

the temperature measurement. In a similar way, all bus interface cards are classified

into the same group. For each classification group, create a generic interface to HAL,

called application interface, with methods to control the devices in the group in a

unified way. The implementation details of the hardware are hidden by the interface.

The control application uses the application interface to command the device instead

of accessing the device directly. In practice, this means that programmers don't need

to know the details of individual devices, and the applications will be compatible with

any device in the group. This makes the applications portable as long as the interfaces

of HAL remain the same.

HAL translates the method calls from the applications to device dependent control

signals. The application can read the measurement data from the sensors in common

format of the device type using methods provided by HAL. Such formats can be sim-

ple binary (on/off) or a sample of continuous signal. In the latter case, the data can be

expressed, for example, as a percentage of the device's maximum value, absolute

turning angle in degrees, or in predefined types like in degrees of Celsius. As the

measure data can be in various formats, VARIABLE VALUE TRANSLATOR can be used

to translate these types from one format to the other. In addition, to increase portabil-

ity, HAL can provide generic data types for the applications. For example, if the ap-

plication needs to read a temperature sensor's value, it simply uses reading method

available in the application interface to get the value from the sensor. There are sever-

al types of sensors which have differing word lengths for the return value. Thus, it is

abstracted with the generic data type which is processor architecture independent. The

layer can also contain generic methods, such as self-checking, initialization and con-

figuration of the devices that are common among all the devices.

The device vendors can usually provide device configuration sheet file (EDS, Elec-

tronic Data Sheet) which are used to configure the certain device or device types. The

file can also be used to configure the application interface methods of HAL. Format

of EDS file may depend on the vendor, development tools and environment used, and

sometimes the configuration must be done manually. HAL can sometimes provide a

common interface for the developers to implement devices compatible with HAL.

34

Some device types may already have generic, standardized interface and all devices

implementing the interface can be accessed in the same way.

As there usually are variations in capabilities of the devices inside one device

group (like resolution of different sensors), the HAL interface design is usually based

on the least common denominator. However, the interfaces can overcome the limita-

tion by containing support for reflection, like querying the type, and information on

the capabilities of the device. The application can use the information to adapt its

PARAMETERS according to the hardware available. However, this kind of reflection

reveals information on the details of the hardware to application and can cause ab-

straction leaks. An abstraction leak makes the software porting to other hardware

platforms more difficult [LEAK]. If vendor-specific properties of a device are used, it

usually leads to vendor lock-in as it might be difficult to find a replacement part with

the same properties. Thus, it is usually worthwhile to use only common capabilities

available in all the devices. Fig. 2 illustrates HAL layer between the application and

the hardware as well as the usage of drivers.

Fig. 2. Illustration of an architecture having two HALs: One for applications and one within the

operating system (OS)

As HAL adds an extra layer between hardware and the applications, it increases la-

tencies and may jeopardize determinism of the system. Thus, it may be difficult to

make real-time applications with strict real-time requirements. In addition, as it ab-

stracts the actual actions needed to access the device, the required time for the access

is usually unknown for the application developer. For example, reading a value from

the sensor may be shown as a single method call for the developer, but in practice it

might be time consuming operation requiring a lot of communication between the

controller and the sensor.

If a controller contains an operating system, the operating system uses its own

HAL. The idea of HAL in operating systems is to abstract actual hardware from the

kernel of the operating system, thus making the operating system more portable (see

Fig. 2). In addition, the application can still use its own HAL to access the hardware.

To abstract operating system from the application, one can use OPERATING SYSTEM

ABSTRACTION.

35

If VARIABLE MANAGER has been applied in the system, the variable manager pro-

vides variables that abstract details of the devices in similar way as HAL. VARIABLE

MANAGER can use HAL to update its variables to avoid device dependency. MESSAGE

BUS decouples different hardware devices that are connected directly to CAN bus,

such as nodes and CANopen sensors. The bus provides common messages and stand-

ardized interface to access the devices so there is no need to use HAL for those devic-

es. Sometimes, for example with FLEET MANAGEMENT, there is a need to abstract the

whole machine. SUBSYSTEM ADAPTER can be applied to tackle this problem.

Peng and Dömer introduced unified hardware abstraction layer architecture for

embedded systems in [PD]. In [MC] McCollum describes how TYPE LAUNDERING

pattern can be used to abstract hardware interfaces from application layer code. HAL

pattern can be seen as a layer introduced by LAYERS pattern [POSA4] or LAYERED

ARCHITECTURE [PLOPD1].

✥ ✥ ✥

As all device dependent operations are encapsulated to HAL, a device can be re-

placed with the new one without any changes to the applications. However, it may be

difficult to design an interface that is generic enough, but still takes into account the

differences between the devices of the same group. In addition, as the interfaces are

designed based on the least common denominator, some advanced functions of the

device may be unavailable for the application developer. However, this helps forcing

the developer to use only commonly available features, thus decreasing the possibility

for vendor lock-in.

Similar hardware devices or hardware devices of the same type can be used

through a uniform interface. This makes application porting easier. Moreo-

ver, programmers of the applications don't need to care about implementation details

of the individual devices. However, implementing the interface and device drivers

may require more effort than accessing the devices directly. In addition, without

proper support in HAL or existing device drivers, the device cannot be used by the

application or developers may try to circumvent the abstraction layer.

It may be difficult to make applications using HAL if they have strict real-time re-

quirements. HAL abstracts the actual actions needed to access the device so the re-

quired time for the actions are usually unknown for the application developer. In addi-

tion, HAL adds an extra layer between application and devices, so using it may in-

crease latencies and require more processing power.

✥ ✥ ✥

In a harvester, a sensor is used to read oil temperature for the engine control appli-

cation. There are several vendors providing the temperature sensors. However, the

properties of the sensors differ slightly between vendors. The sensors are direct-

ly connected to boom controller's I/O-ports with 4-20mA current loop connection, so

there is no bus to decouple the device from the controller. The measurement area may

differ between sensors so that in one sensor 4mA could mean -20C while the other

sensor has 0C as the lowest possible measured value. The harvester manufacturer

36

does not want to commit to one sensor provider for financial reasons. The manufac-

turer invites various vendors to tender for subcontracting of sensors yearly in order to

get the best offer. As modifications to application code are expensive and error-prone,

HAL is used to hide the differences between sensor models. When the application

needs the temperature value, HAL is used to scale and linearize the sensor's raw tem-

perature value to 0..100C according to characteristics of the actual sensor used. This

also allows code reuse since the same controlling algorithm can be used with various

work machine hardware if the same HAL is available.

[PD] Hao Peng, Rainer Dömer, “Towards A Unified Hardware Abstraction Layer Architecture

for Embedded Systems,” Center for Embedded Computer Systems, Technical Report 12-14,

November 2012.

[MC] Cliff Michael McCollum, Type Laundering as a Software Design Pattern for Creating

Hardware Abstraction Layers in C++, University of Victoria, 1996

[LEAK] Kiczales, Gregor (1992). "Towards a New Model of Abstraction in the Engineering of

Software

2.2 Operating System Abstraction

...there is a CONTROL SYSTEM where hardware of the controller is abstracted by ap-

plying the HARDWARE ABSTRACTION LAYER pattern. It provides a hardware inde-

pendent layer so that the applications can access various hardware components in the

same way. An operating system is used to provide common services, such as device

management, scheduling and memory management for the platform. In some cases,

the applications may have different life cycle than operating systems used for the

platform. For example, support for the current operating system is ended and the op-

erating system must be updated in the middle of the product's life cycle. If the operat-

ing system is changed, the application needs to be ported to the new operating system.

✥ ✥ ✥

The life cycles of the applications and underlying operating systems may

differ. Still, it should be possible to change the operating system with only mini-

mal modifications to the application code.

Operating systems provide useful services for the applications and abstract the

hardware from the application. The operating system provides an API, which the

application uses to access hardware. Usually these APIs are unique for the operating

system and porting an application from one operating system to the other may be

37

http://www2.parc.com/csl/groups/sda/publications/papers/Kiczales-IMSA92/for-web.pdf
http://www2.parc.com/csl/groups/sda/publications/papers/Kiczales-IMSA92/for-web.pdf

challenging and porting should not affect to the control logic of the application in

different platforms.

The operating system may be a freely available OS such as Linux, a commercial

off-the-self product (COTS), or an in-house product. Usually the same operating sys-

tem is selected to be used for all the products in the product family.

In some cases, the customer may require a specific operating system to be used in

the work machine, to ensure the compatibility of the machine with customer’s other

information systems. In addition, the customer may want to be able to use certain 3
rd

party applications requiring a specific operating system. To support these require-

ments, the control system applications need to be compatible with various operating

systems.

As the operating system abstracts the hardware, the applications can be used in var-

ious products. However, the applications depend on the operating system used and

when the operating system changes, the application needs to be adapted for the new

operating system. Still, the same application is used for various product platforms. In

addition, the number of different versions of the same application should be mini-

mized as the supporting and updating the versions is error-prone and usually requires

extra effort.

Operating system version probably needs to be changed when the support for the

current version is ended and the operating system version has become obsolete. In

some cases, the application interface of the operating system changes as the version

changes. This may require modifications to the application.

There may be legacy applications that run on top of the operating system that is not

available anymore. Still, it should be possible to port these applications to a new op-

erating system with little effort as developing the new version of the application may

be costly.

The application cannot be easily changed or replaced with new one as the new ap-

plication with only few usage hours may contain errors that are not yet found. In addi-

tion, maturity of the applications is an important aspect especially in safety critical

environments. Safety standards (such as IEC61508) require revalidation of the appli-

cation after modifications and thus it is desirable to change software as little as possi-

ble.

38

Therefore:

Create an abstraction layer, which implements all OS dependent services. In

the application code, use only this abstraction layer for the services.

Identify all OS dependent services, such as memory management and graphical UI

support, needed by the application. Create a new, operating system dependent layer

called Operating System Abstraction (OSA) to satisfy the needs and use its interface

instead of ones provided by the operating system. In this way, it is possible to have

stable interface for the applications even though the interfaces of the operating system

changes. The abstraction layer should contain the services that the operating system

would normally offer to the applications. The application calls the abstraction layer,

which in turn translates a call to one or more corresponding operating system calls.

Usually, OSA includes various operating system independent data types for the appli-

cations.

Operating systems have a different set of services that they provide for the applica-

tions. In some cases, it might be very difficult or even impossible to provide a service

in OSA layer if the underlying operating system has no support for that. For example,

memory management system for dynamic memory allocation can be implemented by

OSA layer regardless of the support from the operating system. However, if the oper-

ating system does not support memory protection, it may be impossible to provide

that kind of support by the abstraction layer.

Some operating systems may require additional steps, like registering the applica-

tion or calling initialization method before the application can be executed. To ensure

that the methods are executed when necessary, the application should always call the

initialization method of the OSA when starting the application - even if it is not re-

quired by the current operating system.

Operating systems may already have a common, standard interface, which can be

used instead of OSA. For example, POSIX (Portable Operating System Inter-

face) [IEEE1003] is a specification defined by the IEEE for maintaining compatibility

between operating systems. Using the APIs defined by POSIX, it is possible to

change from one operating system to the other as long as both of the systems support

POSIX interfaces. It is usually possible to port the application in the new system just

by recompiling it.

39

For some operating systems, there are existing cross-platform application frame-

works, such as Qt [Qt] or SDL (Simple DirectMedia Layer) [SDL] which can be used

to abstract the underlying operating system. With these frameworks the application

can be ported to use other operating systems just by selecting corresponding library

implementation for the target operating system and recompiling the application.

Furthermore, there are emulator libraries available for some operating systems.

These libraries provides a compatibility layer which acts like an abstraction layer so

that the application can be designed for one operating system, but compiled also for

another OS. The compatibility layer translates the operating system calls like OSA.

Unlike OSA, the compatibility layer is not linked with the application, if the applica-

tion is compiled for the "native" operating system. With similar technique, the whole

operating system can be emulated with an external emulator so that the same applica-

tion can be executed on various operating systems. The emulator consists of a com-

patibility layer and a method to start the application. The emulator starts the applica-

tion so that it will use the compatibility layer for operating system method calls. The

application itself does not know whether it is run with native or emulated operating

system.

If the hardware is likely to change and the recompilation of the application is not

possible, one could apply the VIRTUAL RUNTIME ENVIRONMENT pattern to virtualize

the whole runtime environment including hardware of the system and the operating

system. In addition, the application needs no recompilation even if the application is

used in various platforms.

✥ ✥ ✥

OSA encapsulates all the OS dependent parts; a single team can take care of devel-

oping OSA layer for various platforms. In addition, the common API makes the ap-

plication development easier as the developers need not to know all characteristics of

various operating systems. However, developing OSA requires a lot of expertise.

Using generic data types instead of the ones provided by the programming lan-

guage eases porting an application from one hardware platform to the other as the

compiler could take care at least some part of the required adaptations. For example,

integer types with well-defined bit size may prevent compatibility problems when the

processor of the control system changes.

The application can be executed with various operating systems as the application

does not depend on the operating system used. If the operating system changes, the

application code does not need to be changed. However, OSA layer needs to be up-

dated when the abstracted operating system changes. In addition, the layer and the

application need still thorough testing after changes in the operating system.

Usually the cross-platform application frameworks focus only on certain area (like

graphical user interface), so it might not have all the functionality required by the

application. In that case, some of the functionality must be provided by using other

means, like using other frameworks or writing own library for the functionality. How-

ever, it may be impossible to support required functionality as it may require support

from the underlying operating system. As the services provided by the OSA layer are

40

common with all the operating systems, supporting various operating systems may

prevent using most advanced features of other operating systems. Those features

might be more efficient or provide some extra functionality.

Using an extra layer between the application and the operating system usually de-

creases performance of the system. This could be critical in applications with strict

real-time requirements.

If cross-platform application frameworks are used, the application becomes de-

pendent on the libraries and their changes. Moreover, using some proprietary libraries

can lead to vendor lock-in.

✥ ✥ ✥

In the harvester’s cabin, there is a PC providing graphical user interface for the op-

erator. The hardware of the PC may vary in different harvester products. The harvest-

er vendor has previously selected Windows operating system for the product family

of the harvesters, but now the customer wants to use Linux operating system in the

cabin PC. As the application for user interface is designed to be operated with various

operating systems, it uses Qt to implement various UI elements. In this way, it is easi-

er to develop the application so that it can be executed on different harvester products

- just by using the corresponding Qt library and recompiling the application.

[IEEE1003] IEEE 1003.1-2008 - IEEE Standard for Information Technology - Portable

Operating System Interface (POSIX(R))

[Qt] http://qt-project.org/

[SDL] http://www.libsdl.org/

41

http://qt-project.org/
http://www.libsdl.org/

2.3 Virtual Runtime Environment

……there is a Control System with one or more controllers which execute one or

more applications each. These control applications provide services and functionali-

ties for the control system. Usually the life cycle of the control applications is longer

than desktop applications as the machine is used for at least 10 years. Because of this

long life cycle, some of the hardware components of the controllers are likely to break

down and requires to be replaced. Having large spare part inventory is expensive and

the size of the inventory is hard to know. Having too many parts in the inventory

causes extraneous costs as the unused spare parts become obsolete when the support

for the product is ended. If the inventory is too small and it runs out of spare parts

during the support time, these components have to be replaced with the updated ver-

sion of the component anyway. The newer versions of the components are likely to be

cheaper and have better availability. Thus, the same applications will probably be run

using different kinds of hardware. The Operating System Abstraction pattern abstracts

only the operating system used and thus the applications may still need recompiling or

even modifications when ported from one hardware platform to other. The applica-

tions might even be impossible to port, because there is no compiler available for the

programming language in the target system anymore.

✥ ✥ ✥

Hardware is likely to change during the long life cycle of the product

and thus the application would need to be ported in order to run it with the new

hardware. However, porting by recompiling the application is not always possi-

ble or desired.

The applications in a control system typically have a long life cycle. Usually, the

functionality they provide does not change between different products or product

generations, but the functionality can be tuned with a set of various parameters. Thus,

the actual application code does not need to be changed even if the hardware changes.

For example, harvester head controller application can be used with various harvester

head hardware models just by adjusting the parameters. Moreover, as technology

evolves and more advanced designs become to mass-production, some of the compo-

nents in the system can be replaced with new, compatible, and cheaper components.

Still, the same application is used to provide the same functionality as in earlier hard-

ware versions of the product.

42

Applications are executed in a specific environment. The environment consists of

processor(s), memory, various input/output ports, and optional operating system to

control the system. The operating system abstracts some parts of the hardware, but

there still are some details, like processor's instruction set, that cannot be abstracted

by the operating system. So, as the runtime environment depends on the hardware,

applications need to be adapted when the hardware changes. This adaption can be

almost anything from recompilation of the application to rewriting the whole applica-

tion from scratch. The adaption process may be costly and this process is usually er-

ror-prone. In addition, the modifications lead to new revisions or branches of the

software, which makes configuration management harder and increases costs.

To support portability of the applications, it is usually possible to provide limited

backward compatibility within the same hardware product family. For example, the

newer processor can run the instruction set of the older processor model in an emula-

tion mode. However, the emulation of the old hardware device is not always imple-

mented on any available hardware that is compatible with the work machine.

To support portability of the applications, it is usually possible to provide limited

backward compatibility within the same hardware product family. For example, the

newer processor can run the instruction set of the older processor model in an emula-

tion mode. However, the emulation of the old hardware device is not always imple-

mented on any available hardware that is compatible with the work machine.

In many cases, 3rd party hardware components are used in the system. With these

components, it is usually not possible to select the desired development tools. The

development tools for the 3rd party hardware may not be compatible with the control

application. Still, it should be possible to use existing control applications while using

the 3rd party components.

Therefore:

Virtualize the runtime environment by creating a hardware independ-

ent execution platform for the application. The applications are compiled for the

environment and executed in it. The runtime environment is ported for all the

needed platforms.

The virtual runtime environment (VRE) is an application, which is executed on the

controller (called host system). The main idea of the virtual runtime environments is

to hide the real runtime environment of the system and provide the abstracted, virtual

version of the hardware to the applications (see Fig. 3). VRE creates a virtual repre-

sentation of all the hardware required for the functionality. It is possible to have a

common platform for all control applications, independent from actual hardware in

use. For example, it is possible to implement a virtual CPU by having a data structure

to save CPU's register values and an interpreter for the CPU's instruction set. As VRE

is executed on the host system, the interpreter executes the software in the virtual

runtime environment. Likewise, the bus is virtualized and isolated from the actual

communication channels. In this way, the applications do not have real access to the

hardware (like bus, memory or CPU), but use virtual devices instead.

43

VRE translates application's virtual device access to corresponding real device ac-

cess. This isolation ensures that changes in the real hardware are not reflected to the

application, as the application's runtime environment remains unchanged. In some

cases, some of the virtual devices may not have the existing counterpart in the real

system. In this case, the functionality is provided by VRE alone. For example, a virtu-

al runtime environment could contain floating-point operations even though the CPU

on the host can calculate only integer numbers. The floating-point operations are

simply handled by the interpreter of the VRE. However, the emulated floating-point

operations take significantly more execution time than the real ones would take.

Fig. 3. Virtual Runtime Environment separates the application from the actual Operating Sys-

tem and Hardware.

The development process of the control applications for the virtual runtime envi-

ronment does not differ from the process for the real runtime environment. The appli-

cations are written with the selected programming language and compiled to assembly

language or bytecode for the virtual runtime environment. The properties of the

runtime environment, such as the endianity of the CPU, are always known beforehand

and independent from the actual target hardware when developing for VRE. Now, the

developed applications need not to be recompiled as they can be executed in various

host systems as long as the virtual runtime environment remains the same.

 Virtual Runtime Environment is also used to support legacy platforms' hardware,

which are not available anymore. In this case, the whole hardware of the platform is

emulated by VRE or the suitable runtime environment is provided to execute the leg-

acy application. For example, an embedded computer with an ARM-based CPU and

real-time operating system is used to provide a virtual runtime environment for a leg-

acy control system running a PLC application. The VRE emulates input and the out-

put ports of the PLC and reflects their state changes to the system state variables.

