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Preface 

This is the proceedings of VikingPLoP 2013 – a record of all papers workshopped 

during the conference.  VikingPLoP  is  a Nordic  conference  of  pattern  languages  

of  programs  which took  place  this year in Horse Inn of Luomajärvi, Ikaalinen, Fin-

land in March 2013. VikingPLoP was organized jointly by Tampere University of 

Technology and Hillside Europe. VikingPLoP 2013 was also sponsored by Wiley 

which provided books for the focus group reading session. The conference was orga-

nized in Finland for the second time in a row. Previous location in 2012 was in 

Saariselkä Lapland. In 2013 vikings were moving towards south and chose the Horse 

Inn in Ikaalinen as the venue as it offered a luxurious opportunity for participants to 

experience rustic romance, good food, horseback riding, traditional Finnish sauna, the 

nature, and wilderness tracks. In March the landscape was still covered in snow mak-

ing the landscape ruggedly beautiful. 

The papers in this proceedings book are updated versions of the papers work-

shopped in the conference.  In the beginning, participants submitted their papers for 

shepherding process.  In the shepherding  process,  the shepherd, an experienced  

pattern  writer,  gave  ideas  and  feedback  for  the author, colloquially known as a 

sheep. The sheep incorporated this feedback in to her paper. After three iterations of 

shepherding the paper was discussed at the conference in a writer's workshop. The 

workshop group gave comments, criticism and praise. After the conference  the  au-

thors  updated  their  papers  according  to  the  workshop  feedback.   

This process of giving feedback was made possible by having a community of 

trust. Mutual trust was built by playing non-competitive games and by having social 

activities. VikingPLoP  2013  focused  on  patterns  and  their  usage  in  various  

fields  of expertise.  These  fields  included  a  wide  range  of  topics  from  educa-

tional patterns to safety patterns and embedded  system's  software  architecture pat-

terns.  Bringing  people  together  from  various fields  of  expertise  stimulates  crea-

tivity  and  new  ideas  might  emerge.  These innovations are reflected in the papers 

in these proceedings.  VikingPLoP 2013  was especially a  conference  for  newcom-

ers  and  over  half  of  the  participants  were  first time PLoP participants. 

These proceedings contain 9 papers. In addition, a book reading workshop was ar-

ranged with Bob Hanmer who presented his new title Pattern-Oriented Software Ar-

chitecture for Dummies and discussed it with the participants using video conferenc-

ing tools.   

As expected, VikingPLoP 2013 was an enjoyable and fun experience. We  are  

grateful  for  all contributors for your  involvement.  If you wish to participate in Vi-

kingPLoP in the future, please come and find out more information about the next 

conference http://www.vikingplop.org and join the community.   

We wish that these proceedings are a valuable source of information in your ef-

forts.  We hope that you will enjoy reading the following pages. 

October 2013 

The program chairs, 

Veli-Pekka Eloranta and Marko Leppänen 
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1  Introduction

Distributed control systems are continuously gaining importance, as more and more
devices and machines are equipped with embedded systems that control their opera-
tion. These controllers are increasingly more powerful and networked, providing in-
telligence and interoperability for the control system. Examples of such systems range
from large mobile machines to robots and intelligent sensor networks. These systems
often interact with physical processes, influencing many parts of our lives either di-
rectly or indirectly. Therefore they need to be dependable, which can be measured
with the attributes of availability, reliability, safety, integrity and maintainability [1].
However, with the increased functionality and intelligence, the complexity of these
systems is also increased, meaning that the development process becomes more de-
manding and dependability becomes more costly to achieve and verify. Another sig-
nificant requirement of these systems is that they usually are real-time systems, which
may put limitations on the architecture.

Many critical systems that have failed catastrophically are well-known – examples
such as Therac-25 radiation therapy machine and the explosion of Ariane 5 rocket are
infamous, whereas highly reliable systems receive little recognition, even though their
study might give valuable ideas for the design and architecture of new software. One
example of such systems can be found in telephony applications, namely Ericsson
AXD301 ATM switches that achieved nine nines (99.9999999%) service availability,
running software written in Erlang [2]. Erlang’s highly decoupled actor model and
fault handling based on supervisors have inspired especially LET IT CRASH and
SERVICE MANAGER patterns found in this paper.

This paper presents three software patterns that can be used to improve control sys-
tem dependability by implementing a decoupled architectural design with supporting
fault handling. The decoupled architecture can also be used to introduce additional
fault tolerance solutions – like checkpointing and rejuvenation – gradually to the sys-
tem, until a sufficient level of reliability has been achieved [3]. Our patterns have
been encountered originally in research of remote handling control systems used to
teleoperate robotic manipulators, but all patterns have examples of other known uses
as well. Some of these examples are presented in the corresponding sections of the
patterns.
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2 Context of the Patterns

Fault tolerance cannot be implemented without redundancy of some kind. To have
fault tolerance for e.g. computer failures, we would need at least two computers – if
one fails the other one can detect the error and try to correct it. Software faults on the
other hand are typically development faults, which are harder to detect and correct
than hardware faults. To have good coverage for software faults, we would need di-
verse redundancy, but even this form of fault tolerance has been criticized of being
susceptible to common mode failures [4]. Development costs for design diversity are
also often seen as prohibitive.

The patterns in this paper present an alternative approach to fault tolerance, based
on dividing the system into highly decoupled modules and using this to implement
lightweight form of fault tolerance. We present an architectural pattern for this called
DATA-CENTRIC ARCHITECTURE but this is of course not the only way to achieve a high
level of decoupling. One of the key points of decoupling is that it should by itself
improve reliability by limiting fault propagation and improving modularity and un-
derstandability of the system. In a way, modular approach can be seen like compart-
mentalization of ships – without compartments, every leak can sink the ship. An ex-
ample of a software system that uses modularity to successfully implement fault isola-
tion and resilience is the MINIX operating system, based on the idea of microkernel
[5].

Modular and decoupled architecture can also be used to implement other reliabil-
ity-improving patterns like SERVICE MANAGER and LET IT CRASH documented in this
paper or other well-known patterns like LEAKY BUCKET COUNTER [6], WATCHDOG [6]
[7], etc. The patlets of the patterns presented in this paper are listed in the Table 1.
List of all referenced patterns with short descriptions can be found in an appendix.

Table 1. Patlets

Pattern Description
DATA-CENTRIC
ARCHITECTURE

How to implement reliable and scalable distributed control sys-
tem? Use data-centric middleware based on PUBLISH/SUBSCRIBE
model [8] to reduce level of coupling between modules.

SERVICE
MANAGER

How to detect faults and restart modules or processes after a
failure? Implement a service manager that can monitor, start and
stop modules.

LET IT CRASH How to react to failures without crashing the whole system?
Flush the corrupted state by “crashing” the process instead of
writing extensive error handling code. Let some other process
like service manager do the error recovery e.g. by restarting the
crashed process.

The presented patterns work together by building on the top of features provided
by the higher abstraction level patterns as shown in Fig. 1, but all of the patterns are
also typically used separately and in contexts other than distributed control systems.
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The DATA-CENTRIC ARCHITECTURE provides the decoupled architectural model need-
ed to use LET IT CRASH for fault handling. The SERVICE MANAGER pattern provides a
way for trying recovery after failures, in addition to providing error detection and
monitoring.

Fig. 1. Graph of pattern relationships

The idea of crashing a process suggested by LET IT CRASH may sound like a risky
action to take. However, the idea is to offer recovery from transient physical and in-
teraction faults (sometimes called Heisenbugs), ability to keep the system as a whole
functioning, even if some internal process would crash, and possibility to hot-swap
code and bug-fixes. The downside of this approach is of course that it is not suited for
fail-operate systems like flight controllers that must be operational all the time – this
type of systems would be the right domain to apply design diversity.

3 Patterns

3.1 Data-Centric Architecture

Intent. Implement an architecture based on decoupled modules (e.g. services, com-
ponents or processes) that are connected with data-centric middleware.
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Context. You are developing a distributed control system that consists of several
subsystems and needs to interact with other heterogeneous systems like mobile ma-
chines or plant systems. The system has CPU and memory resources available to run
an operating system – rather than being based on a basic time-triggered scheduler
used in resource-constrained embedded systems. Failures in control functions (e.g.
boom or manipulator control) may cause damage to the environment and equipment,
meaning that some subsystems may be categorized as safety-critical.

Problem. How to implement a reliable and scalable distributed control system?

Forces.

Throughput: Some time-critical data like sensor measurements may be updated
with short period, producing large amounts of communication.
Scalability: New nodes and subsystems can join the system any time; assumptions
about interfaces between modules should be minimized.
Changeability: System configuration and functionality might change. Changing
interfaces in a tightly coupled system requires code changes at both ends (and at all
clients), so assumptions about expected behavior should be minimized. Point-to-
point protocol based client-server architectures (like sockets or remote method in-
vocation) are not ideal because of complexity and coupling introduced.
Maintainability and long expected life-cycle: The control system has long expected
lifetime and needs to be maintainable and extensible in the future – if subsystems
are added or substituted, changes to existing modules need to be minimized. Sys-
tem should be easy to understand and modify without breaking it.
Reusability: Same modules could be used in other control system implementations.
Interoperability: Distributed control systems consist of and/or need to communi-
cate with heterogeneous platforms.
Testability: Tightly coupled modules are difficult to test because they are more
dependent on other modules.
Availability: The system as a whole should remain available, even if some subsys-
tems or processes experience failures.
Reliability: A single fault in the control system software should not endanger func-
tionality of the whole system (i.e. no single point of failures).
Real-time performance: Control system interacts with the real world and needs to
react in a deterministic manner.
Safety: Need to detect if a module has crashed or is down (not releasing new in-
formation)  so  that  the  system  can  enter  SAFE STATE [7] in a controlled fashion.
Safety-critical and non-safety-critical subsystems cannot be tightly coupled, since
errors may propagate.

4



Quality of service: Different subsystems may have different requirements for quali-
ty of service1 (QoS) policies. There is an impedance mismatch between e.g. real-
time control systems that operate on a timescale of milliseconds and enter-
prise/high level systems that are several orders of magnitude slower.

Solution. Use data-centric middleware based on PUBLISH/SUBSCRIBE model to
reduce level of coupling between modules.

Implement data exchange between modules by adopting a middleware that pub-
lishes data to a global data space instead of sending point-to-point messages or remote
procedure calls; data-centric architecture is based on removing direct inter-module
references by exposing the data and hiding the code. Management of the global data
space is externalized to the middleware that implements a topic-based
PUBLISH/SUBSCRIBE model. The middleware acts as a single source of up-to-date state
information in the system, instead of applications managing state separately.

Modules do not need to know recipients of the data when publishing it, which re-
duces coupling. Instead of sending data directly to a recipient, it is published to a
topic. Data can be e.g. sensor measurements, events or commands, but it must follow
a shared data model which is represented as topics in the actual system implementa-
tion. Publishers register as data writers to a topic and interested subscribers can join
the topic as data readers. The middleware automatically discovers new readers and
writers, which means that new nodes can join the system on the fly.  Single topic can
have  multiple  readers  and  writers,  as  shown  in Fig.  2.  Moreover,  a  topic  can  have
multiple instances, which are identified by a key value.

Fig. 2. Data is published to topics that can have multiple data writers and readers. Topic A has
two instances, identified by the id number key value.

Expose data and hide the behavior. Instead of designing interfaces for components,
you must design how to represent the state of the system and the external or internal

1  QoS policies provide the ability to specify various parameters like rate of publication, rate of
subscription, reliability, data lifespan, transport priority, etc. to control end-to-end connec-
tion properties. Policies can be matched on a request vs. offered basis.
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events that can affect it. This needs a common data model, which captures the essen-
tial elements of the physical system and application logic. Conceptually the data mod-
el is similar to class diagram in object-oriented programming, since it consists of
identifying entity types, which have data attributes assigned to them, and associations.
The difference is that the data model focuses exclusively on data and not behavior.

Separate communication and application logic. Delegate network communications
to a “data bus” formed by the publish/subscribe middleware (Fig. 3), so that the ap-
plication logic can focus on the core functionality. Middleware takes care of maintain-
ing the data up-to-date, automatically updating new nodes that join. If the middleware
uses a central server as a message BROKER [8], it becomes a single-point-of-failure
and possibly a bottleneck. Therefore, choose a decentralized middleware solution if
possible to avoid this problem

Define appropriate QoS attributes for the data topics (reliability, durability, dead-
lines, etc.). Middleware manages the data lifecycle according to the associated QoS
policy and matches policies offered by publishers vs. policies requested by subscrib-
ers.

Fig. 3. Middleware implementation as a data bus that has no central components or brokers.
Services and subsystems can join topics as publishers and/or subscribers.

Choose module granularity (size of the communicating modules) so that perfor-
mance is not compromised. On the other hand, too large modules size may diminish
the benefits of the data-centric architecture. The communication participants can be
e.g. subsystems, applications, processes or modules, depending on the environment.
Note that communicating modules can also exist on a same computer and use the data
bus to get benefits of loose coupling locally.

Compared to message-centric publish/subscribe, the difference in data-centric
model is that middleware “messages” – i.e. topic samples – are transparent to the
middleware. In message-centric model, middleware does not know or care about mes-
sage contents. With smart, QoS-aware data-centric middleware, application compo-
nents can be leaner and take less time to develop because the logic that implements
the QoS functionality is pushed down into the middleware. The application specifies
these policies to the middleware during launch and it gets notified by the middleware
during operation when QoS requirements are not being met.
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Consequences.
+ Publishers do not need to know about subscribers.
+ Middleware provides interoperability between heterogeneous platforms
+ Decoupled design provides error confinement and other benefits like improved
maintainability.
+ Modules can be changed dynamically because late joiners receive new data auto-
matically; ability to hot-swap code can be easily implemented.
+ Network transport layer is abstracted as communications are externalized to mid-
dleware, which reduces communication related code and simplifies implementation.
+ Gives developers control of data delivery with QoS management; QoS can be used
e.g. to guarantee reliable delivery eventually or that available data is kept up-to-date
with best effort. Former would be useful for sending status changes or commands
whereas latter could be used for sensor measurement for which guaranteeing delivery
of old information makes no sense.
+ Reusability is improved since modules are using shared memory and have their own
namespaces, etc.
+ Publish/subscribe based middleware scales effectively since recipients for data are
not explicitly defined.
+ Performance gains can be achieved on multi-core machines since modules can be
easily parallelized and they communicate asynchronously.
+/- Needs good and consistent data-models that must be managed and maintained.
- Sending of commands is not as straightforward as in client-server architectures since
commands need to be parsed from the data. Serialization and deserialization of the
data structures for transmission may also add overhead.
- Parsing of data complicates debugging because it adds another potential source for
faults. If data is parsed incorrectly, it may not be self-evident where the fault origi-
nates.
- Errors in the middleware itself might complicate testing and be hard to detect.
- Middleware solution adds some overhead to message size and uses system re-
sources.
- Possible vendor lock-in to the middleware provider.

Examples. Data Distribution Service for Real-Time Systems (DDS) is decentralized
and data-centric middleware based on the publish/subscribe model. DDS is aimed at
mission-critical and embedded systems that have strict performance and reliability
requirements. Therefore, its implementations have typically been optimized and tested
to  suit  the  needs  of  these  systems.  DDS is  used  as  the  information  backbone in  the
Thales TACTICOS naval combat management system that integrates various subsys-
tems like weapons, sensors, counter measures, communication, navigation, etc. to a
“system of systems”. Applications are distributed dynamically over a pool of comput-
ers in order to provide combat survivability and avoid single-point-of-failures. System
configuration can be adapted for use in various mission configurations, on-board &
simulator training, and different ship types.
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Related Patterns. BUS ABSTRACTION [7], and PUBLISHER-SUBSCRIBER.
MEDIATOR [9] increases decoupling in a similar fashion, but is designed to de-

crease connections between objects locally.

3.2 Service Manager

Also Known as. SUPERVISOR or SERVICE GATEWAY.

Intent. Service manager starts, stops, and monitors processes locally and takes care of
resource allocation for systems that need high availability and real-time performance.

Context. You are developing a system with highly decoupled architecture (e.g. using
DATA-CENTRIC ARCHITECTURE) that consists of large number of processes or tasks
(services). These processes have dependencies and therefore need to be started in
specific order. Process composition may change dynamically during runtime because
your system will have intelligent functionality, it needs to adapt to new situations, or
different functionalities need to be tested without stopping/restarting the whole sys-
tem.

You know rough upper-limit estimates for how much system resources like
memory and CPU time the processes will use.

The system has long expected life-cycle. It is likely to be deployed on a remote lo-
cation like a forest or a control cubicle, making direct physical interaction with the
system a bothersome task.

If you have a real-time operating system and a task gets stuck in a while loop or
some other control structure, it freezes the whole system as other lower priority pro-
cesses (including input devices and network connections) cannot get CPU time. In
this case, the only option is usually to restart the whole computer manually.

Problem. How to ensure that all dynamic modules in your control system are
running correctly and you have enough system resources to achieve determinis-
tic real-time performance?

Forces.

Availability: The system as a whole should remain available, even if some subsys-
tems or processes experience failures, in order to able to use other parts of the sys-
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tem that are not connected to the failed subsystem. The system must detect faults
and try to recover from them automatically. If a failure needs immediate reaction
from a human operator, the system will not scale cost-efficiently and reliably.
Data logging/testability:  If  a  process  fails,  the  failure  should  be  detected  and
logged.
Real-time performance: The control system needs to respond in a deterministic and
predicable manner. Predictability includes system behavior when a fault is trig-
gered.
System resources: Control systems are typically deployed on embedded devices
that have limited memory and CPU resources available. They may need to be mon-
itored in order to guarantee the real-time performance of the system.

Solution. Implement a service manager that can monitor, start and stop modules.
Create a local parent process (the service manager) that is responsible for starting,

stopping and monitoring its child processes. The basic idea of the service manager is
to keep its child processes alive by restarting them when necessary. Location of the
service manager is on the same computer as the child processes in order to keep im-
plementation simple. Therefore, all computers in the system need their own, inde-
pendently functioning, service managers. The service manager is given the highest
process  priority  in  the  system or  put  in  the  kernel  so  that  a  faulty  real-time process
cannot prevent it from functioning by consuming all available CPU time.

Start the child processes based on a fixed order or a dependency table read from a
configuration file, similar to START-UP MONITOR [7], and/or implement a user inter-
face that can be used to start and stop processes.

Use the service manager to allocate resources like CPU time and memory for the
child processes and monitor their use. Expected maximum resource consumption can
be specified in the same configuration file that is used for starting services. New pro-
cesses are not started if there are not enough resources available. If a process con-
sumes more resources than expected, it can be restarted, leading to error handling
according to the LET IT CRASH pattern. Resource use can be followed e.g. with proc
filesystem or getrusage call in Unix-like systems.

Since the key functionality of service manager is to monitor processes for failures,
error detection can be based on additional or alternative techniques besides resource
monitoring. This can be done with e.g. operating system features, HEARTBEAT [6] [7]
or WATCHDOG.

If  the  service  manager  is  deployed  on  a  system  that  uses  DATA-CENTRIC
ARCHITECTURE, service startup interfaces can be implemented through the middle-
ware. Since the middleware abstracts the location of the data, it can be used to re-
motely start dependencies. Example: service manager SM_A must start a service
called S1. However, it has a dependency called S2 which cannot be found locally, so
the service manager publishes a start request for S2. A second service manager SM_B
on another computer notices the request, starts S2 and publishes information about the
successful startup. SM_A receives information that S2 is available and starts S1.

The implementation for service manager needs to be kept fairly simple, since it
acts as a single point of failure locally. This conflicts with the need to use of configu-
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ration files, making resource checks, and providing user interface, so they should be
based on external components or libraries that have been proven in use.

Consequences.
+ Detects and initializes recovery from transient faults that cause a process to con-

sume too much system resources or become unresponsive. If the fault is persistent,
LEAKY BUCKET COUNTER can be used to limit the number of restarts.

+ Ensures other processes stay alive and have sufficient resources.
+ Simplifies starting procedure of complex system that consists of large number of

processes, making possible to start and stop a large number of processes automatically
and in a specific order.

+ Cost-efficiency: the same service manager implementation can be reused on sev-
eral systems.

+ Supports logging and reporting of errors so that they do not go undetected.
- Cannot detect faults that cause erroneous output for monitored components.
- Cannot recover persistent faults like development and physical faults, e.g. com-

puter failures.
- Potential single point of failure that may stop the entire system from working if

services are incorrectly terminated.
- Restarting a service may cause the system to behave in non-deterministic way

and miss deadlines, which is a failure for a hard real-time system. However, it should
be noted that the failure would have likely cause the system to miss the deadlines or
exhibit some other unwanted behavior in the first place.

- Resource utilization needs to be estimated for the processes in order to set limits.
- Service manager uses system resources and may reduce performance.

Examples. The MINIX, a POSIX conformant operating system, based on a microker-
nel that has minimal amount of software executing in the kernel mode. The rest of the
operating system runs as a number of independent processes in user mode, including
processes for the file system, process manager, and each device driver. The system
uses  a  special  component  known  as  the  driver  manager  to  monitor  and  control  all
services and drivers in the system [5]. Driver manager is the parent process for all
components, so it can detect their crashes (based on POSIX signals). Additionally the
driver manager can check the status of selected drivers periodically using HEARTBEAT
messages. When a failure is detected, the driver manager automatically replaces the
malfunctioning component with a fresh copy without needing to reboot the computer.
The driver manager can also be explicitly instructed to replace a malfunctioning com-
ponent with a new one.

Open source tool Monit (http://mmonit.com/monit/) can function as a service man-
ager in non-real time systems. Following code listing shows an example configuration
for Spamassassin daemon that restarts the daemon if its memory or CPU usage ex-
ceeds 50% for 5 monitoring cycles:
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check process spamd with pidfile /var/run/spamd.pid
   start program = "/etc/init.d/spamd start"
   stop  program = "/etc/init.d/spamd stop"
   if 5 restarts within 5 cycles then timeout
   if cpu usage > 50% for 5 cycles then restart
   if mem usage > 50% for 5 cycles then restart
   depends on spamd_bin
   depends on spamd_rc

Related Patterns. FAULT OBSERVER [6], HEARTBEAT, SAFE STATE, SOMEONE IN
CHARGE [6], START-UP MONITOR, STATIC RESOURCE ALLOCATION [7], and
WATCHDOG.

To see how to design an application in a way that it can be easily restarted at any
time, see LET IT CRASH.

MANAGER design pattern [10] can be used to manage multiple objects of same type
– the idea is similar to SERVICE MANAGER (keep track of entities and provide unified
interface for them) but the MANAGER focuses on different scope, i.e. managing enti-
ties (objects) of the same type and does not include resource monitoring or fault de-
tection.

SYSTEM MONITOR [6] can be used to study behavior of system or specific tasks and
make sure they operate correctly, e.g. by using HEARTBEAT or  WATCHDOG.  If  a
monitored  task  stops,  SYSTEM MONITOR reports  the  error.  Compared  to  it,  SERVICE
MANAGER has a more active role in managing the tasks.

3.3 Let It Crash

Also Known as. CRASH-ONLY [11], FAIL-FAST, LET IT FAIL or  OFFENSIVE
PROGRAMMING.

Intent. Avoid complex error handling for unspecified errors. Instead, crash the pro-
cess and leave error handling for other processes in order to build a robust system that
handles errors internally and does not go down as a whole.
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Context. You are developing a distributed control system that consists of several
processes and subsystems that need to cooperate to complete tasks.

DATA-CENTRIC ARCHITECTURE or some other asynchronous decoupled architectur-
al design has been utilized so that processes are not using shared memory.

Some subsystems might have safety-critical functionality, but it is possible to move
the system to SAFE STATE (i.e. the system is fail-safe type, not fail-operate). The sys-
tem has dynamic state information from the user inputs and working environment in
the process memory, e.g. tool tracking data in the case of a robot manipulator. This
state data needs to be recovered after a failure.

The system has a mechanism like monitoring layer, supervisors or a restart manag-
er for restarting the processes. This can be implemented at operating system, pro-
gramming language or framework level, e.g. with the SERVICE MANAGER.

Problem. How to implement lightweight form of error handling that improves
reliability and predictability?

Forces.

Availability: The system as a whole should remain available, even if some subsys-
tems or processes experience failures, since degraded functionality is better than no
functionality. In case of a fault, only minimal part of the system should be affected.
Recovery from failures should happen without human intervention and with mini-
mal downtime.
Reliability: Generation of incorrect outputs should be prevented, otherwise errors
may propagate and the system could cause damage to the environment.
Safety: If an error is detected, any functionality using the affected process should
be stopped and taken to a safe state in order to prevent and minimize damages.
Cost-efficiency: Design diverse fault tolerance techniques are oversized or imprac-
tical for the application, but the system needs to be able to recover from errors.
Real-time performance: Control system needs to react within a certain time-limit;
exceeding the time-limit causes a failure.
Predictability: The system should behave in a consistent manner. If the process
tries to repair its corrupted state, behavior of the system cannot be predicted, which
complicates debugging and verification of reliability. Predictability includes sys-
tem behavior when a fault is triggered.
Error handling: Because it is impossible to foresee all possible faults, specifica-
tions do not cover all possible error situations. Error situations occur seldom, are
difficult to handle and non-trivial to simulate in testing [11]. If the programmers try
to implement error handling, they will make ad hoc decisions not based on the
specifications (i.e. they cannot know how the error should be handled), possibly
causing unwanted and undocumented behavior.

Solution. Make processes crash-safe and fast to recover; flush corrupted state by
“crashing” the process instead of writing extensive error handling code.

12



Commodore 64, DOS machines and other old computers were designed to be shut
down by simply turning the power off, essentially crashing the system. On the other
hand, if an operating system caches disk data in memory, workstation crash may cor-
rupt the file system, which is inconvenient and slow to repair. Control system pro-
cesses and subsystems should also be designed to be easily terminated and recovera-
ble with a simple recovery path if an error is detected, instead of guessing how error
recovery should be attempted, possibly corrupting program state further and causing
unpredictable behavior.

Therefore, implement error handling by terminating the process that has encoun-
tered the error. Only program extended error recovery routines if they are based on
the specification or it is self-evident how the error should be handled – otherwise
crash the process. However, only the module or process where the error is should be
crashed, not the whole system.

Fig. 4. Process 1 encounters an error and dies, after which it is restarted by the service manager,
represented as an eye. If the process 2 detects a deadline overrun, it needs to stop, potentially
interrupting process 3, and wait until process 1 is active again before resuming work. Alterna-

tively the process 2 does not notice any deadline overruns and continues working normally.

Processes that have been designed with LET IT CRASH can 1) help to find faults, by
making them more visible (“offensive programming”), and 2) be used to implement
fault tolerance (recovery from faults or software rejuvenation). In latter case it is pos-
sible to do recovery without affecting service availability if the recovery process is
fast enough. Recovery (and rejuvenation) also needs an external entity to initiate it,
since the process itself has crashed (see Fig.  4).  This  pattern  focuses  mostly  on  the
second case since it is more problematic to implement correctly.

You have a monitoring layer that can recover the system (e.g. by restarting). How-
ever, to detect a failure, the failed application or system service may first have to die.
In this case the process terminates itself immediately upon encountering an error.
Abnormal program termination can be forced e.g. by using abort() or
raise(SIGSEGV). If the monitoring layer has implemented failure detection – based
on watchdog, heartbeat, etc. – it can also hard-fail the service using e.g. kill(pid,
SIGTERM).

Error recovery is performed by restarting the process. Therefore, make processes
fast and easy to restart in order to minimize service failures and downtime. To keep
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recovery path simple, use the single responsibility principle, thereby minimizing re-
sponsibilities of a single process. If the process encounters an error and crashes, it
might be possible to recover from the error without causing deadline misses for other
processes and tripping the system to a SAFE STATE. However, if a control loop has a
period of e.g. 1 ms and restarting of a process that provides information for the loop
takes several milliseconds, control loop execution will be interrupted temporarily.

Recovery paths can be tested extensively by terminating the system forcibly every
time it needs to be shut down or restarted, instead of letting it run through a normal
shutdown process. This forces the system to do a recovery during the startup

Make processes crash-safe. Processes typically handle three types of state data: dy-
namic, static, and internal. Internal state is related to current computations and is usu-
ally discarded after use. If a process crashes, you must think if you want to recycle its
internal state. If you recycle everything you risk hitting the exact same fault again and
crashing, so it might be reasonable to recycle only parts of this state. Static state is
configuration data that can be easily recovered or read from other processes. Finally,
the dynamic state data is generated as the program is executed by reading user inputs,
interacting with other processes and environment, etc. Some of it can be computed
from other data or read directly from sensors, but the critical problem is the data from
user or environment that cannot be reconstructed. This data must be protected by
using checkpointing, journaling or some other form of dedicated state store like data-
bases and distributed data structures.

Implement a reporting functionality that reports failures so that they do not go un-
noticed. Failure information can be forwarded e.g. by using a service manager or
supervisors to send NOTIFICATION messages [12].

The corollary to the LET IT CRASH approach is that you must design your software
to be ready for processes failing.  There is now a possibility that a dependency is not
available because it has been crashed and is being restarted. To detect this situation,
add timeouts or appropriate QoS policies to interactions between components. If the
timeout is triggered, move the system to a SAFE STATE. Normal operation can be re-
sumed when dependencies are back online. A missing dependency is therefore not
considered to be an error that would necessitate a crash.

Consequences.
+ Enables simple error handling & recovery; avoids complex error handling con-
structs in code, therefore improving predictability of the system.
+ Cost-effective (lightweight) form of fault tolerance that does not require use of re-
dundancy.
+ Allows error handling to be implemented separately (externally) from the business
logic, e.g. with supervisors.
+ Supports recovery from transient faults since a restart is usually enough to handle
them.
+ Possible to achieve high availability (for the system as a whole, not necessary for all
services provided by the system).
+ Compatible with other fault tolerant designs like redundancy.
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+ Processes can be updated to new versions on-the-fly, since the old process can be
killed and replaced using the normal recovery path.
+ Limits error propagation to other parts of the system (babbling idiot failure) by
acting as an ERROR CONTAINMENT BARRIER [6].
+ Errors are less likely to cause the system to perform unpredictable and potentially
dangerous or irreversible operations.
+ Finding faults should be easier, since they are made more visible by crashing and
reporting.
- Availability of some services provided by the system is lower (when compared to
redundant fault tolerance solutions) – on the other hand availability of other unrelated
services provided by the system should be unaffected.
- Cannot mitigate persistent faults.
- Processes need additional code to react to missing dependencies (i.e. other services,
when waiting for them to come back online).
- Possible performance cost if state needs to be saved to enable recovery.
- Recovery speed is non-deterministic since it depends on how fast the processes can
be restarted, loading of saved state, loading of dependencies, system load level, etc.

Examples. Erlang actor model and supervisors (Erlang is used e.g. in Ericsson
AXD301 ATM switches) [2]. Supervisors are processes that are responsible for start-
ing, stopping and monitoring their child processes. The basic idea of a supervisor is
that it should keep its child processes alive by restarting them when necessary [13].

Related Patterns. ERROR CONTAINMENT BARRIER, NOTIFICATIONS, SAFE STATE,
SERVICE MANAGER, REDUNDANCY [6].

Software REJUVENATION [11][14] is a proactive technique where the system has
been designed to be booted periodically. Microrebooting [11] refers to a technique
where suspect components are restarted before they fail.

MINIMIZE HUMAN INTERVENTION (MHI) is about how the system can process and
resolve errors automatically before they become failures [6]. LET IT FAIL could be
implemented  as  part  of  MHI as  a  final  resort  or  instead  of  MHI in  case  there  is  no
specification for error handling.
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Appendix: List of Referenced Patterns

Table 2. Short descriptions of referenced patterns.

Pattern Pattern intent
BUS
ABSTRACTION
[7]

Nodes communicate via a message bus. The bus is abstracted so it
can be changed easily.

ERROR
CONTAINMENT
BARRIER [6]

System should stop the flow of errors from one part to another by
isolating them to a unit of mitigation and initiating error recovery.

FAULT
OBSERVER [6]

Coordinate reporting to all observers that a fault is present, report-
ed, and recovery actions escalated.

HEARTBEAT [6]
[7]

Send a status report at regular intervals to let other parts of the
system know their status.

LEAKY BUCKET Implement a method to ride over transients by keeping a counter
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COUNTER [6] that is automatically decremented and incremented by errors.
MONITOR [10]  Support  many  entities  of  same  or  similar  type.  The  MANAGER

object is designed to keep track of all the entities. In many cases,
the MANAGER will also route messages to individual entities.

MEDIATOR [9]  Define an object that encapsulates how a set of objects interact.
Mediator promotes loose coupling by keeping objects from refer-
ring to each other explicitly, and it lets you vary their interaction
independently.

NOTIFICATIONS
[12]

Communicate noteworthy or alarming events and state changes in
the system using a dedicated message type.

PUBLISH/SUBSC
RIBE [8]

Define a change propagation infrastructure that allows publishers
in a distributed application to disseminate events that convey in-
formation that may be of interest to others. Notify subscribers
interested in those events whenever such information is published.

REDUNDANCY
[6]

Maximize availability by having alternate hardware or software
that can perform the same function.

REJUVENATION
[11][14]

Periodically rejuvenate a software item by shutting it down and
restarting it.

SAFE STATE [7] If something potentially harmful occurs, all nodes should enter a
predetermined safe state.

SOMEONE IN
CHARGE [6]

Every fault tolerance action undertaken by the system should have
a clearly identified entity controlling and monitoring the action.

START-UP
MONITOR [7]

During start-up all devices are started in certain order and with
correct delays. Additionally, care is taken that there are no mal-
functions.

STATIC
RESOURCE
ALLOCATION [7]

Critical services are always available when all resources are allo-
cated when the system starts.

SYSTEM
MONITOR [6]

Some errors will only manifest themselves at a system level.
Check for them at this level.

WATCHDOG [6]
[7]

Build a special entity to watch over another to make sure that it is
still operating well.
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Abstract. Modern work machine has to communicate with other systems. Fur-

thermore, the machine operator might use the machine using remote controls to 

ensure the safety of the operations. These features make the system design more 

complex. In this paper, we present two patterns to tackle the new design chal-

lenges set by remote controlling requirements. 

 

Keywords: Control Systems, Software Architecture, Patterns, Remote Access 

1 Introduction 

In this paper we present two patterns for using the machine control system remotely. 

These patterns are not really connected to each other and solve two different prob-

lems. The first pattern solves usability problem and the second one is related to data 

management and how the data on the machine can be accessed from the remote loca-

tion. These patterns are a part of a larger pattern language that constitutes of approxi-

mately 80 patterns. 

The patterns in this paper are presented using pattern format which is a combina-

tion of Portland form [11] and Alexandrian form [12]. First we describe the context 

and then present the problem in bold font face. Next we explain the forces and give 

the essential part of the solution in bold font face, followed by the discussion of the 

solution. Finally, we present the consequences and known usage separated with three 

stars. All patterns include a sketch of the solution and sketch icon for the pattern as 

well. Pattern names are written in SMALL CAPS throughout the paper. 

Confidence towards patterns is marked with asterisks after the name of the pattern. 

Two asterisks mean that the pattern manages capture the profound problem and solu-

tion in the pattern. Patterns marked with one asterisk capture the profound problem 

and solution at least partially. There might be other possible solutions for the problem, 

but the presented one is the most likely to be the optimal solution. Patterns without 

asterisk may be lacking the profound solution and there might be other viable solu-

tions. However, a solution is presented for these problems too. 
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2 Patterns 

 

In this section, two patterns for remotely operating the machine are presented.  

 

2.1 Alternative Operating Station * 

 

a.k.a ALTERNATIVE CONTROL METHOD  

 

…in a CONTROL SYSTEM with HUMAN-MACHINE INTERFACE  the operator is typi-

cally in front of an operating station where she has controls and a graphical user inter-

face to operate the machine. The machine itself can be quite large and thus the view 

from the operating station can have blind spots; there might be pillars blocking the 

view or the moving parts of the machine, e.g. boom, can block the view to the actual 

work. Sometimes the operator needs to have a better view to carry out the work tasks 

properly. For example, if the work implement is connected to the back of the machine 

and the cabin does not have rear window and mirrors, the operator would need to go 

out of the cabin to get better view on the task. 

 

✥       ✥       ✥ 

 

The operator may not be able to observe all the details of the task at 

hand from the default operating station or the view from the operating station is 

blocked, e.g. by machine itself. 

 

Operating the machine might require high precision control from the machine and 

the operator. For example, when positioning the boom for drilling, it needs to be posi-

tioned carefully into correct angle, so that the hole will be drilled to the correct direc-

tion. It might be hard to see the exact angle and the position of the boom from the 

cabin. Furthermore, it might be easier to control the operation from a position that is 

closer to the operation. For example, when lowering the tail gate of a truck, it can be 

hard to see from the cabin that there is nothing in the way. It is easier to move to the 

tail gate and see the situation from there. 
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Although modern work machine's cabins are designed for high visibility and com-

fort, there still might be obstacles, e.g. supporting pillars, blocking the view. This is 

troublesome when the machine is operated in a place where there is not much space 

around and the machine can not be positioned for better visibility. The operator could, 

of course, exit the cabin and observe the situation and then come back to the cabin 

and steer the machine and if necessary repeat this process. However, this would make 

the operator's work inefficient and physically exhausting if carried out over long peri-

od of time.  

Safety is important aspect in the work. Usually the machine operator needs to be 

sure that there is no one in the working area of the machine or will enter the area 

while machine is working. In some cases, it is hard to see from the cabin that no one 

is at risk, as pillars or other machine parts create blind spots. Additionally, the ma-

chine operator herself should not be able risk her own neck by accidentally entering 

the working area when the work is in progress. 

Sometimes the machine operator also does mechanical work and her hands might 

get dirty or she might be wearing work wear which prevents the usage of the sophisti-

cated control equipment such as touch displays, etc. This might limit the range of 

which kind of controls can be used by the operator in this situation. Washing hands or 

taking protective gloves off multiple times might soon get annoying from the opera-

tor’s point of view. 

 

Therefore: 

 

Add an alternative operating station which provides the minimal con-

trols for carrying out the task from a position where the operator can observe 

the work process better. 

 

Design the alternative operating station so that it has only the controls, e.g. buttons, 

joysticks, etc., required by the special task that it is intended for. In this way, carrying 

out the task is efficient as there are no extraneous controls. The controls in this alter-

native operating station can be specifically tailored for the task, which is supposed to 

be carried out using the alternative operating station. In this way, the operator can 

wear the required equipment while using this operating station. For example, the al-

ternative operating station’s controls can be operated with gloves on whereas the main 

operating station would require removing the gloves. In addition, when the alternative 

operating station is tailored for a specific task, it will probably not be used as a prima-

ry user interface, but only for the task it is intended for. This gives some freedom in 

the user interface design, for example, when considering on which screen different 

notifications should be shown. 

It should also be considered if an additional display is needed for presenting infor-

mation about the system state or for example, HMI Notifications. Furthermore, it 

should be decided if the alternative controls are fixed to the machine or if they are on 

a separate piece of equipment. The latter option can be implemented, for example, by 

using radio frequency controller or by using the controller that can be attached with a 

separate cable when the alternative operating station is needed. 
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Fig. 1. – HMI bus master selects which control method is in use.   

 

As shown in Fig. 1, there typically is a HMI bus master which bridges the HMI bus 

to system bus and delivers data and possible control signals to the engine, transmis-

sion, etc. using the system bus. So, it is natural to define and implement an interface 

to HMI bus master which provides necessary methods for alternative operating sta-

tion. Now, when using the alternative operating station, the HMI bus master can de-

cide which control signals to use: the signals coming from the alternative operating 

station which is attached to the interface or from the primary HMI which is attached 

to the HMI bus.  The HMI bus master must ignore the command messages coming 

from the source that is not selected to be used, except emergency stop that should be 

functional. This is also stated in the European Union’s machinery directive, section 

1.2.5 [10]. Furthermore, the switching to the alternative operating stations must not 

cause unintentional movements in any case. For example, if there is another operator 

pressing a button while the switchover is being carried out, it should not cause any 

movements. 

In some cases, where the alternative operating station is fixed to the machine, a 

separate bus for the alternative operating station is used. If this is the case, alternative 

control interface in Fig. 1 is replaced with another bus. HMI bus master then selects 

from which bus, the received control commands are bridged to the system bus and to 

controllers of the system. 

The control method in use should be selected from the HMI in the operating station 

in the cabin of the machine, e.g. by using a switch or button. In this way, the con-

trol system can decide which safety mechanisms should be used and e.g. limit boom 

movements accordingly. Different set of safety precautions, e.g. which of the func-

tionalities can be used, should be applied when using the alternative operating station, 

as the machine operator is likely to be closer to the work implement when using the 

alternative operating station.  For example, if a forest harvester is operated using the 

remote control, there is a risk that the operator can hit herself with the log while ma-

neuvering the boom. 

If the OPERATING MODES pattern has been applied, it is rather easy to implement a 

separate alternative operating mode for the machine. The nodes of the system can 

change their state to the corresponding mode when the switch selecting the alternative 
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operating station in use is turned to different position. For example, nodes in the HMI 

bus can stop sending control messages when they enter an alternative control mode. 

Furthermore, the nodes on the system bus can start acting differently, e.g. actuators 

can limit the range of movements. The operator activates the alternative control mode 

from the switch in the cabin and after that the alternative control station can be used. 

The deactivation of the control method is carried out in similar way. Other strategies 

for changing the mode can be used as well, for example, the control method is auto-

matically switched to the normal mode when the cable of the alternative control unit 

is unplugged. 

Typically, the alternative operating station is used in mobile work machines. How-

ever, it can be used also for example in process automation systems, where the moni-

toring station might be physically far away from the actual process, so it might be 

impossible to see the process from the monitoring station and control the process, e.g. 

in fault situation. So, it might be advisable to place simple controls for manually op-

erating the machine near the places where they might be needed to sort out the prob-

lems. For example, in paper mill, the paper flow might get interrupted because of a 

fault and the continuous sheet of paper might break and it has to be fed through the 

system before starting the automated paper flow. So, there might be controls for man-

ual feeding right next to the places where the paper roll is probable to break. 

The solution presented in this pattern is not suitable for implementing the emer-

gency stop switch. It is usually implemented on the hardware level to make sure it is 

functional even though there is software fault. Hardware implementation also gives 

usually faster response times. Additionally, one should remember that even when the 

alternative operating station is used, the emergency stop button should be functional 

from any operating station. 

The VARIABLE MANAGER pattern helps to share the data for the alternative operat-

ing station. If HMI Notifications pattern has been applied to show the machine opera-

tor information about the events occurring in the system, it needs to be decided on 

which display the notification is shown - probably on the one that the operator is cur-

rently using. If alternative operating station does not have its own display to inform 

the operator BEACON pattern could be applied to draw operator's attention to ma-

chine's primary controls when a noteworthy event occurs. 

If the alternative operating station is not fixed to the machine, the connection to the 

control unit may be lost. For example, the battery of the control unit can be depleted 

or the cable may break. There should be a mechanism to detect these kinds of situa-

tions so that the machine can enter SAFE STATE if the connection to the alternative 

control unit is lost. This is also pointed out in the machinery directive section 3.3.3. 

[10]. Typically, if the connection is lost, a separate emergency stop mechanism is 

used to stop the machine. For example, if the system has remote control unit, it can 

have CAN module which sends the commands to CAN bus. In addition, the remote 

control unit has safety certified relay telling if the connection is ok. This relay breaker 

is connected to emergency stop circuit, so it stops the machine when necessary. In this 

way, the emergency stop messages are not delivered through the alternative operating 

station’s interface. HEARTBEAT can be used to monitor the health of the connection 

between the HMI bus master and the alternative control unit. Furthermore, when us-
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ing remote control unit as an alternative operating station, one should take care of 

security, so that the system can not be controlled from the unauthorized alternative 

operating station. 

 

✥       ✥       ✥ 
 

The operator can control the machine or work implement near the place where the 

actual work is done. Now, the operator has a good view on the work she is carrying 

out as obstacles are not blocking the view. Still, the system should be designed so that 

the need to go outside the control station should be minimized. 

Alternative Operating Station functions also as a redundant control station which 

can be if the main control station is broken down. This makes it possible to do some 

controlling in fault situation, for example, move the boom to the transportation posi-

tion. 

The connection to alternative control unit may be more unreliable and it must be 

monitored. This may need some additional resources, e.g. bandwidth, CPU time, etc. 

As the machine operator is controlling the functionality close to the work imple-

ment, it potentially puts the machine operator in danger. So care must be taken while 

operating the machine from the secondary operating station, the machine operator can 

not end up in the way of the boom or other moving parts of the machine. 

Alternative Control Station increases the development costs and might increase the 

cost of the machine. Therefore one might consider providing it as Control System 

Option as the customer may not be willing to pay for the extra control station. 

✥       ✥       ✥ 

Ground heat wells are typically drilled with low-end drilling machines. The ma-

chine usually needs to be driven to the drilling site in narrow pathways of the garden. 

The machine operator has to avoid destroying the vegetation or hitting garden sheds 

or other obstacles. The cabin of the machine has poor visibility to the front side of the 

machine as there is boom blocking the view and if the machine operator was to drive 

the machine from cabin she would be likely to hit some of the obstacles. Thus, the 

machine operator is provided an alternative control method: remote control unit. The 

operator turns the alternative control method on from the HMI in the cabin by press-

ing a button. After this mode change, the machine responds only to steer commands 

from the remote control unit. Now the machine operator can go in front of the drilling 

machine and steer the machine with better view. On the architecture level, HMI bus 

master is set to alternative control mode, where it ignores all the control messages 

coming from the HMI bus. Instead of it, the alternative control interface is used to 

receive the control commands which are then sent forward to the boom and drilling 

controllers. Furthermore, HMI bus master sends status information to the remote con-

trol unit using remote controller's interface instead of bridging this information to 

HMI bus and to actual devices. 
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2.2 Remote Access 

 

...there is a distributed CONTROL SYSTEM and the system has a MESSAGE BUS that is 

used for communication between nodes. However, all the data the nodes have to ac-

cess may not be stored locally on-board the work machine. For example, in the case 

of drilling machine, drilling plans are produced remotely by managers in a mine con-

trol room and the FLEET MANAGEMENT application on the machine needs to access 

them. In addition, some third-party applications may need to access remote data 

sources, e.g. navigation software may need to download map updates. Similarly, the 

remote systems might want to access the data on the machine, e.g. remote diagnostics 

application would like to read diagnostic data from the machine. 

 

 

✥       ✥       ✥ 

 

All services using the data that the machine collects do not necessarily reside 

on-board the machine. Similarly, the applications on-board needs data which is 

produced off-board in a different location. 

 

In a ubiquitous environment, the applications inherently need to communicate with 

other applications and systems. Applications need to exchange information in order to 

produce additional value. For example, if the application is meant to display drilling 

plans, the application is not useful for the user if the application can not access the 

newest drilling plans created by explosives expert in the mine control room. In gen-

eral, work planning applications are typically located in a remote place, so applica-

tions on-board the machine needs a way to retrieve data from them. On the other 

hand, applications from the remote locations may use the data produced by the ma-

chine to produce additional value. 

DIAGNOSTICS data should be transferred to maintenance service's system so that the 

maintenance personnel can analyze the data before the scheduled maintenance break 

and find out if spare parts need to be ordered from the manufacturer. However, the 

machine might be far away from the service station, so it is not feasible to fetch the 

DIAGNOSTICS data with USB stick or some other physical media. Especially, if there 

are many machines and some of them are located abroad, the data gathering is hard. 

The controllers of the machine may have limited processing power and thus de-

tailed analysis of DIAGNOSTIC data can not be executed on-board. Furthermore the 

central repository can store data from a longer time period than could be stored on the 

machine as the machine typically has limited storage space. 
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During the life cycle of the machine, the control system software is likely to be up-

dated (see UPDATEABLE SOFTWARE pattern). The new software version could offer 

higher productivity or improved features. However, updating each machine separately 

would be too laborious for maintenance personnel. If the update packages are deliv-

ered to the customers with USB sticks or other media, they might feel that service 

quality is low as the machines are not updated by the manufacturer. Furthermore, the 

customer might have multiple machines and it would also be too laborious for the 

customer to distribute the updates. 

If production plans change, the machine operator needs to be informed about the 

changes as soon as possible to avoid working on tasks which results are not needed 

anymore. On the other hand, the production planning system or FLEET  MANAGEMENT 

might need to know already carried out tasks, e.g. how many cubic meters of pulp-

wood is already sawed today. If a machine breaks down, information about already 

completed work could help FLEET MANAGEMENT system to re-allocate tasks allocated 

for the machine to other machines. This kind of real time planning and reporting 

needs frequent update cycle of work plans. 

Sometimes the work environment where the machine is used is such that it would 

be more comfortable or safer for the machine operator to operate the machine remote-

ly. For example, demining is safer to be done remotely. 

 

Therefore: 

 

Add a remote connection gateway on-board which enables communication be-

tween the machine and the remote party. The remote connection gateway trans-

forms the used messaging scheme to suit the local and remote parties' needs and 

can take care of authentication. 

 

In the simplest case the remote connection gateway is a node attached to the bus 

bridging the traffic from and to the remote location. For example, the gateway node 

reads CAN messages that are targeted to the node and sends the data to remote loca-

tion over TCP/IP. The other way round, the incoming messages are converted to CAN 

messages and sent to the bus. For many bus technologies, COTS (Commercial Off 

The Shelf) solutions exist for implementing this kind of remote connection gateways. 

The remote connection can be seen as a special case of MESSAGE BUS. 

Fig. 2.  Remote connection gateway connected directly to CAN bus. 
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If the SEPARATE REAL-TIME pattern has been applied the system is divided into the 

real-time machine control level and non-real-time operator level. The operator level is 

typically implemented with a PC. If this is the case, the remote connection gateway 

has s a natural place on this PC as the operating system offers ready-made facilities, 

e.g. communication interface to manage communication with remote parties. If a 

communication interface exists, applications can use it in the operating system's na-

tive way. Furthermore, as remote connection gateway is placed on the operator level, 

it can not interfere with real-time machine control. 

One should decide if the machine's control system which connects to remote party 

and acts only as a client or does it need to support incoming connections as well, and 

act as a server. If this is the case, there needs to be a service taking care of incoming 

connections. Typically this server is deployed on the PC. This means that the server 

resides on the operator level, and will not interfere with the real-time machine con-

trolling. Sometimes this server can be just an in-house application listening to a cer-

tain TCP/IP port or sometimes a ready-made implementation such as Nginx [6], 

lighttpd [7] or even Apache web server [1]. If file server is needed, one could use 

Cerberus [2] for instance. 

A server creates an attack vector for hackers and thus one should carefully consider 

deploying one. The server's software might have vulnerabilities that can be utilized to 

gain access to the machine. In addition, adding a server makes the machine vulnerable 

to DoS (Denial of Service) attacks meaning that it becomes unavailable to its intended 

users. One common method of DoS attack is to saturate the target server with external 

communications requests, so much so that it cannot respond to legitimate traffic, or 

responds so slowly that it will be rendered essentially useless. In general, one should 

make sure that proper measures are taken to ensure the security of the system. One 

should also consider if the communication needs to be encrypted to prevent eaves-

dropping the traffic. If so, one might want to use VPN (Virtual Private Network) [3] 

technique, e.g. IPSec [5], OpenVPN [9], or Secure Shell (SSH) [4] to make the con-

nection secure. 

The remote connection gateway can be used to transfer the DIAGNOSTICS data from 

the machine to the manufacturer or to the service station. Data can be transferred au-

tomatically without requiring the machine operator to do anything. The remote party 

might be a cloud service, so it has enough capacity to process the data from a plethora 

of machines. Now as the data is transferred to this kind of environment with potential-

ly unlimited processing capabilities more thorough analysis on the data can be run. 

Furthermore, as data from multiple machines is gathered in the centralized place, data 

originating from different machines can be compared with each other to detect differ-

ent patterns and malfunctions. For example, gathered data of oil pressure readings can 

form a certain pattern in normal use. Now, if the machine does not comply with this 

pattern, it can be a malfunction that needs to be inspected more closely. Over a longer 

period of time, data from different malfunctions can be also gathered and recognized 

which kind of malfunction causes certain changes in the patterns of normal behavior 

of the machine. 

Depending on the available communication channel between the machine and re-

mote party, the properties of the channel may vary. For example, sometimes the 
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communication may be expensive and the transferred data amount should be limited. 

One should refer to DYNAMIC MESSAGE CHANNEL SELECTOR pattern on how to 

choose the optimal communication channel for each situation. 

If the VARIABLE MANAGER pattern has been applied to share the system wide in-

formation as variables, the REMOTE ACCESS can be used to share this information to 

remote location. If the machine is working as a part of a fleet, the REMOTE ACCESS is 

a key component in coordination between multiple work machines. In this case, the 

SUBSYSTEM ADAPTER pattern may need to be used to ensure compatibility with other, 

possibly legacy, systems. MACHINE-TO-MACHINE COMMUNICATION introduces peer-

to-peer communication between work machines. In this case the REMOTE ACCESS is 

used to communicate with other machines. When implementing a remote access to a 

work machine one must consider the implications for the functional safety. There is a 

systematic approach to assess whether a given technological solution for remote ac-

cess to control system implies an unacceptable risk in, in terms of jeopardizing the 

safety integrity level (SIL) of the system [8]. 