Now, there are two different ways to execute the actual PLC application. One is to

provide emulated environment only for the application itself. In this case, VRE func-

tions as an interpreter, which provides the same functionality for the program as the

emulated PLC device by using the host computer's capabilities. The other way is to

44

emulate the legacy PLC device with VRE. In this latter case, all the necessary com-

ponents of the PLC device have their virtual counterparts and the control logic or

operating system of the PLC device is executed on the emulated hardware. In this

way, the PLC program itself is executed by the emulated PLC system in the same way

as it was executed with the real hardware. The latter way allows one to have all the

properties of the emulated device, but the required VRE for the virtual environment is

harder to implement. In addition, the former way does not allow one to have any op-

erating system as only the application is executed by the required VRE.

There exist several commonly used commercial or open source VREs, so it may be

a good idea to use them instead of writing an in-house VRE from scratch. For exam-

ple, Codesys by 3S-Smart Software Solutions GmbH [CODESYS] is used in a wide

range of devices. For consumer devices, Java Runtime Environment has many com-

mercial and open source implementations for various platforms. However, if one de-

cides to implement a virtual runtime environment, there are various publications

available on this topic (e.g. (Smith & Nair, 2005) (Lain, 2006)). Virtual runtime envi-

ronment is also addressed by Virtual Machine [RTDP].

✥ ✥ ✥

Virtual Runtime Environment provides a stable environment even when the hard-

ware may vary between different products. VRE enables one to use the same software

independent from the actual platform used. This independency simplifies configura-

tion management as the application does not need to be modified or recompiled for

the new hardware. In addition, it is easier to update the hardware components, be-

cause the changes do not reflect to the application level - only VRE needs to be

changed. On the other hand, VRE itself must be updated, maintained and ported to

new platforms.

Legacy software can be executed even if the required legacy hardware is not avail-

able anymore. The software is executed in virtual runtime environment, which pro-

vides the functionality that the software requires.

It is possible to emulate functionality that is not provided by the hardware used.

For example, floating point emulation makes processor design simpler and reduces

costs. However, emulated functionalities are usually less efficient compared to the

hardware-based ones.

With the virtual runtime environment, the properties of runtime environment are

always known beforehand and independent from the actual target hardware. This

eases the development process and makes it more robust.

The ability of emulating functionalities of existing devices can also be used to pro-

vide an environment for developing and testing where the whole system can be exe-

cuted without the target device.

Because VRE emulated processor has fixed instruction execution times, the cycle

rate of the application is always the same and independent of the physical processor

speed. In other words, the application runs on the same pace regardless of the hard-

ware.

45

Because VRE is an additional layer between the real hardware and the application

and requiring additional execution time, it may be difficult or even impossible to use

virtual runtime environments in the systems with very strict real time requirements.

This can be compensated to some degree by having more efficient hardware, but it

costs more.

When using VRE, the application is isolated from the physical devices. This eases

the implementation of THIRD-PARTY SANDBOX and access control. As the application

uses the virtual devices, the access rights can be checked and the operation is contin-

ued only if the application has the permission to use the device. Moreover, if DATA

STATUS pattern has been applied, the status of the data can be forced to the desired

value by VRE even if the application itself doesn’t support data status. For example,

invalid input status could always imply invalid output status and the result does not

need to come from the application inside VRE.

As VRE is complex and costly to implement, it is not feasible to use it if there are

only few products in the product family, the life cycle of the products is short, or the

hardware is not likely to change.

✥ ✥ ✥

An in-house development environment is used in a power plant control system.

The development environment and the programming language are designed for con-

trolling the outputs of the varistors for compensation of reactive power. The applica-

tions are executed in the virtual runtime environment as the actual execution hardware

may vary. When the application is compiled, the result is a bytecode file understood

by the virtual runtime environment. The runtime environment contains an interpreter

that executes the code line by line. If the application changes an output value, the

change is reflected to the output of the device by the virtual runtime environment.

James Smith and Ravi Nair. 2005. Virtual Machines: Versatile Platforms for Systems and

Processes (The Morgan Kaufmann Series in Computer Architecture and Design). Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA.

Craig, Iain D. Virtual Machines. Springer, 2006, ISBN 1-85233-969-1, 269 pages

[CODESYS] Homepage: www.codesys.com

[RTDP] B. P. Douglass: Real-Time Design Patterns: Robust Scalable Architecture for Re-

al-Time Systems

3 Acknowledgements

 want to thank my colleagues Ville Rei onen, arko epp nen and Veli-Pekka Elor-

anta for their help. In addition, I want to thank my shepherding group in VikingPLoP

2013 and all industrial partners for their valuable cooperation in our pattern mining

process: Metso Automation, Kone, Sandvik Mining and Construction, John Deere,

Areva T&D, and Epec.

46

4 References

[1] Eloranta, V-P., Koskinen, J., Leppänen, M. and Reijonen, V.: A Pattern Lan-

guage for Distributed Machine Control Systems, ISBN 978-952-15-2319-9, Tampere

University of Technology, Department of Software Systems. Report, vol. 9, Tampere

University of Techology, pp. 108, 2010.

47

Patterns for Designing Programming Assignments

Samuel Lahtinen

samuel.lahtinen@tut.fi

Tampere University of Technology,

Department of Pervasive Computing

Finland

1 Introduction

This paper is the starting point for developing a pattern language for teaching pro-

gramming techniques. Pattern mining is still an ongoing process. The set of patterns

presented in this paper is aimed for teachers of software engineering courses. They

can be used to aid creation of assignment descriptions. The assignments of the cours-

es should focus on the core content of the course and encourage the students to use

the techniques taught on the course. In most of the programming courses the assign-

ments require a yearly redesign or at least yearly tuning of the assignment description.

Without changes, especially the design solutions quickly become common knowledge

among students and copying the implementation becomes a more tempting task as the

students who have already passed the course have complete and reviewed implemen-

tations. These patterns are most suitable for advanced programming courses where the

students already know the basics of programming.

The presented patterns have been mined by going through experiences on assign-

ments of the courses on TUT Department of Software Systems. The patterns have

been mined from TUT courses for programming techniques, object-oriented pro-

gramming, graphical user interfaces, data structures, service-oriented systems, and

artificial intelligence. We have tried to find out common properties of the successful

specifications and similarly tried to find out issues related to problematic ones. Course

personnel feedback and student feedback has been used as an information source. In

this paper we present four patterns from a collection of patterns for designing pro-

gramming assignments.

48

mailto:samuel.lahtinen@tut.fi

2 Programming assignments as a teaching tool

The purpose of an assignment is to allow the students to design and implement ap-

plications or parts of software. While doing the task the students are able to test and

learn the techniques and approaches taught on the course in practice. Often a subject

area of the course requires larger real-world-like applications to be sensible. If the

problems are purely on a “Mickey Mouse” level, it is easier to implement the work

using only the basic programming techniques. Motivating the students becomes diffi-

cult if doing the work right way, i.e. using the techniques taught in the course, is

much more cumbersome.

The workload of the task is also important; the courses should follow their speci-

fied credit unit limitations. Implementing even a simple application from scratch is

laborious. It is easy to create assignments where most of the effort goes to coding and

testing parts of the program that have no relevance to the course itself.

The available resources are another essential issue when designing and specifying

a programming assignment. Each student or group can only be given a very limited

amount of personal guidance. In addition, the time the course personnel can spent on

reviewing a programming assignment is limited. A course with over 200 participants

requires much more exact assignment specification than a one with 15 participants.

For instance, there might be a need for a common knowledge base for the most fre-

quent problems in the assignment and templates for the grading the assignments.

In Tampere University of Technology and in universities in Finland in general lec-

tures and weekly exercises are voluntary, only an assignment and often a final exam

are compulsory. Third year and older students are often working along their studies,

so even if some of the students would like to attend to teaching session, they cannot

do that. On every course roughly half of the students only read assignment descrip-

tions and other course material. Thus, the assignments are the only way to teach the

students the course learning objectives and verify that they are capable of using the

techniques taught on the course.

49

3 Patterns found in the pattern mining

Fig. 1. A fragment of the pattern language

This section briefly introduces a collection of patterns that can be used when start-

ing to design a programming assignment. First four patterns are described in detail in

Section. The relations of the patterns discussed in this paper are shown in Fig. 1.

Pattern name Patlet

ONLY THE ESSENTIAL You want to have projects that are small enough but

cover the essential parts of the course.

Therefore: Design your assignment so that it guides

the students to work on the essential core contents of the

course. Provide code and components for students to

ease the workload.

GUIDE TO

FLEXIBILITY

You want your students to learn to recognize and

avoid or document constrains and restrictions in their

code. You want to teach to the students to write code

without unnecessary constraints.

Therefore: Avoid exact values and numbers in your

assignment description, provide initialization files and

readers for them instead of giving a fixed application

environment. Teach students to recognize and document

their decisions.

TEST RIDE THE

ASSIGNMENT

You have difficulties to estimate the amount of work

required to complete the assignment, you have to fix and

update your assignment description during the course.

Therefore: Use a person who has not participated on

the design of the specification to implement the applica-

tion. You can use her experiences and information to get

50

a better estimate and more polished instructions.

ASSIGNMENT IN

PARTS

Simple assignment works do not teach anything and

demotivate advanced students, complicated assignments

are too demanding for basic students.

Therefore: Divide the work in parts and publish them

part-by-part, offer more advanced students a chance to

implement extra features.

STUDENT SELECTED

ACTIVITIES/SUBJECTS

[6]

You have a fairly small group of experienced students

and you do not want to limit their creativity and you do

not have any brilliant ideas. Course grading is fail-pass

or assignment plays only a limited role in grading.

Therefore: Let the students design and implement

whatever they want in the scope of the course. You can

review their idea and limit overambitious projects and

check that projects fall into scope of the course.

CONTINUOUS

ACTIVITY[2]

If students get an assignment and a deadline, they

mostly start too late to work on the assignment. They

often are not able to finish the assignment in the best

possible quality and on time.

Therefore: include regular delivery moments of ap-

propriate artifacts to motivate and engage the students to

be active over the whole time of the assignment. These

artifacts should be of value for the students

PERSONAL

FEEDBACK

How to give the students a feeling they are doing

something that interest someone? Different ways of

giving feedback should be considered. See feedback

patterns[8], Constant feedback [6], differentiated feed-

back [6].

Therefore: Assign the students a personal assistant,

have a meeting or a feedback session early in the as-

signment work. The students meet their assistant and

know the face behind name/email address. The students

have their own assistant throughout the course for ques-

tions, grading, and final feedback. Have a final feedback

session there the students can show their creation and

talk about it. (Consider also peer review)

KEEP IT SHORT Students hate long assignment descriptions and easily

miss the key points of the assignment.

Therefore: Keep the core of the description short.

Document the interfaces and other code you offer sepa-

rately. Offer simple example codes to demonstrate the

usage of components you offer. Offer a separate step-by-

51

step documentation for starting the assignment.

LET THEM COMPETE How to reward the best students in an open way?

How to allow the students to constantly develop their

solutions? You have easily measurable qualities in the

assignment (e.g. performance, efficiency, A.I. competi-

tion)

Therefore: Set a minimum level that is required for pass-

ing, base the grading not on the result of the competi-

tion, but overall qualities. One can get the highest marks

without winning being on top of the competition. Re-

ward the best X on a list with a bonus to the grade. Up-

date the list preferably on runtime/frequently. Make the

score table visible.

PEER

FEEDBACK/REVIEW

You have limited resources, but want to offer students

as much feedback as possible. [6]

Therefore: Use peer-reviews where students or groups

of students give feedback to other students. Peer-reviews

cannot be used to directly grade the assignments, but

they can be used to give the students additional feedback

on their work. The knowledge of other students review-

ing their work often encourages the students to do better

work. You can also use the student feedbacks to ease

your grading by verifying the main issues in the feed-

back are relevant.

GROUP WORK [6] You have a shortage of personnel, want to have a larger

assignment, or need to teach the students group working.

 Therefore: Let the students work in a group there they

can teach each other, learn group working skills, and

have a larger application.

PAIR WORK[6] You have limited course personnel, you want to teach

e.g. benefits of revision control, or you want to have a

larger assignment.

 Therefore: Make the students work in pairs. They can

help each other, they learn to co-operate, communicate,

and share work.

SOMETHING FROM

THE REAL WORLD

Using languages and environments made solely for

teaching purpose or similarly languages and environ-

ments that are only used in academia tend to demotivate

the students. Learning to use something no-one in indus-

try uses is often seen useless.

 Therefore: Include some “real-world” examples on

52

your course, do not stick only to academic examples.

Allow students to work with modern tools and devices.

4 The patterns

In this section we present three patterns that can be employed when designing and

writing a programming assignment description. This is only an incomplete subset of

the patterns as this is a work in progress. The patterns use an Alexandrian(ish) pattern

format [1]. The first part of the pattern is a short description of the context, the prob-

lem is given in bold. Forces are given after that and they are followed by the solution

in bold. The resulting context and the consequences of the pattern application follow

the solution. The applications of the pattern are given in italics as last.

4.1 ONLY THE ESSENTIAL

Also-known-as:

AVOID WASTE

You want to have assignments that are small enough but still cover the essential

parts of the course.

When working on larger programming assignments the students easily spent a

significant part of their effort on work that is unrelated to the learning objectives

53

of the course. This decreases their chances to learn the essential core matter of

the course.

There is a need for a large enough programming task for the techniques of the

course to be sensible. If you use overly simple applications when teaching concepts

like object-oriented programming, modularity, interface classes, or implementation

patterns e.g. MVC, the students do not see any benefits from applying the techniques

taught on the course. They merely see the new techniques in a bad light as the same

task could be implemented several times faster without using them. If the students

associate the main learning objectives with a label “something laborious and useless”

they need first to unlearn and when relearn to be able to master the objectives of the

course.

However, if you have a larger application which the students need to implement

from scratch, they are likely to spent major part of their work on coding and testing

features that are irrelevant to the learning objectives of the course. The students come

easily overburdened or implement their projects using only their background

knowledge from previous courses and do not learn and use anything new.

Their assignment might meet the functional requirements but lack in the techniques

related to the course. Thus, students get bad grades or are even unable to pass the

course even though they have put large effort on the course and even submitted some-

thing seemingly good. If they are asked to revise the project to meet the requirements,

it often means they need to rewrite a significant part of the application. It is hard to

motivate a student to spend twice the amount of time estimated to the project. Thus

some of them quit (and come again next year), others get bad grades, and many of

them complain a lot (rightfully). This all means extra work for you.

Therefore: Do not design features that are unessential to the assignment.

Come up with assignment idea, pick the core learning targets, and provide im-

plementation for the rest. Allow the students to learn to use third party code and

to focus on the learning objectives instead of wasting time on implementing unes-

sential features. Offer simple modules and interfaces to decrease the learning

curve. Include a runnable sample along your code to demonstrate the usage.

This solution can be used to increase the size of the application and thus bring the

size and complexity of the project a bit closer to real software projects. For instance,

on a course, where the purpose is to learn to use and implement interfaces and objects,

it is sensible to provide a user interface and file handling. On the other hand, on a

course on user interfaces, providing basic program control which the interface inter-

acts makes the assignment work more meaningful. When you provide components or

parts of the application, also provide a mock-up implementation which shows how to

use the main features. This decreases the amount of time the students need to spend to

learn to use your code. Give also all the necessary project files and guidance on how

to install the tools. The students can also learn by reading code written by others.

Applying this pattern requires more time than traditional assignment where stu-

dents implement everything themselves. You also need to start the preparations earlier

54

as you need to have the provided code files ready and tested when the assignment

work begins. The time working on the provided code can be significant as you need to

provide easily understandable, well-documented, and tested code. Otherwise you may

end up creating extra confusion and wasted hours.

If you are not careful on choosing the provided components, you may unnecessari-

ly limit the freedom the students have. You need to leave the students some freedom

to use their creativity in design and implementation. You can also give students an

option to implement provided parts by themselves. For instance, a user interface can

be given on a course, but students who want to learn user interface implementation

techniques can implement their own version.

You can use CONTINUOUS ACTIVITY[2] to ensure the students start to work early

enough. Some of the sub-assignments can be allocated to getting familiar with the

provided code. ASSIGNMENT IN PARTS is suitable for providing new parts or giving

extra features as part of a setup.

Related Patterns: LARGER THAN LIFE [5], TOOL BOX[5]

“Known applications”:

On courses on software design and object-oriented programming the provided

code includes user interfaces, utility tools, and initialization file reader. Instead of

writing a file parser for some strange data related to the assignment the students can

concentrate on the main application logic. Instead of having fixed values in their

application, they have parts of the data given in file. Similarly, the students do not

need to learn (graphical) user interface implementation details. Instead, they can

concentrate design of the control logic and learn to use interfaces and modules that

are provided to them.

On artificial intelligence course the pattern was used to provide the students game-

logic a reference AI player that needed to be beaten by the students, and an interface

for own AI player. The students could concentrate on the implementation of the AI

without a need to implement the game itself. In addition, the game framework was

used to make the students’ AIs to compete against each other. The most successful

ones were rewarded. (See LET THEM COMPETE pattern)

4.2 GUIDE TO FLEXIBILITY

55

You have students that have passed the first programming courses where they have

learned functions and basic datatypes etc. You want to help them to learn to recognize

and avoid unnecessary constraints/restrictions and document the ones that are chosen

on purpose. Students often design classes that just are just glorified structs and class

hierarchies where inheritance is used just for type information.

Even though you have fancy style guides and guidelines the students tend to

submit code filled with undocumented restrictions and unnecessary constraints

to e.g. size, length of values or objects. You need assignment descriptions that

encourage the students to write more flexible code.

Beginner coders tend to introduce undocumented restrictions and unnecessary con-

straints to e.g. size, length of values or objects. They tend to hardcode values and

functionality on their applications. When the projects get larger these undocumented

constraints are easily hidden behind interfaces and modules making the usage and

modification of the components difficult.

In a more abstract level they have modules and classes which have limitations and

constraints that are not documented or visible from the public interface. Giving the

students feedback and even making them revise the code after their final submission

is one possible approach. However, the scheduling is an issue as the course when

continues to summer or long to next period. In addition, students are rarely happy to

return to modify the code especially, if the modifications are not related to core sub-

jects of the course.

Giving style guides and adding constraints and rules to the specification can be

used to enforce certain features to the implementation. However, the students often

tend to skip the style guides and embedding the style to the assignment description

makes the specifications more annoying to read. The rules become easily shallow and

are only seen as a nuisance or an extra work that has been just added to increase the

workload.

Therefore: Define the application specification so that it uses initialization

files, user input etc. as source of data. Do not give everything as exact numbers,

sizes, or types already in the assignment description. When applicable, do not

give fixed amounts for entries or values. Teach students to recognize and docu-

ment the constraints and restrictions they add to their code.

Making the students to adapt to different settings and setups already in the design

phase is a good way of guiding the students to avoid hardcoded values and unwanted

restrictions. Instead of defining there can be at maximum N players, or exactly four of

these, thus the loop runs till value X, they will learn to adapt to input coming from

user, file etc.

You can provide the students with tools or components to access the data. This de-

creases unessential work that is needed to parse the data from file or to implement UI

56

(ONLY THE ESSENTIAL). Consider also ASSIGNMENT IN PARTS, CONTINUOUS

ACTIVITY and connect the flexibility points to new phases and extra parts published.

This can underline the benefits of avoiding hard-coding and using object-oriented

guidelines like SOLID[14]. Students learn the benefits when the extensions and new

parts are easier to implement.

On the other hand, if the focus is solely on teaching a specific algorithm or usage

of a single element in a narrow scope, need to avoid waste work is usually more sig-

nificant. You should not force the students to create overly general bloated solutions

for simple applications. The objective is not to teach the students solutions that are

suitable for everything, good for nothing.

Related patterns:

In EXPERIENCED ADVANTAGE[12,13] pattern the problem is similar, the students do

not see the advantages. The solution is to let them experience the advantages.

EXPERIENCED PROBLEMS [12,13] pattern shows what happens if the given problem is

not solved.

4.3 TEST RIDE THE ASSIGNMENT

You need an accurate estimate on the amount of work it takes to complete the project,

too large assignments take time from other courses and make students work too much

for their credit units and as a result students get less overall credits. Less overall cred-

its means less money to your department... On other hand, if you make too easy as-

signments your students do not learn all the key aspects of the course. Thus, they can

be in trouble in the following courses or when they move to working life. It also de-

creases the credibility of your course.

57

You need a clear assignment description to decrease your own work and students

work when assignment deadline is closing. You want to avoid a flood of questions

and requests from the students when the deadline is closing. You do not want to re-

vise the assignment description plenty of times as you have better things to do.

You have difficulties to estimate the amount of work required to complete an

assignment and your assignment descriptions need to be revised and clarified

during the course.

Reviewing the assignment description helps to remove most of the obvious faults and

inconsistencies from it. However, only when you are implementing the assignment,

you’ll get to the details and have to think about how all of the features. Even after the

review you get loads of questions and complaints from the students and need to revise

the specification and/or create FAQs and write plenty of emails and have meetings.

You may have had to make changes to the assignment requirements in the

middle of the course to allow the students to complete their work. The students have

trouble in understanding what to do and you waste your valuable time clarifying the

description. You need to give answers that are obvious (to you) to students’ questions.

As a writer of the spec you already know the unwritten details related to the

work, you have already a mental image of the application. Thus, you do not need or

use the assignment description. Estimating the amount of work spent on the complete

project is difficult, if you try to do it by yourself. You do not have to spend time to

understand the specification, to learn tools, or to learn new techniques on the course.

A detailed description is more essential on the initial courses, on the advanced level

you can only give rough guidelines for the course.

Therefore: Use a person who has not participated on the design of the specifica-

tion to implement the application- She should take notes and ask questions

whenever there are is something unclear in the description or there is something

essential missing.

You need to find a person with a suitable background knowledge before you can ap-

ply the pattern. In Finland the course assistants are often students, some of them usu-

ally passed the course last year. This makes them excellent targets for the pattern.

They learn a bit more about the subject, get some extra work and money, and the

course will get a better assignment. In the end teacher’s valuable time can be saved.

Another option is to use students that ask for a possibility to pass the course outside

the teaching period, e.g. in summer.

Using your own time estimate and feedback from the tester to get a better measure-

ment for the assignment size. The feedback you can get from a person actually creat-

ing an implementation using the specification and (possibly the code files you have

provided, ONLY THE ESSENTIAL) makes the assignment more polished. If you can find

58

errors in the provided code in time, you’ll save the students’ and your own time. If

you plan to use automatic checking of the assignments, the testing becomes vital.

Without the testing the flaws of the assignment are often discovered only weeks be-

fore the final deadline. Making unplanned (major) changes to the assignment this late

is guaranteed to invoke dissatisfaction among the students. Changing the automatic

checking systems or using students to beta test it are also guaranteed ways to get peo-

ple upset.

You can also use the test implementation to develop better feedback and grading

guidelines.

Object-oriented programming courses, distributed and service oriented systems,

software architecture, and basic programming have used this pattern. The usage of

the solution has decreased the need to revise the assignment description, there are

less errors or inaccurate workload estimates. For instance, in advanced course of

object-oriented techniques features in the original assignment description (e.g. types

of squares and monsters in a dungeon dwelling game) have been moved from compul-

sory requirements to voluntary extra bits. The student feedback on the amount of time

spent on the assignment has shown the workload average has been near to the course

design. Before testing there were times where the average the students spent on the

assignment was 50% more than the credit unit workload.

4.4 ASSINGMENT IN PARTS

You want to motivate the students to think about extensibility and modifiability. In

addition you want to reward students that are interested in doing additional tasks or

have put thought on design. However, giving a specification that challenges the keen-

est of students might be too much for your average student especially in the begin-

ning.

Giving a complicated and demanding assignment demotivates the normal stu-

dents, and simple ones do not motivate the more advanced enthusiastic students.

Large, single phase assignments do not teach the students to adapt to changes.

59

You want the student to agile and to encourage them to be prepared for changes

and extensions, but do not want to extend the specification in the beginning.

A specification should offer challenges and be suitable for both students that know

only basics that the prerequisite courses have taught and more advanced and keen

students that are interested in additional work.

The exercises and assignments should also teach about changing requirements and

specifications. However, if you change the main specification, you’ll annoy the stu-

dents who start early and aid those who start just before the deadline.

Therefore: Give the specification in two or more phases. Publish the extra fea-

tures fairly near to the deadline to encourage students to focus on the design and

to prepare for changes.

When you publish the basic version of your assignment, state that extension will be

published later containing some changes and/or additional features. This encourages

the students to focus on their design and prepare for changes and extensions. If you

offer some extra points for implementing the additional features and changes, the

students (may) want to start their work earlier.

If the new features are published near to the deadline, implementing the complete

application from scratch is almost impossible. However, those who have started early

can do the extra features with a little effort.

The students who have had a sensible design are able to implement the new fea-

tures easily. The rewarding experiences can be connected to the learning objectives of

the course. The concrete reward in form of some extra points to the grade is only a

decoy; the actual reward comes from the feeling of achievement.

If you have too specific demands you may easily restrict the development process

and constrain your assignment. In addition, the style of the application needs to be

doable part-by-part.

You should include a design review meeting to the assignment there you can guide

the students to a right direction. This way all the students should have a fair starting

point to the actual implementation phase.

You may also consider STUDENT SELECTED ACTIVITIES[6] to allow the students to

pick the parts they want to implement in each phase.

CONTINUOUS ACTIVITY should be considered to be used with ASSIGNMENT IN

PARTS. The delivery moments of the work can often be synchronized with publishing

the new parts.

This pattern is a special case of CONTINUOUS ACTIVITY(CA). In CA the main aim

is to keep the students active whole time of the assignment. In addition, smaller sub-

tasks are not as overwhelming as one large. ASSIGNMENT IN PARTS is suitable for

60

courses, where software design, extensibility, modifiability belong to the key learning

objectives of the course.

The pattern also shares features of STUDENT SELECTED ACTIVITIES. It allows the

students to pick and implement extra bits if they want to. However, in order to pass,

the students only need to do implement the main parts of the project. Similarly the

majority of the grade comes from the main project and. extra parts are used to tempt

and motivate the students to put more effort to early phases and the design of the pro-

ject. In addition, it gives the more keen students a chance to show their skills.

The pattern shares common consequences with EXPERIENCED ADVANTAGE or

EXPERIENCED PROBLEMS depending on the path they chose.

In Object-oriented programming courses (basic and advanced) programming as-

signments are often games there students are given a framework. The extra features

are published after the design deadline is over. Some of the features are added to

provided code side, other parts should be implemented by students by specializing

existing components. The approach shows the ideas behind the interface classes and

traditional inheritance. Students can easily extend their applications if they have

thought about the design and started implementing their application. Design feedback

meetings can be used to guide the student towards designs that are missing some key

features. The extra features are easy to add to games, you can easily come up with

new commands, new types of squares, actions, creatures, characters, or equipment.

5 Related work

Pedagogical patterns project [11] have a couple of pattern collections for teaching

[6][9]. There is also an ongoing work on a pattern language for course development in

computer science [5]. There are also pedagogical patterns for teaching in a foreign

language [3][4] and patterns for active learning [10] a pattern collection for giving the

feedback [8]. Patterns for effective teaching in seminars are also related to teaching

courses [7].

 This paper focuses on programming assignment design for a software engineering

courses. The aim is to aid to design assignments that are suitable for both the students

that self-study the course and the students who participate actively on the teaching

sessions. These patterns can be taken as part of a more general course development

language. The pattern collection presented in Section 3 summarizes the patterns one

can consider when designing an assignment. The references to the corresponding

pattern are given with the pattern. Some of the wordings have been changed to better

suit the assignment design need.

61

6 Acknowledgements

I want to thank my shepherd Christian Köppe for his invaluable comments and gentle

guidance to the world of patterns, my teaching colleagues for their time and discus-

sions, and my students for acting as guinea pigs on some of the teaching experiments.

7 References

1. Christopher Alexander, Sara Ishikawa, and Murray Silverstein. A Pattern Language:

Towns, Buildings, Construction (Center for Environmental Structure Series). Oxford Uni-

versity Press, August 1977

2. Christian Köppe. Continuous Activity - A Pedagogical Pattern for Active Learning. (July

2011), 7 pages. EuroPLoP'11

3. Christian Köppe and Marielle Nijsten. A Pattern Language for Teaching in a Foreign

Language -Part 1. In Preprints of the 19th Pattern Languages of Programs conference,

PLoP'12, 2012 16th European Conference on Pattern Languages of Programs, Eu-

roPLoP'11

4. Christian Köppe and Marielle Nijsten. A Pattern Language for Teaching in a Foreign

Language -Part 2. In Preprints of the 19th Pattern Languages of Programs conference,

PLoP'12, 2012

5. Joseph Begin, A Pattern Language for Course Development in Computer Science, Pace

University, http://csis.pace.edu/~bergin/patterns/coursepatternlanguage.html

6. Joseph Begin, Some pedagogical patterns, Pace University,

http://csis.pace.edu/~bergin/patterns/fewpedpats.html

7. Astrid Fricke and Markus Voelter, A Pedagogical Pattern Language about teaching semi-

nars effectively, 2000, http://www.voelter.de/data/pub/tp/html/index.html

8. Joseph Bergin, Jutta Eckstein, Mary Lynn Manns, and Helen Sharp. Feedback Patterns.

http://www.pedagogicalpatterns.org/

9. Joseph Bergin, Fourteen Pedagogical patterns,

http://csis.pace.edu/~bergin/PedPat1.3.html

10. Joseph Bergin, Jutta Eckstein, Mary Lynn Manns, and Helen Sharp. Patterns for Active

Learning. http://www.pedagogicalpatterns.org/

11. Pedagogical Patterns Project, http://www.pedagogicalpatterns.org/

12. Christian Köppe, A Pattern Language for Teaching Design Patterns (part1), 16th Europe-

an Conference on Pattern Languages of Programs, EuroPLoP'11, 2011

13. Christian Köppe, A Pattern Language for Teaching Design Patterns (part2), Preprints of

the 18th Conference on Pattern Languages of Programs, PLoP'11, October, 2011

14. Robert C. Martin, Designing Object Oriented Applications using UML, 2nd. ed.,

Prentice Hall, 1999

62

http://csis.pace.edu/~bergin/patterns/fewpedpats.html
http://www.voelter.de/data/pub/tp/html/index.html
http://www.pedagogicalpatterns.org/
http://www.pedagogicalpatterns.org/

Marko Leppänen p. 1, 2013.

© 2013

Patterns for Messaging in Distributed Machine Control

Systems

Marko Leppänen

{firstname, lastname} @tut.fi

Department of Pervasive Computing

Tampere University of Technology Finland

1 Introduction

In this paper we will present two patterns for sharing information in distributed

machine control systems. A distributed machine control system is a software entity

that is specifically designed to control a certain hardware system. This special hard-

ware is a part of a work machine, which can be a forest harvester, a drilling machine,

elevator system etc. or some process automation system. Some of the key attributes of

such software systems are their close relation to the hardware, strict real-time re-

quirements, functional safety, fault tolerance, high availability and long life cycle.

Distribution plays a major part in the control systems. Different functional hard-

ware parts of the machine are physically apart from each other and their correspond-

ing control software is usually located in a embedded controller node near the con-

trolled hardware. The nodes must communicate with each other in order to perform

their functionalities. It is also common that the system nodes have very wide variety

in their computational capabilities. Usually the system has several simple embedded

controllers with limited computational abilities also known as low-end nodes. In addi-

tion to these embedded controllers the system may contain one high-end node that has

processing power that is comparable to a common desktop PC. Due to these facts, a

distributed control system needs to distribute information between different parts of

the system. The information-sharing and messaging capabilities of such systems is

discussed in these patterns in more detail.

The patterns in this paper were collected during years 2008-2011 in collaboration

with industrial partners. Real products by these companies were inspected during

architectural evaluations and whenever a pattern idea was recognized, the initial pat-

tern drafts were written down. These draft patterns were then reviewed by industrial

experts, who had design experience from such systems. After these additional in-

sights, and iterative repetitions of the previous phases, the current patterns were writ-

ten down. We hope that the final pattern language can be tested on implementation of

some real system after all patterns in the language are published.

The published patterns are a part of a larger body of literature, which is not yet

publicly available. All these patterns together form a pattern language, which consists

63

of more than 80 patterns at the moment. A part of the pattern language in this paper is

presented in a pattern graph (see Fig 1.) to give reader an idea of how these selected

patterns fit in the language. These two patterns are closely related in the pattern lan-

guage and therefore are ideal to be submitted together as a whole. In the following

sections, all the pattern names are written in SMALL CAPS.

Fig. 1. The relations between patterns mentioned here

In the second section, we will first introduce our pattern language and the pattern

format. Following this, the selected two patterns are presented in detail. Finally, the

last sections contain the acknowledgments and references.

2 Patterns

In this section, a set of two patterns is presented. Together, these patterns are a part

of a sub graph in the pattern language in Fig. 1 The pattern graph is read so, that a

pattern is presented as a box in the graph and an arrow presents a connection between

the patterns. The connection means that the pattern from which the arrow emerges is

refined by the pattern that the arrow points to. In other words, if the designed system

still has some unresolved problems even after some pattern is applied, the designer

can look to the refining patterns for yet another solution if they want solve the current

design issues. The patterns refine each other extending the original design with other

solutions.

64

For example, the CONTROL SYSTEM pattern is the root of the whole pattern lan-

guage and it is referenced in the following patterns. So, the CONTROL SYSTEM is the

central pattern in designing distributed control systems. It presents the first design

problem the system architect will face: Is a control system needed in this context?

Table 1 presents all patterns that are shown in Fig. 1 and all the patterns that are refer-

enced later on in this paper.

Pattern name Description

CONTROL SYSTEM Implement control system software that controls the machine

and has interfaces to communicate with other machines and

systems.

ISOLATED

FUNCTIONALITIES

Identify logically connected functionalities and compose these

functionalities as manageable sized entities. Implement each

of these entities as their own subsystem.

ONE TO MANY Build a network called a bus where all nodes share the same

communication medium. Nodes send information as messages

over this medium. All nodes can receive all messages from the

network and will see if there is currently anything relevant on

the bus.

MESSAGE GATEWAY Add a component, a message channel gateway, to the system

between message channels. This component routes message

traffic between message channels. If needed, the component

can filter messages according to specific criteria defined in the

system configuration. In addition, the component handles the

translation from a message protocol to another.

MESSAGE CHANNEL

MULTIPLEXING

Separate communication channel from the actual physical bus

by creating virtual channels. Virtual channels might be multi-

plexed in one physical channel using dividing the channel into

time slots or can be divided over several physical buses.

FLEET

MANAGEMENT

Implement a Fleet Management application and install it on-

board the machine. Within that application, create common

interfaces and information model for all work machines to

manage them as a fleet. Production information, which con-

forms to the information model, can be transferred to and from

the machine using the common interface. In this way, the ma-

chine can coordinate the optimization of work with other ma-

chines via an ERP system.

REMOTE ACCESS Add a remote connection gateway on-board which enables

communication between the machine and the remote party.

The remote connection gateway transforms the used messag-

ing scheme to suit the local and remote parties' needs and can

take care of authentication.

THIRD PARTY

SANDBOX

Provide an interface and tools for third-party application de-

velopers. Third-party applications can use the machine ser-

vices only through this interface so that they will not interfere

65

with the machine's own applications. The interface provides

common ways to access data and services.

DYNAMIC MESSAGE

CHANNEL SELECTOR

Organize all communication channels using the wanted prop-

erties, e.g. cost of communication. Add a component which

automatically changes the communication channel if the high-

er priority channel is not available.

HUMAN-MACHINE

INTERFACE

Add a human-machine interface. It consists of ways of pre-

senting information and controls to manipulate the machine.

These typically are displays with GUIs, buzzers, joysticks and

buttons etc. The way of presenting the information and the

controls of the machine must be decoupled, e.g. with a Mes-

sage Bus.

OPERATING MODES Design system so, that it consists of multiple functional

modes. These modes correspond to certain operating contexts.

The mode only allows usage of those operations that are sen-

sible for its operating context.

HEARTBEAT Make a node to send messages at predetermined and regular

intervals to another node. The other node knows the message

interval and waits for the message. If the message does not

arrive in time, the remedying actions can be started.

Table 1. Patlets

Our pattern format closely follows the widely-known Alexandrian format [1]. First

we present the context for the problem. Then, the problem is concentrated in a couple

of sentences that are printed with a bold font face. After that, a short discussion about

all forces that are affecting the problem is given. In a way, it is a list of things to con-

sider when solving this problem. Then, after "Therefore:" the quick summarization of

the solution is given. Then, after a three star transition line, the solution is discussed

in a detail. This section should answer all the forces that were left open in the previ-

ous section. Then another star transition marks the end of the section. This section

describes briefly the consequences of applying this pattern. After the last star transi-

tion a real life example of the usage of this pattern is given.

2.1 One to Many

...there is a CONTROL SYSTEM with ISOLATED FUNCTIONALITIES, and thus the sys-

tem is divided into several nodes. As the nodes have to collaborate, every node has to

be connected to all those nodes from which it needs information. Similarly, the node

has connections to all other nodes which use the information it provides. Usually

these connections are dedicated wires where communication is carried out. Basically

66

two-way communication requires at least one wire, creating a mesh (see Figure 2)

where the communication requirements of each node form a connection to other

nodes. The nodes are coupled to each other by this extensive wiring. If the system

design evolves during the system lifetime so that the communication requirements

change, it would propagate changes to the wiring, too. Alternatively, the nodes should

have routing capabilities in their software which would allow the sender to reach the

recipient using intermediating nodes.´

Fig. 2. A communication mesh with extensive wiring between nodes

✥ ✥ ✥

Every node has to know how to reach the recipients of information it produces

and this forms a tight coupling between nodes. If the communication require-

ments change, redesign of wiring or software on several nodes is needed.

Physical wiring for communication nails down the communication structure. How-

ever, the work machine design may change over time, as new hardware with different

capabilities can be added to the original design and the software may evolve to have

more optimized algorithms. Thus, the communication needs of the devices may

change as information may be produced and consumed in unforeseen places in the

system. In such evolving design fixing the wiring is too rigid solution. Adding wires

afterwards is laborious and sometimes even impossible as the cable raceways might

be already full. In addition, it may be impossible or difficult to add new devices to the

system after the design phase as the wiring harness only has connectors in predefined

places.

67

In some cases, the same CONTROL SYSTEM application should be executable on

products that have slightly different hardware, but still belong to same product family.

In order to allow software reuse, the communication infrastructure should be flexible

enough.

The communication infrastructure should be scalable, so that new participants may

join the information exchange. The communication should allow both increase in

amount of communicating parties and amount of information sent by a participant in

the communication. However, amount of wiring to be used for information transfer

should be minimized. The wiring is relatively expensive, adds weight and takes up

space. The more wire there is, more difficult it is to design the wiring so that it won't

be prone to electromagnetic interference or breaking. In addition, the assembly of the

machine should be fast on the assembly line. Extensive wiring is slow and error-prone

to install as assembly line personnel need to install multiple wires. So the wiring for

the communication between nodes should consist only of minimal number of wires to

allow easy installation.

There should be a uniform way to communicate with different nodes on the sys-

tem, so that the developer does not need to be interested in the details of communica-

tion when designing the applications. Furthermore, it is crucial that the communica-

tion way does not depend on with which other node is recipient party to avoid errors

in the development phase.

Therefore:

Build a network called a bus where all nodes share the same communication

medium. Nodes send information as messages over this medium. All nodes can

receive all messages from the network and will see if there is currently anything

relevant on the bus.

✥ ✥ ✥

Communication between nodes should be carried over a shared medium, to where

all nodes are connected to. This medium usually consists of a single cable, which is

connected in a bus network topology. In rarer cases, the communication can be elec-

tromagnetic waves sent over air. In these cases, sender node transmits the message

over the radio waves and all other nodes may receive all sent messages, as radio

waves reach all receivers.

Typically, however, a bus topology is used and the communication medium con-

nects the communicating devices to each other and allows sending information to the

recipients, see Figure 3. The connecting cabling creates the physical layer that is the

foundation for the data exchange. On this layer the information is presented by volt-

age/current changes that are interpreted as binary data. The data forms messages

which all nodes should be able to understand. The physical layer and messages are

68

usually implemented using a commercial solution, such as CAN bus [2], as many

problems that arise when designing the communication on physical level have already

been addressed. There exist other physical topologies, such as a star configuration. A

star topology may be used, if all branches of the star get all the messages, but, for

example, in the case of CAN this requires the system to include an active component,

e.g. a hub or a switch in the middle of the star.