 

✥       ✥       ✥ 

 

As the information on the machine can be accessed remotely, the data gathering for 

preventive maintenance, production management, etc. is faster as the data can be 

transferred more frequently. Additionally, the data transfer becomes independent of 

the machine location as the machine does not have to be accessed physically. 

Software updates (see UPDATEABLE SOFTWARE) for the control system can be de-

livered over the air. This enables faster delivery of the updates and decreases the up-

dating effort from the machine owner as the updates do not need to be delivered using 

removable media, e.g. USB memory sticks. For updating the software there are two 

options: pull or push. Regardless of which approach is selected, the updates should be 

installed only when the machine operator (or service person) wants to do so. Further-

more, updating system requires taking it to the special updating mode (see 

OPERATING MODES). Furthermore, as the remote connection gateway is the only ac-

cess point to the machine, if vulnerabilities are discovered, only this component needs 

to be updated. On the other hand, when new vulnerabilities are discovered, the soft-

ware needs to be updated more urgently to avoid the consequences of a possible at-

tack. So REMOTE ACCESS increases the required update frequency. 

If the customer thinks that the machine is malfunctioning, the maintenance person-

nel can take a remote connection to the machine and try to diagnose the problem 

without physically visiting the machine. This might reduce costs as the maintenance 

persons do not need to travel the remote location. On the other hand, if the malfunc-

tion can be diagnosed remotely and it can be recognized if there is a need to bring the 

machine in for maintenance or not, it would reduce costs. Additionally, if the system 

has Parameters, the remote connection can be used to adjust these parameters, so cali-

brating the devices on-board becomes easier as the maintenance person does not need 

to visit the machine physically in order to do such adjustments. 

Production reports and work orders can be transferred more frequently. This makes 

FLEET MANAGEMENT more flexible. 

27



Possibility for REMOTE ACCESS creates risks for unauthorized access to the ma-

chines information. This might also be a reason why one might not want to implement 

remote controlling of the machine using this approach. Furthermore, denial-of-service 

attacks could slow down the node where the server is running. The remote connection 

gateway requires some processing power (especially in a case of a server), so it might 

slightly decrease the performance of the operator level node in general. 

As the remote communication is isolated in one module, it is easy to limit the 

bandwidth usage, e.g. communication is possible only for trusted applications. 

Remote connection gateway makes it possible to implement remote operating of 

the machine. 

 

✥       ✥       ✥ 

 

Company manufacturing excavator discovers a serious software bug in one of their 

control system versions. Unfortunately, they don't have records of machines and 

which software version they have. However, REMOTE ACCESS pattern has been ap-

plied and the control system has a server that can be connected from the factory when 

the machine is powered.  Manufacturer implements a client application which con-

nects to the work machine and checks the software version. If the control system has 

the faulty software version, the manufacturer can send the software update package to 

the machine owner, so they can update it. 

 

3 Acknowledgements 

The author would like to thank all the participants of the VikingPLoP 2013 for val-

uable feedback on this work. Without you the patterns wouldn’t have improved to the 

level where they are now. Additionally, I would like to thank Marko Leppänen for 

shepherding this paper. 

 

4 References 

 
1. The apache software foundation: The apache web server. (2013). Website, available online 

http://httpd.apache.org/, visited 19.9.2013 

2. Cerberus FTP Server (2013). Website, available online http://www.cerberusftp.com , visit-

ed 19.9. 2013 

3. Mason, A. G. Cisco Secure Virtual Private Network. Cisco Press, 2002, p.7. 

4. IETF Network Working Group: RFC 4252, The Secure Shell (SSH) Authentication Proto-

col, January 2006 

5. Kent, S.; Atkinson, R.: IP Encapsulating Security Payload (ESP), RFC 2406, IETF, No-

vember 1998 

28

http://httpd.apache.org/


6. Engine X (nginx) HTTP server. Website, available online http://nginx.org/, visited 19.9. 

2013 

7. Lighttpd webserver. Website, available online http://www.lighttpd.net/ , visited 19.9. 2013 

8. Jaatun, M. G.; Grøtan, T. O.; Line, M.B.: Secure Safety: Secure Remote Access to Critical 

Safety Systems in Offshore Installations.  In proceedings of 5th International Conference 

ATC: Autonomic and Trusted Computing, Editors: Rong, C.; Jaatun, M.; Sandnes, 

F.;Yang, L. and Ma, J., LNCS, Volume 5060, 2008, pp. 121-133, ISBN; 978-3-540-69294-

2 

9. Open source VPN (OpenVPN). Website, available online http://openvpn.net/, visited 19.9. 

2013 

10. Directive 2006/42/EC of the European parliament and of the council on machinery, and 

amending. Directive 95/16/EC (recast, May 2006). Available online, http://eur-

lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:157:0024:0086:EN:PDF, visited 

19.9. 2013 

11. Portland Pattern Repository. 2003. Portland form. http://c2.com/cgi/wiki?PortlandForm, 

retrieved 19.9. 2013. 

12. Portland Pattern Repository. 2011. Alexandrian form. 

http://c2.com/cgi/wiki?AlexandrianForm, retrieved 19.9. 2013. 

 

 

 

 

29

http://nginx.org/
http://openvpn.net/
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:157:0024:0086:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:157:0024:0086:EN:PDF


Patterns for Decoupling Hardware and Software 

Johannes Koskinen 

Department of Pervasive Computing 

Tampere University of Technology 

Finland 

{firstname.lastname}@tut.fi 

1 Introduction 

The patterns presented in this paper are part of a larger pattern language that is cur-

rently formed in collaboration with large global machine control companies. The 

patterns have been collected from the real-life systems using architecture evaluations 

and interviews. The previous version of the language is available in [1]. 

A control system is a device, or set of devices to manage, command, direct or regu-

late the behavior of other devices or system1. In this paper by an embedded control 

system we mean a software system that controls large machines such as harvesters 

and mining trucks. Such systems are often tightly coupled with their environment. For 

example in case of a harvester, harvester head hardware needs special-purpose appli-

cations to control it. In a distributed control system, the system is divided into subsys-

tems with each controlled by one or more controllers. Networks connect these con-

trollers. 

2 Patterns 

In this section a set of patterns from the pattern language (refer Fig. 1) is present-

ed. The selected patterns for the paper are HARDWARE ABSTRACTION LAYER, 

OPERATING SYSTEM ABSTRACTION and VIRTUAL RUNTIME ENVIRONMENT. The pat-

tern language graph could be seen as a designer’s map for solving design problems. 

The design process begins so that the first pattern to be considered is CONTROL 

SYSTEM in the middle of the graph. After the designer has made the design decision to 

use the pattern, she may follow the arrows to the next patterns. An arrow means that 

the following pattern can be applied in the context of the resulting design from the old 

pattern. In other words, the subsequent pattern refines the design. However, a single 

pattern may be used regardless of the usage of previous patterns if the context of the 

pattern matches the current design situation. 

The patlets for the patterns as well as the referenced patterns not included to this 

paper are presented in Table 1.  

                                                           
1  http://en.wikipedia.org/wiki/Control_system 
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Fig. 1. Part of the pattern language for distributed control systems. 

Table 1. Patlets for the included and referenced patterns. 

Pattern Patlet 

CONTROL 

SYSTEM 

Productivity of a work machine can not be increased significant-

ly anymore only with traditional way of building the machine, i.e. 

using hydraulics, electronics and mechanics. Additional ways to 

control the machine needs to be introduced in order to enhance the 

system functionality and to increase the amount of automated func-

tionalities. 

Therefore: 

Implement control system software that observers the work en-

vironment and controls the machine accordingly. Control system 

software can automate many functionalities which have previously 

been carried out by the machine operator manually. In addition, 

the control system software can provide the operator more fine-

grained information about the work environment. 
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THIRD-

PARTY 

SANDBOX 

The end users require more features to the system and the man-

ufacturer has to outsource the development of some applications 

that are not in their core competence area. These applications can-

not always be trusted not to compromise the operation of the sys-

tem as a whole inadvertently or on purpose. 

Therefore: 

Provide an interface and tools for third-party application devel-

opers. Third-party applications can use the machine services only 

through this interface so that they will not interfere with the ma-

chine's own applications. The interface provides common ways to 

access data and services. 
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2.1 Hardware Abstraction Layer 

...there is a Control System where applications must access two kinds of devices to 

control the machine: sensors and actuators. Sensors provide input data for the applica-

tions and applications use actuators, e.g. valves and motors, to manipulate the envi-

ronment. It is usually possible to identify different types of devices. For example, all 

the temperature sensors have common characteristics: they output an analog or digital 

value according the current temperature measurement. In addition, the possible ac-

tions for the all devices in the same category are more or less the same: one can read a 

value corresponding the sensor's measurement or give control signals for the actua-

tors. However, even though the devices were meant to be used for the same purpose, 

the outputs and control signals might vary between device models and devices from 

the different vendors. 

 

✥       ✥       ✥ 

Each vendor may have its own way to control hardware devices. If all the de-

vices are controlled in vendor specific way, it makes the application code to de-

pendent on the selected hardware. To make applications portable, the hardware 

should be decoupled from the applications. 

The life cycle of the control system is usually long and it is independent from the 

life cycle of its devices. In many cases, the devices' life cycle is shorter. During the 

life cycle of the product, there may be a need to change the device vendor, for exam-

ple, if the current device is not available anymore. There seldom exist standardized 

ways for different vendors' devices to interpret the control signals. Thus, the change 

of device vendor may usually require changes to way the hardware is controlled. For 

example, each vendor may have different method for reading the measurement of the 

temperature sensor. One vendor could prefer 4-20 mA current loop, that corresponds 

to certain, usually vendor specific temperature range the other outputs the reading 

digitally. The change of the device may require changes in the application code. It 

may be error-prone and expensive to modify code. 

The system may have Control System Options and there might arise need for new 

options. So, it might be difficult to know all the needs for future changes in hardware. 

New devices may be required or some of the existing ones are discarded as the needs 

change. Moreover, there may even emerge a need for different sensor types. Still, the 

application should be unaffected by the implementation details of the devices. For 

example, changing the vendor of the sensor should not cause changes in various plac-

es in the application. 

In a product platform, there can be multiple machines of the same product family. 

These machines have slightly differing hardware setup. To save costs, the same con-

trol applications may be used in various products, regardless of the physical devices. 

Thus, the application should be easily portable. 
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There often are vendor-specific features in devices. Usually, using those features 

would make application development faster, but it would make the application depend 

on the vendor-specific hardware as these features are not available on other vendors’ 

products. To avoid vendor lock-in, it should be possible to have a common feature set 

that is used for all the products.  

Therefore: 

Create a Hardware Abstraction Layer (HAL) between the application soft-

ware and the hardware implementation of the controlling mechanisms of the 

devices. In this layer, provide generic interfaces to access the devices of a certain 

type in a uniform way. HAL abstracts implementation details of the hardware 

under these interfaces.   

Classify the devices into groups by their functionality. For example, temperature 

sensors form a single group regardless of the actual hardware implementation used for 

the temperature measurement. In a similar way, all bus interface cards are classified 

into the same group. For each classification group, create a generic interface to HAL, 

called application interface, with methods to control the devices in the group in a 

unified way. The implementation details of the hardware are hidden by the interface. 

The control application uses the application interface to command the device instead 

of accessing the device directly. In practice, this means that programmers don't need 

to know the details of individual devices, and the applications will be compatible with 

any device in the group. This makes the applications portable as long as the interfaces 

of HAL remain the same.  

HAL translates the method calls from the applications to device dependent control 

signals. The application can read the measurement data from the sensors in common 

format of the device type using methods provided by HAL. Such formats can be sim-

ple binary (on/off) or a sample of continuous signal. In the latter case, the data can be 

expressed, for example, as a percentage of the device's maximum value, absolute 

turning angle in degrees, or in predefined types like in degrees of Celsius. As the 

measure data can be in various formats, VARIABLE VALUE TRANSLATOR can be used 

to translate these types from one format to the other.  In addition, to increase portabil-

ity, HAL can provide generic data types for the applications. For example, if the ap-

plication needs to read a temperature sensor's value, it simply uses reading method 

available in the application interface to get the value from the sensor. There are sever-

al types of sensors which have differing word lengths for the return value. Thus, it is 

abstracted with the generic data type which is processor architecture independent. The 

layer can also contain generic methods, such as self-checking, initialization and con-

figuration of the devices that are common among all the devices. 

The device vendors can usually provide device configuration sheet file (EDS, Elec-

tronic Data Sheet) which are used to configure the certain device or device types. The 

file can also be used to configure the application interface methods of HAL. Format 

of EDS file may depend on the vendor, development tools and environment used, and 

sometimes the configuration must be done manually. HAL can sometimes provide a 

common interface for the developers to implement devices compatible with HAL. 
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Some device types may already have generic, standardized interface and all devices 

implementing the interface can be accessed in the same way.  

As there usually are variations in capabilities of the devices inside one device 

group (like resolution of different sensors), the HAL interface design is usually based 

on the least common denominator. However, the interfaces can overcome the limita-

tion by containing support for reflection, like querying the type, and information on 

the capabilities of the device. The application can use the information to adapt its 

PARAMETERS according to the hardware available. However, this kind of reflection 

reveals information on the details of the hardware to application and can cause ab-

straction leaks. An abstraction leak makes the software porting to other hardware 

platforms more difficult [LEAK]. If vendor-specific properties of a device are used, it 

usually leads to vendor lock-in as it might be difficult to find a replacement part with 

the same properties. Thus, it is usually worthwhile to use only common capabilities 

available in all the devices. Fig. 2 illustrates HAL layer between the application and 

the hardware as well as the usage of drivers. 

 

 

Fig. 2. Illustration of an architecture having two HALs: One for applications and one within the 

operating system (OS) 

As HAL adds an extra layer between hardware and the applications, it increases la-

tencies and may jeopardize determinism of the system. Thus, it may be difficult to 

make real-time applications with strict real-time requirements. In addition, as it ab-

stracts the actual actions needed to access the device, the required time for the access 

is usually unknown for the application developer. For example, reading a value from 

the sensor may be shown as a single method call for the developer, but in practice it 

might be time consuming operation requiring a lot of communication between the 

controller and the sensor. 

If a controller contains an operating system, the operating system uses its own 

HAL. The idea of HAL in operating systems is to abstract actual hardware from the 

kernel of the operating system, thus making the operating system more portable (see 

Fig. 2). In addition, the application can still use its own HAL to access the hardware. 

To abstract operating system from the application, one can use OPERATING SYSTEM 

ABSTRACTION.  
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If VARIABLE MANAGER has been applied in the system, the variable manager pro-

vides variables that abstract details of the devices in similar way as HAL. VARIABLE 

MANAGER can use HAL to update its variables to avoid device dependency. MESSAGE 

BUS decouples different hardware devices that are connected directly to CAN bus, 

such as nodes and CANopen sensors. The bus provides common messages and stand-

ardized interface to access the devices so there is no need to use HAL for those devic-

es. Sometimes, for example with FLEET MANAGEMENT, there is a need to abstract the 

whole machine. SUBSYSTEM ADAPTER can be applied to tackle this problem. 

Peng and Dömer introduced unified hardware abstraction layer architecture for 

embedded systems in [PD]. In [MC] McCollum describes how TYPE LAUNDERING 

pattern can be used to abstract hardware interfaces from application layer code. HAL 

pattern can be seen as a layer introduced by LAYERS pattern [POSA4] or LAYERED 

ARCHITECTURE [PLOPD1]. 

✥       ✥       ✥ 
 

As all device dependent operations are encapsulated to HAL, a device can be re-

placed with the new one without any changes to the applications. However, it may be 

difficult to design an interface that is generic enough, but still takes into account the 

differences between the devices of the same group. In addition, as the interfaces are 

designed based on the least common denominator, some advanced functions of the 

device may be unavailable for the application developer. However, this helps forcing 

the developer to use only commonly available features, thus decreasing the possibility 

for vendor lock-in. 

Similar hardware devices or hardware devices of the same type can be used 

through a uniform interface. This makes application porting easier. Moreo-

ver, programmers of the applications don't need to care about implementation details 

of the individual devices. However, implementing the interface and device drivers 

may require more effort than accessing the devices directly. In addition, without 

proper support in HAL or existing device drivers, the device cannot be used by the 

application or developers may try to circumvent the abstraction layer. 

It may be difficult to make applications using HAL if they have strict real-time re-

quirements. HAL abstracts the actual actions needed to access the device so the re-

quired time for the actions are usually unknown for the application developer. In addi-

tion, HAL adds an extra layer between application and devices, so using it may in-

crease latencies and require more processing power. 

 

✥       ✥       ✥ 
 

In a harvester, a sensor is used to read oil temperature for the engine control appli-

cation. There are several vendors providing the temperature sensors. However, the 

properties of the sensors differ slightly between vendors. The sensors are direct-

ly connected to boom controller's I/O-ports with 4-20mA current loop connection, so 

there is no bus to decouple the device from the controller. The measurement area may 

differ between sensors so that in one sensor 4mA could mean -20C while the other 

sensor has 0C as the lowest possible measured value. The harvester manufacturer 
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does not want to commit to one sensor provider for financial reasons. The manufac-

turer invites various vendors to tender for subcontracting of sensors yearly in order to 

get the best offer. As modifications to application code are expensive and error-prone, 

HAL is used to hide the differences between sensor models. When the application 

needs the temperature value, HAL is used to scale and linearize the sensor's raw tem-

perature value to 0..100C according to characteristics of the actual sensor used. This 

also allows code reuse since the same controlling algorithm can be used with various 

work machine hardware if the same HAL is available. 

 

 
[PD] Hao Peng, Rainer Dömer, “Towards A Unified Hardware Abstraction Layer Architecture 

for Embedded Systems,” Center for Embedded Computer Systems, Technical Report 12-14, 

November 2012. 

[MC] Cliff Michael McCollum, Type Laundering as a Software Design Pattern for Creating 

Hardware Abstraction Layers in C++, University of Victoria, 1996 

[LEAK]  Kiczales, Gregor (1992). "Towards a New Model of Abstraction in the Engineering of 

Software 

 

2.2 Operating System Abstraction 

...there is a CONTROL SYSTEM where hardware of the controller is abstracted by ap-

plying the HARDWARE ABSTRACTION LAYER pattern. It provides a hardware inde-

pendent layer so that the applications can access various hardware components in the 

same way. An operating system is used to provide common services, such as device 

management, scheduling and memory management for the platform. In some cases, 

the applications may have different life cycle than operating systems used for the 

platform. For example, support for the current operating system is ended and the op-

erating system must be updated in the middle of the product's life cycle. If the operat-

ing system is changed, the application needs to be ported to the new operating system. 

 

✥       ✥       ✥ 

The life cycles of the applications and underlying operating systems may 

differ. Still, it should be possible to change the operating system with only mini-

mal modifications to the application code. 

Operating systems provide useful services for the applications and abstract the 

hardware from the application. The operating system provides an API, which the 

application uses to access hardware. Usually these APIs are unique for the operating 

system and porting an application from one operating system to the other may be 
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challenging and porting should not affect to the control logic of the application in 

different platforms. 

The operating system may be a freely available OS such as Linux, a commercial 

off-the-self product (COTS), or an in-house product. Usually the same operating sys-

tem is selected to be used for all the products in the product family.  

In some cases, the customer may require a specific operating system to be used in 

the work machine, to ensure the compatibility of the machine with customer’s other 

information systems. In addition, the customer may want to be able to use certain 3
rd

 

party applications requiring a specific operating system. To support these require-

ments, the control system applications need to be compatible with various operating 

systems. 

As the operating system abstracts the hardware, the applications can be used in var-

ious products. However, the applications depend on the operating system used and 

when the operating system changes, the application needs to be adapted for the new 

operating system. Still, the same application is used for various product platforms. In 

addition, the number of different versions of the same application should be mini-

mized as the supporting and updating the versions is error-prone and usually requires 

extra effort. 

Operating system version probably needs to be changed when the support for the 

current version is ended and the operating system version has become obsolete. In 

some cases, the application interface of the operating system changes as the version 

changes. This may require modifications to the application. 

There may be legacy applications that run on top of the operating system that is not 

available anymore. Still, it should be possible to port these applications to a new op-

erating system with little effort as developing the new version of the application may 

be costly. 

The application cannot be easily changed or replaced with new one as the new ap-

plication with only few usage hours may contain errors that are not yet found. In addi-

tion, maturity of the applications is an important aspect especially in safety critical 

environments. Safety standards (such as IEC61508) require revalidation of the appli-

cation after modifications and thus it is desirable to change software as little as possi-

ble. 
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Therefore: 

Create an abstraction layer, which implements all OS dependent services. In 

the application code, use only this abstraction layer for the services. 

 
Identify all OS dependent services, such as memory management and graphical UI 

support, needed by the application. Create a new, operating system dependent layer 

called Operating System Abstraction (OSA) to satisfy the needs and use its interface 

instead of ones provided by the operating system. In this way, it is possible to have 

stable interface for the applications even though the interfaces of the operating system 

changes. The abstraction layer should contain the services that the operating system 

would normally offer to the applications. The application calls the abstraction layer, 

which in turn translates a call to one or more corresponding operating system calls. 

Usually, OSA includes various operating system independent data types for the appli-

cations. 

Operating systems have a different set of services that they provide for the applica-

tions. In some cases, it might be very difficult or even impossible to provide a service 

in OSA layer if the underlying operating system has no support for that. For example, 

memory management system for dynamic memory allocation can be implemented by 

OSA layer regardless of the support from the operating system. However, if the oper-

ating system does not support memory protection, it may be impossible to provide 

that kind of support by the abstraction layer.  

Some operating systems may require additional steps, like registering the applica-

tion or calling initialization method before the application can be executed. To ensure 

that the methods are executed when necessary, the application should always call the 

initialization method of the OSA when starting the application - even if it is not re-

quired by the current operating system. 

Operating systems may already have a common, standard interface, which can be 

used instead of OSA. For example, POSIX (Portable Operating System Inter-

face) [IEEE1003] is a specification defined by the IEEE for maintaining compatibility 

between operating systems. Using the APIs defined by POSIX, it is possible to 

change from one operating system to the other as long as both of the systems support 

POSIX interfaces. It is usually possible to port the application in the new system just 

by recompiling it. 
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For some operating systems, there are existing cross-platform application frame-

works, such as Qt [Qt] or SDL (Simple DirectMedia Layer) [SDL] which can be used 

to abstract the underlying operating system. With these frameworks the application 

can be ported to use other operating systems just by selecting corresponding library 

implementation for the target operating system and recompiling the application.   

Furthermore, there are emulator libraries available for some operating systems. 

These libraries provides a compatibility layer which acts like an abstraction layer so 

that the application can be designed for one operating system, but compiled also for 

another OS. The compatibility layer translates the operating system calls like OSA. 

Unlike OSA, the compatibility layer is not linked with the application, if the applica-

tion is compiled for the "native" operating system. With similar technique, the whole 

operating system can be emulated with an external emulator so that the same applica-

tion can be executed on various operating systems. The emulator consists of a com-

patibility layer and a method to start the application. The emulator starts the applica-

tion so that it will use the compatibility layer for operating system method calls. The 

application itself does not know whether it is run with native or emulated operating 

system. 

If the hardware is likely to change and the recompilation of the application is not 

possible, one could apply the VIRTUAL RUNTIME ENVIRONMENT pattern to virtualize 

the whole runtime environment including hardware of the system and the operating 

system. In addition, the application needs no recompilation even if the application is 

used in various platforms. 

✥       ✥       ✥ 

OSA encapsulates all the OS dependent parts; a single team can take care of devel-

oping OSA layer for various platforms. In addition, the common API makes the ap-

plication development easier as the developers need not to know all characteristics of 

various operating systems. However, developing OSA requires a lot of expertise. 

Using generic data types instead of the ones provided by the programming lan-

guage eases porting an application from one hardware platform to the other as the 

compiler could take care at least some part of the required adaptations. For example, 

integer types with well-defined bit size may prevent compatibility problems when the 

processor of the control system changes. 

The application can be executed with various operating systems as the application 

does not depend on the operating system used. If the operating system changes, the 

application code does not need to be changed. However, OSA layer needs to be up-

dated when the abstracted operating system changes. In addition, the layer and the 

application need still thorough testing after changes in the operating system. 

Usually the cross-platform application frameworks focus only on certain area (like 

graphical user interface), so it might not have all the functionality required by the 

application. In that case, some of the functionality must be provided by using other 

means, like using other frameworks or writing own library for the functionality. How-

ever, it may be impossible to support required functionality as it may require support 

from the underlying operating system. As the services provided by the OSA layer are 
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common with all the operating systems, supporting various operating systems may 

prevent using most advanced features of other operating systems. Those features 

might be more efficient or provide some extra functionality. 

Using an extra layer between the application and the operating system usually de-

creases performance of the system. This could be critical in applications with strict 

real-time requirements. 

If cross-platform application frameworks are used, the application becomes de-

pendent on the libraries and their changes. Moreover, using some proprietary libraries 

can lead to vendor lock-in. 

✥       ✥       ✥ 

In the harvester’s cabin, there is a PC providing graphical user interface for the op-

erator. The hardware of the PC may vary in different harvester products. The harvest-

er vendor has previously selected Windows operating system for the product family 

of the harvesters, but now the customer wants to use Linux operating system in the 

cabin PC. As the application for user interface is designed to be operated with various 

operating systems, it uses Qt to implement various UI elements. In this way, it is easi-

er to develop the application so that it can be executed on different harvester products 

- just by using the corresponding Qt library and recompiling the application. 

 
[IEEE1003]  IEEE 1003.1-2008 - IEEE Standard for Information Technology - Portable 

Operating System Interface (POSIX(R)) 

[Qt] http://qt-project.org/ 

[SDL] http://www.libsdl.org/ 
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2.3 Virtual Runtime Environment 

……there is a Control System with one or more controllers which execute one or 

more applications each. These control applications provide services and functionali-

ties for the control system. Usually the life cycle of the control applications is longer 

than desktop applications as the machine is used for at least 10 years. Because of this 

long life cycle, some of the hardware components of the controllers are likely to break 

down and requires to be replaced. Having large spare part inventory is expensive and 

the size of the inventory is hard to know. Having too many parts in the inventory 

causes extraneous costs as the unused spare parts become obsolete when the support 

for the product is ended. If the inventory is too small and it runs out of spare parts 

during the support time, these components have to be replaced with the updated ver-

sion of the component anyway. The newer versions of the components are likely to be 

cheaper and have better availability. Thus, the same applications will probably be run 

using different kinds of hardware. The Operating System Abstraction pattern abstracts 

only the operating system used and thus the applications may still need recompiling or 

even modifications when ported from one hardware platform to other. The applica-

tions might even be impossible to port, because there is no compiler available for the 

programming language in the target system anymore. 

 

✥       ✥       ✥ 
 

Hardware is likely to change during the long life cycle of the product 

and thus the application would need to be ported in order to run it with the new 

hardware. However, porting by recompiling the application is not always possi-

ble or desired. 