Fig. 3. X: An example of bus topology network

Now, every node can listen to the communication medium and pick up relevant

messages. The sender does not have to know which other nodes are interested in its

messages, only which information it is supposed to publish. This information is en-

capsulated in messages which are broadcast to all nodes. For example, as in Figure 3,

an operator uses controls, such as a joystick, which sends control messages to the

message bus. The boom controller can read the broadcast message and move the

boom accordingly. The recipient usually does not need to know the actual sender. It

just reads every message from the bus and if the message does not contain infor-

mation the node needs, it just simply discards the message. This abstracts the physical

location of the devices from the control applications. As the only interface between

the nodes is the messages, it is quite easy to move functionality from one node to

other, or even nodes from one location to another.

When designing the connection with wires, same things should be taken into con-

sideration as when installing any other cabling. For example, one should consider

external forces that may break the wiring. However, the situation is usually remedied

by the fact that a communication cabling consists of only few wires and machine

joints can be passed through using sliding ring connections.

If two or more nodes try to communicate at the same time a collision occurs and

thus the actual bit stream on the bus becomes garbled. When the messaging is carried

out in a point-to-point fashion, the collision may happen only when both parties of the

channel send their messages simultaneously. In shared communication channels, col-

lisions may happen frequently as any message sent on the bus reserves the communi-

cation channel for a certain time span. The probability of a collision increases when

the amount of nodes on the bus grows. However, in a shared channel, the probability

can be diminished if the nodes listen to the bus simultaneously when sending the mes-

69

sages. If there is message traffic on the bus, the node must retain from sending its own

messages. However, if one node starts transmitting messages too often, the other

nodes will have difficulty to get their messages through as they must wait for a silent

period. The problem is commonly called the babbling idiot’s problem [3] and can be

addressed by using Bus Guardian pattern [4].

Waiting for the silent moment does not alone solve the collision problem complete-

ly. Several nodes may start sending their message still exactly at the same moment

when they have detected that the message channel is silent. These messages collide

and the information does not get through. In some bus technologies, the collision

causes both senders to wait for a random time and try again. If yet another collision

occurs as the nodes waited for the same time by chance or a third-party is willing to

send its messages, the collided nodes double their maximum waiting period. This

mechanism is called binary exponential back-off [5]. It suits badly real-time applica-

tions as an unfortunate sender may have a long and nondeterministic wait time.

The collision problem can be remedied by comparing any sent data bit to the actual

bit on the bus. If the bit on the bus is high when the node is sending a low bit, the

node should immediately stop sending as the discrepancy means that there is another

node sending another message at the same time. Now the message has not yet been

garbled and the other node will get its message through. The CAN bus utilizes this

mechanism so, that in the beginning of the message there is the sender id, which at

same time defines the priority of the node. High priority node's identification will get

through as its bit pattern has earlier dominant bit. As sharing the communication

channel is the root cause of the collisions, the only way to be sure that the collisions

will not happen is to remove the sharing by using MESSAGE CHANNEL

MULTIPLEXING.

One can gain the benefits of mass-production by selecting a bus standard that is

widely used in the industry. These standard solutions typically have solved the prob-

lems related to messaging in such way, that it is suitable for a certain domain. Some

examples in the machine control domain include CAN bus, FLEXRAY [6], Local

Interconnect Network [7], and PROFIBUS [8] using multi-drop EIA-485 as the phys-

ical connection standard. As there are several vendors adhering to the same standards,

there are ready-made devices that support the standard communication, for example,

sensors that can be attached. It makes the system designers' jobs easier as they can use

ready-made devices and software instead of proprietary solutions. However, using

commercial solutions may cause unwanted dependencies.

Usually selecting one commercial communication protocol also affects the hard-

ware and vice versa. Vendor lock-in may easily occur when all components should be

acquired from one vendor. The long life cycle may further amplify these problems as

the support for a certain communication solution may end over years. Proprietary

components may have limited availability in the area where the work machine is used.

Thus, it may be difficult to acquire spare parts for commercial off-the-shelf solutions

70

in some parts of the world. In some cases, the commercial standards have many

stakeholders and the development of the communication solution may be led by com-

panies from other domains. Thus, the development is driven by other industrial re-

quirements than your own and these requirements might weigh some other quality

attributes of the system design more than what would be optimal for your design. For

example, CAN bus is very heavily-driven by automotive industry and its applications

have different requirements than in the work machine industry as cars need quick

response time, but the amount of information is smaller. However, in a work machine

there might be more data to be transferred, but slower response time would be ade-

quate.

This pattern is an example of PUBLISHER/SUBSCRIBER pattern [9]. It is also docu-

mented in the context of DDS middleware as ONE TO MANY [RTI]. MESSAGE

CHANNEL [8] and MESSAGE BUS [9] describe similar mechanisms for building com-

munication channel between nodes but in different domains.

✥ ✥ ✥

Nodes on a bus may communicate with each other and the communication infra-

structure will be scalable in the amount of nodes and flexible in the locations where

information is produced and consumed. For example, if the physical location of a

sensor or an actuator changes in the design, it is easy to accommodate the changed

messaging requirements for these nodes. In addition, the recipient is not usually inter-

ested in actual location of the other node. Location transparency allows additional

flexibility in connecting the hardware devices to the connectors. However, the physi-

cal properties of the bus and the amount of collisions in the messaging may set a max-

imum for the amount of the nodes on one bus segment.

As every node listens to all messages on the communication medium, they can also

act as a monitoring point inspecting the condition of the message channel. Thus, more

of nodes there are on the bus, the smaller chance of residual errors remain on the

communication, making the system safer.

It is easier to design the wiring of the system as all the communication is carried

out over just a few wires. The production costs are cut down as fewer wires are need-

ed to be installed on the machine and every device does not require its own set of

wires. However, the message bus acts as a single point of failure, but as the commu-

nication protocol may provide a HEARTBEAT service, communication failures are

usually easy to detect. For safety reasons, it is usually better not to try to communicate

at all when the reliability of the message channel is compromised.

As the nodes do not subscribe per se to any messages, but it is rather their respon-

sibility to read interesting messages from the bus, the sender cannot know if the mes-

sage has been delivered to any interested parties, if the message channel is not relia-

ble. Thus, some mechanism to acknowledge the delivery is usually needed. For ex-

71

ample, in the case of CAN bus, the other nodes acknowledge all correct messages

they were able to receive by overwriting sent recessive ACK bit as dominant. Still,

the sender will not know if anyone really used the message and more elaborate

acknowledgement mechanisms may be needed.

The selected communication protocol and the physical bus may set constraints to

the communication infrastructure. For example, the transfer rate and the length of the

bus may be limited. In some cases, the maximum length of dropdown lines and the

minimum distance between the nodes in order to avoid signal reflections from the

ends may become an obstacle of physical cabling design. Even the wiring consists of

only a few communication wires, which are easy to extend to reach all over the ma-

chine, physical connectors are still needed near the location of the new node or de-

vice.

In some cases, the actual physical layout of the system makes it hard to use bus to-

pology on the system. For example, if the system consists of two clearly separated

locations where nodes reside, it may be difficult to connect these isolated groups of

nodes with a cable. Then it would be sensible to segment the bus into two separate

parts and connect them with a MESSAGE GATEWAY.

✥ ✥ ✥

A truck has multiple controllers as the system design dictates that the controllers of

the subsystems should be located as close as possible to the actual hardware of the

subsystem. This is done to minimize the amount of wiring needed for actuators and

sensors. For example, the engine controller is mounted in the engine compartment on

the engine itself. The controllers should work in co-operation and thus the units need

to communicate with each other. The nodes are connected with a CAN cable which

consists of three signal wires, i.e. CAN HI, CAN LOW and ground wires, terminated

from both ends. This cabling allows the nodes to send SAE J1939 (SAE International,

formerly Society of Automotive Engineers) messages to other nodes [10]. SAE J1939

protocol is designed so, that all messages are broadcast to other nodes. This makes it

easy to accommodate additional nodes to the bus. For example, if a trailer is attached

to the truck, the nodes on the truck and trailer may communicate with each other. If

the sender needs to specify the receiver, the protocol allows adding the destination

address to the message. The messages have also a 29-bit PGN (Parameter Group

Number) field that tells the receiver the purpose of this message and allows the recipi-

ent to quickly determine what kind of data this message contains. The PGN field dis-

criminates if the message is for a specific recipient or a broadcast message. In addi-

tion, it contains the source address of this message and in a specific part of the header

the rate of transmission and the message priority. This special part of the header also

includes the data assignment of the parameter part of the message. The parameter part

has the actual payload of the message. A certain parameter group has same data

length in bytes, data type, resolution, offset, range and a reference label or tag. The

SAE J1939 also allows multipart messages and defining new parameters. Sending

72

longer messages than the maximum length of a frame (8 bytes) is possible by using

higher level services. It also has address claiming mechanism and diagnostics built-in.

2.2 Dynamic Message Channel Selector

...there is a distributed CONTROL SYSTEM which has a REMOTE ACCESS allowing

accessing the machine resources remotely. There are multiple technologies, e.g. wire-

less LAN, satellite telephone or GPRS (General Packet Radio Service) connection,

supported which offer ways to communicate with the machine remotely. As the mo-

bile work machine can be situated on various work sites all around the globe, various

environmental factors may interfere with the communication channels. For example,

if a forest harvester works in a stand situated far in the wilderness, there are no terres-

trial base transceiver stations nearby. Thus, if a remote connection is needed, only

expensive satellite phone connection is possible. On the other hand, when the harvest-

er is at the factory perimeter, there might be Wireless LAN available for high band-

width data transfer. In another case, a mining drill is situated in an underground mine,

where WLAN availability varies depending on the location as the massive rock walls

block the signal. The location of the machine and available communication channels

affect the band-width, communication costs, transfer rate and other attributes and

constraints of the communication channel. This makes the communication scheme

design hard as there are multiple trade-offs depending on the environment.

✥ ✥ ✥

There can be several communication channels that could be used. However,

under certain circumstances some of these channels are not available. Still, the

most cost-efficient communication channel available should be chosen.

There are plenty of remote communication technologies available and it is quite

cheap to implement several of them on a machine. The implementation can be done

with commercial off-the-shelf hardware either as an additional chip on a controller or

as a separate device that can be plugged directly to the message bus. It is reasonable

to support multiple technologies as the wireless technologies have different kinds of

73

communication properties and restrictions. For example, some provide communica-

tion that needs dense base station infrastructure, but has high transfer rate and so on.

The information that is stored on the machine has varying importance and urgency

for the remote party. Having a high importance means that the remote party definitely

needs to have access to the information. Conversely, low importance means that the

remote party can manage without this single piece of information and it would only

be needed for optimization purposes. On the other hand, high urgency information

means that it is needed on the remote end within a short time interval from the mo-

ment when it is produced or otherwise it will be obsolete. Low urgency means that the

information will be still relevant after a long time span. Thus, the urgency factor is

essentially a time-to-live value for the information. For all information, the communi-

cation quality should be optimized in terms of urgency and importance.

All the information must be conveyed as messages that are sent via the communi-

cation channel. As the information consists of varying amounts data, some messages

can be larger than some other messages. However, the message size is not correlating

to the importance or urgency. As the machine moves, the set of available messaging

options changes dynamically. There can be situations where there is no communica-

tion channel available for some period of time, and in some other cases, it might be

that a certain communication channel is never available for a single machine.

Therefore:

Organize all communication channels using the wanted properties, e.g. cost of

communication. Add a component which automatically changes the communica-

tion channel if the higher priority channel is not available.

✥ ✥ ✥

Organize the communication channels according to the properties you wish to op-

timize in order to achieve the best possible cost-efficiency. Consider all different

communication properties, i.e. security of the channel and the possibility of eaves-

dropping, cost per sent amount of data, bandwidth, reliability, stability, latency and so

on. Organize this information in a form of an array; see Fig 4 for an example. Some of

the properties can be dynamic as in the case of availability. The unit of the properties

can be, for example, an integer value from one to ten describing your view of the

property for this channel. For example, in the Fig 4, Iridium has low latencies com-

pared to WLAN, but it has really high price per sent unit. In addition to these channel

properties, one should take into account the nature of the data that has to be sent. Eve-

ry nugget of data may have differing urgency, importance, security etc. requirements.

The weighing of certain properties may also change depending on the operating con-

text, such as the OPERATING MODES of the machine. Now, define a utility function

that sets weights for different communication properties when given the wanted prop-

erties for the data and the operating context.

74

Fig. 4. An example with four different wireless technologies with different properties. The

utility function uses these properties as one parameter.

Now, the designed utility function will then return the most cost-efficient channel

for communicating the data. Of course, the utility function must take in consideration

the availability of channels as there might be no connectivity because of the environ-

mental factors, as the terrain, location and such. See Figure 5 for an example system,

where wireless channels are organized so that a certain data nugget has high urgency,

importance, and reliability requirement will be sent using Iridium satellite connection.

The other option, 3G link, would be too slow and unreliable for this data transfer.

Fig. 5. an example of a utility function, which takes reliability, urgency and importance re-

quirements for a certain data nugget as parameters.

After the utility function has been devised, add a component to the REMOTE

ACCESS service which uses the utility function to select the best channel available

according to the criteria. The component will send the messages through the best

available option. If there is no sensible option for sending the data, the messages

which have great importance but low urgency may be stored locally on the machine

so that they could be sent when the cost of transfer will be feasible again. High urgen-

cy data must be discarded, if the sending delay would grow too large.

One way to organize data transfer is to stop communication altogether for certain

services. For example, if a 3rd party software needs updating, it might be reasonable

to block this happening if the communication channel is slow and/or expensive. See

Figure 6 for an example how different services could be grouped. When the commu-

nication channels’ availability changes, the component selects the next suitable option

from the list of available communication channels and makes the proper changes to

the amount of messages which can be sent through this channel.

75

Fig. 6. an example how to weigh different services according to their importance and urgency.

If the data transfer does not cost by amount of transferred data, the selector can

send non-urgent messages via channels by splitting the data into smaller chunks

which are sent in the background. This takes more time, but the transfer does not dis-

rupt the available bandwidth. The DYNAMIC MESSAGE CHANNEL SELECTOR may be

used even if there are two similar channels for use in order to maximize the band-

width. For example, if two radio channels are available to connect the machine to the

remote party, they both can be used so long as the usage does not cost anything extra.

This maximizes the amount of data that can be sent. If the other channel is not availa-

ble any more, the data transfer is not disrupted, it just continues with lower band-

width.

In some cases, DYNAMIC MESSAGE CHANNEL SELECTOR can be used in local

communication too. Usually this is the case, if there is for example, an Ethernet cable

and CAN bus connecting two nodes. Ethernet is used in transferring huge amounts of

data, e.g. diagnostics, and CAN is used for control. Now, if the CAN bus is severed,

Ethernet could dynamically be used to carry out some communication. However, this

approach is limited to Limp Home kind of functionality only as there is no determin-

ism in the communication anymore.

✥ ✥ ✥

The messages over the remote link are delivered using the optimal channel. This

may save communication costs or provides the most reliable channel for the data. In

76

special cases, the machine might switch to more secure channel in order to prevent

eavesdropping.

If several channels can be used in parallel, the availability of messaging and its

bandwidth may be optimized. In some cases, the messages can be sent in chunks, so

that momentary unavailability of a channel won't disturb the communication as a

whole.

✥ ✥ ✥

A rock crusher sends its production data to the FLEET MANAGEMENT. The produc-

tion information consists of rock type, its volume and diagnostics information about

the velocity of the transfer conveyer belt, jaw speed and so on. On the crusher's

HUMAN-MACHINE INTERFACE, there is a configurable setting, which allows the user to

decide properties for the production information that is sent over the wireless link.

The wireless link can be established as a WLAN or 3G link, depending on the situa-

tion. The operator selects that the rock type and volume has high importance, but low

urgency. The selection is done as the production information is essential for the later

stages of the processing chain, but it is possible to send the day’s production infor-

mation as a batch in the end of the work shift. On the other hand, the jaw and belt

information has low importance, but high urgency as the run-of-the-mill data is need-

ed only in calculating preventive maintenance needs for the crusher. However, if the

belt or the jaw jams, the situation has to be quickly notified to the maintenance team.

As the crusher usually is located in an open-cast mine, it seldom has a WLAN con-

nection which would have enough bandwidth to send all the data. If the machine cur-

rently has not a WLAN access, it will buffer the production data to be sent later on.

Only critical messages, such as if the machine becomes incapacitated, are sent over

the expensive 3G link.

3 Acknowledgements

I especially wish to thank my colleagues Dr. Johannes Koskinen, Veli-Pekka Elor-

anta and Ville Reijonen for their valuable help and input during the gathering process

of these patterns. I also wish to thank all industrial partners for their willingness to

provide the opportunities for the pattern mining. These companies include Areva

T\&D, John Deere Forestry, Kone, Metso Automation, Sandvik Mining and Construc-

tion, Creanex, Rocla, SKS Control and Tana. In addition, I would like to thank Nokia

Foundation and Pirkanmaan rahasto for their scholarships and grants which have aid-

ed us in writing these patterns.

77

Bibliography

[1] C. Alexander, The Timeless Way of Building, Oxford University Press,

1979.

[2] ISO, "Road vehicles -- Controller area network (CAN)," ISO.

[3] H. Kopetz, Real-Time Systems: Design Principles for Distributed

Embedded Applications, Norwell, MA: Kluwer Academic Publishers, 1997.

[4] W. Herzner, W. Kubinger and M. Gruber, "Triple-T (Time-Triggered-

Transmission) - A System of Patterns for Reliable Communication in Hard

Real-Time Systems," in Proceedings of EuroPLoP 2004, 2004.

[5] IEEE, "IEEE Standard 802.3-2008," IEEE, 2008.

[6] FlexRay Consortium, "Flexray communications system - protocol

specication version 2.1 revision a," 2005.

[7] ISO, "LIN SPECIFICATION 2.2.A., ISO 17987 Part 1-7".

[8] IEC, "IEC 61158/61784".

[9] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad and M. Stal,

Pattern-Oriented Software Architecture Volume 1: A System of Patterns,

Wiley, 1996.

[10] SAE International, "SAE: J1939 Standard," SAE International,

Warrendale, USA.

[11] F. Buschmann, K. Henney and . D. C. Schmidt , Pattern-Oriented

Software Architecture Volume 4: A Pattern Language for Distributed

Computing, Wiley, 2007.

78

Catalog of Safety Tactics

in the light of the IEC 61508 Safety Lifecycle

Christopher Preschern, Nermin Kajtazovic, and Christian Kreiner

Institute for Technical Informatics, Graz University of Technology, Graz, Austria
christopher.preschern@tugraz.at, nermin.kajtazovic@tugraz.at,

christian.kreiner@tugraz.at

Abstract. Safety tactics describe general architectural design decisions
and their effect on the overall system safety. Currently these safety tactics
do not directly address the consequences of design decisions on safety
certification.
To establish this connection, we refine safety tactics by extracting in-
formation concerning architectural design decisions from the IEC 61508
safety standard. We generalize this information in order to describe the
effect of safety tactic usage on different development phases of safety-
critical systems. We provide the whole revised catalog of safety tactics
and we show its application by analyzing the Triple Modular Redun-
dancy design pattern regarding its safety tactic usage to evaluate the
effect of the pattern on safety certification.

Keywords: safety tactics, IEC 61508

1 Introduction

Safety standards contain information about requirements which have to be ful-
filled to achieve functional safety certification. Often some methods and archi-
tectures for fulfilling the safety requirements are suggested in the standard and
in practice just these, sometimes outdated, methods and architectures are used.
The introduction of new methods and architectures requires proof of their va-
lidity regarding functional safety which can be a tedious task and can increase
certification costs significantly. There is no general evaluation of methods and ar-
chitectures which allows to evaluate them regarding safety certification in order
to aid the certification of novel concepts.

Safety patterns address this problem in a way that they describe the conse-
quences of applying a specific architecture; however, they cover a rather specific
and implementation focused view of this problem. To cope with the problem
on a more general level, we evaluate the consequences of safety-related architec-
tural design decisions (safety tactics) on safety certification. We examine existing
safety tactics and discuss their suitability for the IEC 61508 safety standard. We
mine architectures and methods suggested in the IEC 61508 standard regarding
the tactics they use and regarding their effect on different phases of the safety
lifecycle. Based on our analysis of used tactics in the IEC 61508 standard, we

179

2

re-organize and re-structure existing safety tactics to be more intuitive. Fur-
thermore, we refine the safety tactics by describing their influence on different
safety lifecycle phases in general and more specific by relating IEC 61508 meth-
ods to the tactics. We present the refined catalog of safety tactics and we apply
it to an example where we analyze the consequences of the Triple Modular
Redundancy (TMR) pattern [1] on safety certification.