 

The applications in a control system typically have a long life cycle. Usually, the 

functionality they provide does not change between different products or product 

generations, but the functionality can be tuned with a set of various parameters. Thus, 

the actual application code does not need to be changed even if the hardware changes. 

For example, harvester head controller application can be used with various harvester 

head hardware models just by adjusting the parameters. Moreover, as technology 

evolves and more advanced designs become to mass-production, some of the compo-

nents in the system can be replaced with new, compatible, and cheaper components. 

Still, the same application is used to provide the same functionality as in earlier hard-

ware versions of the product.  
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Applications are executed in a specific environment. The environment consists of 

processor(s), memory, various input/output ports, and optional operating system to 

control the system. The operating system abstracts some parts of the hardware, but 

there still are some details, like processor's instruction set, that cannot be abstracted 

by the operating system. So, as the runtime environment depends on the hardware, 

applications need to be adapted when the hardware changes. This adaption can be 

almost anything from recompilation of the application to rewriting the whole applica-

tion from scratch. The adaption process may be costly and this process is usually er-

ror-prone. In addition, the modifications lead to new revisions or branches of the 

software, which makes configuration management harder and increases costs. 

To support portability of the applications, it is usually possible to provide limited 

backward compatibility within the same hardware product family. For example, the 

newer processor can run the instruction set of the older processor model in an emula-

tion mode. However, the emulation of the old hardware device is not always imple-

mented on any available hardware that is compatible with the work machine.  

To support portability of the applications, it is usually possible to provide limited 

backward compatibility within the same hardware product family. For example, the 

newer processor can run the instruction set of the older processor model in an emula-

tion mode. However, the emulation of the old hardware device is not always imple-

mented on any available hardware that is compatible with the work machine. 

In many cases, 3rd party hardware components are used in the system. With these 

components, it is usually not possible to select the desired development tools. The 

development tools for the 3rd party hardware may not be compatible with the control 

application. Still, it should be possible to use existing control applications while using 

the 3rd party components. 

 

Therefore: 

 

Virtualize the runtime environment by creating a hardware independ-

ent execution platform for the application. The applications are compiled for the 

environment and executed in it. The runtime environment is ported for all the 

needed platforms. 

 

The virtual runtime environment (VRE) is an application, which is executed on the 

controller (called host system). The main idea of the virtual runtime environments is 

to hide the real runtime environment of the system and provide the abstracted, virtual 

version of the hardware to the applications (see Fig. 3). VRE creates a virtual repre-

sentation of all the hardware required for the functionality. It is possible to have a 

common platform for all control applications, independent from actual hardware in 

use. For example, it is possible to implement a virtual CPU by having a data structure 

to save CPU's register values and an interpreter for the CPU's instruction set. As VRE 

is executed on the host system, the interpreter executes the software in the virtual 

runtime environment. Likewise, the bus is virtualized and isolated from the actual 

communication channels. In this way, the applications do not have real access to the 

hardware (like bus, memory or CPU), but use virtual devices instead. 
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VRE translates application's virtual device access to corresponding real device ac-

cess. This isolation ensures that changes in the real hardware are not reflected to the 

application, as the application's runtime environment remains unchanged. In some 

cases, some of the virtual devices may not have the existing counterpart in the real 

system. In this case, the functionality is provided by VRE alone. For example, a virtu-

al runtime environment could contain floating-point operations even though the CPU 

on the host can calculate only integer numbers. The floating-point operations are 

simply handled by the interpreter of the VRE. However, the emulated floating-point 

operations take significantly more execution time than the real ones would take.  

Fig. 3. Virtual Runtime Environment separates the application from the actual Operating Sys-

tem and Hardware. 

 

The development process of the control applications for the virtual runtime envi-

ronment does not differ from the process for the real runtime environment. The appli-

cations are written with the selected programming language and compiled to assembly 

language or bytecode for the virtual runtime environment. The properties of the 

runtime environment, such as the endianity of the CPU, are always known beforehand 

and independent from the actual target hardware when developing for VRE. Now, the 

developed applications need not to be recompiled as they can be executed in various 

host systems as long as the virtual runtime environment remains the same. 

 Virtual Runtime Environment is also used to support legacy platforms' hardware, 

which are not available anymore. In this case, the whole hardware of the platform is 

emulated by VRE or the suitable runtime environment is provided to execute the leg-

acy application. For example, an embedded computer with an ARM-based CPU and 

real-time operating system is used to provide a virtual runtime environment for a leg-

acy control system running a PLC application. The VRE emulates input and the out-

put ports of the PLC and reflects their state changes to the system state variables. 

Now, there are two different ways to execute the actual PLC application. One is to 

provide emulated environment only for the application itself. In this case, VRE func-

tions as an interpreter, which provides the same functionality for the program as the 

emulated PLC device by using the host computer's capabilities. The other way is to 
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emulate the legacy PLC device with VRE. In this latter case, all the necessary com-

ponents of the PLC device have their virtual counterparts and the control logic or 

operating system of the PLC device is executed on the emulated hardware. In this 

way, the PLC program itself is executed by the emulated PLC system in the same way 

as it was executed with the real hardware. The latter way allows one to have all the 

properties of the emulated device, but the required VRE for the virtual environment is 

harder to implement. In addition, the former way does not allow one to have any op-

erating system as only the application is executed by the required VRE. 

There exist several commonly used commercial or open source VREs, so it may be 

a good idea to use them instead of writing an in-house VRE from scratch. For exam-

ple, Codesys by 3S-Smart Software Solutions GmbH [CODESYS] is used in a wide 

range of devices. For consumer devices, Java Runtime Environment has many com-

mercial and open source implementations for various platforms. However, if one de-

cides to implement a virtual runtime environment, there are various publications 

available on this topic (e.g. (Smith & Nair, 2005) (Lain, 2006)). Virtual runtime envi-

ronment is also addressed by Virtual Machine [RTDP].  

✥       ✥       ✥ 

Virtual Runtime Environment provides a stable environment even when the hard-

ware may vary between different products. VRE enables one to use the same software 

independent from the actual platform used. This independency simplifies configura-

tion management as the application does not need to be modified or recompiled for 

the new hardware. In addition, it is easier to update the hardware components, be-

cause the changes do not reflect to the application level - only VRE needs to be 

changed. On the other hand, VRE itself must be updated, maintained and ported to 

new platforms. 

Legacy software can be executed even if the required legacy hardware is not avail-

able anymore. The software is executed in virtual runtime environment, which pro-

vides the functionality that the software requires. 

It is possible to emulate functionality that is not provided by the hardware used. 

For example, floating point emulation makes processor design simpler and reduces 

costs. However, emulated functionalities are usually less efficient compared to the 

hardware-based ones. 

With the virtual runtime environment, the properties of runtime environment are 

always known beforehand and independent from the actual target hardware. This 

eases the development process and makes it more robust. 

The ability of emulating functionalities of existing devices can also be used to pro-

vide an environment for developing and testing where the whole system can be exe-

cuted without the target device.  

Because VRE emulated processor has fixed instruction execution times, the cycle 

rate of the application is always the same and independent of the physical processor 

speed. In other words, the application runs on the same pace regardless of the hard-

ware.  
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Because VRE is an additional layer between the real hardware and the application 

and requiring additional execution time, it may be difficult or even impossible to use 

virtual runtime environments in the systems with very strict real time requirements. 

This can be compensated to some degree by having more efficient hardware, but it 

costs more. 

When using VRE, the application is isolated from the physical devices. This eases 

the implementation of THIRD-PARTY SANDBOX  and access control. As the application 

uses the virtual devices, the access rights can be checked and the operation is contin-

ued only if the application has the permission to use the device. Moreover, if DATA 

STATUS pattern has been applied, the status of the data can be forced to the desired 

value by VRE even if the application itself doesn’t support data status. For example, 

invalid input status could always imply invalid output status and the result does not 

need to come from the application inside VRE. 

As VRE is complex and costly to implement, it is not feasible to use it if there are 

only few products in the product family, the life cycle of the products is short, or the 

hardware is not likely to change. 

✥       ✥       ✥ 
 

An in-house development environment is used in a power plant control system. 

The development environment and the programming language are designed for con-

trolling the outputs of the varistors for compensation of reactive power. The applica-

tions are executed in the virtual runtime environment as the actual execution hardware 

may vary. When the application is compiled, the result is a bytecode file understood 

by the virtual runtime environment. The runtime environment contains an interpreter 

that executes the code line by line. If the application changes an output value, the 

change is reflected to the output of the device by the virtual runtime environment. 
 

James Smith and Ravi Nair. 2005. Virtual Machines: Versatile Platforms for Systems and 

Processes (The Morgan Kaufmann Series in Computer Architecture and Design). Morgan 

Kaufmann Publishers Inc., San Francisco, CA, USA. 

Craig, Iain D. Virtual Machines. Springer, 2006, ISBN 1-85233-969-1, 269 pages 

[CODESYS] Homepage: www.codesys.com 

[RTDP] B. P. Douglass: Real-Time Design Patterns: Robust Scalable Architecture for Re-

al-Time Systems  
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1 Introduction 

This paper is the starting point for developing a pattern language for teaching pro-

gramming techniques. Pattern mining is still an ongoing process. The set of patterns 

presented in this paper is aimed for teachers of software engineering courses. They 

can be used to aid creation of assignment descriptions.  The assignments of the cours-

es should focus on the core content of the course and encourage the students to use 

the techniques taught on the course. In most of the programming courses the assign-

ments require a yearly redesign or at least yearly tuning of the assignment description. 

Without changes, especially the design solutions quickly become common knowledge 

among students and copying the implementation becomes a more tempting task as the 

students who have already passed the course have complete and reviewed implemen-

tations. These patterns are most suitable for advanced programming courses where the 

students already know the basics of programming.  

 

The presented patterns have been mined by going through experiences on assign-

ments of the courses on TUT Department of Software Systems. The patterns have 

been mined from TUT courses for programming techniques, object-oriented pro-

gramming, graphical user interfaces, data structures, service-oriented systems, and 

artificial intelligence. We have tried to find out common properties of the successful 

specifications and similarly tried to find out issues related to problematic ones. Course 

personnel feedback and student feedback has been used as an information source. In 

this paper we present four patterns from a collection of patterns for designing pro-

gramming assignments. 
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2 Programming assignments as a teaching tool 

The purpose of an assignment is to allow the students to design and implement ap-

plications or parts of software. While doing the task the students are able to test and 

learn the techniques and approaches taught on the course in practice. Often a subject 

area of the course requires larger real-world-like applications to be sensible. If the 

problems are purely on a “Mickey Mouse” level, it is easier to implement the work 

using only the basic programming techniques. Motivating the students becomes diffi-

cult if doing the work right way, i.e. using the techniques taught in the course, is 

much more cumbersome. 

The workload of the task is also important; the courses should follow their speci-

fied credit unit limitations. Implementing even a simple application from scratch is 

laborious. It is easy to create assignments where most of the effort goes to coding and 

testing parts of the program that have no relevance to the course itself.  

The available resources are another essential issue when designing and specifying 

a programming assignment. Each student or group can only be given a very limited 

amount of personal guidance.  In addition, the time the course personnel can spent on 

reviewing a programming assignment is limited. A course with over 200 participants 

requires much more exact assignment specification than a one with 15 participants. 

For instance, there might be a need for a common knowledge base for the most fre-

quent problems in the assignment and templates for the grading the assignments. 

In Tampere University of Technology and in universities in Finland in general lec-

tures and weekly exercises are voluntary, only an assignment and often a final exam 

are compulsory. Third year and older students are often working along their studies, 

so even if some of the students would like to attend to teaching session, they cannot 

do that. On every course roughly half of the students only read assignment descrip-

tions and other course material. Thus, the assignments are the only way to teach the 

students the course learning objectives and verify that they are capable of using the 

techniques taught on the course. 
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3 Patterns found in the pattern mining 

 

 

Fig. 1. A fragment of the pattern language 

 

 

This section briefly introduces a collection of patterns that can be used when start-

ing to design a programming assignment. First four patterns are described in detail in 

Section. The relations of the patterns discussed in this paper are shown in Fig. 1. 

 

 

Pattern name  Patlet 

ONLY THE ESSENTIAL You want to have projects that are small enough but 

cover the essential parts of the course. 

Therefore: Design your assignment so that it guides 

the students to work on the essential core contents of the 

course. Provide code and components for students to 

ease the workload. 

GUIDE TO 

FLEXIBILITY 

You want your students to learn to recognize and 

avoid or document constrains and restrictions in their 

code. You want to teach to the students to write code 

without unnecessary constraints.  

Therefore: Avoid exact values and numbers in your 

assignment description, provide initialization files and 

readers for them instead of giving a fixed application 

environment. Teach students to recognize and document 

their decisions. 

TEST RIDE THE 

ASSIGNMENT 

You have difficulties to estimate the amount of work 

required to complete the assignment, you have to fix and 

update your assignment description during the course. 

Therefore: Use a person who has not participated on 

the design of the specification to implement the applica-

tion. You can use her experiences and information to get 
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a better estimate and more polished instructions. 

ASSIGNMENT IN 

PARTS 

Simple assignment works do not teach anything and 

demotivate advanced students, complicated assignments 

are too demanding for basic students.  

Therefore: Divide the work in parts and publish them 

part-by-part, offer more advanced students a chance to 

implement extra features.  

STUDENT SELECTED 

ACTIVITIES/SUBJECTS 

[6] 

 

You have a fairly small group of experienced students 

and you do not want to limit their creativity and you do 

not have any brilliant ideas. Course grading is fail-pass 

or assignment plays only a limited role in grading. 

Therefore: Let the students design and implement 

whatever they want in the scope of the course. You can 

review their idea and limit overambitious projects and 

check that projects fall into scope of the course. 

 

CONTINUOUS 

ACTIVITY[2] 

If students get an assignment and a deadline, they 

mostly start too late to work on the assignment. They 

often are not able to finish the assignment in the best 

possible quality and on time. 

Therefore: include regular delivery moments of ap-

propriate artifacts to motivate and engage the students to 

be active over the whole time of the assignment. These 

artifacts should be of value for the students 

 

PERSONAL 

FEEDBACK 

How to give the students a feeling they are doing 

something that interest someone? Different ways of 

giving feedback should be considered. See feedback 

patterns[8], Constant feedback [6], differentiated feed-

back [6].  

Therefore: Assign the students a personal assistant, 

have a meeting or a feedback session early in the as-

signment work. The students meet their assistant and 

know the face behind name/email address. The students 

have their own assistant throughout the course for ques-

tions, grading, and final feedback. Have a final feedback 

session there the students can show their creation and 

talk about it.  (Consider also peer review) 

 

KEEP IT SHORT Students hate long assignment descriptions and easily 

miss the key points of the assignment.  

Therefore: Keep the core of the description short. 

Document the interfaces and other code you offer sepa-

rately. Offer simple example codes to demonstrate the 

usage of components you offer. Offer a separate step-by-
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step documentation for starting the assignment. 

 

LET THEM COMPETE  How to reward the best students in an open way? 

How to allow the students to constantly develop their 

solutions? You have easily measurable qualities in the 

assignment (e.g. performance, efficiency, A.I. competi-

tion) 

Therefore: Set a minimum level that is required for pass-

ing, base the grading not on the result of the competi-

tion, but overall qualities. One can get the highest marks 

without winning being on top of the competition. Re-

ward the best X on a list with a bonus to the grade. Up-

date the list preferably on runtime/frequently. Make the 

score table visible. 

 

PEER 

FEEDBACK/REVIEW 

You have limited resources, but want to offer students 

as much feedback as possible. [6] 

Therefore: Use peer-reviews where students or groups 

of students give feedback to other students. Peer-reviews 

cannot be used to directly grade the assignments, but 

they can be used to give the students additional feedback 

on their work. The knowledge of other students review-

ing their work often encourages the students to do better 

work. You can also use the student feedbacks to ease 

your grading by verifying the main issues in the feed-

back are relevant. 

 

GROUP WORK [6] You have a shortage of personnel, want to have a larger 

assignment, or need to teach the students group working. 

   Therefore: Let the students work in a group there they 

can teach each other, learn group working skills, and 

have a larger application. 

PAIR WORK[6] You have limited course personnel, you want to teach 

e.g. benefits of revision control, or you want to have a 

larger assignment. 

   Therefore: Make the students work in pairs. They can 

help each other, they learn to co-operate, communicate, 

and share work. 

 

SOMETHING FROM 

THE REAL WORLD 

 

Using languages and environments made solely for 

teaching purpose or similarly languages and environ-

ments that are only used in academia tend to demotivate 

the students. Learning to use something no-one in indus-

try uses is often seen useless. 

   Therefore: Include some “real-world” examples on 
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your course, do not stick only to academic examples. 

Allow students to work with modern tools and devices. 

 

4 The patterns 

In this section we present three patterns that can be employed when designing and 

writing a programming assignment description. This is only an incomplete subset of 

the patterns as this is a work in progress. The patterns use an Alexandrian(ish) pattern 

format [1]. The first part of the pattern is a short description of the context, the prob-

lem is given in bold. Forces are given after that and they are followed by the solution 

in bold. The resulting context and the consequences of the pattern application follow 

the solution. The applications of the pattern are given in italics as last. 

 

 

4.1 ONLY THE ESSENTIAL  

Also-known-as: 

AVOID WASTE 

 
 

You want to have assignments that are small enough but still cover the essential 

parts of the course.  

 

When working on larger programming assignments the students easily spent a 

significant part of their effort on work that is unrelated to the learning objectives 
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of the course. This decreases their chances to learn the essential core matter of 

the course.  

 

There is a need for a large enough programming task for the techniques of the 

course to be sensible. If you use overly simple applications when teaching concepts 

like object-oriented programming, modularity, interface classes, or implementation 

patterns e.g. MVC, the students do not see any benefits from applying the techniques 

taught on the course. They merely see the new techniques in a bad light as the same 

task could be implemented several times faster without using them. If the students 

associate the main learning objectives with a label “something laborious and useless” 

they need first to unlearn and when relearn to be able to master the objectives of the 

course. 

However, if you have a larger application which the students need to implement 

from scratch, they are likely to spent major part of their work on coding and testing 

features that are irrelevant to the learning objectives of the course. The students come 

easily overburdened or implement their projects using only their background 

knowledge from previous courses and do not learn and use anything new.  

Their assignment might meet the functional requirements but lack in the techniques 

related to the course. Thus, students get bad grades or are even unable to pass the 

course even though they have put large effort on the course and even submitted some-

thing seemingly good. If they are asked to revise the project to meet the requirements, 

it often means they need to rewrite a significant part of the application. It is hard to 

motivate a student to spend twice the amount of time estimated to the project. Thus 

some of them quit (and come again next year), others get bad grades, and many of 

them complain a lot (rightfully). This all means extra work for you. 

 

Therefore: Do not design features that are unessential to the assignment. 

Come up with assignment idea, pick the core learning targets, and provide im-

plementation for the rest. Allow the students to learn to use third party code and 

to focus on the learning objectives instead of wasting time on implementing unes-

sential features. Offer simple modules and interfaces to decrease the learning 

curve. Include a runnable sample along your code to demonstrate the usage. 

 

This solution can be used to increase the size of the application and thus bring the 

size and complexity of the project a bit closer to real software projects. For instance, 

on a course, where the purpose is to learn to use and implement interfaces and objects, 

it is sensible to provide a user interface and file handling. On the other hand, on a 

course on user interfaces, providing basic program control which the interface inter-

acts makes the assignment work more meaningful. When you provide components or 

parts of the application, also provide a mock-up implementation which shows how to 

use the main features. This decreases the amount of time the students need to spend to 

learn to use your code. Give also all the necessary project files and guidance on how 

to install the tools. The students can also learn by reading code written by others.  

Applying this pattern requires more time than traditional assignment where stu-

dents implement everything themselves. You also need to start the preparations earlier 
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as you need to have the provided code files ready and tested when the assignment 

work begins. The time working on the provided code can be significant as you need to 

provide easily understandable, well-documented, and tested code. Otherwise you may 

end up creating extra confusion and wasted hours. 

If you are not careful on choosing the provided components, you may unnecessari-

ly limit the freedom the students have. You need to leave the students some freedom 

to use their creativity in design and implementation. You can also give students an 

option to implement provided parts by themselves. For instance, a user interface can 

be given on a course, but students who want to learn user interface implementation 

techniques can implement their own version.  

You can use CONTINUOUS ACTIVITY[2] to ensure the students start to work early 

enough. Some of the sub-assignments can be allocated to getting familiar with the 

provided code. ASSIGNMENT IN PARTS is suitable for providing new parts or giving 

extra features as part of a setup.  

Related Patterns: LARGER THAN LIFE [5], TOOL BOX[5] 

 

 

“Known applications”:  

On courses on software design and object-oriented programming the provided 

code includes user interfaces, utility tools, and initialization file reader. Instead of 

writing a file parser for some strange data related to the assignment the students can 

concentrate on the main application logic. Instead of having fixed values in their 

application, they have parts of the data given in file. Similarly, the students do not 

need to learn (graphical) user interface implementation details.  Instead, they can 

concentrate design of the control logic and learn to use interfaces and modules that 

are provided to them.  

On artificial intelligence course the pattern was used to provide the students game-

logic a reference AI player that needed to be beaten by the students, and an interface 

for own AI player. The students could concentrate on the implementation of the AI 

without a need to implement the game itself. In addition, the game framework was 

used to make the students’ AIs to compete against each other. The most successful 

ones were rewarded. (See LET THEM COMPETE pattern) 

4.2 GUIDE TO FLEXIBILITY 
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You have students that have passed the first programming courses where they have 

learned functions and basic datatypes etc. You want to help them to learn to recognize 

and avoid unnecessary constraints/restrictions and document the ones that are chosen 

on purpose. Students often design classes that just are just glorified structs and class 

hierarchies where inheritance is used just for type information.  

 

Even though you have fancy style guides and guidelines the students tend to 

submit code filled with undocumented restrictions and unnecessary constraints 

to e.g. size, length of values or objects. You need assignment descriptions that 

encourage the students to write more flexible code. 

 

Beginner coders tend to introduce undocumented restrictions and unnecessary con-

straints to e.g. size, length of values or objects. They tend to hardcode values and 

functionality on their applications. When the projects get larger these undocumented 

constraints are easily hidden behind interfaces and modules making the usage and 

modification of the components difficult.  

In a more abstract level they have modules and classes which have limitations and 

constraints that are not documented or visible from the public interface. Giving the 

students feedback and even making them revise the code after their final submission 

is one possible approach. However, the scheduling is an issue as the course when 

continues to summer or long to next period. In addition, students are rarely happy to 

return to modify the code especially, if the modifications are not related to core sub-

jects of the course. 

Giving style guides and adding constraints and rules to the specification can be 

used to enforce certain features to the implementation. However, the students often 

tend to skip the style guides and embedding the style to the assignment description 

makes the specifications more annoying to read. The rules become easily shallow and 

are only seen as a nuisance or an extra work that has been just added to increase the 

workload. 

 

Therefore: Define the application specification so that it uses initialization 

files, user input etc. as source of data. Do not give everything as exact numbers, 

sizes, or types already in the assignment description. When applicable, do not 

give fixed amounts for entries or values. Teach students to recognize and docu-

ment the constraints and restrictions they add to their code. 

 

Making the students to adapt to different settings and setups already in the design 

phase is a good way of guiding the students to avoid hardcoded values and unwanted 

restrictions. Instead of defining there can be at maximum N players, or exactly four of 

these, thus the loop runs till value X, they will learn to adapt to input coming from 

user, file etc.  

You can provide the students with tools or components to access the data. This de-

creases unessential work that is needed to parse the data from file or to implement UI 
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(ONLY THE ESSENTIAL). Consider also ASSIGNMENT IN PARTS, CONTINUOUS 

ACTIVITY and connect the flexibility points to new phases and extra parts published. 

This can underline the benefits of avoiding hard-coding and using object-oriented 

guidelines like SOLID[14]. Students learn the benefits when the extensions and new 

parts are easier to implement. 

On the other hand, if the focus is solely on teaching a specific algorithm or usage 

of a single element in a narrow scope, need to avoid waste work is usually more sig-

nificant. You should not force the students to create overly general bloated solutions 

for simple applications. The objective is not to teach the students solutions that are 

suitable for everything, good for nothing. 

 

Related patterns: 

In EXPERIENCED ADVANTAGE[12,13] pattern the problem is similar, the students do 

not see the advantages. The solution is to let them experience the advantages. 

EXPERIENCED PROBLEMS [12,13] pattern shows what happens if the given problem is 

not solved.  

 

4.3 TEST RIDE THE ASSIGNMENT 

 
 

 

 

 

 

You need an accurate estimate on the amount of work it takes to complete the project, 

too large assignments take time from other courses and make students work too much 

for their credit units and as a result students get less overall credits. Less overall cred-

its means less money to your department... On other hand, if you make too easy as-

signments your students do not learn all the key aspects of the course. Thus, they can 

be in trouble in the following courses or when they move to working life. It also de-

creases the credibility of your course. 
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You need a clear assignment description to decrease your own work and students 

work when assignment deadline is closing. You want to avoid a flood of questions 

and requests from the students when the deadline is closing. You do not want to re-

vise the assignment description plenty of times as you have better things to do. 

 

You have difficulties to estimate the amount of work required to complete an 

assignment and your assignment descriptions need to be revised and clarified 

during the course. 

 

 

Reviewing the assignment description helps to remove most of the obvious faults and 

inconsistencies from it. However, only when you are implementing the assignment, 

you’ll get to the details and have to think about how all of the features. Even after the 

review you get loads of questions and complaints from the students and need to revise 

the specification and/or create FAQs and write plenty of emails and have meetings. 

You may have had to make changes to the assignment requirements in the 

middle of the course to allow the students to complete their work. The students have 

trouble in understanding what to do and you waste your valuable time clarifying the 

description. You need to give answers that are obvious (to you) to students’ questions. 

As a writer of the spec you already know the unwritten details related to the 

work, you have already a mental image of the application. Thus, you do not need or 

use the assignment description. Estimating the amount of work spent on the complete 

project is difficult, if you try to do it by yourself. You do not have to spend time to 

understand the specification, to learn tools, or to learn new techniques on the course. 

A detailed description is more essential on the initial courses, on the advanced level 

you can only give rough guidelines for the course. 

 

Therefore: Use a person who has not participated on the design of the specifica-

tion to implement the application- She should take notes and ask questions 

whenever there are is something unclear in the description or there is something 

essential missing.  

 

You need to find a person with a suitable background knowledge before you can ap-

ply the pattern. In Finland the course assistants are often students, some of them usu-

ally passed the course last year. This makes them excellent targets for the pattern. 

They learn a bit more about the subject, get some extra work and money, and the 

course will get a better assignment. In the end teacher’s valuable time can be saved. 

Another option is to use students that ask for a possibility to pass the course outside 

the teaching period, e.g. in summer.  