This paper is organized as follows. Section 2 gives an introduction to the
IEC 61508 safety lifecycle and focuses on its realization phase which is later on
analyzed for the tactics. Section 3 introduces the idea of tactics and Section 4
gives an overview of current tactics in the safety domain. Furthermore, in this
Section we discuss why and how existing safety tactics should be modified. In
Section 5 we present the tactic catalog with focus on the tactic influence on
safety certification. Section 6 analyzes the TMR safety pattern by using the
refined safety tactics. Section 7 gives an extended overview of related work on
architectural tactics with focus on safety tactics. Section 8 concludes this work
and gives an outlook on the future potential of this work.

2 IEC 61508 Safety Lifecycle

The safety lifecycle according to IEC 61508 provides a process framework which
allows to achieve functional safety for a product by following the methods and
requirements posed by the standard for each phase of the lifecycle. An overview
of the lifecycle is shown in Figure 1.

The planning phases addressing the overall product safety include definition
of concept and scope, a hazard and risk analysis resulting in safety requirements,
and the allocation of Safety Integrity Levels (SILs) to components. During the
planning phases, plans for the operation, maintenance, installation, and safety
validation have to be defined. An important phase of the safety lifecycle is the
product realization phase, which distinguishes between hardware and software
implementation and can be divided into the following sub-phases:

– Requirements specification - Full specification of safety-related functions for
the product, allocation of SILs to these functions, and specification of risk
reduction measures for these functions.

– Validation planning - Preparation of a plan how to validate the system
against the specified safety requirements.

– Design and development - Design and implementation of the safety-critical
software/hardware according to the safety requirements.

– Integration - Integration/Assembly of developed software/hardware subsys-
tems to form the complete safety-related product.

– Operation and maintenance - Activities to ensure the proper operation of the
developed software/hardware product (does not cover system modifications).

In the phases after the realization of the system, the plans on operation, main-
tenance, installation, and safety validation have to be carried out. Additionally,

280

3

Fig. 1. IEC 61508 safety lifecycle (incl. realization phase) [2]

other phases of the lifecycle address product modifications, decommissioning,
and disposal.

In this paper we focus on the effects of architectural safety tactics on the
product realization phase and the following phases like safety validation and
product modification. We do not describe the effect of architectural safety tac-
tics on all of the phases mentioned above, because when analyzing the safety
standard, we did not find relationships of the tactics to all of the safety lifecycle
phases, especially not to the early phases.

3 Introducing Tactics

Tactics are architectural design decisions which influence and manipulate quality
attributes [3]. Compared to design patterns, they describe general concepts or
principles and do not describe solutions for a problem in a given context. For
example, the Voting tactic describes how to achieve failure containment by
choosing an appropriate system output from redundant system components.
Compared to patterns, the tactic is more general and does not describe a specific
solution but rather provides the underlying idea for possible solutions. In this
case, a possible solution could be the TMR pattern which uses the Voting
tactic to choose for the majority of three redundant subsystem outputs. Usually,
a tactic can be found in several architectures or patterns and can even be seen
as building blocks for design patterns [4].

381

4

It is difficult to keep tactics and patterns apart as there is no clear boarder
between the two. However, Ryoo et al. [5] specify some criteria to identify tactics.
For a design decision on order to be a tactic, it has to be atomic. This means that
it cannot be divided into other multiple tactics, however it can be refined. For
example, the Redundancy tactic is refined by the Replication Redundancy
tactic and the Diverse Redundancy tactic, but it is not composed of them.
Furthermore, Ryoo et al. say that tactics focus on a single quality attribute (e.g.
safety) and patterns usually affect several quality attributes.

4 Safety Tactic Catalog

A collection of safety tactics presented by Wu [6] is shown in Figure 2. These
tactics were mined from safety architectures described in literature and address
failure avoidance, failure detection, and failure containment.

Fig. 2. Safety tactics proposed by Wu [6] (arrows show tactic refinements)

We analyzed methods and architectures used in the IEC 61508 standard and
related them to Wu’s safety tactics. Part 7 of the IEC 61508 standard explains
several safety-related methods and architectures and describes their aims. We
linked them to Wu’s safety tactics by manually searching for similarities between
the method or architecture aims and the tactic aims.

For some tactics we could not find any relationship to the standard at all and
some methods and architectures had very similar relationships to the same set of
tactics indicating that these tactics are rather similar. Furthermore, some of the
tactics describe rather specific safety-related solutions (e.g. Timestamp), while
others describe general concepts (e.g. Voting). This motivated us to revisit the
safety tactics, to make the safety tactic catalog more intuitive. We add tactics
we found rather often in the IEC 61508 standard to the catalog and we skip

482

5

Fig. 3. Re-organized safety tactics (arrows show tactic refinements)

tactics which we did not find in the standard or which were very implementation-
specific.

The detailed description of each tactic we use in the following section and
the detailed process how we manually analyzed the IEC 61508 standard will be
given later on in Section 5.

4.1 Re-organized Safety Tactics

Figure 3 shows our re-organized safety tactics catalog. We keep Wu’s general
categorization of safety tactics in failure avoidance, failure detection, and failure
containment tactics. We do not modify the failure avoidance tactics, because
methods regarding failure avoidance in the IEC 61508 standard could perfectly
well be mapped to Wu’s tactics. However, we change parts of the failure detection
and failure containment tactics as explained in the following.

Wu’s safety tactics Sanity Check and Condition Monitoring check a
system state or value against additionally introduced redundant information.
The difference is, that Sanity Check introduces this information in the speci-
fication, while Condition Monitoring introduces the information in the im-
plementation phase. Due to the similarities of the two tactics, we generalize them
in a Checking tactic. A similar tactic was already suggested in [7] where Wu’s
safety tactics were also slightly adapted.

We recognized that just very few IEC 61508 methods used the Timestamp or
Timeout tactic. This lead to the idea that they might be rather specific tactics
and not very general. The Timeout tactic detects excessive time-resource usage.
This is a simple check of the time condition compared to a specified limit and can
be considered as a Sanity Check. The Timestamp tactic checks the validity
of an entity by checking a timestamp attached to it, which also is a Sanity
Check of a beforehand specified time condition. We therefore see the Timeout
and Timestamp tactics as refinements of Sanity Check; however, we do not
include them in our tactic collection because we want to focus on more general
tactics. We are not the first to eliminate Timestamp and Timeout from the
safety tactics collection; also in [7] these tactics are omitted.

Wu distinguishes between three types of redundancy: replication (redundant
identical hardware), functional (redundant implementation), and analytical (re-

583

6

dundant specification). The methods from the safety standard which we linked
to functional and analytical redundancy are very similar. Therefore, we combine
these two types of redundancy and call it Diverse Redundancy.

No methods of the IEC 61508 standard were mapped to Wu’s Rollback
or Reconfiguration tactics, because they rather address availability concerns
which are covered by availability tactics [8]. However, several parts of the stan-
dard suggest recovery from errors by Repair and Degradation which we in-
clude in our tactic catalog.

We added the Override tactic to Masking, because the safety standard
often describes fail-safe mechanisms, which differ from the Voting tactic. These
mechanisms are based on output decisions of redundant channels where a specific
output state (safe state) is preferred to other states.

The Interlock and Firewall tactic are very implementation-specific and
similar mechanisms are described in literature as patterns (Output Interlock
pattern [9], Firewall pattern [10]). Therefore, we omit these tactics.

5 Refined Tactics Catalog

In this section we present the catalog of safety tactics and discuss their con-
sequences on different phases of the safety lifecycle. We structure each tactic
into the sections Aim, Description, Influence on the Safety-Lifecycle, and
Related IEC 61508 Methods. We refine Wu’s safety tactics mostly with in-
formation from the seven parts of the IEC 61508 standard [2]. We studied the
standard to find links between parts of the standard and the safety tactics. We
started with part 7 of the standard which contains a collection of techniques
which are often applied in the safety domain. We mapped these techniques to
the safety tactics by finding similarities between the technique aims and the tac-
tic aims. The techniques serve as the main source for the Related IEC 61508

Methods section of the tactics. We also generalized information about the de-
scription and the aim of the techniques to refine the Description and Aim

sections of Wu’s tactics.
The techniques of part 7 are often referenced in other parts of the standard,

especially often in parts 2 and 3. We analyzed the context of these references
to find out further information about the tactics and their effects on different
parts of the safety lifecycle. From the safety lifecycle described in Section 2, we
just present the phases directly influenced by the safety tactics, which are: Spec-
ification, Design and Development, Integration, Operation and Maintenance,
Modification, Verification, and Safety Validation. The effect of tactics on these
parts of the safety lifecycle is given in the Influence on the Safety-Lifecycle

section of the tactics and is mainly based on the parts 2 and 3 of the safety
standard.

Additionally to the above mentioned approach to mine the IEC 61508 stan-
dard for safety tactics, we also went through the parts 1-6 of the standard again
from the beginning to the end to find any connections to the safety tactics. This
yielded a very similar result to the above mentioned approach. It only differed

684

7

in a few additional connections between the standard and the tactics mostly
coming from part 6.

Now we present the refined safety tactic catalog.

5.1 Failure Avoidance

Simplicity and Substitution are failure avoidance tactics. If applicable, they
are often preferred to failure detection and failure containment tactics [11], be-
cause they are rather independent from other tactics and do not create overhead
for other safety lifecycle phases.

Simplicity

Aim - Avoid failures through keeping the system as simple as possible.
Description - Simplicity reduces the system complexity. It includes struc-

turing methods or cutting unnecessary functionality and organizes system
elements or reduces them to their core safety functionality, thus, eliminat-
ing hazards. An example for the application of the Simplicity tactic is an
emergency stop switch system which is usually kept as simple as possible.

Influence on the Safety-Lifecycle - The tactic reduces effort for every phase
in the safety lifecycle due to reduced system complexity or even reduced sys-
tem functionality. However, most other safety tactics contradict Simplic-
ity, because they require additional system components (e.g. a voter) which
are not absolutely necessary for the core system functionality. In particular
for early phases Simplicity enables significant complexity reduction. When
applied during the specification phase, it increases understandability and
predictability of the system behavior (IEC 61508-3 Annex F). For the De-
sign&Development phase, it enables easier system development which is re-
quired in IEC 61508-3 7.4.2.2, 7.4.3.6, 7.4.2.6 and 7.6.2.2. However, the tactic
might also put constraints on system development. For example, IEC 61508-
3 7.4.4.13 requires to limit the programming language command set to the
usage of safe, well-proven commands.

Related IEC 61508 Methods - IEC 61508-7: B.2.1 structured specification,
B.3.2 structured design, C.2.7 structured programming, E.3 structured de-
scription method, C.4.2 programming language subset, C.4.2 limit asyn-
chronous constructs, E.5.13 software complexity controller

Substitution

Aim - Avoid failures though usage of more reliable components.
Description - Components or methods are replaced by other components or

methods one has higher confidence in. For hardware and software this can
mean usage of existing components which are well-proven in the safety do-
main.

Influence on the Safety-Lifecycle - Changing software or hardware compo-
nents can require re-doing the safety hazard analysis [6]. However, software

785

8

components can also be exchanged with previously developed components
or third-party components to reduce the certification effort by re-using certi-
fication knowledge or documents for these components. Substitution can
increase hardware or third-party component costs if safer components are
used. For example, buying a SIL3 component usually is more expensive than
buying a SIL2 component.

Related IEC 61508 Methods - IEC 61508-7: B.3.3 usage of well-proven com-
ponents, B.5.4 field experience, C.2.10 usage of well-proven/verified software
elements, E.20 application of validated soft-cores, E.35 application of vali-
dated hard-cores, E.41 usage of well-tried circuits, C.4.3 certified tools and
compilers, C.4.4 well-proven tools and compilers, E.4 well-proven tools, E.42
well-proven production process, E.28 application of well-proven synthesis
tools, E.29 application of well-proven libraries

5.2 Failure Detection

Every failure detection method requires some kind of redundancy and testing
of the redundant information. The Checking tactics introduce diverse infor-
mation to check a system and the Comparing tactic compares fully redundant
information or systems.

Checking - Sanity Check

Aim - Detection of implausible system outputs or states.
Description - The Sanity Check tactic checks whether a system state or

value remains within a valid range which can be defined in the system specifi-
cation or which is based on knowledge about the internal structure or nature
of the system. An example for a Sanity Check is a stuck-at fault RAM-test
which checks the proper functionality of the memory during system runtime.
The test is based on the understanding of the memory behavior (if we write
data to the memory, we should later on be able to read the same data).
Faults are detected if the memory behaves differently.

Influence on the Safety-Lifecycle - Plausible system outputs and states
have to be specified (e.g. IEC 61508-3 C.2 3a where preconditions limit
the system input range). This value range limitation can help during the
system verification, because just the defined value range has to be tested
(IEC 61508-3 C.2). For safety validation it can be argued that the Sanity
Check introduces a diverse implementation for checking the safety func-
tionality and therefore detects random as well as systematic implementation
or design faults to some extent (IEC 61508-6 D.1.4).

Related IEC 61508 Methods - IEC 61508-7: A.1.2 monitoring relay con-
tacts, A.2.7 analog signal monitoring, A.3.1-A.3.3 self-tests, A.4.1-A.4.4 check-
sums, A.5.1-A.5.5 RAM-Tests, A.6.1 test pattern, A.7.1 one-bit hardware
redundancy, A.7.2 multi-bit hardware redundancy, A.7.4 inspection using
test patterns, A.9 temporal and logical program monitoring, C.3.3 assertion
programming, C.5.3 interface checking, C.4.1 strong typed programming lan-
guage

886

9

Checking - Condition Monitoring

Aim - Detect deviations from the intended system outputs or states.
Description - Condition Monitoring checks whether a system value re-

mains within a reasonable range compared to a more reliable, but usually
less accurate, reference value. The reference value is computed at runtime
by a redundant part in the implementation which can be based on system
input values and is not pre-known from the specification (like it would be
the case for Sanity Check). An example for Condition Monitoring is a
system which has to be time-synchronized via the Internet and which checks
if the synchronized time is feasible by comparing it to an internal clock.

Influence on the Safety-Lifecycle - An additional element providing the
reference value has to be implemented. In general, the Condition Mon-
itoring tactic implies more development overhead than Sanity Check.
Condition Monitoring primarily protects from random faults. However,
if it uses a diverse implementation for monitoring the safety functionality,
also systematic implementation or design faults can be detected (IEC 61508-
6 D.1.4).

Related IEC 61508 Methods - IEC 61508-7: A.1.1 failure detection by on-
line monitoring, A.6.4 monitored outputs, A.8.2 voltage control, A.9 tempo-
ral and logical program monitoring, A.12.1 reference sensor, A.13.1 monitor

Comparison

Aim - Detection of discrepancies of redundant system outputs.
Description - Comparison tests if the outputs of fully redundant subsystems

are equal in order to detect failures. The Comparison tactic usually implies
the usage of a redundancy tactic. An example for the application of the
Comparison tactic is a dual-core processor running in lock-step mode. The
processor runs the same software on both cores and compares their outputs
after each cycle.

Influence on the Safety-Lifecycle - An additional element which requires
resources at runtime to compare the subsystems has to be implemented.

Related IEC 61508 Methods - IEC 61508-7: A.1.3 comparator, A.6.5 input
comparison/voting

5.3 Failure Containment

Failure containment describes ways how to handle failures which are recognized
by failure detection. The Masking and Barrier tactics prevent failures from
affecting other parts of the system and the Recovery tactics deals with cor-
recting failures. The Redundancy tactics provide multiple systems which are
necessary for some other tactics.

Redundancy - Diverse Redundancy

Aim - Introduction of a redundant system which allows detection or masking
of failures in the specification or implementation as well as random hardware
failures.

987

10

Description -Diverse Redundancy can be applied to the specification or to
the implementation level. In a system using Diverse Redundancy on the
implementation level, redundant components use different implementations
which were developed independently from the same specification. Diverse
Redundancy on a specification level goes one step further and additionally
requires that even the requirement specifications for the redundant compo-
nents have to be set up by individual teams.

Influence on the Safety-Lifecycle - Diverse Redundancy highly contra-
dicts the Simplicity tactic, because the additionally introduced redundant
systems require a lot of effort (multiple effort for specification, implementa-
tion, verification, modification, ...) which does not add to the system func-
tionality. If redundant systems are used, then it has to be shown for safety
validation that the systems are independent from each other which can be
achieved by application of the Barrier tactic (IEC 61508-1 7.6.2.7). Redun-
dant hardware systems can more easily be validated for safety, because for
a system with no hardware fault tolerance, diagnostic tests have to be run
each time before computing a safety-critical function. This requirement is not
so strict for hardware redundant systems (IEC 61508-2 7.4.4.1.4, 7.4.4.1.5,
7.4.4.2.1, 7.4.5.3).

Related IEC 61508 Methods - IEC 61508-7: A.7.6 information redundancy,
A.13.2 cross-monitoring of multiple actuators, B.1.4 diverse hardware, C.4.4
diverse programming

Redundancy - Replication Redundancy

Aim - Introduction of a redundant systems which allows detection or masking
of random hardware failures (not systematic failures).

Description - Replication Redundancy means introduction of a redun-
dant system of the same implementation. The redundant systems maintain
the same functionality, use identical hardware, and run the same software
implementation. An example for Replication Redundancy is the RAID1
data storage technology.

Influence on the Safety-Lifecycle - Replication Redundancy requires
multiple effort for hardware installation and modification. If redundant sys-
tems are used, then it has to be shown for safety validation that the systems
are independent from each other which can be achieved by application of
the Barrier tactic (IEC 61508-1 7.6.2.7). Redundant hardware systems can
more easily be validated for safety, because for a system with no hardware
fault tolerance, diagnostic tests have to be run each time before comput-
ing a safety-critical function. This requirement is not so strict for hardware
redundant systems (IEC 61508-2 7.4.4.1.4, 7.4.4.1.5, 7.4.4.2.1, 7.4.5.3).

Related IEC 61508 Methods - IEC 61508-7: A.2.1 tests by redundant hard-
ware, A.2.5 monitored redundancy, A.3.5 reciprocal comparison by software,
A.4.5 block replication, A.6.3 multi-channel output, A.7.3 complete hard-
ware redundancy, A.7.5 transmission redundancy

1088

11

Recovery - Repair

Aim - Bring a failed system back to a state of full functionality.
Description - The full system functionality is manually or automatically re-

stored if a system failure occurs.
Influence on the Safety-Lifecycle - A Repair or Degradation tactic is

necessary for all non-redundant hardware elements which maintain a safety
functionality (IEC 61508-2 7.4.8.2). However, complex recovering systems
like self-reconfiguring systems are not recommended by the standard (IEC 61508-
3 A.2) and make validation more complicated.

Related IEC 61508 Methods - IEC 61508-7: C.3.9 error correction, C.3.10
dynamic reconfiguration

Recovery - Degradation

Aim - Degradation brings a system with an error into a state with reduced
functionality in which the system still maintains the core safety functions.

Description - Degradation systems define a core safety functionality. The
systems maintain this safety functionality and additional non-critical func-
tions. In case of an error, the system falls back into a degraded mode in
which it just maintains the core safety functionality. An example where the
Degradation tactic is often applied are automation systems. These sys-
tems control safety-critical processes and often visualize these processes in a
GUI. If the system has too few resources (e.g. processing time), the system
stops the GUI service and just focuses on its core functionality to control
the safety-critical processes.

Influence on the Safety-Lifecycle - Degradation mechanisms for the sys-
tem have to be specified (IEC 61508-2 7.2.3.2) and a Repair or Degra-
dation tactic is necessary for all non-redundant hardware elements which
maintain a safety functionality (IEC 61508-2 7.4.8.2). Degradation can
decrease the safety validation effort, because just the degradation mecha-
nism and the core safety functionality have to be validated. Additionally,
the tactic fulfills the requirement of the standard to describe a well defined
behavior in case of errors (IEC 61508-2 7.2.3.2, IEC 61508-3 7.2.3.2).

Related IEC 61508 Methods - IEC 61508-7: A.8 voltage supply error han-
dling, C.3.8 degraded functions

Masking - Voting

Aim - Mask the failure of a subsystem so that the failure does not propagate
to other systems.

Description - Voting makes a failure transparent. The tactic does not try to
repair the failure, but it hides the failure through choosing a correct result
from redundant subsystems. It decides for the majority of the output values.

Influence on the Safety-Lifecycle - In order to apply Voting, a redun-
dancy tactic has to be used and a voter element has to be implemented.
Subsystems of a voting system can be repaired while in operation, because
the overall system can still operate if a subsystem is under repair (IEC 61508-
6 B.3.1). However, voting systems are not as safe as systems which just

1189

12

compare their results and ensure a safe state if any of the results differs
(IEC 61508-6 B.3).

Related IEC 61508 Methods - IEC 61508-7: A.1.4 voter, A.6.5 input com-
parison/voting

Masking - Override
Aim - Mask the failure of a subsystem so that the failure does not propagate

to other systems.
Description - The Override tactic forces the system output to a safe state.

For example, if we have a system which is in a safe state when shut off,
we can apply the Override tactic to shut off the system if we have doubt
about the system output (e.g. if an output validity check fails). In this sce-
nario overriding the system output with a safe output value decreases the
availability of the system. Another form of the Override tactic, which does
not decrease the availability and is closely related to the Voting tactic,
chooses the output of redundant subsystems by preferring one subsystem or
one output state over another.

Influence on the Safety-Lifecycle - A preferred system output state has to
be defined and an override mechanism has to be implemented. Override
systems are easier to validate, because they follow the fail-safe principle (IEC
61508-1 7.10.2.6).

Related IEC 61508 Methods - IEC 61508-7: A.1.3 comparator, A.1.5 idle
current principle, A.6.5 input comparison/voting, A.8.1 overvoltage protec-
tion with safety shut-off, A.8.3 power-down with safety shut-off

Barrier
Aim - Protect a subsystem from influences or influencing other subsystems.
Description - The Barrier tactic provides a mechanism to protect from un-

intentional influences between subsystems. To apply Barrier, the interfaces
between subsystems have to be analyzed and specified. These interfaces are
controlled at runtime by a trustworthy component (the Barrier) which of-
ten is an already existing reliable mechanism. An example for a Barrier is
a memory protection unit which controls and restricts the communication
between different tasks.

Influence on the Safety-Lifecycle - The interfaces between subsystems
have to be specified. According to IEC 61508-3 8.3.1, non-safety related
functions should be separated from safety-related functions, which can be
achieved by the Barrier tactic. It can also aid the Simplicity tactic by
structuring the system (IEC 61508-2 7.2.2.1). Barrier enables modular
safety certification and modification and can reduce the validation effort if
it is proven that the subsystems cannot unintentionally influence each other
which has to be shown by an effect analysis (IEC 61508-3 C.8, Annex F).

Related IEC 61508 Methods - IEC 61508-7: A.11 separation of energy lines
from information lines, B.1.3 separation of safety functions from non-safety
functions, B.3.4 modularization, C.2.8 information hiding/ encapsulation,
C.2.9 modular approach, E.12 modularization, C.3.11 time-triggered archi-
tecture

1290

13

Fig. 4. Safety tactics and their effect on different phases of the safety lifecycle

5.4 Overview and Discussion of the Safety Tactics

Figure 4 gives an overview of our re-organized safety tactics and their influence
on the safety lifecycle and presents relationships between the tactics. The in-
formation is mostly based on the Influence on the Safety-Lifecycle parts of the
tactics described in the previous section.

The revised version of the safety tactics provides more consistency compared
to Wu’s tactics. The problem with Wu’s Timestamp and Timeout tactic as
special case of Sanity Check is resolved.

Just few methods and architectures from the IEC 61508 standard address
failure containment tactics. We think that the reason why just few failure con-
tainment tactics were found in the safety standard is that some of the tactics,
such as Masking for example, are more concerned with availability than with
safety. Therefore the standard does not focus on these tactics.

6 Refining the TMR Pattern by Reasoning with Tactics

In this section we use our refined safety tactics to discuss the safety-related
effects of applying the TMR architectural pattern.

1391

14

The TMR architecture shown in Figure 5 uses three channels and compares
the outputs of the channels. A voter decides for the output value which is given
by at least two of the channels. The architecture therefore allows one channel
to be erroneous while still maintaining full system functionality. In our example
we assume simple hardware replication with identical software running on the
channels.

Fig. 5. Homogeneous TMR architecture

The TMR architecture described above uses two general safety tactics: Re-
dundancy and Masking. More specific, Replication Redundancy is used,
because there are identical redundant channels and Voting is used to mask
errors of a single channel. If we have a look at Figure 4, we can see that the
Replication Redundancy tactic requires the Barrier tactic during the Ver-
ification&Validation phase of the safety lifecycle. This means that to design a
TMR system in the safety domain, also the Barrier tactic has to be consid-
ered right at the beginning of the architecture design in order to assure that
the three subsystems do not influence each other in terms of common cause fail-
ures. This information might be obvious to a safety domain expert, however, for
unexperienced system architects such information can be crucial.

Table I: Safety tactics for the homogeneous TMR architecture

We end up with three tactics which are used by the TMR system: Replica-
tion Redundancy, Voting, and Barrier. Table I shows the TMR relevant
tactics taken from Figure 4. We can see that our TMR architecture influences the
Operation&Maintenance phase in a way that multiple hardware is required and

1492

15

has to be installed. This implies multiple hardware maintenance effort. However,
the three hardware channels can be maintained independently and they can even
be maintained during operation due to the Barrier and Voting tactics. For
safety validation, random hardware channel failures are independent and sys-
tematic failures are not detected. The Voting tactic requires validation of the
correct functionality in case of an error and is therefore more difficult to validate
than simple systems which shut down or go to a safe state in case of errors.
Just like with maintenance, hardware modifications for single channels can be
done during operation. Multiple effort is required if the modification affects the
redundant channels. The effort for system specification and development is not
increased due to the simple usage of replication.

If we look at the detailed tactic descriptions from Section 5, we can get
further information for the TMR pattern in terms of a quick reference to the
IEC 61508 standard. As one example, the Replication Redundancy tactic is
connected to IEC 61508-2 7.4.4.1.4 which says that self-tests for a single channel
do not have to be executed each time before the execution of a safety function
if redundant channels are present. It is sufficient to execute the self-tests once
a day. Such quick references provide us with very detailed IEC 61508 related
information.

The evaluation of the TMR pattern through the usage of our refined set
of safety tactics leads to much more detailed information regarding safety, in
particular safety certification, than existing safety pattern catalogs such as [12]
offer.

7 Related Work on Safety Tactics

In this section we present related work on architectural tactics with focus on
safety tactics. We also present patterns which are related to the IEC 61508
standard.

Bachmann et al. introduce the idea of architectural tactics and describe their
relation to system quality attributes [3]. They present a collection of tactics for
availability, security, testability, usability, modifiability, and performance. Wu
and Kelly extended this collection by adding a set of tactics for the safety quality
attribute [6] [13]. They further develop an approach how to apply safety tactics
by stating anti-requirements which can be handled by the application of safety
tactics [14]. This approach is explained in more detail in [15], where a whole
architectural safety-reasoning framework is presented.

Another approach of how to reason about the usage of safety tactics is pre-
sented in [16] and [11], where safety attributes of a system are evaluated by
risk-based qualitative reasoning. This reasoning is done before and after the ap-
plication of a safety tactic in order to evaluate the applicability of the tactic. The
application of safety tactics in order to build a safe architecture is also described
in [17] and [7] with focus on the integration of the tactics into the V-model which
is commonly used for IEC 61508 system development.

1593

16

To the best of our knowledge there is no work directly relating safety tactics to
a safety standard so far, however, Armoush [12] constructs an extensive catalog
of safety patterns and evaluates them regarding IEC 61508 safety certification
by presenting the applicability of a pattern according to recommendations in
the safety standard. Compared to our work he does not discuss the influence on
the safety system over the whole safety lifecycle and does not give much detail
regarding the influence on safety certification. [18] covers organizational pat-
terns for IEC 61508 software development. They focus on patterns for software
development and not on the relation of IEC 61508 to architectural patterns.

8 Conclusion

In this paper we provide a revised catalog of safety tactics and relate these tactics
to the IEC 61508 safety standard. This allows us to evaluate generic architectures
like safety patterns regarding their effect on safety certification during different
phases of the safety lifecycle. With the connection between safety tactics and
the IEC 61508 standard it is now easier to provide a system architect with
information about the safety related consequences of choosing a specific tactic
or pattern. Here, an advantage of the safety tactics is that compared to the safety
standard, they provide system architects with a view of the safety domain, which
is more familiar to them. The tactic catalog therefore provides a good source of
information for early architectural decisions for systems which have to be safety
certified.

The re-organized set of safety tactics can serve as a basis for future work on
refining patterns in the safety domain. Future work could also include refining
our tactics or evaluating them with respect to a different safety standard. We
believe that our re-organized version of safety tactics builds a mature set of
safety tactics and that system developers can use them to argue for the safety
of their system during safety certification.

ACKNOWLEDGMENTS

We would like to thank our shepherd Jari Rauhamäki who significantly helped to
improve this paper. He provided us with good overall feedback and in particular
helped to improve the tactic descriptions of this paper with his detailed safety-
related knowledge.

References

1. Douglass, B.P.: Real-Time Design Patterns: Robust Scalable Architecture for Real-
Time Systems. Pearson (2002)

2. International Electrotechnical Commission: IEC 61508, Functional Safety of Elec-
trical/Electronic/Programmable Electronic Safety Related Systems (2010)

1694

17

3. Bachmann, F., Bass, L., Klein, M.: Deriving Architectural Tactics : A Step To-
ward Methodical Architectural Design. Technical Report March, Carnegie Mellon
Software Engineering Institute (2003)

4. Kumar, K., Prabhakar, T.V.: Pattern-oriented Knowledge Model for Architecture
Design. In: 17th Conference on Pattern Languages of Programs (PLoP). (2010)

5. Ryoo, J., Laplante, P., Kazman, R.: A Methodology for Mining Security Tactics
from Security Patterns. In: 2010 43rd Hawaii International Conference on System
Sciences, IEEE (2010) 1–5

6. Wu, W.: Safety Tactics for Software Architecture Design. Master’s thesis, The
University of York (2003)

7. Hill, A., Nicholson, M.: Safety tactics for reconfigurable process control devices.
In: 4th IET International Conference on Systems Safety 2009. Incorporating the
SaRS Annual Conference, IET (2009)

8. Bass, L., Clements, P., Rick: Software Architecture in Practice. 2 edn. Addison-
Wesley (2003)

9. Rauhamäki, J., Kuikka, S.: Patterns for control system safety. In: Proceedings of
the 18th European Conference on Pattern Languages of Programms (EuroPLoP
’2013). (2013)

10. Schumacher, M.: Firewall Patterns. In: Proceedings of the 8th European Confer-
ence on Pattern Languages of Programms (EuroPLoP ’2003), Universitaetsverlag
Konstanz (2003)

11. Im, T.: A Reasoning Framework for Dependability in Software Architectures. PhD
thesis, Clemson University (2010)

12. Armoush, A.: Design patterns for safety-critical embedded systems. PhD thesis,
RWTH Aachen University (2010)

13. Wu, W., Kelly, T.: Safety tactics for software architecture design. In: Proceedings
of the 28th Annual International Computer Software and Applications Conference
(COMPSAC), IEEE (2004) 368–375

14. W. Wu and T. Kelly: Managing Architectural Design Decisions for Safety- Critical
Software Systems. In: Quality of Software Architectures, Springer (2006) 59–77

15. Wu, W.: Architectural Reasoning for Safety- Critical Software Applications. PhD
thesis, University of York (2007)

16. Im, T., Vullam, S., McGregor, J.: Reasoning about Safety during Software Archi-
tecture Design. In: Proceedings of the 19th International Conference on Software
Engineering and Data Engineering (SEDE 2010). (2010)

17. Hill, A.: Safety Tactics for Reconfigurable Process Control Devices. Master’s thesis,
University of York (2008)

18. Vuori, M., Virtanen, H., Koskinen, J., Katara, M.: Safety Process Patterns in
the Context of IEC 61508-3. Technical report, Tampere University of Technology
(2011)

1795

adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

Patterns for safety and control system cooperation

Jari Rauhamäki, Timo Vepsäläinen and Seppo Kuikka

Tampere University of Technology, Department of Automation Science and Engineering

P.O. Box 692, FI-33101 Tampere, Finland,

{jari.rauhamaki|timo.vepsalainen|seppo.kuikka}@tut.fi

1 Introduction

In this paper three patterns for safety and control system cooperation are presented.

Here a safety system refers to a functional safety system. Functional safety systems

are systems dedicated to retain the safety of humans, environment and property, e.g.

the machine itself. Such a system may, for instance, implement a stopping of a work

robot when human enters the working area of the robot. Safety system implements

safety functions that lower risk related to a certain event to a tolerable level. Usually,

safety systems coexist with control systems which implement the main control func-

tionality of the system under control. Both safety and control systems control the

same system/process. Thus the control system needs to be taken into account when a

safety system is developed.

Development of functional safety systems is heavily regulated by legislations, such

as the European Machinery Direct ive [2]. The leg islation refers to standards in which

requirements for the development process, techniques , and methods to be used in

functional safety system development are documented. However, standards and legis-

lation provide few practical solutions to the development o f safety systems especially

in context of safety and control system cooperation. The purpose of the patterns illus-

trated in this paper is to provide solution models for this problem area.

The patterns presented here are part of a larger collection of patterns. Six of the

patterns of the collection have been published in VikingPLoP 2012 [5]. The patterns

of this article partly relate to the formerly published patterns. We provide short de-

scriptions (patlets) of the referred patterns in this article.

We began the pattern work in autumn 2011 as a result of a software safety related

research project. The patterns are not directly discovered from real sys tems or appli-

cations. Instead, our approach is constructive: the patterns are sketched and docu-

mented based on our vision of a potential pattern and information gathered from

standards related to safety system development, literature, and discussions. Finally,

the patterns are (if possible) discussed with industry professionals to gain confidence

on the solutions and approaches used in the patterns. Our intention is, however, to

identify real world applications and sources for all the patterns. We have discussed

the patterns of this paper with industry members from three different companies. The

discussion provided support especially for the first two patterns of this paper.

96

2

1.1 Pattern overview

The patterns belong to a larger pattern collection, which consists currently of some

forty patterns or early pattern drafts and ideas. The patterns are related to each other

to some extent but cannot yet be considered as a pattern language. To produce a pat-

tern language out of the collection focusing on the patterns and research for missing

links would be required. A pattern language is our goal, but to achieve that large

amount of work is required.

The current root pattern of the collect ion is the SEPARATED SAFETY pattern [5],

which justifies separation between safety and control systems. The relat ions of the

patterns are depicted in Fig. 1. The semantics of relations is as fo llows. A one way

solid arrow from X to Z is: the pattern Z can be applied or considered after applica-

tion of pattern X. The override patterns box illustrates three alternative solutions for

control system override. The patterns presented in this article are highlighted.

Notify basic

control system

Co-operative

safety actuation

Shared safety

actuator
Separated safety

De-energized

override

Separated

override
Safety limiter

Override patterns

Output

interlocking

Don’t wait for

non-critical

Fig. 1. Relations of the patterns

The short descriptions of the patterns referred to but not discussed in this article,

are given in Table 1.

Table 1. Pattern descriptions

Pattern Description

Separated

safety [5]

Development of a complete system according to safety regulations is a

bureaucratic and slow process. Therefore, divide the system into con-

trol and safety systems and develop only the safety system according

to safety regulations.

De-

energized

override [5]

A safety system must be able to override a control system whenever

the systems control same process quantities. Therefore, let the safety

system use de-energization of the control system’s actuator(s) to ob-

tain a safe state.

Safety lim-

iter [5]

A safety system must be able to override a control system whenever

the systems control same process quantities. Therefore, disengage the

control system completely from the actuator and let the safety system

97

3

2 Patterns

In this section three patterns for functional safety system develop ment and structure is

presented. The patterns are presented in the canonical form.

2.1 Control system notification

Context

The SEPARATED SAFETY pattern has been applied, so safety and control systems are

separated. The safety system is capable to control/affect one o r more process varia-

bles
1
 that are also controlled or used by the control system. For instance, safety sys-

tem can affect to the state of steam flow in p ipeline that is used by a control system to

regulate temperature of container. To ensure safety, the safety system is able to over-

ride the control system regardless of the state of it (e.g. SEPARATED OVERRIDE, DE-

ENERGIZED OVERRIDE, or SAFETY LIMITER pattern have been applied). The context is

illustrated in Fig. 2.

1 Process variable illustrates current state of (a part of) a process/system typically variable

over time. For example, a process variable can illustrate pressure of fluid in pipeline (e.g.

the pipeline after hydraulic pump and before the decompression valve). In electric circuits a

process variable could illustrate the potential, i.e. the voltage, of certain circuit node or cur-

rent through a branch.

control the actuator. Route the output of the control system to the

safety system and let the safety system treat the control value so that

safe operation is ensured.

Separated

override [5]

A safety system must be able to override a control system whenever

the systems control same process quantities. Therefore, p rovide the

safety system with separate actuator to obtain safe state.

Output

interlocking

A control system must protect machinery, environment and humans

from being damaged. Implementing protective interlocking functions

in control algorithms makes the algorithms complex and hinders the

reusability of the algorithms. Therefore, use an interlock element

alongside each control actuator output in the control system and im-

plement the interlock algorithm in these elements .

Don’t wait

for non-

critical

A failure of a control system may cause a blocking of the safety sys-

tem when data is communicated between the systems. Therefore, use

asynchronous messaging to arrange communicat ion from the safety

system to the control system and do not let safety system wait for a

response from the control system (eternally).

98

4

Process variable (e.g. voltage on a circuit
node)

Safety system Control system

affects uses or relies on

Fig. 2. Context of the Control system notification

Problem

The operation of the control system is disturbed when the safety system overrides or

restricts the operation of the control system, which may cause unexpected behavior of

the control system.

Forces

 A safety system needs full control over the process variable regard less possible

side effects on the control system

 A control system cannot operate normally if safety system has restricted its envi-

ronment. For example, control system that uses electric current to regulate an elec-

tric motor speed cannot operate correctly when a safety system has cut off the cu r-

rent.

 Providing the control system with required hardware to sense the state of the safety

system increases the cost and complexity of the control system

Solution

Make the control system aware of the state changes of the safety system so that the

control system can react accordingly. Notify the control system about any operation

or event that affects the operation of the control system. Such events are for instance:

 a restriction of a variable, such as limited speed or load

 force control of variable to fully enabled or disabled, such as fully closed steam

supply

 return from safe (or restricted) state after a hazardous situation

Implement the notification system so that the safety system is kept as independent

of the control system as possible to prevent a blocking of the safety system due to the

failures of the control system. Three approaches to achieve such information transfer

mechanism can be identified:

 Analogue signaling: The safety system provides an analogue signal for the control

system. This approach is simple and releases developers from considerations of

additional requirements of the IEC 61508-3 [4] for d igital message busses. Howev-

99

5

er, analogue signaling requires a dedicated cable between the systems and is more

prone to interference from the environment.

 Message bus: The safety system and the control system communicate through a

message bus. Safe communication is established through the bus. Additional re-

quirements as given in IEC 61508-3 [4] need to be considered.

 Integrated control and safety system: The safety and the control system are execut-

ed in the same integrated device. The device and underly ing operating system pro-

vides communication scheme between the entit ies. However, in such a mixed crit i-

cality system there has to be separation between the systems in spatial and tem-

poral domains [4].

Regardless the method to pass safety system state and event information to control

system, both systems are added with complexity. A communication method between

the systems needs to be established, which may increase hardware requirements, u n-

less the communication method already exists. In any way the amount of logic in

safety and control system side increases. To enable communication and successful

reaction the safety system has to produce the state and event informat ion for the con-

trol system and the control system has to receive and use the information in meanin g-

ful way. This adds requirements of both system and increases complexity.

Consequences

 The control system can react and adapt to state changes and actions of the safety

system

 Increased overall system safety by decreasing the likelihood of unexpected behav-

iour related to inconsistencies between safety and control systems

− Full separation between the safety system and control systems is lost

− Increases complexity of both safety and control systems, a notification must be

produced and transferred by the safety system and received, interpreted and reacted

on by the control system.