 

Using your own time estimate and feedback from the tester to get a better measure-

ment for the assignment size. The feedback you can get from a person actually creat-

ing an implementation using the specification and (possibly the code files you have 

provided, ONLY THE ESSENTIAL) makes the assignment more polished. If you can find 
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errors in the provided code in time, you’ll save the students’ and your own time. If 

you plan to use automatic checking of the assignments, the testing becomes vital. 

 

Without the testing the flaws of the assignment are often discovered only weeks be-

fore the final deadline. Making unplanned (major) changes to the assignment this late 

is guaranteed to invoke dissatisfaction among the students. Changing the automatic 

checking systems or using students to beta test it are also guaranteed ways to get peo-

ple upset. 

You can also use the test implementation to develop better feedback and grading 

guidelines. 

Object-oriented programming courses, distributed and service oriented systems, 

software architecture, and basic programming have used this pattern. The usage of 

the solution has decreased the need to revise the assignment description, there are 

less errors or inaccurate workload estimates. For instance, in advanced course of 

object-oriented techniques features in the original assignment description (e.g. types 

of squares and monsters in a dungeon dwelling game) have been moved from compul-

sory requirements to voluntary extra bits. The student feedback on the amount of time 

spent on the assignment has shown the workload average has been near to the course 

design. Before testing there were times where the average the students spent on the 

assignment was 50% more than the credit unit workload. 

 

4.4 ASSINGMENT IN PARTS 

 

You want to motivate the students to think about extensibility and modifiability. In 

addition you want to reward students that are interested in doing additional tasks or 

have put thought on design. However, giving a specification that challenges the keen-

est of students might be too much for your average student especially in the begin-

ning.  

 

Giving a complicated and demanding assignment demotivates the normal stu-

dents, and simple ones do not motivate the more advanced enthusiastic students. 

Large, single phase assignments do not teach the students to adapt to changes. 
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You want the student to agile and to encourage them to be prepared for changes 

and extensions, but do not want to extend the specification in the beginning.  

 

A specification should offer challenges and be suitable for both students that know 

only basics that the prerequisite courses have taught and more advanced and keen 

students that are interested in additional work.  

 

The exercises and assignments should also teach about changing requirements and 

specifications. However, if you change the main specification, you’ll annoy the stu-

dents who start early and aid those who start just before the deadline. 

 

 

Therefore: Give the specification in two or more phases. Publish the extra fea-

tures fairly near to the deadline to encourage students to focus on the design and 

to prepare for changes.  

 

 

When you publish the basic version of your assignment, state that extension will be 

published later containing some changes and/or additional features. This encourages 

the students to focus on their design and prepare for changes and extensions. If you 

offer some extra points for implementing the additional features and changes, the 

students (may) want to start their work earlier. 

If the new features are published near to the deadline, implementing the complete 

application from scratch is almost impossible. However, those who have started early 

can do the extra features with a little effort.   

The students who have had a sensible design are able to implement the new fea-

tures easily. The rewarding experiences can be connected to the learning objectives of 

the course. The concrete reward in form of some extra points to the grade is only a 

decoy; the actual reward comes from the feeling of achievement.  

If you have too specific demands you may easily restrict the development process 

and constrain your assignment. In addition, the style of the application needs to be 

doable part-by-part. 

You should include a design review meeting to the assignment there you can guide 

the students to a right direction. This way all the students should have a fair starting 

point to the actual implementation phase.  

You may also consider STUDENT SELECTED ACTIVITIES[6] to allow the students to 

pick the parts they want to implement in each phase. 

CONTINUOUS ACTIVITY should be considered to be used with ASSIGNMENT IN 

PARTS. The delivery moments of the work can often be synchronized with publishing 

the new parts.  

This pattern is a special case of CONTINUOUS ACTIVITY(CA). In CA the main aim 

is to keep the students active whole time of the assignment. In addition, smaller sub-

tasks are not as overwhelming as one large. ASSIGNMENT IN PARTS is suitable for 
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courses, where software design, extensibility, modifiability belong to the key learning 

objectives of the course.  

The pattern also shares features of STUDENT SELECTED ACTIVITIES. It allows the 

students to pick and implement extra bits if they want to. However, in order to pass, 

the students only need to do implement the main parts of the project. Similarly the 

majority of the grade comes from the main project and. extra parts are used to tempt 

and motivate the students to put more effort to early phases and the design of the pro-

ject. In addition, it gives the more keen students a chance to show their skills.  

The pattern shares common consequences with EXPERIENCED ADVANTAGE or 

EXPERIENCED PROBLEMS depending on the path they chose.  

 

In Object-oriented programming courses (basic and advanced) programming as-

signments are often games there students are given a framework. The extra features 

are published after the design deadline is over. Some of the features are added to 

provided code side, other parts should be implemented by students by specializing 

existing components. The approach shows the ideas behind the interface classes and 

traditional inheritance. Students can easily extend their applications if they have 

thought about the design and started implementing their application. Design feedback 

meetings can be used to guide the student towards designs that are missing some key 

features. The extra features are easy to add to games, you can easily come up with 

new commands, new types of squares, actions, creatures, characters, or equipment. 

 

5 Related work 

Pedagogical patterns project [11] have a couple of pattern collections for teaching 

[6][9]. There is also an ongoing work on a pattern language for course development in 

computer science [5]. There are also pedagogical patterns for teaching in a foreign 

language [3][4] and patterns for active learning [10] a pattern collection for giving the 

feedback [8]. Patterns for effective teaching in seminars are also related to teaching 

courses [7]. 

 This paper focuses on programming assignment design for a software engineering 

courses. The aim is to aid to design assignments that are suitable for both the students 

that self-study the course and the students who participate actively on the teaching 

sessions. These patterns can be taken as part of a more general course development 

language. The pattern collection presented in Section 3 summarizes the patterns one 

can consider when designing an assignment. The references to the corresponding 

pattern are given with the pattern. Some of the wordings have been changed to better 

suit the assignment design need. 
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1 Introduction 

 

In this paper we will present two patterns for sharing information in distributed 

machine control systems. A distributed machine control system is a software entity 

that is specifically designed to control a certain hardware system. This special hard-

ware is a part of a work machine, which can be a forest harvester, a drilling machine, 

elevator system etc. or some process automation system. Some of the key attributes of 

such software systems are their close relation to the hardware, strict real-time re-

quirements, functional safety, fault tolerance, high availability and long life cycle.  

Distribution plays a major part in the control systems. Different functional hard-

ware parts of the machine are physically apart from each other and their correspond-

ing control software is usually located in a embedded controller node near the con-

trolled hardware. The nodes must communicate with each other in order to perform 

their functionalities. It is also common that the system nodes have very wide variety 

in their computational capabilities. Usually the system has several simple embedded 

controllers with limited computational abilities also known as low-end nodes. In addi-

tion to these embedded controllers the system may contain one high-end node that has 

processing power that is comparable to a common desktop PC. Due to these facts,  a 

distributed control system needs to distribute information between different parts of 

the system. The information-sharing and messaging capabilities of such systems is 

discussed in these patterns in more detail.  

The patterns in this paper were collected during years 2008-2011 in collaboration 

with industrial partners. Real products by these companies were inspected during 

architectural evaluations and whenever a pattern idea was recognized, the initial pat-

tern drafts were written down. These draft patterns were then reviewed by industrial 

experts, who had design experience from such systems. After these additional in-

sights, and iterative repetitions of the previous phases, the current patterns were writ-

ten down. We hope that the final pattern language can be tested on implementation of 

some real system after all patterns in the language are published.  

The published patterns are a part of a larger body of literature, which is not yet 

publicly available. All these patterns together form a pattern language, which consists 
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of more than 80 patterns at the moment. A part of the pattern language in this paper is 

presented in a pattern graph (see Fig 1.) to give reader an idea of how these selected 

patterns fit in the language. These two patterns are closely related in the pattern lan-

guage and therefore are ideal to be submitted together as a whole. In the following 

sections, all the pattern names are written in SMALL CAPS. 

 

 

Fig. 1. The relations between patterns mentioned here 

 

In the second section, we will first introduce our pattern language and the pattern 

format. Following this, the selected two patterns are presented in detail. Finally, the 

last sections contain the acknowledgments and references. 

2 Patterns 

In this section, a set of two patterns is presented. Together, these patterns are a part 

of a sub graph in the pattern language in Fig. 1 The pattern graph is read so, that a 

pattern is presented as a box in the graph and an arrow presents a connection between 

the patterns. The connection means that the pattern from which the arrow emerges is 

refined by the pattern that the arrow points to. In other words, if the designed system 

still has some unresolved problems even after some pattern is applied, the designer 

can look to the refining patterns for yet another solution if they want solve the current 

design issues. The patterns refine each other extending the original design with other 

solutions.  
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For example, the CONTROL SYSTEM pattern is the root of the whole pattern lan-

guage and it is referenced in the following patterns. So, the CONTROL SYSTEM is the 

central pattern in designing distributed control systems. It presents the first design 

problem the system architect will face: Is a control system needed in this context? 

Table 1 presents all patterns that are shown in Fig. 1 and all the patterns that are refer-

enced later on in this paper. 

 

Pattern name Description 

CONTROL SYSTEM Implement control system software that controls the machine 

and has interfaces to communicate with other machines and 

systems. 

ISOLATED 

FUNCTIONALITIES 

Identify logically connected functionalities and compose these 

functionalities as manageable sized entities. Implement each 

of these entities as their own subsystem. 

ONE TO MANY Build a network called a bus where all nodes share the same 

communication medium. Nodes send information as messages 

over this medium. All nodes can receive all messages from the 

network and will see if there is currently anything relevant on 

the bus. 

MESSAGE GATEWAY Add a component, a message channel gateway, to the system 

between message channels. This component routes message 

traffic between message channels. If needed, the component 

can filter messages according to specific criteria defined in the 

system configuration. In addition, the component handles the 

translation from a message protocol to another. 

MESSAGE CHANNEL 

MULTIPLEXING 

Separate communication channel from the actual physical bus 

by creating virtual channels. Virtual channels might be multi-

plexed in one physical channel using dividing the channel into 

time slots or can be divided over several physical buses. 

FLEET 

MANAGEMENT 

Implement a Fleet Management application and install it on-

board the machine. Within that application, create common 

interfaces and information model for all work machines to 

manage them as a fleet. Production information, which con-

forms to the information model, can be transferred to and from 

the machine using the common interface. In this way, the ma-

chine can coordinate the optimization of work with other ma-

chines via an ERP system. 

REMOTE ACCESS Add a remote connection gateway on-board which enables 

communication between the machine and the remote party. 

The remote connection gateway transforms the used messag-

ing scheme to suit the local and remote parties' needs and can 

take care of authentication. 

THIRD PARTY 

SANDBOX 

Provide an interface and tools for third-party application de-

velopers. Third-party applications can use the machine ser-

vices only through this interface so that they will not interfere 
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with the machine's own applications. The interface provides 

common ways to access data and services. 

DYNAMIC MESSAGE 

CHANNEL SELECTOR 

Organize all communication channels using the wanted prop-

erties, e.g. cost of communication. Add a component which 

automatically changes the communication channel if the high-

er priority channel is not available. 

HUMAN-MACHINE 

INTERFACE 

Add a human-machine interface. It consists of ways of pre-

senting information and controls to manipulate the machine. 

These typically are displays with GUIs, buzzers, joysticks and 

buttons etc. The way of presenting the information and the 

controls of the machine must be decoupled, e.g. with a Mes-

sage Bus. 

OPERATING MODES Design system so, that it consists of multiple functional 

modes. These modes correspond to certain operating contexts. 

The mode only allows usage of those operations that are sen-

sible for its operating context. 

HEARTBEAT Make a node to send messages at predetermined and regular 

intervals to another node. The other node knows the message 

interval and waits for the message.  If the message does not 

arrive in time, the remedying actions can be started. 

 

Table 1. Patlets 

Our pattern format closely follows the widely-known Alexandrian format [1]. First 

we present the context for the problem. Then, the problem is concentrated in a couple 

of sentences that are printed with a bold font face. After that, a short discussion about 

all forces that are affecting the problem is given. In a way, it is a list of things to con-

sider when solving this problem. Then, after "Therefore:" the quick summarization of 

the solution is given. Then, after a three star transition line, the solution is discussed 

in a detail. This section should answer all the forces that were left open in the previ-

ous section. Then another star transition marks the end of the section. This section 

describes briefly the consequences of applying this pattern. After the last star transi-

tion a real life example of the usage of this pattern is given. 

 

2.1 One to Many 

 

 

...there is a CONTROL SYSTEM with ISOLATED FUNCTIONALITIES, and thus the sys-

tem is divided into several nodes. As the nodes have to collaborate, every node has to 

be connected to all those nodes from which it needs information. Similarly, the node 

has connections to all other nodes which use the information it provides. Usually 

these connections are dedicated wires where communication is carried out. Basically 
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two-way communication requires at least one wire, creating a mesh (see Figure 2) 

where the communication requirements of each node form a connection to other 

nodes. The nodes are coupled to each other by this extensive wiring. If the system 

design evolves during the system lifetime so that the communication requirements 

change, it would propagate changes to the wiring, too. Alternatively, the nodes should 

have routing capabilities in their software which would allow the sender to reach the 

recipient using intermediating nodes.´ 

 
 

Fig. 2. A communication mesh with extensive wiring between nodes 

✥       ✥       ✥ 

 

Every node has to know how to reach the recipients of information it produces 

and this forms a tight coupling between nodes. If the communication require-

ments change, redesign of wiring or software on several nodes is needed. 

 

 
Physical wiring for communication nails down the communication structure. How-

ever, the work machine design may change over time, as new hardware with different 

capabilities can be added to the original design and the software may evolve to have 

more optimized algorithms. Thus, the communication needs of the devices may 

change as information may be produced and consumed in unforeseen places in the 

system. In such evolving design fixing the wiring is too rigid solution. Adding wires 

afterwards is laborious and sometimes even impossible as the cable raceways might 

be already full. In addition, it may be impossible or difficult to add new devices to the 

system after the design phase as the wiring harness only has connectors in predefined 

places. 
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In some cases, the same CONTROL SYSTEM application should be executable on 

products that have slightly different hardware, but still belong to same product family. 

In order to allow software reuse, the communication infrastructure should be flexible 

enough. 

 

The communication infrastructure should be scalable, so that new participants may 

join the information exchange. The communication should allow both increase in 

amount of communicating parties and amount of information sent by a participant in 

the communication. However, amount of wiring to be used for information transfer 

should be minimized. The wiring is relatively expensive, adds weight and takes up 

space. The more wire there is, more difficult it is to design the wiring so that it won't 

be prone to electromagnetic interference or breaking. In addition, the assembly of the 

machine should be fast on the assembly line. Extensive wiring is slow and error-prone 

to install as assembly line personnel need to install multiple wires. So the wiring for 

the communication between nodes should consist only of minimal number of wires to 

allow easy installation. 

 

There should be a uniform way to communicate with different nodes on the sys-

tem, so that the developer does not need to be interested in the details of communica-

tion when designing the applications. Furthermore, it is crucial that the communica-

tion way does not depend on with which other node is recipient party to avoid errors 

in the development phase. 

 

Therefore: 

 

Build a network called a bus where all nodes share the same communication 

medium. Nodes send information as messages over this medium. All nodes can 

receive all messages from the network and will see if there is currently anything 

relevant on the bus. 

✥       ✥       ✥ 

 

Communication between nodes should be carried over a shared medium, to where 

all nodes are connected to. This medium usually consists of a single cable, which is 

connected in a bus network topology. In rarer cases, the communication can be elec-

tromagnetic waves sent over air. In these cases, sender node transmits the message 

over the radio waves and all other nodes may receive all sent messages, as radio 

waves reach all receivers. 

 

Typically, however, a bus topology is used and the communication medium con-

nects the communicating devices to each other and allows sending information to the 

recipients, see Figure 3. The connecting cabling creates the physical layer that is the 

foundation for the data exchange. On this layer the information is presented by volt-

age/current changes that are interpreted as binary data. The data forms messages 

which all nodes should be able to understand. The physical layer and messages are 
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usually implemented using a commercial solution, such as CAN bus [2], as many 

problems that arise when designing the communication on physical level have already 

been addressed. There exist other physical topologies, such as a star configuration. A 

star topology may be used, if all branches of the star get all the messages, but, for 

example, in the case of CAN this requires the system to include an active component, 

e.g. a hub or a switch in the middle of the star. 

 

 
 

Fig. 3. X: An example of bus topology network 

 

Now, every node can listen to the communication medium and pick up relevant 

messages. The sender does not have to know which other nodes are interested in its 

messages, only which information it is supposed to publish. This information is en-

capsulated in messages which are broadcast to all nodes. For example, as in Figure 3, 

an operator uses controls, such as a joystick, which sends control messages to the 

message bus. The boom controller can read the broadcast message and move the 

boom accordingly. The recipient usually does not need to know the actual sender. It 

just reads every message from the bus and if the message does not contain infor-

mation the node needs, it just simply discards the message. This abstracts the physical 

location of the devices from the control applications. As the only interface between 

the nodes is the messages, it is quite easy to move functionality from one node to 

other, or even nodes from one location to another. 

 

When designing the connection with wires, same things should be taken into con-

sideration as when installing any other cabling. For example, one should consider 

external forces that may break the wiring. However, the situation is usually remedied 

by the fact that a communication cabling consists of only few wires and machine 

joints can be passed through using sliding ring connections. 

 

If two or more nodes try to communicate at the same time a collision occurs and 

thus the actual bit stream on the bus becomes garbled. When the messaging is carried 

out in a point-to-point fashion, the collision may happen only when both parties of the 

channel send their messages simultaneously. In shared communication channels, col-

lisions may happen frequently as any message sent on the bus reserves the communi-

cation channel for a certain time span. The probability of a collision increases when 

the amount of nodes on the bus grows.  However, in a shared channel, the probability 

can be diminished if the nodes listen to the bus simultaneously when sending the mes-
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sages. If there is message traffic on the bus, the node must retain from sending its own 

messages. However, if one node starts transmitting messages too often, the other 

nodes will have difficulty to get their messages through as they must wait for a silent 

period. The problem is commonly called the babbling idiot’s problem [3] and can be 

addressed by using Bus Guardian pattern [4]. 

 

Waiting for the silent moment does not alone solve the collision problem complete-

ly. Several nodes may start sending their message still exactly at the same moment 

when they have detected that the message channel is silent. These messages collide 

and the information does not get through. In some bus technologies, the collision 

causes both senders to wait for a random time and try again. If yet another collision 

occurs as the nodes waited for the same time by chance or a third-party is willing to 

send its messages, the collided nodes double their maximum waiting period. This 

mechanism is called binary exponential back-off [5]. It suits badly real-time applica-

tions as an unfortunate sender may have a long and nondeterministic wait time. 

 

The collision problem can be remedied by comparing any sent data bit to the actual 

bit on the bus. If the bit on the bus is high when the node is sending a low bit, the 

node should immediately stop sending as the discrepancy means that there is another 

node sending another message at the same time. Now the message has not yet been 

garbled and the other node will get its message through.  The CAN bus utilizes this 

mechanism so, that in the beginning of the message there is the sender id, which at 

same time defines the priority of the node. High priority node's identification will get 

through as its bit pattern has earlier dominant bit. As sharing the communication 

channel is the root cause of the collisions, the only way to be sure that the collisions 

will not happen is to remove the sharing by using MESSAGE CHANNEL 

MULTIPLEXING. 

 

One can gain the benefits of mass-production by selecting a bus standard that is 

widely used in the industry. These standard solutions typically have solved the prob-

lems related to messaging in such way, that it is suitable for a certain domain. Some 

examples in the machine control domain include CAN bus, FLEXRAY [6], Local 

Interconnect Network [7], and PROFIBUS [8] using multi-drop EIA-485 as the phys-

ical connection standard. As there are several vendors adhering to the same standards, 

there are ready-made devices that support the standard communication, for example, 

sensors that can be attached. It makes the system designers' jobs easier as they can use 

ready-made devices and software instead of proprietary solutions. However, using 

commercial solutions may cause unwanted dependencies. 

 

Usually selecting one commercial communication protocol also affects the hard-

ware and vice versa. Vendor lock-in may easily occur when all components should be 

acquired from one vendor. The long life cycle may further amplify these problems as 

the support for a certain communication solution may end over years. Proprietary 

components may have limited availability in the area where the work machine is used. 

Thus, it may be difficult to acquire spare parts for commercial off-the-shelf solutions 
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in some parts of the world. In some cases, the commercial standards have many 

stakeholders and the development of the communication solution may be led by com-

panies from other domains. Thus, the development is driven by other industrial re-

quirements than your own and these requirements might weigh some other quality 

attributes of the system design more than what would be optimal for your design. For 

example, CAN bus is very heavily-driven by automotive industry and its applications 

have different requirements than in the work machine industry as cars need quick 

response time, but the amount of information is smaller. However, in a work machine 

there might be more data to be transferred, but slower response time would be ade-

quate. 

 

This pattern is an example of PUBLISHER/SUBSCRIBER pattern [9]. It is also docu-

mented in the context of DDS middleware as ONE TO MANY [RTI]. MESSAGE 

CHANNEL [8] and MESSAGE BUS [9] describe similar mechanisms for building com-

munication channel between nodes but in different domains. 

 

✥       ✥       ✥ 

 

Nodes on a bus may communicate with each other and the communication infra-

structure will be scalable in the amount of nodes and flexible in the locations where 

information is produced and consumed. For example, if the physical location of a 

sensor or an actuator changes in the design, it is easy to accommodate the changed 

messaging requirements for these nodes. In addition, the recipient is not usually inter-

ested in actual location of the other node. Location transparency allows additional 

flexibility in connecting the hardware devices to the connectors. However, the physi-

cal properties of the bus and the amount of collisions in the messaging may set a max-

imum for the amount of the nodes on one bus segment. 

 

As every node listens to all messages on the communication medium, they can also 

act as a monitoring point inspecting the condition of the message channel. Thus, more 

of nodes there are on the bus, the smaller chance of residual errors remain on the 

communication, making the system safer. 

 

It is easier to design the wiring of the system as all the communication is carried 

out over just a few wires. The production costs are cut down as fewer wires are need-

ed to be installed on the machine and every device does not require its own set of 

wires. However, the message bus acts as a single point of failure, but as the commu-

nication protocol may provide a HEARTBEAT service, communication failures are 

usually easy to detect. For safety reasons, it is usually better not to try to communicate 

at all when the reliability of the message channel is compromised. 

 

As the nodes do not subscribe per se to any messages, but it is rather their respon-

sibility to read interesting messages from the bus, the sender cannot know if the mes-

sage has been delivered to any interested parties, if the message channel is not relia-

ble. Thus, some mechanism to acknowledge the delivery is usually needed. For ex-
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ample, in the case of CAN bus, the other nodes acknowledge all correct messages 

they were able to receive by overwriting sent recessive ACK bit as dominant. Still, 

the sender will not know if anyone really used the message and more elaborate 

acknowledgement mechanisms may be needed. 

 

The selected communication protocol and the physical bus may set constraints to 

the communication infrastructure. For example, the transfer rate and the length of the 

bus may be limited. In some cases, the maximum length of dropdown lines and the 

minimum distance between the nodes in order to avoid signal reflections from the 

ends may become an obstacle of physical cabling design. Even the wiring consists of 

only a few communication wires, which are easy to extend to reach all over the ma-

chine, physical connectors are still needed near the location of the new node or de-

vice. 

 

In some cases, the actual physical layout of the system makes it hard to use bus to-

pology on the system. For example, if the system consists of two clearly separated 

locations where nodes reside, it may be difficult to connect these isolated groups of 

nodes with a cable. Then it would be sensible to segment the bus into two separate 

parts and connect them with a MESSAGE GATEWAY. 

 

✥       ✥       ✥ 

 

A truck has multiple controllers as the system design dictates that the controllers of 

the subsystems should be located as close as possible to the actual hardware of the 

subsystem. This is done to minimize the amount of wiring needed for actuators and 

sensors. For example, the engine controller is mounted in the engine compartment on 

the engine itself. The controllers should work in co-operation and thus the units need 

to communicate with each other. The nodes are connected with a CAN cable which 

consists of three signal wires, i.e. CAN HI, CAN LOW and ground wires, terminated 

from both ends. This cabling allows the nodes to send SAE J1939 (SAE International, 

formerly Society of Automotive Engineers) messages to other nodes [10]. SAE J1939 

protocol is designed so, that all messages are broadcast to other nodes. This makes it 

easy to accommodate additional nodes to the bus. For example, if a trailer is attached 

to the truck, the nodes on the truck and trailer may communicate with each other. If 

the sender needs to specify the receiver, the protocol allows adding the destination 

address to the message. The messages have also a 29-bit PGN (Parameter Group 

Number) field that tells the receiver the purpose of this message and allows the recipi-

ent to quickly determine what kind of data this message contains. The PGN field dis-

criminates if the message is for a specific recipient or a broadcast message. In addi-

tion, it contains the source address of this message and in a specific part of the header 

the rate of transmission and the message priority. This special part of the header also 

includes the data assignment of the parameter part of the message. The parameter part 

has the actual payload of the message. A certain parameter group has same data 

length in bytes, data type, resolution, offset, range and a reference label or tag. The 

SAE J1939 also allows multipart messages and defining new parameters. Sending 
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longer messages than the maximum length of a frame (8 bytes) is possible by using 

higher level services. It also has address claiming mechanism and diagnostics built-in. 

 

2.2 Dynamic Message Channel Selector 

...there is a distributed CONTROL SYSTEM which has a REMOTE ACCESS allowing 

accessing the machine resources remotely. There are multiple technologies, e.g. wire-

less LAN, satellite telephone or GPRS (General Packet Radio Service) connection, 

supported which offer ways to communicate with the machine remotely. As the mo-

bile work machine can be situated on various work sites all around the globe, various 

environmental factors may interfere with the communication channels. For example, 

if a forest harvester works in a stand situated far in the wilderness, there are no terres-

trial base transceiver stations nearby. Thus, if a remote connection is needed, only 

expensive satellite phone connection is possible. On the other hand, when the harvest-

er is at the factory perimeter, there might be Wireless LAN available for high band-

width data transfer. In another case, a mining drill is situated in an underground mine, 

where WLAN availability varies depending on the location as the massive rock walls 

block the signal. The location of the machine and available communication channels 

affect the band-width, communication costs, transfer rate and other attributes and 

constraints of the communication channel. This makes the communication scheme 

design hard as there are multiple trade-offs depending on the environment. 

 

✥       ✥       ✥ 

 

There can be several communication channels that could be used. However, 

under certain circumstances some of these channels are not available. Still, the 

most cost-efficient communication channel available should be chosen. 

 
 

There are plenty of remote communication technologies available and it is quite 

cheap to implement several of them on a machine. The implementation can be done 

with commercial off-the-shelf hardware either as an additional chip on a controller or 

as a separate device that can be plugged directly to the message bus. It is reasonable 

to support multiple technologies as the wireless technologies have different kinds of 
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communication properties and restrictions. For example, some provide communica-

tion that needs dense base station infrastructure, but has high transfer rate and so on. 