− Increased complexity may introduce new programming errors and add latency

Example

Consider a simplified heating system illustrated in Fig. 3. Steam supply in a heat ex-

changer is controlled with a proportional valve for temperature control purposes.

Steam supply is limited (on-off) by a safety system. When the safety valve is open,

the control system controls the steam flow. When the safety system detects a hazard-

ous situation (e.g. h igh temperature in temperature controlled tank), it closes the safe-

ty valve thus blocking the steam flow. If the control system is not notified about the

supply cut-off, it keeps trying to control the temperature. Because there is no steam

supply, temperature decreases and controller opens the control valve completely and

keeps it open trying to increase the steam flow which is not available. This is typically

undesired behavior especially when steam supply is allowed again.

100

6

If the control system is notified, when the steam supply is cut off, it can react ac-

cordingly and, for instance, close the control actuator (see the CO-OPERATIVE SAFETY

ACTUATION) and halt (and reset) the control algorithm to prevent the saturation of an

integrator.

Related patterns

The CO-OPERATIVE SAFETY ACTUATION pattern describes an application for the notifi-

cations from the safety system to the control system. Consistency between the safety

and control system can be increased by forcing the control systems actuators to actu-

ate the safe state [1].

The DON’T WAIT FOR NON-CRITICAL pattern suggests the usage of asynchronous

communicat ion scheme between safety and control systems to increase isolation be-

tween the systems and prevent a blocking of the safety system due to a failu re in the

control system.

2.2 Co-operative safety actuation

Context

An actuator of a control system affects a process variable related to a safety function

operation. The CONTROL SYSTEM NOTIFICATION pattern has been applied to enable

safety system notifications from the safety to the control system.

Problem

How to increase consistency between operation of safety and control system during

situations in which the safety system overrides partly or completely the control sys-

tem?

Forces

 Conflicting state between safety and control system may cause undesired operation

of the control system and increase risk of malfunctioning safety function

 Consistent state of safety and control systems regarding the process variable af-

fected by both systems increases the reliab ility of successful actuation of the safety

function because in case of either actuator fails the other may still be able to actu-

ate the correct safety function result

Safety valve

Safety system

controller

Safety limited

steam supply

Control system

controller

Control actuatorSteam source

Steam supply

Heat exhanger

Controlled

steam flow

State change

notification

Fig. 3. Safety system notification in heating process.

101

7

Solution

Let the safety system drive the control system into a safe state whenever safe state

needs to be obtained (according to the safety system). That is, the state information of

the safety system is actively used as an input in the control system. As the safety sys-

tem can already notify the control system about the state of the safety system, it is

relatively simple to go further and use this asset to increase consistency between the

functionality of the systems. Consistency between the states of the control and safety

systems decreases the state space in which the system can be when a safety function is

active (after transitions).

When the actuators of the safety and control systems are in a consistent state, the

reliability of successful outcome of a safety function is increased. The actuators of the

control system are p rimarily used to control the process/system to produce a desired

output, but they affect the state of the system similarly to the actuators of the safety

system, i.e., change the state of the process variables (e.g. flu id flow or electric cur-

rent). Thus, the actuators of the control system can be used to actuate similar opera-

tions as safety functions. However, they can only support the safety system, not take

its responsibilities (in which case the control system turns into a safety system).

A possible way to implement the pattern is to command the control system into a

safe state by a notification. That is, the safety system sends a message/notification to

the control system that processes the message and reacts accordingly by driving the

actuators (under its control) to safe states. In the simplest case safety system only

commands the control system into the predefined safe state. The approach is illustrat-

ed in Fig. 4 in which the Safety System first closes the Safety Actuator and then noti-

fies the Control System to take the safe state (which is assumed to be predefined). The

control system receives the notification and drives the Control Actuator into the safe

state. In more advanced cases , the safety system communicates the desired state (e.g.

valve_1 = closed, valve_3 = open) and the control system drives the actuators into

these states.

Fig. 4. Co-operative safety actuation through control system notification

102

8

Consequences

 Increased consistency between the states of the safety and control systems which

decreases possibility of malfunctions due to state inconsistencies (when giving

control back to the control system)

 Increased reliability of the desired outcome of safety function actuation due to

redundancy in actuators , but…

− …the control system side provides only additional “peace of mind” reliability

which cannot be counted into safety system attribute as such

− Increased complexity o f control system algorithm as it needs to take the safety

system input into account

− May mask safety system actuator faults (unless diagnosed otherwise)

Example

Consider the simplified heating system illustrated in Fig. 5 The safety system can

notify the control system. Now, when the safety system triggers the safety function

the safety valve is closed. To improve consistency between the systems and reliab ility

of steam cut-off the safety system informs the control system about the safety func-

tion and requests it to close the control actuator as well. The control system is in a

consistent state with the safety system and does not even try to continue normal co n-

trol operations as it would be impossible to operate successful control under safe state

circumstances.

The control actuator is of a proportional type, which is not typically used in safety

systems. The proportional valve may e.g. leak more than a simple b inary valve. How-

ever, it is better to have a marginally leaking proportional valve closed than a faulty

safety valve fully open.

Related patterns

The OUTPUT INTERLOCKING pattern suggests the usage of interlocking elements

alongside each control output used to control a physical device. These interlocking

elements provide a way to implement the driving of the control system into a suitable

state. That is, when an interlock of control system receives request to obtain safe state,

it forces the control output predefined safe state.

Safety valve

Safety system

controller

Safety limited

steam supply

Control system

controller

Control actuatorSteam source

Steam supply

Heat exhanger

Controlled

steam flow

State change

notification

Fig. 5. Safety system notification in heating process.

103

9

The DE-ENERGIZED OVERRIDE pattern describes a potential way to implement the

cooperative actuation. In this approach, the safety system has full and direct control to

drive the actuator of the control system into a safe state by de-energizing the control

actuator(s).

2.3 Shared safety actuator

Context

A system under control consists of subsystems that use an input produced by a single

source as illustrated in Fig. 6 (typically the source is an energy source). A similar

safety function is related to all the subsystems (e.g., an emergency stop). The safety

function operates in the same direction and has the same safe state in terms of the

shared input between the subsystems. That is, each subsystem takes safe state, e.g.,

when the input is disconnected from the subsystem. The SEPARATED OVERRIDE pat-

tern has been applied, i.e., the safety system has a dedicated actuator to control opera-

tion of the system.

Input source

(e.g. power

source)

Subsystem using

input

Subsystem using

input

Subsystem using

input

Fig. 6. The context of the shared safety actuator

Problem

Providing each subsystem with dedicated safety actuator when same input variable is

used by mult iple subsystems increases the amount of needed safety actuators in the

system.

Forces

 Dedicated safety actuators for each subsystem does not decrease productivity, flex-

ibility and availab ility of the system by letting each independent subsystem contin-

ue operation in case one of the subsystems needs to obtain safe state

 Dedicated safety actuators for each subsystem increase hardware cost, weight,

space requirements and complexity of the safety system

 Suitable safety actuators are considerably expensive or there are space and/or

weight requirements considering the actuator and thus the number of the actuators

is wanted to be kept low

 All the subsystems share common safe state in terms of the considered input

 Independent operability of the subsystems, in terms of the shared input, can be

sacrificed for other attributes (e.g., cost and weight)

104

10

Solution

Use a shared safety actuator for all the subsystems. The safety actuator is positioned

so that it can control the safety function considering all the subsystems (in context of

the shared input). The principle of the solution is depicted in Fig. 7. In the figure, a

safety actuator is added between the input source and the subsystems which use the

input and which are safety-critical. The safety actuator controls the input. Whenever

the safety function (related to the input) is trigged in any of the subsystems, the safety

actuator is used to obtain a safe state. The safe state propagates to all subsystems re-

gardless of their state.

Input source

(e.g. power

source)

Subsystem using

input

Subsystem using

input

Subsystem using

input

Safety

actuator

Fig. 7. Shared safety actuator principle

Ensure the decoupling of the subsystem in terms of the shared input. That is, sub-

stance that has once entered in a subsystem cannot move to another subsystem with-

out first circulating through the input source. The decoupling should especially be

considered when the shared input is an energy source of some kind and the subsys-

tems store energy (see example). If the decoupling devices are critical part of the safe-

ty function, they should also be considered as part of the safety system.

The solution requires thorough consideration before application. There are many

aspects that might result in problems. Subsystem decoupling is one, but also the to-

pology, structure and functions for exceptional operation may cause undesired side -

effects when the approach is used. In this solution only the main approach is present-

ed. Actual application of the solution depends on the details of the target system. For

instance, in a hydraulic lifting system one should consider potential energy stored in a

lifted object and prevent object movement and drifting.

The input source is typically a power/energy source of some kind such as hydraulic

(hydraulic motor), electric (power source) or pneumatic (air compressor) energy

source. However, the input source can be any controlled variab le of the system. The

input source itself can also act as a “safety actuator”. That is, the whole source of the

considered variable can be turned on or off controlled by the safety system. This, as

well, requires a thorough analysis of the effects to prevent undesired functionality.

Consequences

 Decreased amount of safety actuation hardware

 Decreased space, weight, and (potentially power consumption) requirements for a

safety system due to lower amount of safety actuation hardware

105

11

 Potentially decreased overall cost of the safety actuator hardware

− Potentially decreased productivity, flexib ility and availability of the system be-

cause the subsystems (sharing the input) lose independency considering safety

function(s) related to the shared input

− The potential safety functions are (practically) restricted to on-off type, because it

is hard arrange distribution of the shared input between the subsystems. In practice

this would need additional hardware which hinders the original object ive of the ap-

proach.

− The subsystem design may see new requirement to meet the requirement for co r-

rect operation of the safety system

− Shared actuator requires dedicated control element (e.g., a software component that

is responsible for the actuator control)

− The approach is prone to unpredictable side-effects, due to, for example, insuffi-

cient decoupling between subsystem in terms of the shared input

− Requires detailed and throughout analysis to ensure correct operation in various

operational cases

− Safety system has to be developed for the highest criticality level of the subsystems

Example

Let us consider a harvester machine that has a hydraulic boom. To reduce the harvest-

er’s weight and power consumption all the boom cylinders share a safety actuator that

is able to halt the boom movement. A b lock d iagram of the system is provided in Fig.

8. On the left hand side there is a hydraulic pump that represents the input source, i.e.,

hydraulic power in this case. After the pump there is a safety valve that controls the

flow to the boom cylinders. On the right there are the actual boom cylinder control

valves that are controlled by the control system.

An important detail in the presented schematic is the check valves that decouple

the cylinders (i.e., subsystems using the shared input) from each other. The check

valves ensure the hydraulic fluid and pressure cannot transfer directly from cylinder

to another, but rather has to circumvent through the tank.

106

12

Basic

controller

Boom cylinder 1

Boom cylinder N

Safety

controller

Safety related equipment

Fig. 8. Shared safety actuator for harvester boom cylinders

Known use

The BGIA Report 2/2008 (section 8.2.27) [3] illustrates similar solution approach.

However, the approach given in the report focuses on redundancy and employs safety

related actuators also in the subsystems to avoid single point of failure problem. The

decoupling aspect is not considered. Nevertheless, it is mentioned that the shared

safety actuator is sufficient to enable the considered safety stop safety function.

Related patterns

The safety system should notify the control systems of the related subsystems as illus-

trated in the CONTROL SYSTEM NOTIFICATION.

3 Acknowledgements

The authors would like to thank our shepherd Dirk Schnelle-Walka and all the indus-

try members for their valuable input. Our thanks also belong to the participants of the

VikingPLoP 2013, whose comments greatly improved the paper.

107

13

4 References

1. V. Eloranta, J. Koskinen, M. Leppänen, and V. Reijonen, A Pattern Language

for Distributed Machine Control Systems, 2010.
http://practise.cs.tut.fi/project.php?project=sulake [retrieved: February, 2013].

2. European Parliament and of the Council, Directive 2006/42/EC of the europe-
an parliament and of the council, vol. L 157/24, 2006.

3. Hauke, M., Schaefer, M., Apfeld, R., Bömer, T., Huelke, M., Borowski, T.,

Büllesbach, K.-H., Dorra, M., Foermer-Schaefer, H.-G., Grigulewitsch, W.,

Heimann, K.-D., Köhler, B., Krauß, M., Kühlem, W., Lohmaier, O., Meffert,

K., Pilger, J., Reuß, G., Schuster, U. & Zilligen, H. Functional safety of ma-

chine controls - Application of EN ISO 13849. BGIA Report 2/2008e, 2008.
373 p.

4. International Electrotechnical Commission, Functional safety of electri-

cal/electronic/programmable electronic safety-related systems, Part 3: Soft-

ware requirements, IEC, 2010.

5. Rauhamäki, J., Vepsäläinen, T., Kuikka, S. "Functional Safety System Pat-

terns," Proc. VikingPLoP 2012 Conference, 2012, pp. 48-68,
http://URN.fi/URN:ISBN:978-952-15-2944-3 [retrieved: February, 2013].

108

A pattern for bootstrapping

Ville Reijonen

Kauppalehti Oy / Tampere University of Technology

{firstname.lastname}@tut.fi

1 Bootstrapper

...there is a Control System which consists of hardware parts and an applica-

tion(s). Hardware has to be prepared before the application can be given the reins. For

example, memory has made to be activated and initialized. Additionally, no hardware

is immune to errors, faults or decay. Unexpected issues may emerge if application is

run on faulty hardware. For the application it would be preferable if the environment

would be in a defined condition after every start-up sequence.

✥ ✥ ✥

Before application can be started the hardware should be in defined

state. Otherwise fault of uninitialized hardware may cause unexpected behav-

iour.

After power up, the basic functionality of the hardware has to be activated

with right parameters. For example, basic memory and internal buses need to be acti-

vated. If these are not set up, or are set up incorrectly, it is likely that the system does

not work.

Usually there is only limited amount of memory and persistent storage avail-

able when the system powers up. Program code required for activating all the hard-

ware might not fit in the memory or storage available during power up. Additional

memory and persistent storage might be available only after they have been activated

and set up.

There are certain diagnostics and self-tests, such as memory error check and

bus connection checks that should be done before commencing with the actual task of

the device. A self-test operates at the lowest level possible with the hardware. Creat-

109

mailto:%7bfirstname.lastname%7d@tut.fi

ing such tests typically requires deep knowledge on the actual hardware. Thus, it

should not be application programmer’s task to make these self-tests and checks.

The application might be stored on variety of different medium. As it cannot

always be known beforehand on which connected media the application resides, a

way to discover it may be required. There could be multiple alternative applications in

the system, or even alternative versions of the same application. In that case a way to

select the loaded application is needed.

System might be created by bundling together COTS hardware from multi-

ple vendors and adding in-house hardware on the top of that. Thus COTS hardware

cannot initialize all hardware and hardware combinations in the system. It is on the

responsibility of the system manufacturer to integrate and create initialization for the

whole.

Therefore:

Initialize the hardware during start-up so that the system is always in

consistent state during start-up. Divide the start-up to sequential stages, when

necessary, to overcome the system resource limits and for separation of concerns

[1]. For each stage add a bootloader component with its own responsibilities.

Each bootloading stage adds flexibility to the boot process. As an example of over-

coming resource limits, the persistent memory available during start-up is often lim-

ited in size and therefore the first stage bootloader can only contain the very essential

initializations. The foundations for the second stage are created in the first stage by

setting up storage device, initializing memory and loading second stage to the

memory. As an example of the separation of concerns, a CPU board manufacturer

does not know where their board is going to be used. Therefore the CPU board only

takes care of its own setup. Additional stages are required to handle the system be-

yond the CPU board.

The first stage after power-up is called bootstrap loading or boot loading. Here the

basic functionality of the hardware is initialized. The bootstrapper code resides on

limited sized persistent storage such as ROM or EEPROM, available immediately

during start-up. A CPU wakes up and executes program code from defined memory

address on this persistent storage. One of the first tasks for the bootstrapper is to acti-

vate different kinds of buses in the system such as memory bus, data bus and control

bus. Proper bus timings have to be used to ensure correct behaviour, otherwise data

loss and undefined errors will occur. When the buses have been activated the volatile

memory, RAM, can be activated. Additionally, storage device may be activated along

with some basic peripheral devices such as serial ports. This is the minimum what a

bootstrapper should do to enable loading latter stages or running an application.

110

In addition, the first stage may contain power on self-tests (POST) for processor,

memory, controllers, system buses and other basic hardware. POST helps to detect

hardware errors, both during software development and in use. During software de-

velopment hardware bugs are often time consuming to diagnose and treat, therefore

hardware should be as stable as possible. The level of use time testing depends on the

requirements for the system. For example, undetected hardware error in a satellite

might lead to unrecoverable situation. After POST phase additional bootloader stage

may be loaded to the memory and executed. Latter stages may contain their own set

of POST tests for those parts of hardware which they have enabled. The hardware

manufacturer often provides the first stage bootloader as it requires extensive proprie-

tary knowledge on hardware internals which they only have.

Often the location of the second bootloader is fixed, that is, it is expected to reside

in certain location on activated persistent storage. This makes the task of loading the

second stage easier and it requires fewer resources from the first stage bootloader. As

the second stage code resides on larger medium and there is more volatile memory

available, it can do much more that the first stage. Typically the second stage boot-

loader enables additional devices. Such a device could be, for example, advanced

storage and memory solutions, networking and wireless interfaces and peripheral

devices such as keyboards and displays. Sometimes the second stage functions just as

a stepping-stone to third stage. For example, the second stage could have functionality

to search all storage media such as SD cards, USB sticks or hard drives for the third

stage. In such a design the second stage is more like extension to first stage.

In some embedded systems latter stages are not required or wanted due to timing

concerns. For example, safety systems in a power plant do have high requirements for

availability. Loading the main application as soon as possible requires that the hard-

ware is tightly coupled with the software, so that additional setup or testing is not

required. Device initialization is usually fast process, but a lot of time might be spent

on some self-tests such as extensive memory tests. Consequently, the tests have been

sometimes divided into two groups; fast power on self-tests and extensive long time

running diagnostic tests. Even when fast timing is not crucial, the users should not

kept waiting for no good reason. Therefore, it is not often reasonable to run long last-

ing tests all the time.

More advanced bootloader may contain more functionality such as user interface,

logic for selecting and booting alternative applications, backup service, software up-

dating functionality such as described in Updateable Software pattern, rescue mecha-

nisms or rescue mode, etc. If the bootloader has more than one application which it

could execute, there should be a way to select which one to use. There can be multiple

reasons for having multiple application such as to provide a way to use different ver-

sions of the software, have separate rescue mode application, bundle extensive diag-

nostic test as an application or have higher availability by applying 1+1 Redundancy

pattern. The selection mechanism can be implemented with software logic or with

hardware switch.

111

One typical rescue mechanism is bootloop detection. In a bootloop system crash is

detected by Watchdog, which reboots the system to have it crash again and again.

One way to implement bootloop detection is to have a counter which increases on

start-up and resets on shutdown. If the counter value is larger than zero during start-

up, the system was not shutdown cleanly. When the value is larger than one, the sys-

tem has crashed multiple times in row and may be in bootloop. In this case the opera-

tor of the system is alerted, alternative version of the application could be tried or

system might be halted.

Sometimes third parties should not be allowed to tamper with the system software.

Way to secure the bootloader and system from modification and external tampering is

presented in SECURE BOOT pattern by Hans Löhr et al. [2]. The basic idea is to use

checksums or cryptographically signed bootloaders and applications. Only software

with valid checksum or signature is loaded and executed. Part of the verification chain

is done in hardware. This makes it more secure as it is harder to modify or read out

hardware than software. Such a solution is used for example in SIM cards, electronic

cash cards, game consoles and some mobile phones.

A BOOT LOADER pattern by Dietmar Schuetz [3] descibes the problem area and

solution more from the x86 PC and hardware perspective. Many of the ideas present-

ed in the pattern still apply any hardware or CPU setups even if the hardware details

differ.

✥ ✥ ✥

Bootloading ensures that the system is functional with required components. The

POST verifies that the system is in tested defined state. This creates a good stable

base, which can be relied upon. Application developer does not need to wonder if the

hardware is in working order. However, as everything cannot be tested, testing just

makes sure that the probable and common errors are detected. With dublication and

rescue mode additional availability may be achieved.

When the bootloader is divided into stages, every stage provides always higher

level of service on top of the previous stage. Typically the hardware vendor concen-

trates on the hardware details in their first stage bootloader and company using the

hardware adds functionality of their own into latter stage bootloader(s).