 

The information that is stored on the machine has varying importance and urgency 

for the remote party. Having a high importance means that the remote party definitely 

needs to have access to the information. Conversely, low importance means that the 

remote party can manage without this single piece of information and it would only 

be needed for optimization purposes. On the other hand, high urgency information 

means that it is needed on the remote end within a short time interval from the mo-

ment when it is produced or otherwise it will be obsolete. Low urgency means that the 

information will be still relevant after a long time span. Thus, the urgency factor is 

essentially a time-to-live value for the information. For all information, the communi-

cation quality should be optimized in terms of urgency and importance. 

 

All the information must be conveyed as messages that are sent via the communi-

cation channel. As the information consists of varying amounts data, some messages 

can be larger than some other messages. However, the message size is not correlating 

to the importance or urgency. As the machine moves, the set of available messaging 

options changes dynamically. There can be situations where there is no communica-

tion channel available for some period of time, and in some other cases, it might be 

that a certain communication channel is never available for a single machine. 

 

Therefore: 

 

Organize all communication channels using the wanted properties, e.g. cost of 

communication. Add a component which automatically changes the communica-

tion channel if the higher priority channel is not available. 

 

✥       ✥       ✥ 

 

Organize the communication channels according to the properties you wish to op-

timize in order to achieve the best possible cost-efficiency. Consider all different 

communication properties, i.e. security of the channel and the possibility of eaves-

dropping, cost per sent amount of data, bandwidth, reliability, stability, latency and so 

on. Organize this information in a form of an array; see Fig 4 for an example. Some of 

the properties can be dynamic as in the case of availability. The unit of the properties 

can be, for example, an integer value from one to ten describing your view of the 

property for this channel. For example, in the Fig 4, Iridium has low latencies com-

pared to WLAN, but it has really high price per sent unit. In addition to these channel 

properties, one should take into account the nature of the data that has to be sent. Eve-

ry nugget of data may have differing urgency, importance, security etc. requirements. 

The weighing of certain properties may also change depending on the operating con-

text, such as the OPERATING MODES of the machine. Now, define a utility function 

that sets weights for different communication properties when given the wanted prop-

erties for the data and the operating context. 
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Fig. 4. An example with four different wireless technologies with different properties. The 

utility function uses these properties as one parameter. 

 

Now, the designed utility function will then return the most cost-efficient channel 

for communicating the data. Of course, the utility function must take in consideration 

the availability of channels as there might be no connectivity because of the environ-

mental factors, as the terrain, location and such. See Figure 5 for an example system, 

where wireless channels are organized so that a certain data nugget has high urgency, 

importance, and reliability requirement will be sent using Iridium satellite connection. 

The other option, 3G link, would be too slow and unreliable for this data transfer. 

 
 

Fig. 5. an example of a utility function, which takes reliability, urgency and importance re-

quirements for a certain data nugget as parameters. 

 

After the utility function has been devised, add a component to the REMOTE 

ACCESS service which uses the utility function to select the best channel available 

according to the criteria. The component will send the messages through the best 

available option. If there is no sensible option for sending the data, the messages 

which have great importance but low urgency may be stored locally on the machine 

so that they could be sent when the cost of transfer will be feasible again. High urgen-

cy data must be discarded, if the sending delay would grow too large. 

 

One way to organize data transfer is to stop communication altogether for certain 

services. For example, if a 3rd party software needs updating, it might be reasonable 

to block this happening if the communication channel is slow and/or expensive. See 

Figure 6 for an example how different services could be grouped. When the commu-

nication channels’ availability changes, the component selects the next suitable option 

from the list of available communication channels and makes the proper changes to 

the amount of messages which can be sent through this channel. 
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Fig. 6. an example how to weigh different services according to their importance and urgency. 

 

If the data transfer does not cost by amount of transferred data, the selector can 

send non-urgent messages via channels by splitting the data into smaller chunks 

which are sent in the background. This takes more time, but the transfer does not dis-

rupt the available bandwidth. The DYNAMIC MESSAGE CHANNEL SELECTOR may be 

used even if there are two similar channels for use in order to maximize the band-

width. For example, if two radio channels are available to connect the machine to the 

remote party, they both can be used so long as the usage does not cost anything extra. 

This maximizes the amount of data that can be sent. If the other channel is not availa-

ble any more, the data transfer is not disrupted, it just continues with lower band-

width. 

 

In some cases, DYNAMIC MESSAGE CHANNEL SELECTOR can be used in local 

communication too. Usually this is the case, if there is for example, an Ethernet cable 

and CAN bus connecting two nodes. Ethernet is used in transferring huge amounts of 

data, e.g. diagnostics, and CAN is used for control. Now, if the CAN bus is severed, 

Ethernet could dynamically be used to carry out some communication. However, this 

approach is limited to Limp Home kind of functionality only as there is no determin-

ism in the communication anymore. 

 

✥       ✥       ✥ 

 

The messages over the remote link are delivered using the optimal channel. This 

may save communication costs or provides the most reliable channel for the data. In 
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special cases, the machine might switch to more secure channel in order to prevent 

eavesdropping. 

 

If several channels can be used in parallel, the availability of messaging and its 

bandwidth may be optimized. In some cases, the messages can be sent in chunks, so 

that momentary unavailability of a channel won't disturb the communication as a 

whole. 

 

✥       ✥       ✥ 

 

A rock crusher sends its production data to the FLEET MANAGEMENT. The produc-

tion information consists of rock type, its volume and diagnostics information about 

the velocity of the transfer conveyer belt, jaw speed and so on. On the crusher's 

HUMAN-MACHINE INTERFACE, there is a configurable setting, which allows the user to 

decide properties for the production information that is sent over the wireless link. 

The wireless link can be established as a WLAN or 3G link, depending on the situa-

tion. The operator selects that the rock type and volume has high importance, but low 

urgency. The selection is done as the production information is essential for the later 

stages of the processing chain, but it is possible to send the day’s production infor-

mation as a batch in the end of the work shift. On the other hand, the jaw and belt 

information has low importance, but high urgency as the run-of-the-mill data is need-

ed only in calculating preventive maintenance needs for the crusher. However, if the 

belt or the jaw jams, the situation has to be quickly notified to the maintenance team. 

 

As the crusher usually is located in an open-cast mine, it seldom has a WLAN con-

nection which would have enough bandwidth to send all the data. If the machine cur-

rently has not a WLAN access, it will buffer the production data to be sent later on. 

Only critical messages, such as if the machine becomes incapacitated, are sent over 

the expensive 3G link. 
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Abstract. Safety tactics describe general architectural design decisions
and their effect on the overall system safety. Currently these safety tactics
do not directly address the consequences of design decisions on safety
certification.
To establish this connection, we refine safety tactics by extracting in-
formation concerning architectural design decisions from the IEC 61508
safety standard. We generalize this information in order to describe the
effect of safety tactic usage on different development phases of safety-
critical systems. We provide the whole revised catalog of safety tactics
and we show its application by analyzing the Triple Modular Redun-
dancy design pattern regarding its safety tactic usage to evaluate the
effect of the pattern on safety certification.

Keywords: safety tactics, IEC 61508

1 Introduction

Safety standards contain information about requirements which have to be ful-
filled to achieve functional safety certification. Often some methods and archi-
tectures for fulfilling the safety requirements are suggested in the standard and
in practice just these, sometimes outdated, methods and architectures are used.
The introduction of new methods and architectures requires proof of their va-
lidity regarding functional safety which can be a tedious task and can increase
certification costs significantly. There is no general evaluation of methods and ar-
chitectures which allows to evaluate them regarding safety certification in order
to aid the certification of novel concepts.

Safety patterns address this problem in a way that they describe the conse-
quences of applying a specific architecture; however, they cover a rather specific
and implementation focused view of this problem. To cope with the problem
on a more general level, we evaluate the consequences of safety-related architec-
tural design decisions (safety tactics) on safety certification. We examine existing
safety tactics and discuss their suitability for the IEC 61508 safety standard. We
mine architectures and methods suggested in the IEC 61508 standard regarding
the tactics they use and regarding their effect on different phases of the safety
lifecycle. Based on our analysis of used tactics in the IEC 61508 standard, we
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re-organize and re-structure existing safety tactics to be more intuitive. Fur-
thermore, we refine the safety tactics by describing their influence on different
safety lifecycle phases in general and more specific by relating IEC 61508 meth-
ods to the tactics. We present the refined catalog of safety tactics and we apply
it to an example where we analyze the consequences of the Triple Modular
Redundancy (TMR) pattern [1] on safety certification.

This paper is organized as follows. Section 2 gives an introduction to the
IEC 61508 safety lifecycle and focuses on its realization phase which is later on
analyzed for the tactics. Section 3 introduces the idea of tactics and Section 4
gives an overview of current tactics in the safety domain. Furthermore, in this
Section we discuss why and how existing safety tactics should be modified. In
Section 5 we present the tactic catalog with focus on the tactic influence on
safety certification. Section 6 analyzes the TMR safety pattern by using the
refined safety tactics. Section 7 gives an extended overview of related work on
architectural tactics with focus on safety tactics. Section 8 concludes this work
and gives an outlook on the future potential of this work.

2 IEC 61508 Safety Lifecycle

The safety lifecycle according to IEC 61508 provides a process framework which
allows to achieve functional safety for a product by following the methods and
requirements posed by the standard for each phase of the lifecycle. An overview
of the lifecycle is shown in Figure 1.

The planning phases addressing the overall product safety include definition
of concept and scope, a hazard and risk analysis resulting in safety requirements,
and the allocation of Safety Integrity Levels (SILs) to components. During the
planning phases, plans for the operation, maintenance, installation, and safety
validation have to be defined. An important phase of the safety lifecycle is the
product realization phase, which distinguishes between hardware and software
implementation and can be divided into the following sub-phases:

– Requirements specification - Full specification of safety-related functions for
the product, allocation of SILs to these functions, and specification of risk
reduction measures for these functions.

– Validation planning - Preparation of a plan how to validate the system
against the specified safety requirements.

– Design and development - Design and implementation of the safety-critical
software/hardware according to the safety requirements.

– Integration - Integration/Assembly of developed software/hardware subsys-
tems to form the complete safety-related product.

– Operation and maintenance - Activities to ensure the proper operation of the
developed software/hardware product (does not cover system modifications).

In the phases after the realization of the system, the plans on operation, main-
tenance, installation, and safety validation have to be carried out. Additionally,
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Fig. 1. IEC 61508 safety lifecycle (incl. realization phase) [2]

other phases of the lifecycle address product modifications, decommissioning,
and disposal.

In this paper we focus on the effects of architectural safety tactics on the
product realization phase and the following phases like safety validation and
product modification. We do not describe the effect of architectural safety tac-
tics on all of the phases mentioned above, because when analyzing the safety
standard, we did not find relationships of the tactics to all of the safety lifecycle
phases, especially not to the early phases.

3 Introducing Tactics

Tactics are architectural design decisions which influence and manipulate quality
attributes [3]. Compared to design patterns, they describe general concepts or
principles and do not describe solutions for a problem in a given context. For
example, the Voting tactic describes how to achieve failure containment by
choosing an appropriate system output from redundant system components.
Compared to patterns, the tactic is more general and does not describe a specific
solution but rather provides the underlying idea for possible solutions. In this
case, a possible solution could be the TMR pattern which uses the Voting
tactic to choose for the majority of three redundant subsystem outputs. Usually,
a tactic can be found in several architectures or patterns and can even be seen
as building blocks for design patterns [4].
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It is difficult to keep tactics and patterns apart as there is no clear boarder
between the two. However, Ryoo et al. [5] specify some criteria to identify tactics.
For a design decision on order to be a tactic, it has to be atomic. This means that
it cannot be divided into other multiple tactics, however it can be refined. For
example, the Redundancy tactic is refined by the Replication Redundancy
tactic and the Diverse Redundancy tactic, but it is not composed of them.
Furthermore, Ryoo et al. say that tactics focus on a single quality attribute (e.g.
safety) and patterns usually affect several quality attributes.

4 Safety Tactic Catalog

A collection of safety tactics presented by Wu [6] is shown in Figure 2. These
tactics were mined from safety architectures described in literature and address
failure avoidance, failure detection, and failure containment.

Fig. 2. Safety tactics proposed by Wu [6] (arrows show tactic refinements)

We analyzed methods and architectures used in the IEC 61508 standard and
related them to Wu’s safety tactics. Part 7 of the IEC 61508 standard explains
several safety-related methods and architectures and describes their aims. We
linked them to Wu’s safety tactics by manually searching for similarities between
the method or architecture aims and the tactic aims.

For some tactics we could not find any relationship to the standard at all and
some methods and architectures had very similar relationships to the same set of
tactics indicating that these tactics are rather similar. Furthermore, some of the
tactics describe rather specific safety-related solutions (e.g. Timestamp), while
others describe general concepts (e.g. Voting). This motivated us to revisit the
safety tactics, to make the safety tactic catalog more intuitive. We add tactics
we found rather often in the IEC 61508 standard to the catalog and we skip
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Fig. 3. Re-organized safety tactics (arrows show tactic refinements)

tactics which we did not find in the standard or which were very implementation-
specific.

The detailed description of each tactic we use in the following section and
the detailed process how we manually analyzed the IEC 61508 standard will be
given later on in Section 5.

4.1 Re-organized Safety Tactics

Figure 3 shows our re-organized safety tactics catalog. We keep Wu’s general
categorization of safety tactics in failure avoidance, failure detection, and failure
containment tactics. We do not modify the failure avoidance tactics, because
methods regarding failure avoidance in the IEC 61508 standard could perfectly
well be mapped to Wu’s tactics. However, we change parts of the failure detection
and failure containment tactics as explained in the following.

Wu’s safety tactics Sanity Check and Condition Monitoring check a
system state or value against additionally introduced redundant information.
The difference is, that Sanity Check introduces this information in the speci-
fication, while Condition Monitoring introduces the information in the im-
plementation phase. Due to the similarities of the two tactics, we generalize them
in a Checking tactic. A similar tactic was already suggested in [7] where Wu’s
safety tactics were also slightly adapted.

We recognized that just very few IEC 61508 methods used the Timestamp or
Timeout tactic. This lead to the idea that they might be rather specific tactics
and not very general. The Timeout tactic detects excessive time-resource usage.
This is a simple check of the time condition compared to a specified limit and can
be considered as a Sanity Check. The Timestamp tactic checks the validity
of an entity by checking a timestamp attached to it, which also is a Sanity
Check of a beforehand specified time condition. We therefore see the Timeout
and Timestamp tactics as refinements of Sanity Check; however, we do not
include them in our tactic collection because we want to focus on more general
tactics. We are not the first to eliminate Timestamp and Timeout from the
safety tactics collection; also in [7] these tactics are omitted.

Wu distinguishes between three types of redundancy: replication (redundant
identical hardware), functional (redundant implementation), and analytical (re-
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dundant specification). The methods from the safety standard which we linked
to functional and analytical redundancy are very similar. Therefore, we combine
these two types of redundancy and call it Diverse Redundancy.

No methods of the IEC 61508 standard were mapped to Wu’s Rollback
or Reconfiguration tactics, because they rather address availability concerns
which are covered by availability tactics [8]. However, several parts of the stan-
dard suggest recovery from errors by Repair and Degradation which we in-
clude in our tactic catalog.

We added the Override tactic to Masking, because the safety standard
often describes fail-safe mechanisms, which differ from the Voting tactic. These
mechanisms are based on output decisions of redundant channels where a specific
output state (safe state) is preferred to other states.

The Interlock and Firewall tactic are very implementation-specific and
similar mechanisms are described in literature as patterns (Output Interlock
pattern [9], Firewall pattern [10]). Therefore, we omit these tactics.

5 Refined Tactics Catalog

In this section we present the catalog of safety tactics and discuss their con-
sequences on different phases of the safety lifecycle. We structure each tactic
into the sections Aim, Description, Influence on the Safety-Lifecycle, and
Related IEC 61508 Methods. We refine Wu’s safety tactics mostly with in-
formation from the seven parts of the IEC 61508 standard [2]. We studied the
standard to find links between parts of the standard and the safety tactics. We
started with part 7 of the standard which contains a collection of techniques
which are often applied in the safety domain. We mapped these techniques to
the safety tactics by finding similarities between the technique aims and the tac-
tic aims. The techniques serve as the main source for the Related IEC 61508

Methods section of the tactics. We also generalized information about the de-
scription and the aim of the techniques to refine the Description and Aim

sections of Wu’s tactics.
The techniques of part 7 are often referenced in other parts of the standard,

especially often in parts 2 and 3. We analyzed the context of these references
to find out further information about the tactics and their effects on different
parts of the safety lifecycle. From the safety lifecycle described in Section 2, we
just present the phases directly influenced by the safety tactics, which are: Spec-
ification, Design and Development, Integration, Operation and Maintenance,
Modification, Verification, and Safety Validation. The effect of tactics on these
parts of the safety lifecycle is given in the Influence on the Safety-Lifecycle

section of the tactics and is mainly based on the parts 2 and 3 of the safety
standard.

Additionally to the above mentioned approach to mine the IEC 61508 stan-
dard for safety tactics, we also went through the parts 1-6 of the standard again
from the beginning to the end to find any connections to the safety tactics. This
yielded a very similar result to the above mentioned approach. It only differed
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in a few additional connections between the standard and the tactics mostly
coming from part 6.

Now we present the refined safety tactic catalog.

5.1 Failure Avoidance

Simplicity and Substitution are failure avoidance tactics. If applicable, they
are often preferred to failure detection and failure containment tactics [11], be-
cause they are rather independent from other tactics and do not create overhead
for other safety lifecycle phases.

Simplicity

Aim - Avoid failures through keeping the system as simple as possible.
Description - Simplicity reduces the system complexity. It includes struc-

turing methods or cutting unnecessary functionality and organizes system
elements or reduces them to their core safety functionality, thus, eliminat-
ing hazards. An example for the application of the Simplicity tactic is an
emergency stop switch system which is usually kept as simple as possible.

Influence on the Safety-Lifecycle - The tactic reduces effort for every phase
in the safety lifecycle due to reduced system complexity or even reduced sys-
tem functionality. However, most other safety tactics contradict Simplic-
ity, because they require additional system components (e.g. a voter) which
are not absolutely necessary for the core system functionality. In particular
for early phases Simplicity enables significant complexity reduction. When
applied during the specification phase, it increases understandability and
predictability of the system behavior (IEC 61508-3 Annex F). For the De-
sign&Development phase, it enables easier system development which is re-
quired in IEC 61508-3 7.4.2.2, 7.4.3.6, 7.4.2.6 and 7.6.2.2. However, the tactic
might also put constraints on system development. For example, IEC 61508-
3 7.4.4.13 requires to limit the programming language command set to the
usage of safe, well-proven commands.

Related IEC 61508 Methods - IEC 61508-7: B.2.1 structured specification,
B.3.2 structured design, C.2.7 structured programming, E.3 structured de-
scription method, C.4.2 programming language subset, C.4.2 limit asyn-
chronous constructs, E.5.13 software complexity controller

Substitution

Aim - Avoid failures though usage of more reliable components.
Description - Components or methods are replaced by other components or

methods one has higher confidence in. For hardware and software this can
mean usage of existing components which are well-proven in the safety do-
main.

Influence on the Safety-Lifecycle - Changing software or hardware compo-
nents can require re-doing the safety hazard analysis [6]. However, software
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components can also be exchanged with previously developed components
or third-party components to reduce the certification effort by re-using certi-
fication knowledge or documents for these components. Substitution can
increase hardware or third-party component costs if safer components are
used. For example, buying a SIL3 component usually is more expensive than
buying a SIL2 component.

Related IEC 61508 Methods - IEC 61508-7: B.3.3 usage of well-proven com-
ponents, B.5.4 field experience, C.2.10 usage of well-proven/verified software
elements, E.20 application of validated soft-cores, E.35 application of vali-
dated hard-cores, E.41 usage of well-tried circuits, C.4.3 certified tools and
compilers, C.4.4 well-proven tools and compilers, E.4 well-proven tools, E.42
well-proven production process, E.28 application of well-proven synthesis
tools, E.29 application of well-proven libraries

5.2 Failure Detection

Every failure detection method requires some kind of redundancy and testing
of the redundant information. The Checking tactics introduce diverse infor-
mation to check a system and the Comparing tactic compares fully redundant
information or systems.

Checking - Sanity Check

Aim - Detection of implausible system outputs or states.
Description - The Sanity Check tactic checks whether a system state or

value remains within a valid range which can be defined in the system specifi-
cation or which is based on knowledge about the internal structure or nature
of the system. An example for a Sanity Check is a stuck-at fault RAM-test
which checks the proper functionality of the memory during system runtime.
The test is based on the understanding of the memory behavior (if we write
data to the memory, we should later on be able to read the same data).
Faults are detected if the memory behaves differently.

Influence on the Safety-Lifecycle - Plausible system outputs and states
have to be specified (e.g. IEC 61508-3 C.2 3a where preconditions limit
the system input range). This value range limitation can help during the
system verification, because just the defined value range has to be tested
(IEC 61508-3 C.2). For safety validation it can be argued that the Sanity
Check introduces a diverse implementation for checking the safety func-
tionality and therefore detects random as well as systematic implementation
or design faults to some extent (IEC 61508-6 D.1.4).

Related IEC 61508 Methods - IEC 61508-7: A.1.2 monitoring relay con-
tacts, A.2.7 analog signal monitoring, A.3.1-A.3.3 self-tests, A.4.1-A.4.4 check-
sums, A.5.1-A.5.5 RAM-Tests, A.6.1 test pattern, A.7.1 one-bit hardware
redundancy, A.7.2 multi-bit hardware redundancy, A.7.4 inspection using
test patterns, A.9 temporal and logical program monitoring, C.3.3 assertion
programming, C.5.3 interface checking, C.4.1 strong typed programming lan-
guage
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Checking - Condition Monitoring

Aim - Detect deviations from the intended system outputs or states.
Description - Condition Monitoring checks whether a system value re-

mains within a reasonable range compared to a more reliable, but usually
less accurate, reference value. The reference value is computed at runtime
by a redundant part in the implementation which can be based on system
input values and is not pre-known from the specification (like it would be
the case for Sanity Check). An example for Condition Monitoring is a
system which has to be time-synchronized via the Internet and which checks
if the synchronized time is feasible by comparing it to an internal clock.

Influence on the Safety-Lifecycle - An additional element providing the
reference value has to be implemented. In general, the Condition Mon-
itoring tactic implies more development overhead than Sanity Check.
Condition Monitoring primarily protects from random faults. However,
if it uses a diverse implementation for monitoring the safety functionality,
also systematic implementation or design faults can be detected (IEC 61508-
6 D.1.4).

Related IEC 61508 Methods - IEC 61508-7: A.1.1 failure detection by on-
line monitoring, A.6.4 monitored outputs, A.8.2 voltage control, A.9 tempo-
ral and logical program monitoring, A.12.1 reference sensor, A.13.1 monitor

Comparison

Aim - Detection of discrepancies of redundant system outputs.
Description - Comparison tests if the outputs of fully redundant subsystems

are equal in order to detect failures. The Comparison tactic usually implies
the usage of a redundancy tactic. An example for the application of the
Comparison tactic is a dual-core processor running in lock-step mode. The
processor runs the same software on both cores and compares their outputs
after each cycle.

Influence on the Safety-Lifecycle - An additional element which requires
resources at runtime to compare the subsystems has to be implemented.

Related IEC 61508 Methods - IEC 61508-7: A.1.3 comparator, A.6.5 input
comparison/voting

5.3 Failure Containment

Failure containment describes ways how to handle failures which are recognized
by failure detection. The Masking and Barrier tactics prevent failures from
affecting other parts of the system and the Recovery tactics deals with cor-
recting failures. The Redundancy tactics provide multiple systems which are
necessary for some other tactics.

Redundancy - Diverse Redundancy

Aim - Introduction of a redundant system which allows detection or masking
of failures in the specification or implementation as well as random hardware
failures.
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Description -Diverse Redundancy can be applied to the specification or to
the implementation level. In a system using Diverse Redundancy on the
implementation level, redundant components use different implementations
which were developed independently from the same specification. Diverse
Redundancy on a specification level goes one step further and additionally
requires that even the requirement specifications for the redundant compo-
nents have to be set up by individual teams.

Influence on the Safety-Lifecycle - Diverse Redundancy highly contra-
dicts the Simplicity tactic, because the additionally introduced redundant
systems require a lot of effort (multiple effort for specification, implementa-
tion, verification, modification, ...) which does not add to the system func-
tionality. If redundant systems are used, then it has to be shown for safety
validation that the systems are independent from each other which can be
achieved by application of the Barrier tactic (IEC 61508-1 7.6.2.7). Redun-
dant hardware systems can more easily be validated for safety, because for
a system with no hardware fault tolerance, diagnostic tests have to be run
each time before computing a safety-critical function. This requirement is not
so strict for hardware redundant systems (IEC 61508-2 7.4.4.1.4, 7.4.4.1.5,
7.4.4.2.1, 7.4.5.3).

Related IEC 61508 Methods - IEC 61508-7: A.7.6 information redundancy,
A.13.2 cross-monitoring of multiple actuators, B.1.4 diverse hardware, C.4.4
diverse programming

Redundancy - Replication Redundancy

Aim - Introduction of a redundant systems which allows detection or masking
of random hardware failures (not systematic failures).

Description - Replication Redundancy means introduction of a redun-
dant system of the same implementation. The redundant systems maintain
the same functionality, use identical hardware, and run the same software
implementation. An example for Replication Redundancy is the RAID1
data storage technology.

Influence on the Safety-Lifecycle - Replication Redundancy requires
multiple effort for hardware installation and modification. If redundant sys-
tems are used, then it has to be shown for safety validation that the systems
are independent from each other which can be achieved by application of
the Barrier tactic (IEC 61508-1 7.6.2.7). Redundant hardware systems can
more easily be validated for safety, because for a system with no hardware
fault tolerance, diagnostic tests have to be run each time before comput-
ing a safety-critical function. This requirement is not so strict for hardware
redundant systems (IEC 61508-2 7.4.4.1.4, 7.4.4.1.5, 7.4.4.2.1, 7.4.5.3).

Related IEC 61508 Methods - IEC 61508-7: A.2.1 tests by redundant hard-
ware, A.2.5 monitored redundancy, A.3.5 reciprocal comparison by software,
A.4.5 block replication, A.6.3 multi-channel output, A.7.3 complete hard-
ware redundancy, A.7.5 transmission redundancy
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Recovery - Repair

Aim - Bring a failed system back to a state of full functionality.
Description - The full system functionality is manually or automatically re-

stored if a system failure occurs.
Influence on the Safety-Lifecycle - A Repair or Degradation tactic is

necessary for all non-redundant hardware elements which maintain a safety
functionality (IEC 61508-2 7.4.8.2). However, complex recovering systems
like self-reconfiguring systems are not recommended by the standard (IEC 61508-
3 A.2) and make validation more complicated.

Related IEC 61508 Methods - IEC 61508-7: C.3.9 error correction, C.3.10
dynamic reconfiguration

Recovery - Degradation

Aim - Degradation brings a system with an error into a state with reduced
functionality in which the system still maintains the core safety functions.

Description - Degradation systems define a core safety functionality. The
systems maintain this safety functionality and additional non-critical func-
tions. In case of an error, the system falls back into a degraded mode in
which it just maintains the core safety functionality. An example where the
Degradation tactic is often applied are automation systems. These sys-
tems control safety-critical processes and often visualize these processes in a
GUI. If the system has too few resources (e.g. processing time), the system
stops the GUI service and just focuses on its core functionality to control
the safety-critical processes.

Influence on the Safety-Lifecycle - Degradation mechanisms for the sys-
tem have to be specified (IEC 61508-2 7.2.3.2) and a Repair or Degra-
dation tactic is necessary for all non-redundant hardware elements which
maintain a safety functionality (IEC 61508-2 7.4.8.2). Degradation can
decrease the safety validation effort, because just the degradation mecha-
nism and the core safety functionality have to be validated. Additionally,
the tactic fulfills the requirement of the standard to describe a well defined
behavior in case of errors (IEC 61508-2 7.2.3.2, IEC 61508-3 7.2.3.2).

Related IEC 61508 Methods - IEC 61508-7: A.8 voltage supply error han-
dling, C.3.8 degraded functions

Masking - Voting

Aim - Mask the failure of a subsystem so that the failure does not propagate
to other systems.

Description - Voting makes a failure transparent. The tactic does not try to
repair the failure, but it hides the failure through choosing a correct result
from redundant subsystems. It decides for the majority of the output values.

Influence on the Safety-Lifecycle - In order to apply Voting, a redun-
dancy tactic has to be used and a voter element has to be implemented.
Subsystems of a voting system can be repaired while in operation, because
the overall system can still operate if a subsystem is under repair (IEC 61508-
6 B.3.1). However, voting systems are not as safe as systems which just
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compare their results and ensure a safe state if any of the results differs
(IEC 61508-6 B.3).

Related IEC 61508 Methods - IEC 61508-7: A.1.4 voter, A.6.5 input com-
parison/voting

Masking - Override
Aim - Mask the failure of a subsystem so that the failure does not propagate

to other systems.
Description - The Override tactic forces the system output to a safe state.

For example, if we have a system which is in a safe state when shut off,
we can apply the Override tactic to shut off the system if we have doubt
about the system output (e.g. if an output validity check fails). In this sce-
nario overriding the system output with a safe output value decreases the
availability of the system. Another form of the Override tactic, which does
not decrease the availability and is closely related to the Voting tactic,
chooses the output of redundant subsystems by preferring one subsystem or
one output state over another.

Influence on the Safety-Lifecycle - A preferred system output state has to
be defined and an override mechanism has to be implemented. Override
systems are easier to validate, because they follow the fail-safe principle (IEC
61508-1 7.10.2.6).

Related IEC 61508 Methods - IEC 61508-7: A.1.3 comparator, A.1.5 idle
current principle, A.6.5 input comparison/voting, A.8.1 overvoltage protec-
tion with safety shut-off, A.8.3 power-down with safety shut-off

Barrier
Aim - Protect a subsystem from influences or influencing other subsystems.
Description - The Barrier tactic provides a mechanism to protect from un-

intentional influences between subsystems. To apply Barrier, the interfaces
between subsystems have to be analyzed and specified. These interfaces are
controlled at runtime by a trustworthy component (the Barrier) which of-
ten is an already existing reliable mechanism. An example for a Barrier is
a memory protection unit which controls and restricts the communication
between different tasks.

Influence on the Safety-Lifecycle - The interfaces between subsystems
have to be specified. According to IEC 61508-3 8.3.1, non-safety related
functions should be separated from safety-related functions, which can be
achieved by the Barrier tactic. It can also aid the Simplicity tactic by
structuring the system (IEC 61508-2 7.2.2.1). Barrier enables modular
safety certification and modification and can reduce the validation effort if
it is proven that the subsystems cannot unintentionally influence each other
which has to be shown by an effect analysis (IEC 61508-3 C.8, Annex F).

Related IEC 61508 Methods - IEC 61508-7: A.11 separation of energy lines
from information lines, B.1.3 separation of safety functions from non-safety
functions, B.3.4 modularization, C.2.8 information hiding/ encapsulation,
C.2.9 modular approach, E.12 modularization, C.3.11 time-triggered archi-
tecture
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Fig. 4. Safety tactics and their effect on different phases of the safety lifecycle

5.4 Overview and Discussion of the Safety Tactics

Figure 4 gives an overview of our re-organized safety tactics and their influence
on the safety lifecycle and presents relationships between the tactics. The in-
formation is mostly based on the Influence on the Safety-Lifecycle parts of the
tactics described in the previous section.

The revised version of the safety tactics provides more consistency compared
to Wu’s tactics. The problem with Wu’s Timestamp and Timeout tactic as
special case of Sanity Check is resolved.

Just few methods and architectures from the IEC 61508 standard address
failure containment tactics. We think that the reason why just few failure con-
tainment tactics were found in the safety standard is that some of the tactics,
such as Masking for example, are more concerned with availability than with
safety. Therefore the standard does not focus on these tactics.

6 Refining the TMR Pattern by Reasoning with Tactics

In this section we use our refined safety tactics to discuss the safety-related
effects of applying the TMR architectural pattern.
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The TMR architecture shown in Figure 5 uses three channels and compares
the outputs of the channels. A voter decides for the output value which is given
by at least two of the channels. The architecture therefore allows one channel
to be erroneous while still maintaining full system functionality. In our example
we assume simple hardware replication with identical software running on the
channels.

Fig. 5. Homogeneous TMR architecture

The TMR architecture described above uses two general safety tactics: Re-
dundancy and Masking. More specific, Replication Redundancy is used,
because there are identical redundant channels and Voting is used to mask
errors of a single channel. If we have a look at Figure 4, we can see that the
Replication Redundancy tactic requires the Barrier tactic during the Ver-
ification&Validation phase of the safety lifecycle. This means that to design a
TMR system in the safety domain, also the Barrier tactic has to be consid-
ered right at the beginning of the architecture design in order to assure that
the three subsystems do not influence each other in terms of common cause fail-
ures. This information might be obvious to a safety domain expert, however, for
unexperienced system architects such information can be crucial.

Table I: Safety tactics for the homogeneous TMR architecture

We end up with three tactics which are used by the TMR system: Replica-
tion Redundancy, Voting, and Barrier. Table I shows the TMR relevant
tactics taken from Figure 4. We can see that our TMR architecture influences the
Operation&Maintenance phase in a way that multiple hardware is required and

1492



15

has to be installed. This implies multiple hardware maintenance effort. However,
the three hardware channels can be maintained independently and they can even
be maintained during operation due to the Barrier and Voting tactics. For
safety validation, random hardware channel failures are independent and sys-
tematic failures are not detected. The Voting tactic requires validation of the
correct functionality in case of an error and is therefore more difficult to validate
than simple systems which shut down or go to a safe state in case of errors.
Just like with maintenance, hardware modifications for single channels can be
done during operation. Multiple effort is required if the modification affects the
redundant channels. The effort for system specification and development is not
increased due to the simple usage of replication.

If we look at the detailed tactic descriptions from Section 5, we can get
further information for the TMR pattern in terms of a quick reference to the
IEC 61508 standard. As one example, the Replication Redundancy tactic is
connected to IEC 61508-2 7.4.4.1.4 which says that self-tests for a single channel
do not have to be executed each time before the execution of a safety function
if redundant channels are present. It is sufficient to execute the self-tests once
a day. Such quick references provide us with very detailed IEC 61508 related
information.

The evaluation of the TMR pattern through the usage of our refined set
of safety tactics leads to much more detailed information regarding safety, in
particular safety certification, than existing safety pattern catalogs such as [12]
offer.

7 Related Work on Safety Tactics

In this section we present related work on architectural tactics with focus on
safety tactics. We also present patterns which are related to the IEC 61508
standard.

Bachmann et al. introduce the idea of architectural tactics and describe their
relation to system quality attributes [3]. They present a collection of tactics for
availability, security, testability, usability, modifiability, and performance. Wu
and Kelly extended this collection by adding a set of tactics for the safety quality
attribute [6] [13]. They further develop an approach how to apply safety tactics
by stating anti-requirements which can be handled by the application of safety
tactics [14]. This approach is explained in more detail in [15], where a whole
architectural safety-reasoning framework is presented.

Another approach of how to reason about the usage of safety tactics is pre-
sented in [16] and [11], where safety attributes of a system are evaluated by
risk-based qualitative reasoning. This reasoning is done before and after the ap-
plication of a safety tactic in order to evaluate the applicability of the tactic. The
application of safety tactics in order to build a safe architecture is also described
in [17] and [7] with focus on the integration of the tactics into the V-model which
is commonly used for IEC 61508 system development.
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To the best of our knowledge there is no work directly relating safety tactics to
a safety standard so far, however, Armoush [12] constructs an extensive catalog
of safety patterns and evaluates them regarding IEC 61508 safety certification
by presenting the applicability of a pattern according to recommendations in
the safety standard. Compared to our work he does not discuss the influence on
the safety system over the whole safety lifecycle and does not give much detail
regarding the influence on safety certification. [18] covers organizational pat-
terns for IEC 61508 software development. They focus on patterns for software
development and not on the relation of IEC 61508 to architectural patterns.

8 Conclusion

In this paper we provide a revised catalog of safety tactics and relate these tactics
to the IEC 61508 safety standard. This allows us to evaluate generic architectures
like safety patterns regarding their effect on safety certification during different
phases of the safety lifecycle. With the connection between safety tactics and
the IEC 61508 standard it is now easier to provide a system architect with
information about the safety related consequences of choosing a specific tactic
or pattern. Here, an advantage of the safety tactics is that compared to the safety
standard, they provide system architects with a view of the safety domain, which
is more familiar to them. The tactic catalog therefore provides a good source of
information for early architectural decisions for systems which have to be safety
certified.

The re-organized set of safety tactics can serve as a basis for future work on
refining patterns in the safety domain. Future work could also include refining
our tactics or evaluating them with respect to a different safety standard. We
believe that our re-organized version of safety tactics builds a mature set of
safety tactics and that system developers can use them to argue for the safety
of their system during safety certification.
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1 Introduction 

In this paper three  patterns for safety and control system cooperation are presented. 

Here a safety system refers to a functional safety system. Functional safety systems 

are systems dedicated to retain the safety of humans, environment and property, e.g. 

the machine itself. Such a system may, for instance, implement a stopping of a work 

robot when human enters the working area of the robot. Safety system implements 

safety functions that lower risk related to a certain event to a tolerable level. Usually, 

safety systems coexist with control systems which implement the main control func-

tionality of the system under control. Both safety and control systems control the 

same system/process. Thus the control system needs to be taken into account when a 

safety system is developed. 

Development of functional safety systems is heavily regulated by legislations, such 

as the European Machinery Direct ive [2]. The leg islation refers to standards in which 

requirements for the development process, techniques , and methods to be used in 

functional safety system development are documented. However, standards and legis-

lation provide few practical solutions to the development o f safety systems especially 

in context of safety and control system cooperation. The purpose of the patterns illus-

trated in this paper is to provide solution models for this problem area. 

The patterns presented here are part of a larger collection of patterns. Six of the 

patterns of the collection have been published in VikingPLoP 2012 [5]. The patterns 

of this article partly relate to the formerly published patterns. We provide short de-

scriptions (patlets) of the referred patterns in this article. 

We began the pattern work in autumn 2011 as a result of a software safety related 

research project. The patterns are not directly discovered from real sys tems or appli-

cations. Instead, our approach is constructive: the patterns are sketched and docu-

mented based on our vision of a potential pattern and information gathered from 

standards related to safety system development, literature, and discussions. Finally, 

the patterns are (if possible) discussed with industry professionals to gain confidence 

on the solutions and approaches used in the patterns. Our intention is, however, to 

identify real world applications  and sources for all the patterns. We have discussed 

the patterns of this paper with industry members from three different companies. The 

discussion provided support especially for the first two patterns of this paper. 
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1.1 Pattern overview 

The patterns belong to a larger pattern collection, which consists currently of some 

forty patterns or early pattern drafts  and ideas. The patterns are related to each other 

to some extent but cannot yet be considered as a pattern language. To produce a pat-

tern language out of the collection focusing on the patterns and research for missing 

links would  be required. A  pattern language is our goal, but to achieve that large 

amount of work is required. 

The current root pattern of the collect ion is the SEPARATED SAFETY pattern [5], 

which justifies separation between safety and control systems. The relat ions of the 

patterns are depicted in  Fig. 1. The semantics of relations is as fo llows. A one way 

solid arrow from X to Z is: the pattern Z can be applied or considered after applica-

tion of pattern X. The override patterns box illustrates three alternative solutions for 

control system override. The patterns presented in this article are highlighted. 

Notify basic 

control system

Co-operative 

safety actuation

Shared safety 

actuator
Separated safety

De-energized 

override

Separated 

override
Safety limiter

Override patterns

Output 

interlocking

Don’t wait for 

non-critical
 

Fig. 1. Relations of the patterns 

The short descriptions of the patterns  referred to but not discussed in this article, 

are given in Table 1. 

Table 1. Pattern descriptions 

Pattern Description 

Separated 

safety [5] 

Development of a complete system according to safety regulations is a 

bureaucratic and slow process. Therefore, divide the system into con-

trol and safety systems and develop only the safety system according 

to safety regulations. 

De-

energized 

override [5] 

A safety system must be able to override a control system whenever 

the systems control same process quantities. Therefore, let the safety 

system use de-energization of the control system’s actuator(s) to ob-

tain a safe state. 

Safety lim-

iter [5] 

A safety system must be able to override a control system whenever 

the systems control same process quantities. Therefore, disengage the 

control system completely from the actuator and let the safety system 
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2 Patterns 

In this section three patterns for functional safety system develop ment and structure is 

presented. The patterns are presented in the canonical form. 

2.1 Control system notification 

Context 

The SEPARATED SAFETY pattern has been applied, so safety and control systems are 

separated. The safety system is capable to control/affect one o r more process varia-

bles
1
 that are also controlled or used by the control system. For instance, safety sys-

tem can affect to the state of steam flow in p ipeline that is used by a control system to 

regulate temperature of container. To ensure safety, the safety system is able to over-

ride the control system regardless of the state of it (e.g. SEPARATED OVERRIDE, DE-

ENERGIZED OVERRIDE, or SAFETY LIMITER pattern have been applied). The context is 

illustrated in Fig. 2. 

                                                                 
1  Process variable illustrates current state of (a part of) a process/system typically variable 

over time. For example, a process variable can illustrate pressure of fluid in pipeline (e.g. 

the pipeline after hydraulic pump and before the decompression valve). In electric circuits a 

process variable could illustrate the potential, i.e. the voltage, of certain circuit node or cur-

rent through a branch. 

control the actuator. Route the output of the control system to the 

safety system and let the safety system treat the control value so that 

safe operation is ensured. 

Separated 

override [5] 

A safety system must be able to override a control system whenever 

the systems control same process quantities. Therefore, p rovide the 

safety system with separate actuator to obtain safe state. 

Output 

interlocking 

A control system must protect machinery, environment and humans 

from being damaged. Implementing protective interlocking functions 

in control algorithms makes the algorithms complex and hinders  the 

reusability of the algorithms. Therefore, use an interlock element 

alongside each control actuator output in the control system and im-

plement the interlock algorithm in these elements . 

Don’t wait 

for non-

critical 

A failure of a control system may cause a blocking of the safety sys-

tem when data is communicated between the systems. Therefore, use 

asynchronous messaging to arrange communicat ion from the safety 

system to the control system and do not let  safety system wait  for a  

response from the control system (eternally). 
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Process variable (e.g. voltage on a circuit 
node)

Safety system Control system

affects uses or relies on

 

Fig. 2. Context of the Control system notification 

Problem 

The operation of the control system is disturbed when the safety system overrides or 

restricts the operation of the control system, which may cause unexpected behavior of 

the control system. 

Forces 

 A safety system needs full control over the process variable regard less possible 

side effects on the control system 

 A control system cannot operate normally  if safety system has restricted its envi-

ronment. For example, control system that uses electric current to regulate an elec-

tric motor speed cannot operate correctly when a safety system has cut off the cu r-

rent. 

 Providing the control system with required hardware to sense the state of the safety 

system increases the cost and complexity of the control system 

Solution 

Make the control system aware of the state changes of the safety system so that the 

control system can react accordingly. Notify the control system about any operation 

or event that affects  the operation of the control system. Such events are for instance:  

 a restriction of a variable, such as limited speed or load 

 force control of variable to fully enabled or disabled, such as fully closed steam 

supply 

 return from safe (or restricted) state after a hazardous situation 

Implement the notification system so that the safety system is kept as independent 

of the control system as possible to prevent a blocking of the safety system due to the 

failures of the control system. Three approaches to achieve such information transfer 

mechanism can be identified: 

 Analogue signaling: The safety system provides an analogue signal for the control 

system. This approach is simple and releases developers from considerations of 

additional requirements  of the IEC 61508-3 [4] for d igital message busses. Howev-
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er, analogue signaling requires a dedicated cable between the systems and is  more 

prone to interference from the environment. 

 Message bus: The safety system and the control system communicate through a 

message bus. Safe communication is established through the bus. Additional re-

quirements as given in IEC 61508-3 [4] need to be considered. 

 Integrated control and safety system: The safety and the control system are execut-

ed in  the same integrated device. The device and underly ing operating system pro-

vides communication scheme between the entit ies. However, in  such a mixed crit i-

cality system there has to be separation between the systems  in spatial and tem-

poral domains [4]. 

Regardless the method to pass safety system state and event information to control 

system, both systems are added with complexity. A communication method between 

the systems needs to be established, which may increase hardware requirements, u n-

less the communication method already exists. In any way the amount of logic in 

safety and control system side increases. To enable communication and successful 

reaction the safety system has to produce the state and event informat ion for the con-

trol system and the control system has to receive and use the information in meanin g-

ful way. This adds requirements of both system and increases complexity. 

Consequences 

 The control system can react and adapt to state changes and actions of the safety 

system 

 Increased overall system safety by decreasing the likelihood of unexpected behav-

iour related to inconsistencies  between safety and control systems  

− Full separation between the safety system and control systems is lost 

− Increases complexity of both safety and control systems, a notification must be 

produced and transferred by the safety system and received, interpreted and reacted 

on by the control system. 

− Increased complexity may introduce new programming errors and add latency 

Example 

Consider a simplified heating system illustrated in Fig. 3. Steam supply in a heat ex-

changer is controlled with a proportional valve for temperature control purposes. 

Steam supply is limited (on-off) by a safety system. When the safety valve is open, 

the control system controls  the steam flow. When the safety system detects  a hazard-

ous situation (e.g. h igh temperature in temperature controlled  tank), it closes the safe-

ty valve thus blocking the steam flow. If the control system is not notified about the 

supply cut-off, it  keeps trying to control the temperature. Because there is no steam 

supply, temperature decreases and controller opens the control valve completely  and 

keeps it open trying to increase the steam flow which is not available. This is typically 

undesired behavior especially when steam supply is allowed again. 
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If the control system is notified, when the steam supply is cut off, it can react ac-

cordingly and, for instance, close the control actuator (see the CO-OPERATIVE SAFETY 

ACTUATION) and halt (and reset) the control algorithm to prevent the saturation of an 

integrator. 

Related patterns 

The CO-OPERATIVE SAFETY ACTUATION pattern describes an application for the notifi-

cations from the safety system to the control system. Consistency between the safety 

and control system can be increased by forcing the control systems actuators to actu-

ate the safe state [1]. 

The DON’T WAIT FOR NON-CRITICAL pattern suggests the usage of asynchronous 

communicat ion scheme between safety and control systems to increase isolation be-

tween the systems and prevent a blocking of the safety system due to a failu re in the 

control system. 

2.2 Co-operative safety actuation 

Context 

An actuator of a control system affects a process variable related to a safety function 

operation. The CONTROL SYSTEM NOTIFICATION pattern has been applied to enable 

safety system notifications from the safety to the control system. 

Problem 

How to increase consistency between operation of safety and control system during 

situations in which the safety system overrides partly or completely  the control sys-

tem? 

Forces 

 Conflicting state between safety and control system may cause undesired operation 

of the control system and increase risk of malfunctioning safety function  

 Consistent state of safety and control systems regarding the process variable af-

fected by both systems increases the reliab ility of successful actuation of the safety 

function because in case of either actuator fails the other may still be able to actu-

ate the correct safety function result 

Safety valve

Safety system

controller

Safety limited

steam supply

Control system

controller

Control actuatorSteam source

Steam supply

Heat exhanger

Controlled

steam flow

State change

notification

 

Fig. 3. Safety system notification in heating process. 
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Solution 

Let the safety system drive the control system into a safe state whenever safe state 

needs to be obtained (according to the safety system). That is, the state information of 

the safety system is actively used as an input in  the control system.  As the safety sys-

tem can already notify the control system about the state of the safety system, it is 

relatively simple to go further and use this asset to increase consistency between the 

functionality of the systems. Consistency between the states of the control and safety 

systems decreases the state space in which the system can be when a safety function is 

active (after transitions). 

When the actuators of the safety and control systems are in  a consistent state, the 

reliability of successful outcome of a  safety function is increased. The actuators of the 

control system are p rimarily used to control the process/system to produce a desired 

output, but they affect the state of the system similarly to the actuators of the safety 

system, i.e., change the state of the process variables (e.g. flu id flow or electric cur-

rent). Thus, the actuators of the control system can be used to actuate similar opera-

tions as safety functions. However, they can only support the safety system, not take 

its responsibilities (in which case the control system turns into a safety system). 

A possible way to implement the pattern is to command the control system into a 

safe state by a notification. That is, the safety system sends a message/notification to 

the control system that processes the message and reacts  accordingly by driving the 

actuators (under its control) to safe states. In the simplest case safety system only 

commands the control system into the predefined  safe state. The approach is illustrat-

ed in Fig. 4 in which  the Safety System first closes the Safety Actuator and then noti-

fies the Control System to take the safe state (which is assumed to be predefined). The 

control system receives the notification and drives  the Control Actuator into the safe 

state. In more advanced cases , the safety system communicates the desired state (e.g. 

valve_1 = closed, valve_3 = open) and the control system drives the actuators into 

these states. 

 

Fig. 4. Co-operative safety actuation through control system notification 
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Consequences 

 Increased consistency between the states of the safety and control systems  which 

decreases possibility of malfunctions due to state inconsistencies  (when giving 

control back to the control system) 

 Increased reliability of the desired outcome of safety function actuation due to 

redundancy in actuators , but… 

− …the control system side provides only additional “peace of mind” reliability 

which cannot be counted into safety system attribute as such  

− Increased complexity o f control system algorithm as it  needs to take the safety 

system input into account 

− May mask safety system actuator faults  (unless diagnosed otherwise) 

Example 

Consider the simplified heating system illustrated in Fig. 5 The safety system can 

notify the control system. Now, when the safety system triggers the safety function 

the safety valve is closed. To improve consistency between the systems and reliab ility 

of steam cut-off the safety system informs the control system about the safety func-

tion and requests it to  close the control actuator as well.  The control system is in  a 

consistent state with the safety system and does not even try to continue normal co n-

trol operations as it would be impossible to operate successful control under safe state 

circumstances. 

The control actuator is  of a proportional type, which is  not typically used in safety 

systems. The proportional valve may e.g. leak more than a simple b inary valve. How-

ever, it is better to have a marginally leaking proportional valve closed than a faulty 

safety valve fully open. 

Related patterns 

The OUTPUT INTERLOCKING pattern suggests the usage of interlocking elements 

alongside each control output used to control a physical device. These interlocking 

elements provide a way to implement the driving  of the control system into a suitable 

state. That is, when an interlock of control system receives request to obtain safe state, 

it forces the control output predefined safe state. 

Safety valve

Safety system

controller

Safety limited

steam supply

Control system

controller

Control actuatorSteam source

Steam supply

Heat exhanger

Controlled

steam flow

State change

notification

 

Fig. 5. Safety system notification in heating process. 
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The DE-ENERGIZED OVERRIDE pattern describes a potential way to implement the 

cooperative actuation. In this approach, the safety system has full and direct control to 

drive the actuator of the control system into a safe state by de-energizing the control 

actuator(s). 

2.3 Shared safety actuator 

Context 

A system under control consists of subsystems that use an input produced by a single 

source as illustrated in Fig. 6 (typically the source is an energy source). A similar 

safety function is related to all the subsystems (e.g., an emergency stop). The safety 

function operates in the same direction and has the same safe state in terms of the 

shared input between the subsystems. That is, each subsystem takes safe state, e.g., 

when the input is disconnected from the subsystem. The SEPARATED OVERRIDE pat-

tern has been applied, i.e., the safety system has a dedicated actuator to control opera-

tion of the system.

Input source 

(e.g. power 

source)

Subsystem using 

input

Subsystem using 

input

Subsystem using 

input

 

Fig. 6. The context of the shared safety actuator 

Problem 

Providing each subsystem with dedicated safety actuator when same input variable is 

used by mult iple subsystems increases the amount of needed safety actuators in the 

system. 

Forces 

 Dedicated safety actuators for each subsystem does not decrease productivity, flex-

ibility  and availab ility of the system by letting each independent subsystem contin-

ue operation in case one of the subsystems needs to obtain safe state 

 Dedicated safety actuators  for each subsystem increase hardware cost, weight, 

space requirements and complexity of the safety system 

 Suitable safety actuators are considerably expensive or there are space and/or 

weight requirements considering the actuator and thus the number of the actuators 

is wanted to be kept low 

 All the subsystems share common safe state in terms of the considered input 

 Independent operability of the subsystems, in terms of the shared input, can be 

sacrificed for other attributes (e.g., cost and weight) 
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Solution 

Use a shared safety actuator for all the subsystems. The safety actuator is positioned 

so that it can control the safety function considering all the subsystems (in context of 

the shared input). The principle of the solution is depicted in Fig. 7. In the figure, a 

safety actuator is added between the input source and the subsystems which use the 

input and which are safety-critical. The safety actuator controls the input. Whenever 

the safety function (related to the input) is trigged in  any of the subsystems, the safety 

actuator is used to obtain a safe state. The safe state propagates to all subsystems re-

gardless of their state. 