Especially the first stage bootloader is usually highly hardware dependent and cre-

ating such a piece of software requires good knowledge on the hardware and how to

program it. Typically hardware registers are manipulated and low level coding lan-

guage such as assembler is used in some parts of the bootloader. This requires de-

tailed knowledge and skill set, which an normal application developer rarely has.

If system initialization is build using multiple bootloaders, the startup is not as fast

as it could be. In many case delayed startup sequence is acceptable cost for the re-

112

ceived flexibility. When a system should serve its task almost immediately after pow-

ering up it is not acceptable to wait. Too long start-up period is also usability issue

from the operator perspective.

✥ ✥ ✥

When the ARM CPU is powered on, its registers are set to predefined values. The

processor starts to execute binary from address 0x00000000. This memory address

resides in internal ROM memory located on-chip with the CPU. The first stage boot-

loader is preloaded by hardware manufacturer into internal ROM of the CPU. The

bootloader initializes the system by setting busses, clocks, stacks, interrupts etc. After

this, the bootloader identifies the boot media by looking for bootloader signature on

external flash and then from USB storage.

If the second stage bootloader is not detected, the first stage bootloader halts the

system. If bootloader is found from medium, it is loaded into internal RAM. Then the

CPU program counter is set to address of the second stage bootloader load address.

The second stage bootloader is responsible for loading operating system into memory.

For this to be possible, the memory has to initialized first by setting up controller,

memory refresh rate, etc. The second stage bootloader has been configured to launch

operating systems from certain locations defined beforehand. After the memory has

been initialized, the first location is tried. If no operating system is found, next ad-

dress is tried and so on. If no operating system is found, the system is halted. When

suitable signature is found, the operating system is loaded into memory and execution

is transferred to the operating system.

2 Acknowledgements

I would like to thank all the participants of the VikingPLoP 2013 for their input on

this work.

3 References

1. Hürsch, W., Lopes, C.: Separation of Concerns. Technical report by the College of Com-

puter Science, Northeastern University. 1995.

2. Schuetz , D.: Boot Loader. In proceedings of 11th European Conference on Pattern Lan-

guages of Programs, 2006.

3. Lohr, H., Sadeghi, A-R., Winandy, M.: Patterns for Secure Boot and Secure Storage in

Computer Systems. In proceedings of ARES'10 International Conference on Availability,

Reliability, and Security, pp. 569-573. IEEE, 2010.

113

Probabilistic Dialog Management

Dirk Schnelle-Walka, Stefan Radomski, Stephan Radeck-Arneth
Telecooperation Group

Darmstadt University of Technology
Hochschulstraße 10

D-64283 Darmstadt, Germany
[dirk|radomski|stephan.radeck-arneth]@tk.informatik.tu-darmstadt.de

phone: +49 (6151) 16-64231

October 11, 2013

Abstract
Modeling user interfaces as dialogs provides a conceptual frame-

work to address global coherence and efficiency of interactions. While
non-probabilistic approaches provide convincing results and transpar-
ent dialog behavior, probabilistic techniques can help to account for
inherent uncertainties in user input. In this paper, we present three
patterns for probabilistic dialog management or support thereof.

1 Introduction

Describing graphical user interfaces is still, predominantly, achieved by ap-
plying the Model-View-Controller pattern [5] or one of its variations. Wherein
the graphical widgets of an application provide the means to input data as
the view, processed by a controller component to adapt the model of an
application, which in turn, updates the view. This pattern works very well
for graphical user interfaces in the absence of recognition errors or with in-
expensive error correction.

There are two problems with the MVC pattern with regard to generic
user interfaces. First, it does not ensure a coherent global dialog behavior
between the user and the system. Second, it assumes unambiguous user
input, recognized without any errors, which is not the case for interfaces
employing spoken or gesture input. Therefore, we identified MVC as an
anti-pattern [6] as far as dialog management is concerned.

This paper is aimed at developers of multimodal interfaces and extends
our pattern language introduced in the aforementioned earlier paper. We
describe patterns to support global dialog coherence by probabilistic ap-
proaches, accounting for inherent recognition uncertainty with some modal-
ities.

1

1114

2 Patterns

The patterns described in this paper integrate into the language of patterns
for dialog management that we introduced in [6]. An overview of the pat-
tern language and their relations is shown in figure 2. The earlier patterns

Figure 1: Overview of the pattern language

of our language are shown as gray. Table 2 summarizes these patterns as
(External) Pattern Thumbnails [3].

In this paper we extend our language by three more patterns: Markov
Decision Processes (MDP), Partially Observable MDP and Se-
quence Prediction. While the first two have been established in research
around dialogue management in the past decade, the latter is more of an
explorative nature. This means that we use the pattern format to explore
the domain. We aim for extending existing research in sequence prediction
algorithms mainly discussed in [2] to discuss their applicability to dialog
management. Consequently, there are no known uses.

The following terms are defined in more detail in our original paper [6]
and only included here for completeness.

Dialog (-strategy): A recursive sequence of inputs and outputs
necessary to achieve a goal [4].

Dialog Turn: A single input or output within a dialog.

(Information) Slot: Storage to hold a single atomic piece of
information.

2

2115

Name Intent
Programmatic Dialog
Management

Implement an interactive application with
unimodal interaction and no need for ex-
plicit dialog management.

Finite State Dialog Man-
agement

Provide an interactive application with an
easy way to adapt the dialog structure
later on.

Frame Based Dialog
Management

Allow for adaptations of dialog structure
without altering application logic, but try
to ease the verbosity of finite state dialog
models.

Information State Up-
date

Allow for more flexible dialogs with a cer-
tain amount of intelligence in the dialog
structure.

Plan Based Dialog Man-
agement

Uncover the user’s underlying goal to
guide the actual dialog management.

Agent Based Dialog
Management

Model interaction with distinct subsys-
tems as agents with their own beliefs, de-
sires, intentions (and obligations).

Table 1: Thumbnails of patterns described in [6]

Mixed Initiative: The possibility for a user to provide com-
pound information during her turn, as opposed to a single infor-
mation; Fills multiple information slots at once.

Patterns are in a custom format which is based on the Coplien format [1]
which we find useful to talk about human computer interaction.

3

3116

Markov Decision Processes (MDP)

Intent

Sl
ot
1

Sl
ot
2

Sl
ot
N

S1

S2 S3 SN

S2 SN

Find an optimal dialog strategy to fill a set
of information slots with a sequence of mixed-
initiative dialog turns, where a single user
action can potentially fill multiple slots.

Context
A mixed-initiative dialog needs to sufficiently instantiate a template as a
set of information slots. Different (compound) user actions yield different
recognition accuracies depending on their complexity and the performance of
a recognizer and an eventual natural language understanding unit. Frame
Based Dialog Management can be applied to allow for an arbitrary
order to fill the slots but does not take the different recognition rates with
compound user actions into account.

Problem
There are multiple, possible sequences of state transitions, each state prompt-
ing the user to perform an action that will potentially fill multiple informa-
tion slots. The recognition accuracies differ with regard to the amount and
kind of information the user action contains for a single prompt. How to
account for those different recognition accuracies to find an optimal and
consistent dialog strategy to sufficiently instantiate a template?

Forces

• A sufficiently large corpus of example dialogs exist or users can be
simulated.
• Dialog is limited in scope to prevent state explosion.
• The goal of the user can be conceived as the instantiation of a template.

Solution
The solution tries to find the optimal dialog strategy to instantiate tem-
plates as a set of information slots as defined by an objective cost / reward
function [3]. By modeling the dialog as a Markov Decision Process (MDP),
approaches from reinforced learning can be applied to minimize these cost
/ reward function with regard to the dialog turns. Paek and Chickering an-
alyzed in [4] different reward models and their suitability to constrain the
state space when its structure is unknown.

A MDP is formally defined as the quadruple:

MDP := S,A, T,R

States := {s ∈ all dialog states}

4

4117

Actions := {a ∈ all output actions}
Transitions := P (st+1|st, a)

Reward := r(s, a)

With States being the cartesian product of all the information slots with
their possible values. Actions as a set of dialog acts the machine can perform
to prompt the user to provide input, Transitions as the probabilities to tran-
sition from state st to st+1 should the action a be selected and Reward as a
cost / reward function, associating a cost for performing an action in a given
state.

The dialog starts in the state where all information slots are unfilled. The
transition with the highest probability is taken and the associated action is
performed (e.g. open prompt greeting). The user’s input is processed by
a semantic interpretation unit and the new state determined. The process
continues until one template is sufficiently instantiated for the system to sat-
isfy the users goal. To apply a Markov Decision Process for dialog modeling,
consider the following:

1. Establish the state-set States as the cartesian product of all possible
input field values.

2. Identify all possible actions Actions that are relevant to perform the
dialog.

3. Provide a cost function to account for e.g. overall dialog length, cost of
database queries, number of unfilled information slots, cost of rendering
a new prompt.

4. Use reinforced learning to train the Transition probabilities from the
dialog corpus or user simulation.

The resulting MDP provides the basis for a dialog strategy, satisfying the
optimality criterion implicit in the cost function.

Consequences

, Resulting dialog strategy is learned from real data.
, All dialog strategies are (nearly) optimal with regard to cost function.
, Accuracy of recognition and language understanding is taken into ac-

count.
/ The cartesian product of all possible input field values tends to be huge

and an optimal solution often intractable.
/ Actual dialog behavior is opaque as it is encoded in the MDP.
/ Adapting the dialog requires retraining.

5

5118

/ Recovery strategies, to realign the users interaction intent with the
systems interpretation [5], are difficult to implement, as all the different
approaches would need to be formalized in the cost function.

Known Uses

Lemon showed in [2] that dialog management and natural language gen-
eration are closely related and that a joint and automated training result in
a significantly better reward.

Boyer et al. introduce in [1] a tutorial dialog system based on this pattern.

Related Patterns

Markov Decision Processes (MDP) extends Frame Based Dia-
log Management to find an optimal dialog strategy to fill a set of infor-
mation slots with a sequence of mixed-initiative dialog taking into account
the respective recognition rates for such compound input.

Partially Observable MDP helps to model this uncertainty as a
probability distribution of states.

References

[1] Kristy Elizabeth Boyer, Eun Young Ha, Robert Phillips, Michael D Wal-
lis, Mladen A Vouk, and James C Lester. Inferring tutorial dialogue
structure with hidden markov modeling. In Proceedings of the Fourth
Workshop on Innovative Use of NLP for Building Educational Applica-
tions, pages 19–26. Association for Computational Linguistics, 2009.

[2] Oliver Lemon. Learning what to say and how to say it: Joint optimi-
sation of spoken dialogue management and natural language generation.
Computer Speech & Language, 25(2):210–221, 2011.

[3] E. Levin, R. Pieraccini, and W. Eckert. Using markov decision process
for learning dialogue strategies. In Acoustics, Speech and Signal Process-
ing, 1998. Proceedings of the 1998 IEEE International Conference on,
volume 1, pages 201 –204 vol.1, may 1998.

[4] Tim Paek and David Maxwell Chickering. The markov assumption in
spoken dialogue management. In 6th SIGDIAL Workshop on Discourse
and Dialogue, 2005.

[5] Dirk Schnelle-Walka. A pattern language for error management in voice
user interfaces. In Proceedings of the 15th European Conference on Pat-
tern Languages of Programs, EuroPLoP ’10, pages 8:1–8:23, New York,
NY, USA, 2010. ACM.

6

6119

Partially Observable MDP

Intent
P(S1)
P(S2)
 ...
P(SN)

P(S1)
P(S2)
 ...
P(SN)

P(S1)
P(S2)
 ...
P(SN)

O1 O2
Provide a dialog management system that
implicitly copes with the uncertainty related
to the recognition of user input.

Context
Markov Decision Processes (MDP) has been applied to find an optimal
dialog strategy to fill a set of information slots in a mixed initiative dialog.
Still, a huge class of problems, especially with multimodal applications, stems
from the fact that user input cannot be recognized with absolute certainty.

Problem
How to model dialogs with inherent uncertainty in the user input?

Forces

• User input intend cannot be derived with certainty from employed
modalities.
• A sufficiently large corpus of example dialogs exists or user input can

be simulated.
• Dialog is limited in scope to prevent state explosion.

Solution
Implicitly modeling uncertainty as a partially observable Markov decision
process with a probability distribution among all the dialog states can help
to arrive at concise and effective dialogs in the absence of robust recognition.
In order to implement this strategy consider the following:

Model the dialog as a partially observable Markov Decision Process - an
extension of the MDP quadruple defined above as:

POMDP := S,A, T,R,O,Z, λ, b0

States := {s ∈ all dialog states}
Actions := {am ∈ all output actions}

Transitions := P (st+1|st, am)

Reward := r(s, am)

Observations := {o ∈ all user input au}
Z := P (ot+1|st+1, a)

λ := geometric discount factor with 0 ≤ π ≤ 1

b0 := initial state probability distribution(belief)

7

7120

With S,A, T,R as defined in the MDP pattern and Observations as the
set of input actions a user might perform, Z as the probability of observing
user action ot+1 after performing am as part of the previous transition. λ
as a discounting factor to optionally emphasize late rewards and b0 as the
initial state probability distribution.

The major difference when compared to other state-based dialog man-
agers is that POMDPs will maintain a probability distribution of all states
in b and employ dynamic programming to determine the most likely user
goal and system action [3].

When performing the dialog, the system will receive the users input and
perform belief monitoring to update the state probability distribution in b
for each dialog turn. This distribution gets mapped to actions (e.g. a voice
prompt). Several stochastic models are needed in order to operationalize
the approach and would need to be trained from a dialog corpus or by user
simulation.

As it may be computationally intractable to process the whole belief state
and associated actions, Young proposes a grid-based approach [3], where
actions are points in the belief state and a distance metric can be employed
to find the best action. Another extension is the mapping of all state into
a summary state space, containing the most likely states corresponding to
user goals.

An overview of the principal components in a POMDP dialog system,
based on [3] is shown in the following figure:

Consequences

, Resulting dialog strategy is learned from real data.
, Robust with respect to recognition or understanding errors
, Implicitly models and takes into account uncertainty in user recogni-

tion
/ The state space tends to get huge as it has to model all dialog states

and mappings from beliefs to actions.

8

8121

/ Users goal is assumed to change infrequently to keep belief monitoring
manageable.

/ Recovery strategies are difficult to implement as they have to be part
of the original corpus.

Known Uses

Wiliams et al. showed in [2] that the performance of this dialog manage-
ment is comparable to hand-crafted dialog managers.

The Trainbot system [4] uses this dialog manager to make appropriate
dialog turns in a given situation.

Tsiakoulis et al. presented in [1] a voice-based in-car system for providing
information about local amenities (e.g. restaurants).

Related Patterns

Partially Observable MDP extends Markov Decision Processes
(MDP) by providing the means to model uncertainty as a probability dis-
tribution of states.

References

[1] Pirros Tsiakoulis, M Gašic, Matthew Henderson, J Planells-Lerma, Jorge
Prombonas, Blaise Thomson, Kai Yu, Steve Young, and Eli Tzirkel. Sta-
tistical methods for building robust spoken dialogue systems in an auto-
mobile. In 4th International Conference on Applied Human Factors and
Ergonomics, 2012.

[2] Jason D Williams and Steve Young. Partially observable markov deci-
sion processes for spoken dialog systems. Computer Speech & Language,
21(2):393–422, 2007.

[3] S. Young. Using pomdps for dialog management. In Spoken Language
Technology Workshop, 2006. IEEE, pages 8 –13, dec. 2006.

[4] Weidong Zhou and Baozong Yuan. Trainbot: A spoken dialog sytem
using partially observable markov decision processes. In Wireless, Mo-
bile and Multimedia Networks (ICWMNN 2010), IET 3rd International
Conference on, pages 381–384. IET, 2010.

9

9122

Sequence Prediction

Intent

S1

S2

S3

P(
S T

+1
 |

S T
, .

.)

T T+1

SN

Support an actual dialog strategy by mak-
ing predictions about future user input.

Context
A state-based multimodal dialog system ex-
ists, e.g. Finite State Dialog Manage-
ment, where 1) multiple strategies can sat-
isfy the users interaction intent or 2) knowl-
edge about potential future steps can be applied to increase the interaction
efficiency.

Problem
How to support the dialog manager with knowledge about previously ob-
served interaction strategies employed by a user?

Forces

• System- or user-actions can be performed in several ways.
• Users are likely to stick to the approach they identified first [?].
• The system can support the user in an unobtrusive way by using knowl-

edge about probable future input.

Solution
By learning the observed sequences, a system can provide support to arrive
at more concise and effective dialogs. To implement this strategy consider
the following:

Establish an N-Gram P (st+1|st, st−1..st−N−1, t(st, st+1) ∈ T) to deter-
mine the probability of a state given a history of states and use a sequence
prediction algorithms to take a guess at the next state. Support the user by
unobtrusively offer short-cuts and interaction support using this knowledge.

1. Count all occurrences of a state in a dialog corpus or online while
performing the dialog as the 1-Gram model.

2. Maintain a history and establish the 2..N-Gram models as well.

3. Look-up the N most likely states given the history in the N-Gram and
unobtrusively support transitions to these states in the interface.

Consequences

, Can support actual dialog managers with their strategy by hinting at
future transitions.

10

10123

/ Is not suited to perform actual dialog management, but rather a com-
plimentary approach.

/ The N-Grams need to be established per user as their interaction pat-
terns may differ.

An evaluation and overview of available sequence prediction algorithms
is available in e.g. [1].

Related Patterns

Sequence Prediction extends Finite State Dialog Management
by supporting an actual dialog manager with predictions about future user
input. In contrast to the previous two patterns, this is a complimentary
approach to dialog management and not an actual dialog management tech-
nique.

References

[1] Melanie Hartmann and Daniel Schreiber. Prediction algorithms for user
actions. In Ingo Brunkhorst, Daniel Krause, and Wassiou Sitou, editors,
15th Workshop on Adaptivity and User Modeling in Interactive Systems,
2007.

3 Conclusion

In this paper we continued the work on our pattern language for dialog man-
agement with patterns about probabilistic dialog management. Specifically,
we described the following three patterns:

Markov Decision Processes (MDP) extends Frame Based Dia-
log Management to find an optimal dialog strategy to fill a set of in-
formation slots with a sequence of mixed-initiative dialog turns with given
uncertainty in recognizing the user’s actions.

Partially Observable MDP helps to model this uncertainty as a
probability distribution of states.

Sequence Prediction is an extension to Finite State Dialog Man-
agement by supporting an actual dialog strategy by making predictions
about future user input. In contrast to the previous two this is rather a
guidance to dialog management.

The major disadvantage of probabilistic approaches, from our point of
view, is the opaqueness of the learned dialog strategies, making it hard or
even impossible to make small adaptations to the dialog or employ error
recovery strategies. Nevertheless, being able to learn an optimal strategy or
implicitly modeling the uncertainty can provide very useful when embedded
as probabilistic sub-dialogs.

11

11124

In the future we will further extend our language by describing more
recent variances of the described patterns.

Acknowledgements

The authors would like to thank our shepherd Johannes Koskinen for his
valuable input. We would also like to thank the members of the writer’s
workshop at the VikingPLoP 2013 conference for their additional thoughts
that helped us improving our work.

References

[1] James O. Coplien. A generative development-process pattern language,
pages 183–237. ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, 1995.

[2] Melanie Hartmann and Daniel Schreiber. Prediction algorithms for user
actions. In Ingo Brunkhorst, Daniel Krause, and Wassiou Sitou, editors,
15th Workshop on Adaptivity and User Modeling in Interactive Systems,
2007.

[3] Gerard Meszaros and Jim Doble. Pattern languages of program design 3.
chapter A pattern language for pattern writing, pages 529–574. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1997.

[4] J Nielsen. Classification of dialog techniques. ACM SIGCHI Bulletin,
1987.

[5] T. Reenskaug. Models - views - controllers. Technical report, Xerox Parc,
1979.

[6] Dirk Schnelle-Walka and Stefan Radomski. A pattern language for dia-
logue management. In Proceeding of VikingPLoP 2012, Apr 2012.

12

12125

Tampereen teknillinen yliopisto
PL 527
33101 Tampere

Tampere University of Technology
P.O.B. 527
FI-33101 Tampere, Finland

	PC_vplop
	SD_vikingplop2013