Input source 

(e.g. power 

source)

Subsystem using 

input

Subsystem using 

input

Subsystem using 

input

Safety 

actuator

 

Fig. 7. Shared safety actuator principle 

Ensure the decoupling of the subsystem in terms of the shared input. That is, sub-

stance that has once entered in a subsystem cannot move to another subsystem with-

out first circulating through the input source. The decoupling should especially be 

considered when the shared input is an energy source of some kind and the subsys-

tems store energy (see example).  If the decoupling devices are critical part of the safe-

ty function, they should also be considered as part of the safety system.  

The solution requires thorough consideration before application. There are many 

aspects that might result in problems. Subsystem decoupling is one, but also the to-

pology, structure and functions for exceptional operation may cause undesired side -

effects when the approach is used. In this solution only the main approach is present-

ed. Actual application of the solution depends on the details of the target system. For 

instance, in a hydraulic  lifting system one should consider potential energy stored in a 

lifted object and prevent object movement and drifting. 

The input source is typically a power/energy source of some kind such as hydraulic 

(hydraulic motor), electric (power source) or pneumatic (air compressor) energy 

source. However, the input source can be any controlled variab le of the system. The 

input source itself can also act as a “safety actuator”. That is, the whole source of the 

considered variable can be turned on or off controlled by the safety system. This, as 

well, requires a thorough analysis of the effects to prevent undesired functionality. 

Consequences 

 Decreased amount of safety actuation hardware 

 Decreased space, weight, and (potentially power consumption) requirements for a  

safety system due to lower amount of safety actuation hardware 
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 Potentially decreased overall cost of the safety actuator hardware 

− Potentially decreased productivity, flexib ility and availability of the system be-

cause the subsystems (sharing the input) lose independency considering safety 

function(s) related to the shared input 

− The potential safety functions are (practically ) restricted to on-off type, because it 

is hard arrange distribution of the shared input between the subsystems. In practice 

this would need additional hardware which  hinders the original object ive of the ap-

proach. 

− The subsystem design may see new requirement to meet the requirement for co r-

rect operation of the safety system 

− Shared actuator requires dedicated control element (e.g., a software component that 

is responsible for the actuator control) 

− The approach is prone to unpredictable side-effects, due to, for example, insuffi-

cient decoupling between subsystem in terms of the shared input 

− Requires detailed and throughout analysis to ensure correct operation in various 

operational cases 

− Safety system has to be developed for the highest criticality level of the subsystems 

Example 

Let us consider a harvester machine that has a hydraulic boom. To  reduce the harvest-

er’s weight and power consumption all the boom cylinders share a safety actuator that 

is able to halt the boom movement. A b lock d iagram of the system is provided in  Fig. 

8. On the left hand side there is a hydraulic pump that represents the input source, i.e., 

hydraulic power in this case. After the pump there is a safety valve that controls the 

flow to the boom cylinders. On  the right there are the actual boom cylinder control 

valves that are controlled by the control system. 

An important detail in the presented schematic is the check valves that decouple 

the cylinders (i.e., subsystems using the shared input) from each other. The check 

valves ensure the hydraulic fluid  and pressure cannot transfer directly from cylinder 

to another, but rather has to circumvent through the tank. 
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Basic 

controller

Boom cylinder 1

Boom cylinder N

Safety 

controller

Safety related equipment

  

Fig. 8. Shared safety actuator for harvester boom cylinders 

Known use 

The BGIA Report 2/2008 (section 8.2.27) [3] illustrates similar solution approach. 

However, the approach given in  the report focuses on redundancy and employs safety 

related actuators also in the subsystems  to avoid single point of failure problem. The 

decoupling aspect is not considered. Nevertheless, it is mentioned that the shared 

safety actuator is sufficient to enable the considered safety stop safety function. 

Related patterns 

The safety system should notify the control systems of the related subsystems as illus-

trated in the CONTROL SYSTEM NOTIFICATION. 
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1 Bootstrapper 

...there is a Control System which consists of hardware parts and an applica-

tion(s). Hardware has to be prepared before the application can be given the reins. For 

example, memory has made to be activated and initialized. Additionally, no hardware 

is immune to errors, faults or decay. Unexpected issues may emerge if application is 

run on faulty hardware. For the application it would be preferable if the environment 

would be in a defined condition after every start-up sequence. 

 

 
 

✥       ✥       ✥ 

 

Before application can be started the hardware should be in defined 

state. Otherwise fault of uninitialized hardware may cause unexpected behav-

iour. 

 

After power up, the basic functionality of the hardware has to be activated 

with right parameters. For example, basic memory and internal buses need to be acti-

vated. If these are not set up, or are set up incorrectly, it is likely that the system does 

not work. 

 

Usually there is only limited amount of memory and persistent storage avail-

able when the system powers up. Program code required for activating all the hard-

ware might not fit in the memory or storage available during power up. Additional 

memory and persistent storage might be available only after they have been activated 

and set up. 

 

There are certain diagnostics and self-tests, such as memory error check and 

bus connection checks that should be done before commencing with the actual task of 

the device. A self-test operates at the lowest level possible with the hardware. Creat-
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ing such tests typically requires deep knowledge on the actual hardware. Thus, it 

should not be application programmer’s task to make these self-tests and checks. 

 

The application might be stored on variety of different medium. As it cannot 

always be known beforehand on which connected media the application resides, a 

way to discover it may be required. There could be multiple alternative applications in 

the system, or even alternative versions of the same application. In that case a way to 

select the loaded application is needed. 

 

System might be created by bundling together COTS hardware from multi-

ple vendors and adding in-house hardware on the top of that. Thus COTS hardware 

cannot initialize all hardware and hardware combinations in the system. It is on the 

responsibility of the system manufacturer to integrate and create initialization for the 

whole. 

 

Therefore: 

 

Initialize the hardware during start-up so that the system is always in 

consistent state during start-up. Divide the start-up to sequential stages, when 

necessary, to overcome the system resource limits and for separation of concerns 

[1]. For each stage add a bootloader component with its own responsibilities. 

 

Each bootloading stage adds flexibility to the boot process. As an example of over-

coming resource limits, the persistent memory available during start-up is often lim-

ited in size and therefore the first stage bootloader can only contain the very essential 

initializations. The foundations for the second stage are created in the first stage by 

setting up storage device, initializing memory and loading second stage to the 

memory. As an example of the separation of concerns, a CPU board manufacturer 

does not know where their board is going to be used. Therefore the CPU board only 

takes care of its own setup. Additional stages are required to handle the system be-

yond the CPU board. 

 

The first stage after power-up is called bootstrap loading or boot loading. Here the 

basic functionality of the hardware is initialized. The bootstrapper code resides on 

limited sized persistent storage such as ROM or EEPROM, available immediately 

during start-up. A CPU wakes up and executes program code from defined memory 

address on this persistent storage. One of the first tasks for the bootstrapper is to acti-

vate different kinds of buses in the system such as memory bus, data bus and control 

bus. Proper bus timings have to be used to ensure correct behaviour, otherwise data 

loss and undefined errors will occur. When the buses have been activated the volatile 

memory, RAM, can be activated. Additionally, storage device may be activated along 

with some basic peripheral devices such as serial ports. This is the minimum what a 

bootstrapper should do to enable loading latter stages or running an application. 
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In addition, the first stage may contain power on self-tests (POST) for processor, 

memory, controllers, system buses and other basic hardware. POST helps to detect 

hardware errors, both during software development and in use. During software de-

velopment hardware bugs are often time consuming to diagnose and treat, therefore 

hardware should be as stable as possible. The level of use time testing depends on the 

requirements for the system. For example, undetected hardware error in a satellite 

might lead to unrecoverable situation. After POST phase additional bootloader stage 

may be loaded to the memory and executed. Latter stages may contain their own set 

of POST tests for those parts of hardware which they have enabled. The hardware 

manufacturer often provides the first stage bootloader as it requires extensive proprie-

tary knowledge on hardware internals which they only have. 

 

Often the location of the second bootloader is fixed, that is, it is expected to reside 

in certain location on activated persistent storage. This makes the task of loading the 

second stage easier and it requires fewer resources from the first stage bootloader. As 

the second stage code resides on larger medium and there is more volatile memory 

available, it can do much more that the first stage. Typically the second stage boot-

loader enables additional devices. Such a device could be, for example, advanced 

storage and memory solutions, networking and wireless interfaces and peripheral 

devices such as keyboards and displays. Sometimes the second stage functions just as 

a stepping-stone to third stage. For example, the second stage could have functionality 

to search all storage media such as SD cards, USB sticks or hard drives for the third 

stage. In such a design the second stage is more like extension to first stage. 

 

In some embedded systems latter stages are not required or wanted due to timing 

concerns. For example, safety systems in a power plant do have high requirements for 

availability. Loading the main application as soon as possible requires that the hard-

ware is tightly coupled with the software, so that additional setup or testing is not 

required. Device initialization is usually fast process, but a lot of time might be spent 

on some self-tests such as extensive memory tests. Consequently, the tests have been 

sometimes divided into two groups; fast power on self-tests and extensive long time 

running diagnostic tests. Even when fast timing is not crucial, the users should not 

kept waiting for no good reason. Therefore, it is not often reasonable to run long last-

ing tests all the time. 

 

More advanced bootloader may contain more functionality such as user interface, 

logic for selecting and booting alternative applications, backup service, software up-

dating functionality such as described in Updateable Software pattern, rescue mecha-

nisms or rescue mode, etc. If the bootloader has more than one application which it 

could execute, there should be a way to select which one to use. There can be multiple 

reasons for having multiple application such as to provide a way to use different ver-

sions of the software, have separate rescue mode application, bundle extensive diag-

nostic test as an application or have higher availability by applying 1+1 Redundancy 

pattern. The selection mechanism can be implemented with software logic or with 

hardware switch. 
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One typical rescue mechanism is bootloop detection. In a bootloop system crash is 

detected by Watchdog, which reboots the system to have it crash again and again. 

One way to implement bootloop detection is to have a counter which increases on 

start-up and resets on shutdown. If the counter value is larger than zero during start-

up, the system was not shutdown cleanly. When the value is larger than one, the sys-

tem has crashed multiple times in row and may be in bootloop. In this case the opera-

tor of the system is alerted, alternative version of the application could be tried or 

system might be halted. 

 

Sometimes third parties should not be allowed to tamper with the system software. 

Way to secure the bootloader and system from modification and external tampering is 

presented in SECURE BOOT pattern by Hans Löhr et al. [2]. The basic idea is to use 

checksums or cryptographically signed bootloaders and applications. Only software 

with valid checksum or signature is loaded and executed. Part of the verification chain 

is done in hardware. This makes it more secure as it is harder to modify or read out 

hardware than software. Such a solution is used for example in SIM cards, electronic 

cash cards, game consoles and some mobile phones. 

 

A BOOT LOADER pattern by Dietmar Schuetz [3] descibes the problem area and 

solution more from the x86 PC and hardware perspective. Many of the ideas present-

ed in the pattern still apply any hardware or CPU setups even if the hardware details 

differ. 

✥       ✥       ✥ 
 

Bootloading ensures that the system is functional with required components. The 

POST verifies that the system is in tested defined state. This creates a good stable 

base, which can be relied upon. Application developer does not need to wonder if the 

hardware is in working order. However, as everything cannot be tested, testing just 

makes sure that the probable and common errors are detected. With dublication and 

rescue mode additional availability may be achieved. 

 

When the bootloader is divided into stages, every stage provides always higher 

level of service on top of the previous stage. Typically the hardware vendor concen-

trates on the hardware details in their first stage bootloader and company using the 

hardware adds functionality of their own into latter stage bootloader(s). 

 

Especially the first stage bootloader is usually highly hardware dependent and cre-

ating such a piece of software requires good knowledge on the hardware and how to 

program it. Typically hardware registers are manipulated and low level coding lan-

guage such as assembler is used in some parts of the bootloader. This requires de-

tailed knowledge and skill set, which an normal application developer rarely has. 

 

If system initialization is build using multiple bootloaders, the startup is not as fast 

as it could be. In many case delayed startup sequence is acceptable cost for the re-
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ceived flexibility. When a system should serve its task almost immediately after pow-

ering up it is not acceptable to wait. Too long start-up period is also usability issue 

from the operator perspective. 

✥       ✥       ✥ 

When the ARM CPU is powered on, its registers are set to predefined values. The 

processor starts to execute binary from address 0x00000000. This memory address 

resides in internal ROM memory located on-chip with the CPU. The first stage boot-

loader is preloaded by hardware manufacturer into internal ROM of the CPU. The 

bootloader initializes the system by setting busses, clocks, stacks, interrupts etc. After 

this, the bootloader identifies the boot media by looking for bootloader signature on 

external flash and then from USB storage. 

 

If the second stage bootloader is not detected, the first stage bootloader halts the 

system. If bootloader is found from medium, it is loaded into internal RAM. Then the 

CPU program counter is set to address of the second stage bootloader load address. 

The second stage bootloader is responsible for loading operating system into memory. 

For this to be possible, the memory has to initialized first by setting up controller, 

memory refresh rate, etc. The second stage bootloader has been configured to launch 

operating systems from certain locations defined beforehand. After the memory has 

been initialized, the first location is tried. If no operating system is found, next ad-

dress is tried and so on. If no operating system is found, the system is halted. When 

suitable signature is found, the operating system is loaded into memory and execution 

is transferred to the operating system. 
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Abstract
Modeling user interfaces as dialogs provides a conceptual frame-

work to address global coherence and efficiency of interactions. While
non-probabilistic approaches provide convincing results and transpar-
ent dialog behavior, probabilistic techniques can help to account for
inherent uncertainties in user input. In this paper, we present three
patterns for probabilistic dialog management or support thereof.

1 Introduction

Describing graphical user interfaces is still, predominantly, achieved by ap-
plying the Model-View-Controller pattern [5] or one of its variations. Wherein
the graphical widgets of an application provide the means to input data as
the view, processed by a controller component to adapt the model of an
application, which in turn, updates the view. This pattern works very well
for graphical user interfaces in the absence of recognition errors or with in-
expensive error correction.

There are two problems with the MVC pattern with regard to generic
user interfaces. First, it does not ensure a coherent global dialog behavior
between the user and the system. Second, it assumes unambiguous user
input, recognized without any errors, which is not the case for interfaces
employing spoken or gesture input. Therefore, we identified MVC as an
anti-pattern [6] as far as dialog management is concerned.

This paper is aimed at developers of multimodal interfaces and extends
our pattern language introduced in the aforementioned earlier paper. We
describe patterns to support global dialog coherence by probabilistic ap-
proaches, accounting for inherent recognition uncertainty with some modal-
ities.
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2 Patterns

The patterns described in this paper integrate into the language of patterns
for dialog management that we introduced in [6]. An overview of the pat-
tern language and their relations is shown in figure 2. The earlier patterns

Figure 1: Overview of the pattern language

of our language are shown as gray. Table 2 summarizes these patterns as
(External) Pattern Thumbnails [3].

In this paper we extend our language by three more patterns: Markov
Decision Processes (MDP), Partially Observable MDP and Se-
quence Prediction. While the first two have been established in research
around dialogue management in the past decade, the latter is more of an
explorative nature. This means that we use the pattern format to explore
the domain. We aim for extending existing research in sequence prediction
algorithms mainly discussed in [2] to discuss their applicability to dialog
management. Consequently, there are no known uses.

The following terms are defined in more detail in our original paper [6]
and only included here for completeness.

Dialog (-strategy): A recursive sequence of inputs and outputs
necessary to achieve a goal [4].

Dialog Turn: A single input or output within a dialog.

(Information) Slot: Storage to hold a single atomic piece of
information.

2
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Name Intent
Programmatic Dialog
Management

Implement an interactive application with
unimodal interaction and no need for ex-
plicit dialog management.

Finite State Dialog Man-
agement

Provide an interactive application with an
easy way to adapt the dialog structure
later on.

Frame Based Dialog
Management

Allow for adaptations of dialog structure
without altering application logic, but try
to ease the verbosity of finite state dialog
models.

Information State Up-
date

Allow for more flexible dialogs with a cer-
tain amount of intelligence in the dialog
structure.

Plan Based Dialog Man-
agement

Uncover the user’s underlying goal to
guide the actual dialog management.

Agent Based Dialog
Management

Model interaction with distinct subsys-
tems as agents with their own beliefs, de-
sires, intentions (and obligations).

Table 1: Thumbnails of patterns described in [6]

Mixed Initiative: The possibility for a user to provide com-
pound information during her turn, as opposed to a single infor-
mation; Fills multiple information slots at once.

Patterns are in a custom format which is based on the Coplien format [1]
which we find useful to talk about human computer interaction.

3
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Markov Decision Processes (MDP)

Intent

Sl
ot
1

Sl
ot
2

Sl
ot
N

S1

S2 S3 SN

S2 SN

Find an optimal dialog strategy to fill a set
of information slots with a sequence of mixed-
initiative dialog turns, where a single user
action can potentially fill multiple slots.

Context
A mixed-initiative dialog needs to sufficiently instantiate a template as a
set of information slots. Different (compound) user actions yield different
recognition accuracies depending on their complexity and the performance of
a recognizer and an eventual natural language understanding unit. Frame
Based Dialog Management can be applied to allow for an arbitrary
order to fill the slots but does not take the different recognition rates with
compound user actions into account.

Problem
There are multiple, possible sequences of state transitions, each state prompt-
ing the user to perform an action that will potentially fill multiple informa-
tion slots. The recognition accuracies differ with regard to the amount and
kind of information the user action contains for a single prompt. How to
account for those different recognition accuracies to find an optimal and
consistent dialog strategy to sufficiently instantiate a template?

Forces

• A sufficiently large corpus of example dialogs exist or users can be
simulated.
• Dialog is limited in scope to prevent state explosion.
• The goal of the user can be conceived as the instantiation of a template.

Solution
The solution tries to find the optimal dialog strategy to instantiate tem-
plates as a set of information slots as defined by an objective cost / reward
function [3]. By modeling the dialog as a Markov Decision Process (MDP),
approaches from reinforced learning can be applied to minimize these cost
/ reward function with regard to the dialog turns. Paek and Chickering an-
alyzed in [4] different reward models and their suitability to constrain the
state space when its structure is unknown.

A MDP is formally defined as the quadruple:

MDP := S,A, T,R

States := {s ∈ all dialog states}

4
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Actions := {a ∈ all output actions}
Transitions := P (st+1|st, a)

Reward := r(s, a)

With States being the cartesian product of all the information slots with
their possible values. Actions as a set of dialog acts the machine can perform
to prompt the user to provide input, Transitions as the probabilities to tran-
sition from state st to st+1 should the action a be selected and Reward as a
cost / reward function, associating a cost for performing an action in a given
state.

The dialog starts in the state where all information slots are unfilled. The
transition with the highest probability is taken and the associated action is
performed (e.g. open prompt greeting). The user’s input is processed by
a semantic interpretation unit and the new state determined. The process
continues until one template is sufficiently instantiated for the system to sat-
isfy the users goal. To apply a Markov Decision Process for dialog modeling,
consider the following:

1. Establish the state-set States as the cartesian product of all possible
input field values.

2. Identify all possible actions Actions that are relevant to perform the
dialog.

3. Provide a cost function to account for e.g. overall dialog length, cost of
database queries, number of unfilled information slots, cost of rendering
a new prompt.

4. Use reinforced learning to train the Transition probabilities from the
dialog corpus or user simulation.

The resulting MDP provides the basis for a dialog strategy, satisfying the
optimality criterion implicit in the cost function.

Consequences

, Resulting dialog strategy is learned from real data.
, All dialog strategies are (nearly) optimal with regard to cost function.
, Accuracy of recognition and language understanding is taken into ac-

count.
/ The cartesian product of all possible input field values tends to be huge

and an optimal solution often intractable.
/ Actual dialog behavior is opaque as it is encoded in the MDP.
/ Adapting the dialog requires retraining.

5
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/ Recovery strategies, to realign the users interaction intent with the
systems interpretation [5], are difficult to implement, as all the different
approaches would need to be formalized in the cost function.

Known Uses

Lemon showed in [2] that dialog management and natural language gen-
eration are closely related and that a joint and automated training result in
a significantly better reward.

Boyer et al. introduce in [1] a tutorial dialog system based on this pattern.

Related Patterns

Markov Decision Processes (MDP) extends Frame Based Dia-
log Management to find an optimal dialog strategy to fill a set of infor-
mation slots with a sequence of mixed-initiative dialog taking into account
the respective recognition rates for such compound input.

Partially Observable MDP helps to model this uncertainty as a
probability distribution of states.
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Partially Observable MDP

Intent
P(S1)
P(S2)
   ...
P(SN)

P(S1)
P(S2)
   ...
P(SN)

P(S1)
P(S2)
   ...
P(SN)

O1 O2
Provide a dialog management system that
implicitly copes with the uncertainty related
to the recognition of user input.

Context
Markov Decision Processes (MDP) has been applied to find an optimal
dialog strategy to fill a set of information slots in a mixed initiative dialog.
Still, a huge class of problems, especially with multimodal applications, stems
from the fact that user input cannot be recognized with absolute certainty.

Problem
How to model dialogs with inherent uncertainty in the user input?

Forces

• User input intend cannot be derived with certainty from employed
modalities.
• A sufficiently large corpus of example dialogs exists or user input can

be simulated.
• Dialog is limited in scope to prevent state explosion.

Solution
Implicitly modeling uncertainty as a partially observable Markov decision
process with a probability distribution among all the dialog states can help
to arrive at concise and effective dialogs in the absence of robust recognition.
In order to implement this strategy consider the following:

Model the dialog as a partially observable Markov Decision Process - an
extension of the MDP quadruple defined above as:

POMDP := S,A, T,R,O,Z, λ, b0

States := {s ∈ all dialog states}
Actions := {am ∈ all output actions}

Transitions := P (st+1|st, am)

Reward := r(s, am)

Observations := {o ∈ all user input au}
Z := P (ot+1|st+1, a)

λ := geometric discount factor with 0 ≤ π ≤ 1

b0 := initial state probability distribution(belief)

7
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With S,A, T,R as defined in the MDP pattern and Observations as the
set of input actions a user might perform, Z as the probability of observing
user action ot+1 after performing am as part of the previous transition. λ
as a discounting factor to optionally emphasize late rewards and b0 as the
initial state probability distribution.

The major difference when compared to other state-based dialog man-
agers is that POMDPs will maintain a probability distribution of all states
in b and employ dynamic programming to determine the most likely user
goal and system action [3].

When performing the dialog, the system will receive the users input and
perform belief monitoring to update the state probability distribution in b
for each dialog turn. This distribution gets mapped to actions (e.g. a voice
prompt). Several stochastic models are needed in order to operationalize
the approach and would need to be trained from a dialog corpus or by user
simulation.

As it may be computationally intractable to process the whole belief state
and associated actions, Young proposes a grid-based approach [3], where
actions are points in the belief state and a distance metric can be employed
to find the best action. Another extension is the mapping of all state into
a summary state space, containing the most likely states corresponding to
user goals.

An overview of the principal components in a POMDP dialog system,
based on [3] is shown in the following figure:

Consequences

, Resulting dialog strategy is learned from real data.
, Robust with respect to recognition or understanding errors
, Implicitly models and takes into account uncertainty in user recogni-

tion
/ The state space tends to get huge as it has to model all dialog states

and mappings from beliefs to actions.
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/ Users goal is assumed to change infrequently to keep belief monitoring
manageable.

/ Recovery strategies are difficult to implement as they have to be part
of the original corpus.

Known Uses

Wiliams et al. showed in [2] that the performance of this dialog manage-
ment is comparable to hand-crafted dialog managers.

The Trainbot system [4] uses this dialog manager to make appropriate
dialog turns in a given situation.

Tsiakoulis et al. presented in [1] a voice-based in-car system for providing
information about local amenities (e.g. restaurants).

Related Patterns

Partially Observable MDP extends Markov Decision Processes
(MDP) by providing the means to model uncertainty as a probability dis-
tribution of states.
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Sequence Prediction

Intent

S1

S2

S3

P(
S T

+1
 | 

S T
, .

.)

T T+1

SN

Support an actual dialog strategy by mak-
ing predictions about future user input.

Context
A state-based multimodal dialog system ex-
ists, e.g. Finite State Dialog Manage-
ment, where 1) multiple strategies can sat-
isfy the users interaction intent or 2) knowl-
edge about potential future steps can be applied to increase the interaction
efficiency.

Problem
How to support the dialog manager with knowledge about previously ob-
served interaction strategies employed by a user?

Forces

• System- or user-actions can be performed in several ways.
• Users are likely to stick to the approach they identified first [?].
• The system can support the user in an unobtrusive way by using knowl-

edge about probable future input.

Solution
By learning the observed sequences, a system can provide support to arrive
at more concise and effective dialogs. To implement this strategy consider
the following:

Establish an N-Gram P (st+1|st, st−1..st−N−1, t(st, st+1) ∈ T ) to deter-
mine the probability of a state given a history of states and use a sequence
prediction algorithms to take a guess at the next state. Support the user by
unobtrusively offer short-cuts and interaction support using this knowledge.

1. Count all occurrences of a state in a dialog corpus or online while
performing the dialog as the 1-Gram model.

2. Maintain a history and establish the 2..N-Gram models as well.

3. Look-up the N most likely states given the history in the N-Gram and
unobtrusively support transitions to these states in the interface.

Consequences

, Can support actual dialog managers with their strategy by hinting at
future transitions.
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/ Is not suited to perform actual dialog management, but rather a com-
plimentary approach.

/ The N-Grams need to be established per user as their interaction pat-
terns may differ.

An evaluation and overview of available sequence prediction algorithms
is available in e.g. [1].

Related Patterns

Sequence Prediction extends Finite State Dialog Management
by supporting an actual dialog manager with predictions about future user
input. In contrast to the previous two patterns, this is a complimentary
approach to dialog management and not an actual dialog management tech-
nique.

References

[1] Melanie Hartmann and Daniel Schreiber. Prediction algorithms for user
actions. In Ingo Brunkhorst, Daniel Krause, and Wassiou Sitou, editors,
15th Workshop on Adaptivity and User Modeling in Interactive Systems,
2007.

3 Conclusion

In this paper we continued the work on our pattern language for dialog man-
agement with patterns about probabilistic dialog management. Specifically,
we described the following three patterns:

Markov Decision Processes (MDP) extends Frame Based Dia-
log Management to find an optimal dialog strategy to fill a set of in-
formation slots with a sequence of mixed-initiative dialog turns with given
uncertainty in recognizing the user’s actions.

Partially Observable MDP helps to model this uncertainty as a
probability distribution of states.

Sequence Prediction is an extension to Finite State Dialog Man-
agement by supporting an actual dialog strategy by making predictions
about future user input. In contrast to the previous two this is rather a
guidance to dialog management.

The major disadvantage of probabilistic approaches, from our point of
view, is the opaqueness of the learned dialog strategies, making it hard or
even impossible to make small adaptations to the dialog or employ error
recovery strategies. Nevertheless, being able to learn an optimal strategy or
implicitly modeling the uncertainty can provide very useful when embedded
as probabilistic sub-dialogs.
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In the future we will further extend our language by describing more
recent variances of the described patterns.
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